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Abstract. Object tracking is a subject of great interest in different fields of
research. In the process of estimating the trajectory of a target in a displace-
ment sequence, the target is not always located exactly, the process tracking can
be accompanied by variations in the position and size of the image. The dif-
ferences observed can be considered as colored measurement noise (CMN). We
treat the.se variations as Gauss-Markov color measurement noise. The standard
Kalman, Optimal FIR, Optimal Unbiased FIR, and Unbiased FIR filters are tested
in simulated displacement sequences to demonstrate the best performance. The
object trajectory estimation process was carried out in two stages: “predict” and
“update”. The results showed good performance of the FIR and Kalman filters in
the object tracking process under conditions of the process and data noise. While
at higher data and process noise values, the FIR filters showed better performance.
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1 Introduction

Object tracking is a widely researched field within computer vision, mainly due to the
many practical applications such as video surveillance and security, robotics, human-
computer interaction, autonomous vehicle navigation, etc. [1–3]. Object tracking is a
topic of study of great interest in the area of computer vision. In the same way, it is
a study area of great interest in signal and image processing [3–5], where the data for
estimating the trajectory of the object are generally obtained from the coordinates of a
sequence of frames.

Object tracking can be understood as the problematic of estimating the trajectory of
a target in a sequence of movement around a scene [5, 6]. Object tracking task generally
presents problems for exact trackingof the object, since there are variations in the position
of the frames in the scene, that is, the target is not followed exactly in the tracking process.
These differences between the estimated position and the true position can be considered
as color measurement noise (CMN) that is not white [7]. In addition to what has already
been described, there are a variety of factors that affect the performance of tracking
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algorithms such as occlusion, illumination, rapid movement, position changes, target
scale variations, background clutter, etc. An example of variations in object tracking is
shown in Fig. 1 for the “blurcar2” benchmark [8]. Where the object to be tracked is
a white car, which is enclosed in a green bounding box, while bounding boxes in red
represent erroneous estimates.

Various investigations have shown that the use of amotionmodel and state estimators
is effective in avoiding large tracking errors [7–14]. With the correct specification of
the model in the state-space, the dynamics of the object can be represented with great
precision for different movements. However, the accuracy of the tracking algorithm
will continue to depend heavily on residues representing noise measurement data and
mismodeling errors.

Therefore, in this paper, the algorithms Kalman (KF), Optimal Finite Impulse
Response (OFIR), Optimal Unbiased Finite Impulse Response (OUFIR), and Unbiased
Finite Impulse Response (UFIR) filters are used to stabilize the bounding box trajectory
during object tracking process, in which the differences in the scene can be considered as
CMN. The state estimation strategy for both algorithms was developed in two different
phases in the recursions and iterations: “predict” and “update”.

Fig. 1. Example car tracking in a video sequence when a desirable frame is green.

The FIR and KF algorithms were tested on simulated sequences. We evaluated the
performance of the algorithms. Based on our experimental tests. We show that the
Kalman and FIR algorithms showed favorable results with low data and process noise
values, but increasing these values OUFIR and UFIR produced lower errors than KF
and OFIR.
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2 Object Representation: Bounding Box

An image can be described through its properties. To do this, it is necessary to calculate
the mathematical properties of an image and use them as a basis subsequent classifi-
cations [15]. Therefore, the extraction of shape parameters is necessary for the image
representations. One of the shape parametersmost used in object tracking is the bounding
box.

