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Preface

Algebra is considered a significant milestone in Mathematics. Algebra is not just
limited to Mathematics; also, it has a lot of real-world applications be it computer
science, chemical science, technology, coding theory, cryptography, graph theory,
etc. In fact, the world revolves around the applications of algebra.

The Department of Mathematics, Aligarh Muslim University, Aligarh, India, orga-
nized an International Conference on Algebra and Related Topics with Applications
(ICARTA-19) with the aim to provide a forum for researchers, eminent academicians,
research scholars and students to exchange ideas, and to communicate and discuss
research findings and new advances in different branches of algebra, especially Ring
theory, Coding theory, Cryptography and Graph theory.

During the conference, world-renowned algebraists gave 8 plenary talks and 20
invited talks which have been potentially affected by the most recent developments
in the related areas. This conference covered topics of several new directions and
applications. Among the participants of the conference, 90 exuberant younger math-
ematicians presented their research articles, during proper thematic sessions. More
than one dozen participants from various countries like USA, Egypt, Korea, Nigeria,
Taiwan, Italy, Germany and Norway together with nearly two hundred delegates
from within India participated in this conference.

A special session was devoted in the honour of Prof. M. A. Quadri who is one
of the esteemed professors who initiated study and research in the area of modern
mathematics in the Department of Mathematics, AMU, Aligarh.

We appreciate the active participation of all young researchers and academicians.
Hopefully, the conference also enables participants to explore possible avenues to
foster academic and research exchange, as well as scientific activities within and
abroad of India. This refereed volume includes papers from renowned algebraists
and invited speakers as well as other participants of the conference. All submitted
papers are rigorously reviewed, followed by a careful selection process.

In addition to highlighting the latest research being done on the frontiers of algebra,
the articles published also provide insights into how ideas have explored and have
been connected. The proceeding’s overall approach addresses the challenges of abun-
dant topics of algebra particularly semi groups, groups, derivations in rings, rings
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and modules, group rings, matrix algebra, triangular algebra, polynomial rings and
lattice theory. Apart from these topics, we also received research papers which have
applications in coding theory and graph theory.

This research volume is distinguished from many others by its variety of
topics, methodologies and depth of research. We believe that this volume will thus
further expand our understanding and can serve as a reference book in the rapidly
expanding field of algebra and related topics with their applications to coding theory,
cryptography and graph theory.

We gratefully acknowledge the funding received towards this conference from the
Aligarh Muslim University (AMU), Aligarh, Department of Science and Technology
(DST), New Delhi, Indian National Science Academy (INSA), New Delhi, and the
Council of Scientific and Industrial Research (CSIR), New Delhi. This volume would
not have been possible without the support of expert referees who provided their valu-
able comments through reports diligently and promptly despite their busy schedules.
We would like to thank Prof. M. Imdad, Chairman, Department of Mathematics, for
his consistent support and guidance during the running of this conference. Further-
more, we would like to thank the rest of the faculty members, research scholars of
Mathematics Department, AMU, for their collaborative effort during the conference.
Also thanks to committee members, especially Prof. Nadeem ur Rehman, Dr. Shakir
Ali, Dr. Mujeebur Rehman, Dr. M. Aslam Siddeeque and Dr. Ghulam Mohammad,
who enabled this conference to be possible. We would like to say special thanks to
Prof. M. A. Quadri. In spite of his health problems, his support, guidance and overall
insights have made this an inspiring experience for us. We would like to express our
gratitude to the entire team of Springer for publishing this volume. Thank you Mr.
Shamim Ahmad, Senior Editor, Mathematical Sciences, Springer, India for facili-
tating the publication process, we truly appreciate your hard work and enthusiasm,
everything was so intelligible and gave clear guidance. We look forward to continue
our relationship.

Aligarh, India Mohammad Ashraf
Aligarh, India Asma Ali
Messina, Italy Vincenzo De Filippis
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Characterization of b-generalized )
Derivations in Rings with Involution

updates

Adnan Abbasi, Muzibur Rahman Mozumder, and Aisha Jabeen

Abstract Let VW be a ring with involution, 2 be the right Martindale quotient
ring, and ¥ be the extended centroid of W. Let d : W — 2 be an additive map
and b € 2. An additive map § : W — 2 is called b-generalized derivation with
associative map d if §F(xy) = F(x)y + bxd(y) for all x, y € W. In this manuscript,
we study commuting b-generalized derivations in rings with involution.

Keywords Prime ring + b-generalized derivation * Involution

1 Introduction

Throughout the paper, VW always denotes a prime ring with involution, 2 be the
right Martindale quotient ring of W, € = Z(2) be the center of 2 usually known
as the extended centroid of W and is a field. An additive mapping “x : W — W is
called an involution if * is an anti-automorphism of order 2; that is, (x*)* = x for all
x € W”. Anelement x in a ring with involution is said to be “hermitian if x* = x and
skew-hermitian if x* = —x”. The sets of all hermitian and skew-hermitian elements
of W will be denoted by H (W) and S(W), respectively. A ring equipped with an
involution is known as ring with involution or *-ring. If W is 2-torsion free, then
every x € VYV can be uniquely represented in the form 2x = h + k, where h € H(W)
and k € S(WW). Note that S(W) = H(W) if char())V) = 2. The involution is said to
be of the first kind if Z (W) C H (W), otherwise it is said to be of the second kind. In
the later case it is worthwhile to see that S(W) N Z(W) # (0). We refer the reader

A. Abbasi
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to [3, 5] for justification and amplification for the above-mentioned notations and
key definitions.

An additive mapping “d : W — W is said to be a derivation on W if d(xy) =
d(x)y 4+ xd(y) for all x, y € W”. A derivation “d is said to be inner if there exists
a € W such that d(x) = ax — xa for all x € W”. An additive map “§: W — W
is called a generalized derivation of WV if there exists a derivation d of WV such that
Fxy) =8 (x)y + xd(y) forall x, y € W”. The derivation d is uniquely determined
by § and is called the associated derivation of §. The very recent concept of general-
ized derivations introduced by Kosan and Lee [6], namely, b-generalized derivation
which is defined as follows: An additive mapping “F : W — 2 is called a (left)
b-generalized derivation of W associated with d, an additive map from W to 2, if
Fxy) =F(x)y + bxd(y) forall x, y € W, where b € 2”. Also Lee proved that if
W is a prime ring and 0 # b € 2, then the associated map d is a derivation, i.e.,
d(xy) =d(x)y + xd(y) for all x, y € W.” It is easy to see that every generalized
derivation is a 1-generalized derivation. Also, the mappingx € W — ax + bxc € 2
forsome fixed a, b, ¢ € 2isab-generalized derivation of VW, which is known as inner
b-generalized derivation of V. Beside this, they also characterized b-generalized
derivation. That is every b-generalized derivation § on a semiprime ring WV is of the
form §(x) = ax + bd(x) for all x € W, where a, b € 2.

Amap“f : W — Wissaid to be centralizing(commuting) on a nonempty subset
Sof W,if [f(x),x] € ZIW)([f(x),x] =0) for all x, y € §”. The study of cen-
tralizing(commuting) mappings initially started by Divinsky [4] who proved that a
simple artinian ring is commutative if it has a commuting non-trivial automorphism.
Two years later, Posner [9] proved that the existence of a nonzero commuting deriva-
tion on a prime ring prompts the ring to be commutative. Over the last few decades,
several authors have proved commutativity theorems for prime and semiprime rings
admitting automorphisms or derivations which are centralizing(commuting) map-
pings on an appropriate subset of the ring.

Following [1], a mapping “f:W — W is called x-centralizing
(*x-commuting) on a nonempty set S of Wif [ f(x), x*] € ZOW)([ f(x), x*] = 0) for
all x € S”. For any central element a the map defined by x > ax* is x-commuting
on W. Very recently Ali and Dar [1] proved the following result as follows: let VW be
a prime ring with involution * such that char(JV) # 2. Let d be a nonzero derivation
on W such that [d(x), x*] € Z(W) for all x € W, then W is commutative. Later
this result was extended by Najjer et al. [8] for x-centralizing derivation. Recently,
Alahmadi et al. [2], generalized above result as follows: “Let W be a prime ring with
involution of the second kind such that char(W) # 2. If W admits a nonzero gen-
eralized derivation § : YW — W such that [§(x), x*] € Z(W) for all x € W, then
W is commutative”. Driving motivation from the formal definition of b-generalized
derivation and results studied in [1, 2, 8], we proposed investigation in the same
vane by studying commuting b-generalized derivation and another *-identity on b-
generalized derivation have also been studied in our manuscript, we conclude our
manuscript with an example in support of our hypothesis of second kind involution,
which shows that second kind assumption is essential in our results.
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2 Results

Remark 1 Let W be a prime ring with involution "%’ of the second kind such that
char(W) # 2 and let § be a nonzero b-generalized derivation on W associated with a
derivation d on WV such that d(hg) = 0 forall ho € HOW) N Z(W). Thend(z) =0
forall z € Z(W).

Proof Given that d(hg) = 0 for all iy € H(W) N Z(W). Now replacing kg by ko2,
whereky € SOWV) N Z(W). Thisimplies thatd (ko?) = Oforallk, € SOV) N Z(W).
Thus we have 2kod (ko) = O for all kp € S(W) N Z(WW). Since char(WW) # 2, then
we obtain kod (ko) = Oforallky € SOWV) N Z(W). Since SOWV) N Z(W) # (0), then
by the primeness, we obtain d (ko) = O forall ky € S(W) N Z(W). Now we consider
2d(z) = d2z) = d(hy + ko) = d(ho) + d (ko) and we know that d(hg) = O for all
ho € HW) N Z(W) and d(ky) = 0 for all by € SOW) N Z(W), this implies that
2d(z) = 0 forall z € Z(W). Since char(W) # 2. This implies that d(z) = 0 for all
z€ ZW). O

Theorem 1 Let W be a noncommutative prime ring with involution’x" of the second
kind such that char(VV) # 2 and let § be a nonzero b-generalized derivation on VW
associated with a derivation d on VW such that [§(x), x*] = 0 for all x € W, then
Fx) = Ax, where ). € C forall x € W.

Proof By the given hypothesis, we have
[§(x),x*1=0 for all x e W. (1)
Replacing x by & 4 h; in above relation where i, hy € H (W), yields that
[S(h), hi] + [§(h1), k] =0 forall h,hy € HOV). 2)
Substituting i1k for h; in (2) where hy € H(W) N Z(WV), we obtain
[§(h), hilho + [S(h1), hlho + [bhy, hld(ho) =0 for all h,hy € HOV). ()
and hg € H(W) N Z(W). By application of (2), we get [bh;, h]ld(hy) = 0, then by
the primeness of W, we get either [bh, h] = 0 forall h, hy € H(W) or d(hy) =0
for all hg € H(W) N Z(WV). Consider
[bhi,h] =0 forall h, h;y € HOW). ))

Taking hg for hy, where hy € H(W) N Z(W). Since SOW) N Z(W) # (0), then by
the primeness of WV, we obtain

[b,h] =0 forall h € HOV). (5)

Replacing & by kky, where k € S(W) and kg € S(W) N Z(WV), we get
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[b,klkg =0 for all k € S(W) and ko € SOV) N Z(OV).
Since SOW) N Z(W) # (0), application of primeness of WV implies that
[b,k] =0 for all k € SOW). (6)
Consider 2[b, x] = [b, 2x] = [b, h] + [b, k]. Using (5) and (6), we obtain 2[b, x] =
0 for all x € W. Since char(WW) # 2, this implies that b € Z()V). Using it into (4),
we get

blhy,h] =0 forall h,h; € HOV). @)

By the primeness of W, we obtain either b = O or [h, h] = Oforall h, hy € HOW).
Consider b = 0 and on linearizing (1), we obtain

[F(X), Y1+ [§(), x*] =0 forall x,y € W. ®)
Replacing y by yko, where kg € SOV) N Z(W), we get
— [Fx), y*lko + [§(¥), x*lko = 0 forall x,y € W and kg € SOV) N Z(W).
)
Combining (8) and (9), we get 2[§(y), x* kg = Oforall x, y € Wand kg € SOV) N
Z(W). Since char(W) # 2 and SOV) N Z(W) # (0), implies that [§(y), x*] =0
for all x, y € W. Replacing x by x* and y by x, we obtain [§(x), x] = 0 for all

x € W. Hence in view of [7, Theorem 1.1], we get §(x) = Ax for all x € W where
) € C. Now consider

[~1,h] =0 for all h,hy € HOV). (10)
Replacing i by kky, where k € S(W) and ko € SWV) N Z(WV), we obtain
[k1,h] =0 forall h € HOW) and k; € SOWV). an
Again taking kk for & in (10), we obtain
[, k] =0 for all h € HOW) and k € SOV). (12)
Replacing h; by kko in (12), where k; € S(W) and kg € SOW) N Z(WV), we get
[ki,k] =0 forall k,k; € SOV). (13)
Consider 4[x, y] = [2x,2y] = [h1 + k1, h + k] = [hy, h] + [hy, k] + [ky, B)H+
[k1, k]. From the application of Eqgs. (10), (11), (12), and (13), we obtain 4[x, y] = 0
for all x, y € W. Since char(WW) # 2, this implies that [x, y] = 0 for all x, y € W.

This gives is ¥V is commutative, which is a contradiction to our assumption. Now
suppose d(hg) = 0 for all hy € H(W) N Z(W). Using Remark 1, d(z) = 0 for all
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z € Z(W). Now follow the same line of proof as we did after (8), we get the required
result. (Il

Theorem 2 Let W be a noncommutative prime ring with involution’x" of the second
kind such that char(W) # 2 and let § be a nonzero b-generalized derivation on WW
associated with a derivation d on VV such that F(x o x*) = 0 for all x € W, then
Fx) = Ax forall x € W.

Proof Given that
Fxox™ =0 for all x € W. (14)

Linearization of the above relation yields that
[Fx oy, r1+[F(yox®),r]=0 for all x,y,r €W. (15)
Substituting yhy for y in (15), where hyg € H(W) N Z(WV), we obtain
[F(x 0 y*), rlho + [F(y 0 x), rlho + [b(x 0 y*), rld(ho) + [b(y 0 x™), rld (ho) = 016
forall x, y,r € Wand hg € H(W) N Z(WV). By the application of (15), we ge(t :
[b(x o ¥*), r1d(ho) + [b(y o x*), rld(ho) =0 for all x,y,r €W. 17
Replacing y by ykp in (17) and combining the obtain result with (17), we get
2[b(y o x*), rld(ho)ko = 0 for all x,y,r €W and ko€ SOWV) N ZW).
Since char(W) # 2 and SOW) N Z(W) # (0), thus, we have
[b(y o x™),rld(hy) =0 for all x,y,r €W and ho € HOV) N ZW).
Again taking x by hy where hy € HW) N Z(W) # (0) and on solving we have
[by, rld(hy) =0 for all x,y,r €W and hy € HOW) N Z(W).

Applying primeness of YV we get either [by,r] =0 for all y,r € W or d(hy) =0
forall ho € H(OWW) N Z(WV). Now we consider

[by,r] =0 forall y,r € W.
This can be further written as
bly,r]+[b,r]ly =0 forall y,r e W. (18)

Replacing y by yu where u € W in (18), we get
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bylu,r1+bly,rlu +[b,r]lyu =0 forall y,r e W. (19)

Using (18) in (19), we obtain by[u, r] = 0 for all y, r, u € V. By the primeness of
W, we get either b = O or [u, r] = O for all u, r € W. If we consider [u, r] = 0 for
all u, r € VW, which shows that V' is commutative, which is a contradiction to our
supposition, this implies that » = 0. Now replacing x by & in (14), we get

[§(h?),r]1=0 forall r € W and h € HOW). (20)
Taking h + hg for h in (20), where hg € H(W) N Z(W) and using (20), we obtain
2[§(hhy), r] =0 forall r € W and h € HOW).
Since char(W) # 2, this implies that
[§(hhg), r] =0 forall r € W and h € H(OW).
By the definition of § and b = 0, we get
[§(h)ho,r] =0 forall r € W and h € HOWV).
Since SOWV) N Z(W) # (0), this implies that
[§(h),r] =0 forall r e W and h € HOW). (21)

Replacing h by kkgy, where k € SOW), kg € SOW) N Z(WV) and using b = 0, we
obtain
[Fk),r] =0 forall r € W and k € SONV). (22)

Now consider 2[F(x), r] = [F(2x), r] = [(h), r] + [F(k), r]. Using (21) and (22),
we get 2[§(x),r] =0 for all x,r € W. Since char(JV) # 2, this implies that
[F(x),r] =0 for all x,r € W. Hence in view of [7, Theorem 1.1], we have
F(x) = Ax for all x € W. Now consider d(hy) = 0 for all hg € HOV) N Z(W).
Then by Remark 1, d(z) = 0 for all z € Z(WW). Now follow the same steps as we
did after (20) and using d(z) = O for all z € Z(WV), we get the required result. This
completes the proof of the theorem. (]

The following example shows that the second kind involution condition is essential
in Theorem 1.

Example 1 Let W = {(gl §2> ‘ Bi, B2, B3, P4 € Z} . Of course VW with matrix
3 Pa

addition and matrix multiplication is a prime ring. Define mappings §, d, * : W —>

W by
3(51 ,32>:<0 —,32> d(,Bl ﬂ2>=<0 —/32>
B3 Ba B 0 )’ B3 B B3 0
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(10 BiB\ _( B —P
and a fixed elementb_<01>’ (53 ﬁ4) _(—,33 B )

Obviously, Z(W) = {(’%1 /;) > ‘ B € Z} . Then x* = x for all x € Z(W), and
1

hence Z(W) € H (W), which shows that the involution ’*’ is of the first kind. More-
over, §, d are nonzero b-generalized derivation and associated derivation with fixed
element b defined as above, such that the hypotheses in Theorem 1 is satisfied but
§ is not in the form §(x) = Ax for all x € W. Hence, the hypothesis of the second
kind involution is crucial in our results.
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Jordan Generalized n-derivations )
of Unital Algebras Containing L
Idempotents

Mohd Shuaib Akhtar, Mohammad Afajal Ansari, and Nazia Parveen

Abstract Suppose that A is a unital algebra containing a nontrivial idempotent. In
this paper, by introducing the notion of Jordan generalized n-derivations, it is shown
that under certain conditions every multiplicative Jordan generalized n-derivation on
A is additive. As a consequence, multiplicative Jordan generalized derivations on
triangular algebras are characterized.

Keywords Unital algebras + Jordan generalized derivation * Jordan generalized
n-derivation

1 Introduction

Let R be acommutative ring with identity and .4 be an algebra over R. Recall that an
R-linear mapping § : A — A is called a derivation if § (ab) = §(a)b + ad(b) holds
for all a, b € A. An R-linear mapping é : A — A is said to be a Jordan deriva-
tionif§(aob) =8(a)ob+aod(b)foralla, b € A, wherea o b = ab + ba is the
usual Jordan product. A Jordan triple derivation is an R-linear mapping § : A — A
which satisfies §((@ o b) oc) = (8(a) ob) oc+ (ao8(b)) oc+ (aob)od(c) for
all a, b, c € A. It can be easily seen that every derivation is a Jordan derivation
and every Jordan derivation is a Jordan triple derivation. Note that if the mapping
8 : A — Aisnotnecessarily linear in the above definitions, then 8 is said to be a mul-
tiplicative derivation, multiplicative Jordan derivation and multiplicative Jordan triple
derivation, respectively. An R-linear mapping A : A — A is called a generalized
derivation with associated derivation § on A if A(ab) = A(a)b + ad(b) holds for all
a,b € A. AnR-linearmapping A : A — AissaidtobeaJordan generalized deriva-
tion with associated Jordan derivation § on A if A(aob) = A(a) ob + a o 5(b)
for all a, b € A. Similarly, an R-linear mapping A : A — A is said to be a Jor-
dan generalized triple derivation with associated Jordan triple derivation § on A
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if A((@ob)oc) =(A(@)ob)oc+ (aod(b)oc+ (aob)od(c)foralla,b,ce
A.

Now we discuss a more general class of mappings. Let us define the following
sequence of polynomials:

p1(x1) = x1
p2(x1, x2) = p1(x1) 0 X2 = X1 0 X2

p3(x1, X2, x3) = pa(x1, X2) 0 X3 = (X1 0 X2) 0 X3

Pn(X1, X2, ..., Xp) = Pp_1(X1, X2, ..., Xp—1) O Xy
The polynomial p,(xy, x2, ..., x,)(n > 2) is called Jordan n-product. Note that
Pn(X1, X2, oo X)) = paoi (X1 00X, X3, ..., X)) (0= 2)
for all xy, x5, ..., x, € A. An R-linear mapping § : A — A is said to be a Jordan

n-derivation if

n
5(1711()‘1» X2y enny xn)) = an()C], X2y o vy Xi—1, a(xi)9 Xitlyeves xn)

i=1

for all xy, x;,...,x, € A. A R-linear mapping A : A — A is said to be a Jordan
generalized n-derivation with associated Jordan n-derivation § on A if

A(pn(x1, X2, ..., X0)) = pu(AX1), X2, ., Xne1s Xn)

n
+an(-xl’x2’ cees Xi—1, S(Xi)3xi+lv e »xn)
i=2

for all xy, x5, ..., x, € A. If the condition of linearity is removed in the above def-
initions, then the corresponding Jordan n-derivation (resp. Jordan generalized n-
derivation) is called multiplicative Jordan n-derivation (resp. multiplicative Jordan
generalized n-derivation). By the definition, it is clear that a Jordan generalized
2-derivation is the usual Jordan generalized derivation and Jordan generalized 3-
derivation is Jordan generalized triple derivation.

Over the past decade, a lot of work has been done on the additivity of mappings on
various rings and algebras. In the year 1969, Martindale III [19] proved a remarkable
result which states that every multiplicative bijective mapping from a prime ring
containing a nontrivial idempotent onto an arbitrary ring is necessarily additive.
Inspired by this result, many researchers obtained similar results in various rings
and algebras. Daif [7] proved that every multiplicative derivation of a 2-torsion
free prime ring containing a nontrivial idempotent is additive. Herstein [11] proved
that every Jordan derivation on a prime ring of characteristic different from 2 is a
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derivation. Bresar [5] extended this result to 2-torsion free semiprime ring. Benkovic¢
[2] proved that every linear Jordan derivation from upper triangular matrix algebras
into its bimodule is the sum of a linear derivation and a linear antiderivation. Li
and Lu [14] proved that every additive Jordan derivation on reflexive algebras is an
additive derivation. Benkovi¢ and Sirovnik [4] obtained that under certain conditions
every Jordan derivation of a unital algebra is the sum of a derivation and a singular
Jordan derivation. Lee and Quynh [20] gave a characterization of additive Jordan
triple derivations of arbitrary semiprime rings. Recently, Qi et al. [21] introduced
the notion of Jordan n-derivation generalizing the concept of Jordan derivation and
characterized Jordan n-derivations of unital rings containing idempotents.

Bresar [6] initiated the study of generalized derivations. Hvala [10] studied gen-
eralized derivation on prime rings. Jing and Lu [12] considered generalized Jordan
derivations of prime rings and standard operator algebras. Vukman [22] extended
this result to semiprime rings and proved that every generalized Jordan derivation of
a 2-torsion-free semiprime ring is a generalized derivation. Hou and Qi [9] studied
generalized Jordan derivations on nest algebras. Ma and Ji [18] considered gener-
alized Jordan derivations of upper triangular matrix algebras and proved that every
generalized Jordan derivation from the algebra of all upper triangular matrices over
a commutative ring with identity into its bimodule is the sum of a generalized deriva-
tion and an antiderivation. Zhang and Yu [26] proved that every Jordan derivation
of a triangular algebra is a derivation. Further, Li and Benkovic [15] generalized
this result and proved that every Jordan generalized derivation (that is, Jordan gen-
eralized 2-derivation) of a triangular algebra is a generalized derivation. In addition,
the characterization of Jordan derivations, Jordan triple derivations and generalized
Jordan derivations on various rings and algebras are considered in [1, 8, 13, 16, 17,
23, 24], etc. Motivated by the afore-mentioned work, we study multiplicative Jordan
generalized n-derivations of unital algebras containing idempotents and prove that
under certain conditions every multiplicative Jordan generalized n-derivation on a
unital algebra containing a nontrivial idempotent is additive.

2 Preliminaries

Let A be a unital algebra with a nontrivial idempotent e, and write f = 1 — e. Then
A can be represented in the so-called Peirce decomposition form A = ede + e A f +
fAe+ fAf, where eAe and fAf are subalgebras of .4 with identity elements e
and f, respectively, e Af is an (eAe, fAf)-bimodule and f.Ae is an (fAf, eAe)-
bimodule. If A is a unital algebra with a nontrivial idempotent e such that f Ae = {0},
then A is a triangular algebra. Throughout the paper, we assume that .4 is a 2-torsion
free unital algebra with a nontrivial idempotent e satisfying the following conditions:

exe-eAf = {0} = fAe-exe implies exe =20

eAf - fxf ={0} = fxf - fAe implies fxf =0. @)
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To simplify the notation, we will use the following convention: a;; = eae € eAe =
A1, app =eaf € eAf = Ay, ay = fae € fAe = Ay and ap = faf € fA
f = Ay. Then each element a € A can be represented in the forma = aj; + ajpp +
as) + azy. We shall frequently use the following results throughout the paper without
further mentioning.

Lemma 1 Let A be a unital algebra containing a nontrivial idempotent e, and write
f =1—e. Forany a € A and for any integer n > 2, we have

pnla,e,..., e) = 2”7]eae+eaf + fae and pyp(a, f, ..., )= 2”*'fuf +eaf + fae.

Proof By a recursive calculation, we have

pula,e,...,e) = pp_1(ace,e,...,e)
= pn_1Reae + eaf + fae,e,...,e)
= pp—2(QReae + eaf + fae)oe,e,...,e)
= pp_2(4eae + eaf + fae,e,...,e)

=2""eae + eaf + fae.

Similarly, one can obtain p,(a, f,..., f) =2""! faf + eaf + fae.
Lemma 2 Let A be a multiplicative Jordan generalized n-derivation on A. Then
there exist an inner derivation g and a multiplicative Jordan generalized n-derivation
A’ on A such that
A=g+ A and eA'(e)f =0, fA (e)e = 0.
Proof Let xog = eA(e) f — fA(e)e and define maps g, A" : A — Aby
g(x) =[x, x] and A'(x) = A(x) — g(x)

for all x € A. It is easy to see that g is an inner derivation and A’ is a multiplicative
Jordan generalized n-derivation. Since

A'(e) = Ae) — [e,eA(e) f — fA(e)e]
= A(e) —eA(e)f — fA(e)e
=eA(e)e + fA(e) f,

we geteA'(e)f =0, fA (e)e = 0. O
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Lemma 3 ([21, Theorem 2.1(Claims 1-4)]) Let § be a multiplicative Jordan
n-derivation on A such that ed(e) f = 0, f8(e)e = 0. Then we have

800)=0, &) e A, 8(f) € An, 8(AN) S A, 8(Ap) € Axn,

8(A1n) € A+ Ay, and §(Ay) € A + Az

3 Multiplicative Jordan Generalized n-derivation

In this section, we discuss the additivity of multiplicative Jordan generalized n-
derivations on unital algebras. The main result of the paper states as follows:
Theorem 1 Let A be a 2-torsion-free unital algebra with a nontrivial idempotent e

satisfying (#). Then every multiplicative Jordan generalized n-derivation A : A —
A is additive.

