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Preface

Algebra is considered a significant milestone in Mathematics. Algebra is not just
limited to Mathematics; also, it has a lot of real-world applications be it computer
science, chemical science, technology, coding theory, cryptography, graph theory,
etc. In fact, the world revolves around the applications of algebra.

TheDepartment ofMathematics,AligarhMuslimUniversity,Aligarh, India, orga-
nized an International Conference on Algebra and Related Topics with Applications
(ICARTA-19)with the aim to provide a forum for researchers, eminent academicians,
research scholars and students to exchange ideas, and to communicate and discuss
research findings and new advances in different branches of algebra, especially Ring
theory, Coding theory, Cryptography and Graph theory.

During the conference, world-renowned algebraists gave 8 plenary talks and 20
invited talks which have been potentially affected by the most recent developments
in the related areas. This conference covered topics of several new directions and
applications. Among the participants of the conference, 90 exuberant younger math-
ematicians presented their research articles, during proper thematic sessions. More
than one dozen participants from various countries like USA, Egypt, Korea, Nigeria,
Taiwan, Italy, Germany and Norway together with nearly two hundred delegates
from within India participated in this conference.

A special session was devoted in the honour of Prof. M. A. Quadri who is one
of the esteemed professors who initiated study and research in the area of modern
mathematics in the Department of Mathematics, AMU, Aligarh.

We appreciate the active participation of all young researchers and academicians.
Hopefully, the conference also enables participants to explore possible avenues to
foster academic and research exchange, as well as scientific activities within and
abroad of India. This refereed volume includes papers from renowned algebraists
and invited speakers as well as other participants of the conference. All submitted
papers are rigorously reviewed, followed by a careful selection process.

In addition to highlighting the latest researchbeingdoneon the frontiers of algebra,
the articles published also provide insights into how ideas have explored and have
been connected. The proceeding’s overall approach addresses the challenges of abun-
dant topics of algebra particularly semi groups, groups, derivations in rings, rings
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x Preface

and modules, group rings, matrix algebra, triangular algebra, polynomial rings and
lattice theory. Apart from these topics, we also received research papers which have
applications in coding theory and graph theory.

This research volume is distinguished from many others by its variety of
topics, methodologies and depth of research. We believe that this volume will thus
further expand our understanding and can serve as a reference book in the rapidly
expanding field of algebra and related topics with their applications to coding theory,
cryptography and graph theory.

We gratefully acknowledge the funding received towards this conference from the
AligarhMuslimUniversity (AMU), Aligarh, Department of Science and Technology
(DST), New Delhi, Indian National Science Academy (INSA), New Delhi, and the
Council of Scientific and Industrial Research (CSIR), NewDelhi. This volumewould
not have been possiblewithout the support of expert refereeswho provided their valu-
able comments through reports diligently and promptly despite their busy schedules.
We would like to thank Prof. M. Imdad, Chairman, Department of Mathematics, for
his consistent support and guidance during the running of this conference. Further-
more, we would like to thank the rest of the faculty members, research scholars of
Mathematics Department, AMU, for their collaborative effort during the conference.
Also thanks to committee members, especially Prof. Nadeem ur Rehman, Dr. Shakir
Ali, Dr. Mujeebur Rehman, Dr. M. Aslam Siddeeque and Dr. Ghulam Mohammad,
who enabled this conference to be possible. We would like to say special thanks to
Prof. M. A. Quadri. In spite of his health problems, his support, guidance and overall
insights have made this an inspiring experience for us. We would like to express our
gratitude to the entire team of Springer for publishing this volume. Thank you Mr.
Shamim Ahmad, Senior Editor, Mathematical Sciences, Springer, India for facili-
tating the publication process, we truly appreciate your hard work and enthusiasm,
everything was so intelligible and gave clear guidance. We look forward to continue
our relationship.

Aligarh, India
Aligarh, India
Messina, Italy

Mohammad Ashraf
Asma Ali

Vincenzo De Filippis
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Characterization of b-generalized
Derivations in Rings with Involution

Adnan Abbasi, Muzibur Rahman Mozumder, and Aisha Jabeen

Abstract Let W be a ring with involution, Q be the right Martindale quotient
ring, and C be the extended centroid of W . Let d : W → Q be an additive map
and b ∈ Q. An additive map F : W → Q is called b-generalized derivation with
associative map d if F(xy) = F(x)y + bxd(y) for all x, y ∈ W . In this manuscript,
we study commuting b-generalized derivations in rings with involution.

Keywords Prime ring · b-generalized derivation · Involution

1 Introduction

Throughout the paper, W always denotes a prime ring with involution, Q be the
right Martindale quotient ring of W , C = Z(Q) be the center of Q usually known
as the extended centroid of W and is a field. An additive mapping “∗ : W → W is
called an involution if ∗ is an anti-automorphism of order 2; that is, (x∗)∗ = x for all
x ∈ W”. An element x in a ring with involution is said to be “hermitian if x∗ = x and
skew-hermitian if x∗ = −x”. The sets of all hermitian and skew-hermitian elements
of W will be denoted by H(W) and S(W), respectively. A ring equipped with an
involution is known as ring with involution or ∗-ring. If W is 2-torsion free, then
every x ∈ W can be uniquely represented in the form 2x = h + k, where h ∈ H(W)

and k ∈ S(W). Note that S(W) = H(W) if char(W) = 2. The involution is said to
be of the first kind ifZ(W) ⊆ H(W), otherwise it is said to be of the second kind. In
the later case it is worthwhile to see that S(W) ∩ Z(W) �= (0). We refer the reader

A. Abbasi
Department of Mathematics, Madanpalle Institute of Technology & Science, Madanpalle, India

M. R. Mozumder (B)
Department of Mathematics, Aligarh Muslim University, Aligarh, India
e-mail: muzibamu81@gmail.com

A. Jabeen
Department of Applied Sciences & Humanities, Jamia Millia Islamia, New Delhi
110025, Delhi, India

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
M. Ashraf et al. (eds.), Algebra and Related Topics with Applications,
Springer Proceedings in Mathematics & Statistics 392,
https://doi.org/10.1007/978-981-19-3898-6_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-3898-6_1&domain=pdf
mailto:muzibamu81@gmail.com
https://doi.org/10.1007/978-981-19-3898-6_1


4 A. Abbasi et al.

to [3, 5] for justification and amplification for the above-mentioned notations and
key definitions.

An additive mapping “d : W → W is said to be a derivation on W if d(xy) =
d(x)y + xd(y) for all x, y ∈ W”. A derivation “d is said to be inner if there exists
a ∈ W such that d(x) = ax − xa for all x ∈ W”. An additive map “F : W → W
is called a generalized derivation of W if there exists a derivation d of W such that
F(xy) = F(x)y + xd(y) for all x, y ∈ W”. The derivation d is uniquely determined
by F and is called the associated derivation of F. The very recent concept of general-
ized derivations introduced by Koşan and Lee [6], namely, b-generalized derivation
which is defined as follows: An additive mapping “F : W → Q is called a (left)
b-generalized derivation of W associated with d, an additive map from W to Q, if
F(xy) = F(x)y + bxd(y) for all x, y ∈ W , where b ∈ Q”. Also Lee proved that if
W is a prime ring and 0 �= b ∈ Q, then the associated map d is a derivation, i.e.,
d(xy) = d(x)y + xd(y) for all x, y ∈ W .” It is easy to see that every generalized
derivation is a 1-generalized derivation.Also, themapping x ∈ W → ax + bxc ∈ Q
for somefixeda, b, c ∈ Q is ab-generalizedderivationofW ,which is knownas inner
b-generalized derivation of W . Beside this, they also characterized b-generalized
derivation. That is every b-generalized derivation F on a semiprime ringW is of the
form F(x) = ax + bd(x) for all x ∈ W , where a, b ∈ Q.

Amap “ f : W → W is said to be centralizing(commuting) on a nonempty subset
S of W , if [ f (x), x] ∈ Z(W)([ f (x), x] = 0) for all x, y ∈ S”. The study of cen-
tralizing(commuting) mappings initially started by Divinsky [4] who proved that a
simple artinian ring is commutative if it has a commuting non-trivial automorphism.
Two years later, Posner [9] proved that the existence of a nonzero commuting deriva-
tion on a prime ring prompts the ring to be commutative. Over the last few decades,
several authors have proved commutativity theorems for prime and semiprime rings
admitting automorphisms or derivations which are centralizing(commuting) map-
pings on an appropriate subset of the ring.

Following [1], a mapping “ f :W → W is called ∗-centralizing
(∗-commuting) on a nonempty set S ofW if [ f (x), x∗] ∈ Z(W)([ f (x), x∗] = 0) for
all x ∈ S”. For any central element a the map defined by x �→ ax∗ is ∗-commuting
onW . Very recently Ali and Dar [1] proved the following result as follows: letW be
a prime ring with involution ∗ such that char(W) �= 2. Let d be a nonzero derivation
on W such that [d(x), x∗] ∈ Z(W) for all x ∈ W , then W is commutative. Later
this result was extended by Najjer et al. [8] for ∗-centralizing derivation. Recently,
Alahmadi et al. [2], generalized above result as follows: “LetW be a prime ring with
involution of the second kind such that char(W) �= 2. If W admits a nonzero gen-
eralized derivation F : W → W such that [F(x), x∗] ∈ Z(W) for all x ∈ W , then
W is commutative”. Driving motivation from the formal definition of b-generalized
derivation and results studied in [1, 2, 8], we proposed investigation in the same
vane by studying commuting b-generalized derivation and another ∗-identity on b-
generalized derivation have also been studied in our manuscript, we conclude our
manuscript with an example in support of our hypothesis of second kind involution,
which shows that second kind assumption is essential in our results.
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2 Results

Remark 1 Let W be a prime ring with involution ′∗′ of the second kind such that
char(W) �= 2 and letF be a nonzero b-generalized derivation onW associated with a
derivation d onW such that d(h0) = 0 for all h0 ∈ H(W) ∩ Z(W). Then d(z) = 0
for all z ∈ Z(W).

Proof Given that d(h0) = 0 for all h0 ∈ H(W) ∩ Z(W). Now replacing h0 by k02,
where k0 ∈ S(W) ∩ Z(W). This implies thatd(k02) = 0 for all k0 ∈ S(W) ∩ Z(W).
Thus we have 2k0d(k0) = 0 for all k0 ∈ S(W) ∩ Z(W). Since char(W) �= 2, then
weobtain k0d(k0) = 0 for all k0 ∈ S(W) ∩ Z(W). Since S(W) ∩ Z(W) �= (0), then
by the primeness, we obtain d(k0) = 0 for all k0 ∈ S(W) ∩ Z(W). Nowwe consider
2d(z) = d(2z) = d(h0 + k0) = d(h0) + d(k0) and we know that d(h0) = 0 for all
h0 ∈ H(W) ∩ Z(W) and d(k0) = 0 for all h0 ∈ S(W) ∩ Z(W), this implies that
2d(z) = 0 for all z ∈ Z(W). Since char(W) �= 2. This implies that d(z) = 0 for all
z ∈ Z(W). �

Theorem 1 LetW be a noncommutative prime ring with involution ′∗′ of the second
kind such that char(W) �= 2 and let F be a nonzero b-generalized derivation on W
associated with a derivation d on W such that [F(x), x∗] = 0 for all x ∈ W , then
F(x) = λx, where λ ∈ C for all x ∈ W .

Proof By the given hypothesis, we have

[F(x), x∗] = 0 for all x ∈ W. (1)

Replacing x by h + h1 in above relation where h, h1 ∈ H(W), yields that

[F(h), h1] + [F(h1), h] = 0 for all h, h1 ∈ H(W). (2)

Substituting h1h0 for h1 in (2) where h0 ∈ H(W) ∩ Z(W), we obtain

[F(h), h1]h0 + [F(h1), h]h0 + [bh1, h]d(h0) = 0 for all h, h1 ∈ H(W). (3)

and h0 ∈ H(W) ∩ Z(W). By application of (2), we get [bh1, h]d(h0) = 0, then by
the primeness of W , we get either [bh1, h] = 0 for all h, h1 ∈ H(W) or d(h0) = 0
for all h0 ∈ H(W) ∩ Z(W). Consider

[bh1, h] = 0 for all h, h1 ∈ H(W). (4)

Taking h0 for h1, where h0 ∈ H(W) ∩ Z(W). Since S(W) ∩ Z(W) �= (0), then by
the primeness of W , we obtain

[b, h] = 0 for all h ∈ H(W). (5)

Replacing h by kk0, where k ∈ S(W) and k0 ∈ S(W) ∩ Z(W), we get
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[b, k]k0 = 0 for all k ∈ S(W) and k0 ∈ S(W) ∩ Z(W).

Since S(W) ∩ Z(W) �= (0), application of primeness of W implies that

[b, k] = 0 for all k ∈ S(W). (6)

Consider 2[b, x] = [b, 2x] = [b, h] + [b, k]. Using (5) and (6), we obtain 2[b, x] =
0 for all x ∈ W . Since char(W) �= 2, this implies that b ∈ Z(W). Using it into (4),
we get

b[h1, h] = 0 for all h, h1 ∈ H(W). (7)

By the primeness ofW , we obtain either b = 0 or [h1, h] = 0 for all h, h1 ∈ H(W).
Consider b = 0 and on linearizing (1), we obtain

[F(x), y∗] + [F(y), x∗] = 0 for all x, y ∈ W. (8)

Replacing y by yk0, where k0 ∈ S(W) ∩ Z(W), we get

− [F(x), y∗]k0 + [F(y), x∗]k0 = 0 for all x, y ∈ W and k0 ∈ S(W) ∩ Z(W).

(9)
Combining (8) and (9), we get 2[F(y), x∗]k0 = 0 for all x, y ∈ W and k0 ∈ S(W) ∩
Z(W). Since char(W) �= 2 and S(W) ∩ Z(W) �= (0), implies that [F(y), x∗] = 0
for all x, y ∈ W . Replacing x by x∗ and y by x , we obtain [F(x), x] = 0 for all
x ∈ W . Hence in view of [7, Theorem 1.1], we get F(x) = λx for all x ∈ W where
λ ∈ C . Now consider

[h1, h] = 0 for all h, h1 ∈ H(W). (10)

Replacing h1 by kk0, where k ∈ S(W) and k0 ∈ S(W) ∩ Z(W), we obtain

[k1, h] = 0 for all h ∈ H(W) and k1 ∈ S(W). (11)

Again taking kk0 for h in (10), we obtain

[h1, k] = 0 for all h ∈ H(W) and k ∈ S(W). (12)

Replacing h1 by k1k0 in (12), where k1 ∈ S(W) and k0 ∈ S(W) ∩ Z(W), we get

[k1, k] = 0 for all k, k1 ∈ S(W). (13)

Consider 4[x, y] = [2x, 2y] = [h1 + k1, h + k] = [h1, h] + [h1, k] + [k1, h]+
[k1, k]. From the application of Eqs. (10), (11), (12), and (13), we obtain 4[x, y] = 0
for all x, y ∈ W . Since char(W) �= 2, this implies that [x, y] = 0 for all x, y ∈ W .
This gives is W is commutative, which is a contradiction to our assumption. Now
suppose d(h0) = 0 for all h0 ∈ H(W) ∩ Z(W). Using Remark 1, d(z) = 0 for all
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z ∈ Z(W).Now follow the same line of proof as we did after (8), we get the required
result. �

Theorem 2 LetW be a noncommutative prime ring with involution ′∗′ of the second
kind such that char(W) �= 2 and let F be a nonzero b-generalized derivation on W
associated with a derivation d on W such that F(x ◦ x∗) = 0 for all x ∈ W , then
F(x) = λx for all x ∈ W .

Proof Given that
F(x ◦ x∗) = 0 for all x ∈ W. (14)

Linearization of the above relation yields that

[F(x ◦ y∗), r ] + [F(y ◦ x∗), r ] = 0 for all x, y, r ∈ W. (15)

Substituting yh0 for y in (15), where h0 ∈ H(W) ∩ Z(W), we obtain

[F(x ◦ y∗), r ]h0 + [F(y ◦ x∗), r ]h0 + [b(x ◦ y∗), r ]d(h0) + [b(y ◦ x∗), r ]d(h0) = 0
(16)

for all x, y, r ∈ W and h0 ∈ H(W) ∩ Z(W). By the application of (15), we get

[b(x ◦ y∗), r ]d(h0) + [b(y ◦ x∗), r ]d(h0) = 0 for all x, y, r ∈ W. (17)

Replacing y by yk0 in (17) and combining the obtain result with (17), we get

2[b(y ◦ x∗), r ]d(h0)k0 = 0 for all x, y, r ∈ W and k0 ∈ S(W) ∩ Z(W).

Since char(W) �= 2 and S(W) ∩ Z(W) �= (0), thus, we have

[b(y ◦ x∗), r ]d(h0) = 0 for all x, y, r ∈ W and h0 ∈ H(W) ∩ Z(W).

Again taking x by h0 where h0 ∈ H(W) ∩ Z(W) �= (0) and on solving we have

[by, r ]d(h0) = 0 for all x, y, r ∈ W and h0 ∈ H(W) ∩ Z(W).

Applying primeness of W we get either [by, r ] = 0 for all y, r ∈ W or d(h0) = 0
for all h0 ∈ H(W) ∩ Z(W). Now we consider

[by, r ] = 0 for all y, r ∈ W.

This can be further written as

b[y, r ] + [b, r ]y = 0 for all y, r ∈ W. (18)

Replacing y by yu where u ∈ W in (18), we get
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by[u, r ] + b[y, r ]u + [b, r ]yu = 0 for all y, r ∈ W. (19)

Using (18) in (19), we obtain by[u, r ] = 0 for all y, r, u ∈ W . By the primeness of
W , we get either b = 0 or [u, r ] = 0 for all u, r ∈ W . If we consider [u, r ] = 0 for
all u, r ∈ W , which shows that W is commutative, which is a contradiction to our
supposition, this implies that b = 0. Now replacing x by h in (14), we get

[F(h2), r ] = 0 for all r ∈ W and h ∈ H(W). (20)

Taking h + h0 for h in (20), where h0 ∈ H(W) ∩ Z(W) and using (20), we obtain

2[F(hh0), r ] = 0 for all r ∈ W and h ∈ H(W).

Since char(W) �= 2, this implies that

[F(hh0), r ] = 0 for all r ∈ W and h ∈ H(W).

By the definition of F and b = 0, we get

[F(h)h0, r ] = 0 for all r ∈ W and h ∈ H(W).

Since S(W) ∩ Z(W) �= (0), this implies that

[F(h), r ] = 0 for all r ∈ W and h ∈ H(W). (21)

Replacing h by kk0, where k ∈ S(W), k0 ∈ S(W) ∩ Z(W) and using b = 0, we
obtain

[F(k), r ] = 0 for all r ∈ W and k ∈ S(W). (22)

Now consider 2[F(x), r ] = [F(2x), r ] = [F(h), r ] + [F(k), r ]. Using (21) and (22),
we get 2[F(x), r ] = 0 for all x, r ∈ W . Since char(W) �= 2, this implies that
[F(x), r ] = 0 for all x, r ∈ W . Hence in view of [7, Theorem 1.1], we have
F(x) = λx for all x ∈ W . Now consider d(h0) = 0 for all h0 ∈ H(W) ∩ Z(W).
Then by Remark 1, d(z) = 0 for all z ∈ Z(W). Now follow the same steps as we
did after (20) and using d(z) = 0 for all z ∈ Z(W), we get the required result. This
completes the proof of the theorem. �

The following example shows that the second kind involution condition is essential
in Theorem 1.