The bounding box can be defined as a rectangular box that encloses all the objects
in an image or scene. It can be represented by the coordinates of the upper left and
lower right corners of the box [16]. Using the bounding box as a shape parameter in
target tracking, the information about the position of the objects in pixels is contained
in an array of bounding boxes. The bounding box matrix contains the position of the
minimum and maximum vertices of the box that encloses the detected object within the
scene. The distribution of pixels within a frame begins in the upper left corner and ends
in the lower right corner [17]. The bounding box matrix is distributed over n rows and 4
columns, the rows represent the number of recognized objects, and the columns contain
the measurements for each bounding box located as follows:

Bounding Box = (Xc,Yc,Xw,Yh) (1)

Where Xc, Yc, Xw, and Yh are the coordinates of 4 corners of the bounding box:
corners, weight, and height. In addition to these measurements, the centroid of the
Bounding Box can be generated, in “x” and “y” coordinates, called Cx and Cy.

The algorithm to generate the bounding box in the tracking process must predict
the four coordinates, X corner, Y corner, width, and height, for each bounding box.
The center coordinates of the bounding box are based on the location of the filtering
application in the tracking. Therefore, the coordinates of the centroid are used for the
bounding box prediction. The coordinates of the centroid for the target are tracked
through the prediction of movement that identifies each of the objects of interest with
the same label in the sequence of images throughout the trajectory [18].

In the tracking process there may be misalignments and detection errors, an effective
method to reduce them is to apply a filteringmethod. A filteringmethod is used to predict
the centroid of each bounding box in the frame sequence and update the bounding box.
The objective of using prediction and correction methods is to mitigate the noise present
in the object tracking process. The prediction indicates the a posteriori position of the
bounding box based on its previous position. The update is a correction step that includes
the new measurement of the tracking model and helps improve filtering [19, 20].

3 Performance Evaluation of Tracking Algorithm

The tracking algorithms performance can be evaluated using metrics called precision
and F-score. Precision is the percentage of correct objects detections, and F-score is one
metric option to measure the accuracy.
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3.1 Precision

To calculate the precision values, it is necessary to calculate the Intersection over Union
(IoU). The equations for calculating precision and IoU are (2) and (3), respectively. The
variables used in the calculation of the precision are obtained from the comparison of
the IoU result with an established threshold [20].

IoU = IA

(TBB − PBB) − IA
(2)

where IA is the intersection area of the real/true bounding box (TBB) and the esti-
mated/predicted bounding box (PBB). The IoU value is calculated in each position of
the bounding boxes.

Precision =
∑

TP

(
∑

TP + ∑
FP)

(3)

where TP is true-positive, and FP is false-positive.
To determine the validity of object detection, that is, the correct detection of the target,

a threshold value of IoU must be established. IoU is generally set to 0.5. Assuming the
IoU threshold is 0.5, if the value is greater or equal to 0.5, the detection is classified as
True Positive (TP). If IoU value is less than 0.5 it is considered as a wrong detection
and classified as False Positive (FP). The IoU threshold can be set to a value of 0.5 or
more, such as 0.75. 0.9, 0.95, or 1. Understanding that 1 would be an exact overlap of
the bounding boxes.

3.2 F-Score

One metric for evaluating object tracking model using precision and recall is F-score.
The F-score can provide important information about the model performing at various
threshold values. Recall can be calculated as the number of correct detected objects
divided by the total number of detections in the ground truth. In this sense, a very useful
parameter is the F-score, which is the harmonic mean of the recall and precision. The
F-score is a measure of accuracy test [21, 22]. This metric is based on the bounding box
overlap obtained between the algorithm and the real trajectory to calculate the accuracy
with which the algorithm operates on an object displacement sequence, the F-score is
computed by Eq. (4).

F − score = 2
Precision ∗ Recall

Precision + Recall
(4)

4 Moving Object State Space Model

We consider a moving object represented in discrete time state-space with the following
observation and state Eqs. (5) and (6):

xn = Anxn−1+Enun + Bwn (5)
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yn = Hnxn + vn (6)

where xn ∈ R
k is the state vector, yn ∈ R

M is the vector of observation. A is the model
of the state transition, which is applied to project the previous state xn−1 to xn. E is the
input control model, un is the input control, B is the noise matrix. H is the model of
observation. wn ∈ R

P is the process noise vn ∈ R
M is the colored Gauss-Markov noise

with white Gaussian with zero mean wn ∼ N(0,Qn) ∈ R
P and vn ∼ N(0,Rn) ∈ R

M

have the covariances Qn and Rn, and the property E
{
wnvTk

} = 0 for all n and k. Under
the assumption that the two noise sequences and the initial state are uncorrelated and
independent of each testing instant [23].

