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Abstract. The similar formation problem affected by biased random
measurement errors is studied in this paper. In practical application, the
measurement data of agents is disturbed by biased random errors, which
invalidates the existing similar formation algorithm. Hence, an improved
similar formation algorithm is designed in this paper to eliminate the influ-
ence of biased errors. Based on the 2-rooted measurement topology, com-
munication edges and measurement edges are appropriately added. Then,
using the geometric relationship between agents, agents convert biased
random errors into unbiased random errors online. Moreover, the decreas-
ing gain of the algorithm ensures that agents can asymptotically converge
to a similar formation of the generic target formation in the sense of mean
square. The numerical simulation verifies the conclusion of this paper.

Keywords: Similar formation algorithm · Biased random errors ·
Mean square convergence

1 Introduction

There is a large body of work on formation control in the multi-agent systems lit-
erature, such as commercial performances, area detection, and personnel search
and rescue. Depending on whether local coordinate systems of agents are aligned,
the formation control algorithm can be divided into the formation control algo-
rithm depending on a common coordinate system and the formation control
algorithm not depending on any common coordinate system. With the formation
control algorithm depending on a common coordinate system, local coordinate
systems of agents are aligned with a common coordinate system or the global
coordinate system [1–3]. However, the requirement for the common coordinate
system makes these algorithms unable to run in systems that are indoors, under-
ground, and other environments without GPS signals. With formation control
algorithms not depending on any common coordinate system, agents do not share
a common north. Such formation control algorithms These algorithms reduce the
requirements for global information, which allows them to be widely used even
in GPS-denied areas. Therefore, formation control algorithms not depending on
any common coordinate system attract much attention.
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According to the type of information used, the formation control algorithm not
depending on any common coordinate system is divided into: the bearing-based
formation algorithm, the distance-based formation algorithm, and the Laplacian-
based formation algorithm. In the bearing-based formation algorithm, the agent
only uses the relative bearing information with its neighbor agent [4,5]. In [4,5], if
bearing constraints of the target formation satisfy certain assumptions of the bear-
ing rigidity, the system locally converges to the target formation. In the distance-
based formation algorithm, the agent only uses the relative distance information
with its neighbor agent [6,7]. In [6,7], if the target formation satisfies certain
assumptions of the rigidity, the system locally converges to the target formation. In
the Laplacian-based formation algorithm, the agent uses both the relative bearing
information and the relative distance information, i.e. the relative position infor-
mation, with its neighbor agent, and the Laplacian is designed based on the target
formation with respect to a global reference system [8,9]. The article [8] shows that
in the complex plane, if the measurement topology is 2-rooted, using the similar
formation algorithm, the system globally converges to a similar formation of the
target formation. Since only the similar formation algorithm is globally conver-
gent, this paper conducts further research on the algorithm.

The above researches assume that the measurement information is accurate.
In fact, the measurement information often contains errors. If the measurement
error is an unbiased random error, the measurement error can be described as
an unbiased random disturbance in the system model. Regardless of whether the
disturbance is additive or multiplicative, as long as the measurement topology
and system parameters satisfy certain conditions, the system is convergence in
the mean square sense and the almost sure sense [10–12]. The measurement error
may also be the biased random error. For example, when the agent measures the
relative position with its neighbor, the measurement information of relative dis-
tance contains the random error, and the mean value of the error is an unknown
non-zero constant. With the biased random error, the article [13] points out that
the similar formation algorithm cannot converge to any similar formation of the
target formation in expectation sense. As far as the author knows, for the system
with biased random measurement errors, there is no further research result on
how to ensure the convergence of the formation algorithm.

