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Abstract. In this paper, the optimal group consensus control of second-
order multi-agent systems is investigated by using the adaptive dynamic
programming (ADP) method under the event-triggered mechanism. In
order to meet the needs of group consensus, a novel tracking error pro-
tocol involving coopetition interaction is proposed. On this basis, the
optimal group consensus problem is established by using the Bellman
optimality principle. Then, the dynamic event-triggered mechanism is
introduced into the ADP method to save computing and communication
resources. The stability of the system is proved by using Lyapunov sta-
bility theory. Finally, the simulation results show the effectiveness of the
proposed method.
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1 Introduction

In recent years, the optimal control of multi-agent systems(MASs) has attracted
wide attention of scholars. Note that most of the work on ADP is periodically
triggered or time-triggered, which leads to the inefficient use of communication
and computing resources. This problem will be improved with the introduction
of event-triggered control methods. Different from the time-triggered control, the
event-triggered control method means that the agent will update its control pol-
icy only when the measurement error exceeds the threshold set by the engineer [1].
This will greatly reduce the use of resources. Therefore, it is a meaningful work
to combine the ADP method with the event-triggered mechanism [2–4]. Sahoo et
al. [3] proposed event-based near optimal control for uncertain nonlinear discrete-
time systems by using input-output data and ADP method. Wei et al. [4] use crit-
ical neural network (NN) updated at the event-triggered instants to approximate

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
Z. Ren et al. (Eds.): Proceedings of 2021 5th Chinese Conference on Swarm Intelligence
and Cooperative Control, LNEE 934, pp. 134–145, 2023.
https://doi.org/10.1007/978-981-19-3998-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-3998-3_14&domain=pdf
https://doi.org/10.1007/978-981-19-3998-3_14


Optimal Group Consensus Control 135

the value function and search for the optimal control policy, resulting in aperiodic
weight adjustment law to reduce the computational cost.

It should be pointed out that most of the existing work uses the static event-
triggered mode, that is, the trigger instant is the time sequence in which the
measurement error is equal to or exceeds the threshold [2–4]. At the beginning,
the measurement error is not easy to meet the static event-triggered conditions,
so it can effectively reduce resource consumption [5]. However, as the system
approaches the consensus state, the threshold becomes smaller and smaller, caus-
ing the static event-triggered condition to be triggered excessively. Therefore, the
main motivation of this paper is to develop a more efficient and flexible dynamic
event-triggered optimal control based on ADP method.

With the increase of MASs scale and complexity, it may need to be divided into
different subnets to achieve multiple consensus values to cope with the changes
of the environment. As a generalization of multi-agent consensus control, group
consensus is first mentioned in [6]. Thereafter, there are more and more researches
on group consensus, such as [7,8]. In view of the advantages of group consensus,
it seems to be a very interesting topic to put group consensus into the optimal
control problem. In addition, the increase of system complexity means that the
interaction between agents is not only cooperation. Due to the limited resources,
competitive interaction is also essential [9]. Moreover, coopetition interaction is
not uncommon in the real environment, such as Unmanned Aerial Vehicles [10],
railway transportation [11] and so on. However, the work mentioned previously on
the optimal control problem has few in relation to coopetition interaction, most of
them are single cooperation. Therefore, the coopetition interaction in the optimal
control problem is also a research focus of this paper.

To sum up, we will discuss optimal group consensus control for multi-agent
systems in the coopetition networks via dynamic event-triggered methods. The
main contributions are summarized mainly as follows: (1) Compared with the tra-
ditional time-triggered method to investigate the optimal control problem, this
paper will use the event-triggered mechanism. Firstly, the static event-triggered
condition is proposed, and then it is extended to the dynamic event-triggered con-
dition to solve the excessive trigger problem caused by the static one. (2) A new
tracking error control protocol for the MASs in coopetition networks is proposed.
And the group consensus of second-order discrete MASs is investigated based on
the ADP method in this paper. (3) The weight estimation errors of Actor-Critic
neural network can be guaranteed uniformly ultimately bounded (UUB).

