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Abstract. Environment coverage and target tracking are two important tasks in
many research and applications about multi-UAV Swarm Systems. However, find-
ing an optimal solution for maximizing the system’s performance of coverage
and tracking can be challenging, especially in limited resources scenarios, where
swarms of UAVs need to cooperate with each other to cover areas and track mul-
tiple targets simultaneously in denied environment. The paper presents a decen-
tralized control for UAV swarm simultaneous coverage and tracking with deep
reinforcement learning, which also supports a collision-avoiding assembly. The
proposed method uses a value network to evaluate the actions and tasks, which
can offload the online computation to an offline leaning network meeting the
demand of real-time applications. In particular, reciprocal simultaneous coverage
and tracking method is used to generate mass data, which contribute to the ini-
tialization and convergence of value network. The effectiveness of the proposed
method is corroborated by the numerical test.

Keywords: Decentralized control · Deep reinforcement learning · Simultaneous
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1 Introduction

UAV swarm simultaneous coverage and tracking is a very challenging problem, espe-
cially in denied environment when the intention of the neighboring UAV is difficult to
know, such as the target location is unknown [1, 2]. In addition, in the process of finding
efficient paths, UAVs usually need to interact with neighboring UAVs in the expected
state, which often requires a lot of calculation and consumes a lot of time.

At present, in the environment where there is no interaction between UAVs, simul-
taneous coverage and tracking methods can be roughly divided into two categories: one
is the path method [3], the other is the reaction method [4]. Path-based optimization
method is a kind of rolling optimization method, in which UAV makes decision for its
actions by predicting the future state information of neighboring UAV. However, in a
crowded environment, a large part of the predicted path set is usually unsolvable, which
can easily lead to planning dead zones [5]. One solution is to introduce interaction, in
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which the movements of each UAV can inspire and guide the movements of others, and
each UAV can infer the intentions of the others and plan possible paths for them [6].
However, planning a path for all UAVs is time-consuming and computationally expen-
sive [7]. In addition, due to the uncertainty of modeling and measurement, it is difficult
to ensure that the actual path of other UAVs is consistent with the planned or predicted
path, especially after a few seconds in the future [8]. Therefore, the path type needs to
run at a high perception update frequency, which aggravates the problem of large calcu-
lation [9]. On the contrary, the reaction method may take longer time to finish tasks and
be less effective than the path method, but this is not enough to cover its advantages of
fast computing speed [10]. The reaction method is a single step rule decision based on
the current geometric information, and the simultaneous covering and tracking method
based on reciprocitymechanism is a kind of reactionmethod [10, 11]. It achieves the task
requirements of simultaneous area coverage and target tracking by adjusting the speed
of UAV, but it does not consider the future state of neighboring UAVs. This short-term
optimization method is easy to cause unnatural behaviors such as motion oscillation
in special cases [12]. Although the simultaneous coverage and tracking method based
on reciprocity mechanism has the advantages of faster operation speed, shorter cover-
age time and higher coverage than the traditional algorithm, it cannot estimate the time
required for regional coverage, so it cannot optimize the estimated regional coverage
time.

Therefore, based on the reciprocal simultaneous coverage and tracking method [10,
11], this paper proposes a new distributed multi-UAV swarm coverage and tracking
decision method combined with the deep reinforcement learning method, which can
effectively reduce the online computation of interaction prediction to the offline learn-
ing process. Different from other traditional Q learning methods, the proposed method
encodes the time required for area coverage, the location and speed information of UAV
itself, as well as the location and speed information of its neighboring UAVs and adds
them into the value network, so as to obtain continuously accessible speed action deci-
sions through training the value network. This value network takes into account the
uncertainties of other UAVs’ movements and quickly provides effective speed decisions
in real time.

2 Preliminaries

As a method of machine learning, reinforcement learning is mainly used to solve con-
tinuous action decision problem under unknown state transition model. In general,
continuous state decision problems can be described as Markov decision processes.

Markov decision process is usually denoted as a quintuple M = 〈S,A,P,R, γ〉, of
which, S denotes States, A denotes Actions, P denotes state transfer function, R denotes
Reward function, and γ denotes decay factor within the value function V . By defining
and describing these elements within a tuple, the two-UAV coverage problem is formally
described as follows:

States S: in a two-UAV simultaneous coverage and tracking system, the system state
of a singleUAV sc is usually composed of two parts, one is its own completely observable
state s, the other is the external observation state s̃o. The external observation state
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s̃o = [so,neighbor, so,target, so,sensor] includes the observable state of another neighboring
UAV so,neighbor, the optimal target tracking observation state so,target and the perceived
boundary/obstacle state so,sensor.Therefore, the system state of single-UAV simultaneous
area coverage and target tracking can be formally described as sc = [

s, s̃o
] ∈ R

26.
Actions A: Actions contain a series of feasible speed vectors. In this case, it is

assumed that the UAV is a quadrotor type, that is, it can fly in any direction at any time
and is only limited by the optimal movement speed, that is a(s) = {

v|‖v‖2 < vpref
}
.