Based on the similar formation algorithm shown in [8], this paper mainly
studies how to design the similar formation algorithm such that the formation
system converges to a similar formation of the target formation in the sense of
mean square when the relative position measurement is affected by biased ran-
dom measurement errors. By adding measurement edges to the 2-rooted mea-
surement topology and adding communication edges between agents, the geo-
metric relationship between agents is skillfully used such that the agent can use
the information measured by its neighbors to convert biased random errors into
unbiased random errors online. Then, by designing decreasing system parame-
ters, this paper proves that the improved discrete-time similar formation algo-
rithm ensures that the formation system asymptotically converges to a similar
formation of the target formation in the sense of mean square.
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The organization of this article is as follows. The system model and the error
model are introduced in Sect. 2. In Sect. 3, the improved discrete-time similar
formation algorithm is shown. The construction method of communication topol-
ogy and measurement topology and the design method of algorithm parameters
are introduced in this section. In Sect. 4, the globally mean-square convergence
of the improved discrete-time similar formation algorithm is proved. Section 5
shows results of the numerical simulation, which verify the conclusion of this
article.

Symbols: C and R represent the complex number set and the real number set,
respectively. Cn represents the set of the n-dimensional complex column vector.
C

n×n represents set of the n×n-dimensional complex matrix. ι =
√−1 represents

the imaginary unit. 1n represents the n-dimensional vector with all elements
being 1. In represents the n × n-dimensional identity matrix. For p ∈ C, ||p||
represents the modulus of p. For a matrix A, its i−jth entry is represented by Aij .
AT and AH represent the transpose and the conjugate transpose of the matrix A,
respectively. ||A|| represents the matrix norm of A induced by Euclidean norm.
For the random variable x, E(x) and D(x) represent the expectation and variance
of x, respectively. For a ∈ R and b ∈ R, [a mod b] is modulus operation.

2 System Model

Consider a multi-agent system with n agents in a plane. With respect to a global
reference frame Σ, the position of each agent i ∈ {1, · · · , n} is represented by
a complex number zi ∈ C. And z = [z1, . . . , zn]T ∈ C

n represents the absolute
position vector of agents. However, each agent knows neither the global reference
frame Σ nor their absolute positions zi’s. Each agent i has a local reference frame
Σi. With respect to the local reference frame Σi, the position of each agent
j ∈ {1, · · · , n} is represented by z

(i)
j ∈ C. θi represents the orientation angle of

Σi, i.e. z
(i)
j − z

(i)
i = eιθi(zj − zi). And θij represents the orientation difference

between Σi and Σj , i.e. z
(i)
j − z

(i)
i = eιθij (z(j)j − z

(j)
i ). Especially, θii = 0.

G = (V, E) represents the measurement topology of the system, where
V = {1, . . . , n} and E represent the agent set and the measurement edge set,
respectively. If (j, i) ∈ E , agent i measures the relative position of agent j with
respect to the local reference frame Σi. Let Ni = {j|j ∈ V and (j, i) ∈ E}.
G′ = (V, E ′) represents the communication topology of the system, where E ′ rep-
resents the communication edge set. If (i, j) ∈ E ′, agent j sends its measurement
data to agent i. Let N ′

i = {j|j ∈ V and (i, j) ∈ E ′}.
The goal of the similar formation algorithm is to make agents in the system

achieve a similar formation of the target formation. Let ξ = [ξ1, . . . , ξn]T ∈ C
n

represent the target formation of the similar formation algorithm with respect
to the global reference frame Σ. Suppose the target formation ξ is generic [8].
The set of all similar formations of the target formation ξ is described by

S(ξ) = {c11n + c2ξ, c1, c2 ∈ C}. (1)
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Let y
(i)
ij (k) represents the relative position between agent j and agent i mea-

sured by agent i. Then, y
(i)
ij (k) satisfies that

y
(i)
ij (k) = z

(i)
j (k) − z

(i)
i (k) + d

(i)
ij (k), (2)

where d
(i)
ij (k) represents the biased random measurement error.

