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Abstract. In this paper, the resilient time-varying formation control for
second-order discrete-time multi-agent systems (DMASs) under commu-
nication link attacks and actuator faults is investigated. The number
or proportion of edge attacks around each agent, including deception
attacks and denial-of-service (DOS) attacks, is bounded. A discrete-time
distributed formation protocol based on trim of extreme values and fault
estimation and compensation is given. Using robust graph properties
and discrete stability theory, sufficient conditions for the given DMASs
to realize the desired formation with bounded error are derived. Numer-
ical simulation examples are applied to illustrate the effectiveness of the
resilient formation strategy.

Keywords: Resilient control · Time-varying formation · Discrete-time
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1 Introduction

In the past decades, the research on multi-agent systems (MASs) has attracted
much attention due to its extensive applications, such as information fusion [1],
source seeking [2], and formation control of unmanned aerial vehicles [3].

Since MASs consist of interconnected agents, they are especially vulnerable
to adversarial attacks. The influence of attacks on agents or communication links
among agents can spread through the network and degrade the performance of
the whole system. Hence, resilient control problems have received increasing
attention from the control system community [4].
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In the resilient control literature, a general model to describe adversarial
threat is to suppose that the number of compromised agents is bounded for the
whole system or around each agent. In the landmark work [5], a novel defini-
tion of network robustness, named r-robustness, is introduced, and an improved
Mean-Subsequence-Reduced (MSR) algorithm [6] was applied to guarantee lead-
erless consensus of uncompromised agents under bounded adversarial attacks.
The results have been later extended to the case of leader-follower consensus
[7], trusted nodes [8], and two-hop information-based approaches [9]. In [10],
the authors consider locally bounded edge deception attacks instead of attacks
on agents. As for formation control, a generalization of consensus control, the
research is limited to first-order time-invariant case [11]. However, the resilient
time-varying formation of second-order MAS, which has a more important appli-
cation value, has not been widely investigated. What’s more, first, in the afore-
mentioned works, DOS attacks are not considered, which can reduce network
connectivity and robustness, and make it difficult to apply MSR algorithms.
Second, most of the existing works only deal with the case where the number of
attacked nodes or edges is bounded, while for large-scale systems and for scal-
ability issue, it is also of interest to study the case where their proportion is
bounded.

Physical agents are also susceptible to component faults, which is the focus
of fault-tolerant control/fault-tolerant cooperative control (FTC/FTCC) [12].
Several actuator faults such as loss of effectiveness, float, lock-in-place, and
hard-over-failure [13] have been investigated. In [14], a framework of fault detec-
tion, fault isolation, fault estimation (FE), and fault compensation (FC) for
continuous-time Takagi-Sugeno (T-S) fuzzy systems is investigated. For discrete-
time systems, Gao [15] develops a simultaneous state and fault estimator as well
as actuator/sensor compensation scheme to meet prescribed disturbance atten-
uation performance for linear systems. In [16], a distributed reduced-order fault
estimation observer is derived for both continuous-time and discrete-time multi-
agent systems. However, reliable information exchange between agents is needed,
and the method is not applicable when the network communication links are
under adversarial attacks.

In this paper, resilient distributed time-varying formation problem for
second-order DMASs under communication link attacks and actuator faults is
addressed. A discrete-time time-varying formation protocol based on MSR and
FE/FC is developed. Utilizing graph theory, descriptor observer technique, and
discrete stability theory, sufficient conditions for DMASs to realize time-varying
formation with bounded error are obtained. Finally, simulations are conducted
to illustrate the effectiveness of theoretical results.

The innovations of this paper are fourfold. First, we extend the works of
[3,10,11] to resilient time-varying formation control of second-order DMASs. Sec-
ond, DOS attacks on communication links are considered in this paper, whereas
this type of attacks is neglected in the works [7–10]. Third, the model in [10] which
considers a bounded number of attacks around each agent will be extended to
the case with a bounded fraction of attacks to improve the algorithm’s scalabil-
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ity capacity. Fourth, the single-agent FE/FC scheme of [15] will be combined with
MSR algorithm to be applied for DMASs to attenuate the effects of actuator faults,
whereas malfunctions of physical components are not considered in [7–10].