Example 1 Let W =
{(

β1 β2

β3 β4

) ∣∣∣ β1, β2, β3, β4 ∈ Z

}
. Of course W with matrix

addition and matrix multiplication is a prime ring. Define mappings F, d, ∗ : W −→
W by

F

(
β1 β2

β3 β4

)
=

(
0 −β2

β3 0

)
, d

(
β1 β2

β3 β4

)
=

(
0 −β2

β3 0

)
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and a fixed element b =
(
1 0
0 1

)
,

(
β1 β2

β3 β4

)∗
=

(
β4 −β2

−β3 β1

)
.

Obviously, Z(W) =
{(

β1 0
0 β1

) ∣∣∣ β1 ∈ Z
}

. Then x∗ = x for all x ∈ Z(W), and

henceZ(W) ⊆ H(W), which shows that the involution ′∗′ is of the first kind. More-
over, F, d are nonzero b-generalized derivation and associated derivation with fixed
element b defined as above, such that the hypotheses in Theorem 1 is satisfied but
F is not in the form F(x) = λx for all x ∈ W . Hence, the hypothesis of the second
kind involution is crucial in our results.

References

1. Ali, S., Dar, N.A.: On ∗-centralizing mappings in rings with involution. Georgian Math. J. 21,
25–28 (2014)

2. Alahmadi, A., Alhazmi, H., Ali, S., Dar, N.A., Khan, A.N.: Additive maps on prime and
semiprime rings with involution. Hacet. J. Math. Stat. 49(3), 1126–1133 (2020)

3. Beidar,K.I.,Martindale III,W.S.,Mikhalev,A.V.:Ringswith generalized identities.Monographs
and Textbooks in Pure and Applied Mathematics, Monographs and Textbooks in Pure and
Applied Mathematics 196, Dekker, New York (1996)

4. Divinsky, N.: On commuting automorphisms of rings. Trans. Roy. Soc. Canada. Sect. III 3(49),
19–22 (1955)

5. Herstein, I.N.: Rings with involution. Chicago Lectures in Mathematics. The University of
Chicago Press, Chicago (1976)

6. Ko̧san, M.T., Lee, T.K.: b-Generalized derivations having nilpotent values. J. Aust. Math. Soc.
96, 326–337 (2014)

7. Liu, C.K.: AnEngel conditionwith b-generalized derivations. LinearAlgebraAppl. 65, 300–312
(2017)

8. Nejjar, B., Kacha, A., Mamouni, A., Oukhtite, L.: Commutativity theorems in rings with invo-
lution. Commun. Algebra 45(2), 698–708 (2017)

9. Posner, E.C.: Derivations in prime rings. Proc. Am. Math. Soc. 8, 1093–1100 (1957)



Jordan Generalized n-derivations
of Unital Algebras Containing
Idempotents

Mohd Shuaib Akhtar, Mohammad Afajal Ansari, and Nazia Parveen

Abstract Suppose that A is a unital algebra containing a nontrivial idempotent. In
this paper, by introducing the notion of Jordan generalized n-derivations, it is shown
that under certain conditions every multiplicative Jordan generalized n-derivation on
A is additive. As a consequence, multiplicative Jordan generalized derivations on
triangular algebras are characterized.

Keywords Unital algebras · Jordan generalized derivation · Jordan generalized
n-derivation

1 Introduction

LetR be a commutative ring with identity andA be an algebra overR.Recall that an
R-linear mapping δ : A → A is called a derivation if δ(ab) = δ(a)b + aδ(b) holds
for all a, b ∈ A. An R-linear mapping δ : A → A is said to be a Jordan deriva-
tion if δ(a ◦ b) = δ(a) ◦ b + a ◦ δ(b) for all a, b ∈ A,where a ◦ b = ab + ba is the
usual Jordan product. A Jordan triple derivation is anR-linear mapping δ : A → A
which satisfies δ((a ◦ b) ◦ c) = (δ(a) ◦ b) ◦ c + (a ◦ δ(b)) ◦ c + (a ◦ b) ◦ δ(c) for
all a, b, c ∈ A. It can be easily seen that every derivation is a Jordan derivation
and every Jordan derivation is a Jordan triple derivation. Note that if the mapping
δ : A → A is not necessarily linear in the above definitions, then δ is said to be amul-
tiplicative derivation,multiplicative Jordanderivation andmultiplicative Jordan triple
derivation, respectively. An R-linear mapping Δ : A → A is called a generalized
derivationwith associated derivation δ onA ifΔ(ab) = Δ(a)b + aδ(b) holds for all
a, b ∈ A.AnR-linearmappingΔ : A → A is said to be a Jordangeneralizedderiva-
tion with associated Jordan derivation δ on A if Δ(a ◦ b) = Δ(a) ◦ b + a ◦ δ(b)
for all a, b ∈ A. Similarly, an R-linear mapping Δ : A → A is said to be a Jor-
dan generalized triple derivation with associated Jordan triple derivation δ on A
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if Δ((a ◦ b) ◦ c) = (Δ(a) ◦ b) ◦ c + (a ◦ δ(b)) ◦ c + (a ◦ b) ◦ δ(c) for all a, b, c ∈
A.

Now we discuss a more general class of mappings. Let us define the following
sequence of polynomials:

p1(x1) = x1
p2(x1, x2) = p1(x1) ◦ x2 = x1 ◦ x2

p3(x1, x2, x3) = p2(x1, x2) ◦ x3 = (x1 ◦ x2) ◦ x3
...

pn(x1, x2, . . . , xn) = pn−1(x1, x2, . . . , xn−1) ◦ xn.

The polynomial pn(x1, x2, . . . , xn)(n ≥ 2) is called Jordan n-product. Note that

pn(x1, x2, . . . , xn) = pn−1(x1 ◦ x2, x3, . . . , xn) (n ≥ 2)

for all x1, x2, . . . , xn ∈ A. An R-linear mapping δ : A → A is said to be a Jordan
n-derivation if

δ(pn(x1, x2, . . . , xn)) =
n∑

i=1

pn(x1, x2, . . . , xi−1, δ(xi ), xi+1, . . . , xn)

for all x1, x2, . . . , xn ∈ A. A R-linear mapping Δ : A → A is said to be a Jordan
generalized n-derivation with associated Jordan n-derivation δ on A if

Δ(pn(x1, x2, . . . , xn)) = pn(Δ(x1), x2, . . . , xn−1, xn)

+
n∑

i=2

pn(x1, x2, . . . , xi−1, δ(xi ), xi+1, . . . , xn)

for all x1, x2, . . . , xn ∈ A. If the condition of linearity is removed in the above def-
initions, then the corresponding Jordan n-derivation (resp. Jordan generalized n-
derivation) is called multiplicative Jordan n-derivation (resp. multiplicative Jordan
generalized n-derivation). By the definition, it is clear that a Jordan generalized
2-derivation is the usual Jordan generalized derivation and Jordan generalized 3-
derivation is Jordan generalized triple derivation.

Over the past decade, a lot of work has been done on the additivity of mappings on
various rings and algebras. In the year 1969, Martindale III [19] proved a remarkable
result which states that every multiplicative bijective mapping from a prime ring
containing a nontrivial idempotent onto an arbitrary ring is necessarily additive.
Inspired by this result, many researchers obtained similar results in various rings
and algebras. Daif [7] proved that every multiplicative derivation of a 2-torsion
free prime ring containing a nontrivial idempotent is additive. Herstein [11] proved
that every Jordan derivation on a prime ring of characteristic different from 2 is a
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derivation. Brešar [5] extended this result to 2-torsion free semiprime ring. Benkovič
[2] proved that every linear Jordan derivation from upper triangular matrix algebras
into its bimodule is the sum of a linear derivation and a linear antiderivation. Li
and Lu [14] proved that every additive Jordan derivation on reflexive algebras is an
additive derivation. Benkovič and Širovnik [4] obtained that under certain conditions
every Jordan derivation of a unital algebra is the sum of a derivation and a singular
Jordan derivation. Lee and Quynh [20] gave a characterization of additive Jordan
triple derivations of arbitrary semiprime rings. Recently, Qi et al. [21] introduced
the notion of Jordan n-derivation generalizing the concept of Jordan derivation and
characterized Jordan n-derivations of unital rings containing idempotents.

Brešar [6] initiated the study of generalized derivations. Hvala [10] studied gen-
eralized derivation on prime rings. Jing and Lu [12] considered generalized Jordan
derivations of prime rings and standard operator algebras. Vukman [22] extended
this result to semiprime rings and proved that every generalized Jordan derivation of
a 2-torsion-free semiprime ring is a generalized derivation. Hou and Qi [9] studied
generalized Jordan derivations on nest algebras. Ma and Ji [18] considered gener-
alized Jordan derivations of upper triangular matrix algebras and proved that every
generalized Jordan derivation from the algebra of all upper triangular matrices over
a commutative ring with identity into its bimodule is the sum of a generalized deriva-
tion and an antiderivation. Zhang and Yu [26] proved that every Jordan derivation
of a triangular algebra is a derivation. Further, Li and Benkovič [15] generalized
this result and proved that every Jordan generalized derivation (that is, Jordan gen-
eralized 2-derivation) of a triangular algebra is a generalized derivation. In addition,
the characterization of Jordan derivations, Jordan triple derivations and generalized
Jordan derivations on various rings and algebras are considered in [1, 8, 13, 16, 17,
23, 24], etc. Motivated by the afore-mentioned work, we study multiplicative Jordan
generalized n-derivations of unital algebras containing idempotents and prove that
under certain conditions every multiplicative Jordan generalized n-derivation on a
unital algebra containing a nontrivial idempotent is additive.

2 Preliminaries

LetA be a unital algebra with a nontrivial idempotent e, and write f = 1 − e. Then
A can be represented in the so-called Peirce decomposition formA = eAe + eA f +
fAe + fA f, where eAe and fA f are subalgebras of A with identity elements e
and f, respectively, eA f is an (eAe, fA f )-bimodule and fAe is an ( fA f, eAe)-
bimodule. IfA is a unital algebrawith a nontrivial idempotent e such that fAe = {0},
thenA is a triangular algebra. Throughout the paper, we assume thatA is a 2-torsion
free unital algebra with a nontrivial idempotent e satisfying the following conditions:

{
exe · eA f = {0} = fAe · exe implies exe = 0

eA f · f x f = {0} = f x f · fAe implies f x f = 0.
(♠)
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To simplify the notation, we will use the following convention: a11 = eae ∈ eAe =
A11, a12 = ea f ∈ eA f = A12, a21 = f ae ∈ fAe = A21 and a22 = f a f ∈ fA
f = A22. Then each element a ∈ A can be represented in the form a = a11 + a12 +
a21 + a22.We shall frequently use the following results throughout the paper without
further mentioning.

Lemma 1 LetA be a unital algebra containing a nontrivial idempotent e, and write
f = 1 − e. For any a ∈ A and for any integer n ≥ 2, we have

pn(a, e, . . . , e) = 2n−1eae + ea f + f ae and pn(a, f, . . . , f ) = 2n−1 f a f + ea f + f ae.

Proof By a recursive calculation, we have

pn(a, e, . . . , e) = pn−1(a ◦ e, e, . . . , e)

= pn−1(2eae + ea f + f ae, e, . . . , e)

= pn−2((2eae + ea f + f ae) ◦ e, e, . . . , e)

= pn−2(4eae + ea f + f ae, e, . . . , e)

= · · ·
= 2n−1eae + ea f + f ae.

Similarly, one can obtain pn(a, f, . . . , f ) = 2n−1 f a f + ea f + f ae.

Lemma 2 Let Δ be a multiplicative Jordan generalized n-derivation on A. Then
there exist an inner derivation g and amultiplicative Jordan generalized n-derivation
Δ′ on A such that

Δ = g + Δ′ and eΔ′(e) f = 0, f Δ′(e)e = 0.

Proof Let x0 = eΔ(e) f − f Δ(e)e and define maps g,Δ′ : A → A by

g(x) = [x, x0] and Δ′(x) = Δ(x) − g(x)

for all x ∈ A. It is easy to see that g is an inner derivation and Δ′ is a multiplicative
Jordan generalized n-derivation. Since

Δ′(e) = Δ(e) − [e, eΔ(e) f − f Δ(e)e]
= Δ(e) − eΔ(e) f − f Δ(e)e

= eΔ(e)e + f Δ(e) f,

we get eΔ′(e) f = 0, f Δ′(e)e = 0. �
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Lemma 3 ([21, Theorem 2.1(Claims 1–4)]) Let δ be a multiplicative Jordan
n-derivation on A such that eδ(e) f = 0, f δ(e)e = 0. Then we have

δ(0) = 0, δ(e) ∈ A11, δ( f ) ∈ A22, δ(A11) ⊆ A11, δ(A22) ⊆ A22,

δ(A12) ⊆ A12 + A21, and δ(A21) ⊆ A12 + A21.

3 Multiplicative Jordan Generalized n-derivation

In this section, we discuss the additivity of multiplicative Jordan generalized n-
derivations on unital algebras. The main result of the paper states as follows:

Theorem 1 LetA be a 2-torsion-free unital algebra with a nontrivial idempotent e
satisfying (♠). Then every multiplicative Jordan generalized n-derivation Δ : A →
A is additive.

Proof In view of Lemma 2, it suffices to consider only those multiplicative Jordan
generalized n-derivationsΔ satisfying eΔ(e) f = 0, f Δ(e)e = 0.We shall establish
the theorem by a series of claims.

Claim 1. Δ(0) = 0.

Δ(0) = Δ(pn(0, 0, . . . , 0))

= pn(Δ(0), 0, . . . , 0) + pn(0, δ(0), . . . , 0) + · · · + pn(0, 0, . . . , δ(0))

= 0.

Claim 2. eδ(e) f = 0, f δ(e)e = 0, eδ( f ) f = 0, and f δ( f )e = 0.

Using Claim 1 and the fact that e ◦ f = 0, we obtain

0 = Δ(pn(e, f, f, . . . , f ))

= pn(Δ(e), f, f, . . . , f ) + pn(e, δ( f ), f, . . . , f ) + · · · + pn(e, f, f, . . . , δ( f ))

= pn(Δ(e), f, f, . . . , f ) + pn−1(e ◦ δ( f ), f, . . . , f )

= 2n−1 f Δ(e) f + eΔ(e) f + f Δ(e)e + 2n−2 f (e ◦ δ( f )) f + e(e ◦ δ( f )) f + f (e ◦ δ( f ))e

= 2n−1 f Δ(e) f + eδ( f ) f + f δ( f )e.

Hence, eδ( f ) f = 0, f δ( f )e = 0. Since δ is a multiplicative Jordan n-derivation on
A, we get

0 = δ(pn( f, e, e, . . . , e))

= pn(δ( f ), e, e, . . . , e) + pn( f, δ(e), e, . . . , e) + · · · + pn( f, e, e, . . . , δ(e))

= pn(δ( f ), e, e, . . . , e) + pn−1( f ◦ δ(e), e, . . . , e)

= 2n−1eδ( f )e + eδ( f ) f + f δ( f )e + 2n−2e( f ◦ δ(e))e + e( f ◦ δ(e)) f + f ( f ◦ δ(e))e

= 2n−1eδ( f )e + eδ(e) f + f δ(e)e.
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Thus, eδ(e) f = 0, f δ(e)e = 0. Therefore, from now on we can use Lemma 3 in the
following claims.

Claim 3. Δ(A11) ⊆ A11 and Δ(A22) ⊆ A22.

For any a11 ∈ A11, by Claim 1 and Lemma 3, we have

0 = Δ(pn(a11, f, f, . . . , f ))

= pn(Δ(a11), f, f, . . . , f ) + pn(a11, δ( f ), f, . . . , f ) + · · · + pn(a11, f, f, . . . , δ( f ))

= pn(Δ(a11), f, f, . . . , f )

= 2n−1 f Δ(a11) f + eΔ(a11) f + f Δ(a11)e.

Onmultiplying the above equation from left by e and right by f , we get eΔ(a11) f =
0;multiplying the above equation from left by f and right by e, we have f Δ(a11)e =
0. Thus, the above equation becomes 2n−1 f Δ(a11) f = 0. SinceA is 2-torsion free,
we obtain f Δ(a11) f = 0. Therefore, Δ(a11) = eΔ(a11)e ∈ A11 for all a11 ∈ A11.

Hence, Δ(A11) ⊆ A11. In a similar manner, one can prove that Δ(A22) ⊆ A22.

Claim 4. Δ(A12) ⊆ A12 + A21 and Δ(A21) ⊆ A12 + A21.

Since pn(a12, f, f, . . . , f ) = a12 for any a12 ∈ A12, by Lemma 3, we have

Δ(a12) = Δ(pn(a12, f, f, . . . , f ))

= pn(Δ(a12), f, f, . . . , f ) + pn(a12, δ( f ), f, . . . , f ) + · · · + pn(a12, f, f, . . . , δ( f ))

= 2n−1 f Δ(a12) f + eΔ(a12) f + f Δ(a12)e + (n − 1)a12δ( f ).

Multiplying by e on both sides of the above equation,we get eΔ(a12)e = 0.Similarly,
using the relation pn(a12, e, e, . . . , e) = a12, one can obtain f Δ(a12) f = 0. Hence,
Δ(a12) ∈ A12 + A21 for all a12 ∈ A12. Similarly, we can proveΔ(a21) ∈ A12 + A21

for all a21 ∈ A21.

Claim 5. For any aii ∈ Ai i , ai j ∈ Ai j and a ji ∈ A j i , we have
Δ(aii + ai j ) = Δ(aii ) + Δ(ai j ) and Δ(aii + a ji ) = Δ(aii ) + Δ(a ji ), 1 ≤ i 
= j ≤ 2.

Leta11 ∈ A11 anda12 ∈ A12.We show thatT = Δ(a11 + a12) − Δ(a11) − Δ(a12)
= 0. We compute

Δ(pn(a11 + a12, f, f, . . . , f ))

= pn(Δ(a11 + a12), f, f, . . . , f ) + pn(a11 + a12, δ( f ), f, . . . , f ) + · · ·
+pn(a11 + a12, f, f, . . . , δ( f )).

Using the relations pn(a11 + a12, f, f, . . . , f ) = pn(a12, f, f, . . . , f ), pn(a11,
f, f, . . . , f ) = 0 and Claim 1, we have
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Δ(pn(a11 + a12, f, f, . . . , f ))

= Δ(pn(a11, f, f, . . . , f )) + Δ(pn(a12, f, f, . . . , f ))

= pn(Δ(a11), f, f, . . . , f ) + pn(a11, δ( f ), f, . . . , f ) + · · · + pn(a11, f, f, . . . , δ( f ))

+pn(Δ(a12), f, f, . . . , f ) + pn(a12, δ( f ), f, . . . , f ) + · · · + pn(a12, f, f, . . . , δ( f )).