2 Preliminaries

2.1 Graph Theory

Consider the discrete-time MASs with one leader and N followers, let G =
{V, E , A} be a simple directed communication topology digraph where V =
{v1, ..., vN} is a set of agents, E = {(vi, vj)|vi, vi ∈ V} ⊆ V × V denotes
a set of directed edges and A = [aij ]N×N represents a weighted adjacency
matrix. Ni = {j ∈ V|(vj , vi) ∈ E} denotes the neighbors set of the agent i.
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The diagonal matrix D = diag {d1, d2, ..., dN} is the in-degree matrix of G.
B = diag {bi, b2, ..., bN} is pinning matrix.

2.2 Problems Statement

Consider the second-order MASs with one leader and N followers. Then the
followers. Dynamics is represented as{

xi
k+1 = Axi

k + Bvi
k

vi
k+1 = Cvi

k + Tiu
i
k

, i ∈ {1, 2, 3, ..., N} (1)

where xi:k, ui:k and vi:k denote the position state, the control input and the
velocity state, respectively. The system matrices A, B, C and Ti are supposed
to be unknown constant matrices completely. And the dynamics of the leader is
given as {

x0
k+1 = Ax0

k + Bv0
k

v0
k+1 = Cv0

k
(2)

where x0:k is position state and v0:k is velocity state of the leader. Here the
leader only generates desired signals that enable the followers to track, but it
does not receive signals from other agents.

Define the local neighbor tracking error as

δi
k =

∑
j∈Ni

aij(yi
k − Γijy

j
k) + bi(yi

k − y0
k) (3)

where yi
k =

[
xi

k vi
k

]T, y0
k =

[
x0

k v0
k

]T, Γij is the coopetition coefficient. We
utilize Γij < 0 to denote the competitive interaction between the agent i and j.
Otherwise, Γij > 0 represents the cooperative interaction.

Notes and Comments. Note that a single equilibrium state can no longer meet
the requirements of complex environments and distributed tasks. Therefore, we
divide the MASs into different subnets and achieve multiple consensus values by
designing a reasonable coopetition coefficient.

Based (1) and (2), we can get{
yi

k+1 = Υyi
k + Piu

i
k

yi
k+1 = Υyi

k
(4)

where Υ =
[

A B
0 C

]
and Pi =

[
0
Ti

]
. Based on (4) and (5), we have the iterative

local neighbor tracking error as below

δi
k+1 = Υδi

k + (di + bi)Piu
i
k −

∑
j∈Ni

aijΓijPiu
j
k (5)

Then the global tracking error can be deduced as

δk = (D − A ◦ Γ )yk + B(y − ȳ0
k)

= (L̄ + B)(yk − ȳ0
k)

(6)
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where L̄ = D−A◦Γ , yk =
[
y1

k
T
, ..., yN

k

T
]T

and ȳ0
k =

[
y0

k
T
, ..., y0

k
T
]T

; Γ = [Γij ] is

the coopetition coefficient matrix; ◦ represents Hadamard product; ζk = yk − ȳ0
k

is defined as global consensus error.

Assumption 1. Suppose that the matrix L̄ satisfies
∑

j∈Ni

aij(1 − Γij) = 0.

Based on the work of [12] and Assumption 1, we can know lim
k→∞

‖ζk‖ = 0 once

lim
k→∞

‖δk‖ = 0 , i.e., the agents in each subnet will be synchronized with their

group leader. Therefore, one of our goals is to minimize the global tracking error
δk by ADP method.

In order to find the optimal control u∗
i , the discounted value function is

designed with the local neighbor tracking errors as

Ji

(
δi
k

)
=Ui(δi

k, uk) + αJi

(
δi
k+1

)
(7)

where Ui(δi
k, uk) = δiT

k Qiiδ
i
k + uiT

k Riiu
i
k +

∑
j∈Ni

ujT
k Riju

j
k denotes the reward

function; α ∈ (0, 1] is the discount factor; Qii ≥ 0, Rii ≥ 0 and Rij ≥ 0 are
positive symmetric weighting matrices.