5 Kalman Filter

The Kalman filter uses the state equation of the linear system to estimate the state of the
system through observation of input and output. Using KF requires knowledge of the
system parameters, initial values, and measurement sequences. The KF can estimate the
state sequences of the system iteratively [24].

The Kalman filter calculate the optimal estimate by recursively combining previous
estimates with the new observations. This process consists of two stages: predict, in
which the optimal state x

∧−
n before observing yn is calculated and update, after observing

yn the optimal posterior state x
∧

k is calculated. Also, it calculates the prior estimation
error ∈−

n = xn − x
∧−
n , the posterior estimation ∈n = xn − x

∧

n, a priori estimate error
covariance P−

n = E
{∈−

n ∈−T
n

}
, and posterior estimate error covariance Pn = E

{∈n∈T
n

}
.

The a priori error covariance matrix is produced in the predict phase. Since the
process noise wn is assumed white Gaussian with zero mean, the a priori state estimate
is given by (7), and the estimation of the a priori error covariance matrix is computed
by (8).

x
∧−
n = Ax

∧

n−1+Enun (7)

P−
n = AnPn−1A

T
n +BnQnB

T
n (8)

Then, in the update stage, the current a priori predictions are combined with the
current state observation to redefine the state estimate and the matrix of error covariance.
The current observation is used to improve the estimation, and it is called a posteriori
estimation of the state.

The measurement yn is corrupted by the noise vn. Since vn is assumed white with
zero mean, this becomes (9), and the measurement residual (10).

yn = Hnx
∧

n−1 (9)

zn = yn − Hnx
∧− (10)

The residual covariance matrix is given by (10):

Sn = HnP
−
n H

T
n +Rn (11)
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The optimal Kalman gain:

Kn = P−
n H

T
n S

−1
n (12)

The a posteriori state estimate:

x
∧

n = x
∧−
n + Kn(zn − Hx

∧−
n ) (13)

The a posterior error covariance matrix:

Pn = (I−KnH )P−
n (14)

Below is a KF pseudo-code listed as Algorithm 1.

6 Optimal Finite Impulse Response (OFIR)

Since theOFIRBatch form is generally computationally time consuming, due to the large
dimensions of all extended vectors andmatrices. In order to obtain faster processing, effi-
cient computation of a posteriori state can be done such as an iterative algorithm. Its itera-
tive computation on horizon [m, k] for given x

∧

m andPm provided byKalman filter (Algo-
rithm 1) if we change the auxiliary time-index i from m +1 to n and take output when i
= n. The iterative form for the OFIR filter has been developed and tested in [25, 26].

The pseudo-code of the a posterior iterative OFIR filter is listed as Algorithm 2.
Given x

∧

m and Pm, this algorithm is iteratively updates x
∧

i values from i = m +1 to i =
n using optimal recursions of Kalman filter (Algorithm 1) and obtains x

∧

n and Pn, when
i = n. The number of iterations can be limited by optimal horizon length, Nopt of the
Unbiased FIR filter.
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7 Unbiased Finite Impulse Response (UFIR) filter

Unlike the KF and iterative OFIR, the Unbiased FIR does not require any information
about initial conditions and noise, except for the zeromean assumption [9, 14, 27, 28, 29].
Therefore, theUnbiased FIR filter is more suited for object tracking, wheremeasurement
andprocess noises are not exactly known.However, theUnbiasedFIR requires anoptimal
horizon length, called Nopt, from m = n − Nopt + 1 to n, to minimize the Mean Square
Error (MSE), and it cannot ignore the CMNVn, which violates the zeromean assumption
at short horizons.