Comparing the above two equations, we get

pn(T, f, f, . . . , f ) = 2n−1 f T f + eT f + f T e = 0,

which implies that eT f = 0, f T e = 0 and f T f = 0. It remains to show that eT e =
0. On the one hand, we have

Δ(pn(a11 + a12, e − f, e − f, . . . , e − f ))

= pn(Δ(a11 + a12), e − f, e − f, . . . , e − f ) + pn(a11 + a12, δ(e − f ), e − f, . . . , e − f )

+ · · · + pn(a11 + a12, e − f, e − f, . . . , δ(e − f )).

On the other hand, using the facts pn(a11 + a12, e − f, e − f, . . . , e − f ) = pn(a11,
e − f, e − f, . . . , e − f ) and pn(a12, e − f, e − f, . . . , e − f ) = 0, we get

Δ(pn(a11 + a12, e − f, e − f, . . . , e − f ))

= Δ(pn(a11, e − f, e − f, . . . , e − f )) + Δ(pn(a12, e − f, e − f, . . . , e − f ))

= pn(Δ(a11), e − f, e − f, . . . , e − f ) + pn(a11, δ(e − f ), e − f, . . . , e − f )

+ · · · + pn(a11, e − f, e − f, . . . , δ(e − f ))

+pn(Δ(a12), e − f, e − f, . . . , e − f ) + pn(a12, δ(e − f ), e − f, . . . , e − f )

+ · · · + pn(a12, e − f, e − f, . . . , δ(e − f )).

Comparing the above two expressions, we obtain

pn(T, e − f, e − f, . . . , e − f ) = pn(eT e, e − f, e − f, . . . , e − f ) = 2n−1eT e = 0,

which implies that eT e = 0. Thus, T = 0, i.e., Δ(a11 + a12) = Δ(a11) + Δ(a12).
In a similar fashion, we can prove the other cases.

Claim 6. Δ is additive on Ai j , 1 ≤ i 
= j ≤ 2.

Observe that, for any a12, b12 ∈ A12,

a12 + b12 = pn(e + a12, f + b12, f + b12, . . . , f + b12).

Using Claim 5 and the above fact, we have
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Δ(a12 + b12)

= Δ(pn(e + a12, f + b12, f + b12, . . . , f + b12))

= pn(Δ(e + a12), f + b12, f + b12, . . . , f + b12) + pn(e + a12, δ( f + b12), f + b12, . . . , f + b12)

+ · · · + pn(e + a12, f + b12, f + b12, . . . , δ( f + b12))

= pn(Δ(e), f + b12, f + b12, . . . , f + b12) + pn(e, δ( f + b12), f + b12, . . . , f + b12)

+ · · · + pn(e, f + b12, f + b12, . . . , δ( f + b12))

+pn(Δ(a12), f + b12, f + b12, . . . , f + b12) + pn(a12, δ( f + b12), f + b12, . . . , f + b12)

+ · · · + pn(a12, f + b12, f + b12, . . . , δ( f + b12))

= Δ(pn(e, f + b12, f + b12, . . . , f + b12)) + Δ(pn(a12, f + b12, f + b12, . . . , f + b12))

= Δ(b12) + Δ(a12).

Similarly, we can prove that Δ is additive on A21.

Claim 7. Δ is additive on Ai i , 1 ≤ i ≤ 2.

Let a11, b11 ∈ A11. Set T = Δ(a11 + b11) − Δ(a11) − Δ(b11). In view of Claim
3, T = eT e ∈ A11. For any a12 ∈ A12, we have

Δ(pn(a11 + b11, a12 + f, . . . , a12 + f ))

= pn(Δ(a11 + b11), a12 + f, a12 + f, . . . , a12 + f )

+pn(a11 + b11, δ(a12 + f ), a12 + f, . . . , a12 + f )

+ · · · + pn(a11 + b11, a12 + f, a12 + f, . . . , δ(a12 + f )).

On the other hand, using Claim 6, we get

Δ(pn(a11 + b11, a12 + f, a12 + f, . . . , a12 + f ))

= Δ(pn(a11, a12 + f, a12 + f, . . . , a12 + f )) + Δ(pn(b11, a12 + f, a12 + f, . . . , a12 + f ))

= pn(Δ(a11), a12 + f, a12 + f, . . . , a12 + f ) + pn(a11, δ(a12 + f ), a12 + f, . . . , a12 + f )

+ · · · + pn(a11, a12 + f, a12 + f, . . . , δ(a12 + f ))

+pn(Δ(b11), a12 + f, a12 + f, . . . , a12 + f ) + pn(b11, δ(a12 + f ), a12 + f, . . . , a12 + f )

+ · · · + pn(b11, a12 + f, a12 + f, . . . , δ(a12 + f )).

Comparing the above two equations, we get

pn(T, a12 + f, a12 + f, . . . , a12 + f ) = pn(eT e, a12 + f, a12 + f, . . . , a12 + f ) = 0,

which implies that eT ea12 = 0, for all a12 ∈ A12. Following a similar calculation as
above, one can prove a21eT e = 0 for all a21 ∈ A21. Since A satisfies (♠), we con-
clude that T = eT e = 0, that is, Δ(a11 + b11) = Δ(a11) + Δ(b11). Similarly, we
can prove that Δ is additive on A22.

Claim 8. Δ(a11 + a22) = Δ(a11) + Δ(a22) for all a11 ∈ A11, a22 ∈ A22.
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Let a11 ∈ A11 and a22 ∈ A22. We show that T = Δ(a11 + a22) − Δ(a11) −
Δ(a22) = 0. On the one hand, we have

Δ(pn(a11 + a22, f, f, . . . , f ))

= pn(Δ(a11 + a22), f, f, . . . , f ) + pn(a11 + a22, δ( f ), f, . . . , f )

+ · · · + pn(a11 + a22, f, f, . . . , δ( f )).

On the other hand, using the facts that pn(a11 + a22, f, f, . . . , f ) = pn(a22, f,
f, . . . , f ) and pn(a11, f, f, . . . , f ) = 0, we get

Δ(pn(a11 + a22, f, f, . . . , f )) = Δ(pn(a11, f, f, . . . , f )) + Δ(pn(a22, f, f, . . . , f ))

= pn(Δ(a11), f, f, . . . , f ) + pn(a11, δ( f ), f, . . . , f )

+ · · · + pn(a11, f, f, . . . , δ( f )) + pn(Δ(a22), f, f, . . . , f )

+pn(a22, δ( f ), f, . . . , f ) + · · · + pn(a22, f, f, . . . , δ( f )).

Comparing the above equations, we get

pn(T, f, f, . . . , f ) = 2n−1 f T f + eT f + f T e = 0,

which implies that eT f = 0, f T e = 0 and f T f = 0. It remains to show that eT e =
0. Using a similar technique as used above, one can obtain

pn(T, e, e, . . . , e) = 2n−1eT e + eT f + f T e = 0,

which implies that eT e = 0. Thus, T = 0, i.e., Δ(a11 + a22) = Δ(a11) + Δ(a12).

Claim 9. Δ(aii + ai j + a ji ) = Δ(aii ) + Δ(ai j + a ji ) for all aii ∈ Ai i , ai j ∈ Ai j ,

1 ≤ i 
= j ≤ 2.

Let ai j ∈ Ai j , 1 ≤ i, j ≤ 2. Set T = Δ(a11 + a12 + a21) − Δ(a11) − Δ(a12 +
a21).

Δ(pn(a11 + a12 + a21, f, f, . . . , f ))

= pn(Δ(a11 + a12 + a21), f, f, . . . , f ) + pn(a11 + a12 + a21, δ( f ), f, . . . , f )

+ · · · + pn(a11 + a12 + a21, f, f, . . . , δ( f ))

and

Δ(pn(a11 + a12 + a21, f, f, . . . , f ))

= Δ(pn(a11, f, f, . . . , f )) + Δ(pn(a12 + a21, f, f, . . . , f ))

= pn(Δ(a11), f, f, . . . , f ) + pn(a11, δ( f ), f, . . . , f )

+ · · · + pn(a11, f, f, . . . , δ( f )) + pn(Δ(a12 + a21), f, f, . . . , f )

+pn(a12 + a21, δ( f ), f, . . . , f ) + · · · + pn(a12 + a21, f, f, . . . , δ( f )).
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Comparing the above two equations, we get

pn(T, f, f, . . . , f ) = 2n−1 f T f + eT f + f T e = 0,

which implies that eT f = 0, f T e = 0 and f T f = 0. It remains to show that eT e =
0. By a similar technique as used above, one can obtain

pn(T, e − f, e − f, . . . , e − f ) = pn(eT e, e − f, e − f, . . . , e − f ) = 2n−1eT e = 0,

which implies that eT e = 0. Thus, T = 0, i.e., Δ(a11 + a12 + a21) = Δ(a11) +
Δ(a12 + a21). Similarly, computing Δ(pn(a22 + a12 + a21, f, f, . . . , f )) and Δ

(pn(a22 + a12 + a21, f − e, f − e, . . . , f − e)) in two ways, respectively, one can
prove that Δ(a22 + a12 + a21) = Δ(a22) + Δ(a12 + a21).

Claim 10. Δ(a11 + a12 + a21 + a22) = Δ(a11) + Δ(a12 + a21) + Δ(a22) for all
ai j ∈ Ai j , 1 ≤ i, j ≤ 2.

Let T = Δ(a11 + a12 + a21 + a22) − Δ(a11) − Δ(a12 + a21) − Δ(a22). For any
ai j ∈ Ai j , 1 ≤ i, j ≤ 2, we have

Δ(pn(a11 + a12 + a21 + a22, e, e, . . . , e))

= pn(Δ(a11 + a12 + a21 + a22), e, e, . . . , e) + pn(a11 + a12 + a21 + a22, δ(e), e, . . . , e)

+ · · · + pn(a11 + a12 + a21 + a22, e, e, . . . , δ(e)).

On the other hand, using Claim 9 and the fact that pn(a22, e, e, . . . , e) = 0, we get

Δ(pn(a11 + a12 + a21 + a22, e, e, . . . , e))

= Δ(pn(a11 + a12 + a21, e, e, . . . , e)) + Δ(pn(a22, e, e, . . . , e))

= pn(Δ(a11 + a12 + a21), e, e, . . . , e) + pn(a11 + a12 + a21, δ(e), e, . . . , e)

+ · · · + pn(a11 + a12 + a21, e, e, . . . , δ(e)) + pn(Δ(a22), e, e, . . . , e)

+pn(a22, δ(e), e, . . . , e) + · · · + pn(a22, e, e, . . . , δ(e))

= pn(Δ(a11), e, e, . . . , e) + pn(Δ(a12 + a21), e, e, . . . , e)

+pn(Δ(a22), e, e, . . . , e) + pn(a11 + a12 + a21 + a22, δ(e), e, . . . , e)

+ · · · + pn(a11 + a12 + a21 + a22, e, e, . . . , δ(e)).

Comparing the above two equations, we obtain pn(T, e, e, . . . , e) = 2n−1eT e +
eT f + f T e = 0 which in turn gives eT e = eT f = f T e = 0. In a similar manner,
calculating Δ(pn(a11 + a12 + a21 + a22, f, f, . . . , f )) in two ways, one can obtain

pn(T, f, f, . . . , f ) = 2n−1 f T f + eT f + f T e = 0
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which in turn implies that f T f = 0. Hence, T = 0, that is, Δ(a11 + a12 + a21 +
a22) = Δ(a11) + Δ(a12 + a21) + Δ(a22).

Claim 11. Δ(a12 + a21) = Δ(a12) + Δ(a21) for all a12 ∈ A12, a21 ∈ A21.

Leta12 ∈ A12,a21 ∈ A21.Note that pn(e + a12, f + a21, e, . . . , e) = a12 + a21 +
2n−2a12a21, provided n ≥ 3. Using Claims 5 and 9 and the above fact, we have

Δ(a12 + a21) + Δ(2n−2a12a21)

= Δ(a12 + a21 + 2n−2a12a21)

= Δ(pn(e + a12, f + a21, e, . . . , e))

= pn(Δ(e + a12), f + a21, e, . . . , e) + pn(e + a12, δ( f + a21), e, . . . , e)

+ · · · + pn(e + a12, f + a21, e, . . . , δ(e))

= Δ(pn(e, f, e, . . . , e)) + Δ(pn(a12, f, e, . . . , e)) + Δ(pn(e, a21, e, . . . , e))

+Δ(pn(a12, a21, e, . . . , e))

= Δ(a12) + Δ(a21) + Δ(2n−2a12a21),

which implies that Δ(a12 + a21) = Δ(a12) + Δ(a21). If n = 2, then using Claims 8
and 10, we get

Δ(a12 + a21) + Δ(a12a21) + Δ(a21a12)

= Δ(a12 + a21 + a12a21 + a21a12)

= Δ(p2(e + a12, f + a21))

= p2(Δ(e + a12), f + a21) + p2(e + a12, δ( f + a21))

= p2(Δ(e), f ) + p2(Δ(a12), f ) + p2(Δ(e), a21) + p2(Δ(a12), a21)

+p2(e, δ( f )) + p2(a12, δ( f )) + p2(e, δ(a21)) + p2(a12, δ(a21))

= Δ(p2(e, f )) + Δ(p2(a12, f )) + Δ(p2(e, a21)) + Δ(p2(a12, a21))

= Δ(a12) + Δ(a21) + Δ(a12a21) + Δ(a21a12),

which yields that Δ(a12 + a21) = Δ(a12) + Δ(a21).

Claim 12. Δ is additive on A.

Let a = a11 + a12 + a21 + a22, b = b11 + b12 + b21 + b22 ∈ A. Using Claims 6,
7, 10 and 11, we obtain
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Δ(a + b)

= Δ((a11 + a12 + a21 + a22) + (b11 + b12 + b21 + b22))

= Δ((a11 + b11) + (a12 + b12) + (a21 + b21) + (a22 + b22))

= Δ(a11 + b11) + Δ(a12 + b12) + Δ(a21 + b21) + Δ(a22 + b22)

= Δ(a11) + Δ(b11) + Δ(a12) + Δ(b12) + Δ(a21) + Δ(b21) + Δ(a22) + Δ(b22)

= Δ(a11 + a12 + a21 + a22) + Δ(b11 + b12 + b21 + b22)

= Δ(a) + Δ(b).

The proof of the theorem is completed.

4 Applications

In this section, we apply Theorem 1 to certain classes of unital algebras such as
triangular algebras, nest algebras and block upper triangular matrix algebras.

Triangular algebras: Let R be a commutative ring with identity, A, B unital R-
algebras and M an (A,B)-bimodule. The R-algebra

A = Tri(A,M,B) =
{ (

a m
0 b

)
a ∈ A,m ∈ M, b ∈ B

}

under the usual matrix operations is called a triangular algebra. It is easy to see

that A is a unital algebra containing a nontrivial idempotent e =
(
1 0
0 0

)
satisfying

the assumptions (♠). In [15], Li and Benkovič proved that a Jordan generalized
derivation on a 2-torsion-free triangular algebra is a generalized derivation. In view
of Theorem 1, we have the following result which generalizes the result of Li and
Benkovič [15, Theorem 2.5].

Corollary 1 Let A = Tri(A,M,B) be a 2-torsion-free triangular algebra. Then
every multiplicative Jordan generalized derivation Δ : A → A is an additive gener-
alized derivation.

The main examples of triangular algebras are upper triangular matrix algebras, block
upper triangular matrix algebras and nest algebras (see [3, 25] for details). Hence,
applying Corollary 1, we obtain the following results.

Corollary 2 Let Tn(F)(n ≥ 2) be a upper triangular matrix algebra over the
real or complex field F. Then every multiplicative Jordan generalized derivation
Δ : Tn(F) → Tn(F) is an additive generalized derivation.

Corollary 3 Let Bd
n (F)(n ≥ 2) be a block upper triangular matrix algebra over

the real or complex field F with Bd
n (F) 
= Mn(F). Then every multiplicative Jordan

generalized derivation Δ : Bd
n (F) → Bd

n (F) is an additive generalized derivation.
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Corollary 4 LetN be a nest of a Banach space X and T (N ) be the associated nest
algebra. Let Δ : T (N ) → T (N ) be a multiplicative Jordan generalized derivation.
If there exists a nontrivial element in N which is complemented in X, then Δ is
an additive generalized derivation. Moreover, if N is a nest of a Hilbert space
H, then every multiplicative Jordan generalized derivation of T (N ) is an additive
generalized derivation.
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Variational Analysis of Approximate
Defective Eigenvalues

Rafikul Alam

Abstract Consider ann × nmatrix A ∈ C
n×n andλ ∈ C. It is easy to show that there

is a matrix ̂A ∈ C
n×n such that λ is an eigenvalue of ̂A and ‖A − ̂A‖2 = σmin(λ),

where σmin(λ) is the smallest singular value of A − λI. The question that we ask
is this: Does there exist a matrix D such that λ is a defective eigenvalue of D and
‖A − D‖2 = σmin(λ)? If such a defective matrix D exists, then we refer to λ as
an approximate defective eigenvalue of A. The aim of this paper is to characterize
approximate defective eigenvalues. We show that λ is an approximate defective
eigenvalue of A if and only if λ is a Clarke stationary point of the function φ : z �−→
σmin(z). As a consequence, when A is simple, we show that

d(A) = min{σmin(λ) : λ ∈ C \ Λ(A)is a Clarke stationary point of σmin(z)}

is the distance from A to the nearest defective matrix, where Λ(A) is the spectrum
of A.

Keywords Variational analysis · Approximate defective eigenvalues

1 Introduction

Let Cn×n denote the set of n × n matrices with entries in C. Let A ∈ C
n×n and

λ ∈ C be an eigenvalue of A. Then there exist nonzero vectors x and y in C
n such

that Ax = λx and y∗A = λy∗, where y∗ is the conjugate transpose of y. We refer
to x (resp., y) as a right (resp., left) eigenvector of A corresponding to λ. We also
refer to (λ, x, y) as an eigentriple of A. We denote the spectrum of A by Λ(A), that
is, Λ(A) := {λ ∈ C : rank(A − λI ) < n}. Let m (resp., g) be the algebraic (resp.,
geometric) multiplicity of λ. Then λ is said to be simple ifm = 1.On the other hand,
λ is said to be semisimple (resp., defective) if m = g (resp., m > g). Finally, λ is
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said to be a non-derogatory defective eigenvalue of A if m > g = 1. A matrix A is
said to be simple if it has n distinct eigenvalues and A is said to be defective if it has
fewer than n linearly independent eigenvectors.