By Bellman optimality principle, we can know the optimal discounted value
function J∗

i

(
δi
k

)
satisfies the following discrete-time Hamilton-Jacobi-Bellman

(DT-HJB) equation

J∗
i

(
δi
k

)
= min

ui
k

{
Ui(δi

k, uk)+ αJ∗
i

(
δi
k+1

)}
(8)

Under the necessary condition ∂J∗
i

(
δi
k

)/
∂ui

k = 0, we can give the optimal control
policy as

ui∗
k = −α

2
(bi + di) R−1

ii TT
i ∂J∗

i

(
δi
k+1

)
/∂δi

k+1 (9)

3 Main Results

3.1 Event-Triggered Framework

The traditional ADP method usually adopts periodic sampling, which will cause
a huge computation and a waste of resources with the increase of system scale and
complexity. Therefore, we introduce event-triggered mechanism into the ADP
method to reduce the Sampling frequency. The measurement error is defined as

ei
k = δi

k − δi
ki
s
, k ∈ [

ki
s, k

i
s+1

)
(10)

where ki
s is the sth triggering instants of agent i. The monotonically increasing

triggering instants sequence is determined by⎧⎪⎪⎨
⎪⎪⎩

ki
1 = 0

ki
s+1 = inf

l>ki
s,

⎧⎨
⎩

l :
∥∥ei

k

∥∥2 − 1−2F 2

2F 2−σi

∥∥δi
k

∥∥2

+

∑

j∈Ni

‖ω̂aj(k
j
s+1)ψaj(zaj(k

j
s+1))‖2

2F 2−σi
≥ 0,∀k ∈ (

ki
s, l]

⎫⎬
⎭

(11)
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where F and σi are positive constants, ω̂aj is the weight of the actor network
for agent j , ψaj(·) is tanh(·) which denotes the activation function, zaj is input
vector combine with δj(kj

s).
The above condition (11) is a static event-triggered condition that contains

constant threshold parameters that should be determined by the operation engi-
neer or designer. However, this may cause agents to communicate unnecessar-
ily when consensus is approaching. The event-triggered condition (11) is over-
triggered. Taking this into account, we propose a dynamic event-triggered law
that introduces an external threshold. The triggering instants sequence deter-
mined by the following dynamic event-triggered conditions

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ki
1 = 0

ki
s+1 = inf

l>ki
s,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

l : θi

(∥∥ei
k

∥∥2 − 1−2F 2

2F 2−σi

∥∥δi
k

∥∥2

+

∑

j∈Ni

‖ω̂aj(k
j
s+1)ψaj(zaj(k

j
s+1))‖2

2F 2−σi

⎞
⎠ ≥ ηi

k,∀k ∈ (
ki

s, l]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(12)

where F , σi, ω̂aj , ψaj(·) and zaj are defined in (11), θi is a positive constants,
ηi

k is external threshold satisfying

η̇i
k=− ρiη

i
k + σi

(
1−2F2

2F2−σi

∥∥δi
k

∥∥2 − ∥∥ei
k

∥∥2 − 1
2F2−σi

∑
j∈Ni

∥∥∥ω̂aj(k
j
s+1)ψaj(zaj(k

j
s+1))

∥∥∥2
)

(13)
with ηi

0 > 0 and ρi > 0.

Notes and Comments. In (12), ηi
k varies in real time according to the mea-

surement error, local neighbor tracking error and the weight of actor network.
Compared with the static event-triggered condition (11), the dynamic one is
essentially a static trigger mechanism with “history” information. If ηi

k is set
to 0, the dynamic event-triggered condition in (12) becomes a static one, which
can be seen as its special case. Note that the external threshold ηi

k will improve
the excessive trigger problem caused by static trigger conditions, thus saving
communication and computing resources.

3.2 Implementation of the ADP Method

In order to find the optimal discounted value function and control policy, the
online-learning policy iteration (PI) algorithm is presented.

PI Algorithm: Let ks = k = 0 and s = 0, choose the initial admissible control
policy ui

0 and a small enough positive number ιi > 0.