The biased measurement error d
(i)
ij (k) is described by

d
(i)
ij (k) = δ

(me)
ij (k)eιϑij(k). (3)

In Eq. (3), δ
(me)
ij (k) represents the distance measurement error. ϑij(k) repre-

sents the azimuth angle of the agent j relative to the agent i, i.e. ϑij(k) =
(z

(i)
j (k)−z

(i)
i (k))

||(z(i)
j (k)−z

(i)
i (k))|| . In this paper, we only consider the biased distance measure-

ment error. Hence, the azimuth angle measured by agent is accurate. The biased
distance measurement error δ

(me)
ij (k) satisfies the following assumption.

Assumption 1. δ
(me)
ij (k) is a random real number, which is unknown to any

agent. The expectation and the variance of δ
(me)
ij (k) are δc > 0 and σ2

c > 0,

respectively. δ
(me)
ij (k) is independent of each other for different i, j and k.

To compensate the effect of the biased measurement error, this paper shows
an improved discrete-time similar formation algorithm which requires relative
position measurement information measured by agents and their neighbors. The
model of the improved similar formation algorithm is built as

z
(i)
i (k + 1) − z

(i)
i (k) = gi

( · · · , y
(i)
sj (k), · · · ), (4)

where the function gi is a homogeneous linear function corresponding to the
measurement digraph G, i ∈ V, j ∈ Ni, s ∈ Ni ∪ {i} and k = 1, 2, . . . .

In Eq. (4), when s = i, y
(i)
sj (k) = y

(i)
ij (k); when s ∈ Ni, we have

y
(i)
sj (k) = θisy

(s)
sj (k). (5)

When the agent s satisfies that s ∈ Ni and s ∈ N ′
i , the agent i use the following

distributed method [14] to calculate the orientation difference θis:

θis = [(ϑsi(k) − (ϑis(k)) mod 2π] − π. (6)

The definition of the discrete-time similar formation algorithm (4) converging
to a similar formation of the target formation in the mean-square sense is given
as follows.

Definition 1. The distributed similar formation algorithm (4) globally mean-
square converges to a similar formation of the target formation ξ for an arbitrary
initial coordinate z0, if there exist c1, c2 ∈ C such that

D(z(k) − c11n − c2ξ) → 0, k → ∞. (7)
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3 Improved Discrete-Time Similar Formation Algorithm

In this section, the improved algorithm is described in detail. The agent satisfies
the following assumption.

Assumption 2. Each agent knows its neighbors’ target positions, i.e., for any
j ∈ Ni, ξj is available to agent i.

Then, the building method of the measurement topology and the communi-
cation topology is shown as follows. At first, build the measurement topology G,
which satisfies the following assumption.

Assumption 3. The measurement digraph G is 2-rooted.

According to Assumption 3, we have a 2-rooted measurement digraph. Then,
combining the arbitrary generic formation ξ ∈ C

n, we can get the complex
Laplacian matrix L̃ ∈ C

n×n of digraph G. In the matrix L̃, its i − jth entry
satisfies that L̃ij �= 0 if j ∈ Ni; L̃ij = 0, otherwise. Its i − ith diagonal entry
satisfies that L̃ii =

∑
j∈Ni

−L̃ij . And the matrix L̃ satisfies that L̃1n = 0 and
L̃ξ = 0. By Theorem 4.1 in [8], there exists a diagonal invertible matrix D̃

such that eigenvalues of D̃L̃ in the left-half open plane in addition to two fixed
eigenvalues at the origin. Hence, we can find a small enough a ∈ (0, 1) such
that except for the two eigenvalues of I + aD̃L̃ which are fixed at 1, the other
eigenvalues of I + aD̃L̃ are all in the unit circle. Let L = aD̃L̃.

After we get the matrix L, we need to add some measurement edges to the
2-rooted measurement topology and add some communication edges between
agents to compensate the effect of the biased random measurement error.
Assumption 3 shows that for each agent i, there exist two neighbors j1, j2 ∈ Ni.
Based on Assumption 3, the method of adding measurement and communication
edges satisfies the following assumptions.