As already mentioned, the UFIR algorithm does not require noise statistics, so the
prediction step calculates a single value, a priori state (15).

x
∧−
l = Ax

∧

l−1+Elul (15)

In the update step, the state estimated is combined with the current observation state
to upgrade the state. The estimate is iteratively updated to the a posteriori state estimate
using equations (16)–(19).

Generalized noise power gain:

Gl =
[
HT
l Hl+(ALGl−1A

T
l )

−1
]−1

(16)

The measurement residual:

zl = yl − Hlx
∧− (17)

The bias correction gain:

Gainl = yl − Hlx
∧− (18)

The a posteriori state estimate is given by (19):

x
∧

l = x
∧−
l +Gainl(zl − Hx

∧−
l ) (19)
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Below a pseudo-code of UFIR algorithm is listed as algorithm 3. To initialize itera-
tions, the algorithm requires a short measurement vector ym.k = [

ym . . . yk
]T and matrix

(20).

Cm,k =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Hm

(
Am+1
k

)−1

Hm+1

(
Am+2
k

)−1

...

Hk−1A
−1
k

Hk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(20)

Where Sm,s and Lm,s are given by (21) and (22) respectively, Skm,s is deKth row vector
in (21).

Sm,s =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

E0 0 · · · 0 0
Am+1Em Em+1 · · · 0 0

...
...

. . . 0 0
Am+1
s−1 Em Am+2

s−1 Em+1 · · · Es−1 0
Am+1
s Em Am+2

s Em+1 · · · AsEs−1 Es

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(21)

Lm,s= diag(Cm,s)Sm.s (22)
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8 Optimal Unbiased Finite Impulse Response (OUFIR)

In some cases, requiring an initial state x
∧

m and error covariance Pm. Generally, in real
applications, all the information on the initial conditions of the model is not available,
will be needed to tackle the problem. The OUFIR filter is very indifferent to the initial
conditions. In this case, we apply an iterative Optimal Unbiased (OUFIR) filter [30].

8.1 Iterative OUFIR

The iterative OUFIR algorithm is stated below. The prediction phase calculates a single
value, a priori state, considering input (u) equal to zero the a priori state is computed by
(23.

x̃l = Alx
∧−
l + Gainl(yl − Hix̃

−
l ) (23)

In the update stage, the state estimated is combined with the current observation state
to refine the state. In the same way as UFIR, the estimate is iteratively updated to the a
posterior state estimate using equations (24)–(28).

The residual covariance matrix is given by (10):

Sn = HnP
−
n H

T
n + Rn (24)

The OUFIR filter gain:

Kl = P−
n H

T
n Sn (25)

K−
l = (I−KlHl)GlNlG

T
l H

T
l Sn (26)

Gain = Kl + K−
l (27)

The a posteriori state estimate:

x̃l = x
∧−
l + Gainl(yl − Hix̃

−
l ) (28)

A pseudo-code of the Optimal Unbiased FIR filter is listed as Algorithm 4.

9 Experimental Tracking Test

Now we study the performance of the standard Kalman and FIR filters under study
(Algorithm 1–Algorithm 4). In this section, we test the algorithms numerically by dif-
ferent simulated data. Our main goal is to evaluate the performance in object tracking
using precision and F-score metrics. We consider the two-state model and suppose an
object is disturbed by white Gaussian acceleration noise with a given value of standard
deviation. The model of a moving target in a two-dimensional space was specified by
(5) and (6) with matrices:

A =
[
1 T
0 1

]

,B =
[
T
1

]

,H = [10] (29)

In simulation data four scenarios will be considered:
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1) Simulated data 1. An object target is disturbed by white Gaussian acceleration noise
with a standard deviation of σw = 5m/s2. The for the data noise (CMN) originates
from white Gaussian σv = 10m. The simulation of the trajectory was 1000 points
with sample time T = 1 s, P0 = 0, Q = σ 2

w, R = σ 2
V , on a short horizon Nopt = 5.