We consider the Euclidean norm onCn given by ‖x‖2 := (x∗x)1/2 and the spectral
norm on C

n×n given by ‖A‖2 := max‖x‖=1
‖Ax‖2. The singular value decomposition

(SVD) of A is given by A = Udiag(σ1, . . . ,σn)V ∗, where U and V are unitary and
σ1 ≥ · · · ≥ σn ≥ 0 are the singular values of A.A complex number μ can be viewed
as an approximate eigenvalue of A, that is, μ as an eigenvalue of A + E for some
matrix E . The backward error ω(μ, A) of μ as an approximate eigenvalue of A is
defined as

ω(μ, A) := min{‖E‖2 : μ ∈ Λ(A + E)}. (1)

Consider the SVD A − μI = Udiag(σ1, . . . ,σn)V ∗. Then setting
E := Udiag(0, . . . , 0,−σn)V ∗, it follows that μ ∈ Λ(A + E) and ω(μ, A) = σn.

In fact, setting u := Uen and v := Ven, we have (A + E)v = μv and u∗(A + E) =
μu∗. Thus, (μ, v, u) is an eigentriple of A + E which we refer to as an approximate
eigentriple of A.

Definition 1 A complex number μ is said to be an approximate defective (resp.,
multiple) eigenvalue of A if there exists E such that μ is a defective (resp., multiple)
eigenvalue of A + E and ‖E‖2 = ω(μ, A).

Given a complex number μ, let

δμ(A) := min{‖E‖2 : μ ∈ Λ(A + E) is a multiple eigenvalue}.

It is shown in [10] that there is a matrix E such that μ is a multiple eigenvalue of
A + E and

δμ(A) = ‖E‖2 = max
γ≥0

σ2n−1

([

A − μI γ I
0 A − μI

])

≥ ω(μ, A), (2)

where σ2n−1(·) is the (2n − 1)-th singular value of the 2n-by-2n matrix. Hence, μ is
not an approximate defective eigenvalue of A when δμ(A) > ω(μ, A). So, is it pos-
sible to characterize complex numbers which are approximate defective eigenvalues
of A?

The main objective of this paper is to analyze approximate defective eigenvalues
of A. For μ ∈ C, letDμ ⊂ C

n×n denote the set of matrices for which μ is a defective
eigenvalue, that is,

Dμ := {X ∈ C
n×n : μ ∈ Λ(X) is defective}.

We characterize μ such that there exists a matrix E such that A + E ∈ Dμ and
‖E‖2 = ω(μ, A).Next, we construct E such that A + E ∈ Dμ and ‖E‖2 = ω(μ, A).

We show that μ is an approximate non-derogatory defective eigenvalue of A ⇐⇒
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0 ∈ ∂σmin(μ) ⇐⇒ μ is a Clarke stationary point of the map σmin : z �−→ ω(z, A),
where ∂σmin(μ) is the Clarke subdifferential of σmin(z) at μ.

The problem of characterizing approximate defective eigenvalues is closely
related to the Wilkinson problem [17–22]. The Wilkinson problem seeks to deter-
mine a defective matrix nearest to a simple matrix and has been studied extensively
over the years; see [1–4, 6–11, 17–22].

Wilkinson Problem (1965): Let A be simple and let
d(A) := inf{‖E‖2 : A + E is defective}.Determine d(A) and construct E such that
A + E is defective and ‖E‖2 = d(A).

Observe that if E is such that A + E is defective then A + E ∈ Dμ for some
μ ∈ C and, in view of (1), we have ‖E‖2 ≥ ω(μ, A). We show that

d(A) = min
μ∈C

{ω(μ, A) : 0 ∈ ∂σmin(μ)}. (3)

The importance of the Wilkinson problem stems from the fact that d(A) provides

insight into ill-conditioning of the eigenvalue problem Au = λu. Sensitivity analy-
sis of eigenvalues plays an important role in the accuracy assessment of computed
eigenvalues. Eigenvalues of matrices are usually computed by employing backward
stable algorithms [17]. This means that the computed eigenvalues of A are exact
eigenvalues of A + E for some matrix E such that ‖E‖2 is small. Let λ be a simple
eigenvalue of A with associated left and right eigenvectors y and x, respectively.
Then it is well known (see, for example, [17]) that

λ(A + E) = λ + |y∗Ex |
|y∗x | + O(‖E‖22),

whereλ(A + E) is an eigenvalue of A + E closest toλ.This shows that the sensitivity
of a simple eigenvalue λ to a small perturbation in A is measured by the condition
number [17]

cond(λ, A) := ‖x‖2‖y‖2
|y∗x | . (4)

It follows that λ is ill-conditioned when |y∗x | is small, that is, a small perturbation
E may cause a large error in the eigenvalue λ(A + E). Obviously an extreme case
of ill-conditioning occurs when y∗x = 0. This is indeed the case when λ is a non-
derogatory defective eigenvalue. It turns out that the extreme cases of ill-conditioning
are associated with multiple eigenvalues.

Theorem 1 (Wilkinson [20]) Let λ be an eigenvalue of A. Then λ is a multiple
eigenvalue if and only if there exist left and right eigenvectors y and x of A corre-
sponding to λ such that y∗x = 0.

It is customary to define cond(λ, A) := ∞when λ is multiple. Thus, numerically
an eigenvalue λ is expected to behave like a multiple eigenvalue when cond(λ, A)
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is large. The fact that d(A) is closely related to ill-conditioning of eigenvalues of A
is confirmed by the following bound due to Wilkinson [18, 20]: If cond(λ, A) > 1
then

d(A) ≤ min
λ

‖A‖2
√

cond(λ, A)2 − 1
,

where the minimum is taken over by all the eigenvalues of A. This shows that
d(A)  1/cond(λ, A) when cond(λ, A) is large. In other words, matrices with very
sensitive eigenvalues are close to a defective matrix and the distance is almost
inversely proportional to the condition number of its most sensitive eigenvalue. We
mention, however, that the upper bound is not attained by d(A) and it is easy to
construct examples for which the bound is not sharp. The crux of the matter is that
having an ill-conditioned eigenvalue is sufficient for a matrix to be close to a defec-
tive matrix but it is not necessary. Several upper and lower bounds of d(A) have been
obtained over the years [6–9, 11, 18–22]. See [1] for a comprehensive catalog of
upper and lower bounds of d(A). The Wilkinson problem was open for almost four
decades. As a consequence of approximate defective eigenvalues, we provide a brief
outline of a solution to the Wilkinson problem obtained in [3, 4].

2 Approximate Multiple Eigenvalues

Let A ∈ C
n×n .We consider the Frobenius norm defined by ‖A‖F := √

Trace(A∗A).

For the rest of the paper, we define σmin : C → R by σmin(z) := ω(z, A), where
ω(z, A) is the backward error defined in (1). Let λ ∈ C. By considering SVD of
A − λI , it follows that σmin(λ) = ω(λ, A) = σn, where σn is the smallest singular
value of A − λI. Indeed, let u and v, respectively, be left and right singular vectors
of A − λI corresponding to σmin(λ). Then defining E := −σmin(λ)uv∗, it is easily
seen that λ ∈ Λ(A + E) and ‖E‖2 = ‖E‖F = σmin(λ). Note that λ need not be a
multiple eigenvalue of A + E . However, under appropriate assumptions, λ can be
induced as a multiple/defective eigenvalue of A + E .

We need the following elementary result which will play an important role in the
subsequent development. See also [3].

Theorem 2 Let λ ∈ C and A ∈ C
n×n . Suppose that λ is not an eigenvalue of A.

Consider the singular value decomposition A − λI = U�V ∗.

(a) Suppose that σmin(λ) is a multiple singular value with multiplicity m. Let
Um and Vm, respectively, denote the last m columns of U and V . Define
E := −σmin(λ)UmV ∗

m . Then ‖E‖2 = σmin(λ) and λ is a multiple eigenvalue of
A + E with geometric multiplicity m. The columns of Um and Vm, respectively,
are orthonormal left and right eigenvectors of A + E corresponding to λ.

(b) Suppose that A − λI has a pair of left and right singular vectors u and v

corresponding to σmin(λ) such that u∗v = 0. Define E := −σmin(λ)uv∗. Then
‖E‖2 = ‖E‖F = σmin(λ) and λ is a non-derogatory defective eigenvalue of



Variational Analysis of Approximate Defective Eigenvalues 29

A + E. Further, u and v are left and right eigenvectors of A + E corresponding
to λ.

Proof (a) By construction ‖E‖2 = σmin(λ) and (A + E)Vm = λVm and U ∗
m(A +

E) = λU ∗
m . This shows that the geometric multiplicity of λ as an eigenvalue

of A + E is at least m. Since by construction rank(A + E − λI ) = n − m, it
follows that the geometric multiplicity of λ is exactly m.

(b) By construction ‖E‖2 = ‖E‖F = σmin(λ), (A + E)v = λv and u∗(A + E) =
λu∗. So, we only need to show that λ is a non-derogatory defective eigen-
value. Since u∗v = 0, by Theorem 1, λmust be a multiple eigenvalue of A + E .

Since rank(A + E − λI ) = n − 1, it follows that λ is a non-derogatory defec-
tive eigenvalue of A + E . �

We mention that for any λ ∈ C there always exists a matrix E, which can
be constructed from the SVD of A − λI, such that λ is a multiple eigenvalue
of A + E . However, in such cases we always have ‖E‖2 > σmin(λ) unless λ
satisfies the assumptions in Theorem 2. Indeed, consider the SVD A − λI =
Udiag(σ1, · · · ,σn)V ∗ and define

E := A −Udiag(σ1, · · · , σn−m , 0, · · · , 0)V ∗ = −Udiag(0, . . . , 0, σn−m+1, . . . , σn)V
∗.

Then it follows that λ is a multiple eigenvalue of A + E with geometric multiplic-
ity m and ‖E‖2 = σn−m+1 ≥ σn = σmin(λ). Next, we show that the conditions in
Theorem 2 are also necessary for λ to be an approximate multiple eigenvalue of A.

To proceed further, we need the best low rank approximation of a matrix. Given
A ∈ C

n×n and � < rank(A), consider the rank-� minimization problems

A� = argminrank(X)=�‖A − X‖2,
A� = argminrank(X)=�‖A − X‖F .

Theorem 3 (Eckart-Young [12]) Let A ∈ C
n×n and � < r := rank(A).

Consider the SVD A = Udiag(σ1, · · · ,σr , 0, · · · , 0)V ∗. Define A� :=
Udiag(σ1, · · · ,σ�, 0, · · · , 0)V ∗. Then

A� = argminrank(X)=�‖A − X‖2 and ‖A − A�‖2 = σ�+1,

A� = argminrank(X)=�‖A − X‖F and ‖A − A�‖F =
√

σ2
�+1 + · · · + σ2

r .

Further, A� = argminrank(X)=�‖A − X‖F is unique.

Wesay thatλ is an approximatemultiple eigenvalue of A of geometricmultiplicity
� if there exists a matrix E such that ‖E‖2 = ω(λ, A) and λ is an eigenvalue of
A + E of geometricmultiplicity �.The following result characterizes an approximate
multiple eigenvalue.

Theorem 4 Let λ ∈ C and A ∈ C
n×n . Suppose that λ is not an eigenvalue of A. Let

� ≥ 2. Then λ is an approximate multiple eigenvalue of A of geometric multiplicity
� ⇐⇒ σmin(λ) is a multiple singular value of A − λI of multiplicity at least �.
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Proof If the multiplicity of σmin(λ) as a singular value of A − λI is � then the
result follows from Theorem 2(a). So, suppose that λ is an approximate multiple
eigenvalue of A of geometric multiplicity �. Then there exists E such that ‖E‖2 =
ω(λ, A) = σmin(λ) and λ is an eigenvalue of A + E of geometric multiplicity �.

This implies that rank(A − λI + E) = n − �. Since rank(A − λI ) = n and ‖(A −
λI ) − (A − λI + E)‖2 = ‖E‖2 = σmin(λ), it follows that A − λI + E is a best
rank-(n − �) approximation of A − λI. Hence by Theorem 3, the smallest singular
value of A − λI must have multiplicity at least �. �

The case when λ is an approximate multiple eigenvalue of A of geometric multi-
plicity � = 1 requires special treatment. Theorem2(b) shows thatλ is an approximate
defective eigenvalue of A whenever A − λI has a pair of orthogonal left and right
singular vectors corresponding to σmin(λ). We now show that the existence of a pair
of orthogonal left and right singular vectors of A − λI corresponding to σmin(λ) is
also a necessary condition for λ to be an approximate defective eigenvalue of A.

Theorem 5 Let λ ∈ C and A ∈ C
n×n . Suppose that λ is not an eigenvalue of A.

Then the following conditions are equivalent.

(a) There is a pair of left and right singular vectors u and v of A − λI corresponding
to σmin(λ) such that u∗v = 0.

(b) There exists E such that ‖E‖F = σmin(λ) and λ is a defective eigenvalue of
A + E .

(c) There exists E such that rank(E) = 1, ‖E‖2 = σmin(λ) and λ is a defective
eigenvalue of A + E .

Proof If (a) holds then (b) also holds by Theorem 2(b). So, suppose that (b) holds.
Consider the SVD A − λI = Udiag(σ1, . . . ,σn)V ∗.Since ‖(A − λI ) − (A − λI +
E)‖F = σmin(λ) = min{‖(A − λI ) − K‖F : rank(K ) = n − 1}, by Theorem 3,
A − λI + E is a unique best rank-(n − 1) approximation of A − λI and is given
by A − λI + E = Udiag(σ1, . . . ,σn−1, 0)V ∗ =⇒ E = Udiag(0, . . . , 0,−σn)V ∗.
Hence E is a rank-1 matrix. This shows that (c) holds.

Now suppose that (c) holds. Since rank(A − λI + E) = n − 1, it fol-
lows that λ is a non-derogatory defective eigenvalue of A + E . Also since
‖(A − λI ) − (A − λI + E)‖2 = σmin(λ) = min{‖(A − λI ) − K‖2 : rank(K ) =
n − 1} and rank(E) = 1, by Theorem 3, E must be of the form E = −σmin(λ)uv∗
for some left and right singular vectors u and v of A − λI corresponding to
σmin(λ). Then obviously, we have (A + E)v = λv and u∗(A + E) = λu∗. Since λ
is non-derogatory defective, by Theorem 1, we have u∗v = 0. This shows that (a)
holds. �

Note that the notion of approximate eigenvalue depends on the choice of a norm.
Also note that ω(λ, A) = min{‖E‖2 : λ ∈ Λ(A + E)} = min{‖E‖F : λ ∈ Λ(A +
E)} = σmin(λ).Wesay thatλ is an approximatemultiple (resp., defective) eigenvalue
of A with respect to Frobenius norm if there exists E such that λ ∈ Λ(A + E) is
a multiple (resp., defective) eigenvalue and ‖E‖F = σmin(λ). As a consequence of
Theorem 5, we have the following result.
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Corollary 1 Let λ ∈ C and A ∈ C
n×n . Suppose that λ is not an eigenvalue of A.

Then λ is an approximate non-derogatory defective eigenvalue of A with respect to
Frobenius norm if and only if A − λI has a pair of left and right singular vectors u
and v corresponding toσmin(λ) such that u∗v = 0. In such a case, E := −σmin(λ)uv∗
induces λ as a non-derogatory defective eigenvalue of A + E .

Next, we investigate the complex numbers that satisfy the condition inCorollary 1.
For this purpose, we identify the function σmin : C −→ R, x + iy �−→ σmin(x +
iy),with the function φ : R2 −→ R, (x, y) �−→ σmin(x + iy).Wewrite the gradient
∇φ(a, b) = (φx (a, b), φy(a, b)) as a complex number and define∇σmin(a + ib) :=
φx (a, b) + iφy(a, b) and refer to∇σmin(a + ib) as the gradient of σmin(z) at a + ib.
We say the λ ∈ C is a stationary point of σmin(z) if ∇σmin(λ) = 0.

Theorem 6 (Sun [15]) Let A ∈ C
n×n . Suppose that λ ∈ C is not an eigenvalue of A

and that σmin(λ) is a simple singular value of A − λI. Let u and v be left and right
singular vectors of A − λI corresponding to σmin(λ). Then σmin(z) is differentiable
at λ and the gradient of σmin(z) at λ is given by ∇σmin(λ) = −v∗u.

Wenow show that the stationary points ofσmin(z) are approximate non-derogatory
defective eigenvalues for A.

Theorem 7 Let A ∈ C
n×n . Suppose that λ ∈ C is not an eigenvalue of A and

that σmin(λ) is a simple singular value of A − λI. Let u and v be left and right
singular vectors of A − λI corresponding to σmin(λ). Then λ is an approximate
non-derogatory defective eigenvalue of A with respect to Frobenius norm ⇐⇒
∇σmin(λ) = 0. Define E := −σmin(λ)uv∗. Then ‖E‖F = ‖E‖2 = σmin(λ) and λ is
a non-derogatory defective eigenvalue of A + E .

Proof Suppose that ∇σmin(λ) = 0. Then by Theorem 6, v∗u = −∇σmin(λ) = 0 ⇒
u and v are orthogonal. Hence by Corollary 1, λ is a non-derogatory defective eigen-
value of A + E . Obviously, ‖E‖F = ‖E‖2 = σmin(λ) as E is a rank-1 matrix and u
and v are unit vectors.

Conversely, if λ is an approximate non-derogatory defective eigenvalue for A
with respect to Frobenius norm then by Corollary 1, A − λI has a pair of left and
right singular vectors û and v̂ corresponding to σmin(λ) such that û∗v̂ = 0. Since
σmin(λ) is simple, we have u = wû and v = wv̂ for some w ∈ C such that |w| = 1.
Consequently, by Theorem 6, we have ∇σmin(λ) = −v∗u = −v̂∗û = 0. �

Thus, stationary points of σmin(z) are approximate non-derogatory defective
eigenvalues of A. This raises a natural question: What can be said about λ when
σmin(λ) is a multiple singular value of A − λI? By Theorem 4, λ is an approximate
multiple eigenvalue of A. But is λ an approximate defective eigenvalue of A? We
now investigate this issue.
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3 Approximate Defective Eigenvalues

Let A ∈ C
n×n . Suppose that λ ∈ C is not an eigenvalue of A. Then by Corollary 1,

λ is an approximate defective eigenvalue of A with respect to Frobenius norm if and
only if A − λI has a pair of left and right singular vectors u and v corresponding
to σmin(λ) such that u∗v = 0. By Theorem 7, this condition is satisfied when λ is
a stationary point of σmin(z). So, does there exist a pair of left and right singular
vectors u and v of A − λI corresponding to σmin(λ) such that u∗v = 0 when σmin(λ)

is multiple? To answer this question, we need to consider stationary points when
σmin(z) is nonsmooth. Note that σmin(z) is not differentiable at λ when σmin(λ) is
multiple. However, σmin(z) is Lipschitz continuous. Consequently, the notion of the
Clarke stationary point of σmin(z) can be utilized to deal with the case when σmin(λ)

is a multiple singular value of A − λI.
The generalized Clarke directional derivative of a locally Lipschitz function f :

C
n → R at x ∈ C

n in the direction v is defined by [5]

δ f (x; v) := lim sup
y→x, t→0+

f (y + tv) − f (y)

t
.

Then the Clarke subdifferential of f at x is given by

∂ f (x) := {y ∈ C
n : δ f (x; v) ≥ Re〈v, y〉 for all v ∈ C

n},

where 〈x, y〉 := y∗x is the usual inner product on C
n. Equivalently, we have [5]

∂ f (x) = convex hull

{

lim
xk→x

∇ f (xk) : f is differentiable at xk

}

= {y ∈ C
n : δ f (x; v) ≥ Re〈v, y〉 for all v ∈ C

n}.