The remainder of this paper is organized as follows. In Sect. 2, preliminaries
of graph theory, the attack model and problem description are presented. In
Sect. 3, a resilient time-varying formation protocol composed by two parts is
given and some theorems that ensure the realization of formation with bounded
error is proven. In Sect. 4, a numerical simulation of six agents circular formation
is performed. Finally, conclusions are summarized in Sect. 5.

Notations: For a matrix M , σM (·) and σm(·) denotes its largest and smallest
singular value, MT denotes its transpose. For a matrix, ∗ represents the terms
induced by symmetry. Let x be a random variable, x ∼ N(μ,Σ) means that x
follows a Gaussian distribution with μ the mean vector and Σ the covariance
matrix. diag(A,B) with square matrices A and B denotes the block diagonal

matrix
[
A 0
0 B

]
.

2 Preliminaries and Problem Formulation

2.1 Basic Concepts of Graph Theory

Let G = (V,E,A) denote a directed graph with the node set V = {1, . . . , N},
the edge set E ⊆ V × V and the adjacency matrix A = [aij ] ∈ R

N×N . aij > 0 if
(j, i) ∈ E and aij = 0, otherwise. If (j, i) ∈ E, j is an in-neighbour of i, i is an
out-neighbour of j and (j, i) is called the incoming edge of i from j. We assume
aii = 0 for any i ∈ V . Denote Ni = {j ∈ V : (j, i) ∈ E}.

Definition 1 (Set reachability and graph robustness [5])
Given a digraph G and a nonempty subset S of nodes of G, S is an r-reachable

set (a p-fraction reachable set) if ∃i ∈ S such that |Ni\S| ≥ r, where r ∈ Z≥0

(|Ni\S| ≥ p |Ni|, where 0 ≤ p ≤ 1).
G is r-robust (p-fraction robust) if for every pair of nonempty, disjoint subsets

of V , at least one of the subsets is r-reachable (p-fraction reachable).

2.2 Definition of Time-Varying Formation

Consider the following discrete-time double-integrator dynamics:

x̄i [k + 1] = Ax̄i [k] + Bui [k] , (1)

where x̄i [k] = [xi[k], vi[k]]T with xi[k] ∈ R and vi[k] ∈ R denoting the position

and the velocity of agent i, respectively, ui[k] ∈ R the control input, A =
[

1 T
0 1

]
,

and B =
[

T 2

2
T

]
with sampling period T .
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Let h[k] =
[
h1[k]T, · · · , hN [k]T

]T be the desired formation vector for system
(1), where hi[k] = [hxi[k], hvi[k]]T ∈ R

2 is the formation vector for agent i.

Definition 2. The system (1) realizes the time-varying formation h[k] if there
exists a vector-valued function r[k] ∈ R

2 called the formation reference function
such that limk→+∞ (x̄i[k] − hi[k] − r[k]) = 0,∀i = 1, 2, . . . , N .

Assumption 1. The formation vector hi[k] = [hxi[k], hvi[k]]T h, i ∈ V satisfies
the following conditions,

1) hxi[k + 1] = hxi[k] + Thvi[k].
2) Let Δhvi[k] = hvi[k+1]−hvi[k] and s [k] = maxi∈V |−Δhvi[k]+Σk

d=1 (2 − βT )
(−1)d+1

Δhvi [k − d]|, where β will be defined later. s[k] is bounded by b ∈
R, b > 0.

Remark 1. The first assumption is also used in [17]. And the second one can be
easily verified for the simple circular time-varying formation control studied in
[17] and [3].

2.3 Attack Model

We suppose that each edge (i, j) ∈ E is vulnerable to attacks, which can be
deception attacks or DOS attacks. The first ones can change the values received
by node i from node j, while under DOS attacks, node i cannot receive any
information from node j. The set of edges under attacks at time instant k is
denoted as EA[k].

Definition 3 (F-local/f-fraction local edge attacks)
A directed graph G = {V,E} is said to be under F -local (f-fraction) edge

attacks if for each node i ∈ V , at most F (
f |Ni|�) of its incoming edges are
under edge attacks at each time instant.

Remark 2. F-local edge attacks without DOS attacks is exactly the F-local
deception attacks in [18].