2) Simulated data 2. A trajectory is simulated at 2000 points σw = 50m/s2, σv = 20m.
With sample time T = 0.05 s, P0 = 0, Q = σ 2

w, R = σ 2
V , on a short horizon Nopt =

9.
3) Simulated data 3. A trajectory is simulated at 2000 points with σw = 50m/s2,

σv = 4m. With sample time T = 0.05 s, P0 = 0, Q = σ 2
w, R = σ 2

V , on a short
horizon Nopt = 5.

4) Simulated data 4. A trajectory is simulated at 2000 points σw = 60m/s2, σv = 30m.
With sample time T= 0.03 s, P0 = 0, Q = σ 2

w, R = σ 2
V , on a short horizon Nopt =

15.

9.1 Test on Simulated Data 1

Then we examine the results of algorithms in the object tracking simulation using the
bounding box measurements or coordinates as a tool for metric evaluation. In Fig. 2
the true trajectory of the object and the estimations made by the algorithms are shown,
where the black line is the real data, the blue line is KF, the red line is UFIR, the yellow
line is OUFIR, and the green line is OFIR. Given that the Nopt for the FIR filters was 5,
the estimates started from this.
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Under the conditions given in the first simulation, with low values of white Gaussian
acceleration noise and data noise. The Kalman and FIR filters showed similar behavior.
To provide a more complete view, we calculate the root mean square error (RMSE).
The RMSE values were 347.5495 for KF, 347.2659 for OFIR, 353.3701 for OUFIR,
and 353.3701 for UFIR. According to these results, we consider that the algorithms
presented a good performance, where OFIR showed the lowest value.

Fig. 2. Estimation of data 1 trajectory in the x-y plane using Kalman and FIR filters.

Performance Evaluation of Algorithms: Precision and Accuracy. The
precision results of the test of simulated data 1 are shown in Fig. 3. The OFIR and
KF algorithms produced a high precision with similar behavior on the thresholds from
0 to 0.8, from which to decayed. The precision was greater than 0.8 until the threshold
of 0.8. It can be inferred that in each detection the overlap of the Predicted Bounding
Box (PBB) on the True Bounding Box (TBB) was good. It can be inferred that each
detection of the Kalman and FIR filters covers 80% of the TBB area. Since the most
used threshold values are 0.5% and 0.75% [20]. Therefore, we consider that Kalman
and FIR filters algorithms gave favorable results in the most widely used threshold IoU
range.

To measure the accuracy, the F-score metric was used as already mentioned, this
parameter allows combining the precision and recall results as a harmonic mean. This
metric is based on the bounding box overlap obtained between the algorithm and the
real trajectory to calculate the accuracy with which the algorithm operates on an object
displacement sequence.The results of theF-score for simulated data 1 are shown inFig. 4.
The Kalman and FIR algorithms produced a high accuracy from 0 to 0.75 threshold,
from which to decay. The OFIR filter showed the highest accuracy with 0.7979, closely
followed by KF with 0.7979, OUFIR with 0.7912, and UFIR with 0.7886.
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Fig. 3. Precision of Kalman and FIR filters in simulated data 1.

Fig. 4. Accuracy of Kalman and FIR filters in simulated data 1.

9.2 Test on Simulated Data 2

We examine the results of algorithms in the object tracking simulation data 2. In Fig. 5
the true trajectory of the object and the estimations made by the algorithms are shown.
The algorithms are identified with the same line colors as the previous section. The
horizon length, Nopt , for the FIR filters was 9. In this case, a significant difference is
observed in the estimates made by the algorithms, where the OUFIR and UFIR are the
ones that are closest to the real trajectory with an RMSE value of 4575.38, and 4737.23,
respectively. OFIR and KF differ in a greater way, the RMSE values were 8463.93 and
8463.55, respectively. This may be due to the fact that the data simulation was carried
out with larger values in data and process noise.
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Fig. 5. Estimation of data 2 trajectory in the x-y plane using Kalman and FIR filters.

