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Abstract. Flocking is a special behavior that exists in the natural
world. In this paper, a two-stage flocking formation algorithm is pre-
sented. The algorithm utilizes a varied range boundary to limit the agents
in the group. As time increases, the agents tend to form an α − lattice
structure formation. The algorithm improved the converging speed of the
flock formation. Simulations and analysis are provided to demonstrate
the algorithm for 2D cases.
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1 Introduction

In animal herds, a unique large group behavior existed is called “Flocking”
[9], which refers to a large number of individuals interacting with each other.
This behavior is prevalent to see in the natural world, such as the migration
of wildebeest in East Africa, a school of fish salmon avoiding the predation of
sea lions, and the doves hovering above a square freely but organized without a
leader.

The flocking phenomenon is very enlightening for engineering practice [6,11].
In modern society, the behavior of large groups of automated vehicles becomes
more and more essential and gradually comes to the front. By 2030, more than
20 million Tesla pure electrical cars will be sold annually, which means there will
be one in ten cars that are self-driving on the roads. Although each automated
car may be smart enough to avoid collision and find the optimal route to the
destination, from a higher-level perspective, the large group of smart cars are
exactly a flock, and the dynamics of it possess the properties of flocking.

On the other hand, flocking behavior is still a very challenging topic for
researchers [2,4,8,14]. The first thing for studying the flocking behavior is to
understand how the flock is formed. Reynolds [12] initialized three necessary
rules for forming a flock: First, the individual must not collide with other agents
in the group. Second, each individual has to match the velocity with others while
moving along with the group. Third, every individual in the group should stay
close to its neighbors. These three basic rules formulate the basics for flocking.
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The first rule regulates the minimum distance between individuals in the flock
so that they will not crash while moving; the second rule guarantees the group
of agents can move in a particular flock formation. Furthermore, the last rule
ensures the flock will not be torn apart by the accumulation effects of the former
two rules as time passes by.

The main contents of this paper are divided into four parts. The first section
states the preliminaries, including basic concepts of graph theory, the dynamic
agents, and the alpha−lattice structure; the second section discusses the problem
of flocking and presents an algorithm to solve the problem. Experiments show
the effects of the algorithm in the third section, and then the paper is concluded
in the last part.

2 Preliminaries

In this section, the application of graph theory in flock forming and moving
control are discussed. The basic concepts of graph theory and how they are
applied to flocking are introduced. Also, the α − lattices structure is presented
as it has been utilized to form the basic bricks of the flock.

2.1 Graph Topology of Flocks

A graph G consists of vertices set V = 1, 2...n and edges set E ∈ {(i, j) : i, j ∈
V, i �= j} [3,5]. Each agent in the flock is represented as a node, i ∈ V, and the
relationship between two communicating nodes (i, j) is represented as an edge
e(i, j). If the e(i, j) ∈ E ←→ e(j, i) ∈ E for all edges, then the graph is said
to be undirected. The interconnection relationship among nodes in the graph is
represented by an adjacency matrix A = a[i, j] : i ∈ V, j ∈ V . For a[i, j] �= 0,
then e(i, j) ∈ E . If the graph is undirected and unweighted, the adjacency matrix
is symmetric (A = AT)and the elements in A satisfy:

aij =
{

1, i = j
0, otherwise

(1)

The neighbors of a node i in an undirected graph are defined as Ni = {j ∈
V : aij = 1, i �= j, (i, j) ∈ V}.

2.2 Dynamics of Agents

Consider a group of dynamic agents. The individual agent can communicate
with others, and they can exchange the position and velocity information of
themselves. Let the communication range for agents is R ∈ R, and the safe
distance between agents is D ∈ R. The motion of agents [13] is described as:

{
q̇i = pi,
ṗi = ui

(2)
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where qi ∈ R
n(n = 2, 3) represents position information of agent i, and pi ∈

R
n(n = 2, 3) represents the velocity of agent i. ui ∈ R

n(n = 2, 3) is the control
input, which represents the acceleration for agent i in its moving direction.