2.4 Faults and Disturbances Model

The real dynamics of the agent i with actuator faults and disturbances are as
follows:

x̄i [k + 1] = Ax̄i [k] + Bũi [k] + di[k]
yi [k] = x̄i [k] + wi [k] , (2)

where ũi[k] = ui[k]+ fi[k] ∈ R is the real input with ui[k] denoting the designed
input and fi[k] the fault. di[k] and wi[k] are the disturbances on agent i.

Our aim is to design the control input ui[k] for each agent i ∈ V such that
MAS (2) realize formation h[k] under F-local or f-fraction local edge attacks with
bounded errors related to the actuator faults and disturbances.
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3 Main Results

3.1 Overall Structure of the Proposed Approach

Our approach consists of two steps. First, agent i forms a target observer Oi

which realizes the desired formation hi[k] without actuator faults and distur-
bances and gives a reference model for agent i to track. Second, each agent applies
fault estimation and fault compensation strategies to attenuate the influences of
faults and disturbances while tracking its reference model.

Define the target observer Oi with the following dynamics

ˆ̄xi [k + 1] = Aˆ̄xi [k] + Bri [k] , (3)

where ˆ̄xi [k] = [x̂i [k] , v̂i [k]]T with x̂i[k] ∈ R and v̂i[k] ∈ R denoting the states of
Oi, and ri[k] ∈ R is its input. The initial values are assumed to be x̂i[0] = xi[0]
and v̂i[0] = vi[0].

3.2 Formation Protocol for Target Observers

Define δxi[k] = x̂i[k] − hxi[k], δvi[k] = v̂i[k] − hvi[k], according to dynamics (3)
and Assumption 1, we have

δxi [k + 1] = δxi [k] + Tδvi [k] +
T 2

2
ri [k] ,

δvi [k + 1] = δvi [k] + Tri [k] − Δhvi [k] .
(4)

Based on RCC algorithm of [10] and inspired by [5], we propose the following
edge-attack resilient formation (EARF) algorithm, which consists of three steps
for each time step k:

1) Each observer Oi sends its position δxi[k] to its out-neighbors.
2) Define the received value set for Oi as R̄i[k] = {δi

xj [k], j ∈ Ni}. di[k] denotes
the number of in-neighbours of Oi from which Oi does not receive information.
Define a variable qi according to the operation mode of the protocol:

• F-local mode: qi = F − di[k]
• f-fraction local mode: qi = 
f |Ni|� − di[k]

If the number of elements in R̄i[k] whose values are strictly larger than δxi[k]
is less than qi, Oi discards all these values. Otherwise, it discards the qi largest
values in R̄i[k]. A similar operation is conducted on the values strictly smaller
than δxi[k]. Denote by Ri[k] the set of rest observers whose values are retained
by observer i at time k.

3) The control input for observer i is designed as:

ri[k] = α
∑

j∈Ri[k]

aij

(
δi
xj [k] − δxi[k]

) − βδvi[k] + γi[k],

γi [k] =

{
2−βT

T Δhvi [k − 1] − γi [k − 1] , if k ≥ 1,

0, if k = 0,

(5)
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where the parameters α and β satisfy

0 <
αT 2

2
max
i∈V

∑
j∈Ni

aij <
1
2
,

1 +
αT 2

2
max
i∈V

∑
j∈Ni

aij <βT < 2 − αT 2

2
max
i∈V

∑
j∈Ni

aij .

(6)

Then the observer i update its state value using (5) according to (3).

For k ∈ Z and k ≥ 1, let M [k] = maxi∈V {δxi[k], δxi[k − 1]}, and m[k] be the
corresponding set for the minimal values.

Lemma 1. Consider MAS (3) under F-local edge attacks (f-fraction local) edge
attacks, where each agent applies EARF algorithm using F-local (f-fraction local)
mode. Then M [k] is non-increasing and m[k] is non-decreasing.

Proof. For k ≥ 1, according to (4) and (5), using the same approach as in
Lemma 1 of [10], δxi[k + 1] can be expressed as a convex combination of δxi[k],
δi
xj [k] with j ∈ Ri[k], δxi[k], and δi

xj [k − 1] with j ∈ Ri[k − 1] by using γi[k] to
eliminate the terms related to Δhvi. Therefore, M [k] is non-increasing and m[k]
is non-decreasing. �
Theorem 1. Consider the MAS (3) under F-local (f-fraction local) edge attacks,
where each agent applies the EARF algorithm using F-local (f-fraction local)
mode. The formation is realized with an error asymptotically bounded by b

βT for
the velocity state if and only if the communication network is (2F+1)-robust (if
the communication network is p-fraction robust with 2f < p ≤ 1).