Assumption 4. For each agent i and its two neighbors j1, j2 ∈ Ni, add two
measurement edges (j2, j1), (i, j1) to measurement edge set E.

Assumption 5. For each agent i and its neighbor agent j1 mentioned in
Assumption 4, add one communication edge (i, j1) to communication edge set
E ′, i.e., the agent j1 sends measurement messages to the agent i.

Note: Assumption 5 shows that the communication topology is only used to
transmit information between agents, and it does not need to be connected.
And according to Assumptions 4 and 5, in the system with n agents, at most 2n
measurement edges and n communication edges need to be added. Since some
of the measurement edges that need to be added according to Assumptions 4
already exist in the 2-rooted measurement digraph, the actual number of added
measurement edges is less than 2n.

After we building topologies, by period T > 0, each agent i ∈ V measures
the relative position information y

(i)
ij (k) of the neighbor agent j ∈ Ni; and for
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each agent i ∈ V , its neighbor agent j1 shown in Assumptions 4 and 5 sends
the relative position measurement information y

(j1)
j1j2

(k) and the azimuth angle
measurement information ϑsi(k) to the agent i. Then, at the kth iteration, the
position of the agent i ∈ V changes according to the following equation:

z
(i)
i (k + 1) − z

(i)
i (k) =

∑

j∈Ni,s∈Ni∪{i}
a(k)ω(i)

js (k)
(
y
(i)
sj (k)

)
, (8)

where the decreasing gain a(k) satisfies that for any integer k ≥ 0, a(k) ∈ (0, 1],∑∞
k=0 a(k) → ∞ and

∑∞
k=0 a(k)2 < ∞.

In Eq. (8), ω
(i)
js (k) satisfies the following equation

ω
(i)
js (k) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Lij j ∈ Ni − {j1, j2}, s = i

Lij1 − ωi(k) j = j1, s = i

Lij2 + ωi(k) j = j2, s = i

−ωi(k) j = j2, s = j1

0 others

, (9)

and ωi(k) in Eq. (9) satisfies the following equation

ωi(k) = −
∑

j∈Ni
Lije

ιϑij(k)

eιϑij2 (k) − eιϑij1 (k) − eιϑj1j2 (k)
. (10)

It is worth noting that the parameter ωi(k) is calculated only by the information
currently obtained by the agent i. Hence, the time-varying parameter ω

(i)
js (k) is

calculated by agent i online.
With paraments ω

(i)
js (k) shown in Eq. (9), the expectation of Eq. (8) satisfies

that

E
(
z
(i)
i (k + 1) − z

(i)
i (k)

)

= a(k)
∑

j∈Ni

LijE
(
z
(i)
j (k) − z

(i)
i (k)

)
+ a(k)

∑

j∈Ni−{j1,j2}
Lijδe

ιϑij(k)

+ a(k)(Lij1 − ωi(k))δeιϑij1 (k) + a(k)(Lij2 + ωi(k))δeιϑij2 (k)

− a(k)ωi(k)δeιϑj1j2 (k)

= a(k)
∑

j∈Ni

LijE
(
z
(i)
j (k) − z

(i)
i (k)

)
.

(11)
Equation (11) shows that E

(
z
(i)
i (k+1)−z

(i)
i (k)

)
is not affected by the expectation

of biased measurement error δ. In other words, by adding the measurement
edge and the communication edge, and using the geometric relationship between
the agents, this algorithm successfully converts the biased random measurement
error into the unbiased random error.
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4 Globally Mean-Square Convergence of the Improved
Discrete-Time Similar Formation Algorithm

In this section, the globally mean-square convergence of the improved discrete-
time similar formation algorithm (8) is proved.