Wemention that if f is differentiable in a neighborhood of x then ∂ f (x) = {∇ f (x)}.
We equip C

n×n with the usual inner product 〈X,Y 〉 := Trace(Y ∗X).

Definition 2 (Clarke stationary point [5]) Let f : Cn → R be locally Lipschitz and
λ ∈ C. Then λ is said to be a Clarke stationary point of f if 0 ∈ ∂ f (λ).

Note that if λ is a stationary point of σmin(z) then λ is also a Clarke stationary
point of σmin(z). We now determine the Clarke subdifferential of σmin(z). The field
of values of a matrix A is given by F (A) := {x∗Ax : x ∈ C

n and x∗x = 1}.
Theorem 8 (Subdifferential) Let A ∈ C

n×n and λ ∈ C \ Λ(A). Suppose that the
multiplicity ofσmin(λ) is m.LetU ∈ C

n×m and V ∈ C
n×m be such that (A − λI )V =

σmin(λ)U and (A − λI )∗U = σmin(λ)V with V ∗V = Im = U ∗U. Then we have

∂σmin(λ) = −F (V ∗U ),

where F (V ∗U ) is the field of values of V ∗U.
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Proof Set G(z) := A − z I. Then σmin(z) = σn(G(z)) is Lipschitz continuous and
G(z) is a smooth function with ∇G(λ) = −I. Note that ∇G(λ) : C → C

n×n is a
linear map and is given by ∇G(λ)z = −z I. Now we determine the adjoint operator
(∇G(λ))∗ : Cn×n → C. We have 〈z, (∇G(λ))∗Y 〉 = 〈∇G(λ)z,Y 〉 = 〈−z I,Y 〉 =
〈z,−Trace(Y )〉 for Y ∈ C

n×n which shows that (∇G(λ))∗Y = −Trace(Y ) for Y ∈
C

n×n .

We now show that ∂σmin(λ) = (∇G(λ))∗∂σn(G(λ)), where ∂σn(G(λ)) is the
Clarke subdifferential of the map C

n×n → R, X �→ σn(X), evaluated at G(λ). By
the chain rule [5], we have ∂σmin(λ) ⊂ (∇G(λ))∗∂σn(G(λ)). For the reverse inclu-
sion, we use generalized Clarke directional derivatives of σmin(z) and σn(X). Since
∇G(λ)z = −I z, it is easily seen that δσmin(λ; z) = δσn(G(λ); ∇G(λ)z) for all
z ∈ C. Hence for Y ∈ ∂σn(G(λ)), we have

Re〈z, (∇G(λ))∗Y 〉 = Re〈∇G(λ)z,Y 〉 ≤ δσn(G(λ); ∇G(λ)z) = δσmin(λ; z)

for all z ∈ C.This shows that (∇G(λ))∗Y ∈ ∂σmin(λ) and hence the reverse inclusion
follows.

Next, we determine the subdifferential ∂σmin(λ). Since G(λ) is nonsingular, by
Corollary 6.4, [14], the subdifferential of X �→ σn(X) evaluated at G(λ) is given by

∂σn(G(λ)) = convex hull{uv∗ : G(λ)v = σmin(λ)u,G(λ)∗u = σmin(λ)v, ‖u‖2 = ‖v‖2 = 1}
= convex hull{Uxx∗V ∗ : x ∈ C

m , ‖x‖2 = 1}.

Hence, we have

∂σmin(λ) = (∇G(λ))∗∂σn(G(λ))

= convex hull{−Trace(Uxx∗V ∗) : x ∈ C
m, ‖x‖2 = 1}

= {−x∗V ∗Ux : x ∈ C
m, ‖x‖2 = 1} = −F (V ∗U ).

This completes the proof. �

See [13] for a similar result and a different proof.

Theorem 9 Let A ∈ C
n×n and λ ∈ C. Suppose that λ is not an eigenvalue of A.

Then λ is a Clarke stationary point of σmin(z) if and only if there exists a pair of left
and right singular vectors u and v of A − λI corresponding to σmin(λ) such that
u∗v = 0. Consequently, λ is an approximate non-derogatory defective eigenvalue of
A with respect to Frobenius norm if and only if λ is a Clarke stationary point of
σmin(z). Define E = −σmin(λ)uv∗. Then λ is a non-derogatory defective eigenvalue
of A + E and ‖E‖F = ‖E‖2 = σmin(λ).

Proof Suppose that themultiplicity of σmin(λ) ism.LetU and V be as in Theorem 8.
Then by Theorem 8, ∂σmin(λ) = −F (V ∗U ). Now suppose that λ is a Clarke sta-
tionary point, that is, 0 ∈ ∂σmin(λ). Then 0 ∈ F (V ∗U ) and hence 0 = x∗V ∗Ux for
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some x ∈ C
m with ‖x‖2 = 1. Setting v := V x and u := Ux, it follows that v∗u = 0

and that u and v are left and right singular vectors of A − λI corresponding to
σmin(λ).

Conversely, let u and v be left and right singular vectors of A − λI corresponding
to σmin(λ) such that u∗v = 0. Then u = Ux and v = V x for some x ∈ C

m such
that ‖x‖2 = 1. Thus, we have 0 = v∗u ∈ F (V ∗U ) = −∂σmin(λ) showing that λ is
a Clarke stationary point.

Finally, by Corollary 1, λ is a Clarke stationary point of σmin(z) if and only if λ is
an approximate non-derogatory defective eigenvalue of A with respect to Frobenius
norm.The fact thatλ is a non-derogatory defective eigenvalue of A + E is immediate.
Obviously, we have‖E‖F = ‖E‖2 = σmin(λ). �

We conclude that λ ∈ C \ Λ(A) is an approximate defective eigenvalue of A
whenever λ is a Clarke stationary point of σmin(z). Consequently, when A is simple,
we have

d(A) ≤ inf{σmin(λ) : λ ∈ C \ Λ(A) is a Clarke stationary point of σmin(z)}. (5)

Does the equality hold in (5)? How to determine a Clarke stationary point λ such
that d(A) = σmin(λ)? To answer these questions, we need to consider coalescence
of pseudospectral components of A.

Let A ∈ C
n×n .For ε > 0,Λε(A) := {z ∈ C : ω(z, A) ≤ ε} = {z ∈ C : σmin(z) ≤

ε} is called the ε-pseudospectrum of A; see [16]. It is easily seen that

Λε(A) :=
⋃

‖E‖2≤ε

{Λ(A + E) : E ∈ C
n×n} =

⋃

‖E‖F≤ε

{Λ(A + E) : E ∈ C
n×n}. (6)

Thus, the ε-pseudospectrum of A is the collection of all eigenvalues of all matrices
whose distance from A is less than or equal to ε. Some important properties of
pseudospectra of A are summarized in the following result.

Theorem 10 (Alam-Bora [3]) Let A ∈ C
n×n . Consider the ε-pseudospectrum

Λε(A). Then the following results hold.

(a) For ε > 0, Λε(A) consists of at most n components (i.e., maximal connected
subsets) and each component contains at least one eigenvalue of A in its interior.

(b) The boundary ∂Λε(A) of Λε(A) is an algebraic curve and ∂Λε(A) ⊂ {λ ∈
C : σmin(λ) = ε}. Further, ∂Λε(A) consists of finitely many piecewise smooth
curves.

(c) Let int(Λε(A)) denote the set of interior points of Λε(A). Then int(Λε(A)) =
{λ ∈ C : σmin(λ) < ε}.

Note that Λε(A) consists of at most n components when ε is sufficiently small.
As ε grows gradually, the components of Λε(A) enlarge and “coalesce” to form
bigger components. For example, if A is normal with k distinct eigenvalues then,
for sufficiently small ε, Λε(A) consists of k disjoint disks of radius ε centered at the
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eigenvalues. The coalescence of pseudospectral components plays an important role
in locating (Clarke) stationery points of σmin(z). We, therefore, define what is meant
by saying that two components of Λε(A) coalesce.

Observe that ifΔε is a component of int(Λε(A)) then clos(Δε), the closure ofΔε,

is a (possibly bigger) component ofΛε(A).Hence for the boundary, we have ∂Δε ⊂
∂clos(Δε) and the containment may be strict. On the other hand, ifΔε is a component
of Λε(A) then int(Δε) may be a disjoint union of more than one component of
int(Λε(A)).

Definition 3 We say that λ is a point of coalescence of two disjoint components,
say, Ω1 and Ω2 of int(Λε(A)) if λ is a common boundary point of Ω1 and Ω2, that
is, if λ ∈ ∂Ω1 ∩ ∂Ω2.

We will be lax and say that λ is a point of coalescence of two components of Λε(A).

If λ is a point of coalescence of two or more components of Λε(A) then it is
proved in [13] that there is a pair of left and right singular vectors u and v of A − λI
corresponding to σmin(λ) such that u∗v = 0. In other words, λ is a Clarke stationary
point, which is referred to as a resolvent critical point in [13]. In fact, the following
result holds; see Corollary 8.4 and Theorem 8.8 in [13].

Theorem 11 (Lewis-Pang [13]) Let A ∈ C
n×n and λ be a point of coalescence of

two or more components of Λε(A). Then λ is a Clarke stationary point of σmin(z).
Moreover, {σmin(λ) : λ is a Clarke stationary point of σmin(z)} is a finite set.

By Theorem 11, the infimum in (5) is a minimum. We mention that Wilkin-
son’s problem is equivalent to characterizing stability of an eigendecomposition
A = Xdiag(λi )X−1 when A is a simple matrix. By characterizing stability, we
mean determining the radius of the largest open ball centered at A on which
the factors X, X−1 and diag(λi ) vary continuously as functions of A. Obviously,
B(A, ε) := {Y ∈ C

n×n : ‖A − Y‖2 < ε} is the largest open ball on which the eigen-
decomposition is stable if and only if ε = d(A). Now, let #(Λε(A)) denote the num-
ber of components of Λε(A). If #(Λε(A)) = n then obviously d(A) > ε. On the
other hand, if #(int(Λε(A))) = n but #(Λε(A)) < n then at least two components of
Λε(A) must coalesce. Consequently, in such a case we have d(A) ≥ ε. Now, if two
components of Λε(A) coalesce say at λ then does there exist E such that ‖E‖2 = ε
and λ is a defective eigenvalue of A + E? It is shown in [3] that λ is indeed amultiple
eigenvalue A + E for some E such that ‖E‖2 = ε = σmin(λ) thereby providing a
solution to the Wilkinson problem.

Theorem 12 (Alam-Bora [3]) Let A ∈ C
n×n be a simple matrix. Let #(Λε(A))

denote the number of components of Λε(A). Let ε > 0 be such that (int(Λε(A))) =
n and #(Λε(A)) ≤ n − 1. Let λ be a common boundary point of components
of int(Λε(A)). Then we have d(A) = ε = σmin(λ). Consider the SVD A − λI =
U�V ∗. Set u := Uen and v := Ven when σmin(λ) is simple, and u := [Uen−1,Uen]
and v := [Ven−1, Ven] when σmin(λ) is multiple. Define E = −σmin(λ)uv∗. Then
λ is a multiple eigenvalue of A + E and ‖E‖2 = ε. Further, λ is a non-derogatory
defective eigenvalue of A + E wheneverσmin(λ) is a simple singular value of A − λI.
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The construction inTheorem12 shows that the point of coalescenceλ is a defective
eigenvalue of A + E when σmin(λ) is a simple singular value of A − λI, otherwise
λ is a multiple eigenvalue of A + E . By Theorem 11, λ is a Clarke stationary point
and hence by Theorem 9, there exists a rank-1 matrix E such that λ is a defective
eigenvalue of A + E and ‖E‖2 = ‖E‖F = σmin(λ). However, the construction of
E in Theorem 9 involves a pair of left and right singular vectors u and v such that
u∗v = 0, whose existence is guaranteed in Theorem 11, but it is not known how to
compute u and v. It is shown [4] that A − λI has a pair of left and right singular
vectors u and v such that u∗v = 0 when σmin(λ) is multiple and that u and v can be
computed by an algorithm. We summarize these results in the following theorem.

Theorem 13 Let A ∈ C
n×n be a simple matrix. Let #(Λε(A)) denote the

number of components of Λε(A). Let ε > 0 be such that #(int(Λε(A))) = n
and #(Λε(A)) ≤ n − 1. Let λ be a common boundary point of components
of int(Λε(A)). Then λ is a Clarke stationary point of σmin(z) and we have
d(A) = ε = σmin(λ) = min{σmin(μ) : μ ∈ C \ λ(A) is a Clarke stationary point}.
Further, A − λI has a pair of normalized left and right singular vectors u and v

corresponding to σmin(λ) such that u∗v = 0. Define E := −σmin(λ)uv∗. Then λ is
a non-derogatory defective eigenvalue of A + E and ‖E‖2 = ‖E‖F = (A).

Wemention that the approach developed in [4], which does not employ variational
analysis, leads to an optimization-based quadratically convergent algorithm for the
computation of a matrix E such that A + E is defective.
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Structure of Prime Near Rings
with Generalized Derivations

Asma Ali and Inzamam ul Huque

Abstract The purpose of this paper is to obtain the structure of a prime near ring N
admitting a right generalized derivation F associated with a nonzero derivation d sat-
isfying either of the conditions: (i) F([x, y]σ ) = ±xm(x ◦ y)σ xn , (ii) F([x, y]σ ) =
±xm[x, y]σ xn , (iii) F(x ◦ y)σ = ±xm(x ◦ y)σ xn , (iv) F(x ◦ y)σ = ±xm[x, y]σ xn ,
(v) F([x, y]σ ) = ±[F(x), y]σ and (vi) F(x ◦ y)σ = ±(F(x) ◦ y)σ for all x, y ∈ U ,
whereU is a nonzero semigroup ideal of N ,σ : N → N is amap such thatσ(U ) = U
and m, n are non-negative integers. Moreover, we give a characterization of these
mappings.

Keywords Prime near ring · Generalized derivations · Semigroup ideal ·
Commuting map

1 Introduction

A right near ring N is a triplet (N ,+, ·), where + and · are two binary operations
such that (i) (N ,+) is a group (not necessarily abelian), (ii) (N , ·) is a semigroup and
(iii) (x + y) · z = x · z + y · z for all x, y, z ∈ N . Consonantly, instead of (iii), if N
satisfies left distributive law, then N is said to be a left near ring. The most natural
example of a right near ring is the set of all identity preserving mappings acting
from left of an additive group G (not necessarily abelian) into itself with pointwise
addition and composition of mappings as multiplication. If these mappings act from
right on G, then we get a left near ring (For more examples, we can refer Pilz [8]). A
near ring N is said to be zero-symmetric if x0 = 0 for all x ∈ N (right distributive
law yields that 0x = 0). Throughout the paper, N represents a zero-symmetric right
near ring with Z(N ) as multiplicative center of N . For any x, y ∈ N , the symbols
[x, y] and (x ◦ y) denote the Lie product xy − yx and the Jordan product xy + yx ,
respectively. If σ : N → N is any map, then we write [x, y]σ = σ(x)y − yx and
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(x ◦ y)σ = σ(x)y + yx for all x, y ∈ N . A near ring N is said to be prime if xNy =
{0} for all x, y ∈ N implies that x = 0 or y = 0. A nonempty subsetU of a near ring
N is said to be a semigroup right (resp. semigroup left) ideal of N ifUN ⊆ U (resp.
NU ⊆ U ), and ifU is both a semigroup right ideal as well as a semigroup left ideal,
then it is said to be a semigroup ideal of N . If S is a nonempty subset of N , then a
mapping f : S → N is said to be centralizing (resp. commuting) on S if [ f (x), x] ∈
Z(N ) (resp. [ f (x), x] = 0) for all x ∈ S. The notion of derivation in near rings was
initiated by Bell and Mason [1]. An additive mapping d : N → N is said to be a
derivation on N if d(xy) = d(x)y + xd(y) for all x, y ∈ N or equivalently in [10],
d(xy) = xd(y) + d(x)y for all x, y ∈ N . Inspired by the definition of derivation in
near rings, Gölbaşi [7] defined generalized derivation in near rings as follows: An
additive mapping F : N → N is said to be a right (resp. left) generalized derivation
associated with a derivation d on N if F(xy) = F(x)y + xd(y) (resp. F(xy) =
d(x)y + xF(y)) for all x, y ∈ N . Moreover, F is said to be a generalized derivation
associated with a derivation d on N if it is both a right generalized derivation as
well as a left generalized derivation on N . Thus, the notion of generalized derivation
covers the notion of multiplier for d = 0. There are many results asserting that prime
near rings with certain constrained derivations and generalized derivations have ring
like behavior.

In [5], Daif and Bell proved that if R is a prime ring, I a nonzero ideal of R
and R admits a derivation d such that d([x, y]) = ±[x, y] for all x, y ∈ I , then R
is commutative. Further, Dhara [6] proved that if R is a semiprime ring and F is
a generalized derivation associated with a derivation d on R such that F([x, y]) =
±[x, y]or F(x ◦ y) = ±(x ◦ y) for all x, y ∈ I , a nonzero ideal of R, then R contains
a nonzero central ideal, provided d(I ) �= {0}. Moreover, he obtained that if R is a
prime ring, R must be commutative, provided d �= 0. Further, Boua and Oukhtite
[4] extended these results for prime near rings. More precisely, they proved that if
N is a prime near ring with a nonzero derivation d such that d([x, y]) = ±[x, y] or
d(x ◦ y) = ±(x ◦ y) for all x, y ∈ N , then N is a commutative ring. In [3], Boua
obtained the commutativity of a prime near ring N in case of a semigroup idealU of
N satisfying one of the conditions: (i) d([x, y]) = [d(x), y]; (ii) [d(x), y] = [x, y];
(iii) d(x ◦ y) = d(x) ◦ y and (iv) d(x) ◦ y = x ◦ y for all x, y ∈ U . Recently, Shang
[9] considered the more general situations for a generalized derivation F of a prime
near ring N satisfying any one of the following: (i) F([x, y]) = ±xk[x, y]xl and
(ii) F(x ◦ y) = ±xk(x ◦ y)xl for all x, y ∈ N ; where k ≥ 0, l ≥ 0 are non-negative
integers and proved that N is a commutative ring. In this line of investigation, it is
natural to look forward for some comparable results for generalized derivation in
prime near rings for more general constraints replacing [x, y] and (x ◦ y) by [x, y]σ
and (x ◦ y))σ , respectively. In this paper, we obtain the structure of a prime near ring
N with generalized derivation F : N → N associated with a nonzero derivation d
on N satisfying certain identities. Moreover, we prove some theorems which give a
suitable characterization of these mappings.
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2 Main Results

For developing the proofs of our main results, we need the following lemmas.

Lemma 1 ([2], Lemma 1.2(i), (iii) and Lemma 1.3(iii)). Let N be a prime near ring.

(i) If z ∈ Z(N ) \ {0}, then z is not a zero divisor.
(ii) If z ∈ Z(N ) \ {0} and zx ∈ Z(N ), then x ∈ Z(N ).