Proof. Necessity (for F-local edge attacks case): In the special case where hi[k] ≡
0, i ∈ V , the objective becomes realizing the consensus of system (3). In [10],
the authors gave a counter-example in which the consensus cannot be reached
when the communication network is not (2F+1)-robust.
Sufficiency : Using the same approach as in Lemma 2 of [10], one can show that
there exists x∗ ∈ R such that δxi[k] → x∗,∀i ∈ V , then ri[k] → −βδvi[k] +
γi[k]Δhvi[k]. According to (4), one has δvi[k + 1] → (1 − βT )δvi[k] + si[k] with
si[k] = (Tγi[k] − 1)Δhvi[k]. Using the expression of γi[k], it is deduced that
si[k] = −Δhvi [k] + Σk

d=1 (2 − βT ) (−1)d+1
Δhvi [k − d]. According to (6) and

Assumption 1, |δvi[k]| is bounded by b
βT when k → ∞. It is concluded that

system (3) reaches the formation h[k] with an error asymptotically bounded by
b

βT for the velocity state and a formation reference function of [x∗, 0]T. �
Remark 3. For the problem of simple circular time-varying formation control
in [17], when the sampling period T is short and the desired formation varies
slowly, one can show that b will be small enough to be ignored, which will be
illustrated by the simulation part of this paper.
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The above analysis focused on the total number or fraction of the two types
of attacks around an agent. We may also deal with the case where the numbers of
DOS attacks and deception attacks are bounded separately, given in the following
theorem. The proof is similar to that of Theorem 1 and is therefore omitted.

Theorem 2. If we revise the EARF algorithm to no longer consider DOS
attacks, i.e., we always set Di[k] = ∅, then if for each node i ∈ V, at most
FDos (fDos|Ni|) of its incoming edges are under DOS attacks and at most FDec

(fDec|Ni|) of its incoming edges are under deception attacks at each time instant,
using the revised EARF algorithm in FDec-local mode (fDec-fraction local mode),
the formation with the same performance as in Theorem1 of system (3) is
achieved if and only if the communication network is (FDos + 2FDec + 1)-robust
(if the communication network is p-fraction robust with fDos + 2fDec < p ≤ 1).

3.3 Actuator Fault Estimation and Compensation

According to (2) and (3), one can obtain

˜̄xi [k + 1] = A˜̄xi [k] + B (ui [k] + fi[k] − ri [k]) + di [k] ,
zi[k] = ˜̄xi [k] + wi [k] ,

(7)

where zi[k] = yi[k] − ˆ̄xi[k].
Since we are now dealing with a specific agent i ∈ V , for simplicity, the index

i is omitted in this section.
Define an extended state xe[k] = [˜̄x[k]T f [k] w[k]T]T and a reformulated

input ur[k] = u[k] − r[k]. Let Δf [k] = f [k + 1] − f [k], M ∈ R
2×2 be a non-

singular matrix, and Le = [0 0 MT]T ∈ R
5×2. Note that Se = Ee + LeCe is

non-singular, and define the following matrices

Ee =

⎡
⎣I2 0 0

0 1 0
0 0 0

⎤
⎦ , Ae =

⎡
⎣A B 0

0 1 0
0 0 −I2

⎤
⎦ , Be =

⎡
⎣B

0
0

⎤
⎦ , dde[k] =

⎡
⎣ d[k]

Δf [k]
w[k]

⎤
⎦ ,

Ce =
[
I2 0 I2

]
, Ne =

⎡
⎣ I 0 0

0 1 0
−I 0 I

⎤
⎦ , we [k] =

⎡
⎣ d [k]

Δf [k]
M−1w [k]

⎤
⎦ .