For an agent i in the flock, its neighbors can be defined as:

Ni = {j ∈ V, j �= i : ||qj − qi|| < R} (3)

where ‖ ∗ ‖ is the Euclidean norm in cartesian coordinate system, and R is the
maximum communication range between agent i and agent j. From the Eq. 3,
one can know for an agent i, the communication scope is a circle with radius R.
Let dij expresses the distance between two agents, then:

dij = ‖qj − qi‖, ∀j ∈ Ni (4)

To fulfill the first rule of Reynolds, i.e. every agent should not collide with
each other, then, D <= dij <= R. To further regulates the safe distance and
the communication range, we have:

R = κD, κ >= 1 (5)

For a graph G, the proximity net G(q) = (V, E(q)) [1] satisfies:

E(q) = {e(i, j) : (i, j) ∈ V × V, dij < R, i �= j} (6)

2.3 Basic Brick: α-lattices

There are many types of flock structure exits, and the absolute − α − lattice
structure is one of the most basic structures. To form a α − lattice structure
flock, the distance between every pair of nodes must be equal to a fixed number
d:

d = dij = ‖qj − qi‖ ∀j ∈ Ni (7)

In general, the α − lattice structure is common to see in the natural world,
but the absolute α−lattice is hard to form. Therefore, the constraint for forming
flock by using 8 could be relaxed to :

dquasi = dij = ‖qj − qi‖ ∈ [d − δ, d + δ] ∀j ∈ Ni (8)

where δ is a small distance for forming the relaxed quasi − α − lattice(or quasi-
crystals) [13]. Also we could define the deviation function to measure how much
the quasi − α − lattice structure is different from the absolute − α − lattice
structure [10]:

f =
1

‖E(q) + 1‖
n∑

i=1

∑
j∈Ni

Ψ(‖δij‖) (9)
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and the pairwise potential function:

Ψ(x) =
1
k

(
1

1
z + 1

e(
1
z x+1) − e) (10)

where δij = dquasi − d, and z > 0.
The pairwise energy function has purposes for measuring the deviation energy

of the formation in which it differs from α− lattice. When z is small, it is similar
to the quadratic equation on the x coordinate. The deviation energy will increase
quickly as the δ value increases. However, as z increases, the pairwise potential
function in the former stage(x > 0) increases slower, which means that if the δ
value is within a certain range, the deviation could be tolerated or alleviated,
but when the δ value is getting bigger, then the punishment increases faster. A
non-negative map called σ norm [10] is defined so that the distance could be
differentiable at zero:

‖x‖σ =

√
1 +

1
a
‖x‖2 − 1 a ∈ [0,∞] (11)

Also a bump function 12 is utilized to construct a smooth potential function
[10]:

Λh(z) =

⎧⎨
⎩

1, z ∈ [0, h]
1
2 [1 + sin(π (z−h)

(1−h) + π
2 )], z ∈ [h, 1]

0, otherwise
(12)

where h ∈ (0, 1). Then, an adjacent matrix on the proximity function G(q) could
be:

A(q) = aij(q) =
{

Λh

(‖dij‖σ /‖r‖σ

) ∈ [0, 1], j �= i
0, i = j

(13)

The adjacency matrix is an indicator function that aij = 0 when h = 1. This
can be interpreted as the parameter h is controlling the adjacent range by the
ratio of actual distance between two agents and the communication range in σ
domain.