Proof In view of Lemma 2, it suffices to consider only those multiplicative Jordan
generalized n-derivations A satisfyingeA(e) f = 0, f A(e)e = 0. We shall establish
the theorem by a series of claims.

Claim 1. A(0) = 0.

A0) = A(pn(0,0,...,0))
= pn(A0),0,...,0) 4+ p,(0,5(0),...,0)+--- 4+ p,(0,0,...,8(0))
= 0.

Claim 2. ed(e) f =0, fo(e)e =0, ed(f)f =0, and f6(f)e =0.
Using Claim 1 and the fact that e o f = 0, we obtain

0= A(pule. fo foeeus )
= pn(A@. fo fovo s ) Pu€ 8D fovos [) - pues fu foen 80
= pu(A@). [, fovoos )+ Puo1(e08(N). foreis )
= 2" A@ f +eA) f + fAW@e+2"2fleos(f)f +eleod())f + fleod(f)e
= 2L FA@) f 4 e8(F) f + F8(f)e.

Hence, e5(f)f =0, f§(f)e = 0. Since § is a multiplicative Jordan n-derivation on
A, we get

0=238(pn(fie e, ...,e)
= pn(8(f).e.e,....e) + pu(f,é(e),e,....,e) + -+ pu(f e, e, ..., ()
= pn(B(f).e.e,....e) + pp—1(fodle),e,....e)
= 2""Les(Fle+ e8(F) f + F8(Fe +2"2e(f o8(e))e+ e(fod(e) f + f(f od(e))e
= 2""Le§(f)e + ed(e) f + f(e)e.
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Thus, ef(e) f = 0, f§(e)e = 0. Therefore, from now on we can use Lemma 3 in the
following claims.

Claim 3. A(A;;) € Ay; and A(Ay) C Axp.

For any a;; € Ay, by Claim 1 and Lemma 3, we have

0= A(pn(art, fi fo--5 )
= pn(Alar1), fi fo-o s /) + pnlary, () fo oo os )+ + palar, f, fo o, 8())
= pn(Aa11), fo fo -5 1)
= 2" fAG@) f +eAa) f + fAare.

On multiplying the above equation from left by e and right by f, we geteA(ay) f =
0; multiplying the above equation from left by f and right by e, we have f A(a;1)e =
0. Thus, the above equation becomes 2"~! f A(a;;) f = 0. Since A is 2-torsion free,
we obtain fA(ay)f = 0. Therefore, A(ay;) = eA(ay)e € Ay for all ay; € Ay;.
Hence, A(A1;) € Ay;. In a similar manner, one can prove that A(A»y) € Aj.

Claim4. A(Ap) C A + Az and A(Ay) C App + Ay
Since p, (a2, f, f, ..., f) = ayp for any ajp € Ajp, by Lemma 3, we have

Alarn) = Alpn@rn, f froos ))
= pu(A@12), fo fovoos )+ pn(@rn, (), fooevs /) 4+ pulara, fo fo oo 8())
= 2"V fAa) f + eAan) f + fA@)e + (n — Daind(f).

Multiplying by e on both sides of the above equation, we get e A(ajz)e = 0. Similarly,
using the relation p, (a2, e, e, ..., e) = aja, one can obtain f A(aj;) f = 0. Hence,
Alap) € Ay + Ay forallapp € Aj,. Similarly, we can prove A(as;) € App + Ax
for all ap| € .Az] .

Claim 5. For any a;¢€ Ai,aj€A; and aj; € Aj;, we have
Alajj +ajj) = Alaji) + Aa;j) and  Aaj; +aji) = Aaj) + Alaji), 1 <i#j <2

Leta” (S .A]] andalz (S A]z.WeShOWthatT = A(all +a]2) — A(a”) — A(alz)
= 0. We compute

A(pn(all +Cl12, fs f77f))
= pu(Alan +aw), f, f..., )+ palan +an, 8CF), f, ..., ) +---
+pulan +a, f, f, ..., 8(f)).

Using the relations py,(ay; +an, f, f,..., f) =pnlan, f, f...., ), pn(ai,
f, f,..., f) =0and Claim 1, we have
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A(pp(arr +aiz, f, f, - -+, N

= A(pn(arr, fo fo oo 1))+ Alpnlarz, f, foo oo )

= pn(Ala1D), f, fo---, )+ pu(ar1, 8(), f, - .-, DA+ +putarr, f, fo-...8(f)
+pn(Alarn), fo f, - )+ pnlar2, 8(f), f, ..., DA+ +putarz, f, fi- ., 8()-

Comparing the above two equations, we get

(T, fofooo s [Y=2""1fTf +eTf + fTe =0,

which implies thate7 f =0, fTe = 0and fTf = 0. It remains to show thate7Te =
0. On the one hand, we have

A(pp(ar1 +an,e— fie—f,....,e— f))

+-+pularr +an,e— fie—f,..., 8 — f)).

On the other hand, using the facts p, (a;; + a2, e — f,e — f,...,e — f) = pu(an,
e—fie—f,...,e— f)and p,(apn,e — fie—f,...,e— f) =0, we get

A(pu(ay +ap,e—fie—fo...,e—f))

= A(pu(an,e— fre—f,....,e— )+ A(ppann,e — fe—f,....e = [))

= pu(Alan). e — fre—f.....e = [)+ paan.8e — fl.e—f.....e = )
+--+ pulan,e— fie—f,....8(— f))
+pn(Alar), e — fie—f,....,e = )+ pulana, 8(e — fl,e— f,....,e = f)
+- + palan,e— fie—f,....8(e — f)).

Comparing the above two expressions, we obtain
pn(T,e—fie—f,....,.e—f)=pueTe,e— fie—f,....,e — f) =2""leTe =0,

which implies that eTe = 0. Thus, T =0, i.e., A(a;; + a2) = A(an) + Aar).
In a similar fashion, we can prove the other cases.

Claim 6. A is additive on A;;, 1 <i # j <2.
Observe that, for any ai,, by € Aja,

ai + b =pule+ain, f+bia, f+bia, ..., f+bi).

Using Claim 5 and the above fact, we have
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Alaz + b12)

= A(pn(e+aiz, f +bia, f +b12, ..., f+b12))

= pu(Ale +a), f +bi2, f +bia, ..., [ +b12) + pnle +ana, 8(f +b12), f + b1z, ..., f+b12)
+--+ ppletan, f+bi, f+bi,....,8(f +b12))

= pu(A(e), f + D12, f +b12, ..., f+b12) + pule. 8(f +b12), f +bias ..., f+bi2)
+- 4 pale, f+ D12, f+bi2, ..., 3(f +b12))
+pn(Aar2), f +bia, f +bi2, ..., [+ b12) + pula, 8(f +b12), f +bia, ..., f+0b12)
+- 4 pulain, f+biz, f+ b1z, ..., 8(f +bi2))

= A(pnle, f +br2, f +bi2, ..., [ +D12)) + A(pn(arz, f +b12, f +b12, ..., f+b12)

= A(b12) + A(an).

Similarly, we can prove that A is additive on Ay;.
Claim 7. A is additiveon A;;, 1 <i < 2.

Letayy, by € Ay1. Set T = A(ayy + byy) — A(ay) — A(byy). In view of Claim
3,T =eTe € Ay;. For any aj, € Aj,, we have

A(pnlan + b, an+ f, ... a2+ f))

= pa(Alan + b)), an+ fan+ f,...,a2 + f)
+pulan + b1, 8(an + f,an+ f...,an+ f)
+--+ pulan +bu,an+ fian+ f..., 8an + ).

On the other hand, using Claim 6, we get

A(pp(any + b1 an+ fiann + f,....a12+ f))

= A(pnlan,anx+ fiaz+ f,...,a2+ ) + A(pa (b1, aiz + fraz + fo...,ai + f))

= pp(Alan),anz + fran + fi..., aiz + f)+ pnan, é(aiz + f,anz + foooy ap + f)
+-+pelan, a2+ fian+ f...., 8(aix + 1))
+pn(Ab11), a2 + fran + f, ..., aiz+ f) + pn(bu, $(arz + fl,aiz + fo ooy ap + f)
+ o+ pubi,ann+ fian+ f, ..., 8(az + f))-

Comparing the above two equations, we get

pn(T a2+ fianp+ f, ... a1+ f) = pu(eTe,app + fiapn+ f,....ann + ) =0,
which implies that eTeaj, = 0, for all aj, € Aj,. Following a similar calculation as
above, one can prove ayjeTe = 0 for all ay; € A;. Since A satisfies (#), we con-
clude that T = eTe = 0, that is, A(aj; + b11) = A(ai1) + A(byy). Similarly, we

can prove that A is additive on Aj;.

Claim 8. A(a1 + ax») = A(an) + A(ax) forall a;; € Ay, axn € Ax.
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Let a;; € A;; and ax € Ay. We show that T = A(ay + axn) — A(ay) —
A(ay) = 0. On the one hand, we have

A(pulan +ax, f, f,---, )
= po(ACai1 +ax), f, f,--os )+ pulan +axn, (), f, ..., f)
4o+ pulan +ax, f, f,....8(f)).

On the other hand, using the facts that p,(a;; +ax, f, f...., f) = pu(axn, f,
fo..., fyand p,(an, f, f,.... f) =0, we get

A(pnlarr +ax, f. f,-... ) = Alpn(art, f. fo . )+ Alpn(ax, f. fo . )
= pn(Aa1), f, fr ..o )+ pnlann, 8(f), f, ..., )]
+-Fpularn, fo foo L 8(0) + pn(Aa2), fL f. o )
+pnlaxn. (). f...., )4+ pnla, f, f,....8(f).

Comparing the above equations, we get

(T, fofooi s [)=2""fTf +eTf+ fTe=0,

which implies thate7 f =0, fTe = 0and fTf = 0. It remains to show thateTe =
0. Using a similar technique as used above, one can obtain

pn(T,e e, ...,e)= 27 1eTe + eTf+ fTe=0,
which implies that eTe = 0. Thus, T = 0, i.e., A(a;; + an) = A(ai) + A(arn).

Claim 9. Ala;; +Clij —|—aj,») = A(a;;) + A(a,j +aji) for all a;; € A,‘l‘, ajj € A[J',
I<i#j=<2

Let a;j € Ajj, 1 <i,j <2. Set T = A(an +aix + ax) — Alan) — Aan +
asy).

A(pn(all +a12+a217 fv f7vf))
=pu(Alan +anp+ax), f, f,-.., )+ palan + a2+ a2, (), f,..., f)
4+ -+ pulan+antau, f. fo...,8(f))

and

A(pplan +an +a, fo foooos )

= A(pn(arr, f, fo oo )+ Alpulara +ax, fo fooo )

= pu(A(a11), f5 fo -+ )+ palan, 8(), fo -, )
+-Fpalan, fo foo 0 8() F pu(Alar +axn), fo fooos f)
+pu(an + a2, 8Cf) foooos )+ -+ pularz +an, f, f, ..., 8(F)).
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Comparing the above two equations, we get

(T, fofroo s )=2"""fTf +eTf + fTe =0,

whichimplies thateT f =0, fTe = 0and fTf = 0. It remains to show thateTe =
0. By a similar technique as used above, one can obtain

pn(T e~ fre—f,...,e— ) =pn(eTe,e— fe—f,...,e— f)=2""leTe =0,

which implies that eTe = 0. Thus, T =0, i.e., A(a;; +ax + az) = Alan) +
A(ayp + apy). Similarly, computing A(p,(ax +ap +ax, f, f, ..., f)) and A
(pulaxn +ap +az, f —e, f—e,..., f —e)) in two ways, respectively, one can
prove that A(ax + aip + az1) = A(axn) + Aa + azy).

Claim 10. A(a;; +app + ax + ax) = Aan) + A(ap + az) + A(ay) for all
a,-jeA,-j,lsi,jfz

Let T = A(ay + ap + az + axn) — Aarny) — Aan + az1) — A(az). For any
a;j € A;j, 1 <i, j <2, wehave

A(pn(ain +aix + a1 +ax,e.e, ... e)
= pn(A(a11 +aip +ax1 +ax),e,e,....e)+ pplar] +aip +ax +axp,d(e),e, ... e)
+---+ pnlar; +ap +az +an.e e, ....5().

On the other hand, using Claim 9 and the fact that p, (ax, e, e, ..., e) =0, we get

A(pp(air +ap +ax +an, e e, ... e)

= A(pp(an +an +a. e e, ...,e)) + Alpy(an, e, e, ..., €))

= pu(Alan +an+az), e e, ...,e)+ pylay +aix + az,d(e),e, ..., e)
4+ 4+ ppla; +apn +az,e e, ..., 8(e) + p.(Alan), e e, ..., e)
+pnan,ée),e,....,e)+ -+ pylan, e e, ..., 5(e))

= pn(Alain), e, e, ..., e) + pu(Alan + az1), e e, ..., €)
+pn(Alan), e, e, ..., e) + pylarr + anx + ax +an, (), e, ..., e)
+-o+ palan +an +axy +an, e, e, ..., 58e)).

Comparing the above two equations, we obtain p,(T,e,e,...,e) = 21=leTe +

eTf + fTe = 0 which in turn gives eTe = eTf = fTe = 0. In a similar manner,
calculating A(p, (a1 + a2 + ax +an, f, f,..., f)) in two ways, one can obtain

(T, fofooo s ) =2""fTf+eTf+ fTe=0
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which in turn implies that f7f = 0. Hence, T = 0, that is, A(a;; + a2 + a2 +
axn) = A(a) + A(an + az) + Aan).

Claim 11. A(app + az1) = A(ap) + A(az) forall ayp € Ay, az; € Ay

Letap € Ay, a0 € AZI.Notethatp,,(e +ap, f+ayn, e, ...,e) =ap+ay +
2" 2a a0, provided n > 3. Using Claims 5 and 9 and the above fact, we have

Aap + a) + AQR" *apa)

= Aap + ax + 2" 2apax)

= A(pu(e +an, [ +axu,e,...,e)

= pp(Ale+ap), f +az,e,...,e) + pyle+apn,§(f +ax)e,...,e)
+-- -+ pulet+an, f+an,e, ...,8())

= A(pu(e, f,e,...,e)) + A(pn(arz, fre,...,e)) + A(py(e,an,e,...,e))
+A(pn(an, axe, ..., e))

= A(an) + Aax) + AQ"Panax),

which implies that A(a; + az1) = A(ar) + A(azy). If n = 2, then using Claims 8
and 10, we get

A(aiz + az1) + Alanaz) + A(aziarn)

= A(apx + a1 + apasy + azap)

= A(p2(e +ap, f +az)

= p2(Ale +an), f +axn) + p2le +ap, §(f +az))

= p2(4Ale), [) + p2(Alar), ) + p2(Ale), aa1) + p2(A(ai2), az1)
+pa(e, 8(f)) + pa(az, 8(f)) + pa(e, 8(az1)) + p2(arz, §(az1))

= A(pale, ) + A(p2(aia, 1)) + A(pa(e, ax)) + A(p2(aiz, az1))

= A(ap) + A(az1) + Alapa) + Alazan),

which yields that A(aj; + az1) = A(an) + A(aa).
Claim 12. A is additive on A.

Leta = ay; + ai + az) + az, b = byy + by + by + by € A. Using Claims 6,
7,10 and 11, we obtain
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A(a+b)

= A((a11 + a1 + a1 + axn) + (b1 + bio + by + b22))

= A((a11 + b11) + (a2 + b12) + (a21 + ba1) + (az2 + b))

= A(an + b)) + Alarz + bi2) + A(azr + bay) + Alaxn + b)

= A(an) + A(bn) + A(arn) + A(b12) + A(az) + A(ba1) + A(az) + A(b)
= A(an + a2 + az1 + ax) + A(b11 + b1z + by + b2)

= A(a) + A(D).

The proof of the theorem is completed.

4 Applications

In this section, we apply Theorem 1 to certain classes of unital algebras such as
triangular algebras, nest algebras and block upper triangular matrix algebras.

Triangular algebras: Let R be a commutative ring with identity, .4, B unital R-
algebras and M an (A, 13)-bimodule. The R-algebra

mzﬂﬂAﬂmaz{(g?>

aeA,meM,beB}

under the usual matrix operations is called a triangular algebra. It is easy to see

that 2( is a unital algebra containing a nontrivial idempotent e = satisfying

10
00
the assumptions (#). In [15], Li and Benkovi¢ proved that a Jordan generalized
derivation on a 2-torsion-free triangular algebra is a generalized derivation. In view
of Theorem 1, we have the following result which generalizes the result of Li and
Benkovic [15, Theorem 2.5].

Corollary 1 Let A = Tri(A, M, B) be a 2-torsion-free triangular algebra. Then
every multiplicative Jordan generalized derivation A : A — 2 is an additive gener-
alized derivation.

The main examples of triangular algebras are upper triangular matrix algebras, block
upper triangular matrix algebras and nest algebras (see [3, 25] for details). Hence,
applying Corollary 1, we obtain the following results.

Corollary 2 Let T,(F)(n > 2) be a upper triangular matrix algebra over the
real or complex field F. Then every multiplicative Jordan generalized derivation
A T,(F) — T,(F) is an additive generalized derivation.

Corollary 3 Let BE (F)(n = 2) be a block upper triangular matrix algebra over
the real or complex field F with B(F) # M, (F). Then every multiplicative Jordan
generalized derivation A : Blf F) — Bf,’ () is an additive generalized derivation.
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Corollary 4 Let N be a nest of a Banach space X and T (N') be the associated nest
algebra. Let A : T(N) — T (N) be a multiplicative Jordan generalized derivation.
If there exists a nontrivial element in N which is complemented in X, then A is
an additive generalized derivation. Moreover, if N is a nest of a Hilbert space
H, then every multiplicative Jordan generalized derivation of T (N) is an additive
generalized derivation.

Acknowledgements The authors would like to express their sincere thanks to the referees for
his/her helpful comments and suggestions which have improved the paper.

References

1. Ashraf, M., Parveen, N.: On Jordan triple higher derivable mappings on rings. Mediterr. J.
Math. 13, 1465-1477 (2016)
2. Benkovic, D.: Jordan derivations and antiderivations on triangular matrices. Linear Algebra
Appl. 397, 235-244 (2005)
3. Benkovic, D., Eremita, D.: Multiplicative Lie n-derivations of triangular rings. Linear Algebra
Appl. 436, 4223-4240 (2012)
4. Benkovi¢, D., Sirovnik, N.: Jordan derivations of unital algebras with idempotents. Linear
Algebra Appl. 437, 2271-2284 (2012)
5. Bresar, M.: Jordan mappings of semiprime rings. J. Algebra 127, 218-228 (1989)
6. Bresar, M.: On the distance of the composition of two derivations to the generalized derivations.
Glasg. Math. J. 33, 89-93 (1991)
7. Daif, M.N.: When is Multiplicative derivation additive? Int. J. Math. Math. Sci. 14, 615-618
(1991)
8. Fosner, M., Ilisevic, D.: On Jordan triple derivations and related mappings. Mediterr. J. Math.
5, 415-427 (2008)
9. Hou, J.-C., Qi, X.-F.: Generalized Jordan derivation on nest algebras. Linear Algebra Appl.
430, 1479-1485 (2009)
10. Hvala, B.: Generalized derivations in rings. Commun. Algebra 26, 1147-1166 (1998)
11. Herstein, I.N.: Jordan derivations of prime rings. Proc. Am. Math. Soc. 8, 1104-1110 (1957)
12. Jing, W., Lu, S.: Generalized Jordan derivations on prime rings and standard operator algebras.
Taiwanese J. Math. 7, 605-613 (2003)
13. Jing, W., Lu, F.: Additivity of Jordan (triple) derivations on rings. Commun. Algebra 40, 2700—
2719 (2012)
14. Li, J., Lu, F.: Additive Jordan derivations of reflexive algebras. J. Math. Anal. Appl. 329,
102-111 (2007)
15. Li, Y., Benkovic, D.: Jordan generalized derivations on triangular algebras. Linear Multilinear
Algebra 59, 841-849 (2011)
16. Lu, F.: Additivity of Jordan maps on standard operator algebras. Linear Algebra Appl. 357,
123-131 (2002)
17. Lu, F.: Jordan derivable maps of prime rings. Commun. Algebra 38, 44304440 (2010)
18. Ma, F, Ji, G.-X.: Generalized Jordan derivations on triangular matrix algebras. Linear Multi-
linear Algebra 55, 355-363 (2007)
19. Martindale, W.S., III.: When are multiplicative mappings additive? Proc. Am. Math. Soc. 21,
695-698 (1969)
20. Lee, T.-K., Quynh, T.C.: Centralizers and Jordan triple derivations of semiprime rings. Com-
mun. Algebra 47, 236-251 (2019)
21. Qi, X., Guo, Z., Zhang, T.: Characterizing Jordan rn-derivations of unital rings containing
idempotents. Bull. Iranian Math. Soc. 46, 1639-1658 (2020)



24

22.

23.

24.

25.

26.

M. S. Akhtar et al.

Vukman, J.: A note on generalized derivations of semiprime rings. Taiwanese J. Math. 11,
367-370 (2007)

Wang, Y.: Additivity of multiplicative maps on triangular rings. Linear Algebra Appl. 434,
625-635 (2011)

Wei, F, Xiao, Z.-K.: Generalized Jordan derivations on semiprime rings and its applications
in range inclusion problems. Mediterr. J. Math. 8, 271-291 (2011)

Xiao, Z.-K., Wei, F.: Lie triple derivations of triangular algebras. Linear Algebra Appl. 437,
1234-1249 (2012)

Zhang, J.-H., Yu, W.-Y.: Jordan derivations of triangular algebras. Linear Algebra Appl. 419,
251-255 (2006)



Variational Analysis of Approximate )
Defective Eigenvalues L

Rafikul Alam

Abstract Considerann x nmatrix A € C**"and A € C. Itiseasy to show that there
is a matrix A € C"" such that \ is an eigenvalue of A and |A — A\Hz = Omin(N),
where opin(A) is the smallest singular value of A — AI. The question that we ask
is this: Does there exist a matrix D such that X is a defective eigenvalue of D and
|A — Dl = omin(N)? If such a defective matrix D exists, then we refer to \ as
an approximate defective eigenvalue of A. The aim of this paper is to characterize
approximate defective eigenvalues. We show that A is an approximate defective
eigenvalue of A if and only if X is a Clarke stationary point of the function ¢ : z —
Oomin(z)- As a consequence, when A is simple, we show that

d(A) = min{omin(A) : A € C\ A(A)is a Clarke stationary point of oy, (z)}

is the distance from A to the nearest defective matrix, where A(A) is the spectrum
of A.

Keywords Variational analysis + Approximate defective eigenvalues

1 Introduction

Let C"™" denote the set of n x n matrices with entries in C. Let A € C"*" and
A € C be an eigenvalue of A. Then there exist nonzero vectors x and y in C" such
that Ax = Ax and y*A = \y*, where y* is the conjugate transpose of y. We refer
to x (resp., y) as a right (resp., left) eigenvector of A corresponding to A. We also
refer to (A, x, y) as an eigentriple of A. We denote the spectrum of A by A(A), that
is, A(A) := {\ € C :rank(A — AI) < n}. Let m (resp., g) be the algebraic (resp.,
geometric) multiplicity of A\. Then A is said to be simple if m = 1. On the other hand,
A is said to be semisimple (resp., defective) if m = g (resp., m > g). Finally, A is
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said to be a non-derogatory defective eigenvalue of A if m > g = 1. A matrix A is
said to be simple if it has n distinct eigenvalues and A is said to be defective if it has
fewer than n linearly independent eigenvectors.

We consider the Euclidean norm on C” given by ||x ||, := (x*x)'/? and the spectral

norm on C**" given by ||Al, := Hm“ax1 ||Ax|l>. The singular value decomposition
x|l=

(SVD) of A is given by A = Udiag(oy, ..., 0,)V*, where U and V are unitary and
o1 > --- > g, > 0 are the singular values of A. A complex number p can be viewed
as an approximate eigenvalue of A, that is, 4 as an eigenvalue of A + E for some
matrix E. The backward error w(u, A) of 1 as an approximate eigenvalue of A is
defined as

Wi, A) == min{| Ell> : p € A(A + E)). (1)

Consider the SVD A —pul = Udiag(oy,...,0,)V*.  Then  setting
E := Udiag(0,...,0, —0,)V*, it follows that u € A(A + E) and w(u, A) = 0,.
In fact, setting u := Ue, and v := Ve,, wehave (A + E)v = pvandu*(A+ E) =
pu*. Thus, (u, v, u) is an eigentriple of A + E which we refer to as an approximate
eigentriple of A.

Definition 1 A complex number p is said to be an approximate defective (resp.,
multiple) eigenvalue of A if there exists E such that . is a defective (resp., multiple)
eigenvalue of A + E and || E ||, = w(u, A).

Given a complex number i, let
0,(A) :=min{||E]l2 : © € A(A + E) is a multiple eigenvalue}.

It is shown in [10] that there is a matrix E such that i is a multiple eigenvalue of
A+ E and

. . A—ul I
aﬂ(A)—||E||z—r335wznl([ 0 A—MIDZ“(“’A)’ @)

where 0,1 (+) is the (2n — 1)-th singular value of the 2n-by-2n matrix. Hence, p is
not an approximate defective eigenvalue of A when §,,(A) > w(u, A). So, is it pos-
sible to characterize complex numbers which are approximate defective eigenvalues
of A?

The main objective of this paper is to analyze approximate defective eigenvalues
of A. For u € C, let ,, C C"*" denote the set of matrices for which 1 is a defective
eigenvalue, that is,

D, ={X € C"" : p € A(X) is defective}.
We characterize ;v such that there exists a matrix E such that A+ F € &, and

IEll> = w(, A). Next, we construct E suchthat A + E € &, and || E |, = w(u, A).
We show that y is an approximate non-derogatory defective eigenvalue of A <—
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0 € Oomin(pt) <= i is a Clarke stationary point of the map oy, : 7z —> w(z, A),
where Qo (1) is the Clarke subdifferential of oy, (2) at p.

The problem of characterizing approximate defective eigenvalues is closely
related to the Wilkinson problem [17-22]. The Wilkinson problem seeks to deter-
mine a defective matrix nearest to a simple matrix and has been studied extensively
over the years; see [1-4, 611, 17-22].

Wilkinson Problem (1965): Let A be simple and let
d(A) :=inf{||E||, : A + E is defective}. Determine d(A) and construct E such that
A + E is defective and | E ||, = d(A).