(iii) If z centralizes a nonzero semigroup left ideal, then z ∈ Z(N ).

Lemma 2 ([2], Lemma 1.4) Let N be a prime near ring and U be a nonzero semi-
group ideal of N . If x, y ∈ N and xUy = {0}, then x = 0 or y = 0.

Lemma 3 ([2], Lemma 1.5) If N is a prime near ring and Z(N ) contains a nonzero
semigroup left ideal or a semigroup right ideal, then N is a commutative ring.

Lemma 4 ([8], Proposition 1.5) If N is a near ring, then −xy = (−x)y for all
x, y ∈ N.

Lemma 5 ([2], Lemma 1.3) Let N be a prime near ring and U be a nonzero semi-
group right (resp. semigroup left) ideal of N and x is an element of N such that
Ux = {0} (resp. xU = {0}), then x = 0.

Theorem 1 Let N be a prime near ring, U a nonzero semigroup ideal of N and
σ : N → N be a map such that σ(U ) = U. If there exist non-negative integers
m ≥ 0, n ≥ 0 and N admits a right generalized derivation F associated with a
nonzero derivation d such that F([x, y]σ ) = ±xm[x, y]σ xn for all x, y ∈ U, then F
is a left multiplier on N or N is a commutative ring.

Proof By hypothesis,

F([x, y]σ ) = ±xm[x, y]σ xn for all x, y ∈ U. (1)

Replacing y by yx in (1), we get

F([x, y]σ x) = ±xm[x, y]σ xn+1,

F([x, y]σ )x + [x, y]σd(x) = ±xm[x, y]σ xn+1 for all x, y ∈ U.

Using hypothesis, we arrive at

[x, y]σd(x) = 0,

σ (x)yd(x) = yxd(x) for all x, y ∈ U. (2)

Substituting zy for y in (2) and using (2), we obtain

σ(x)zyd(x) = zyxd(x) = zσ(x)yd(x),
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which gives
[σ(x), z]yd(x) = 0 for all x, y ∈ U, z ∈ N .

Since σ(U ) = U , we get

[t, z]Ud(x) = {0} for all t, x ∈ U, z ∈ N .

Applying Lemma 2, we obtain either d(x) = 0 or t ∈ Z(N ) for all t, x ∈ U , i.e.,
d(x) = 0 for all x ∈ U or U ⊆ Z(N ). Latter case yields that N is a commutative
ring by Lemma 3. Consider the case, d(x) = 0 for all x ∈ U . Replacing x by xr for
r ∈ N , we get xd(r) = 0 for all x ∈ U , r ∈ N , i.e., Ud(r) = {0}. Using Lemma 5,
we get d = 0 on N and hence F is a left multiplier on N . �

Theorem 2 Let N be a prime near ring, U a nonzero semigroup ideal of N and
σ : N → N be a map such that σ(U ) = U. If there exist non-negative integers
m ≥ 0, n ≥ 0 and N admits a right generalized derivation F associated with a
nonzero derivation d such that F(x ◦ y)σ = ±xm(x ◦ y)σ xn for all x, y ∈ U, then
F is a left multiplier on N or N is a commutative ring.

Proof Suppose that

F(x ◦ y)σ = ±xm(x ◦ y)σ x
n for all x, y ∈ U. (3)

Substituting yx in place of y in (3) and using (x ◦ yx)σ = (x ◦ y)σ x , we get

F((x ◦ y)σ x) = ±xm(x ◦ y)σ x
n+1 for all x, y ∈ U,

which gives

F(x ◦ y)σ x + (x ◦ y)σd(x) = ±xm(x ◦ y)σ x
n+1 for all x, y ∈ U.

Now using (3), we find that

(x ◦ y)σd(x) = 0,

σ (x)yd(x) = −yxd(x) for all x, y ∈ U. (4)

Replacing y by r y for r ∈ N in (4), using (4) and Lemma 4, we get

r yxd(x) = r(−(σ (x)yd(x))) = r(−σ(x))yd(x) = (−σ(x))r yd(x).

This implies that

[r,−σ(x)]yd(x) = 0 for all x, y ∈ U, r ∈ N .



Structure of Prime Near Rings … 43

Since σ(U ) = U , we find that

[r,−s]Ud(x) = {0} for all s, x ∈ U, r ∈ N .

Applying Lemma 2, we get either d(x) = 0 or −s ∈ Z(N ) for all s, x ∈ U , i.e.,
d(x) = 0 for all x ∈ U or −U ⊆ Z(N ). Since −U is also a semigroup right ideal of
N , for if x ∈ U and r ∈ N , (−x)r = −xr ∈ −U ; therefore, latter case gives that N
is a commutative ring by Lemma 3. For the first case, arguing in the similar manner
as in Theorem 1, we can obtain F is a left multiplier on N . �

Theorem 3 Let N be a prime near ring, U a nonzero semigroup ideal of N and
σ : N → N be a map such that σ(U ) = U. If there exist non-negative integers
m ≥ 0, n ≥ 0 and N admits a right generalized derivation F associated with a
nonzero derivation d such that F([x, y]σ ) = ±xm(x ◦ y)σ xn for all x, y ∈ U, then
F is a left multiplier on N or N is a commutative ring.

Proof Suppose that

F([x, y]σ ) = ±xm(x ◦ y)σ x
n for all x, y ∈ U. (5)

Replacing y by yx in (5), using [x, yx]σ = [x, y]σ x and (x ◦ yx)σ = (x ◦ y)σ x , we
obtain

F([x, y]σ x) = ±xm(x ◦ y)σ x
n+1 for all x, y ∈ U,

i.e.,
F([x, y]σ )x + [x, y]σd(x) = ±xm(x ◦ y)σ x

n+1 for all x, y ∈ U.

By hypothesis, we have

[x, y]σd(x) = 0 for all x, y ∈ U. (6)

Since Eq. (6) is same as Eq. (2), arguing in the similar manner as in Theorem 1, we
can get the result. �

Theorem 4 Let N be a prime near ring, U a nonzero semigroup ideal of N and
σ : N → N be a map such that σ(U ) = U. If there exist non-negative integers
m ≥ 0, n ≥ 0 and N admits a right generalized derivation F associated with a
nonzero derivation d such that F(x ◦ y)σ = ±xm[x, y]σ xn for all x, y ∈ U, then F
is a left multiplier on N or N is a commutative ring.

Proof Let
F(x ◦ y)σ = ±xm[x, y]σ xn for all x, y ∈ U. (7)

Substituting yx for y in (7), we find that

F(x ◦ yx)σ = F((x ◦ y)σ x) = ±xm[x, yx]σ xn = ±xm[x, y]σ xn+1,
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which implies that

F(x ◦ y)σ x + (x ◦ y)σd(x) = ±xm[x, y]σ xn+1 for all x, y ∈ U.

Using the hypothesis, we get

(x ◦ y)σd(x) = 0 for all x, y ∈ U

which is Eq. (4); therefore, arguing in the similar manner as in Theorem 2, we can
get the result. �

Theorem 5 Let N be a prime near ring and U be a nonzero semigroup ideal of
N . If σ : N → N is a map such that σ(U ) = U and N admits a right generalized
derivation F associated with a nonzero derivation d such that F is commuting on
U and F([x, y]σ ) = ±[F(x), y]σ for all x, y ∈ U, then F is a left multiplier on N
or N is a commutative ring.

Proof Assume that

F([x, y]σ ) = [F(x), y]σ for all x, y ∈ U. (8)

Replacing y by yx in (8), we get

F([x, yx]σ ) = F([x, y]σ x) = [F(x), yx]σ for all x, y ∈ U,

i.e.,

F([x, y]σ )x + [x, y]σd(x) = σ(F(x))yx − yxF(x) for all x, y ∈ U.

Since F is commuting on U , therefore the last expression gives that

F([x, y]σ )x + [x, y]σ d(x) = σ(F(x))yx − yF(x)x = [F(x), y]σ x for all x, y ∈ U,

which reduces to
[x, y]σd(x) = 0 for all x, y ∈ U. (9)

Since Eq. (9) is same as Eq. (2), arguing in the similar manner as in Theorem 1, we
can get the result.

Using the same techniques, we can prove the result for the case F([x, y]σ ) =
−[F(x), y]σ for all x, y ∈ U . �

Theorem 6 Let N be a prime near ring and U be a nonzero semigroup ideal of
N . If σ : N → N is a map such that σ(U ) = U and N admits a right generalized
derivation F associated with a nonzero derivation d such that F is commuting on
U and F(x ◦ y)σ = ±(F(x) ◦ y)σ for all x, y ∈ U, then F is a left multiplier on N
or N is a commutative ring.



Structure of Prime Near Rings … 45

Proof By hypothesis,

F(x ◦ y)σ = (F(x) ◦ y)σ for all x, y ∈ U. (10)

Replacing y by yx in (10), we get

F(x ◦ yx)σ = F((x ◦ y)σ x) = (F(x) ◦ yx)σ for all x, y ∈ U,

which implies that

F(x ◦ y)σ x + (x ◦ y)σd(x) = σ(F(x))yx + yxF(x) for all x, y ∈ U.

Since F is commuting on U , we get

F(x ◦ y)σ x + (x ◦ y)σ d(x) = σ(F(x))yx + yF(x)x = (F(x) ◦ y)σ x for all x, y ∈ U.

Using (10), the last expression reduces to

(x ◦ y)σd(x) = 0 for all x, y ∈ U. (11)

Since Eq. (11) is same as Eq. (4), arguing in the similar manner as in Theorem 2, we
can obtain the result. Using the same techniques, we can prove the result for the case
F(x ◦ y)σ = −(F(x) ◦ y)σ for all x, y ∈ U . �

The following example shows that the primeness hypothesis in Theorems 1–6 is
essential.

Example 1 Suppose that S is a zero-symmetric right near ring and let

N =
{ ⎛

⎝0 x y
0 0 0
0 z 0

⎞
⎠ | 0, x, y, z ∈ S

}
and U =

{ ⎛
⎝0 x 0
0 0 0
0 y 0

⎞
⎠ | 0, x, y ∈ S

}
.

It can be seen that N is a non-prime zero-symmetric right near ring with respect to
matrix addition and matrix multiplication and U is a nonzero semigroup ideal of N .

Define the mappings F, d, σ : N → N by

F

⎛
⎝ 0 x y
0 0 0
0 z 0

⎞
⎠ =

⎛
⎝0 z y
0 0 0
0 0 0

⎞
⎠ , d

⎛
⎝ 0 x y
0 0 0
0 z 0

⎞
⎠ =

⎛
⎝0 −x −y
0 0 0
0 −z 0

⎞
⎠ ,

and

σ

⎛
⎝0 x y
0 0 0
0 z 0

⎞
⎠ =

⎛
⎝ 0 0 0
0 0 0
0 y 0

⎞
⎠ .
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Then F is a right generalized derivation associated with a nonzero derivation d on N
satisfying (i) F([x, y]σ ) = ±xm(x ◦ y)σ xn , (ii) F([x, y]σ ) = ±xm[x, y]σ xn , (iii)
F(x ◦ y)σ = ±xm(x ◦ y)σ xn , (iv) F(x ◦ y)σ = ±xm[x, y]σ xn , (v) F([x, y]σ ) =
±[F(x), y]σ and (vi) F(x ◦ y)σ = ±(F(x) ◦ y)σ for all x, y ∈ U . However, nei-
ther F is a left multiplier on N nor N is commutative.

Acknowledgements The authors are greatly indebted to the referee for his valuable comments and
suggestions.
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w-FP-projective Modules and Dimensions

Refat Abdelmawla Khaled Assaad, El Mehdi Bouba,
and Mohammed Tamekkante

Abstract Let R be a ring. An R-moduleM is said to be an absolutelyw-puremodule
if and only if Ext1R(F, M) is a GV-torsion module for any finitely presented module
F . In this paper, we introduce and study the concept of w-FP-projective module
which is in some way a generalization of the notion of FP-projective module. An R-
moduleM is said to bew-FP-projective if Ext1R(M, N ) = 0 for any absolutelyw-pure
module N . This new class of modules will be used to characterize (Noetherian) DW
rings. Hence, we introduce the w-FP-projective dimensions of modules and rings.
The relations between the introduced dimensions and other (classical) homological
dimensions are discussed. Illustrative examples are given.

Keywords Absolutely pure · Absolutely w-pure · w-flat · w-injective · DW rings
and domains · PvMDs · Krull domainsm

1 Introduction

Throughout, all rings considered are commutative with unity and all modules are uni-
tal. Let R be a ring and M be an R-module. As usual, we use pdR(M), idR(M), and
fdR(M) to denote, respectively, the classical projective dimension, injective dimen-
sion, and flat dimension of M , and wdim(R) and gldim(R) to denote, respectively,
the weak and global homological dimensions of R.

Now, we review some definitions and notation. Let J be an ideal of R. Following
[9], J is called aGlaz-Vasconcelos ideal (a GV -ideal for short) if J is finitely gener-
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ated and the natural homomorphism ϕ : R → J ∗ = HomR(J, R) is an isomorphism.
Let M be an R-module and define

torGV (M) = {x ∈ M | J x = 0 for some J ∈ GV (R)},

where GV (R) is the set of GV -ideals of R. It is clear that torGV (M) is a submodule
of M . Now M is said to be GV -torsion (resp., GV -torsion-free) if torGV (M) =
M (resp., torGV (M) = 0). A GV -torsion-free module M is called a w-module if
Ext1R(R/J, M) = 0 for any J ∈ GV (R). Projective modules and reflexive modules
arew-modules. In the recent paper [17], itwas shown that flatmodules arew-modules.
The notion of w-modules was introduced firstly over a domain [16] in the study of
Strong Mori domains and was extended to commutative rings with zero divisors
in [9]. Let w-Max(R) denote the set of maximal w-ideals of R, i.e., w-ideals of R
maximal among proper integral w-ideals of R. Following [9, Proposition 3.8], every
maximal w-ideal is prime. For any GV -torsion-free module M ,

Mw := {x ∈ E(M) | J x ⊆ M for some J ∈ GV (R)}

is a w-submodule of E(M) containing M and is called the w-envelope of M , where
E(M) denotes the injective hull of M . It is clear that a GV -torsion-free module
M is a w-module if and only if Mw = M . Let M and N be R-modules and let
f : M → N be a homomorphism. Following [18], f is called a w-monomorphism
(resp.,w-epimorphism,w-isomorphism) if fp : M → Np is a monomorphism (resp.,
an epimorphism, an isomorphism) for all p ∈ w-Max(R). A sequence 0 → A →
B → C → 0 of R-modules is said to be w-exact if Recall from [12] that an R-
module A is called absolutely pure if A is a pure submodule in every R-module
which contains A as a submodule. C. Megibben showed in [20], that an R-module
A is absolutely pure if and only if Ext1R(N , A) = 0 for every finitely presented R-
module N . Hence, an absolutely pure module is precisely an FP-injective module
in [21]. For more details about absolutely pure (or FP-injective) modules, see [3,
12, 19–21]. In a very recent paper[4], the authors introduced the notion of absolutely
w-pure modules as generalization of absolutely pure (FP-injective) modules in the
sense of the w-operation theory. As in [5], a w-exact sequence of R-modules 0 →
A → B → C → 0 is said to be w-pure exact if, for any R-module M , the induced
sequence 0 → A ⊗ M → B ⊗ M → C ⊗ M → 0 is w-exact. In particular, if A is
a submodule of B and 0 → A → B → B/A → 0 is a w-pure exact sequence of R-
modules, then A is said to be aw-pure submodule of B. If A is aw-pure submodule in
every R-module which contains A as a submodule, then A is said to be an absolutely
w-pure module. Following [4, Theorem 2.6], an R-module A is absolutely w-pure
if and only if Ext1R(N , A) is a GV -torsion R-module for every finitely presented R-
module N . In [1], Ding and Mao introduced and studied the notion of FP-projective
dimension of modules and rings; the FP-projective dimension of an R-module M ,
denoted by fpdR(M), is the smallest positive integer n for which Extn+1

R (M, A) = 0
for all absolutely pure (FP-injective) R-modules A, and FP-projective dimension of
R, denoted by fpD(R), is defined as the supremum of the FP-projective dimensions
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of finitely generated R-modules. These dimensions measure how far away a finitely
generated module is from being finitely presented, and how far away a ring is from
being Noetherian.

In Sect. 2, we introduce the concept ofw-FP-projective modules. Hence, we prove
that a ring R is DW ([14]) if and only if every FP-projective R-module is w-FP-
projective if and only if every finitely presented R-module is w-FP-projective, and R
is a coherent DW -ring if and only if every finitely generated ideal isw-FP-projective.

Section3 deals with the w-FP projective dimension of modules and rings. After a
routine study of these dimensions, we prove that R is a Noetherian DW -ring if and
only if every R-module is w-FP-projective and R is FP-hereditary DW -ring if and
only if every submodule of projective R-module is w-FP-projective.

2 W-FP-projective Modules

We start with the following definition.

Definition 1 An R-module M is said to be w-FP-projective if Ext1R(M, A) = 0 for
any absolutely w-pure R-module A.

Since every absolutely pure module is absolutely w-pure ([4, Corollary 2.7]), we
have the following inclusions:

{Projective modules} ⊆ {w-FP-projective modules} ⊆ {FP-projective modules}

Recall that a ring R is called a DW -ring if every ideal of R is aw-ideal, or equivalently
everymaximal ideal of R isw-ideal [14]. Examples of DW -rings are Prüfer domains,
domains with Krull dimension one, and rings with Krull dimension zero. Hence, it
is clear that if R is a DW -ring, then w-FP-projective R-modules are just the FP-
projective R-modules. Moreover, using [4, Corollary 2.9], it is easy to see that over
a von Neumann regular ring, the three classes of modules above coincide.

Remark 1 It is proved in [15] that a finitely generated R-module M is finitely
presented if and only if Ext1R(M, A) = 0 for any absolutely pure (FP-injective) R-
module A. Thus, every finitely generated w-FP-projective R-module is finitely pre-
sented.

We need the following lemma.

Lemma 1 Every GV -torsion R-module is absolutely w-pure.

Proof Let A be an arbitrary R-module and N be a finitely presented R-module. For
any maximal w-ideal p of R, the naturel homomorphism

θ : HomR(N , A)p → HomRp
(Np, Ap)
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induces a homomorphism

θ1 : Ext1R(N , A)p → Ext1Rp
(Np, Ap)

Following [7, Proposition 1.10], θ1 is a monomorphism. Suppose that A is a GV -
torsion R-module. Then, we get (Ext1R(N , A))p = 0 since Ap = 0 (by [7, Lemma
0.1]). Hence, Ext1R(N , A) is GV -torsion (by [7, Lemma 0.1]). Consequently, A is an
absolutely w-pure R-module (by [4, Theorem 2.6]). �

Thefirstmain result of this paper characterizes DW -rings in terms ofw-FP-projective
R-modules.

Proposition 1 Let R be a ring. Then the following conditions are equivalent:

(1) Every finitely presented R-module is w-FP-projective.
(2) Every FP-projective R-module is w-FP-projective.
(3) R is a DW-ring.