Multiply eιθi on both sides of Eq. (8), then Eq. (8) is equivalent to

zi(k + 1) − zi(k)

=
∑

j∈Ni

a(k)Lij(yij(k))

+ e−ιθia(k)ωi(k)
(
d
(i)
ij2

(k) − d
(i)
ij1

(k) − d
(i)
j1j2

(k)
)

=
∑

j∈Ni

a(k)Lij(yij(k)) + a(k)ωi(k)
(
dij2(k) − dij1(k) − dj1j2(k)

)
,

(12)
where for any j ∈ Ni, yij(k) = zj(k) − zi(k) + dij(k), dij(k) = e−ιθid

(i)
ij (k); and

dj1j2(k) = e−ιθid
(i)
j1j2

(k).
Then, Eq. (12) can be written as

z(k + 1) = (In + a(k)L)z(k) + a(k)
( ∑

i∈V
˜A(i)

(
di(k) + bi(k)

))
, (13)

where ˜A(i) ∈ C
n×n, if j �= i, ˜A(i)ij = Lij ; the other entries of ˜A(i) are 0.

di(k) = [di1(k), . . . , din(k)]T ∈ C
n, if j /∈ Ni, dij(k) = 0. bi(k) satisfies that

bi(k) =
ωi(k)

∑
j∈Ni

Lij

(
dij2(k) − dij1(k) − dj1j2(k)

)
1n. (14)

The main theorem of this paper are as follows.

Theorem 1. Under Assumptions 1, 2, 3, 4 and 5, for any generic formation
ξ ∈ C

n, there exist paraments ω
(i)
js (k), complex constants c1 and c2 such that the

improved discrete-time similar formation algorithm (8) converges to the similar
formation c11n + c2ξ of the generic formation ξ.

Proof. For proving the theorem, the properties of the mean and variance of
z(k) − c11n − c2ξ need to be studied. Based on Eq. (13), we have

z(k + 1) − c11n − c2ξ = (In + a(k)L)z(k) − c11n − c2ξ

+ a(k)
( ∑

i∈V
˜A(i)

(
di(k) + bi(k)

))
, (15)

Consider a matrix Q ∈ C
(n−2)×n. The matrix Q satisfies that Q1n = 0,

Qξ = 0 and QQH = 1n−2. Let Qz(k) = x(k). Left multiply Q on both sides of
Eq. (15), we have

x(k + 1) = (In−2 + a(k)QLQH)x(k) + a(k)Q
( ∑

i∈V
˜A(i)

(
di(k) + bi(k)

))
. (16)
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Let λmax(k) represents the eigenvalue of In−2 + a(k)QLQH with the maximum
norm. And we have that for any integer k ≥ 0, ||λmax(k)|| < 1.

Since

E
( ˜A(i)

(
di(k) + bi(k)

))
= E

( ∑

j∈Ni

Lijδ
(me)
ij (k)eι(ϑij(k))

)

+ E
(
ωi(k)

(
dij2(k) − dij1(k) − dj1j2(k)

)

=
( ∑

j∈Ni

Lije
ι(ϑij(k))

)
δc − ( ∑

j∈Ni

Lije
ι(ϑij(k))

)
δc

= 0,

(17)

when k → ∞, we have

E(x(k + 1)) = (In−2 + a(k)QLQH)E(x(k))

=
k∏

i=0

(In−2 + a(i)QLQH)E(x(0))

≤
k∏

i=0

λmax(i)E(x(0))

→ 0.

(18)

Now, consider the property of the variance of x(k). Due to Eq. (17), the
second-order moment of x(k) satisfies that

E
(
x(k + 1)Hx(k + 1)

)

= E

(
x(k)H

(
In−2 + a(k)QLQH

)H(
In−2 + a(k)QLQH

)
x(k)

)

+ (a(k))2E
{[

Q
( ∑

i∈V
˜A(i)

(
di(k) + bi(k)

))]H[
Q

( ∑

i∈V
˜A(i)

(
di(k) + bi(k)

))]}
.