(8)

Theorem 3. (Observer and feedback law design for fault estimation and
compensation)

1) Estimation. Define the following extended state estimator

x̂e [k + 1] = S−1
e ((Ae − KeCe) x̂e [k] + Kez [k] + Beur [k] + Lez [k + 1]), (9)

where Ke ∈ R
5×2. Let x̃e = xe − x̂e. then the H∞ performance ||x̃e||2 ≤

γe||we||2, γe ∈ R, γe > 0 is satisfied if the following LMIs are solvable:
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solve K̄e ∈ R
5×2, Pe ∈ R

5×5 subject to Pe = PT
e > 0 and

⎡
⎣ −Pe + I ∗ ∗

0 −γ2
eI ∗

PeS
−1
e Ae − K̄eCe PeNe −Pe

⎤
⎦ < 0. (10)

Then Ke is designed to be SeP
−1
e K̄e.

2) Compensation. Design the control input ur[k] = −Fex̂e[k] with Fe =
[F 1 0] ∈ R

1×5 with F ∈ R
1×2. The tracking H∞ performance require-

ment ‖˜̄x‖22 ≤ γ2
c1 ‖x̃e‖22 + γ2

c2 ‖d‖22 , γc1 > 0, γc2 > 0 is satisfied if:

a) The following LMIs are solvable: solve F̄ ∈ R
1×2, P̄c ∈ R

2×2 subject to
P̄c = P̄T

c > 0 and
⎡
⎢⎢⎣

−P̄c ∗ ∗ ∗
0 −γ2

c2I ∗ ∗
AP̄c − BF̄ I −P̄c ∗

I 0 0 −I

⎤
⎥⎥⎦ < 0. (11)

b) The following LMIs are satisfied:
⎡
⎢⎢⎢⎢⎣

−P̄c ∗ ∗ ∗ ∗
0 −γ2

c1I ∗ ∗ ∗
0 0 −γ2

c2I ∗ ∗
AP̄c − BF̄ BF̄e I −P̄c ∗

I 0 0 0 −I

⎤
⎥⎥⎥⎥⎦ < 0, (12)

where F̄e = [F̄ P̄−1
c 1 0 0].

Then F is designed to be F̄ P̄−1
c .

Proof.

1) Using the extended state form, (7) can be rewritten as

Eexe [k + 1] = Aexe [k] + Beur [k] + dde [k] ,
z [k] = Cexe [k] .

(13)

Combining (13) and (9), we have

x̃e [k + 1] = S−1
e ((Ae − KeCe) x̃e [k] + dde [k]) . (14)

If LMIs (10) is solvable, according to Ke = SeP
−1
e K̄e and Schur complement

theorem, we can get

Ωe =
[

Ωe1 (Ae − KeCe)
T

S−T
e PeNe

PeN
T
e PeS

−1
e (Ae − KeCe) NT

e PeNe − γ2
eI

]
< 0 (15)
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with Ωe1 = (Ae − KeCe)
T

S−T
e PeS

−1
e (Ae − KeCe) − Pe + I. Define the Lya-

punov candidate function Ve(x̃e[k]) = x̃e[k]T Pex̃e[k], the time increment
of Ve along (14) is ΔVe [k] = x̃e [k + 1]T Pex̃e [k + 1] − x̃e [k]T Pex̃e [k] ≤
−‖x̃e [k]‖22+γ2

e ‖we [k]‖22. Then under zero initial condition,
∑∞

k=0 ‖x̃e [k]‖22 −
γ2

e ‖we [k]‖22 ≤ ∑∞
k=0 ΔVe [k] + ‖x̃e [k]‖22 − γ2

e ‖we [k]‖22 ≤ 0, which verifies the
H∞ performance.

2) Substituting ur[k] = −Fex̂e[k] into (7), we can get

˜̄x [k + 1] = (A − BF ) ˜̄x [k] + BFex̃e[k] + d [k] . (16)

If LMIs (11) are satisfied, let Pc = P̄−1
c and by left-multiplying and right-

multiplying (11) by diag(Pc, I, I, Pc, I) and using Schur complement theorem,
with F = F̄ P̄−1

c , we have

Ωc =

⎡
⎣Q + I (A − BF )T PcBFe (A − BF )T Pc

∗ (BFe)
T

PcBFe − γ2
c1I (BFe)

T
Pc

∗ ∗ Pc − γ2
c2I

⎤
⎦ < 0, (17)

where Q = (A − BF )TPc(A − BF ) − Pc. Define the Lyapunov candidate
function Vc (˜̄x [k]) = ˜̄x [k]T Pc ˜̄x [k], using the same approach as in the last
section, one can show that the demanded H∞ performance is verified. �

Remark 4. From the definition of we, we can show that the effect of w[k] can
be attenuated if the matrix M is chosen as a reasonably high-gain non-singular
matrix.