1) compute the measurement error and tracking error;
2) if the dynamic event-triggered condition (12) is satisfied, compute the itera-

tive local value function by (7).
3) set s = s + 1, ks = k. Update the control policy by (10).
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4) End until
∣∣Ji

(
δi
k

) − Ji

(
δi
k+1

)∣∣ < ιi, else k = k + 1 and back to step 1;
5) return ui

ks
and Ji

(
δi
k

)
.

Through the continuous iteration of the above algorithm, u∗ can be get
finally. The process of proving the convergence of the above PI algorithm is
similar to the work in [13], so it is no longer proved in this paper.

Since the discrete HJB equation is very difficult to resolve, we use the Actor-
Critic neural network to obtain an approximate optimal solution of the equation
in the PI algorithm. Figure 1 designs the structure diagram of the optimal con-
sensus control network based on event trigger. When the event-triggered condi-
tion is satisfied, the current time and state are recorded as sampling time and
state respectively, and then sent to the controller. The optimal control policy is
approximated by the Actor-Critic network.

Fig. 1. Schematic of event-triggered ADP method.

(1) Critic NN
The discounted value function is approximated by the following critic network

Ĵi(ki
s) = ω̂T

ci(k
i
s)ψci(zci(ki

s)) (14)

where ω̂ci is the weight of critic network; zci is an input vector with δi
ks

, ui
ks

and
uNi

ks
; ψci(·) is tanh(·) which denotes the activation function.

Based on the discounted value function (7) and approximation discounted value
function (14), we define the error function as

ϑ̄ci(k) =
1
2
ϑT

ci(k)ϑci(k) (15)

where ϑci(k) = Ui(δi
k, uks

) + αĴi(ki
s + 1) − Ĵi(ki

s). The goal of our work is to
minimize the error function by adjusting the weights of the neural network. The
weight update policy based on gradient is derived as

ω̂ci(k)=
{

ω̂ci(k − 1) − κciαψci(zci(k − 1))ϑci(k − 1), k=ki
s;

ω̂ci(k − 1), k ∈ (
ki

s, k
i
s+1

) (16)
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(2) Actor NN
The control policy is approximated by the following actor network

ûi
ks

= ω̂T
ai(k

i
s)ψai(zai(ki

s)) (17)

where ω̂ai, ψai(·) and zai are defined in (11). Define the output error function
with the approximate control policy (17) as

ϑ̄ai(k) =
1
2
ϑT

ai(k)ϑai(k) (18)

with ϑai(k) = ûi
k − ũi

k and ũi
k is the target of the actor network. The actor

network weight update policy can be derived by the gradient descent method as

ω̂ai(k) =

⎧⎨
⎩

ω̂ai(k − 1) − κaiψai(zai(k − 1))
× [

ω̂ai(k − 1)ψai(zai(k − 1)) − ũi
k

]
,k=ki

s;
ω̂ai(k − 1), k ∈ (

ki
s, k

i
s+1

) (19)

3.3 Stability Analysis

We will analyze the stability of the MASs which combines the event-triggered
mechanism and the neural network structure in two cases whether the events are
triggered or not. In order to facilitate the following analysis, we first define two
approximation errors. The critic network weight approximation error ω̃ci(ki

s) is
define as

ω̃ci(ki
s) = ω̂ci(ki

s) − ω∗
ci (20)

where ω∗
ci is the target weight of the critic network. The actor network weight

approximation error ω̃ai(ki
s) is define as

ω̃ai(ki
s) = ω̂ai(ki

s) − ω∗
ai (21)

where ω∗
ai is the target weight of the actor network. Then, when the measurement

error of the MASs satisfies the proposed dynamic event-triggered condition (12),
we have the following theorem.

Theorem 1. When the dynamic event-triggered condition is satisfied, the MASs
updates the control policy of the current agent and the weights of the neural
network associated with it. The approximation error ω̃ci(ki

s) and ω̃ai(ki
s)can be

guaranteed UUB.