2.4 Control Forces

Flocking of agents depends on three forces: the force to avoid neighboring agents,
the force to make individual agents reach a consensus state, and the force to track
objectives. Therefore, three control input is generated to form and moving the
flocks. Olfati-Saber [13] proposed the control protocols with obstacle avoidance
based on three types of agents: α agent, β agent, and γ agent. The control
protocols in Olfati-Saber’s third algorithm for individual agent i is:

ui = uα
i + uβ

i + uγ
i (14)

where each of the three controls are:

uα
i = ζα

1

∑
j∈Nα

i

φα(‖dij‖σ)Wij + ζα
2

∑
j∈Nα

i

aij(q)(pj − pi) (15)
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φα(z) = Λh (z/rα)
(
z/

√
1 + (z − ‖d‖σ)2

)
(16)

where the Wi,j is the gradient of the σ map function:

Wij = ∇σ(q) =
qj − qi

a
√

1 + 1
a‖dij‖2

=
qj − qi

1 + a‖dij‖σ
(17)

Similarly, the uβ
i is:

uβ
i = ζβ

1

∑
j∈Nβ

i

φβ(‖d̃ij‖σ)Ŵij + ζβ
2

∑
m∈Nβ

i

bim(q)(p̂m − pi) (18)

φβ(z) = Λh (z/dβ) (σ1 (z − dβ) − 1) (19)

bim(q) = Λh (‖q̂im − qi‖σ /dβ) (20)

where the ‖d̃ij‖σ represents sigma distance between the β agent j and agent i,
and the Ŵim is:

Ŵim = ∇σ(q) =
qm − qi

a
√

1 + 1
a‖dim‖2

=
qm − qi

1 + a‖dim‖σ
(21)

where the letter m represents a virtual β agent sticking around the surface of
the obstacles, and for the γ agent:

uγ
i = −ζγ

1 σ1 (qi − qm) − ζγ
2 (pi − pm) (22)

The β agents produce external repulsive force to prevent the flock from crash-
ing into the obstacles. The α agents and the γ agents form the α− lattice struc-
tured flock and trace a dynamic or static target. Without the α agents, the flock
will eventually become fragmented because of the repulsive force among nodes.
The repulsive force can change agents’ initial speed and speed direction, and the
agents will go fragmented when nothing restricts them.

Finally the velocity and position update protocol are:

V i
new = V i + uiΔt, P i

new = P i + V iΔt + ui
(Δt)2

2
(23)

where V i ∈ R
n, (n = 2, 3) is the velocity of agent, and P i ∈ R

n, (n = 2, 3) is the
position of agent i.

3 Constrained Flocking Formation

Reza Olfati-Saber [13] proposed several algorithms for forming α lattice flock uti-
lizing a multi-species framework. Th flock formed eventually becomes a lattice-
like shape and can chase static or moving objects. However, the algorithms pro-
posed by Reza [13] cannot realize formation control and strongly depend on the
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Fig. 1. Initial distribution: red disk is the obstacles, green point is the target

parameter settings. Inappropriate parameter settings will bring fragmentation
to the flock. Also, if the initial distributions of individuals are too separated and
the communication range for agents is limited, the flock will not be formed. Even
if the majority of the agents are formed a flock, it is still possible to lose some
outliers who have no neighbors at all in the beginning for an extended period. In
this section, a constrained flocking formation is proposed to solve this problem
by using a constrained boundary at the beginning of the formation.

3.1 Long Time Convergence

Fig. 2. The group of agents hasn’t form complete flock until they meet the obstacles

Using Olfati’s algorithm with the initial position of agents set as X ,Y ∼
U(0, 200) (Fig. 1) and sensing distance set as 10, the result shows that the group
of agents will spend a long time converging to a flock if the target is set far from
the group’s initial position (Fig. 2).

3.2 Constrained Flocking Shape Formation

In this section, a boundary constrained algorithm is presented for controlling the
initial flocking formation shape. Using a virtual constraint boundary, the flock
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is formed much quicker than merely using a single target point. The flocking
process is divided into two stages. In the first stage, the agents are constrained
to form an α − lattice structured shape that can support them to fly together
later. After the formation is complete, the constrained boundary is eliminated,
and the flock starts chasing their predetermined target.