We focus only on the case where the dimension of xi is one, but the pro-
posed approach can be easily extended to multi-dimension cases by treating
each dimension independently.

4 Simulation

Fig. 1. Network topology

In this section, numerical simulations are designed to study the aforementioned
results. Consider a formation task on a two-dimension X-Y plane with N = 8
agents. The desired formation for agent i is
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hiX =

⎡
⎣ r cos

(
T
5 k + 2π(i−1)

N

)
+ Tk

− rT
5 sin

(
T
5 k + 2π(i−1)

N

)
+ k

⎤
⎦ , hiY =

⎡
⎣ r sin

(
T
5 k + 2π(i−1)

N

)
rT
5 cos

(
T
5 k + 2π(i−1)

N

)
⎤
⎦ (18)

for the dimension of X and Y, respectively, with the circular formation radius
r = 30m and the sampling time T = 0.1 s. The network topology is given in
Fig. 1. It can be verified that the digraph is 3-robust and 0.5-fraction robust.
The edge weights are set to 1. α = 16.6, β = 15 satisfies the conditions (6).
The simulation starts at k = 0 and ends at k = 1000. The initial positions and
velocities of the agents are set to zero.

In the first scenario, we suppose that there are no disturbances and actuator
faults, and agent 1 is under false data injection on the edge from agent 5. The
attack starts at time instant k = 300 and the attack value is generated by a
uniform distribution on [−100, 100] for each one of the X and Y dimensions.
Using EARF without step two, the result is given in Fig. 2(a). One can show
that during the first 300 time instants, the formation is formed but then totally
destroyed by the edge attack.

Then using the EARF algorithm with 1-local mode, the result is given in
Fig. 2(b), where the attack effect is largely attenuated.

(a) (b)

Fig. 2. MAS under edge attack without (a)/with (b) EARF algorithm

In the second scenario, in addition to edge attacks, each agent is
subjected to disturbances with di ∼ N(0,diag(0.052, 0.052)) and wi ∼
N(0,diag(0.052, 0.052)). What’s more, agent 1 is under actuator fault in the

Y dimension from the time instant kf = 400 with f1Y [k] = 500(1− e
k−kf
100 )m/s2

if k > kf , and 0, otherwise. The result is shown in Fig. 3(a). Agent 1 is dragged
away from other agents and the formation is disturbed.

To mitigate the fault effect, the fault estimation and compensation scheme
established in this paper is used. M = diag(3, 3). The feasibility problems of
LMIs (10) and (11) can be transformed to optimization problems as illustrated
in [15] to find optimal disturbance attenuation performance. Using Matlab, the
design matrix are therefore solved as follows:
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Ke =

⎡
⎢⎢⎢⎢⎣

1.1332 1.1979
0.6680 4.6035
1.1866 7.9114
0.0724 0.7771
0.5494 2.8124

⎤
⎥⎥⎥⎥⎦ , F =

[
3.4840 4.6744

]
. (19)

(a) (b)

Fig. 3. MAS under actuator faults and without (a)/with (b) fault compensation

Fig. 4. State/fault estimate of agent 1

Figure 4 shows the state/fault estimate of agent 1, which are then used for
feedback control. Figure 3(b) shows that agent 1 is firstly dragged away from
MAS by the fault but then it mitigates the fault effects and gets back to the
team. Therefore, the desired formation is realized under actuator faults and
attacks on communication link with the developed resilient control strategy.

5 Conclusion

Resilient time-varying formation problem of second-order DMASs under commu-
nication link attacks and actuator faults was addressed in this paper. A discrete-
time formation control protocol based on MSR and FE/FC was developed. By
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applying properties of robust graphs and discrete stability theory, sufficient con-
ditions for DMASs to realized the desired formation were presented. Simulation
results have verified the feasibility of the formation strategy.
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