Performance Evaluation of Algorithms: Precision and Accuracy.
The precision results of a test of simulated data 2 are shown in Fig. 6. OUFIR and
UFIR presented a better performance, these produced a precision over 70% from 0 to
0.9 threshold, from which to decay. It can be inferred that each detection covers at least
70% of the TBB area. While OFIR and KF presented low precision values below 50% in
the entire threshold range. The average precision for OUFIR was 0.7841, for UFIR was
0.7821, for OFIR was 0.4045, and for KF was 0.4040. Since usually, the threshold used
is 0.5, we considered that the algorithms gave favorable results for OUFIR and UFIR.

Fig. 6. Precision of Kalman and FIR filters in simulated data 2.

The accuracy results of simulated data 2, the F-score metric, are shown in Fig. 7. The
OUFIR and UFIR algorithms produced accuracy values over 0.7 from 0 to 0.6 threshold,
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from which to decayed. The value of accuracy towards the 1 threshold is close to 0.5.
The OFIR and KF presented a low performance, the F-score values are less than 0.5
in the threshold of 0.1. The accuracy value decreases as the threshold value increases.
The OUFIR filter showed the highest average accuracy with 0.7273, closely followed by
UFIR with 0.7231, the average accuracy for OFIR was 0.3791, and for KF was 0.3788.
According to the results, we consider that OUFIR and UFIR present a good performance
in the object tracking task under the given conditions.

Fig. 7. Accuracy of Kalman and FIR filters in simulated data 2.

9.3 Test on Simulated Data 3

Figure 8 are shown the results of estimation of algorithms in the object tracking of
simulation data 3. The algorithms are identified with the same line colors as the previous
sections. The horizon length, Nopt, for the FIR filters was 5. In this case, there is also a
significant difference in the estimates made by the algorithms, where OUFIR and UFIR
provided estimates close to the real trajectory, while KF and OFIR showed erroneous
estimates, the estimated trajectories are smoothed. The RMSE value for OUFIR, UFIR,
OFIR, and KF were 3334.01, 5848.31, 6909.94, and 6910.42, respectively. OUFIR
presented the best result. OFIR and KF differ in a greater way than the real data.

Performance Evaluation of Algorithms: Precision and Accuracy.
Figure 9 are shown the precision results of the test of simulated data 3. OUFIR and
UFIR presented a better performance, these produced a precision around 80% from 0 to
0.7 threshold. In the full range of the threshold, the precision was over 70%. It can be
inferred that each detection covers at least 70% of the TBB area. OFIR and KF presented
a poor performance in the correct estimation of the trajectory, the precision was below
50% in most of the full range of the threshold. The average precision for UFIR was
0.8173, for OUFIR was 0.8153, for OFIR was 0.4025, and for KF was 0.4020. Since
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Fig. 8. Estimation of data 3 trajectory in the x-y plane using Kalman and FIR filters.

Fig. 9. Precision of Kalman and FIR filters in simulated data 3.

usually, the threshold used is 0.5, according to the results, it can be determined that the
OUFIR and UFIR algorithms gave favorable results in the object tracking task.

In Fig. 10 the accuracy results of simulated data 3. The OUFIR and UFIR algorithms
produced accuracy values over 0.7 from 0 to 0.6 threshold, from which to decayed. The
value of accuracy towards the 1 threshold is close to 0.4. The OFIR and KF presented
a poor performance from 0.3 to 1 threshold, with an accuracy value below 0.5. The
accuracy value decreases as the threshold value increases. The OUFIR filter showed
the highest average accuracy with 0.7402, closely followed by UFIR with 0.7379, the
average accuracy for OFIRwas 0.3150, and for KFwas 0.3152. According to the results,



680 E. G. Pale-Ramon et al.

we can be determined that theOUFIR andUFIR present a good performance in the object
tracking process under the given conditions.