Proof (3) ⇒ (2) is obvious and (2) ⇒ (1) follows from the fact that finitely pre-
sented R-modules are always FP-projective.
(1) ⇒ (3) Suppose that R is not a DW -ring. Then, by [8, Theorem 6.3.12], there
exist maximal ideal m of R which is not w-ideal, and so by [8, Theorem 6.2.9],
mw = R. Hence, by [8, Proposition 6.2.5], R/m is a GV -torsion R-module (sine m
is a GV -torsion-free R-module), and so R/m is an absolutely w-pure R-module (by
Lemma 1). Hence, by hypothesis, for any I finitely generated ideal I of R, we get
Ext1R(R/I, R/m) = 0 since R/I is a finitely presented R-module. Using [10, Lemma
3.1], we obtain that Tor1R(R/I, R/m) = 0, which means that R/m is flat. Accord-
ingly,m is aw-ideal, and thenmw = m, a contradiction withmw = R. Consequently,
R is a DW -ring. �

Next, we will give an example of FP-projective module, which is not w-FP-
projective.

Example 1 Let (R,m) be a regular local ring with gldim(R) = n (n ≥ 2). By [2,
Example 2.6], R is not DW ring. Hence, there exists an FP-projective R-module M
which is not w-FP-projective.

Next, we give some characterizations of w-FP-projective modules.

Proposition 2 Let M be an R-module. Then the following are equivalent:

1. M is w-FP-projective.
2. M is projective with respect to every exact sequence 0 → A → B → C → 0,

where A is absolutely w-pure.
3. P ⊗ M is w-FP-projective for any projective R-module P.
4. Hom(P, M) is w-FP-projective for any finitely generated projective R-module

P.
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Proof (1) ⇔ (2) is straightforward.
(1) ⇒ (3)Let A be any absolutelyw-pure R-module and P be a projective R-module.
Following [8, Theorem 3.3.10], we have the isomorphism:

Ext1R(P ⊗ M, A) ∼= Hom(P,Ext1R(M, A)).

SinceM isw-FP-projective, we have Ext1R(M, A) = 0. Thus, Ext1R(P ⊗ M, A) = 0,
and so P ⊗ M is w-FP-projective.
(1) ⇒ (4) Let A be any absolutely w-pure R-module and P be a finitely generated
projective R-module. Using [8, Theorem 3.3.12], we have the isomorphism:

Ext1R(Hom(P, M), A) ∼= P ⊗ Ext1R(M, A) = 0.

Hence, Hom(P, M) is a w-FP-projective R-module.
(3) ⇒ (1) and (4) ⇒ (1) Follow by letting P = R. �

Recall that a fractional ideal I of a domain R is said to bew-invertible if (I I−1)w = R.
A domain R is said to be a Prüfer v-multiplication domain (PvMD) when any
nonzero finitely generated ideal of R is w-invertible. Equivalently, R is a PvMD if
and only if Rp is a valuation domain for any maximal w-ideal p of R ([23, Theorem
2.1]). The class of PvMDs strictly contains the classes of Prüfer domains, Krull
domains, and integrally closed coherent domains.

Proposition 3 Let R be a PvMD. Then pdR(M) ≤ 1 for any w-FP-projective R-
module M.

Proof LetM be aw-FP-projective R-module. Following [4, Theorem2.10], every h-
divisible R-module is absolutelyw-pure.Hence, Ext1R(M, D) = 0 for any h-divisible
R-module D. Hence, by [22, vii, Proposition 2.5], pdR(M) ≤ 1, as desired. �

Proposition 4 If M is a w-FP-projective R-module and Ext1R(M,G) = 0 for any
GV -torsion-free R-module G, then M is projective.

Proof Let A be an arbitrary R-module. The exact sequence
0 → torGV (A) → A → A/torGV (A) → 0 gives rise to the exact sequence
0=Ext1R(M, torGV (A)) → Ext1R(M, A) → Ext1R(M, A/torGV (A))=0 Thus Ext1R
(M, A) = 0, and so M is projective. �

Proposition 5 Let (R,m)bea local ringwhich is not DW-ring (for example, regular
local rings R with gldim(R) = n (n ≥ 2)). Then every finitely generated w-FP-
projective R-module M is free.

Proof Let M be a finitely generated w-FP-projective R-module. As in the proof of
Proposition 1, there exist a maximal ideal m of R which is not w-ideal, and so R/m
is an absolutely w-pure R-module. we obtain that Tor1R(M, R/m) = 0. But M is
finitely generated, and so finitely presented (by Remark 1). Hence, by [11, Lemma
2.5.8], M is projective. Consequently, M is free since R is local. �
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Proposition 6 The class of all w-FP-projective modules is closed under arbitrary
direct sums and under direct summands.

Proof Follows from [8, Theorem 3.3.9(2)]. �

Recall that a ring R is called coherent if every finitely generated ideal of R is finitely
presented.

Lemma 2 Let R be a coherent ring and A be an R-module. Then A is absolutely w-
pure if and only if Extn+1

R (N , A) is a GV -torsion R-module for any finitely presented
module N and any integer n ≥ 0.

Proof (⇒) suppose that A is absolutely w-pure R-module and let N be a finitely
presented R-module. The case n = 0 is obvious. Hence, assume that n > 0. Consider
an exact sequence

0 → N ′ → Fn−1 → · · · → F0 → N → 0

where F0,...,Fn−1 are finitely generated free R-modules and N ′ is finitely presented.
Such sequence exists since R is coherent. Thus, (Extn+1

R (N , A))p ∼= (Ext1R(N ′, A))p
= 0 for any w-maximal ideal p of R. So, Extn+1

R (N , A) is a GV -torsion R-module.
(⇐) Clear. �

Lemma 3 Let R be a coherent ring and 0 → A → B → C → 0 be an exact
sequence of R-modules, where A is absolutely w-pure. Then, B is absolutely w-
pure if and only if C is absolutely w-pure.

Proof Let N be a finitely presented R-module. We have
Ext1R(N , A) → Ext1R(N , B) → Ext1R(N ,C) → Ext2R(N , A) By Lemma 2, for any max-
imalw-idealp, we get 0 = Ext1R(N , A)p → Ext1R(N , B)p → Ext1R(N ,C)p → Ext2R(N , A)p = 0.

Thus, Ext1R(N , B)p ∼= Ext1R(N ,C)p. So, Ext1R(N , B) is a GV -torsion R-module if
and only if Ext1R(N ,C) is a GV -torsion R-module. Thus, B is absolutely w-pure if
and only if C is absolutely w-pure. �

Proposition 7 Let R be a coherent ring and M be an R-module. Then the following
are equivalent:

1. M is w-FP-projective.
2. Extn+1

R (M, A) = 0 for any absolutely w-pure module A and any integer n ≥ 0.

Proof (1) ⇒ (2) Let A be an absolutely w-pure R-module. The case n = 0 is obvi-
ous. So, we may assume n > 0. Consider an exact sequence

0 → A → E0 → · · · → En−1 → A
′ → 0

where E0,...,En−1 are injective R-modules. By Lemma 3, A′ is absolutely w-pure.
Hence, Extn+1

R (M, A) ∼= Ext1R(M, A′) = 0.
(2) ⇒ (1) Obvious. �
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Proposition 8 Let R be a coherent ring and 0 → M ′′ → M ′ → M → 0 be an exact
sequence of R-modules, where M is w-FP-projective. Then, M ′ is w-FP-projective
if and only if M ′′ is w-FP-projective.

Proof Follows from Proposition 7. �

We end this section with the following characterizations of a coherent DW -rings.

Proposition 9 Let R be a ring. Then the following are equivalent:

1. R is a coherent DW-ring.
2. Every finitely generated submodule of a projective R-module is w-FP-projective.
3. Every finitely generated ideal of R is w-FP-projective.

Proof (1) ⇒ (2) Follows immediately from [13, Theorem 3.7] since, over a DW -
ring, the classes of w-FP-projective modules and FP-projective modules coincide.
(2) ⇒ (3) Obvious.
(3) ⇒ (1) R is coherent by Remark 1. Assume that R is not a DW -ring. As in the
proof of Proposition 1, there exist amaximal idealm of R such that R/m is absolutely
w-pure and mw = R. So, for any finitely generated ideal I of R, we have

0 = Ext1R(I, R/m) → Ext2R(R/I, R/m) → Ext2R(R, R/m) = 0,

and then Ext2R(R/I, R/m) = 0. By [10, Lemma 3.1], Tor2R(R/I, R/m) = 0, which
means that fdR(R/m) ≤ 1. Then m is flat, and so a w-ideal, a contradiction. �

Corollary 1 Let R be a domain. Then R is a coherent DW-domain if and only if
every finitely generated torsion-free R-module is w-FP-projective.

Proof Following [8, Theorem 1.6.15], every finitely generated torsion-free R-
module can be embedded in a finitely generated free module (since R is a domain).
Hence, (⇒) follows immediately from Proposition 9. For (⇐), it suffices to see that
since R is a domain, every ideal is torsion-free, and then use Proposition 9. �

3 The W-FP-projective Dimension of Modules and Rings

In this section, we introduce and investigate thew-FP-projective dimension for mod-
ules and rings.

Definition 2 Let R be a ring. For any R-module M , the w-FP-projective dimension
ofM , denoted byw-fpdR(M), is the smallest integern ≥ 0 such that Extn+1

R (M, A) =
0 for any absolutely w-pure R-module A. If no such integer exists, setw-fpdR(M) =
∞.
The w-FP-projective dimension of R is defined by

w-fpD(R) = sup{w-fpDR(M) : M is finitely generated R-module}
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Clearly, an R-module M is w-FP-projective if and only if w-fpdR(M) = 0, and
fpdR(M) ≤ w-fpdR(M), with equality when R is a DW -ring. However, this inequal-
ity may be strict (Remark 1). Also, fpD(R) ≤ w-fpD(R) with equality when R is
a DW -ring, and this inequality may be strict. To see that, consider a regular local
ring (R,m) with gldim(R) = n (n ≥ 2). Since R is Noetherian, we get fpD(R) = 0
(by [1, Proposition 2.6]). Moreover, by Remark 1, there exists an (FP-projective)
R-module M which is not w-FP-projective. Thus, w-fpD(R) > 0.

First, we give a description of the w-FP-Projective dimension of modules over
coherent ring.

Proposition 10 Let R be a coherent ring. The following statements are equivalent
for an R-module M.

1. w-fpd(M) � n.
2. Extn+1

R (M, A) = 0 for any absolutely w-pure R-module A.
3. Extn+ j

R (M, A) = 0 for any absolutely w-pure R-module A and any j ≥ 1.
4. If the sequence 0 → Pn → Pn−1 → · · · → P0 → M → 0 is exact with P0, . . . ,

Pn−1 are w-FP-projective R-modules, then Pn is w-FP-projective.
5. If the sequence 0 → Pn → Pn−1 → · · · → P0 → M → 0 is exact with P0, . . . ,

Pn−1 are projective R-modules, then Pn is w-FP-projective.
6. There exists an exact sequence 0 → Pn → Pn−1 → · · · → P0 → M → 0 where

each Pi is w-FP-projective.

Proof (3) ⇒ (2) ⇒ (1) and (4) ⇒ (5) ⇒ (6) are trivial.
(1) ⇒ (4) Let 0 → Pn → Pn−1 → · · · → P0 → M → 0 be an exact sequence of
R-modules with P0, . . . , Pn−1 arew-FP-projective, and set K0 = Ker(P0 → M) and
Ki = Ker(Pi → Pi−1), where i = 1, . . . , n − 1. Using Proposition 7, we get

0 = Extn+1
R (M, A) ∼= ExtnR(K0, A) ∼= · · · ∼= Ext1R(Pn, A)

for all absolutely w-pure R-module A. Thus, Pn is w-FP-projective.
(6) ⇒ (3) We procced by induction on n ≥ 0. For the n = 0, M is w-FP-projective
module and so (3) holds by proposition 7. If n ≥ 1, then there is an exact sequence
0 → Pn → Pn−1 → · · · → P0 → M → 0 where each Pi is w-FP-projective. Set
K0 = Ker(P0 → M). Then, we have the following exact sequences

0 → Pn → Pn−1 → · · · → P1 → K0 → 0

and
0 → K0 → P0 → M → 0

Hence, by induction Extn−1+ j
R (K0, A) = 0 for all absolutely w-pure R-module A

and all j ≥ 1. Thus, Extn+ j
R (M, A) = 0, and so we have the desired result. �

The proof of the next proposition is standard homological algebra. Thus we omit its
proof.
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Proposition 11 Let R be a coherent ring and 0 → M ′′ → M ′ → M → 0 be an
exact sequence of R-modules. If two of w-fpdR(M ′′), w-fpdR(M ′) and w-fpdR(M)

are finite, so is the third. Moreover

1. w-fpdR(M ′′) ≤ sup
{
w-fpdR(M ′), w-fpdR(M) − 1

}
.

2. w-fpdR(M ′) ≤ sup{w-fpdR(M ′′), w-fpdR(M)}.
3. w-fpdR(M) ≤ sup{w-fpdR(M ′), w-fpdR(M ′′) + 1}.
Corollary 2 Let R be a coherent ring and 0 → M ′′ → M ′ → M → 0 be an
exact sequence of R-modules. If M ′ is w-FP-projective and w-fpdR(M) > 0, then
w-fpdR(M) = w-fpdR(M ′′) + 1.

Proposition 12 Let R be a coherent ring and {Mi } be a family of R-modules. Then
w-fpdR(⊕i Mi ) = supi {w-fpdR(Mi )}.
Proof The proof is straightforward. �

Proposition 13 Let R be a ring and n ≥ 0 be an integer. Then the following state-
ments are equivalent:

1. w-fpD(R) ≤ n.
2. w-fpd(M) � n for all R-modules M.
3. w-fpd(R/I ) � n for all ideals I of R.
4. idR(A) � n for all absolutely w-pure R-modules A.

Consequently, we have

w-fpD(R) = sup{w-fpdR(M) | M is an R-module}
= sup{w-fpdR(R/I ) | I is an ideal of R}
= sup{idR(A) | A is an abosolutely w-pure R-module}

Proof (2) ⇒ (1) ⇒ (3) are trivial.
(3) ⇒ (4) Let A be an absolutely w-pure R-module. For any ideal I of R, we have
Extn+1

R (R/I, A) = 0. Thus, idR(A) � n.
(4) ⇒ (2) Let M be an R-module. For any absolutely w-pure R-module A, we have
Extn+1

R (M, A) = 0. Hence, w-fpd(M) � n. �

Note that Noetherian rings need not to be DW (for example, a regular ring with
global dimension 2), and DW -rings need not to be Noetherian (for example, a non-
Noetherian vonNeumann regular ring). Next, we show that rings Rwithw-fpD(R) =
0 are exactly Noetherian DW -rings.

Proposition 14 Let R be a ring. Then the following are equivalent:

1. w-fpD(R) = 0.
2. Every R-module is w-FP-projective.
3. R/I is w-FP-projective for every ideal I of R.
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4. Every absolutely w-pure R-module is injective.
5. R is Noetherian DW-ring.

Proof The equivalence of (1), (2), (3), and (4) follows from Proposition 13.
(2) ⇔ (5) Follows from Proposition 1 and [1, Proposition 2.6]. �

Recall from[13], that a ring R is said FP-hereditary if every ideal of R is FP-
projective. Note that FP-hereditary rings need not to be DW (for example, a non
DW Noetherian ring), and DW -rings need not to be FP-hereditary (for example,
a non-Noetherian von Neumann regular ring). Next, we show that rings R with
w-fpD(R) ≤ 1 are exactly FP-hereditary DW -rings.

Proposition 15 Let R be a ring. Then the following are equivalent:

1. w-fpD(R) ≤ 1.
2. Every submodule of w-FP-projective R-module is w-FP-projective.
3. Every submodule of projective R-module is w-FP-projective.
4. I is w-FP-projective for every ideal I of R.
5. idR(A) ≤ 1 for all absolutely w-pure R-module A.
6. R is a (coherent) FP-hereditary DW-ring.

Proof The implications (2) ⇒ (3) ⇒ (4) are obvious.
(4) ⇒ (5) Let A be an absolutely w-pure R-module and I be an ideal of R. The
exact sequence 0 → I → R → R/I → 0 gives rise to the exact sequence

0 = Ext1R(I, A) → Ext2R(R/I, A) → Ext2R(R, A) = 0.

Thus, Ext2R(R/I, A) = 0, and so idR(A) ≤ 1.
(5) ⇒ (4) Let I be an ideal of R. For any absolutely w-pure R-module A, we have

0 = Ext2R(R/I, A) = Ext1R(I, A).

Thus, I is w-FP-projective.
(4) ⇒ (6)By hypothesis, R is FP-hereditary. Now, by Proposition 9 R is a coherent
DW -ring.
(6) ⇒ (2) By [13, Theorem 3.16], since the w-FP-projective R-modules are just the
FP-projective R-modules over a DW -ring.
(1) ⇔ (5) By Proposition 13. �

Remark 2 In the Example 1, the ring R is coherent but not DW . Then, R contains
a finitely generated ideal which is not w-FP-projective by Proposition 5.
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Central Values of X-generalized Skew
Derivations on Right Ideals in Prime
Rings

Luisa Carini and Vincenzo De Filippis

Abstract Let R be a prime ring of characteristic different from 2, Q its rightMartin-
dale quotient ring, C its extended centroid, I a right ideal of R, a ∈ Q, G a nonzero
X -generalized skew derivation of R, f (x1, . . . , xn) a multilinear polynomial over C
with n non-commuting variables, and S the set of the evaluations of f (x1, . . . , xn)
on I . If [ f (x1, . . . , xn), xn+1]xn+2 is not an identity for I and aG(x)x ∈ Z(R) for
all x ∈ S, then we determine all the possible forms of G.

Keywords Generalized skew derivation · Multilinear polynomial · Prime ring

1 Introduction

Let R be a prime ring, Z(R) its center, Q its right Martindale quotient ring, C the
center of Q, which is called extended centroid of R (see [3] for more details about
these objects). An additive mapping d : R −→ R is said to be a derivation of R
if d(xy) = d(x)y + xd(y) for all x, y ∈ R. An additive mapping F : R −→ R is
called a generalized derivation of R if there exists a derivation d of R such that
F(xy) = F(x)y + xd(y) for all x, y ∈ R.

The previous definitions can be extended as follows. Let R be an associative
ring and α be an automorphism of an associative ring R. An additive mapping
d : R −→ R is said to be a skew derivation of R if d(xy) = d(x)y + α(x)d(y) for all
x, y ∈ R. An additive mapping F : R −→ R is called a generalized skew derivation
of R if there exists a skew derivation d of R with associated automorphism α such
that F(xy) = F(x)y + α(x)d(y) for all x, y ∈ R. Many papers in literature study
generalized derivations and generalized skew derivations of rings that satisfy certain
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identities, in order to describe both the structure of the rings and the form of the maps
involved with these identities (see for example [6, 9–14, 32–34, 36–38]).

These results emphasize the strong relationship between the structure of a ring R
and the behavior of certain additive maps defined on R.