Reward function R: The reward function is an important guide for UAV to complete
the task, and is the key for UAV to carry out two-UAV cooperative coverage and target
tracking in the designated boundary area under the obstacle environment. The main idea
of the algorithm is to punish the wrong behaviors in two-UAV cooperative coverage
and tracking, such as collision behavior, too close to the boundary or obstacle behavior,
and too far from the best tracking target location behavior. In this section, the setting of
the reward function R(sc, a) is shown in Formula (1). If an action results in a collision
between two aircraft or collision with an obstacle (boundary), the penalty will be given
a reward value of −1. If a certain behavior results in a distance from an obstacle or
boundary less than the covering radius, the corresponding penalty shall be imposed, as
shown in the second line of Formula (1); If a certain behavior causes the UAV to be
too far away from the optimal tracking position, that is, the distance between the UAV
and the optimal tracking position is less than a certain set threshold (set as half of the
coverage radius in this paper), the corresponding punishment will be carried out, as
shown in the third line of Formula (1). If the coverage task is successfully completed,
that is, both machines exert their maximum coverage ability to cover more non-obstacle
areas in the area as far as possible, the reward is 1. In other cases, there is no penalty and
the reward value is 0.

R(sc, a) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−1 if damin < r + r̃a or dθ
min < r

−0.5 + dθ
min/2R else if dθ

min < R (coverage)
−0.25 − dt/2R else if dt > 0.5R (tracking)

1 else if
∣∣
∣da

final − R − R̃a

∣∣
∣ < ε & dθ

min >= R

0 other

(1)

Of which, damin denotes two-UAV’s least distance of distinct vision in the time period
�t, and dθ

min denotes the least value of eight directions of the UAV’s sensor; dt is the
distance between the UAV and the optimal tracking position, and dafinal is the distance
between the two UAVs after the UAV performs the decision action in the time period
�t. It is assumed that the speed of action taken by the UAV remains constant during the
time period �t, i.e. v = a,∀t ∈ �t, other UAVs also fly at the observed speed ṽ during
the time period.

State transfer model P: State transfer model refers to how the state of the system
changes after the UAV performs the decision action, i.e. P(sct+1, s

c
t |at). One possible

system transfer model is the update of UAV position state as shown in Formula (2) and
Formula (3). However, UAVs only know their own strategies and intentions, while the
strategies and intentions of other UAVs are unknown, so the transfer model of the whole
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system is also unknown. Assuming that other UAVs also use the same action strategy
as UAVs themselves, i.e. π = π̃ , the state transition model determines the strategy with
UAVs.

pt = pt−1 + �t · π : (
s0:t, s̃o0:t

)
(2)

p̃t = p̃t−1 + �t · π : (
s̃0:t, so0:t

)
(3)

Value function V : A value function is a way to find the best decision for a period of
time.

V ∗ (sc0) =
T∑

t=0

γt·vpref · R(sct ,π ∗ (sct )) (4)

where, γ is a discount factor whose range is γ ∈ [0, 1). vpref is the optimal speed of
UAV coverage flight, which is here regarded as a constant and does not change with time.
Because the optimal speed of UAV varies with aircraft performance, the value function
value of UAV with poor performance may be very small because of the low optimal
speed. Therefore, in order to meet the numerical training learning under a large number
of samples, this paper normalized it into a unit factor.

Thus, the optimal coverage strategy can be derived from the above value function:

π ∗ (sc0) = argmax
a

R(s0, a) + γ�t·vpref ·
∫

sc1

P(sc0, s
c
1|a)·V ∗ (sc1)d s

c
1 (5)

Different from the traditional Q learning method for discrete and limited action
space decision making Q(sc, a), value network is more suitable for continuous feasible
speed action space decision optimization. Therefore, this paper chooses the optimized
value network function V ∗ (sc) to solve the swarm simultaneous coverage and tracking
decision problem.

3 Approach

3.1 Action Decision Driven by Value Network

Based on the receiving status value, an appropriate coverage network or simultaneous
coverage and tracking value network is selected by discriminator D, thus a value network
(v-net) V is given. UAV can make periodic simultaneous coverage and tracking action
decisions by adopting the maximized value of value network each time. The specific
algorithm is shown in Algorithm 1.