Fig. 10. Accuracy of Kalman and FIR filters in simulated data 3.

9.4 Test on Simulated Data 4

Finally, we analyze the results obtained for the simulated data test 4. The real trajec-
tory and the estimates are shown in Fig. 11; the identification colors remain as already
mentioned previously in this paper. The Nopt , for the FIR filters, was 15. In this test,
the estimates of OUFIR and UFIR were the best compared with those obtained by KF
and OFIR. To provide a more complete view, we calculate the root mean square error
(RMSE). The RMSE values were 6596.12 for OUFIR, 6973.98 for UFIR, 12932.46 for
OFIR, and 12932.46 for KF. According to these results, we consider that the OUFIR
and UFIR algorithms presented a good performance, where OUFIR showed the lowest
value of RMSE.

Performance Evaluation of Algorithms: Precision and Accuracy. Analyzing
the precision metric, it is observed that the performance of the algorithms was lower
than in the previous tests. The results are shown in Fig. 12. Again, the OUFIR and UFIR
showed higher precision compared to OFIR and KF. However, the precision is between
0.5 and 0.7 in the threshold range of 0.1 to 0.9. Taking as a reference that the Threshold
most used to evaluate the precision is 0.5, we can determine that the performance of the
algorithms was poor, since in this Threshold the precision just exceeds 0.6 for OUFIR
and UFIR, while for OFIR and KF is at 0.2.

The F-score values, accuracy, are shown in Fig. 13. The FIR and Kalman algorithms
produced accuracy values less than 0.7 in the entire Threshold range. OUFIR and UFIR
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Fig. 11. Estimation of data 4 trajectory in the x-y plane using Kalman and FIR filters.

Fig. 12. Precision of Kalman and FIR filters in simulated data 4.

algorithms produced accuracy values over 0.5 from 0.1 to 0.6 threshold, from which
to decay. The value of accuracy towards the 1 threshold is close to 0.3. The OFIR and
KF presented a low performance. The accuracy obtained was poor, the F-score values
are less than 0.3 in the entire Threshold range. In this test, the OUFIR filter showed
the highest average accuracy with 0.5715, closely followed by UFIR with 0.5631, the
average accuracy for OFIRwas 0.2600, and for KFwas 0.2596. According to the results,
we consider that OUFIR and UFIR present a poor performance in the object tracking
task under the given conditions, with higher data and process noise.
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Fig. 13. Accuracy of Kalman and FIR filters in simulated data 4.

10 Conclusions

TheKFandFIRestimation algorithms appear to be efficient in the object tracking process
under conditions of low the process and data noise. The algorithms showed favorable
results in the tracking tests and provided an estimate of the statewith greater precision and
accuracy. In other hand, when the process and data noise is higher, the OUFIR and UFIR
estimation algorithms are more efficient, showing favorable results with high precision
and accuracy values, which can be useful in many visual tracking applications since it
gives favorable results. Remarking that, UFIR does not require information about the
noise and knowing the initial position. In the same way, the OUFIR is highly insensitive
to the initial conditions.

Although the Unbiased FIR filter does not require knowing the noise statistics, it
can produce larger errors than in KF, because it does not guarantee the optimization.
According to the accuracy and precision results, the OUFIR filters showed better per-
formance for tracking objects. Consequently, the OUFIR filter in general shows greater
robustness against initial conditions and noise statistics than UFIR, OFIR, and KF.

Therefore, we conclude that the incorporation of state estimators can provide further
development of object tracking algorithms for wide variety of application areas.

Regarding the good performance of OUFIR and UFIR filters algorithms, we are now
working on develop practical modified algorithms for object tracking to mitigate CMN.
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