Observe that if E is such that A 4 E is defective then A + E € 9, for some
€ Cand, in view of (1), we have | E||; > w(u, A). We show that

d(A) = min{w(p, A) : 0 € Iomin(1)}- 3)
pe
The importance of the Wilkinson problem stems from the fact that d(A) provides

insight into ill-conditioning of the eigenvalue problem Au = Au. Sensitivity analy-
sis of eigenvalues plays an important role in the accuracy assessment of computed
eigenvalues. Eigenvalues of matrices are usually computed by employing backward
stable algorithms [17]. This means that the computed eigenvalues of A are exact
eigenvalues of A + E for some matrix E such that || E||, is small. Let A be a simple
eigenvalue of A with associated left and right eigenvectors y and x, respectively.
Then it is well known (see, for example, [17]) that

|y*Ex|

MA+E)y=)\+
[y*x|

+O(IEID),

where A\(A 4+ E)isaneigenvalue of A 4+ E closestto A. This shows that the sensitivity
of a simple eigenvalue A to a small perturbation in A is measured by the condition
number [17]
condn Ay 1 IR @
[y*x|

It follows that \ is ill-conditioned when |y*x| is small, that is, a small perturbation
E may cause a large error in the eigenvalue A\(A 4 E). Obviously an extreme case
of ill-conditioning occurs when y*x = 0. This is indeed the case when A is a non-
derogatory defective eigenvalue. It turns out that the extreme cases of ill-conditioning
are associated with multiple eigenvalues.

Theorem 1 (Wilkinson [20]) Let A be an eigenvalue of A. Then X is a multiple
eigenvalue if and only if there exist left and right eigenvectors y and x of A corre-
sponding to X\ such that y*x = 0.

It is customary to define cond (A, A) := oo when ) is multiple. Thus, numerically
an eigenvalue \ is expected to behave like a multiple eigenvalue when cond(\, A)



28 R. Alam

is large. The fact that d(A) is closely related to ill-conditioning of eigenvalues of A
is confirmed by the following bound due to Wilkinson [18, 20]: If cond(\, A) > 1
then

A
d(A) < min AT

A Jeond(\, A2 — 1

where the minimum is taken over by all the eigenvalues of A. This shows that
d(A) ~ 1/cond()\, A) when cond(A, A) is large. In other words, matrices with very
sensitive eigenvalues are close to a defective matrix and the distance is almost
inversely proportional to the condition number of its most sensitive eigenvalue. We
mention, however, that the upper bound is not attained by d(A) and it is easy to
construct examples for which the bound is not sharp. The crux of the matter is that
having an ill-conditioned eigenvalue is sufficient for a matrix to be close to a defec-
tive matrix but it is not necessary. Several upper and lower bounds of d(A) have been
obtained over the years [6-9, 11, 18-22]. See [1] for a comprehensive catalog of
upper and lower bounds of d(A). The Wilkinson problem was open for almost four
decades. As a consequence of approximate defective eigenvalues, we provide a brief
outline of a solution to the Wilkinson problem obtained in [3, 4].

2 Approximate Multiple Eigenvalues

Let A € C"*". We consider the Frobenius norm defined by ||A || := +/Trace(A*A).
For the rest of the paper, we define oy, : C — R by oyin(z) := w(z, A), where
w(z, A) is the backward error defined in (1). Let A € C. By considering SVD of
A — A, it follows that o (A) = w(A, A) = 0, where o, is the smallest singular
value of A — AI. Indeed, let u and v, respectively, be left and right singular vectors
of A — AI corresponding to oin(A). Then defining E := —opi, (A)uv*, it is easily
seen that A € A(A+ E) and ||E| = | Ellr = omin(A). Note that A need not be a
multiple eigenvalue of A + E. However, under appropriate assumptions, A can be
induced as a multiple/defective eigenvalue of A + E.

We need the following elementary result which will play an important role in the
subsequent development. See also [3].

Theorem 2 Let A € C and A € C"*". Suppose that \ is not an eigenvalue of A.
Consider the singular value decomposition A — A\l = UXV*.

(a) Suppose that owin(N) is a multiple singular value with multiplicity m. Let
U, and V,,, respectively, denote the last m columns of U and V. Define
E = —0min(NU, V. Then |[Ell2 = omin(N) and X is a multiple eigenvalue of
A + E with geometric multiplicity m. The columns of U,, and V,,, respectively,
are orthonormal left and right eigenvectors of A + E corresponding to \.

(b) Suppose that A — \I has a pair of left and right singular vectors u and v
corresponding t0 omin(\) such that u*v = 0. Define E := —opin(AN)uv*. Then
NElNl2 = lElF = 0min(X) and X is a non-derogatory defective eigenvalue of
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A + E. Further, u and v are left and right eigenvectors of A + E corresponding
to \.

Proof (a) By construction [|E|, = omin(A) and (A + E)V,, = AV,, and U (A +
E) = A\U,;. This shows that the geometric multiplicity of A as an eigenvalue
of A+ E is at least m. Since by construction rank(A + E — A\I) =n —m, it
follows that the geometric multiplicity of A is exactly m.

(b) By construction |E|lz = ||E|lr = omin(\), (A + E)v = Av and u*(A + E) =
Au*. So, we only need to show that A is a non-derogatory defective eigen-
value. Since u*v = 0, by Theorem 1, A must be a multiple eigenvalue of A + E.
Since rank(A + E — AI) = n — 1, it follows that X is a non-derogatory defec-
tive eigenvalue of A + E. O

We mention that for any A € C there always exists a matrix £, which can
be constructed from the SVD of A — AI, such that A is a multiple eigenvalue
of A+ E. However, in such cases we always have ||E|s > omin(\) unless A
satisfies the assumptions in Theorem 2. Indeed, consider the SVD A — Al =
Udiag(oy, - -+ , 0,)V* and define

E := A — Udiag(oy, -+ ,0n—m,0,---,0)V* = —Udiag(0, ...,0,04_mit1,...,on)V*.

Then it follows that \ is a multiple eigenvalue of A + E with geometric multiplic-
ity m and ||E|lz = 04_ms1 = 0n = omin(N). Next, we show that the conditions in
Theorem 2 are also necessary for A to be an approximate multiple eigenvalue of A.

To proceed further, we need the best low rank approximation of a matrix. Given
A € C"" and ¢ < rank(A), consider the rank-¢ minimization problems

A = argming, . x)—¢[1A — X[z,

Ay = argming,y ¢ |A = X[ r.

Theorem 3 (Eckart-Young [12]) Let AeC™ and { <r :=rank(A).
Consider the SVD A = Udiag(oy,---,0,,0,---,00V*.  Define Ay:=
Udiag(oy, -+ ,0¢,0,---,0)V*. Then

Ap = argming, )= |A — X2 and |A — A¢ll2 = o1,

Ay = argmin ) I1A — X|[r and ||A — A¢llp = \Jo2,, + - + o2

Further, A, = argmin,,, x)_¢[|A — X||F is unique.

We say that A is an approximate multiple eigenvalue of A of geometric multiplicity
£ if there exists a matrix E such that | E||, = w(), A) and A is an eigenvalue of
A + E of geometric multiplicity £. The following result characterizes an approximate
multiple eigenvalue.

Theorem 4 Let A\ € Cand A € C"". Suppose that \ is not an eigenvalue of A. Let
£ > 2. Then X is an approximate multiple eigenvalue of A of geometric multiplicity
{ < omin(N) is a multiple singular value of A — NI of multiplicity at least £.
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Proof 1f the multiplicity of opin(A) as a singular value of A — A/ is £ then the
result follows from Theorem 2(a). So, suppose that A is an approximate multiple
eigenvalue of A of geometric multiplicity £. Then there exists E such that || E||, =
w(A, A) = omin(A) and A is an eigenvalue of A + E of geometric multiplicity £.
This implies that rank(A — A\l + E) = n — £. Since rank(A — Al) = n and ||(A —
M) — (A= X+ E)|l» = |Ell2 = omin(N), it follows that A — X\ + E is a best
rank-(n — ¢) approximation of A — \I. Hence by Theorem 3, the smallest singular
value of A — A\l must have multiplicity at least €. (]

The case when A is an approximate multiple eigenvalue of A of geometric multi-
plicity £ = 1 requires special treatment. Theorem 2(b) shows that ) is an approximate
defective eigenvalue of A whenever A — A/ has a pair of orthogonal left and right
singular vectors corresponding to o, (A). We now show that the existence of a pair
of orthogonal left and right singular vectors of A — Al corresponding to o, () is
also a necessary condition for \ to be an approximate defective eigenvalue of A.

Theorem 5 Let A € C and A € C"™". Suppose that \ is not an eigenvalue of A.
Then the following conditions are equivalent.

(a) There is apair of left and right singular vectors u and v of A — X corresponding
10 Omin(A) such that u*v = 0.

(b) There exists E such that |E||F = omin(X) and X is a defective eigenvalue of
A+ E.

(c) There exists E such that rank(E) = 1, ||[E|l2 = omin(\) and X is a defective
eigenvalue of A + E.

Proof 1If (a) holds then (b) also holds by Theorem 2(b). So, suppose that (b) holds.
Considerthe SVD A — A\l = Udiag(oy, ..., 0,)V*.Since||[(A — ) — (A — A +
E)|lF = omin(A\) = min{||(A — A]) — K||F : rank(K) = n — 1}, by Theorem 3,
A — A\l + E is a unique best rank-(n — 1) approximation of A — AJ and is given
by A — Al + E = Udiag(oy,...,0,-1,0)V* = E = Udiag(0, ...,0, —0,)V*.
Hence E is a rank-1 matrix. This shows that (c) holds.

Now suppose that (c) holds. Since rank(A — Al + E)=n—1, it fol-
lows that A is a non-derogatory defective eigenvalue of A + E. Also since
(A= AI) — (A=Al + E)ll2 = omin(A) = min{||[(A — AI) — K| : rank(K) =
n — 1} and rank(E) = 1, by Theorem 3, E must be of the form E = —op, (\)uv*
for some left and right singular vectors # and v of A — Al corresponding to
Omin(A). Then obviously, we have (A 4+ E)v = Av and u™(A + E) = Au*. Since A
is non-derogatory defective, by Theorem 1, we have u*v = 0. This shows that (a)
holds. (I

Note that the notion of approximate eigenvalue depends on the choice of a norm.
Also note that w(A\, A) = min{||E|2: A € A(A+ E)} = min{||E||r : A € A(A+
E)} = omin(A\). We say that A is an approximate multiple (resp., defective) eigenvalue
of A with respect to Frobenius norm if there exists E such that A € A(A + E) is
a multiple (resp., defective) eigenvalue and | E||p = opmin(A). As a consequence of
Theorem 5, we have the following result.
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Corollary 1 Let A € C and A € C"*". Suppose that \ is not an eigenvalue of A.
Then X is an approximate non-derogatory defective eigenvalue of A with respect to
Frobenius norm if and only if A — M\l has a pair of left and right singular vectors u
and v corresponding to o min(\) suchthatu™v = 0. Insucha case, E := —0pin(A)uv*
induces A as a non-derogatory defective eigenvalue of A + E.

Next, we investigate the complex numbers that satisfy the condition in Corollary 1.
For this purpose, we identify the function oy, : C — R, x +iy —> omin(x +
iy), with the function ¢ : R? — R, (x, ¥Y) > Omin(x + iy). We write the gradient
Vo(a, b) = (¢«(a, b), ¢y(a, b)) as acomplex number and define Voyin(a + ib) :=
¢x(a, b) +i¢y(a, b) and refer to Vo, (a + ib) as the gradient of oyin(z) ata + ib.
We say the A € C is a stationary point of oy (2) if Vo (A) = 0.

Theorem 6 (Sun [15]) Let A € C"*". Suppose that A € C is not an eigenvalue of A
and that omin (N is a simple singular value of A — \I. Let u and v be left and right
singular vectors of A — M\l corresponding to omin(\). Then omin(2) is differentiable
at \ and the gradient of omin(z) at X is given by Vonin(\) = —v*u.

‘We now show that the stationary points of oy, (z) are approximate non-derogatory
defective eigenvalues for A.

Theorem 7 Let A € C"". Suppose that \ € C is not an eigenvalue of A and
that omin(N) is a simple singular value of A — \l. Let u and v be left and right
singular vectors of A — \I corresponding to omin(\). Then X is an approximate
non-derogatory defective eigenvalue of A with respect to Frobenius norm <=
Vomin(A) = 0. Define E := —omin(Nuv*. Then |E||r = | Ell2 = omin(\) and X is
a non-derogatory defective eigenvalue of A + E.

Proof Suppose that Vo, (A) = 0. Then by Theorem 6, v u = —Voyi(A) =0 =
u and v are orthogonal. Hence by Corollary 1, A is a non-derogatory defective eigen-
value of A + E. Obviously, ||E|lr = | E|l2 = omin(\) as E is a rank-1 matrix and u
and v are unit vectors.

Conversely, if A is an approximate non-derogatory defective eigenvalue for A
with respect to Frobenius norm then by Corollary 1, A — A\[ has a pair of left and
right singular vectors # and 9 corresponding to opmin (A) such that #*0 = 0. Since
omin(A) is simple, we have u = wii and v = w? for some w € C such that jw| = 1.
Consequently, by Theorem 6, we have Vo, (\) = —v*u = —0*u = 0. O

Thus, stationary points of omin(z) are approximate non-derogatory defective
eigenvalues of A. This raises a natural question: What can be said about A when
Omin(A) is a multiple singular value of A — AI? By Theorem 4, A is an approximate
multiple eigenvalue of A. But is A an approximate defective eigenvalue of A? We
now investigate this issue.
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3 Approximate Defective Eigenvalues

Let A € C"™". Suppose that A € C is not an eigenvalue of A. Then by Corollary 1,
) is an approximate defective eigenvalue of A with respect to Frobenius norm if and
only if A — Al has a pair of left and right singular vectors u and v corresponding
t0 Omin(A) such that u*v = 0. By Theorem 7, this condition is satisfied when X is
a stationary point of opin(z). So, does there exist a pair of left and right singular
vectors # and v of A — Al corresponding to o, (M) such that u*v = 0 when o pyin (V)
is multiple? To answer this question, we need to consider stationary points when
Omin(2) is nonsmooth. Note that o, (z) is not differentiable at A when o, (N) is
multiple. However, oy (z) is Lipschitz continuous. Consequently, the notion of the
Clarke stationary point of oy, (z) can be utilized to deal with the case when oy (A)
is a multiple singular value of A — A[.

The generalized Clarke directional derivative of a locally Lipschitz function f :
C" — R at x € C" in the direction v is defined by [5]

0 f(x;v) := limsup JO+1v) — f(y)'

y—x,t—>0F t

Then the Clarke subdifferential of f at x is given by
Of(x) :={yeC":0f(x;v) >Re(v, y) forallv e C"},

where (x, y) := y*x is the usual inner product on C". Equivalently, we have [5]

O f (x) = convex hull { lim V f(x;) : f is differentiable at xk}
Xp—>X
={yeC":0f(x;v) > Re(v, y) forall v e C"}.
We mention that if f is differentiable in a neighborhood of x then 0 f (x) = {V f (x)}.
We equip C**" with the usual inner product (X, Y) := Trace(Y*X).

Definition 2 (Clarke stationary point [5]) Let f : C" — R be locally Lipschitz and
A € C. Then A is said to be a Clarke stationary point of f if 0 € 9 f()).

Note that if A is a stationary point of opin(z) then A is also a Clarke stationary
point of omin(z). We now determine the Clarke subdifferential of o, (2). The field
of values of a matrix A is given by .#(A) := {x*Ax : x € C" and x*x = 1}.

Theorem 8 (Subdifferential) Let A € C**" and A € C\ A(A). Suppose that the

multiplicity of opin(\) ism. Let U € C"" and V € C"™" be suchthat (A — \I)V =

Omin( MU and (A — AX)*U = opin(AN)V with V*V = I, = U*U. Then we have
00min(A\) = =F(V*U),

where F(V*U) is the field of values of V*U.
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Proof Set G(z) := A — zI. Then o (z) = 0,(G(z)) is Lipschitz continuous and
G(z) is a smooth function with VG(A\) = —I. Note that VG(A) : C — C"™" is a
linear map and is given by VG (\)z = —zI. Now we determine the adjoint operator
(VGA)* : C" — C. We have (z, (VG(\)*Y) =(VGN)z,Y)=(—zI,Y) =
(z, —Trace(Y)) for Y € C"" which shows that (VG (A\))*Y = —Trace(Y) for Y €
(Cn)(l‘l'

We now show that Oopin(A) = (VG(N)*00,(G(N)), where 0o, (G()N)) is the
Clarke subdifferential of the map C*** — R, X + 0, (X), evaluated at G(\). By
the chain rule [5], we have Qo nin(A) C (VG (N))*00o,,(G(N)). For the reverse inclu-
sion, we use generalized Clarke directional derivatives of o, (z) and 0, (X). Since
VG(A\)z = —1z, it is easily seen that doin(A; 2) = §0,(G(N\); VG(N)z) for all
z € C. Hence for Y € 90,(G()\)), we have

Re(z, (VG(A)'Y) =Re(VG(Nz, Y) < 60,(G(N); VG(N)2) = d0min(A; 2)

forall z € C. This shows that (VG (A\))*Y € Oomin(A) and hence the reverse inclusion
follows.

Next, we determine the subdifferential o, (A). Since G(\) is nonsingular, by
Corollary 6.4, [14], the subdifferential of X — 0, (X) evaluated at G () is given by

9, (G(N) = convex hull{uv™ : G(A\)v = omin(Nu, GN)*u = omin(Mv, lul2 = [[v]2 = 1}
= convex hull{Uxx*V* : x € C", x| = 1}.

Hence, we have

0omin(N) = (VG(N)*00,(G(N)
= convex hull{—Trace(Uxx*V*) : x € C", ||x||, = 1}
={—x*V'Ux :x €C", x|, = 1} = —F(V*U).

This completes the proof. (]
See [13] for a similar result and a different proof.

Theorem 9 Let A € C*™" and )\ € C. Suppose that \ is not an eigenvalue of A.
Then X is a Clarke stationary point of omin(z) if and only if there exists a pair of left
and right singular vectors u and v of A — A\ corresponding to omin(\) such that
u*v = 0. Consequently, \ is an approximate non-derogatory defective eigenvalue of
A with respect to Frobenius norm if and only if A is a Clarke stationary point of
Omin(2)- Define E = —omin(\)uv*. Then X is a non-derogatory defective eigenvalue
of A+ Eand |E|lr = |Ell2 = Omin(}).

Proof Suppose that the multiplicity of o (M) is m. Let U and V be as in Theorem 8.
Then by Theorem 8, dopin(A) = —F (V*U). Now suppose that ) is a Clarke sta-
tionary point, that is, 0 € dopi,(N\). Then 0 € .F(V*U) and hence 0 = x*V*U x for
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some x € C" with ||x||; = 1. Setting v := Vx and u := U, it follows that v*'u = 0
and that ¥ and v are left and right singular vectors of A — Al corresponding to
Omin ()\)

Conversely, let # and v be left and right singular vectors of A — AI corresponding
to Omin(A) such that u*v = 0. Then u = Ux and v = Vx for some x € C" such
that ||x||; = 1. Thus, we have 0 = v*u € F(V*U) = —00yn(A\) showing that ) is
a Clarke stationary point.

Finally, by Corollary 1, X is a Clarke stationary point of o, (z) if and only if A is
an approximate non-derogatory defective eigenvalue of A with respect to Frobenius
norm. The fact that \ is anon-derogatory defective eigenvalue of A + E is immediate.
Obviously, we have||E| r = | E|l2 = omin(N). ]

We conclude that A € C\ A(A) is an approximate defective eigenvalue of A
whenever ) is a Clarke stationary point of oy, (z). Consequently, when A is simple,
we have

d(A) < inf{opn(A) : A € C\ A(A) is a Clarke stationary point of oy (2)}.  (5)

Does the equality hold in (5)? How to determine a Clarke stationary point A such
that d(A) = omin(A)? To answer these questions, we need to consider coalescence
of pseudospectral components of A.

LetA € C"" . Fore > 0, A.(A) :={z€C:w(z,A) <e}={z€C:omn2) <
e} is called the e-pseudospectrum of A; see [16]. It is easily seen that

A(A) = | J (AA+E):EeC™ = | {AA+E): EeC™ ). (6)

IEl2<e IElF=<e

Thus, the e-pseudospectrum of A is the collection of all eigenvalues of all matrices
whose distance from A is less than or equal to €. Some important properties of
pseudospectra of A are summarized in the following result.

Theorem 10 (Alam-Bora [3]) Ler A € C"™". Consider the e-pseudospectrum
A-(A). Then the following results hold.

(a) For e >0, A.(A) consists of at most n components (i.e., maximal connected
subsets) and each component contains at least one eigenvalue of A in its interior.

(b) The boundary OA-(A) of A.(A) is an algebraic curve and OA.(A) C {\ €
C : omin(A) = €}. Further, 0A-(A) consists of finitely many piecewise smooth
curves.

(c) Let int(A.(A)) denote the set of interior points of A.(A). Then int(A.(A)) =
AeC:onn(N) <&}

Note that A.(A) consists of at most n components when ¢ is sufficiently small.
As e grows gradually, the components of A.(A) enlarge and “coalesce” to form
bigger components. For example, if A is normal with k distinct eigenvalues then,
for sufficiently small €, A.(A) consists of k disjoint disks of radius € centered at the
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eigenvalues. The coalescence of pseudospectral components plays an important role
in locating (Clarke) stationery points of o (z). We, therefore, define what is meant
by saying that two components of A.(A) coalesce.

Observe that if A, is acomponent of int(A.(A)) then clos(A.), the closure of A,
is a (possibly bigger) component of A.(A). Hence for the boundary, we have 0A. C
Oclos(A.) and the containment may be strict. On the other hand, if A, is a component
of A.(A) then int(A.) may be a disjoint union of more than one component of
int(A:(A)).

Definition 3 We say that A is a point of coalescence of two disjoint components,
say, £21 and £2; of int(A.(A)) if A is a common boundary point of £2; and £2,, that
iS, if \ e 891 N 892.

We will be lax and say that X is a point of coalescence of two components of A.(A).

If \ is a point of coalescence of two or more components of A.(A) then it is
proved in [13] that there is a pair of left and right singular vectors u and v of A — A/
corresponding to oy (A) such that u*v = 0. In other words, A is a Clarke stationary
point, which is referred to as a resolvent critical point in [13]. In fact, the following
result holds; see Corollary 8.4 and Theorem 8.8 in [13].

Theorem 11 (Lewis-Pang [13]) Let A € C"*" and X be a point of coalescence of
two or more components of A.(A). Then X is a Clarke stationary point of omin(2).
Moreover, {omin(X) : X is a Clarke stationary point of omin(z)} is a finite set.

By Theorem 11, the infimum in (5) is a minimum. We mention that Wilkin-
son’s problem is equivalent to characterizing stability of an eigendecomposition
A = Xdiag(\;)X ' when A is a simple matrix. By characterizing stability, we
mean determining the radius of the largest open ball centered at A on which
the factors X, X! and diag()\;) vary continuously as functions of A. Obviously,
B(A,e) :={Y e C"™" : ||A — Y|, < €} is the largest open ball on which the eigen-
decomposition is stable if and only if ¢ = d(A). Now, let #(A.(A)) denote the num-
ber of components of A.(A). If #(A.(A)) = n then obviously d(A) > . On the
other hand, if #(int(A.(A))) = n but #(A.(A)) < n then at least two components of
A-(A) must coalesce. Consequently, in such a case we have d(A) > . Now, if two
components of A.(A) coalesce say at A then does there exist E such that | E|j, = ¢
and ) is a defective eigenvalue of A + E?Itis shown in [3] that ) is indeed a multiple
eigenvalue A 4+ E for some E such that || E|[y = € = omin(A\) thereby providing a
solution to the Wilkinson problem.

Theorem 12 (Alam-Bora [3]) Let A € C"*" be a simple matrix. Let #(A.(A))
denote the number of components of A.(A). Let € > 0 be such that (int(A:(A))) =
n and #(A.(A)) <n —1. Let A be a common boundary point of components
of int(A.(A)). Then we have d(A) = € = omin(AN). Consider the SVD A — A\l =
UXV*. Setu := Ue, and v := Ve, when omin(A) is simple, andu := [Ue,_1, Ue,]
and v .= [Ve,_1, Ve,] when onin(\) is multiple. Define E = —opin(Nuv*. Then
A is a multiple eigenvalue of A + E and | E||, = €. Further;, X is a non-derogatory
defective eigenvalue of A + E whenever onin () is a simple singular value of A — \I.
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The construction in Theorem 12 shows that the point of coalescence A is a defective
eigenvalue of A + E when o, (\) is a simple singular value of A — A/, otherwise
A is a multiple eigenvalue of A + E. By Theorem 11, A is a Clarke stationary point
and hence by Theorem 9, there exists a rank-1 matrix E such that A is a defective
eigenvalue of A+ E and ||E|l> = | E|lF = omin(A). However, the construction of
E in Theorem 9 involves a pair of left and right singular vectors u and v such that
u*v = 0, whose existence is guaranteed in Theorem 11, but it is not known how to
compute u and v. It is shown [4] that A — A has a pair of left and right singular
vectors u and v such that u*v = 0 when o, () is multiple and that # and v can be
computed by an algorithm. We summarize these results in the following theorem.

Theorem 13 Let A € C"™" be a simple matrix. Let #(A.(A)) denote the
number of components of A.(A). Let € >0 be such that #(int(A.(A))) =n
and #(A.(A)) <n—1. Let A\ be a common boundary point of components
of int(A-(A)). Then X\ is a Clarke stationary point of omin(z) and we have
d(A) = € = opin(A) = min{opi, (1) : 1 € C\ A(A) is a Clarke stationary point}.
Further, A — X has a pair of normalized left and right singular vectors u and v
corresponding to omin(A\) such that u*v = 0. Define E := —omin (AN uv*. Then \ is
a non-derogatory defective eigenvalue of A + E and |[E|l; = ||E||lr = (A).

‘We mention that the approach developed in [4], which does not employ variational
analysis, leads to an optimization-based quadratically convergent algorithm for the
computation of a matrix E such that A + E is defective.
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Structure of Prime Near Rings )
with Generalized Derivations ey

Asma Ali and Inzamam ul Huque

Abstract The purpose of this paper is to obtain the structure of a prime near ring N
admitting a right generalized derivation F associated with a nonzero derivation d sat-
isfying either of the conditions: (i) F([x, yl,) = £x"(x o y),x", (il)) F([x, y],;) =
Ex"[x, ylox", (iii) F(x 0 y)o = £x"(x 0 y)ox", (iv) F(x 0 y)o = £x"[x, ylox",
W) F([x, y]s) = £[F(x), y], and (Vi) F(x 0 ¥);, = £(F(x) o y), forallx, y € U,
where U is anonzero semigroupideal of N,o : N — Nisamapsuchthato(U) = U
and m, n are non-negative integers. Moreover, we give a characterization of these
mappings.