Proof. Define the following Lyapunov function

Li(ki
s) = Li1(ki

s) + Li2(ki
s) (22)

where Li1(ki
s) = ω̃T

ci(k
i
s)ω̃ci(ki

s) and Li2(ki
s) = ω̃T

ai(k
i
s)ω̃ai(ki

s). According to (15)
and (16), we can get

ω̃ci(ki
s+1) = ω̂ci(ki

s) − κciαψci(zci(k))ϑci(k) − ω∗
ci

= (1 − λ1)ω̃ci(ki
s) − ε1

(23)
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where Δψci(zci(k)) = ψci(zci(k + 1)) − ψci(zci(k)), λ1 is an eigenvalue of
ακciψci(zci(k))(1 − α)ΔψT

ci(zci(k)) and λ1 ∈ (−∞, 1) can be designed by choos-
ing the appropriate κci, and ε1 = ακciψci(zci(k))

(
(α − 1)ΔψT

ci(zci(k))ω∗
ci−

Ui(δi
k, uks

)
)
. Δψci(zci(k)) and ε1 are bounded since ψci(zci(k)) is bounded. Then

the difference of Li1(ki
s) is given by

ΔLi1(ki
s)

=
(
(1 − λ1) ω̃ci(ki

s) − ε1
)T (

(1 − λ1) ω̃ci(ki
s) − ε1

) − ω̃T
ci(k

i
s)ω̃ci(ki

s)
≤ σ1

2
∥∥ω̃ci(ki

s)
∥∥2 + ‖ε1‖2 + (λ1 − 1)

(∥∥ω̃ci(ki
s)

∥∥2 + ‖ε1‖2
)

− ∥∥ω̃ci(ki
s)

∥∥2

≤ (
λ2
1 − λ1 − 1

) ∥∥ω̃ci(ki
s)

∥∥2 + λ1‖ε1‖2
(24)

Based on the work in [2], the following condition can be satisfied when λ1=0.

ΔLi1(ki
s) ≤ −∥∥ω̃ci(ki

s)
∥∥2

(25)

Since
∥∥ω̃ci(ki

s)
∥∥ > 0, Li1(ki

s) < 0. Then the difference of Li2(ki
s) is given by

ΔLi2(ki
s) = ω̃T

ai(k
i
s+1)ω̃ai(ki

s+1) − ω̃T
ai(k

i
s)ω̃ai(ki

s)

=
[(

1 − κaiψ
2
ai(zai(ki

s))
)2 − 1

] ∥∥ω̃ai(ki
s)

∥∥2 (26)

Due to κai ∈ (0, 1), ψai (·) ∈ (−1, 1) and
∥∥ω̃ai(ki

s)
∥∥ > 0, the difference

ΔLi2(ki
s) < 0. Based on (25) and (26), we can know ΔLi(ki

s) = ΔLi1(ki
s) +

ΔLi2(ki
s) < 0. That is to say, ω̃ci(ki

s) and ω̃ai(ki
s) are UUB and the system is

ultimately bounded at the event- triggered instants. The proof is completed.

Assumption 2. There exists a constant F > 0 such that
∥∥δi

k+1

∥∥ ≤ F
∥∥δi

k

∥∥ +
F

∥∥ei
k

∥∥.
Under the above assumptions, when the measurement error of the MASs does

not meet the proposed dynamic event-triggered condition, we have the following
theorem.

Theorem 2. When the measurement error of agent i does not meet the condi-
tion (12), the agent will not update its relevant control policy and the weights of
neural network. The MASs can be guaranteed to be asymptotically stable if there
exist positive scalar σi, F , ρi and θi such that

⎧⎨
⎩

σi > 0
1 − 2F 2 < 0
0 < 2F 2 − σi < ρiθi

(27)

Proof. Consider the following Lyapunov function

L2
i (k) = δiT

k δi
k +

∑
j∈Ni

ujT
k uj

k + ηi
k (28)



142 X. Li et al.

Since the dynamic event-triggered condition (12) is dissatisfied, we can know

θi

(∥∥ei
k

∥∥2 − 1−2F 2

2F 2−σi

∥∥δi
k

∥∥2 + 1
2F 2−σi

× ∑
j∈Ni

∥∥∥ω̂aj(k
j
s+1)ψaj(zaj(k

j
s+1))

∥∥∥2
)