3.3 Algorithms

To achieve the first stage of convergence, the group of agents has to find the
central position of the flock as the initial target. Whenever the distance between
agents is close enough, which means agents can sense others, they will establish
connections. Also, a time-varied-ranged constraints boundary is built to prevent
agents from flying out of scope and give an initial push to the agents initialed
on the boundary. To achieve a line boundary, the following lemma is used:

Lemma 1. For a hyperplane boundary with unit normal Om and passes through
the point m,the position and velocity of the β agent are determined by:

q̂i,m = Kqi + (I − K)m, p̂i,m = Kpi (24)

where q̂i,m is the point that the boundary passes through, and K = I − OmOT
m,

and the safe range between obstacles and agents could be changed by time
D(t)m ∝ εt, ε ∈ R.

Proof. See [10] Lemma 3

With Lemma 1, the next thing is to determine how many point we need so
that they can form a line. Consider a line with width D

′
, assume the initial

desired distance from the wall is Dm(0), the number of points needed n is easy

to calculate, and the control input is also modified: n = roundoff( D
′

D(0)m
)+1 and

the γ control input is changed to ui = uα
i + uβ

i + uγ
′

i , where uγ
′

i is modified to:

uγ
′

i = −ζγ
′

1 σ1 (qi − qm) + Constant (25)

We can use the relative connectivity [7,13] to judge when to stop the first
stage and go to the second stage:

C = (1/n − 1) rank(A
′
(G(q))) ∈ [0, 1] (26)

where A
′
is the [0–1] indicator adjacent matrix (not the spatial adjacent matrix

defined by 13).
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Algorithm 1. Two Stage flocking
1: First Stage:
2: Initialize a population of agents with uniform random values positions
3: Select the geometric center as the first stage target
4: while Relative Connectivity condition not reached do
5: for Each agent i do
6: Update velocity and position of the agent using 23 with control input 25
7: Evaluate the Relative Connectivity C
8: if C ≥ 1 − δ, (0 ≤ δ � 1) then
9: Go to Second Stage

10: end if
11: end for
12: end while
13: Second Stage:
14: Remove the virtual constrained boundary and reset the objective to the original

tracing target
15: while Objective is not reached do
16: for Each agent i do
17: Update velocity and position of the agent using 23 with control input 14
18: Evaluate the center of mass Pc

19: if the center of mass reaches target then
20: break while
21: end if
22: end for
23: end while

4 Experiment

Due to the limited length of this article, the experiment only shows Stage 1
as the algorithm shows. The experiment selects 100 nodes with a size of 10
randomly distributed in a square region centered at 0, and the distribution of
X,Y coordinates complys X ,Y ∼ U(0, 300) in a 2D plane. The boundary set is
bigger than the distributed region of agents. The parameter for the control is
set as cα

1 = 40, cβ
1 = 1500, cγ

1 = 60.

Fig. 3. Constrained flock formation
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Figure 3 shows the evolution of the formation of the flock. The agents are
assigned a random direction and velocity in the beginning. The green boundary
limits the agents so that they will not fly out by random movement. The green
point is the stage 1 target, which produces a centripetal force for all agents.
Also, every agent will have the pairwise resisting force to avoid the collision, and
the boundary also produces resisting force to alter the velocity and direction of
the agents who are close to it. Figure 4 shows the shape and statistical network
properties of the flock at t = 0 s and t = 12 s (0.1 s is the step size). In the
beginning, the degree, clustering coefficient, and the number of triangles that
pass through each agent are small or zero, but after the α-lattice structure is
formed, the values are changed and tend to be stable. The trajectories plot Fig. 5
shows that all agents are going towards center of the flock. However, once the
agents have reached the center, they begin changing their directions locally, just
like marching on the spot.

Fig. 4. Flocking formation shape and network attributes

Fig. 5. Trajectories of agents and the velocities
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5 Conclusion

In this paper, the flocking behavior is stated. The problem in the early stage
of flock formation is solved by utilizing a constrained boundary algorithm.
The experiment results show the converging speed for the flocking formation
is improved, and the α − lattice structure is presented in the formation. How-
ever, there are still some future works to do to better control the formation of
more complex structures, and the algorithm’s complexity is about to be improved
further.
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