Keywords Prime near ring - Generalized derivations + Semigroup ideal -
Commuting map

1 Introduction

A right near ring N is a triplet (N, 4+, -), where + and - are two binary operations
such that (i) (N, +) is a group (not necessarily abelian), (ii) (N, ) is a semigroup and
(i) (x+y)-z=x-z+y- zforallx, y, z € N. Consonantly, instead of (iii), if N
satisfies left distributive law, then N is said to be a left near ring. The most natural
example of a right near ring is the set of all identity preserving mappings acting
from left of an additive group G (not necessarily abelian) into itself with pointwise
addition and composition of mappings as multiplication. If these mappings act from
right on G, then we get a left near ring (For more examples, we can refer Pilz [8]). A
near ring N is said to be zero-symmetric if x0 = 0 for all x € N (right distributive
law yields that Ox = 0). Throughout the paper, N represents a zero-symmetric right
near ring with Z(N) as multiplicative center of N. For any x, y € N, the symbols
[x, y] and (x o y) denote the Lie product xy — yx and the Jordan product xy + yx,
respectively. If o : N — N is any map, then we write [x, y], = o(x)y — yx and
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(xo0y)y =0 (x)y+ yxforallx,y € N. Anearring N is said to be prime if x Ny =
{0} forall x, y € N implies that x = 0 or y = 0. A nonempty subset U of a near ring
N is said to be a semigroup right (resp. semigroup left) ideal of N if UN < U (resp.
NU C U), andif U is both a semigroup right ideal as well as a semigroup left ideal,
then it is said to be a semigroup ideal of N. If S is a nonempty subset of N, then a
mapping f : § — N is said to be centralizing (resp. commuting) on S if [ f(x), x] €
Z(N) (resp. [ f(x), x] = 0) for all x € S. The notion of derivation in near rings was
initiated by Bell and Mason [1]. An additive mapping d : N — N is said to be a
derivation on N if d(xy) = d(x)y + xd(y) for all x, y € N or equivalently in [10],
d(xy) =xd(y) +d(x)y forall x, y € N. Inspired by the definition of derivation in
near rings, Golbasi [7] defined generalized derivation in near rings as follows: An
additive mapping F : N — N is said to be a right (resp. left) generalized derivation
associated with a derivation d on N if F(xy) = F(x)y + xd(y) (resp. F(xy) =
d(x)y +xF(y))forall x, y € N. Moreover, F is said to be a generalized derivation
associated with a derivation d on N if it is both a right generalized derivation as
well as a left generalized derivation on N. Thus, the notion of generalized derivation
covers the notion of multiplier for d = 0. There are many results asserting that prime
near rings with certain constrained derivations and generalized derivations have ring
like behavior.

In [5], Daif and Bell proved that if R is a prime ring, / a nonzero ideal of R
and R admits a derivation d such that d([x, y]) = *£[x, y] for all x, y € I, then R
is commutative. Further, Dhara [6] proved that if R is a semiprime ring and F is
a generalized derivation associated with a derivation d on R such that F([x, y]) =
+[x, y]Jor F(x o y) = £(x o y) forallx, y € I,anonzeroideal of R, then R contains
a nonzero central ideal, provided d(I) # {0}. Moreover, he obtained that if R is a
prime ring, R must be commutative, provided d # 0. Further, Boua and Oukhtite
[4] extended these results for prime near rings. More precisely, they proved that if
N is a prime near ring with a nonzero derivation d such that d([x, y]) = £[x, y] or
d(xoy)==x(xoy) forall x,y € N, then N is a commutative ring. In [3], Boua
obtained the commutativity of a prime near ring N in case of a semigroup ideal U of
N satisfying one of the conditions: (i) d([x, y]) = [d(x), y]; (i) [d(x), y] = [x, ¥];
(iii)d(x oy) =d(x)oyand(iv)d(x) oy = x o y forall x, y € U. Recently, Shang
[9] considered the more general situations for a generalized derivation F of a prime
near ring N satisfying any one of the following: (i) F([x, y]) = x*[x, y]x’ and
(i) F(x o y) = £x*(x o y)x! forall x, y € N; where k > 0, > 0 are non-negative
integers and proved that N is a commutative ring. In this line of investigation, it is
natural to look forward for some comparable results for generalized derivation in
prime near rings for more general constraints replacing [x, y] and (x o y) by [x, y]s
and (x o y)),, respectively. In this paper, we obtain the structure of a prime near ring
N with generalized derivation F' : N — N associated with a nonzero derivation d
on N satisfying certain identities. Moreover, we prove some theorems which give a
suitable characterization of these mappings.
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2 Main Results

For developing the proofs of our main results, we need the following lemmas.

Lemma 1 ([2], Lemma 1.2(i), (iii) and Lemma 1.3(iii)). Let N be a prime near ring.

(i) If z € Z(N) \ {0}, then z is not a zero divisor.
(ii) Ifz € Z(N)\ {0} and zx € Z(N), then x € Z(N).
(iii) If 7 centralizes a nonzero semigroup left ideal, then 7 € Z(N).

Lemma 2 ([2], Lemma 1.4) Let N be a prime near ring and U be a nonzero semi-
group ideal of N. If x,y € N and xUy = {0}, then x =0ory = 0.

Lemma 3 ([2], Lemma 1.5) If N is a prime near ring and Z(N) contains a nonzero
semigroup left ideal or a semigroup right ideal, then N is a commutative ring.

Lemma 4 ([8], Proposition 1.5) If N is a near ring, then —xy = (—x)y for all
X,y €N.

Lemma 5 ([2], Lemma 1.3) Let N be a prime near ring and U be a nonzero semi-
group right (resp. semigroup left) ideal of N and x is an element of N such that
Ux = {0} (resp. xU = {0}), then x = 0.

Theorem 1 Let N be a prime near ring, U a nonzero semigroup ideal of N and
o : N — N be a map such that o (U) = U. If there exist non-negative integers
m >0, n>0 and N admits a right generalized derivation F associated with a
nonzero derivation d such that F ([x, y],) = £x"[x, yl,x" forallx,y € U, then F
is a left multiplier on N or N is a commutative ring.

Proof By hypothesis,
F([x, yly) = £x"[x, y]l,x" forall x,y e U. (D)
Replacing y by yx in (1), we get

F([x, ylox) = £x"[x, ylox",
F([x, ylo)x + [x, y]lod(x) = £x"[x, y](,x"Jrl forall x,y e U.

Using hypothesis, we arrive at

[x, ylod(x) =0,
o(x)yd(x) = yxd(x) forall x,y e U. 2)

Substituting zy for y in (2) and using (2), we obtain

o(x)zyd(x) = zyxd(x) = zo (x)yd(x),
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which gives
[o(x),zlyd(x) =0 forall x,yeU,z€ N.

Since o (U) = U, we get
[z, z1Ud(x) = {0} forall t,x e U,z € N.

Applying Lemma 2, we obtain either d(x) =0 or¢t € Z(N) forall t,x € U, i.e.,
d(x)=0forall x e U or U C Z(N). Latter case yields that N is a commutative
ring by Lemma 3. Consider the case, d(x) = 0 for all x € U. Replacing x by xr for
re N,wegetxd(r) =0forallx e U,r € N,ie., Ud(r) = {0}. Using Lemma 5,
we getd = 0 on N and hence F is a left multiplier on N. (|

Theorem 2 Let N be a prime near ring, U a nonzero semigroup ideal of N and
o : N — N be a map such that o (U) = U. If there exist non-negative integers
m >0, n>0 and N admits a right generalized derivation F associated with a
nonzero derivation d such that F(x o y), = £x"(x 0 y)ox" for all x, y € U, then
F is a left multiplier on N or N is a commutative ring.

Proof Suppose that
F(xo0y)e =£x"(x 0y)sx" forall x,y e U. 3)
Substituting yx in place of y in (3) and using (x o yx), = (x 0 y),x, we get
F((x 0 y)gx) = £x"(x 0 y)ox"t! forall x,y e U,
which gives
F(x0y)ox 4+ (x 0 y)od(x) = £x"(x 0 y)ox"*! forall x,y e U.
Now using (3), we find that

(x 0 y)ed(x) =0,
o(x)yd(x) = —yxd(x) forall x,y e U. 4

Replacing y by ry for r € N in (4), using (4) and Lemma 4, we get
ryxd(x) = r(=(o(x)yd(x))) =r(—ox))yd(x) = (o (x))ryd(x).
This implies that

[r, —o(x)]yd(x) =0 forall x,ye U,r € N.
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Since o (U) = U, we find that
[r, —s]lUd(x) = {0} forall s,x e U,r € N.

Applying Lemma 2, we get either d(x) =0 or —s € Z(N) for all s, x € U, i.e.,
d(x) =0forallx € Uor—U C Z(N). Since —U is also a semigroup right ideal of
N,forifx e Uandr € N, (—x)r = —xr € —U ; therefore, latter case gives that N
is a commutative ring by Lemma 3. For the first case, arguing in the similar manner
as in Theorem 1, we can obtain F is a left multiplier on N. O

Theorem 3 Let N be a prime near ring, U a nonzero semigroup ideal of N and
o : N — N be a map such that o (U) = U. If there exist non-negative integers
m >0, n>0 and N admits a right generalized derivation F associated with a
nonzero derivation d such that F([x, y]s) = £x"(x 0 y)ox" forall x, y € U, then
F is a left multiplier on N or N is a commutative ring.

Proof Suppose that
F([x, yly) = £x"(x 0 y),x" forall x,y e U. 4)

Replacing y by yx in (5), using [x, yx], = [x, y]ox and (x o yx), = (x 0 y),x, We
obtain
F([x, ylox) = £x™(x 0 y)ox"T forall x,y e U,

ie.,
F([x, y1o)x + [x, ylod(x) = £x™(x 0 y)ox"T! forall x,y e U.

By hypothesis, we have
[x, y]lod(x) =0 forall x,y e U. (6)

Since Eq. (6) is same as Eq.(2), arguing in the similar manner as in Theorem 1, we
can get the result. ([

Theorem 4 Let N be a prime near ring, U a nonzero semigroup ideal of N and
o : N — N be a map such that o (U) = U. If there exist non-negative integers
m >0, n>0 and N admits a right generalized derivation F associated with a
nonzero derivation d such that F (x o y), = £x"[x, ylsx" forallx,y € U, then F
is a left multiplier on N or N is a commutative ring.

Proof Let
F(xoy), = £x"[x, ylox" forall x,y e U. @)

Substituting yx for y in (7), we find that

F(xoyx)y, = F((x 0 ¥)ox) = £x"[x, yx]ox" = £x"[x, y](,x"H,
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which implies that
F(x 0 y)ox 4+ (x 0 y)od(x) = £x"[x, ylox"*! forall x,y e U.
Using the hypothesis, we get
(x 0y)od(x) =0 forall x,y e U

which is Eq. (4); therefore, arguing in the similar manner as in Theorem 2, we can
get the result. ]

Theorem 5 Let N be a prime near ring and U be a nonzero semigroup ideal of
N.Ifo : N — N is a map such that c(U) = U and N admits a right generalized
derivation F associated with a nonzero derivation d such that F is commuting on
U and F([x, y]ly) = £[F(x), yls forall x, y € U, then F is a left multiplier on N
or N is a commutative ring.

Proof Assume that
F([x,y]ls) =[F(x),y]l, forall x,yeU. ®)
Replacing y by yx in (8), we get
F([x, yxlo) = F([x, ylox) = [F(x), yx], forall x,y €U,
ie.,
F([x, ylo)x + [x, ylod(x) = o (F(x))yx — yxF(x) forall x,y e U.
Since F' is commuting on U, therefore the last expression gives that
F(lx. ylo)x + [x, ylod(x) = o (F(x))yx — yF(x)x = [F(x), ylox forall x,yeU,

which reduces to
[x, ¥]led(x) =0 forall x,y e U. 9)

Since Eq. (9) is same as Eq.(2), arguing in the similar manner as in Theorem 1, we
can get the result.

Using the same techniques, we can prove the result for the case F([x, yl,) =
—[F(x), yl, forallx,y € U. O

Theorem 6 Let N be a prime near ring and U be a nonzero semigroup ideal of
N.Ifo : N — N is a map such that 6 (U) = U and N admits a right generalized
derivation F associated with a nonzero derivation d such that F is commuting on
Uand F(x 0y)y = £(F(x) o y)s forallx,y € U, then F is a left multiplier on N
or N is a commutative ring.
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Proof By hypothesis,

F(xoy), =(F(x)oy), forall x,y e U. (10)
Replacing y by yx in (10), we get

F(xoyx), = F((x 0 y)ex) = (F(x)oyx), forall x,y e U,
which implies that
Fxoy)ex+ (xoy)dx)=0c(Fx)yx +yxF(x) forall x,y e U.
Since F is commuting on U, we get
Fxoy)ox+ (xo0y)gd(x) =0c(F(x))yx +yF(x)x = (F(x)oy)gx forall x,y e U.
Using (10), the last expression reduces to
(x 0y)gd(x) =0 forall x,y e U. (11)

Since Eq.(11) is same as Eq. (4), arguing in the similar manner as in Theorem 2, we

can obtain the result. Using the same techniques, we can prove the result for the case
F(xoy), =—(F(x)oy), forallx,y e U. (Il

The following example shows that the primeness hypothesis in Theorems 1-6 is
essential.

Example 1 Suppose that S is a zero-symmetric right near ring and let

Oxy 0x0
N:{ 000 |0,x,y,z€S} andU:{ 000 |0,x,yeS}.
0z0 0y0

It can be seen that N is a non-prime zero-symmetric right near ring with respect to
matrix addition and matrix multiplication and U is a nonzero semigroup ideal of N.
Define the mappings F,d,o : N — N by

Oxy Ozy Oxy 0—x —y
Fl1000]|]=1000 ,d|l0o00O]|=1]0 01,
0z0 000 0z0 0-z 0
and
Oxy 000
cl000]=]000

020 0y0
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Then F is aright generalized derivation associated with a nonzero derivation d on N
satistying (i) F([x, y]o) = £x" (x 0 y)ox", (ii) F([x, ylo) = £x"[x, ylox", (ii)
F(xoy)e =%x"(x0y)sx", (iv) F(xoy), ==£x"[x, ylox", (v) F([x,y]s) =
+[F(x), y]l, and (vi) F(x 0 y), = £(F(x) o y), for all x, y € U. However, nei-
ther F is a left multiplier on N nor N is commutative.
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suggestions.
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Abstract Let R be aring. An R-module M is said to be an absolutely w-pure module
if and only if Ext}e(F , M) is a GV-torsion module for any finitely presented module
F. In this paper, we introduce and study the concept of w-FP-projective module
which is in some way a generalization of the notion of FP-projective module. An R-
module M is said to be w-FP-projective if Extk (M, N) = 0 for any absolutely w-pure
module N. This new class of modules will be used to characterize (Noetherian) DW
rings. Hence, we introduce the w-FP-projective dimensions of modules and rings.
The relations between the introduced dimensions and other (classical) homological
dimensions are discussed. [llustrative examples are given.

Keywords Absolutely pure - Absolutely w-pure - w-flat + w-injective + DW rings
and domains + PvM Ds - Krull domainsm

1 Introduction

Throughout, all rings considered are commutative with unity and all modules are uni-
tal. Let R be aring and M be an R-module. As usual, we use pdy (M), idg (M), and
fdg (M) to denote, respectively, the classical projective dimension, injective dimen-
sion, and flat dimension of M, and wdim(R) and gldim(R) to denote, respectively,
the weak and global homological dimensions of R.

Now, we review some definitions and notation. Let J be an ideal of R. Following
[9], J is called a Glaz-Vasconcelos ideal (a GV -ideal for short) if J is finitely gener-
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ated and the natural homomorphism ¢ : R — J* = Homg(J, R) is an isomorphism.
Let M be an R-module and define

torgy (M) ={x e M | Jx =0 for some J € GV(R)},

where GV (R) is the set of GV -ideals of R. It is clear that torgy (M) is a submodule
of M. Now M is said to be GV-torsion (resp., GV -torsion-free) if torgy (M) =
M (resp., torgy (M) = 0). A GV-torsion-free module M is called a w-module if
Ext}e(R /J, M) =0forany J € GV (R). Projective modules and reflexive modules
are w-modules. In the recent paper [17], it was shown that flat modules are w-modules.
The notion of w-modules was introduced firstly over a domain [16] in the study of
Strong Mori domains and was extended to commutative rings with zero divisors
in [9]. Let w-Max(R) denote the set of maximal w-ideals of R, i.e., w-ideals of R
maximal among proper integral w-ideals of R. Following [9, Proposition 3.8], every
maximal w-ideal is prime. For any G V -torsion-free module M,

M, :={x e E(IM)| Jx € M forsome J € GV(R)}

is a w-submodule of E(M) containing M and is called the w-envelope of M, where
E (M) denotes the injective hull of M. It is clear that a GV -torsion-free module
M is a w-module if and only if M,, = M. Let M and N be R-modules and let
f : M — N be a homomorphism. Following [18], f is called a w-monomorphism
(resp., w-epimorphism, w-isomorphism) if f, : M — N, is amonomorphism (resp.,
an epimorphism, an isomorphism) for all p € w-Max(R). A sequence 0 — A —
B — C — 0 of R-modules is said to be w-exact if Recall from [12] that an R-
module A is called absolutely pure if A is a pure submodule in every R-module
which contains A as a submodule. C. Megibben showed in [20], that an R-module
A is absolutely pure if and only if ExtL (N, A) = 0 for every finitely presented R-
module N. Hence, an absolutely pure module is precisely an F P-injective module
in [21]. For more details about absolutely pure (or F P-injective) modules, see [3,
12, 19-21]. In a very recent paper[4], the authors introduced the notion of absolutely
w-pure modules as generalization of absolutely pure (FP-injective) modules in the
sense of the w-operation theory. As in [5], a w-exact sequence of R-modules 0 —
A — B — C — 0 is said to be w-pure exact if, for any R-module M, the induced
sequence 0 > AQM — BQM — C ® M — 0 is w-exact. In particular, if A is
a submodule of Band0 —- A — B — B/A — 0 is a w-pure exact sequence of R-
modules, then A is said to be a w-pure submodule of B. If A is a w-pure submodule in
every R-module which contains A as a submodule, then A is said to be an absolutely
w-pure module. Following [4, Theorem 2.6], an R-module A is absolutely w-pure
if and only if Ext}e (N, A) is a GV -torsion R-module for every finitely presented R-
module N. In [1], Ding and Mao introduced and studied the notion of FP-projective
dimension of modules and rings; the FP-projective dimension of an R-module M,
denoted by fpd (M), is the smallest positive integer n for which Ext’}e+1 M,A) =0
for all absolutely pure (FP-injective) R-modules A, and FP-projective dimension of
R, denoted by fpD(R), is defined as the supremum of the FP-projective dimensions
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of finitely generated R-modules. These dimensions measure how far away a finitely
generated module is from being finitely presented, and how far away a ring is from
being Noetherian.

In Sect. 2, we introduce the concept of w-FP-projective modules. Hence, we prove
that a ring R is DW ([14]) if and only if every FP-projective R-module is w-FP-
projective if and only if every finitely presented R-module is w-FP-projective, and R
is a coherent D W-ring if and only if every finitely generated ideal is w-FP-projective.

Section 3 deals with the w-FP projective dimension of modules and rings. After a
routine study of these dimensions, we prove that R is a Noetherian D W -ring if and
only if every R-module is w-FP-projective and R is FP-hereditary D W -ring if and
only if every submodule of projective R-module is w-FP-projective.

2 W-FP-projective Modules

We start with the following definition.

Definition 1 An R-module M is said to be w-FP-projective if Ext}e(M ,A) =0 for
any absolutely w-pure R-module A.

Since every absolutely pure module is absolutely w-pure ([4, Corollary 2.7]), we
have the following inclusions:

{Projective modules} € {w-FP-projective modules} C {FP-projective modules}

Recall thataring R is called a DW-ring if every ideal of R is aw-ideal, or equivalently
every maximal ideal of R is w-ideal [14]. Examples of D W -rings are Priifer domains,
domains with Krull dimension one, and rings with Krull dimension zero. Hence, it
is clear that if R is a DW-ring, then w-FP-projective R-modules are just the FP-
projective R-modules. Moreover, using [4, Corollary 2.9], it is easy to see that over
a von Neumann regular ring, the three classes of modules above coincide.

Remark 1 It is proved in [15] that a finitely generated R-module M is finitely
presented if and only if Ext} (M, A) = O for any absolutely pure (FP-injective) R-
module A. Thus, every finitely generated w-FP-projective R-module is finitely pre-
sented.

We need the following lemma.
Lemma 1 Every GV -torsion R-module is absolutely w-pure.

Proof Let A be an arbitrary R-module and N be a finitely presented R-module. For
any maximal w-ideal p of R, the naturel homomorphism

6 : Homg (N, A), — Homg, (Ny, Ay)
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induces a homomorphism
. 1 1
01 : Exty (N, A)p — ExtRp (Np, Ap)

Following [7, Proposition 1.10], 6, is a monomorphism. Suppose that A is a GV -
torsion R-module. Then, we get (Ext}e(N ,A))p = 0 since A, =0 (by [7, Lemma
0.1]). Hence, Ext}? (N, A)is GV -torsion (by [7, Lemma 0.1]). Consequently, A is an
absolutely w-pure R-module (by [4, Theorem 2.6]). ]

The first main result of this paper characterizes D W -rings in terms of w-FP-projective
R-modules.

Proposition 1 Let R be a ring. Then the following conditions are equivalent:

(1) Every finitely presented R-module is w-FP-projective.
(2) Every FP-projective R-module is w-FP-projective.
(3) Risa DW-ring.

Proof (3) = (2) is obvious and (2) = (1) follows from the fact that finitely pre-
sented R-modules are always FP-projective.

(1) = (3) Suppose that R is not a DW-ring. Then, by [8, Theorem 6.3.12], there
exist maximal ideal m of R which is not w-ideal, and so by [8, Theorem 6.2.9],
m,, = R. Hence, by [8, Proposition 6.2.5], R/m is a GV -torsion R-module (sine m
is a GV -torsion-free R-module), and so R/m is an absolutely w-pure R-module (by
Lemma 1). Hence, by hypothesis, for any [ finitely generated ideal I of R, we get
Ext}e (R/I, R/m) = Osince R/I is afinitely presented R-module. Using [10, Lemma
3.1], we obtain that Tor}e(R /1, R/m) = 0, which means that R/m is flat. Accord-
ingly, m is a w-ideal, and then m,, = m, a contradiction with m,, = R. Consequently,
R is a DW-ring. O

Next, we will give an example of FP-projective module, which is not w-FP-
projective.

Example 1 Let (R, m) be a regular local ring with gldim(R) = n (n > 2). By [2,
Example 2.6], R is not DW ring. Hence, there exists an FP-projective R-module M
which is not w-FP-projective.

Next, we give some characterizations of w-FP-projective modules.
Proposition 2 Let M be an R-module. Then the following are equivalent:

1. M is w-FP-projective.

2. M is projective with respect to every exact sequence 0 - A - B — C — 0,
where A is absolutely w-pure.

3. P ® M is w-FP-projective for any projective R-module P.

4. Hom(P, M) is w-FP-projective for any finitely generated projective R-module
P.
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Proof (1) & (2) is straightforward.
(1) = (3) Let A be any absolutely w-pure R-module and P be a projective R-module.
Following [8, Theorem 3.3.10], we have the isomorphism:

Ext,(P ® M, A) = Hom(P, Exth(M, A)).

Since M is w-FP-projective, we have Ext}e (M, A) = 0. Thus, Ext},e(P ®M,A) =0,
and so P ® M is w-FP-projective.

(1) = (4) Let A be any absolutely w-pure R-module and P be a finitely generated
projective R-module. Using [8, Theorem 3.3.12], we have the isomorphism:

Exth (Hom(P, M), A) = P ® ExtL(M, A) = 0.

Hence, Hom(P, M) is a w-FP-projective R-module.
(3) = (1) and (4) = (1) Follow by letting P = R. O

Recall that a fractional ideal I of a domain R is said to be w-invertibleif (11~!),, = R.
A domain R is said to be a Priifer v-multiplication domain (PvM D) when any
nonzero finitely generated ideal of R is w-invertible. Equivalently, R isa PvM D if
and only if Ry, is a valuation domain for any maximal w-ideal p of R ([23, Theorem
2.1]). The class of PvM Ds strictly contains the classes of Priifer domains, Krull
domains, and integrally closed coherent domains.

Proposition 3 Let R be a PvM D. Then pdp (M) < 1 for any w-FP-projective R-
module M.

Proof Let M be aw-FP-projective R-module. Following [4, Theorem 2.10], every h-
divisible R-module is absolutely w-pure. Hence, Ext (M, D) = 0 for any h-divisible
R-module D. Hence, by [22, vii, Proposition 2.5], pdz (M) < 1, as desired. O

Proposition 4 [f M is a w-FP-projective R-module and Ext}e (M, G) =0 for any
GV -torsion-free R-module G, then M is projective.

Proof Let A be an arbitrary R-module. The exact sequence
0 — torgy(A) > A — A/torgy(A) — 0 gives rise to the exact sequence
0=ExtL (M, torgy (A)) — Exth(M, A) — ExtL(M, A/torgy(A))=0 Thus Extk
(M, A) =0, and so M is projective. O

Proposition 5 Let (R, m) be alocal ring which is not DW -ring (for example, regular
local rings R with gldim(R) =n (n > 2)). Then every finitely generated w-FP-
projective R-module M is free.

Proof Let M be a finitely generated w-FP-projective R-module. As in the proof of
Proposition 1, there exist a maximal ideal m of R which is not w-ideal, and so R/m
is an absolutely w-pure R-module. we obtain that Tor}e(M ,R/m) =0. But M is
finitely generated, and so finitely presented (by Remark 1). Hence, by [11, Lemma
2.5.8], M is projective. Consequently, M is free since R is local. O
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Proposition 6 The class of all w-FP-projective modules is closed under arbitrary
direct sums and under direct summands.

Proof Follows from [8, Theorem 3.3.9(2)]. U

Recall that aring R is called coherent if every finitely generated ideal of R is finitely
presented.

Lemma 2 Let R be a coherent ring and A be an R-module. Then A is absolutely w-
pure if and only if Ext’l’;'l (N, A) is a GV -torsion R-module for any finitely presented
module N and any integer n > 0.

Proof (=) suppose that A is absolutely w-pure R-module and let N be a finitely
presented R-module. The case n = 0 is obvious. Hence, assume thatn > 0. Consider
an exact sequence

0N —>F,_ —----—>F—>N-=>0

where Fj,...,F,_ are finitely generated free R-modules and N’ is finitely presented.
Such sequence exists since R is coherent. Thus, (Ext',';rl (N, A)), = (Extk (N, A)p
= 0 for any w-maximal ideal p of R. So, Ext’,’e“(N , A) is a GV -torsion R-module.
(«<) Clear. O

Lemma3 Let R be a coherent ring and 0 - A — B — C — 0 be an exact
sequence of R-modules, where A is absolutely w-pure. Then, B is absolutely w-
pure if and only if C is absolutely w-pure.