< ηi
k

(29)
Based on (13), (29) and Assumption 2, the difference of L2

i (k) can be derived as

ΔLi(k)

=
∥∥δi

k+1

∥∥2 − ∥∥δi
k

∥∥2 +
∑

j∈Ni

(∥∥∥uj
k+1

∥∥∥2

−
∥∥∥uj

k

∥∥∥2
)

+ η̇i
k

≤
(

σi(1−2F 2)
2F 2−σi

) ∥∥δi
k

∥∥2 + (2F 2−σi)−ρiθi

θi
ηi

k − σi

2F 2−σi

∑
j∈Ni

∥∥∥uj
k+1

∥∥∥2

− ∑
j∈Ni

∥∥∥uj
k

∥∥∥2

(30)
When σi, F , ρi and θi satisfy the condition (27), it can be known that ΔL2

i (k) ≤ 0
and the system is asymptotically stable. The proof is completed.

4 Simulation

We will verify the effectiveness of our proposed ADP method under the dynamic
event-triggered mechanism through the simulation experiments of three trig-
ger modes, namely, time trigger, static event trigger and dynamic event trig-
ger. Consider a MASs (4) with the topological structure of Fig. 2. In practi-
cal applications, we can abstract each UAV, robot and so on into an agent
node. Given the following initial parameters in the event-triggered mechanism.
Pinning gain: b1 = 1, b2 = b3 = b4 = b5 = b6 = b7 = 0. Competition
coefficients: Γ21= − 0.1, Γ25 = 2.1, Γ31 = 1, Γ42 = 1, Γ54 = 1, Γ63 = 3, Γ67 = − 1.
Discount factor: α = 0.95, κci = κai = 0.03. Event-triggered parameters:
θi = 0.6, ρi = 0.59, F = 0.729, σi = 0.72. In the simulation experiments under
the three trigger modes, we set the initial position and initial speed of the agent
to be the same, and finally the MASs reached the bipartite consensus.

Figure 3 depicts that under the dynamic event-triggered mechanism we
designed, the control policies will remain unchanged for a certain period of time
because of the threshold we set. And Figs. 4 and 5 show that even if the event
trigger reduces the communication of agents, it still reaches the bipartite con-
sensus. Under the event-triggered modes we have proposed, whenever the mea-
surement error exceeds the event-triggered condition (11) and (12), the agent
is triggered, and then the control policy is updated. Therefore, compared with
the time-triggered mechanism in which every moment is triggered, the event-
triggered mechanism proposed in this paper can significantly save the resource
consumption. However, it is clear from Fig. 6 that due to the external threshold
added to the dynamic event-triggered condition, the effect is better than that of
the static event-triggered mechanism.
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cies.

0 50 100 150 200 250
Iteration Steps

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

D
yn

am
ic

s

x1
x1
x2
x3
x4
x5
x6
x7

(a)

0 50 100 150 200 250
Time Step

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

E
ve

nt
-b

as
ed

 P
os

iti
on

s 
Tr

aj
ec

to
rie

s

x0
x1
x2
x3
x4
x5
x6
x7

(b)

0 50 100 150 200 250
Time Step

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

E
ve

nt
-b

as
ed

 P
os

iti
on

s 
Tr

aj
ec

to
rie

s

x0
x1
x2
x3
x4
x5
x6
x7

(c)

Fig. 4. Trajectories of Position States under three trigger modes: (a) time-triggered
mode; (b) static event-triggered mode; (c) dynamic event-triggered mode.
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Fig. 5. Trajectories of Velocity States under theree trigger modes: (a) time-triggered
mode; (b)static event-triggered mode;(c) dynamic event-triggered mode.
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Fig. 6. Event-triggered instants of agents under three trigger modes: (a) time-triggered
mode; (b) static event-triggered mode; (c) dynamic event-triggered mode.

5 Conclusion

In this paper, the optimal tracking control problem of discrete second-order
MASs under event-triggered mechanism is developed. We propose dynamic
event-triggered mechanism to solve the problem of excessive triggering caused
by static event-triggered conditions. Then, under this mechanism, the optimal
control problem is studied by using ADP method, and the stability of the system
is proved.
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