Each time the UAV chooses the decision that makes the action the most valuable,
it performs that decision to update the state. Nevertheless, the numerical integration of
Formula (5) make it hard to assess, resulting from the fact that UAVs cannot observe
other UAVs’ intentions, so the next state of other UAVs s̃ot+1 is an unknown distribution.
Therefore, assuming that other UAVs move at a constant speed in a short period of
time (lines 6–7 in Algorithm 1), this assumption estimation is not applicable to the next
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moment position estimation of other UAVs in the time t > �t of nonlinear motion
model. This uncertainty about the next action of other UAVs can be reflected in the
value of the next state V in the value network V(ŝt+1, ˆ̃sot+1). Then, the UAV selects the
behavior with the highest value from the set of feasible velocity vectors, that is, the best
action decision. Figure 1 shows the action strategy of reinforcement learning, in which
Fig. 1(a) shows the state of the red agent (left), and Fig. 1(b) shows various state values
with different actions (velocity vectors).

(a) input condition (b) output value diagram 

Fig. 1. Reinforcement learning action strategies

Algorithm 1 SCAT_DRL (Simultaneous Coverage And Tracking)
1 Input: Discriminator C, v-net c ( , )V w and scat ( , )V w
2 Output: Paths

f0:ts
3 while task unfinished do
4   refresh time t get latest observed values ts o

ts

5 Discriminator C Select the network 
C

c scat( , ) Select( ( , ), ( , ))V w V w V w

6    t 0:tv̂ filter(v )

7    1
ˆpropagation( , )oo

t t ts s t v
8    ActionSampler()A

9    1 1
ˆˆargmax  ( , ) γ ( ,s )

t

oc
t t t t t

A
R s V s

a
a a

of which preft v
1ˆ propagation( , )t t ts s t a

10 return 
f0:ts

3.2 Value Network Training

The training process of value network is shown as Algorithm 2, which contains v-net
initialization and v-net training.
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The first step is initialization of the value network. Using the reciprocal simultaneous
coverage and tracking method, the path data of two-UAV cooperative coverage and
tracking is generated, and a basic coverage and tracking strategy is created. Such positive
sample data training can be regarded as supervised value network training (Algorithm 2,
line 3). The paths of each training is a generated “state-value” pair {(sc, y)k}Nk=1, of which
y = γ tc·vpref and tc denotes remaining-time between the current state and completion of
the coverage task. The value network is trained in the way of backpropagation to reduce
the quadratic regression error, namely argmin

w

∑N
k=1(yk − V(sck;w))2. Specifically,

this paper generates 500 sets of two-UAV cooperative coverage and tracking path data,
about 20,000 state-value pairs. The generated data set of the reciprocal simultaneous
coverage and tracking method for training not only can help the value network quickly
learn the good coverage and tracking strategy and accelerate network convergence, but
also contribute to learn how to estimate the time needed to complete the coverage task,
which is beneficial to generate new and better coverage trajectories using Algorithm 1.

Algorithm 2 Value network training
1 Input: paths set D
2 Output: v-net ( , )V w
3 ( , ) init( )V Dw // procedure-1: initializer
4 copy v-net 'V V // procedure-2: learner
5 experience-pool initialization E D
6 for epsround 1,..., N do
7 for count=1,...,n do
8        0 0 Randomizatis ,s ()on
9        0: 0:SCDRL( ), SCDRL( )

f ft ts V s V

10       0: 0:0: 0:, get( ', , )
f ff tT tty y V s s

11       0: 0:add( ,( ) , ( ) )
f f

c c
t tE E y,s y,s

12    Randomizatio ( )ne E
13    w backpropagation(e)
14 return V

The second step is to train the value network through reinforcement learning to
further optimize the coverage strategy. In each round, a small number of random test
cases are generated and two-UAVcoverage is carried out through the ε-greedy algorithm,
that is, random action is selected with probability (Line 8) and the maximum action in
the value network is selected at other times (line 9). These simulation paths then also
create numerous “state-value” pairs. In order to speed up the network convergence, the
value network is not updated immediately, but the newly generated “state-value” pair
replaces the old record and is absorbed into the experience- pool E. Next, some data are
chosen at random in experience-pool E to obtain the “state-value” pairs ofmany different
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simulation paths (line 12). Finally, v-net come out through propagation of adopted sub-
data set. Note, v-net is checked through predetermined periodic evaluation test cases for
inspection.