Proof Let N be a finitely presented R-module. We  have
Exth (N, A) — Exth(N, B) — Exth(V, C) - Ext4(N, A) By Lemma 2, for any max-
imal w-ideal p, we get0 = Exth (N, A)p — Exth (N, B)y — Exth(N, C)p — Ext3(N, A)p =0.
Thus, Ext}e (N,B), = Ext}e(N, C);. So, Ext}e (N, B) is a GV -torsion R-module if
and only if Exth(N, C) is a GV -torsion R-module. Thus, B is absolutely w-pure if
and only if C is absolutely w-pure. (I

Proposition 7 Let R be a coherent ring and M be an R-module. Then the following
are equivalent:

1. M is w-FP-projective.
2. Ext’,’;rl (M, A) = 0 for any absolutely w-pure module A and any integer n > 0.

Proof (1) = (2) Let A be an absolutely w-pure R-module. The case n = 0 is obvi-
ous. So, we may assume 7 > 0. Consider an exact sequence

0>A—E" > ... E"1 5 A 50
where E°,...,E"~! are injective R-modules. By Lemma 3, A’ is absolutely w-pure.

Hence, Ext};'' (M, A) = Exth(M, A") = 0.
(2) = (1) Obvious. O
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Proposition 8 Let R be a coherent ringand0 — M" — M' — M — 0 be an exact
sequence of R-modules, where M is w-FP-projective. Then, M’ is w-FP-projective
if and only if M" is w-FP-projective.

Proof Follows from Proposition 7. ]
We end this section with the following characterizations of a coherent D W -rings.

Proposition 9 Let R be a ring. Then the following are equivalent:

1. R is acoherent DW-ring.
2. Every finitely generated submodule of a projective R-module is w-FP-projective.
3. Every finitely generated ideal of R is w-FP-projective.

Proof (1) = (2) Follows immediately from [13, Theorem 3.7] since, over a DW-
ring, the classes of w-FP-projective modules and FP-projective modules coincide.
(2) = (3) Obvious.

(3) = (1) R is coherent by Remark 1. Assume that R is not a DW-ring. As in the
proof of Proposition 1, there exist a maximal ideal m of R such that R /m is absolutely
w-pure and m,, = R. So, for any finitely generated ideal / of R, we have

0 = Exty (I, R/m) — Extn(R/I, R/m) — Exti(R, R/m) = 0,

and then Ext%(R/I, R/m) = 0. By [10, Lemma 3.1], Torx(R/I, R/m) = 0, which
means that fdg (R/m) < 1. Then m is flat, and so a w-ideal, a contradiction. [l

Corollary 1 Let R be a domain. Then R is a coherent DW -domain if and only if
every finitely generated torsion-free R-module is w-FP-projective.

Proof Following [8, Theorem 1.6.15], every finitely generated torsion-free R-
module can be embedded in a finitely generated free module (since R is a domain).
Hence, (=) follows immediately from Proposition 9. For (<), it suffices to see that
since R is a domain, every ideal is torsion-free, and then use Proposition 9. O

3 The W-FP-projective Dimension of Modules and Rings

In this section, we introduce and investigate the w-FP-projective dimension for mod-
ules and rings.

Definition 2 Let R be aring. For any R-module M, the w-FP-projective dimension
of M, denoted by w-fpd, (M), is the smallestintegern > O such that Ext',';r1 (M, A) =
0 for any absolutely w-pure R-module A. If no such integer exists, set w-fpd (M) =
00.

The w-FP-projective dimension of R is defined by

w-fpD(R) = sup{w-fpD (M) : M is finitely generated R-module}
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Clearly, an R-module M is w-FP-projective if and only if w-fpdy(M) = 0, and
fpdi (M) < w-fpd, (M), with equality when R is a D W-ring. However, this inequal-
ity may be strict (Remark 1). Also, fpD(R) < w-fpD(R) with equality when R is
a DW-ring, and this inequality may be strict. To see that, consider a regular local
ring (R, m) with gldim(R) = n (n > 2). Since R is Noetherian, we get f{pD(R) = 0
(by [1, Proposition 2.6]). Moreover, by Remark 1, there exists an (FP-projective)
R-module M which is not w-FP-projective. Thus, w-fpD(R) > 0.

First, we give a description of the w-FP-Projective dimension of modules over
coherent ring.

Proposition 10 Let R be a coherent ring. The following statements are equivalent
for an R-module M.

1. w-fpd(M) < n.

2. Ext',’;’]A(M, A) = 0 for any absolutely w-pure R-module A.

3. Ext';;” (M, A) = 0 for any absolutely w-pure R-module A and any j > 1.

4. If the sequence 0 - P, - P,_1 — --- — Py => M — 0 is exact with Py, . . .,
P,_, are w-FP-projective R-modules, then P, is w-FP-projective.

5. Ifthe sequence 0 — P, — P,_; — --- — Py — M — 0 is exact with Py, . ..,
P,_1 are projective R-modules, then P, is w-FP-projective.

6. There exists an exact sequence 0 - P, — P, 1 — --- — Py —> M — O where
each P; is w-FP-projective.

Proof (3) = (2) = (1) and (4) = (5) = (6) are trivial.

(1)= @) Let0 > P, > P,y — --- - Py > M — 0 be an exact sequence of
R-modules with Py, ..., P,_; are w-FP-projective, and set Ky = Ker(Py — M) and
K; = Ker(P; = P;,_1),wherei = 1,...,n — 1. Using Proposition 7, we get

0 = Exts™ (M, A) = Ext} (Ko, A) = - - - = Exti(P,, A)

for all absolutely w-pure R-module A. Thus, P, is w-FP-projective.
(6) = (3) We procced by induction on n > 0. For the n = 0, M is w-FP-projective
module and so (3) holds by proposition 7. If n > 1, then there is an exact sequence
0—-P,—»> Py > --+-— Pyp—> M — 0 where each P; is w-FP-projective. Set
Ky = Ker(Py — M). Then, we have the following exact sequences

O—-P,—>P,_1—>---—>P—>Ky—0
and
0—-Ky— P> M—0
Hence, by induction Ext'}{lﬂ (Ko, A) = 0 for all absolutely w-pure R-module A
and all j > 1. Thus, Ext},'/ (M, A) = 0, and so we have the desired result. O

The proof of the next proposition is standard homological algebra. Thus we omit its
proof.
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Proposition 11 Let R be a coherent ring and 0 > M" — M’ — M — 0 be an
exact sequence of R-modules. If two of w-fpdg(M"), w-fpdg(M") and w-fpd (M)
are finite, so is the third. Moreover

1. wofpdg(M") < sup {w-fpdg(M"), w-fpdg(M) — 1}.
2. wifpdp(M') < sup{w-fpdr(M"), w-fpdg(M)}.
3. wifpdgr(M) < sup{w-fpdr(M’), w-fpdr(M") + 1}.

Corollary 2 Let R be a coherent ring and 0 > M" — M’ — M — 0 be an
exact sequence of R-modules. If M' is w-FP-projective and w-fpdz (M) > O, then
wfpdg(M) = w-fpdr(M") + L.

Proposition 12 Let R be a coherent ring and {M;} be a family of R-modules. Then
w-fpdg(®: M;) = sup{w-fpdg(M;)}.

Proof The proof is straightforward. O

Proposition 13 Let R be a ring and n > 0 be an integer. Then the following state-
ments are equivalent:

1. w-fpD(R) < n.

2. w-fpd(M) < n for all R-modules M.

3. w-fpd(R/I) < n for all ideals I of R.

4. idgr(A) < n for all absolutely w-pure R-modules A.

Consequently, we have

w-fpD(R) = sup{w-fpdr (M) | M is an R-module}
= sup{w-fpdr(R/I) | I is an ideal of R}
= sup{idr(A) | A is an abosolutely w-pure R-module}

Proof (2) = (1) = (3) are trivial.

(3) = (4) Let A be an absolutely w-pure R-module. For any ideal / of R, we have
Exts ' (R/I, A) = 0. Thus, idg(A) < n.

(4) = (2) Let M be an R-module. For any absolutely w-pure R-module A, we have
Exty"' (M, A) = 0. Hence, w-fpd(M) < n. O

Note that Noetherian rings need not to be DW (for example, a regular ring with
global dimension 2), and D W-rings need not to be Noetherian (for example, a non-
Noetherian von Neumann regular ring). Next, we show that rings R with w-fpD(R) =
0 are exactly Noetherian D W -rings.

Proposition 14 Let R be a ring. Then the following are equivalent:

1. w-fpD(R) = 0.
2. Every R-module is w-FP-projective.
3. R/I is w-FP-projective for every ideal I of R.
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4. Every absolutely w-pure R-module is injective.
5. R is Noetherian DW -ring.

Proof The equivalence of (1), (2), (3), and (4) follows from Proposition 13.
(2) < (5) Follows from Proposition 1 and [1, Proposition 2.6]. O

Recall from[13], that a ring R is said F P-hereditary if every ideal of R is FP-
projective. Note that F'P-hereditary rings need not to be DW (for example, a non
DW Noetherian ring), and D W-rings need not to be F P-hereditary (for example,
a non-Noetherian von Neumann regular ring). Next, we show that rings R with
w-fpD(R) < 1 are exactly F P-hereditary DW-rings.

Proposition 15 Let R be a ring. Then the following are equivalent:

w-fpD(R) < 1.

Every submodule of w-FP-projective R-module is w-FP-projective.
Every submodule of projective R-module is w-FP-projective.

I is w-FP-projective for every ideal I of R.

idgr(A) <1 for all absolutely w-pure R-module A.

R is a (coherent) F P-hereditary DW -ring.

AW~

Proof The implications (2) = (3) = (4) are obvious.
(4) = (5) Let A be an absolutely w-pure R-module and / be an ideal of R. The
exact sequence 0 - I — R — R/I — 0 gives rise to the exact sequence

0 = Exty (I, A) — Ext2(R/I, A) — Extx(R, A) = 0.

Thus, Ext3(R/I, A) = 0, and so idg(A) < 1.
(5) = (4) Let I be an ideal of R. For any absolutely w-pure R-module A, we have

0 = Ext%(R/I, A) = Exth(I, A).

Thus, I is w-FP-projective.

(4) = (6) By hypothesis, R is F P-hereditary. Now, by Proposition 9 R is a coherent
DW-ring.

(6) = (2) By [13, Theorem 3.16], since the w-FP-projective R-modules are just the
FP-projective R-modules over a D W-ring.

(1) < (5) By Proposition 13. O

Remark 2 In the Example 1, the ring R is coherent but not DW. Then, R contains
a finitely generated ideal which is not w-FP-projective by Proposition 5.
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Central Values of X-generalized Skew m
Derivations on Right Ideals in Prime L
Rings

Luisa Carini and Vincenzo De Filippis

Abstract Let R be a prime ring of characteristic different from 2, Q its right Martin-
dale quotient ring, C its extended centroid, / a right ideal of R, a € Q, G a nonzero
X-generalized skew derivation of R, f(xy, ..., x,) a multilinear polynomial over C
with n non-commuting variables, and S the set of the evaluations of f(xi,..., x,)
on [. If [f(xy,...,Xn), Xpt1]Xn42 is not an identity for I and aG(x)x € Z(R) for
all x € §, then we determine all the possible forms of G.

Keywords Generalized skew derivation + Multilinear polynomial - Prime ring

1 Introduction

Let R be a prime ring, Z(R) its center, Q its right Martindale quotient ring, C the
center of Q, which is called extended centroid of R (see [3] for more details about
these objects). An additive mapping d: R —> R is said to be a derivation of R
if d(xy) =d(x)y 4+ xd(y) for all x, y € R. An additive mapping F: R — R is
called a generalized derivation of R if there exists a derivation d of R such that
F(xy) = F(x)y + xd(y) forall x, y € R.

The previous definitions can be extended as follows. Let R be an associative
ring and « be an automorphism of an associative ring R. An additive mapping
d: R —> Rissaid to be a skew derivation of Rifd(xy) = d(x)y + a(x)d(y) forall
X,y € R. An additive mapping F: R —> R is called a generalized skew derivation
of R if there exists a skew derivation d of R with associated automorphism « such
that F(xy) = F(x)y + a(x)d(y) for all x, y € R. Many papers in literature study
generalized derivations and generalized skew derivations of rings that satisfy certain
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identities, in order to describe both the structure of the rings and the form of the maps
involved with these identities (see for example [6, 9-14, 32-34, 36-38]).

These results emphasize the strong relationship between the structure of a ring R
and the behavior of certain additive maps defined on R.

In a recent paper [31], Kosan and Lee introduced the notion of left b-generalized
derivations. More precisely an additive map F: R —> Q is called a left b-
generalized derivation if there exist b € Q and a derivation d of R such that
F(xy) = F(x)y 4+ bxd(y), for all x,y € R. Clearly, this concept generalizes the
ones of derivations and generalized derivations. More recently (see [21, 23-25]),
taking a cue from Kosan and Lee’s work, the second author and F. Wei define and
characterize an additive map in a different point of view known as X-generalized
skew derivation or b-generalized skew derivation which extends the concept of a
generalized skew derivation. More precisely, let R be an associative ring, b € Q,
d : R —> R alinear mapping, and « be an automorphism of R. A linear mapping
F : R —> R s called an X-generalized skew derivation of R, with associated term
(b, o, d) if there exist b € Q, a linear mapping d : R —> R and an automorphism
o of R, such that

F(xy) = F(x)y + ba(x)d(y)

for all x, y € R. Moreover, in [25, Remark 1.8], it is also proved that if F is a X-
generalized skew derivation with associated term (b, «, d), then the linear map d
must be a skew derivation of R, with associated automorphism «.

According to the above definition, it is clear that X-generalized skew derivations
cover the concepts of derivations, generalized derivations, skew derivations, and
generalized skew derivations.

The main goal of this paper is to investigate the set P(G, f(I)) = {G(x)x : x €
S}, where G : R — Risanadditivemapof R, f(I) ={f(ri,...,rm) :¥1,..., 1y €
1} is the set of all evaluations of a multilinear polynomial f(xi, ..., x,) over C inn
non-commuting indeterminates, and [ is a right ideal of R.

In [36, Theorem 2], Lee and Shiue prove that if G is a nonzero derivation of
R and P(G, f(R)) C C, then f(xy,...,x,) is central valued on R, unless when
char(R) = 2 and R satisfies s4. Demir and Arga¢ [26] extend the above results
to the case of generalized derivations. More precisely they prove that, if G is a

nonzero generalized derivation of R and P (G, f(R)) C C,theneither f(xy, ..., x,)
is central valued on R or there exists b € C such that G(x) = bx for all x € R and
f(x1, ..., x,)?is central valued on R, unless when char(R) = 2 and R satisfies sy4.

Later on, in [22], the second author and Dhara generalize the previous result to the
case of generalized derivations acting on polynomials (not necessarily multilinear)
that are evaluated on right ideals.

Following this line of investigation, in [5] the authors prove that, if § is a nonzero
derivation of R, G a nonzero generalized derivation of R, and §(x) = 0O, for all
x € P(G, f(R)),then f(xy,..., x,)? is central valued on R and there exista, b € U
such that G(x) = ax and §(x) = [b, x], for any x € R, with [a, b] = 0. Later, Arga¢
and Dhara in [27] extend the result contained in [5] to the case § is a generalized
derivations of R.
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Let us fix our attention on the following two results:

Theorem 1 ([1, Theorem 3.7]) Let R be a prime ring, f(x1, ..., x,) a multilinear
polynomial over C in n non-commuting indeterminates, I a nonzero right ideal of
R, and F : R — R be a nonzero generalized skew derivation of R.

Suppose that F(f(r1,...,r,)f(@r1,...,rm) €C, forall ry,...,r, € 1. If the
polynomial f(xy, ..., x,) is not central valued on R, then either char(R) = 2 and
R satisfies s4 or one of the following holds:

(i) f(x1,...,Xy)Xp41 is an identity for I;
(ii) F(DHI =(0);
(iii) [f(x1, ..., Xn), Xnt11Xus2 is an identity for I, there existb, ¢, q € Q with q an
invertible element such that F(x) = bx — gxq~'c forall x € R, and g~ 'cI C
I. Moreover, in this case either (b — ¢)I = (0)orb —c € Cand f(x1, ..., X,)?

is central valued on R.

Theorem 2 ([2, Main Theorem]) Let R be a prime ring of characteristic different
from 2, f(x1,...,x,) a multilinear polynomial over C in n non-commuting inde-
terminates, I a nonzero right ideal of R, 0 #2a € R and F : R — R be a nonzero
generalized derivation of R.

If aF (f(ri, ...t ) f(r1,...,1) =0, forall r,...,r, €1, then one of the
following holds:

(i) al =aF(I) = (0);
(ii) F(x) =bx + [c,x], forallx € R, whereb, c € Q. Inthis case either[c, 1] =
0) =abl oral =) =a(b+c)l;
(iii) [f(x1,...,Xn), Xna1lXna2 is an identity for I.

Motivated by Theorems 1 and 2, here we would like to determine a first approach
to the study of some algebraic properties satisfied by the set P(G, f(I)), in the case
G is a X-generalized skew derivation and [ is a right ideal of R.

In this sense, the main result of the present paper is

Theorem 3 Let R be a prime ring of characteristic different from 2, Q be its right
Martindale quotient ring and C be its extended centroid, I a right ideal of R, a €
0O, G a nonzero X-generalized skew derivation of R, f(xi,...,Xx,) a multilinear
polynomial over C with n non-commuting variables, and S the set of the evaluations
of f(x1,...,x,)on I. If f(xy,...,x,) is not central valued on R and aG(x)x €
Z(R) forall x € S, then [ f(x1, ..., Xn), Xn+11Xn12 is an identity for I unless when
G assumes one of the following forms:

1. G(x) = bx + cqxq~'u, for all x € R, where b, c,q,u € Q (q is an invertible
element of Q). Moreover, in this case one of the following holds:

(a) there exists u € C such that q’lul =ul and a(b + cu)l = (0);
(b) there exists i € C such that g~ 'ul = ul, f(x1,...,x,)?* is central valued
on Rand a(b+ cu) € C;
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(c) thereexists u € C suchthatq~'ul = wl and f(x1, ..., X)Xns1 is an iden-
tity for 1;

(d) acql = abl = (0);

(e) acql = (0), f(x1,...,x,)* is central valued on R and ab € C;

(f) acql = (0) and f(x1, ..., xX,)Xn11 is an identity for I;

2. G(x) = bx 4+ ca(x)u, forall x € R, where b, c,u € Q and « is an outer auto-
morphismof R. In this case, one of the following holds:

(a) aca(l) =abl = (0);

(b) aca(l) = (0), f(xi,..., x,)? is central valued on R and ab € C;
(c) aca(l) =0and f(x1,...,X,)Xnt+1 is an identity for I;

(d) ul =abl = (0);

(e) ul = (0), f(x1,...,x,)% is central valued on R and ab € C;

(f) ul =0and f(x1,...,Xy)Xuy1 is an identity for I;

3. G(x) = bx + cd(x), for all x € R, where b, c € Q and d is a skew derivation
of R. In this case one of the following holds:

(a) aca(l) = acd(l) = abl = (0);
(b) aca(l) =acd(l), ab € C and f(xy,..., x,)? is central valued on R.

To be able to demonstrate our results, we firstly need to list some useful well-known
facts:

Fact 4 Let R be a prime ring, then the following statements hold:

1. Every generalized derivation of R can be uniquely extended to Q [33, Theorem
3]

2. Any automorphism of R can be uniquely extended to Q [16, Fact 2].

3. Every generalized skew derivation of R can be uniquely extended to Q [9,
Lemma 2].

4. If G is a X-generalized skew derivation of R with associated term (b, «, d), then
G can be uniquely extended to Q and assumes the form G(x) = ax + bd(x),
where a € Q [25, Remark 1.9].

Fact 5 Let R be a prime ring and / be a two-sided ideal of R.

1. I, R, and Q satisfy the same generalized polynomial identities with coefficients
in Q (see [15]).

2. I, R, and Q satisfy the same generalized polynomial identities with automor-
phisms (see [17, Theorem 1]).

Fact 6 In [19] Chuang and Lee prove that if @ (x;, D(x;)) is a generalized poly-
nomial identity for R, where R is a prime ring and D is an outer skew derivation
of R, then R also satisfies the generalized polynomial identity @ (x;, y;), where x;
and y; are distinct indeterminates. Moreover, if @ (x;, D(x;), a(x;)) is a generalized
polynomial identity for a prime ring R, D is an outer skew derivation of R and « is an
outer automorphism of R, then R also satisfies the generalized polynomial identity
D (x;, yi, 2i), where x;, y;, and z; are distinct indeterminates (see [19, Theorem 1]).
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We conclude this section with some remarks on matrix algebras:

Fact 7 ([34, Lemma], [39, Lemma 2]) Let T be a K-algebra with 1 and let R =
M,,(T), m > 2. As usual, we denote the matrix unit having 1 in (i, j)-entry and zero
elsewhere by e;;.

Suppose that f(x, ..., x,) is a multilinear polynomial over K, that is not cen-
tral valued on R. Then, for any i # j there exist rj,...,r, € Rand 0 # 8 € K
such that f(r, ..., r,) = Be;j # 0. Moreover, since f(xi, ..., x,) is a multilinear

polynomial and C is a field, we may assume that 8 = 1.

Fact 8 ([20, Lemma 1.5]) Let 5# be an infinite field and n > 2. If Ay, ..., A; are
not scalar matrices in M,, (%) then there exists some invertible matrix P € M,,, (%)
such that each matrix PA, P~!, ..., PA; P~ has all nonzero entries.

2 An Auxiliary Generalized Polynomial Identity

In this section, we prove the following result:

Proposition 1 Let R be a prime ring of characteristic different from 2, Q be its right
Martindale quotient ring and C be its extended centroid, a, b, c € Q. If R satisfies
the following generalized polynomial identity

W(xp, .. x0) = [af G, )2+ bF (e, x)ef (s X)X ] (D

then one of the following holds:

1. a=b=0;
2. ceCanda+ bc =0,
3. ceC, f(xi,...,x,)? is central valued on R and a + bc € C.

We permit the following useful result:

Fact9 Let R be a prime ring of characteristic different from 2, f(xy,...,x,) a
non-central multilinear polynomial over C in n non-commuting indeterminates, G :
R — R a nonzero generalized derivation of R and a € R be a fixed element. If
aG(f(@ry,...,r) f(r1,...,ry) € Cforallry,...,r, € R, then there exists p € Q
such that G(x) = px for all x € R and either ap = 0 or f(x1,...,x,)* is central
valued on R and ap € C (it is a consequence of [28, Theorem 2.6]).

Remark 1 Ifb € C orc € C, then the conclusion of Proposition 1 could be obtained
as consequence of Fact 9. In fact, both b € C and ¢ € C imply that G is an inner
generalized derivation of R.



64 L. Carini and V. De Filippis

In light of this, in order to prove Proposition 1, our aim will be to prove that either
beCorceC.

We begin with
Lemmal Let R = M, (C), m > 2. Then either b € C orc € C.

Proof We suppose both b ¢ Z(R) and ¢ ¢ Z(R) and prove that a contradiction
follows.

We firstly assume that C is infinite. By Fact 8, there exists some invertible
matrix P € M,,(C) such that ¢(x) = PxP~! and ¢(b), ¢(c) have all nonzero
entries. Denote ¢ (b) = Zhl buien, p(c) = Zhl cnien, where O £ by, 0 # ¢y € C.
Of course, in the main relation we may replace a, b, and ¢ with ¢(a), ¢ (b), and ¢(c),
respectively. Hence, for f(r, ..., r,) = Ae;; # 0in (1) and left multiplying by e;;,
we obtain bj;c;; = 0, which is a contradiction.

Now let E be an infinite field which is an extension of the field C and
let R = M,(E) = R ®c E. The generalized polynomial ¥ (xi, ..., x,) is multi-

homogeneous of multi-degree (2, ..., 2) in the indeterminates xi, .. ., x,.
Hence the complete linearization of ¥ (xy, ..., x,) is a multilinear generalized
polynomial ® (x, ..., x,, y1, ..., y»). Moreover,

O, ey Xy Xy ey X)) =2"W (X1, ...y Xn)

is a multilinear generalized polynomial identity for R and R too. Since char(C) # 2,
weobtain ¥ (ry,...,r,) =0forallr,...,r, € R, and the conclusion follows from
the first part of the present Lemma. O

Proof of Proposition 1

Proof Here we assume again b ¢ C and ¢ ¢ C. Clearly, in this case ¥ (xy, ..., x,)
is a non-trivial generalized polynomial identity for R, then, by [15] it follows that
¥ (xy,...,x,) is a non-trivial generalized polynomial identity for Q. By the well-
known Martindale’s theorem of [40], Q is a primitive ring having nonzero socle with
the field C as its associated division ring. By [30, Page 35] Q is isomorphic to a dense
subring of the ring of linear transformations of a vector space V over C, containing
nonzero linear transformations of finite rank. Assume first that dim¢V =k > 2isa
finite positive integer, then Q = M, (C) and the conclusion follows from Lemma 1.

On the other hand, if dim¢V = oo and by [41, Lemma 2], it follows that Q
satisfies the generalized polynomial identity

l[ax? + bxjcxy, x3]. 2
Moreover Q is a dense ring of C-linear transformations over a vector space V.
Since ¢ ¢ C, there exists v # 0, such that {v, cv} are linear C-independent. By

the density of Q, there exist 51, s € Q such that

s1v=0; s1(cv) =v; sv=cv
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hence
0= [as12 + bsycsy, s2]v = bv.

Of course for any w € V such that {w, v} are linearly C-dependent, bw = 0. Let
now w € V such that {w, v} are linearly C-independent and bw # 0. By the above
argument it follows that w and cw must be linearly C-dependent, as are {w + v, c(w +
v)} and {w — v, c(w — v)}. Therefore there exist «,,, &,y+v, &t,y—, € C such that

cw=o,w, cw+v)=a,,W+v), cw—v)=o0,_,(W—1V).

Therefore
AW + €V = QoW + Qg V 3

and
W — CV = Uy yW — Oy V. @)

By comparing (3) with (4) we get both
(Zaw — Oyyy — Olw—v)W + (aw—v - avv+v)v =0 (5)

and
2cv = (aw’+v — Oy )W + (aw-ﬁ-v + ). (6)

By (5) and since {w, v} are C-independent and char(C) # 2, we have a,, = ayp1y =
a,,—y. Thus by (6) it follows 2cv = 2«,,v. Since {cv, v} are C-independent, the con-
clusion ¢y, = @+, = 0 follows, thatis cw = 0 and c(w 4 v) = 0, which implies the
contradiction c¢v = 0.

Hence we may conclude that bw = 0, for any w € V. Thus bV = (0), that is
b = 0 which is again a contradiction. O

3 The Case of Inner X-generalized Skew Derivations

In this section we prove Theorem 3 in the case there exists an automorphism o €
Aut(R) and b, ¢, u € Q such that G(x) = bx + ca(x)u, for any x € R.