(19)
Since the norm of any element of ˜A(i)

(
di(k)+bi(k)

)
is less than δc, then Eq. (19)

satisfies that

E
(
x(k + 1)Hx(k + 1)

)

≤ λmax(k)2E
(
x(k)Hx(k)

)
+

(
a(k)

)2
δ2c

=
k∏

i=0

λmax(i)2 +
k−1∑

s=1

k∏

i=s

λmax(i)2
(
a(s − 1)

)2
δ2c +

(
a(k)

)2
δ2c

→ 0 as k → ∞.

(20)

Due to Eqs. (18) and (20), we get that D(z(k) − c11n − c2ξ) tends to 0 as k
tends to infinity. Hence, the improved discrete-time similar formation algorithm
(8) satisfies Definition 1.
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5 Numerical Simulation

Consider the similar formation system with 9 agents in a plane. The target for-
mation ξ of the 9 agents is shown in Fig. 1, which is generic. Figure 2 shows the
measurement topology and the communication topology. In Fig. 2, black curves
and black dashed curves represent measurement edges in the measurement topol-
ogy, red curves represent communication edges in the communication topology.
If a black (dashed) curve points from agent i to agent j, then (j, i) ∈ E ; if a red
curve points from agent i to agent j, then (j, i) ∈ E ′.

-5 -2.5 0 2.5 5 7.5

-5

-2.5

0

2.5

5
agent1
agent2
agent3
agent4
agent5
agent6
agent7
agent8
agent9

Fig. 1. The target formation ξ.

1 2 3

4 5 6

7 8 9

Fig. 2. The topology.

Next, we introduce the composition process of the topology shown by
Assumptions 3, 4 and 5 in the paper.

In the first step, according to Assumption 3 to build a 2-rooted measurement
digraph, and measurement edges of the 2-rooted digraph are black curves in
Fig. 2. Then, based on the 2-rooted digraph, build the matrix L according to the
way shown in Sect. 3.

In the second step, according to Assumption 4, add measurement edges to the
2-rooted digraph, which is represented by black dashed curves. And according to
Assumption 5, add communication edges between agents, which is represented
by red curves.

According to Assumptions 4 and 5, in the system with 9 agents, at most
18 measurement edges and 9 communication edges need to be added. Figure 2
shows that only 9 measurement edges and 9 communication edges are added,
actually.

Initial positions zi(0), i ∈ V of 9 agents are randomly selected. The numerical
simulation results of the improved discrete-time similar formation algorithm (8)
as follows.
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Fig. 3. Movement trajectories.
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Fig. 4. The curve of ||Qz(k)||.

In Fig. 3, the starting points of the 9 agents, i.e. the initial formation, are
represented as red squares, which is surrounded by a dashed line frame. The end
points of the 9 agents, i.e. the final formation, are represented as red diamonds.
And the 9 colored curves represent the trajectories of the 9 agents respectively.
Figure 3 shows that the 9 agents move from the initial random formation to the
final formation, which is a similar formation of the target formation ξ.

In Fig. 4, the red curve represents the curve of ||Qz(k)|| with the increase of
k. Figure 4 shows that ||Qz(k)|| → 0 as k → ∞, which means that the forma-
tion of the 9 agents asymptotically tends to the similar formation of the target
formation ξ.

6 Conclusion

To solve the similar formation problem with relative measurements between
agents affected by biased random errors, the improved discrete-time similar for-
mation algorithm is designed. By adding some measurement edges to the 2-
rooted measurement topology and adding some communication edges between
agents, each agent can use the geometric relationship between agents to convert
biased random errors into unbiased random errors online. Then, the decreasing
system parameters ensures that the formation system asymptotically converges
to a similar formation of the target formation in the sense of mean square.
Finally, the numerical simulation result supports the conclusion in this paper.
The optimization of the formation algorithm and physical experiments will be
the following research direction.
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