3.3 Swarm Simultaneous Coverage and Tracking Driven by Learning

When performing swarm simultaneous coverage and tracking task, the value network
of two-UAV can be extended and applied to single UAV control in swarm system.

The symbol s̃oi is represented as the observation state data of the current UAV to the
i-th neighboring UAV, and the system state obtained by the current UAV including the
observation state of the i-th neighboring UAV and its own state. Therefore, Algorithm 1
can be extended to achieve learning-driven swarm simultaneous coverage and tracking
control. In other words, cooperative coverage and tracking based on reinforcement learn-
ing can update the status of each other neighboring UAVs through line 6–7 of Algorithm
1, select the best action for each neighboring UAVs from the action set. The formula is
as follows:

argmax
at∈A

min
i

R(sci,t, at) + γ�t·vpref · V (ŝt+1, ˆ̃soi,t+1) (6)

where the estimation of the next state of the current UAV ŝt+1 is up to at . Though the
used v-net is for two-UAV, the generated swarm simultaneous coverage and tracking
trajectory shows that the current reinforcement learning-based approach can present
complex interaction patterns.

However, Formula (6) is still only an estimate of the reinforcement learning value
network of UAV swarm, which will be discussed in future researches.

4 Experimental Simulation and Analysis

In this experimental environment, all kinds of conditions remain the same as in example
1, and swarm simultaneous coverage and tracking experiments are carried out in the
same environment [10].

In this experiment, all the targets were in a static state, and each UAV performed
simultaneous coverage and tracking tasks, covering more areas to find more targets
and tracking the detected targets. Under the same conditions, the proposed method is
compared with the three different representative algorithms, one is the region partition
based Voronoi control method [8] (referred to as VC method), one is the local region
based Density control method [12] (DC method), the other is reciprocal control method
[10] (RC method). Under the same convergence threshold, if the algorithm meets the
conditions sup

∥∥p∗
i+1 − p∗

i

∥∥
2 ≤ ζ , the operation will be terminated.

Figure 2 is a visual representation of the proposed method. As can be seen from
Fig. 2(a), when all targets are randomly distributed in the square region, while UAVs
are randomly distributed in the region. The distance between UAVs is relatively close
and the number of detected targets is small. Subsequently, the UAV began to attempt
to keep track of the detected target while searching for more potential potential targets
by expanding its coverage area. The swarm trajectory is shown in Fig. 2(b). Finally, the
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UAV swarm reaches a stable state, as shown in Fig. 2(c). Through the comparison, it can
be intuitively found that the swarm of the proposed method covers more area (colorful
circles), detects more targets (black points) with smoother trajectory.

SC 

RC 

VC 

DC 

T (a) t 0 (b) trajectory [0,750] (c) t 750

-100 0 100

-100

0

100

-100 0 100

-100

0

100

-100 0 100

-100

0

100

Fig. 2. Comparison of the coverage and target detection numbers of four methods.

In order to quantify the effect of the proposed algorithm, statistical analysis is con-
ducted on the number of detected targets for the four types of simultaneous coverage and
tracking methods every 100 s, as shown in Fig. 3. Compared with VC and DC methods,
the RC method can detect more targets at the same time due to the consideration of
neighborhood reciprocity performance, while the SC method can further improve the
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coverage ability and tracking ability and detect more targets at the same time by learning
and training on the basis of RC data sets.

Fig. 3. Comparison of target detection numbers of four methods.

Coverage rate is the ratio of the total coverage of all UAVs to the area of the des-
ignated area. In this experiment, the maximum coverage of ten UAVs to the designated
area is 31.4%, that is the coverage of all UAVs without overlap has reached the maxi-
mum coverage capacity. Figure 4 shows the comparison of swarm coverage of the four
methods. It can be found that the proposed SC method after learning RC method has
higher coverage than the other three methods.

Fig. 4. Comparison of coverage rate among four methods.
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5 Conclusion

In this paper, a simultaneous coverage and trackingmethod based on deep reinforcement
learning is proposed. In particular, it uses the reciprocal simultaneous coverage and
tracking method to perform a large number of two-UAV coverage simulation and obtain
its trajectory data set to initialize the value network. This method can not only learn the
reciprocalmethod strategy and accelerate convergence, but also enable the value network
to learn the estimation method of the time required to complete the coverage task. In
addition, the proposed two-UAV simultaneous coverage and tracking value network
can not only achieve good results in the two-UAV cooperative problem, but also can
be extended to the swarm cooperative control problem through testing. This method
has strong real-time performance and can be used in swarm distributed system. The
feasibility and effectiveness of the proposed algorithm are verified by a lot of simulation
experiments.
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