Let us start with the following first result, that is a simple application of
Proposition 1:

Proposition 2 Let R be a prime ring of characteristic different from 2, Q be its right
Martindale quotient ring and C be its extended centroid, a, b, c, u, q € Q, such that
q is an invertible element of Q. If R satisfies the following generalized polynomial
identity
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|:a(bf(xl7 ey xn) + qu(xl, ey xn)qilu)f(xla ey xn)’ xn+li| (7)

then one of the following holds:

1. ab=ac=0;
2. q’lu e Canda(b+ cu) =0;
3. g 'uecC, f(xi,...,x,)%is central valued on R and a(b + cu) € C.
Lemma 2 Let R be a noncommutative prime ring, a € R, f(xy,...,Xx,) a poly-
nomial over C. If [af(rl, e T, rn+1] =0, forallry,...,ry4+1 € R, then either
a=0or f(xiy,...,x,) is central valued on R and a € Z(R).
Proof Of course, in case f(xi,...,x,) is central valued on R, it follows easily
a € Z(R).
Then we may assume f(x, ..., x,) is not central valued on R and, by contradic-
tion, suppose a # O.
It is well known that, since f(xi,...,x,) is not central and char(R) # 2, the
additive subgroup S of R generated by {f(x;,...,x,) : x; € R} contains a non-

central Lieideal L of R. Therefore [au, r] = 0,foranyu € Landr € R.Inparticular,
foranyu € L,
0=lau,u]l =a,ulu.

Hence, by [36, Theorem 2],a € Z(R). Thusa[L, R] = (0), which is a contradiction,

since0 #a € Z(R) and L € Z(R). O
Lemma 3 Let R be a noncommutative prime ring, a,b € R, f(xi, ..., x,) a poly-
nomial over C. If af (r1,...,r,)b =0, forallry,...,r, € R, then either a = 0 or
b =0, unless when f(x1, ..., x,) is central valued on R and ab = 0.
Proof If f(xy,...,x,) is central valued on R, it follows easily ab = 0.

Then we may assume f(x, ..., x,) is not central valued on R and, by using the
same argument as in Lemma 2, we arrive ataLb = (0), where L is a non-central Lie
ideal of R. In this case is well known that eithera = 0 or b = 0. ([l

Proposition 3 Let R be a prime ring of characteristic different from 2, Q be its right
Martindale quotient ring and C be its extended centroid, a, b, c,u € Q,a € Aut(R)
and G be the inner X -generalized skew derivation of R defined as follows:

G(x) =bx + ca(x)u, Vx € R.

Let f(xi1,...,x,) be a non-central multilinear polynomial over C with n non-
commuting variables. If

[aG(f(rh"'srn))f(rl!""rll)arn+l] =0

forallry, ..., w1 € R, then one of the following holds:
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1. ab=ac=0;

2. ab=u=0;

3. abeC,ac=0and f(xq,..., x,)? is central valued on R;

4. abe C,u=0and f(x4,..., x,)? is central valued on R;

5. there exists an invertible element g € Q suchthata(x) = qxq~", foranyx € R,

withq~'u € C and a(b + cu) = 0;
6. f(xg,..., x,)? is central valued on R and there exists an invertible element q €
O such that o (x) = qxq’l,foranyx € R, with q’lu € Canda(b+ cu) € C.

Proof If there exists an invertible element g € Q, such that a(x) = gxg~' for all
Xx € R, then the conclusion follows from Proposition 1. Thus, we may assume that
« is not inner. In what follows we denote f“(xy, ..., x,) the polynomial obtained
from f(xq,...,x,) by replacing each coefficient y, with «(y,). By hypothesis, R
satisfies the generalized polynomial identity

[a(bf(xu, cens Xp) Fef (alxy), ..., oz(xn))u>f(x1, Ces X)), xn+1}. )

Since « is not inner, R satisfies the generalized polynomial identity

I:a<bf(-xls "-7xn) +cfa(y17 "'vyn)u)f(-xlv ---sxn)’anrle- (9)

Hence, the following are both generalized identities for R:

[acfa(yl’~"7yn)u.f('xla"-7-xl‘l)’-xn+l} (10)

and
[abf(xlv-"axn)zvxn-i-l}' (11)
By applying Lemmas 2 and 3 to relation (10), and since both f(xy, ..., x,) and
f%(xy, ..., x,) are not central valued on R, one has that either ac =0 or u = 0.
Analogously, relation (11) implies that either ab = 0 or f(xy, ..., x,)? is central

valued on R and ab € C.
Crossing all the cases just mentioned, we get each of the required conclusions in
the case « is not inner. O

4 The Main Result for Prime Rings

This part of our paper is devoted to the proof of Theorem 3 in the case I = R, more
precisely we prove the following:
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Theorem 10 Let R be a prime ring of characteristic different from 2, Q be its right
Martindale quotient ring and C be its extended centroid, a € Q, G a nonzero X-
generalized skew derivation of R, f(xi, ..., x,) a multilinear polynomial over C
with n non-commuting variables, and S the set of the evaluations of f(x1, ..., Xp)
on R.If f(x1,...,x,)isnot central valued on R and aG(x)x € Z(R) forall x € S,
then:

1. If G(x) = bx + ca(x)u, for all x € R, where a,b,c,u € Q and a € Aut(R),
one of the following holds:

(a) ab=ac =0,

(b) ab=u=0;

(c) abe C,ac=0and f(xy,..., x,)? is central valued on R;
(d) abe C,u=0and f(x1,...,x,)?* is central valued on R;

(e) there exists an invertible element g € Q such that a(x) = gxq~", for any
x € R, withq™'u € C and a(b + cu) = 0;

) fxr, ..., x,)? is central valued on R and there exists an invertible element
q € Q such that a(x) = gxq~", for any x € R, with q~'u € C and a(b +
cu) € C.

2. If G(x) = bx + cd(x), forall x € R, where b, c € Q and d is a skew derivation
of R, then one of the following holds:

(a) ab=ac =0,
(b) abe C,ac=0and f(xi,...,x,)? is central valued on R.

Proof We write G(x) = bx 4 cd(x),forallx € R,whereb, ¢ € Q are suitable fixed
elements and d is a skew derivation of R with associated automorphism «. Denote

fG, oo x) = Z YoXo(l) * X62) " Xom)» Vo €C.

ogeSs,

Let f¢(xy,...,x,) be the polynomial obtained from f(xi,...,x,) by replacing
each coefficient y, with d(y,), and f*(xq,...,x,) = a(f(xl, ... ,xn)). By using
this notation, we have

d(Yo - X5(1) " Xo2) ** Xo(n)) =
n—1

d(Yo)Xo(1) * X0 (2) X (n) T 2 (Vo) Z (X (1) Xo(2) X () Oe (j+1)Xe (j4+2) " Xo (n)
j=0

and

d(f(xr, ... x)) =

n—1

O, ) + Z a(ys) Za(xa(l) “Xo@) " Xo () KXo (j41) X (j+2) " Xom)-
oes, j=0
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Firstly we remark that, if either c = 0 or d = 0 or O # d is an inner skew deriva-
tion, then the result is a consequence of Proposition 3.
Therefore, we always assume ¢ 7# 0 and d # 0, moreover the skew derivation d

is not inner.
By hypothesis, R satisfies the generalized polynomial identity

|:Cl <bf(-xlv e xn) + Cd(f(xlv e -xﬂ)))f(xlv ceey xn)s xn+l] (12)
that is

[a(bf(xl ..... ) +cfixr, ..., xn))f(xl ..... xn)+

n—1
ac‘< Z a(vs) Z a(Xg (1) Xo2) ** Xo (7)) Ko (j+1))Xe (j+2) 'xa(n)>f(xl ----- Xn), xn+1}
oeSy Jj=0
(13)
Since d is outer abd by (13), R satisfies
[a(bf(xl ..... x) +efixg, ..., xn)>f(x1 ..... xn)+
n—1
aC< Z a(vs) Z (X (1) Xo(2) Ko (j) Vo (j+1)Xo (j+2) ~xa<n)>f(X1 ,,,,, Xn), xn+1}
ey j=0
(14)

In particular, R satisfies any blended component

n
[aC( Z a(Yo) Za(xaa) “Xe ()Xo (i)Yo ()Xo (i+1) '%(n))f(ﬂ ,,,,, xn),xn+l:|~
GES i=1
(15)

Since R and Q satisfy the same generalized polynomial identities, Q satisfies
(15).
If « = idg € Aut(R), then d is an ordinary derivation of R and (15) reduces to

[ac(Zf(xl,...,y[,...,xn))f(xl, ...,x,,),x,,+1:|. (16)
i=1

Replacing in (16) any y; with [w, x;], for a fixed elementw € Q \ C, we have that

|:aC[W7 f(xls D) -xn)]f(-xlv ceey xn)s xn+1:|
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is a generalized identity for Q. Thus, by Proposition 1 and since w ¢ C, it follows
ac = 0. Thus, by (12), Q satisfies

[abf(xl, e xn)? xn+1:| (17)

and, once again by Proposition 1, one has that either ab = 0 or f(x, ..., x,)? is
central valued on Q and ab € C, as required.

Therefore, we may assume that o # idg € Aut(R).

If there exists an invertible element ¢ € Q \ C such that a(x) = gxg~' for all
x € Q, by replacing each y, ) with gx,(y in (15), it follows that Q satisfies the
generalized polynomial identity

|:ac<q Z YoXo(l) - ‘Xa(n)>f(x1, s Xn), Xn+1i|

oeSs,

that is
|:acqf(x1, . ,x,,)z, xn+1i|.

As above, Proposition 1 implies that either ac = 0 or f(xi, ..., x,)? is central
valued on Q and acq € C.

In the first case relation (12) reduces to (17) and we conclude as done previously.

Thus we assume thatac # 0, f(x1, ..., x,)* is central valued on Q and acq € C.
By replacing each y,(y with q[qfl,xg(,')] in (15), it follows that Q satisfies the
generalized polynomial identity

[acq[q_l9 f(xls ceey xn)]f(xlv ey xn)s xn+1]

that is
acql:[q17 f(.XI, AR ] xn)]f(xla ceey -xn)v xn+l}'

Since acq # 0 and ¢ ¢ C, and in light of Proposition 1, this last relation implies a
contradiction.

Finally, assume that « is notinner. By (15) it follows that Q satisfies the generalized
polynomial identity

n
[aC< Z a(yo) ZZU(I) “Zg(2) * Zo(i—1) Yo ()Xo (i+1) - 'x(r(n)>f(x1 ,,,,, xn)yxn+1i|~

o€Sy i=1
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In particular, for any i = 1, ..., n, Q also satisfies the generalized polynomial
identity

|:ac< Z A(Vo)Zo(l) * Z02) "+ Zoi=1) * Zo(i+1) " Zon) * )’i>f(x1, .- .,xn),xn+1:|.

0eS,
(18)
Let us write

Z (Vo )Xo(1) *** Xo (=) Xa G+1) =" Xo@m) = L (X1, oo oy Xjo1y Xji1s oo o5 Xp),
0€S,

where any #; is a multilinear polynomial of degree n — 1 and x; never appears in any
monomial of ¢;. Thus

f“(xl, e X)) = th(xl,...,xj_l,xj+1, ...,x,,)xj
J

moreover f%(xy,...,x,) is not an identity for Q. Therefore there exists j €
{1, ..., n} such that ¢; is not an identity for Q.
Starting from (18) it follows that, for any j = 1, ..., n, Q satisfies
[actj(zl, e T 2l s 2 Y (XL e X)), xn+1].
By Lemmas 2 and 3, and since f(xy, ..., x,) is not central valued on Q, it follows

that one of the following holds:

— eitherac =0

— or tj(Zl,...,Zj_l,Zj+1,...,Zn)yj =0, for any zi,...,2j—1,2j+1>---,2n and
any y;.

In case ac = 0 then Q satisfies (17) and we conclude as above.
On the other hand, if

(21, s 210 Tl o> 20)Yj =0
for all zy,...,zj-1,Zj41,..-,2, € Q and all y; € Q, then f%(xy,...,x,) is an
identity for Q, which is a contradiction. O

As an easy consequence we have

Corollary 1 Let R be a prime ring of characteristic different from 2, Q be its right
Martindale quotient ring and C be its extended centroid, a € Q, G a nonzero X-
generalized skew derivation of R, f(x1,...,x,) a multilinear polynomial over C
with n non-commuting variables, and S the set of the evaluations of f(x1, ..., X,)
on R. If f(xy,...,x,) is not central valued on R and aG(x)x =0 for all x € S,
then one of the following holds:
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1. there existb, c € Q and a skew derivation d of R such that G(x) = bx + cd(x),
forall x € R, withab = ac = 0;
2. there exists b € Q such that G(x) = bx, for all x € R, with ab = 0.

We would like to conclude this section by providing a shorter and leaner formu-
lation of Theorem 10:

Theorem 11 Let R be a prime ring of characteristic different from 2, Q be its right
Martindale quotient ring and C be its extended centroid, a € Q, G a nonzero X-
generalized skew derivation of R, f(xi, ..., x,) a multilinear polynomial over C
with n non-commuting variables, and S the set of the evaluations of f(x1, ..., Xp)
on R.If f(x1,...,x,)isnot central valued on R and aG(x)x € Z(R) forall x € S,
then one of the following holds:

1. aG(x) =0, forallx € R
2. f(x1,...,x,)%is central valued on R and there exists ). € C such that aG(x) =
Ax, for all x € R.

5 The Main Result

We are finally in the position to prove Theorem 3.

Lemma 4 Let R be a prime ring, f(x1, ..., x,) a multilinear polynomial over C in
n non-commuting indeterminates, I a nonzero right ideal of R, and a € R be a fixed
element.

Suppose that af(ry, ..., rm)?* e C, for all ry,...,r, € I. If the polynomial
f(x1,...,x,) is not central valued on R, then either char(R) = 2 and R satisfies
s4 or one of the following holds:

(i) f(x1,...,Xy)Xn41 is an identity for I;

(ii) al = (0);
(iii) a € C and f(x1, ..., xn)?* is central valued on R.
Proof 1t is an easy consequence of Theorem 1. (I
Lemma 5 Let R be a prime ring, f(x1,...,x,) a multilinear polynomial over C
in n non-commuting indeterminates, I a nonzero right ideal of R, and a, b € R be
nonzero fixed elements. Suppose that af (r1,...,r,)b =0, forall ri,...,r, € 1.
Then one of the following holds:

1. al = (0),

2. there exists an idempotent element e € soc(Q) such that I =eR and

[f(x1, .00y X0), Xng1 1 Xnao is an identity for I;

3. there exists an idempotent element e € soc(Q) such that I = eR, char(R) =2
and s4(x1, X2, X3, X4)X5 is an identity for I;
4. f(xi1,...,x,) is central valued on R and ab = 0.
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Proof Firstly we remark that, in case f(x1, ..., x,) is central valued on R and by the
primeness of R, we get easily that ab = 0. Moreover, if [ f(x1, ..., X,), Xp+11Xn+2
is an identity for 7, then, by [35], there exists an idempotent element in the socle
of R such that I = eR. Thus, by contradiction, we suppose that the following hold
simultaneously:

—al #(0);

- [f(x1, ..., Xn), Xpt11xn42 1S Dot an identity for 7;

— if char(R) = 2, s4(x1, X2, X3, X4)Xs is not an identity for /;
- f(x1,...,x,) is not central valued on R.

Our aim is to show that a number of contradictions follows.

Assume firstly that / is not a PI-ring. By [8, Theorem 1] it follows that there exists
a non-PI right ideal of R, namely Iy C I, such that [1y, IT1 < f(I) and Iy C 1.

By our hypothesis, a[ly, I1b = (0), and in particular a[ly, Ial]lb = (0), that is
ally, Ia]lb = (0). A fortiori we geta[ly, 1a][ly, I1b = (0). Thus, since a[ly, I1b =
(0), it follows alaly[ly, I1b = (0). Since al # (0), one has that either aly = (0) or
[y, 116 = (0).

Notice that, if aly = (0) then also (0) = ally < aly, implying the contradiction
al = (0). On the other hand [y, I]b = (0) implies [y, Ip]b = (0) and, by applying
[18] and since b # 0, we get [y, Ip]lp = (0) which is again a contradiction, since
Iy is not PI.

Let now I be a PI-ring. Hence, by [35] there exists an idempotent element in the
socle of R such that I = eR. Since [ f(xy, ..., X,), Xu+1]Xn+2 18 nOt an identity for
I and, in case char(R) = 2, s4(x1, X2, X3, X4)Xs5 is not an identity for /, then, by [8,
Theorem 1], it follows both eR(1 —e) f(I) and [I, I] € f(I), implying aeR(1 —
e)b = (0) and a[l, I1b = (0).

By the primeness of R and sinceal # (0),aeR(1 — e)b = (0) means (1 — e)b =
0, that is eithere =l orb =eb € I.

Notice that, if e = 1 then I = R. Hence, since f(xi, ..., X,) is not central valued
on R, a[R, R]b = (0) and a = 0 follows easily. Thus, for the rest of the proof we
assume b = eb € I and a[l, I]1b = (0).

In particular

) = a|:[1, 1, bR}b — abR[I, 11b

and, by the primeness of R, either [/, I1b = (0) or ab = 0.
If [1, I1b = (0) and since b # 0, it follows from [18] the contradiction [/, I]] =
(0). Hence ab = 0, so that

0) = a[l, bRi|b =albRb

that is alb = (0), which forcrs al = (0), again a contradiction. O
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Lemma 6 Letm > 2 and R = M;,(K) be the ring of all h x h matrices over a field
K of characteristic different from 2, I a nonzero right ideal of R, f(xy,...,x,) a
non-central multilinear polynomial over K. Let a, b, c,u,q € R be such that q is
an invertible element of R and

[a(bf(sl, e ’sn) +CQf(Slv .. "Sn)q_lu)f(slv .. 'ssn)»rn+11| =0 (19)

forany sy, ...,s, € I andr,y1 € R. Then one of the following holds:

1. there exists u € Z(R) such that q~'ul = I and a(b + cu)I = (0);

2. there exists i € Z(R) such that g~ 'ul = ul, f(x1, ..., x,)? is central valued
on Randa(b + cu) € Z(R);

3. there exists u € Z(R) such that q~'ul = pl and f(x1, ..., X,)Xu11 is an iden-
tity for I;

4. acql = abl = (0);

5. acql = (0), f(x1,...,x,)* is central valued on R and ab € Z(R);

6. acql = (0) and f(x1,...,X,)Xn11 is an identity for I;

7. Lf (1, .oy X)),y Xug1 1 Xuao is an identity for 1.

Proof Denote e;; the usual unit matrix with 1 in (i, j)-entry and zero elsewhere,
acqg =Y, Ameims 4" =Y, bimeim, for ay,, by, € K.

Since there exists a set of matrix units that contains the idempotent generator
of a given minimal right ideal, any minimal right ideal is part of a direct sum of
minimal right ideals adding to R. Hence we may assume that any minimal right
ideal of R is a direct sum of minimal right ideals, each of the form e;; R. More-
over [ has a number of uniquely determined simple components, that are minimal
right ideals of R and I is their direct sum. So we may write / = eR for some
e = Zip=1 e;;and p € {1,2,...,h}. Moreover p > 2, if not [/, ]I = 0 and a for-
tiori [ f (X1, ..., Xn), Xnt+11Xn42 1s an identity for 7.

Notice that, if » = 2 then p = 2 and I = R. In this case, the conclusion follows
from Proposition 3. Thus we may assume 2 > 3.

By Lemma 3 in [7], if [ f (x1, ..., X4), Xu+1]Xn+2 1S not an identity for 7, then for
ally € K,s < pandt # sthereexistry,...,r, € I suchthat f(r,...,r,) = yey.
Then, by our hypothesis we have that

yzacqes,q_'ues, € Z(R). (20)
Since (20) represent a matrix of rank 1 and y # 0, one has acge;, g~ 'uey; = 0, that
is

apshyy =0 Vs < p,t #s and Vk > 1. 201

Assume firstly there exist i, j < p and i # j such that bj; # 0. Then, by (21),
ay; = 0 for any k > 1. Consider the following automorphisms of R:
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(p’(x) =(1+ eji)x(l — e_,-i) =X+ejx —Xxej; —ejixej
<p”(x) = (1 - eji)x(l + eji) =X —¢€jX +X€ji —€jiXejj.

Note that ¢'(I) € I and ¢”(I) C I are right ideals of R satisfying

[w'(a)(sf(b)f(sl’ csn) + 0 Cq) fsta s ) n)(ﬂ/(qflu))f(sl, s Sn)s rn+1] =0 (22)
for any s1,...,s, € ¢'(I) and r,,y| € R, and
[w”(a)(w”(b)f(n ,,,,, sn) +¢"(cq) f(si, ..., Sn)(ﬂ”(qflu))f(ﬂ ~~~~~ Sn)s rn+1] =0 (23)

for any si,....,8, €9”(I) and r,4 € R. Denote ¢'(acq) =), a),€m-
¢'(q 7 w) =3, biem. ¢"(acq) =3, ajpem. ¢"(q"'u) =32, by, em, for
allm’ b;m’ al/:n’ b;;n € K

By calculation one has that b;i =bj; +bj; —bj; —bi; and b, =bj; — bi; +
bjj — bi;. In case both b; = 0 and b; = 0, then b;; = b;; # 0. Hence, by by (21),
axj = 0forany k > 1.

On the other hand, if b;.i # 0 (or b}’i # 0), then, again by (21), one has a;; =0
(or ay; = 0, respectively) for any k > 1. In particular, for any k # j, 0 =a; =
ari — ax; = —agj (or 0 = a;; = a + axj = ay;, respectively).

Therefore, in any case, a;; = 0 for any k > j and ay; = O for any k > 1.

Letnow r < p,r # j and consider the following automorphisms of R:

X' (x) =0+ ej)x(1 —e ) =x+e;x —xe; —ejxe
xX"(x) =1 —e)x(14e)) =x —ejx + xe,j — erjxey).
As above x'(I) € I and x”(I) C I are right ideals of R satisfying
[x/(a)(x’(b)f(m cs) A e f sy sm)x (@7 w) fsta s, rn+1] =0 (24)
for any s1,...,s, € x’(I) and r,41 € R, and
[x”(a)(x”(b)f(ﬂ, ccos)) X Fsta e sx (@ ) fsta $n) rn+1] =0 (25

for any sy,...,s, € x”I) and r,4 € R. Denote x'(acq) = Zlm aj eim,
X' (@7 w)y =3, binems x"(acq) =3, aprem, x"(q'u) =3, biem, for
Qs Dpys g by, € K. Since b7 = bl = bj; # 0 and by the above argument, we

get both ¢ = 0 and @} = 0, for any k # .
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In particular, for any k # r, j

n

0=a; =arj — akr = —a.
Moreover, for k = r,
0 . " __ .
=a,; =0t ajj =y —ajy =ajj — ary —ajr

and
0=a,;=a;—aj+a,—ajy=—aj+a,—aj.
These last two relations imply that a;; = a,, and a;, = 0.
Summarizing, we obtain the following conclusion:

— If there exist i, j < p, i # j such that b;; =0, then ay, =0 and a,, = aj;, for
anyr < pandk #r.

This means that there exists A € Z(R) such that acql = Al.
If we suppose A # 0, by (20) it follows

y*renq 'uey € Z(R)

thatis b,y = 0,acontradiction. Thus A = 0,acql = (0) and, by our main assumption,
we have

|:abf(sls ey sn)za rn+1:| =0

for any sy, ...,s, € I and r,4; € R. Hence, by Lemma 4 it follows that one of the
following holds:

1. f(xq,...,Xy)X,41 is an identity for 7;
2. abl = (0);
3. abeCand f(xy,..., x,)? is central valued on R.

In any case we are done.

Assume finally b,; = 0, forany s, < p andt # s. Then, by (21), a;; = 0 for any
k> 1.Leti, j < p,i # j and consider again the above defined automorphism ¢’ of
R:

P(x)=0+ej)x(1 —ej;) =x+ejix —xej; —ejixej;

where ¢'(acq) =Y, aj,em and ¢'(q"'u) = 3", b, €im.
If b'; # 0, by using the above argument, we obtain ¢’(acq)¢’(1) = (0), that is
acql = (0) and, as previously remarked, the concusion follows from Lemma 4.
Thus we may admit that, for any i, j < p, i # j, the automorphism ¢’ of R is
defined in such a way that b/ji = 0, that is

0= b;l = bji +bii — bjj — b,‘j = b,’i _bjj~
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Hence, we obtain that
— b,y =0and b, = by, forany s, t < p andt #s.

Therefore there exists 1 € Z(R) such that ¢g~'ul = I and, by our hypothesis,
it follows that

[a(b—i—cu)f(sl,...,sn)z,rn+1:| =0 (26)

for any sy, ...,s, € I andr,4+1 € R. Application of Lemma 4 implies that one of the
following conclusions holds:

1. f(x1,...,Xy)Xp41 is an identity for 7;
2. alb+ cu)l = (0);
3. alb+cu) e Cand f(xy,..., x,)? is central valued on R
as required. (]

Remark 2 ([4, Lemma]) Let I be a nonzero right ideal of R and p € Q. Then the
following conditions are equivalent:

L. [p, 111 = (0);
2. there exists 8 € C such that (p — 8)I = (0).

Lemma 7 Let R be a noncommutative prime ring of characteristic different from
2 with right Martindale quotient ring Q and extended centroid C, I a nonzero
right ideal of R. Let f(xi, ..., x,) be a non-central multilinear polynomial over C,
a,b,c,u,q € Q be such that q is an invertible element of R and I satisfies

a(bf(xl,...,xn) +cqf(x1,...,x,,)q_lu)f(xl, ...,xp) €C. 27

If R does not satisfy any non-trivial generalized polynomial identity, then one of the
following holds:

1. there exists u € C such thatq’lul =ul and a(b + cu)l = (0);
2. acqgl = abl = (0).

Proof For any w € I, R satisfies the generalized polynomial identity

I:a(bf(wxl, e wxy) Feqf (wxy, ..., wx,,)qilu)f(wxl, e, WX, xn+1i| (28)

Since (28) must be trivial generalized polynomial identities for R, by [15] it follows
that abw = X,acqw, with A,, € C is depending on the choice of w € I. Hence (28)
reduces to

[acqf(wxl, o wxy) (A + q_lu)f(wxl, C WX, xn“]. 29)
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Once again (29) is a trivial identity for R. This implies that either acqw = abw =0
or (A, +g 'w)yw = 0.

Therefore each element of / belongs to one of the sets S = {x € [ : acqx =
abx =0}and S; = {x € I : (A, + ¢ 'u)x = 0}. That is to say, I is the union of its
additive subgroups S; and S,. However a group cannot be the union of two proper
subgroups, so we have that either I = S, or I = S,. Hence, either acqx = abx =0
forallx € I,or [¢g 'u, x]x =0forallx € I.

In this last case, by (27), it follows that and I satisfies

a(b+cu)f(xi,...,x2)* €C. (30)

Hence, since R does not satisfy any non-trivial generalized polynomial identity, and
by Lemma 4, we conclude that a(b + cu)I = (0). O

Proposition 4 Let R be a noncommutative prime ring of characteristic different
from 2 with right Martindale quotient ring Q and extended centroid C, I a nonzero
right ideal of R. Let f(xy, ..., x,) be a non-central multilinear polynomial over C,
a,b,c,u,q € Q be such that q is an invertible element of R and

[a(bf(sl, ey Sp) Feqf (s, ..., sn)q_lu)f(sl, cees Sn)s rn+1] =0 3D

forany sy, ...,s, € I andr,y1 € R. Then one of the following holds:

1. there exists . € C such that g~'ul = pl and a(b + cu)l = (0);

2. there exists w € C such that g 'ul = pl, f(x1,...,x,)?* is central valued on
Randa(b+ cu) € C;

3. there exists u € C such that q‘lul =l and f(x1,...,X,)Xn+1 is an identity
forI;

4. acql = abl = (0);

5. acgl = (0), f(xq,... , X,)2 is central valued on R and ab € C;

6. acql = (0) and f(x1,...,X,)Xns1 is an identity for I;

7. Lf (1, ooy X)),y Xng1 1Xuao is an identity for 1.

Proof Since if R does not satisfy any non-trivial generalized polynomial identity
the result follows from Lemma 7, in all that follows we may assume that R satisfies
some non-trivial generalized polynomial identity, thatis R is a GPI-ring. By [40] RC
is a primitive ring and so Q has nonzero socle H with nonzero right ideal / = I H.
Moreover J and [ satisfy the same generalized identities with coefficients in Q. Thus
replace R by H and I by J, then without loss of generality we may consider that R
is a simple ring and equal to its own socle and I = I R.

Notice that, if [¢~'u, I1I = (0), then, by Remark 2, there exists u € C such that
g 'ul = pI and

|:a(b+cu)f(s1,...,sn)z,rn+1:| =0 (32)
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for any sy, ...,s, € I and r,+1 € R. Similarly, if acql = (0) then
|:abf(sls -n’sn)za rn+1:| =0 (33)
for any sy, ...,s, €  and ;4 € R.
In any case, we obtain the required conclusions as an application of Lemma 4.
Here, by contradiction, we assume that there exist kg, k1, ha, ..., hy4q € I such
that
L. [g~"u, holhy # 0;
2. acqh, #0;

3. [f(h% cee hn+2)v hn+3]hn+4 75 0.

Moreover choose F to be the algebraic closure of C or C, according to |C| = oo or
|C| < oo. Note that I H @ F is a completely reducible right H ®c F-module such
that

I:a(bf(sl, ey Sp) Feqf(st, ..., sn)qflu)f(sl, e Sn), rn+1:| =0 (34)

foranysy,...,s, € IH Q¢ Fandr,;; € H Q¢ F.Thus there exists an idempotent
h € IH ®c F such that hg, hy, ha, ..., hyq € h(IH ®c F). By Litoff’s Theorem
(for a proof see [29]) there exists e? = e € H @ F such that

h,cqh, heq, g~ 'uh, hq='u, bh, hb, ah, ha,h; € e(H ®c F)e Vi =0,...,n+4
with e(H ®c F)e = My (F), for k > 2.

For all sy,...,s, € he(H ®c F)e C (IH ®c F)Ne(H ®c F)e and r,.| €
e(H ®c F)e, we have

0

[a(bf(sl ~~~~~ Sp) + qu(sl ----- sn)q_lu)f(sl ~~~~~ Sn), rn+1]

[a(bhf(sl ~~~~~ Sp) + thf(sl ~~~~~ Sn)qiluh)f(sl sssss Sn)s rn+1:|

= [(eae)((ebe)f(sl, coySp) + (ecqe) f(s1, ..., sn)(eqflue))f(sl, ceesSn), rn+1:| =0.

By Lemma 6, we have that one of the following holds:

1. [e(q’lu)e, he(H ®c F)elhe(H ®c¢ F)e = 0, which implies the contradiction
0#£ [q’lu, holh; = [eq’lue, hehyelheh e = 0;

2. (eae)(ecqe)he(H ®@c¢ F)e = 0, which implies the contradiction 0 # acqgh, =
(eae)(ecqge)hehre = 0;
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3. he(H ®c F)e satisfies [ f(x1, ..., Xn), Xn+1]Xn42, Which gives again a contra-
diction, since

[f(hehse, ..., hehyipe), hehyizelhehyae = [f(h3, ... hyt2), hyg3lhypq # 0]

Proposition 5 Let R be a noncommutative prime ring of characteristic different
from 2 with right Martindale quotient ring Q and extended centroid C, I a nonzero
right ideal of R. Let f(xy, ..., x,) be a non-central multilinear polynomial over C,
a,b,c,u € Q, @ € Aut(R) be such that

[a(bf(sl, cees Sn) +COl(f(S1, e, sn))u>f(s1, ceesSn)s r,H_1i| =0 (3%)

forany sy, ...,s, € I and rpq) € R. If o is not an inner automorphism of R, then
one the following holds:

1. aca(l) =abl = (0);

2. aca(l) =), f(xi1,..., x,)? is central valued on R and ab € C;

3. aca(l) =0and f(xy,...,Xy)Xny1 is an identity for I;

4. ul =abl = (0);

5 ul =(0), f(x1,...,x,)?% is central valued on R and ab € C;

6. ul =0and f(x1,...,X,)Xy41 is an identity for I;

7. Lf (1, ooy X)),y Xnp1 1 Xnso is an identity for 1.

Proof Clearly, in case either ul = (0) or aca(I) = 0, then abf(r, ..., r,)> € C,
for all ry, ..., r, € I and the conclusion follows from Lemma 4. Thus we suppose
there are v, v, € I such that aca(vy) # 0 and uv, # 0.

We remark that, if aca(vy — v,) = 0, then aca/(v;) # 0 follows. Analogously, in
case u(vy — v) = 0, one has uv; # 0.

Hence one of the following cases must occur:

— aca(vy) # 0 and uv; # 0;
— aca(vy) # 0and uv, # 0;
—aca(vi —vy) Z0and u(vy —vp) # 0.

In any case, there exists a suitable element w € I such that aca(w) # 0 and uw # 0.
For such an element 0 # w € I, R satisfies

|:a<bf(wx1, Wiy Fef Y (awalxy), ..., oz(w)ot(xn))u>f(wx1, e, WXp), xn+1].

(36)
Since « is X-outer, by Theorem 3 in [17], R satisfies

|:a <bf(wx1, e wxy) Fef (aw)y, -, ot(w)yn)u)f(wxl, ce WX, xn+1]
(37
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and in particular R satisfies the component

[a (cf"‘(a(w)yl, ... ,oe(w)yn)u)f(wxl, WX, xn+1i|. (38)

Since aca(w) # 0 and uw # 0, we have that (38) is a non-trivial generalized poly-
nomial identity for R. By [40] Q is a primitive ring having nonzero socle H with the
field C asits associated division ring. Moreover R and Q satisfy the same generalized
polynomial identities with automorphisms [17, Theorem 1]. Therefore Q satisfies
(36). Suppose there existay, ..., a,42 € I suchthat[f(ay, ..., a,), apr1lansa # 0.
Since Q is a regular GPI-ring, there exists an idempotent element e € I Q such that
eQ = Zl'.‘:ll a;Q+wQandw = ew,a; = ea;,foranyi =1, ...,n + 1. Therefore,
by (36), Q satisfies

[a(bf(exl ,,,,, exp) + cf*(a(e)a(xy), ..., ot(e)oz(xn))u)f(exl ,,,,, ex,,),x,H_l]. (39)

We may assume e # 1, if noteQ = Q and we conclude by Proposition 3. Moreover,
as above, relation (39) implies that Q satisfies

|:acf"‘(ot(e)y1, oal@)yuf(exy, ..., exy), xn+1i|.

Replacing x4 with (1 — e)x,4; and x; with x;e, for any i = 1, ..., n, it follows
that Q satisfies

(1 —e)xpracf(a(e)yy, ..., ale)y)uf (exe, ..., exye).

Hence, by the primeness of Q and since e # 1,

acf(a(e)ry,...,ae)ruf(esie,...,es,e) =0
forany ry, ..., 7, S1,...,8, € Q.
Since f(ea, ..., eay)ea,+1 # 0 and uew # 0, by Fact 5 it follows that

acf*(a(@)yr, ..., a(€)yn)

is a generalized identity for Q. By using the result in [18] and since aca(w) # 0,
f%a(e)yr, ..., a(e)y,) is also an identity for Q. The last identity clearly leads to
the fact that Q satisfies f(ea™'(y1), ..., ea”'(y,)), therefore f(ex,, ..., ex,)isan
identity for Q, a contradiction. O
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5.1 The Proof of Theorem 3

Proof Let b, c € Q and d be a skew derivation of R such that G(x) = bx + cd(x).
In the case d is an inner skew derivation of R, the proof of our main result is contained
in Propositions 4 and 5. Therefore, in all that follows we assume that d is not inner.

As above, we write f(x1,...,Xx,) = des” VoXo(l)*** Xo@m) With Y, € C and
denote by f¢(xy, ..., x,) the polynomial obtained from f(xi, ..., x,) by replacing
each coefficient y, with d(y,), and f*(xy, ..., x,) the polynomial obtained from
f(x1, ..., x,) by replacing each coefficient y, with a(y,).

Since I Q satisfies

aG(f(x1, ..., x N f(x1,...,xp) €C

then, for all 0 # u € I, Q satisfies

|:a<bf(ux1 ..... Uxy) +cfd(ux1 ..... ux,J)f(uxl ..... ux,l),x,1+1i|

n—1

+ |:HC<Z a(ye) Za(uxnm e UXg () (UXg (j 1) UX (j42) - - .uxa(m)f(um ,,,,, uxn),xn+|i|-

eS8, j=0
(40)
By [19, Theorem 1], Q satisfies

[a(b.f(uxl ----- uxy) + Cfd(uxl ----- uxn))f(uxl vvvvv uxy), xn+l]

n—1

+ [ac(z (Vo) Y oUXot) - . txe(j))d WX (j11) - - .uxg<n>>,f<ux1 ..... uxn),xm]

oES, Jj=0
n—1

+ |:at< Z a(¥s) Za(uxa(l) e UXG () (U) Yo (j+1) UK (j42) - - - uxa(n))f(uxl ,,,,, uxy), Xn+1]~
o€ES, j=0
41)

Of course we suppose [ (X1, ..., Xy), Xnt+1]Xs+2 s not an identity for /. Thus
there exist aj, ..., a,12 € I suchthat [ f(ay,...,a,), dyr1 + aysnz # 0.

Case 1. We firstly assume aca(I) = (0)

In this case, and supposing in addition that acd (1) = (0), one has that [ satisfies
abf(xy,...,x,)? € C.

Hence, by Lemma 4, and since f(xy, ..., X,)X,+1 is not an identity for /, it fol-

lows that either abl = (0) (that is aG(x) =0, for any x € I) or ab € C and
f(x1, ..., x,)?is central valued on R, as required.
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Thus, we suppose there exists w € I such that acd(w) # 0. By (40), and since
aca(w) = 0, it follows that Q satisfies

|:a(bf(wx1, WXy + cfd(wxl, e, wxn)>f(wx1, WX, xnﬂ}
(42)
+ [ac(z a(Ye)dW)Xe 1)) WX5(2) - . . wx,,(,,)>f(wx1, e, WX, x,,H].

o€S,

Since acd(w) # 0, (42) is a non-trivial generalized polynomial identity for Q, then
O has nonzero socle H which satisfies the same generalized polynomial identities of
Q. Since R is prime, acd(w) # 0 implies Iacd(w) # (0), that is there exists w' € 1
such that w'acd(w) # 0. Without loss of generality R is simple and equal to its own
socle, IR =1 and a € I. In fact, R is GPI and so Q has nonzero socle H with
nonzero right ideal J = I H [40]. H is simple and J = J H satisfies the same basic
conditions as I. Now just replace R by H and I by J.

Moreover R = H is a regular ring, hence there exists g = g* € R such that
wR+wR+ Z:’: R=gR. ThengeIR=1I1,w=gw,w =gw,and a; = ga;
foreachi =1,...,n + 1. Since gR satisfies the same generalized identities with
skew derivations and automorphisms of /, we may also assume g # 1,ifnotgR = R
and the conclusion follows from Theorem 10.

Forall sy,...,s, € gR and r,+1 € R, we have

iﬂ(bffslg,--.,sng)-+»cfd(slg,.--,sng)>‘f(slg,.--,sng),(l —-g)rn+1}

e

that is

Z a(Vs)d(8)So(1)8)Ss(2)g - - -S(r(n)g)f(slg, oo 88), (1= g)”n+1:| =0

o€S,

a —g)rn+1{a<bf(sl,.--,Sn)+0fd(S1,---,sn))f(Sh-.-,Sn)g

(43)
+ ac(Z a(Y5)d(8)So(1))So(2) - - -Sa(n))f(slv e Sn)g} =0
o€ES,
By the primeness of R and since g # 1,
a(bf(sl,...,s,,) +cfd(s1,...,sn)>f(s1,...,sn)g
(44)

+ aC(Z a(ya)d(g)sa(l))s(r@) ce Sa(n))f(sla ey Sn)g =0

o€eS,
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foranysi, ..., s, € gR.Sinceaca(g) = 0 and left multiplying (44) by w’, it follows
that g R satisfies

{(w/ab)f(xl,...,x,,)z—f— (w’ac)d(f(xl,...,xn)>f(x1, ...,x,,)}g (45)

Let gR = W;ﬁgm and notice that gR is a prime C-algebra. If we define the

following map on R
F(x) = Wab)x + W'ac)d(x) Vx € R
it is easy to see that F(gR) € gR. Thus we may introduce

F:gR — gR

such that F(¥) = F(x),forall x € gR. Clearly F is a X-generalized skew derivation
of gR and, in light of (45),

{f(f(xl, e xn>>f(x1, e m}g

is an identity for g R. In particular

F(f(xl,...,x,,))f(xl,...,xn):6. (46)
Application of Corollary 1 implies that one of the following holds:
- [f(x1, ..., Xn), Xpe11x,42 1s an identity for g R, which gives a contradiction, since
[f(gai,...,ga,), gant11gani240

— w'acg = 0, which is again a contradiction, since 0 # w'acd(w) = w'acd(gw) =
wacgd(w').

Case 2. In all that follows we assume there is u € I such that aco (1) # 0
Starting from (41) Q satisfies
n—1
[ac( Z o (Yo ) Z a(UXg (1) - - UXg ;)W) Yo (j+1)UXe (j42) - - .ux(,(n)>f(ux1 ,,,,, uxp), x,,+1].
oSy Jj=0
47)
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Since 0 # aca(u), (47) is a non-trivial generalized polynomial identity for Q, then
0 has nonzero socle H which satisfies the same generalized polynomial identities of
Q. In order to prove our result, we may replace Q by H and assume that Q is aregular
ring. Thus there exists 0 # e = e? € I Q such that Z?ill a;Q+uQ=eQ,u=cu
and a; = ea; foreachi = 1,...,n + 1. As above, we may also assume e # 1, if not
the conclusion follows from Theorem 10.

Assume that « is X-outer. Thus, by (47) it follows that Q satisfies

n—1

[aC<Z a(Ys) Za(e)Zau) ca(@)ze())a(@) Yo (j+1)eXs(j+2) - - -exnm))f(exl ----- ex,), xn+1i|-
o€eSy, Jj=0
(48)

In particular, by (48) Q satisfies

gl

D ava@)yoq - 'a(e)yc;(n))f(exl, Cees€Xp), xn+1]. (49)

0ES,
Thus
I:acfa(oz(e)rl, A a(e)rn)f(esle, ..., ese), (1 — e)r,,H] =0 (50)
forallry,...,rn, 1, ..., 80, Fur1 € Q. Hence we get

(1 —e)yryppacf*(ale)r, ..., oe(e)r,,)f(esle, c..,es,e) =0
and, by the primeness of Q and since e # 1, it follows that Q satisfies
acf*(a(e)ry, ..., ot(e)rn)f(esle, ...,es,e) =0

Since  f(eay,...,eay)ea,r1 #0 and by Fact 5, it follows that
acf*(a(e)yr,...,a(e)y,) is a generalized identity for Q. Moreover, by [18]
and since aca(u) # 0, Q satisfies f*(a(e)yi,...,a(e)y,). As in the proof of
Proposition 5, this implies that f(exy, ..., ex,) is an identity for Q, a contradiction.
Finally consider the case when there exists an invertible element ¢ € Q such that
a(x) = gxg~!, for all x € Q. Thus from (47) we have that Q satisfies

n—1

[aC( Z a(Yo) Z qexg(1y - ‘exa(j))eq_l)’a(j+1)ex0(j+2) - 'EXJ(n))f(em ----- exn), xn+1]

o€eSy j=0
(51
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Since a(y,) = ¥, and by replacing y, ), with gx,;), for all o € S, and for all i =
1, ..., n, it follows that Q satisfies

[acq (Z Vo€Xa(l) * - €Xo(j)€Xo(j+1)€Xo(j+2) " * exa<n>> flexy, ..., exy), xn+1}

o€eS,
(52)
that is

|:acqf(ex1, o exy)?, x,1_,_1i|. (53)

By Lemma 4, it follows that one of the following holds:
1) f(xp,...,x)xp41 18 an identity for eQ, which contradicts

[f(ai, ..., an), ant1lania # 0;

(ii) acge = 0, whichis again acontradiction, since 0 # acq(u)q™' = acq(eu)q™";

(iii) acq € C and f(xi, ..., x,)?* is central valued on Q.

In order to complete our proof, we have to discuss only the last case (iii).
Since 0 # acq € C and by replacing in (51) ys¢) with gys (), forall o € S, and
foralli =1, ..., n, it follows that Q satisfies

n—1
[(Z Yo Z €Xo(1) " €Xo(j)€Vo (j+1)€Xa(j+2) """ exa(n)>f(€x1, s eXp), Xn+1]
oES, j=0

and, in particular, forany i = 1, ..., n, Q satisfies

[(Z VolXg(l)** €Yo(i) " '€Xa(n))f(exl, CoeseXp), xn+li|- (54)

o€eS,

For y;i) = 0 when i # 1, (54) leads to the identity

[€Y1< > Veexon) exa(n)>f(6’x1, s €Xp), Xn+1]- (55)

(TES,,,1

We denote Zoes,,,l Vo)Xo(2) ** Xom) = (X2, ..., X,), then Q satisfies

|:eylet1 (exa, ...,ex,) f(exy, ..., ex,), xn+1]. (56)

In particular,

0= |:eylet1 (exa, ..., ex,) f(exy,...,exy), X1 (1 — e)i| 57)

= eyjeti(exy, ..., ex,) f(exy, ..., ex)xp1(1 —€)
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and, by the primeness of Q,

ti(exy, ..., ex,) f(exy, ..., ex,) = 0.
Repeating the same above process, for any i = 1, ..., n we arrive at
ti(exy, ..., exi—1,exXiy1, ..., exy) f(exy,...,ex,) =0 Vi > 1. (58)

Finally notice that

fO . x,) = ijtj(xl, e X Xl e X)),
j

where any ¢; is a multilinear polynomial of degree n — 1 and x; never appears in

any monomial of ¢;. This remark and relation (58) lead to f(exy, ..., exp)? = 0.
By [18], we conclude that f(exy, ..., ex,)e must be an identity for Q, which is a
contradiction again. O
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Commutative Polynomial Rings which m
are Principal Ideal Rings i

Henry Chimal-Dzul

Abstract A well-known result by Zariski and Samuel asserts that a commutative
principal ideal ring is a direct sum of finitely many principal ideal domains and
Artinian chain rings. Based on this result, it is shown, among other things, that a
commutative polynomial ring R[x] is a principal ideal ring if and only if R is a finite
direct sum of fields.

Keywords Principal ideal ring - Polynomial ring - Principal ideal domain -
Artinian chain ring + Bézout domain

1 Introduction

A first exposure to the theory of rings almost certainly involves a study of various
examples of principal ideal rings. The most common examples are the ring of integers
Z and the polynomial ring K [x] with coefficients in a field K. These are also exam-
ples of Euclidean domains. In general, it is well known that Euclidean domains are
principal ideal rings and that there are principal ideal rings which are not Euclidean
domains (see [4] and [3, Example 3.79] for more details). However, even with these
results in hand, more than likely K [x] is the only example that we would have come
across of a commutative polynomial ring that is a principal ideal ring. This remark
brings up the discussion of when a commutative polynomial ring is a principal ideal
ring.

The main goal of this paper is to characterize all commutative polynomial rings
R[x] which are principal ideal rings. We prove that R[x] is a principal ideal ring if and
only if R is a finite direct sum of fields. This result shows that in the commutative case,
polynomial rings with coefficients in a field are the building blocks of polynomial
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rings that are principal ideal rings, a fact that has been proved in [1, Theorem 2.3]
for finite commutative rings only. Thus, the main result in this paper, Theorem 4,
generalizes [1, Theorem 2.3] to arbitrary commutative rings.

In the background of the main contribution of this paper stands a more general
result by Zariski and Samuel [5], which establishes that a commutative ring is a
principal ideal ring if and only if it is a direct sum of finitely many principal ideal
domains and Artinian chain rings. For the reader’s convenience, this background
material is presented in Sect.2. Section3 focuses on the main result of this paper,
which will be derived from studying polynomials over integral domains and local
rings (Theorems 2 and 3). In view of this study, we obtain that if R is an integral
domain or an Artinian local ring that is not a field, then R[x] is not a PIR. In Sect. 4,
we show how to construct some families of non-principal ideals in a polynomial ring
over an integral domain (resp., over an Artinian chain ring) with irreducible elements
(resp., with zero divisors). This leads to simple examples of integral domains and
unique factorization domains which are not Bézout domains.

2 Structure Theorem of PIRs

Throughout this paper, unless otherwise stated, all rings are assumed to be commuta-
tive with identity. Let R be aring. As often, R[x] denotes the ring of all polynomials in
an indeterminate x with coefficients in R; a; R + - - - 4+ a, R the ideal of R generated
byai,...,a, € R;and U(R) the group of units of R. The quotient ring Z/mZ will
be written as Z,, and its elements will be identified with the integers O, 1, ..., m — 1.

Recall that a ring in which every ideal is principal is called a principal ideal
ring (PIR). A principal ideal domain (PID) is an integral domain that is a PIR. The
following facts about PIRs are well-known and will be frequently used in this paper.

Lemmal /. IfRisa PIR then R/I is also a PIR for any ideal I of R.
2. The direct sum @B_, R; is a PIR if and only if so are all the rings Ry, ..., R,.

A local ring is called an Artinian chain ring if its maximal ideal is principal and
generated by a nilpotent element. It can be proved that an Artinian chain ring <7 with
maximal ideal 6.7 is a PIR and that every proper ideal of .2 is of the form 6.7 for
some i > 1. One may view fields as Artinian chain rings having zero maximal ideal.
Artinian chain rings are also referred to as special PIRs in [5, Sect. 15, p. 242].

Theorem 1 ([5, Theorem 33, p. 245]) Every PIR is (isomorphic) to a direct sum of
finitely many PIDs and Artinian chain rings.
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3 Characterization of Polynomial Rings that Are PIRs

In this section, we give necessary and sufficient conditions under which R[x] is a
PIR. Although, for our purposes, it is sufficient to study polynomials over PIDs and
Artinian chain rings, we extend our analysis to polynomials over integral domains
and local rings.

We start regarding the case when R is an integral domain. First, recall from [3,
Sect.7.2] that every PID is a unique factorization domain (UFD), every polynomial
ring over a UFD is also a UFD, and that prime and maximal ideals coincide in a
UFD.

Theorem 2 For an integral domain &, P|x] is a PIR if and only if 9 is a field.

Proof By Lemma 1, if Z[x]is a PIR then 2 = Z[x]/x2Z[x] is a PIR. Indeed, note
that & is a PID. Thus, & is a UFD, where it follows that 2[x]is a UFD. Consider the

map ¢ : Y[x] — 2 defined by go( Yo ﬁxi) = fo. Then ¢ is a ring epimorphism.
Hence Z[x]/ ker ¢ = 2, and so ker ¢ is a prime ideal of Z[x]. Since Z[x] is a UFD,
ker ¢ is maximal. Therefore & is a field. The converse is clear.

Let < be an Artinian chain ring with maximal ideal 6.« and K = &/ /0.7 (the
residue field of o). Note that the natural ring epimorphism ~ : &/ — K, defined
as a — a = a + 047, induces a polynomial ring epimorphism @ : o/[x] — K[x]

given by
@(Zﬁxi) = Z?l»xi. (1)
i=0 i=0
The kernel of ® is

kerCD:{Zfixieszf[x]  fi€ebd,0<i<n, neN;=0dx]
i=0

If e is the nilpotency index of 6, then (ker ®)¢ = (0./[x])¢ = 6°</[x] = 0. Thus
ker @ is a nilpotent ideal of <7[x], and so every element of ker @ is nilpotent.

Lemma 2 Let &7 be an Artinian chain ring with residue field K. The group of units
of I x]is
UIx)={u+f :uelU(), f € kerd}.

Moreover, ®(f) € K|[x] is a unit if and only if f € U (</[x]).

Proof First observe that for every f € ker @, 1 + f € U(&/[x]) because 1 = 1 +
fr=0+HU=f+f2+--+ (=D f, Thus, for any u € U(</) and
feker®, u+ f e U(A[x]) because u + f =u(1 +u~'f) and u' f € ker ®.
Consequently, {u + f : u € U(), f € ker ®} C U(«/[x]). To prove the reverse
inclusion, let a € U (</[x]). Then ®(a) € U(K[x]). An element g € K[x] is a unit
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if and only if 0 # g € K. Thus 0 # ®(a) € K, where it follows that a = u + f,
where u € U(&/) and f € ker ®.

Theorem 3 For a local ring R, R[x] is a PIR if and only if R is a field.

Proof Assume that R[x] is a PIR. Then R = R[x]/xR[x] is a PIR by Lemma 1.
Hence R is a direct sum of finitely many PIDs and Artinian chain rings. Since R
is local, R is not a direct sum of two or more rings. Hence, R is either a PID or
an Artinian chain ring. If R is a PID then Theorem 2 implies that R is a field.
Thus, assume that R is an Artinian chain ring with residue field K. Let I be the
preimage of the ideal x K [x] of K[x] under the ring epimorphism & defined in (1).
Let ¥ : R[x] — K[x]/xK[x] be the map given by a — ®(a) + xK[x]. Then W
is a ring epimorphism, and so W induces a ring isomorphism U : R[x] /ker ¥ —
K[x]/xK|[x]. Since K[x]/xK[x] = K, it follows that ker W is a maximal ideal
of R[x]. Because R[x] is a PIR, there is f € R[x] such that ker ¥ = f R[x]. Since
x € ker W, thenx = fgforsomeg € R[x].Hencex = ®(x) = ¢(f)P(g) € K[x].
The polynomial x is irreducible in K [x], so either @ ( f) or ®(g) isunitin K [x]. Since
ker W is maximal, @ (f) isnotaunitin K [x]. It follows that ®(g) isaunitin K [x]. By
Lemma 2, g € U(R[x]). Therefore ker ¥ = xR[x], and so R = R[x]/ker ¥ = K,
where we obtain that R is a field. The converse is simple.

We are now in a position to prove the main result of this paper.

Theorem 4 The polynomial ring R[x] is a PIR if and only if R is a finite direct sum
of fields.

Proof Assume R[x]isaPIR.ByLemma 1, R = R[x]/xR[x]isaPIR. Thus, in light
of Theorem 1, R is a direct sum of finitely many PIDs and Artinian chain rings, say
R=92® - ®%2,® A P - P H,, where each ; is a PID and every «7; is an
Artinian chain ring. This decomposition extends to a polynomial ring isomorphism
RIxX1ZE D[x]-- D Dulx] D Alx] D - -+ & H,[x]. Lemma | implies that for all
i, j, Z;[x] and «7;[x] are PIRs. By Theorem 2, &;[x] is a PIR if and only if &; is a
field. Likewise, by Theorem 3, #7;[x] is a PIR if and only if 7 is a field. Hence R
is a finite direct sum of fields. The converse is evident.

Theorem 4 generalizes [1, Theorem 2.3], where it was shown that for a finite
(commutative ring) R, the polynomial ring R[x] is a PIR if and only if R is a direct
sum of finitely many finite fields. Some examples of finite rings R are analyzed in
[1] to determine whether R[x] is a PIR or not.

The following result is an instance of Theorem 4 and will allow us to provide some
examples of polynomial rings that are PIRs (with either finitely many or infinitely
many elements).

Proposition 1 Let 7 bea PID,0 # d € 9 anon-unit,and R = 9 /d 9. Then R[x]
is a PIR if and only if d is a product of distinct irreducible elements in 9.
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Proof Since d # 0 is a non-unit and Z is a PID (and so a UFD), d can be
expressed as a product of irreducible elements in &, say d = p{' --- p%. Notice
that the ideals p{" 2 and pj.["@ are comaximal whenever i # j. Therefore, by the
Chinese Remainder Theorem (see [3, Exercise 7.14]), we obtain R = Z/d 9 =
2/p'P® - ®D/pD. Let o = P/p{" 2. Then & is an Artinian chain ring
with maximal ideal p; 7. The nilpotency index of p; is «;. As in the proof of The-
orem 4, R[x] is a PIR if and only if <7 is a field for all 1 < i < n. But &7 is a field
if and only if ¢; = 1. Thus R[x] is a PIR if and only if d is a product of distinct
irreducible elements in 2.

Remark 1 One may suspect that Propositional 1 can be stated for a UFD instead
of a PID. However, the fact that in a UFD irreducible elements could give rise to
prime ideals that are not maximal erases this possibility. For example, Z[¢] is a UFD
and f =t isirreducible in Z[¢]. But (Z[t]/tZ[t])[x] = Z[x] is not a PIR. Note that
tZ[t] is a prime ideal in Z[¢] but not maximal.

Corollary 1 The ring Z,,[x] is a PIR if and only if m is square-free.

The previous corollary has been derived in [1] using the characterization of finite
rings R for which R[x] is a PIR (see [1, Theorem 2.3 and Sect.3]). Here we have
recovered Corollary 1 from Proposition 1 by taking 2 = Z and d = m. Thus Propo-
sition 1 could be considered as a generalization of the remarks in [1].

Corollary 2 Let K be a field, f € K[t] and R = K[t]/f K[t]. Then R[x] is a PIR
if and only if f is a product of distinct irreducible polynomials in K [t].

For a ring R and a polynomial f =ay+ ait + ---+ a,t" € R[t], the formal
derivative of f is definedtobe f' = a; + 2ast + - - - + na,t" ' If R = K is afield,
then f is a product of distinct irreducible factors provided that f and f" are relatively
prime (see [3, Exercise 3.34]).

Example 1 Let R = Q[¢]1/fQ[t], where f = 2t* — 3t2 4+ 2¢ + 4. We would like to
determine whether R[x] is a PIR. The formal derivative of f = 2¢* — 3> +2r + 4
is f/ = 8t3 — 6t + 2, which factorizes as f' = 2(t + 1)(2t — 1)>. Now f’ and f are
relatively prime because neither ¢ 4+ 1 nor 2¢ — 1 divides f. Hence f is a product of
distinct irreducible factors in Q[¢]. Therefore, by Corollary 2, R[x] is a PIR.

4 Non-principal Ideals in Some Polynomial Rings

In light of Theorem 2, if R is an integral domain that is not a field, then R[x] is
not a PIR. Likewise, if R is a local ring with zero divisors then R[x] has at least
one non-principal ideal by Theorem 3. In this section, we construct some families of
non-principal ideals in R[x] in some of these cases.
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Proposition 2 Let R be an integral domain with at least one irreducible element p,
and f € R[x] of positive degree. If p does not divide f then I = pR[x] + xf R[x]
is a non-principal ideal of R[x].

Proof First, observe that / contains only polynomials in R[x] whose constant term
is divisible by p. Since p isirreducible, 1 ¢ I,i.e., I is a proper ideal of R[x]. For the
sake of contradiction, suppose that / = gR[x] for some g € R[x]. Since p € I then
g divides p. Because p is irreducible in R, then p is also irreducible in R[x]. Thus
g is a unit or g is an associate of p. Since [ is a proper ideal, g is not a unit. Hence g
is an associate of p. Consequently, I = gR[x] = pR[x]. Because f € I = pR[x],
then p divides f (a contradiction). Therefore / is a non-principal ideal of R[x].

Remark 2 It is important that the assumption on the integral domain R having at
least one irreducible element in Proposition 2 is sufficient but not necessary. That is,
there are integral domains 2 without irreducible elements for which Z[x] is not a
PIR. An example of such domains is the ring of all algebraic integers:

0 = {z € C| f(z) = 0 for some monic polynomial f(x) € Z[x]}.

There are no irreducible elements in & because any nonzero non-unit ¢ € ¢ can be
written as o« = /a/a. Note that /a € O since if f(x) =Y | a;x" is such that
f(e) =0 then /& is aroot of g(x) = Y1, a;x* € Z[x]. Lastly, we observe that
O'[x] is not a PIR. Indeed, if &'[x] is a PIR, then from Lemma 1 we obtain that & is
a PIR, and so a Noetherian domain, i.e., it satisfies the Ascending Chain Condition
on ideals (see [3, Sect.7.3] for more details). However, & is not Noetherian as, for
example,
30c3?pc3toc...c3Poc...

is an strictly ascending chain of principal ideals of &.

Example 2 Let Z[i] = {a + bi |a, b € Z} be the ring of Gaussian integers. The
norm of a Gaussian integer z = a + bi is defined as N(a + bi) = a® + b?. This
norm is multiplicative in the sense that N(zw) = N(z) N(w) for all z, w € Z[i].
Hence, an element z € Z[i] is a unit if and only if N(z) = 1. Moreover, if N(z) is
a prime integer, then z is irreducible in Z[i]. Thus, irreducible elements in Z[i] are
abundant. Consequently, for any irreducible w € Z[i] and f € Z[i][x] such that w
does not divide f, the ideal

Z[i][x] + xfZ[i][x]

of Z[i][x] is non-principal by Proposition 2. As a particular case, we can take f =
Il+x+---+x"andw =1+1.

Recall that a Bézout domain is an integral domain in which the sum of any two
principal ideals is principal. Every PID is a Bézout domain. On the other hand,
Bézout domains and UFDs are independent classes of rings in the sense that there
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are examples of Bézout domains that are not UFDs, and vice-versa. In the same vein,
Proposition 2 provides simple examples of integral domains and UFDs which are
not Bézout domains. Moreover, note that these rings are not Artinian.

‘We now turn our attention on non-principal ideals in .27 [x], where <7 is an Artinian
chain ring. The proof of Theorem 3 establishes that the preimage of the ideal x K [x] of
K [x], under the ring epimorphism @ : /[x] — K[x]definedin (1),is non-principal.
Note that ®~'(xK[x]) = 6.97[x] + x&/[x], where 0.<7 is the maximal ideal of <.
Thus, the ideal 6.</[x] + x7[x] of </[x] is non-principal. We now generalize this
construction.

Proposition 3 Let o/ be an Artinian chain ring with maximal ideal 0.5/ # 0 and
residue field K. Let @ : o/ [x] — K|[x] be the ring homomorphism defined in (1). For
any monic irreducible polynomial f € of/[x] and 0 # m € 0.7, the ideal m<f/ [x] +
fx] of &|x] is non-principal.

Proof Let | = m/[x]+ f/[x]. If 1 €I then 1 =ma + fb for some a,b €
o/ [x]. Since m € 6./, it follows from Lemma 2 that f € U(&/[x]), which is
a contradiction. Thus 1 ¢ I, that is, I is a proper ideal of <7[x]. For the sake
of contradiction, assume that 7 is principal. So, I = go/[x] for some g € o/[x].
Since f € I, we can write f = gh for some i € </[x]. Because f is irreducible,
either g or 4 is a unit. Since [ is a proper ideal, necessarily & € U(27[x]). Hence
I =go/[x] = fh~'e/[x] = f</[x]. Since f is monic irreducible, for any nonzero
polynomial a € 7[x], the product fa has positive degree. This shows that m ¢ I,
which is a contradiction. Therefore I is non-principal.

The previous result generalizes Theorem 2.2 in [1], which states that R[x] is not
a PIR whenever R is a finite local ring which is not a field. On the other hand, the
construction of non-principal ideals proposed in Proposition 3 depends on identifying
monic irreducible polynomials in 7 [x], where <7 is an Artinian chain ring. The
question of whether a polynomial in «/[x] is irreducible is a bit subtle in many
ways because of the presence of zero divisors. For instance, in the ring Z4[x], the
polynomial x + 2 can be written as

x+2=02x+DHC2x>+x+2). 2)

Although, we cannot conclude yet that x 4 2 is reducible in Z4[x] because 2x + 1 €
U (Z4[x]) (see Lemma 2). We now present a test for irreducibility for polynomials
with coefficients in an Artinian chain ring, which will lead us to the conclusion that,
for example, x + 2 is irreducible in Z4[x].

Lemma 3 Let o/ be an Artinian chain ring with residue field K. Let f € </ [x] and
® : [x] — K|x] be the ring homomorphism defined in (1). If ®(f) is irreducible
in K[x] then f is irreducible in </ [x].

Proof Assume that @ (f) is irreducible in K[x]. If f = ab for some a, b € <7 [x],
then ®(f) = ®(a)P(b). So either ®(a) or ®(b) is a unit in K[x]. Hence, in light
of Lemma 2, either a or b is a unit in .o [x]. It follows that f is irreducible in .o/[x].
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Remark 3 The converse of Lemma 3 does not hold in general. For example, f(x) =
x% + 2 € Z4[x] is irreducible but O(f) = x2 € Z,[x] is reducible. Note that Z, is
(isomorphic) to the residue field of Zj.

Irreducible polynomials in K[x], where K is a field, always exist: degree one
polynomials are irreducible. Thus, for an Artinian chain ring 7, polynomials of
the form f = a + bx for which b € U (&) are irreducible in <7[x]. On the other
hand, the existence of irreducible polynomials of degree higher than one in <7[x]
depends on the residue field K. If K is a finite field, then there exist irreducible
polynomials of any degree [2]. But, if K has characteristic zero then there may be
irreducible elements up to certain degree. For example, if R = R[a]/a"R[a] then R
is an Artinian chain ring with maximal ideal @R and residue field K = R. In this
case, there are only irreducible polynomials of degree up to 2.

Example 3 Theideal I = 2Z4[x] + 2x? + x + 2)Z4[x] of Z4[x]is non-principal.
To prove this, recall that 2x + 1 € U(Z4[x]).Thus, in view of (2), I can be written
as

I =274[x] 4+ (x 4+ 2)Z4[x].

Therefore, by Proposition 3, [ is non-principal.

Example 4 A polynomial f of degree 2 or 3 with coefficients in a field K is
irreducible if and only if f (k) # O for all k € K. It follows that x> + x> + 1 and
x3 4+ x + 1 are the only irreducible polynomials of degree 3 in Z,[x]. Thus, for
a fix integer k > 2, any polynomial f = x3 4+ ax? + bx + ¢ € Zx[x] such that
®(f) € {x34+x24+1,x* + x + 1} is irreducible by Lemma 3. Hence, by Propo-
sition 3, the ideal 2! Zy [x] + fZo«[x] of Zy[x] is non-principal for 1 <[ < k — 1.

Example 5 Let f =7 —1 e Q[t], k > 2 be an integer, and o/ = Q[t]/f*Qlz].
Since f isirreducible in Q[7], the ring 47 is an Artinian chain ring with maximal ideal
fof and residue field K = o7/ f.o/ = Q. Let p > 2 be a prime number and g »=
l+x+x>+ +x"' € [x]. Then®(g,) =1+ x+ x>+ - +xP71 € Q[x]
is the pth cyclotomic polynomial, which is irreducible in Q[x] by [3, Corol-
lary 3.104]. Thus, by Lemma 3, g, is irreducible in «/[x]. Therefore, the ideal
I, = fo/[x] + g,/[x] of o/[x] is non-principal for every prime number p > 2.
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Two Remarks on Generalized Skew m
Derivations in Prime Rings i

Vincenzo De Filippis and Francesco Rania

Abstract Let R be a prime ring of characteristic different from 2, Q, its right
Martindale quotient ring, F and G two non-zero generalized skew derivations of R,
associated with the same automorphism o and commuting with «. In this work we
describe all possible forms of F and G in the following two cases: (a) there exist
a,b € Q, and anon-central Lie ideal L of R suchthata F'(x)b = 0, forall x € L; (b)
there exist ay, a», by, by € Q, such that a; F(x)b, + a,G(x)b, = 0, for all x € R.

Let R be a prime ring with center Z(R), Q, its right Martindale quotient ring, C the
center of Q,, usually called extended centroid of R (see [1] for more details).
An additive mapping d: R —> R is said to be a derivation of R if

d(xy) =d(x)y +xd(y)

forall x, y € R. An additive mapping F': R —> R is called a generalized derivation
of R if there exists a derivation d of R such that

F(xy) = F(x)y + xd(y)
forall x, y € R.

Let R be an associative ring and « be an automorphism of R. An additive mapping
d: R — R is said to be a skew derivation of R if

d(xy) =d(x)y + a(x)d(y)
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for all x, y € R. The automorphisms « is called an associated automorphism of d.
An additive mapping F: R —> R is called a generalized skew derivation of R if
there exists a skew derivation d of R with associated automorphism « such that

F(xy) = F(x)y +a(x)d(y)

for all x, y € R. In this case, d is called an associated skew derivation of F and « is
called an associated automorphism of F.

In this paper we investigate some generalized differential identities involving
generalized skew derivations of a prime ring of characteristic different from 2.

In [2, Theorem 2.1] Bresar describes the form of three derivations d, g, h of a
prime ring R satisfying the condition d(x) = ag(x) + h(x)b, for any x € R, where
a,b e R\ Z(R). As a consequence he also studies the case when ag(x) + h(x)b =
0, for any x € R [2, Corollary 2.4]. More precisely, in this last case he concludes
that there exists A € C such that g(x) = [Ab, x] and h(x) = [ra, x], for any x € R.
The results by BreSar extend a theorem of Herstein contained in [12].

Following this line of investigation, J.-C. Chang generalizes the previous results
to the case of both skew derivation (see [3]) and generalized skew derivations (see
[4]).

Here we would like to continue the study of linear differential identities having
the same flavor of the above-cited ones, and involving generalized skew derivations.
In this sense, the main goal of the present paper is to prove the following theorems:

Theorem 1 Let R be a prime ring of characteristic different from 2, F a non-zero
generalized skew derivation of R, with associated automorphism o, and a, b non-zero
elements of Q, such that

aFw)b=0 Vwe L.

Then one of the following holds:

(a) the associated automorphism « is not inner and there exist c,u € Q, be such
that F(x) = cx + a(x)u, for any x € R, withac = ub = 0;

(b) thereexistc,u,q € Q,and ) € C suchthat F(x) = cx + a(x)u, foranyx € R,
where a(x) = gxq~', foranyx € R, witha(c + rq) = 0and (A + g~ 'u)b = 0.

Theorem 2 Let R be a prime ring of characteristic different from 2, F, G two non-
zero generalized skew derivations of R, associated with the same automorphism o
and commuting with «. Let ay, az, by, by be non-zero elements of Q, such that

a F(x)by + a,G(x)b, =0 Vx € R.

Then one of the following cases must occur

(a) There exist p,u,v,w,q € Q,, where q is an invertible element, such that
F(x) = px +qgxq~'u, G(x) = vx + gxq~'w, for any x € R, and one of the
following holds:
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1.

2.

there exist ay, as, az, as € C such that by = o1by + azq_lwbz, q‘lubl =
azby + a4q’1wb2 andajarp + azaiq + a,v = axa p + oua1q + arqg = 0;
there exist A, ap,ar,a3,a4 € C  such that q’lwbz =Aby, b =
(a1 + Aao)bs, 7 uby = (a3 + Aaw)by and (o + raz)aip + (a3 + hog)
aiqg +ax(v+ rg) =0;

there exist 0 # X € C and B, By € C such that a;p = Aaiq, axv = Braiq,
arq = Praiq and Aby + q_lubl + Biby + ,826]_1Wb2 =0;

there exist 0 # X € C and u, n € C such that a;p = ,aiq, a;(v + nq) =
naiq, (A +q~'u)by = —nby and q~'wby = jubs.

(b) There exist p,u,v,we Q, such that F(x)=px+ax)u Gkx)=
vx + a(x)w, for any x € R, and one of the following holds:

5.
6.

7.

8.

aip = av = ub; =wby =0;

arp = a;v = 0 and there exists u € C such that ub; = uwb, and a, =
—paiy

ub; = wby = 0 and there exists A € C such that ap = layv and b, =
—)»b],'

there exist ., u € C such that ayp = ,ayv, by = —Aby, uby = uwb, and
a, = —uai.

(c) There exist p,v € Q, and d, § skew derivations of R such that F(x) = px +
d(x),G(x) = vx 4+ §(x), for all x € R, and one of the following holds:

9.

10.

11.

there exist U € C and 0 # n € C such that §(x) = nd(x), for any x € R,
a1 p = %axv, by = —9by, and a; = ¥nay;

there exist 0 #9 € C, 0 #n € C and py € Q, such that §(x) = pox —
a(x)po + nd(x), for any x € R, a; = ¥nay, by = —9by, poby =0 and
nazp —azx(v + po) = 0;

there exist v € C, 0 % n € C and py,q € Q,, where q is an invertible
element, such that §(x) = pox — qxq’lpo + nd(x), for any x € R, a; =
Onas, by = —0b1, ¢~ pob1 = ¥by and nap — a>(v + po) + Vaxq = 0.

Let us recall some basic facts which will be useful in the sequel.

Fact1 Let R be a prime ring, then the following statements hold:

(a) Every generalized derivation of R can be uniquely extended to Q, [14, Theorem

3].

(b) Any automorphism of R can be uniquely extended to Q, [7, Fact 2].
(c) Every generalized skew derivation of R can be uniquely extended to Q, [4,
Lemma 2].

Fact 2 A generalized skew derivation having associated automorphism « and skew
derivation d assumes the following form:
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F(x) = ax +d(x) (1

for all x € R (see [4, Lemma 2], [5, Theorem 3.1 and Corollary 3.2]).

We also need to recall some well-known results on generalized polynomial iden-
tities for prime rings involving skew derivations and automorphisms.

Fact3 ([9]) If @ (x;, D(x;)) is a generalized polynomial identity for R, where R is a
prime ring and D is an outer skew derivation of R, then R also satisfies the generalized
polynomial identity @ (x;, y;), where x; and y; are distinct indeterminates.

If @(x;, D(x;), a(x;)) is a generalized polynomial identity for a prime ring R, D
is an outer skew derivation of R and « is an outer automorphism of R, then R also
satisfies the generalized polynomial identity @ (x;, y;, z;), where x;, y;, and z; are
distinct indeterminates.

Fact4 ([13, Theorem 6.5.9, page 365]) Let a prime ring R obey a polynomial
identity of the type f (xo” *) = 0, where f (z ¥y isa generalized polynomial with the
coefficients from Q,, A1 , ..., A\,are mutually different correct words from areduced
set of skew derivations commuting with all the corresponding automorphisms, and
ap, ..., o, are mutually outer automorphisms. In this case the identity f (z;’k) =0
is valid on Q,.

Fact 5 ([8, Theorem 1]) Let R be a prime ring and / be a two-sided ideal of R. Then
I, R, and Q, satisfy the same generalized polynomial identities with coefficients in
Q. (see [6]). Furthermore, I, R, and Q, satisfy the same generalized polynomial
identities with automorphisms.

Fact 6 ([9, Theorem 2]) Let R be a prime ring and / be a two-sided ideal of R. Then
I, R, and Q, satisfy the same generalized polynomial identities with a single skew
derivation.

In the sequel, R will be a non-commutative ring of characteristic different from 2,
F and G two non-zero generalized skew derivations of R, associated with the same
automorphism « and commuting with «.

1 Annihilating Condition for a Single Generalized Skew
Derivation

In this second section our aim will be to prove Theorem 1. More precisely, let F' be
a generalized skew derivation of R and a, b are non-zero elements of R such that

aF(w)b =0 VYw e L anon-central Lie ideal of R. 2)

The study of this result will be useful for the proof of our main Theorem (i.e.,
Theorem 2).
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We permit the following:

Lemma 1 Let R be a prime and a;,b; € U, for 1 <i <n.If Y |_, a;[x, ylb; =0,
forallx,y € R. Ifa; # 0 for some i, then by, ..., b, are C-dependent. Similarly, if
b; # 0 for some i, then ay, ..., a, are C-dependent.

Proof The result follows easily from [15, Lemma 2.2] and [16, Lemma 1].

Lemma 2 Letc,u € Q, be such that F(x) = cx + a(x)u, forany x € R. If
ClF([rl,FQ])bZO ‘v’rl,rzeR. (3)

then one of the following holds:

(a) ac =ub=0;
(b) there exist ¢ € Q, and A € C such that a(x) = qxq~', for any x € R, with
a(c+1g) =0and (A +q 'u)b = 0.

Proof By our assumption R satisfies
a(C[xl s x2] + o[, xz])u)b- 4)

We consider firstly the case a(x) = gxg~!, for any x € R, where g € Q, is an
invertible element. In this case, by (4), R satisfies

a(C[xl, x]+ qlxi, Xz]q_'u>b- ®)

A direct application of Lemma 1 leads to conclusion (b).
Therefore we may assume that ¢« is not an inner automorphism of Q,. Thus, by
(4) and Fact 3, R satisfies the generalized polynomial identity

a(c[xl,xz] + [y, yz]u>b. (6)

In particular R satisfies both the blended components ac[xy, x2]b and a[y;, y,]ub.
Since a # 0 and b # 0 and by the primeness of R, we get the required conclusion
ac =ub = 0.

Proof (Proof of Theorem 1) By Fact 2, F(x) = cx + d(x) for all x € R, where
¢ € Q, and d is the skew derivation associated with F.

Since L is not central and char (R) # 2, it is well known that there exists a non-
zero ideal I of R such that O # [I, R] € L (see [11, pages 4-5]). Therefore, by
(2), the ideal I satisfies a F'([x;, x2])b. Since R and [ satisfy the same generalized
identities with automorphisms and skew derivations, we may assume that R also
satisfies a F ([x1, x»])b, that is
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a(C[xl,Xz] +d([X1,X2])>b- (7

In case d is an inner skew derivation of R, the conclusion follows from Lemma 2.
Then we may assume that d is not inner and prove that a contradiction follows.
Expansion of (7) says that R satisfies

a <C[xl X2 +d(x)xy + a(x)d(x2) —d(x2)x; — Ot(Xz)d(Jm))b- ®)

Since d is not inner and by Fact 3, (8) implies that R satisfies

a(C[Xl, X2] + yixo +alxp)yrs — yax1 — Ol(xz)Y1>b )

and in particular R satisfies

a<y1x2 —a(xz)y1>b. (10

If « is outer, relation (10) implies that R satisfies

a <y1xz - Z2y1)b

and, in particular, a[r;, r,]b = 0, for any r, r, € R. It follows that either a = 0 or
b = 0, which contradicts the assumption a, b # 0.

On the other hand, if a(x) = gxg~', where g is an invertible element of Q,,
one may replace in (main-8) y; with gx;. Hence R satisfies ag[x;, x;]b. Since g is
invertible, once again the contradiction that either @ = 0 or b = 0 follows.

2 Annihilating Conditions for Two Generalized Skew
Derivations

We conclude our paper giving the description of two generalized skew derivations
F and G of a prime ring R satisfying the condition

a1 F(x)by +a2G(x)b, =0 Vx € R (11)
where ap, ap, bl, bz € Qr.

In light of Theorem 1, we may assume that a;, a,, by, b, are all non-zero elements
of O, and also that both F # 0 and G # 0.
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We start with two useful results, that we quote as follows, by applying
[6, Theorem 2]:

Lemma 3 Let R be a prime and a;, b; € Q,, for 1 <i <n.If Y \_, aixb; =0, for

all x € R, and b; # 0 for some i, then ay, . .., a, are C-dependent (see [15, Lemma
2.2]).

Lemmad4 Let R be a prime and a;, b;, c;,d; € Q, such that Y -, a;xb; + Z';:l
cjxd; =0, forall x € R. If ay, ..., ay, are linearly C-independent then each b; is
a linear combination of dy, ..., d, over C. Analogously, if b, ..., b,, are linearly
C-independent then each a; is a linear combination of ¢y, . .., ¢, over C. (see [17,
Lemma 1.2]).

Lemma 5 Let F and G be inner generalized skew derivations of R defined as

1w, Vx € R

F(x) = px +qxq 'u, G(x)=vx+qgxq~
where p,u,v,w,q € Q, and q is an invertible element. If R satisfies (11), one of
the following holds:

(a) there exist ay,ay, a3, a4 € C such that by = a1b; +a2q_1wb2, q‘lubl =
azby + omq’lwbz and aja1p + aza1q + arv = apa 1 p + asa1q + arqg =0;

(b) there exist A, oy, s, a3, a4 € C such that q’lwbz = Aby, by = (a1 + Aan)bs,
g 'uby = (a3 + raw)by and (ay + raz)ar p + (a3 + Aag)arg + ax(v + rg) =
O’.

(c) there exist 0 = A € C and By, By € C such that a;p = Aaiq, axv = Biaiq,
a,q = Praiq and Aby + q‘lubl + Biby + ﬂzq_lwbz =0,

(d) thereexistQ # A € Cand u,n € C suchthata p = Aa\q, ax(v + nq) = naq,
A+ g 'wb, = —nb, and g~'wby = ubs.

Proof By our main hypothesis

a F(x)by +a,G(x)b, =0 Vx € R.
Under the assumptions of the present Lemma, we have that R satisfies the generalized
identity

al(px +qxq’lu)b1 +a2(vx —i—qxq’lw)bz (12)

that is
(a1p)xby + (a1q)x (g~ 'uby) + (a2v)xby + (a29)x (g~ 'why). (13)

By Lemma 3 and since ay, a;, by, b, are all non-zero we may divide the proof in two
cases.
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Case 1. {a| p, a1q} is a linearly C-independent set
Application of Lemma 4 implies that there exist «}, orp, o3, o4 € C such that

by =a1by + Olzq_lwbz
. . (14)
q ub; = azby + auq” wb;.

Thus, by (13), R satisfies
(a1p)x(1by + @2q ™' wha) + (a19)x(@3by + aaq ™ wh) + (a2v)xby + (a2q)x (g~ wh2)

that is

(a1a1p + a3a19 + arv)xby + (c2a1 p + cuaiq + axq)xq ™ 'wb,. (15)
Firstly we note 