In a recent paper [31], Koşan and Lee introduced the notion of left b-generalized
derivations. More precisely an additive map F : R −→ Q is called a left b-
generalized derivation if there exist b ∈ Q and a derivation d of R such that
F(xy) = F(x)y + bxd(y), for all x, y ∈ R. Clearly, this concept generalizes the
ones of derivations and generalized derivations. More recently (see [21, 23–25]),
taking a cue from Koşan and Lee’s work, the second author and F. Wei define and
characterize an additive map in a different point of view known as X -generalized
skew derivation or b-generalized skew derivation which extends the concept of a
generalized skew derivation. More precisely, let R be an associative ring, b ∈ Q,
d : R −→ R a linear mapping, and α be an automorphism of R. A linear mapping
F : R −→ R is called an X -generalized skew derivation of R, with associated term
(b, α, d) if there exist b ∈ Q, a linear mapping d : R −→ R and an automorphism
α of R, such that

F(xy) = F(x)y + bα(x)d(y)

for all x, y ∈ R. Moreover, in [25, Remark 1.8], it is also proved that if F is a X -
generalized skew derivation with associated term (b, α, d), then the linear map d
must be a skew derivation of R, with associated automorphism α.

According to the above definition, it is clear that X -generalized skew derivations
cover the concepts of derivations, generalized derivations, skew derivations, and
generalized skew derivations.

The main goal of this paper is to investigate the set P(G, f (I )) = {G(x)x : x ∈
S}, where G : R → R is an additive map of R, f (I ) = { f (r1, . . . , rn) : r1, . . . , rn ∈
I } is the set of all evaluations of a multilinear polynomial f (x1, . . . , xn) over C in n
non-commuting indeterminates, and I is a right ideal of R.

In [36, Theorem 2], Lee and Shiue prove that if G is a nonzero derivation of
R and P(G, f (R)) ⊆ C , then f (x1, . . . , xn) is central valued on R, unless when
char(R) = 2 and R satisfies s4. Demir and Argaç [26] extend the above results
to the case of generalized derivations. More precisely they prove that, if G is a
nonzero generalized derivation of R and P(G, f (R)) ⊆ C , then either f (x1, . . . , xn)
is central valued on R or there exists b ∈ C such that G(x) = bx for all x ∈ R and
f (x1, . . . , xn)2 is central valued on R, unless when char(R) = 2 and R satisfies s4.
Later on, in [22], the second author and Dhara generalize the previous result to the
case of generalized derivations acting on polynomials (not necessarily multilinear)
that are evaluated on right ideals.

Following this line of investigation, in [5] the authors prove that, if δ is a nonzero
derivation of R, G a nonzero generalized derivation of R, and δ(x) = 0, for all
x ∈ P(G, f (R)), then f (x1, . . . , xn)2 is central valued on R and there exist a, b ∈ U
such that G(x) = ax and δ(x) = [b, x], for any x ∈ R, with [a, b] = 0. Later, Argaç
and Dhara in [27] extend the result contained in [5] to the case δ is a generalized
derivations of R.
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Let us fix our attention on the following two results:

Theorem 1 ([1, Theorem 3.7]) Let R be a prime ring, f (x1, . . . , xn) a multilinear
polynomial over C in n non-commuting indeterminates, I a nonzero right ideal of
R, and F : R → R be a nonzero generalized skew derivation of R.

Suppose that F( f (r1, . . . , rn)) f (r1, . . . , rn) ∈ C, for all r1, . . . , rn ∈ I . If the
polynomial f (x1, . . . , xn) is not central valued on R, then either char(R) = 2 and
R satisfies s4 or one of the following holds:

(i) f (x1, . . . , xn)xn+1 is an identity for I ;
(ii) F(I )I = (0);
(iii) [ f (x1, . . . , xn), xn+1]xn+2 is an identity for I , there exist b, c, q ∈ Q with q an

invertible element such that F(x) = bx − qxq−1c for all x ∈ R, and q−1cI ⊆
I .Moreover, in this case either (b − c)I = (0)or b − c ∈ C and f (x1, . . . , xn)2

is central valued on R.

Theorem 2 ([2, Main Theorem]) Let R be a prime ring of characteristic different
from 2, f (x1, . . . , xn) a multilinear polynomial over C in n non-commuting inde-
terminates, I a nonzero right ideal of R, 0 �= a ∈ R and F : R → R be a nonzero
generalized derivation of R.

If aF( f (r1, . . . , rn)) f (r1, . . . , rn) = 0, for all r1, . . . , rn ∈ I , then one of the
following holds:

(i) a I = aF(I ) = (0);
(ii) F(x) = bx + [c, x], for all x ∈ R, where b, c ∈ Q. In this case either [c, I ]I =

(0) = abI or aI = (0) = a(b + c)I ;
(iii) [ f (x1, . . . , xn), xn+1]xn+2 is an identity for I .

Motivated by Theorems 1 and 2, here we would like to determine a first approach
to the study of some algebraic properties satisfied by the set P(G, f (I )), in the case
G is a X -generalized skew derivation and I is a right ideal of R.

In this sense, the main result of the present paper is

Theorem 3 Let R be a prime ring of characteristic different from 2, Q be its right
Martindale quotient ring and C be its extended centroid, I a right ideal of R, a ∈
Q, G a nonzero X-generalized skew derivation of R, f (x1, . . . , xn) a multilinear
polynomial over C with n non-commuting variables, and S the set of the evaluations
of f (x1, . . . , xn) on I . If f (x1, . . . , xn) is not central valued on R and aG(x)x ∈
Z(R) for all x ∈ S, then [ f (x1, . . . , xn), xn+1]xn+2 is an identity for I unless when
G assumes one of the following forms:

1. G(x) = bx + cqxq−1u, for all x ∈ R, where b, c, q, u ∈ Q (q is an invertible
element of Q). Moreover, in this case one of the following holds:

(a) there exists μ ∈ C such that q−1uI = μI and a(b + cu)I = (0);
(b) there exists μ ∈ C such that q−1uI = μI , f (x1, . . . , xn)2 is central valued

on R and a(b + cu) ∈ C;
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(c) there existsμ ∈ C such that q−1uI = μI and f (x1, . . . , xn)xn+1 is an iden-
tity for I ;

(d) acq I = abI = (0);
(e) acq I = (0), f (x1, . . . , xn)2 is central valued on R and ab ∈ C;
(f) acq I = (0) and f (x1, . . . , xn)xn+1 is an identity for I ;

2. G(x) = bx + cα(x)u, for all x ∈ R, where b, c, u ∈ Q and α is an outer auto-
morphismof R. In this case, one of the following holds:

(a) acα(I ) = abI = (0);
(b) acα(I ) = (0), f (x1, . . . , xn)2 is central valued on R and ab ∈ C;
(c) acα(I ) = 0 and f (x1, . . . , xn)xn+1 is an identity for I ;
(d) u I = abI = (0);
(e) u I = (0), f (x1, . . . , xn)2 is central valued on R and ab ∈ C;
(f) u I = 0 and f (x1, . . . , xn)xn+1 is an identity for I ;

3. G(x) = bx + cd(x), for all x ∈ R, where b, c ∈ Q and d is a skew derivation
of R. In this case one of the following holds:

(a) acα(I ) = acd(I ) = abI = (0);
(b) acα(I ) = acd(I ), ab ∈ C and f (x1, . . . , xn)2 is central valued on R.

To be able to demonstrate our results, we firstly need to list some useful well-known
facts:

Fact 4 Let R be a prime ring, then the following statements hold:

1. Every generalized derivation of R can be uniquely extended to Q [33, Theorem
3].

2. Any automorphism of R can be uniquely extended to Q [16, Fact 2].
3. Every generalized skew derivation of R can be uniquely extended to Q [9,

Lemma 2].
4. IfG is a X -generalized skew derivation of R with associated term (b, α, d), then

G can be uniquely extended to Q and assumes the form G(x) = ax + bd(x),
where a ∈ Q [25, Remark 1.9].

Fact 5 Let R be a prime ring and I be a two-sided ideal of R.

1. I , R, and Q satisfy the same generalized polynomial identities with coefficients
in Q (see [15]).

2. I , R, and Q satisfy the same generalized polynomial identities with automor-
phisms (see [17, Theorem 1]).

Fact 6 In [19] Chuang and Lee prove that if Φ(xi , D(xi )) is a generalized poly-
nomial identity for R, where R is a prime ring and D is an outer skew derivation
of R, then R also satisfies the generalized polynomial identity Φ(xi , yi ), where xi
and yi are distinct indeterminates. Moreover, if Φ(xi , D(xi ), α(xi )) is a generalized
polynomial identity for a prime ring R, D is an outer skew derivation of R and α is an
outer automorphism of R, then R also satisfies the generalized polynomial identity
Φ(xi , yi , zi ), where xi , yi , and zi are distinct indeterminates (see [19, Theorem 1]).
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We conclude this section with some remarks on matrix algebras:

Fact 7 ([34, Lemma], [39, Lemma 2]) Let T be a K -algebra with 1 and let R =
Mm(T ),m ≥ 2. As usual, we denote the matrix unit having 1 in (i, j)-entry and zero
elsewhere by ei j .

Suppose that f (x1, . . . , xn) is a multilinear polynomial over K , that is not cen-
tral valued on R. Then, for any i �= j there exist r1, . . . , rn ∈ R and 0 �= β ∈ K
such that f (r1, . . . , rn) = βei j �= 0. Moreover, since f (x1, . . . , xn) is a multilinear
polynomial and C is a field, we may assume that β = 1.

Fact 8 ([20, Lemma 1.5]) Let H be an infinite field and n ≥ 2. If A1, . . . , Ak are
not scalar matrices in Mm(H ) then there exists some invertible matrix P ∈ Mm(H )

such that each matrix PA1P−1, . . . , PAk P−1 has all nonzero entries.

2 An Auxiliary Generalized Polynomial Identity

In this section, we prove the following result:

Proposition 1 Let R be a prime ring of characteristic different from 2, Q be its right
Martindale quotient ring and C be its extended centroid, a, b, c ∈ Q. If R satisfies
the following generalized polynomial identity

Ψ (x1, . . . , xn) = [
a f (x1, . . . , xn)

2 + b f (x1, . . . , xn)c f (x1, . . . , xn), xn+1
]

(1)

then one of the following holds:

1. a = b = 0;
2. c ∈ C and a + bc = 0;
3. c ∈ C, f (x1, . . . , xn)2 is central valued on R and a + bc ∈ C.

We permit the following useful result:

Fact 9 Let R be a prime ring of characteristic different from 2, f (x1, . . . , xn) a
non-central multilinear polynomial over C in n non-commuting indeterminates, G :
R → R a nonzero generalized derivation of R and a ∈ R be a fixed element. If
aG( f (r1, . . . , rn)) f (r1, . . . , rn) ∈ C for all r1, . . . , rn ∈ R, then there exists p ∈ Q
such that G(x) = px for all x ∈ R and either ap = 0 or f (x1, . . . , xn)2 is central
valued on R and ap ∈ C (it is a consequence of [28, Theorem 2.6]).

Remark 1 If b ∈ C or c ∈ C , then the conclusion of Proposition 1 could be obtained
as consequence of Fact 9. In fact, both b ∈ C and c ∈ C imply that G is an inner
generalized derivation of R.



64 L. Carini and V. De Filippis

In light of this, in order to prove Proposition 1, our aim will be to prove that either
b ∈ C or c ∈ C .

We begin with

Lemma 1 Let R = Mm(C), m ≥ 2. Then either b ∈ C or c ∈ C.

Proof We suppose both b /∈ Z(R) and c /∈ Z(R) and prove that a contradiction
follows.

We firstly assume that C is infinite. By Fact 8, there exists some invertible
matrix P ∈ Mm(C) such that ϕ(x) = Px P−1 and ϕ(b), ϕ(c) have all nonzero
entries. Denote ϕ(b) = ∑

hl bhlehl , ϕ(c) = ∑
hl chlehl , where 0 �= bhl , 0 �= chl ∈ C .

Of course, in the main relation we may replace a, b, and c with ϕ(a), ϕ(b), and ϕ(c),
respectively. Hence, for f (r1, . . . , rn) = λei j �= 0 in (1) and left multiplying by ei j ,
we obtain b ji c ji = 0, which is a contradiction.

Now let E be an infinite field which is an extension of the field C and
let R = Mt (E) ∼= R ⊗C E . The generalized polynomial Ψ (x1, . . . , xn) is multi-
homogeneous of multi-degree (2, . . . , 2) in the indeterminates x1, . . . , xn .

Hence the complete linearization of Ψ (x1, . . . , xn) is a multilinear generalized
polynomial Θ(x1, . . . , xn, y1, . . . , yn). Moreover,

Θ(x1, . . . , xn, x1, . . . , xn) = 2nΨ (x1, . . . , xn)

is a multilinear generalized polynomial identity for R and R too. Since char(C) �= 2,
we obtain Ψ (r1, . . . , rn) = 0 for all r1, . . . , rn ∈ R, and the conclusion follows from
the first part of the present Lemma. �

Proof of Proposition 1

Proof Here we assume again b /∈ C and c /∈ C . Clearly, in this case Ψ (x1, . . . , xn)
is a non-trivial generalized polynomial identity for R, then, by [15] it follows that
Ψ (x1, . . . , xn) is a non-trivial generalized polynomial identity for Q. By the well-
knownMartindale’s theorem of [40], Q is a primitive ring having nonzero socle with
the fieldC as its associated division ring. By [30, Page 35] Q is isomorphic to a dense
subring of the ring of linear transformations of a vector space V over C , containing
nonzero linear transformations of finite rank. Assume first that dimCV = k ≥ 2 is a
finite positive integer, then Q ∼= Mk(C) and the conclusion follows from Lemma 1.

On the other hand, if dimCV = ∞ and by [41, Lemma 2], it follows that Q
satisfies the generalized polynomial identity

[ax21 + bx1cx1, x2]. (2)

Moreover Q is a dense ring of C-linear transformations over a vector space V .
Since c /∈ C , there exists v �= 0, such that {v, cv} are linear C-independent. By

the density of Q, there exist s1, s2 ∈ Q such that

s1v = 0; s1(cv) = v; s2v = cv
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hence
0 = [as21 + bs1cs1, s2]v = bv.

Of course for any w ∈ V such that {w, v} are linearly C-dependent, bw = 0. Let
now w ∈ V such that {w, v} are linearly C-independent and bw �= 0. By the above
argument it follows thatw and cwmust be linearlyC-dependent, as are {w + v, c(w +
v)} and {w − v, c(w − v)}. Therefore there exist αw, αw+v, αw−v ∈ C such that

cw = αww, c(w + v) = αw+v(w + v), c(w − v) = αw−v(w − v).

Therefore
αww + cv = αw+vw + αw+vv (3)

and
αww − cv = αw−vw − αw−vv. (4)

By comparing (3) with (4) we get both

(2αw − αw+v − αw−v)w + (αw−v − αw+v)v = 0 (5)

and
2cv = (αw+v − αw−v)w + (αw+v + αw−v)v. (6)

By (5) and since {w, v} are C-independent and char(C) �= 2, we have αw = αw+v =
αw−v. Thus by (6) it follows 2cv = 2αwv. Since {cv, v} are C-independent, the con-
clusion αw = αw+v = 0 follows, that is cw = 0 and c(w + v) = 0, which implies the
contradiction cv = 0.

Hence we may conclude that bw = 0, for any w ∈ V . Thus bV = (0), that is
b = 0 which is again a contradiction. �

3 The Case of Inner X-generalized Skew Derivations

In this section we prove Theorem 3 in the case there exists an automorphism α ∈
Aut (R) and b, c, u ∈ Q such that G(x) = bx + cα(x)u, for any x ∈ R.

Let us start with the following first result, that is a simple application of
Proposition 1:

Proposition 2 Let R be a prime ring of characteristic different from 2, Q be its right
Martindale quotient ring and C be its extended centroid, a, b, c, u, q ∈ Q, such that
q is an invertible element of Q. If R satisfies the following generalized polynomial
identity
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[
a
(
b f (x1, . . . , xn) + cq f (x1, . . . , xn)q

−1u
)
f (x1, . . . , xn), xn+1

]
(7)

then one of the following holds:

1. ab = ac = 0;
2. q−1u ∈ C and a(b + cu) = 0;
3. q−1u ∈ C, f (x1, . . . , xn)2 is central valued on R and a(b + cu) ∈ C.

Lemma 2 Let R be a noncommutative prime ring, a ∈ R, f (x1, . . . , xn) a poly-
nomial over C. If

[
a f (r1, . . . , rn), rn+1

] = 0, for all r1, . . . , rn+1 ∈ R, then either
a = 0 or f (x1, . . . , xn) is central valued on R and a ∈ Z(R).

Proof Of course, in case f (x1, . . . , xn) is central valued on R, it follows easily
a ∈ Z(R).

Then we may assume f (x1, . . . , xn) is not central valued on R and, by contradic-
tion, suppose a �= 0.

It is well known that, since f (x1, . . . , xn) is not central and char(R) �= 2, the
additive subgroup S of R generated by { f (x1, . . . , xn) : xi ∈ R} contains a non-
central Lie ideal L of R. Therefore [au, r ] = 0, for anyu ∈ L and r ∈ R. In particular,
for any u ∈ L ,

0 = [au, u] = [a, u]u.

Hence, by [36, Theorem 2], a ∈ Z(R). Thus a[L , R] = (0), which is a contradiction,
since 0 �= a ∈ Z(R) and L � Z(R). �

Lemma 3 Let R be a noncommutative prime ring, a, b ∈ R, f (x1, . . . , xn) a poly-
nomial over C. If a f (r1, . . . , rn)b = 0, for all r1, . . . , rn ∈ R, then either a = 0 or
b = 0, unless when f (x1, . . . , xn) is central valued on R and ab = 0.

Proof If f (x1, . . . , xn) is central valued on R, it follows easily ab = 0.
Then we may assume f (x1, . . . , xn) is not central valued on R and, by using the

same argument as in Lemma 2, we arrive at aLb = (0), where L is a non-central Lie
ideal of R. In this case is well known that either a = 0 or b = 0. �

Proposition 3 Let R be a prime ring of characteristic different from 2, Q be its right
Martindale quotient ring and C be its extended centroid, a, b, c, u ∈ Q, α ∈ Aut (R)

and G be the inner X-generalized skew derivation of R defined as follows:

G(x) = bx + cα(x)u, ∀x ∈ R.

Let f (x1, . . . , xn) be a non-central multilinear polynomial over C with n non-
commuting variables. If

[
aG( f (r1, . . . , rn)) f (r1, . . . , rn), rn+1

] = 0

for all r1, . . . , rn+1 ∈ R, then one of the following holds:
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1. ab = ac = 0;
2. ab = u = 0;
3. ab ∈ C, ac = 0 and f (x1, . . . , xn)2 is central valued on R;
4. ab ∈ C, u = 0 and f (x1, . . . , xn)2 is central valued on R;
5. there exists an invertible element q ∈ Q such that α(x) = qxq−1, for any x ∈ R,

with q−1u ∈ C and a(b + cu) = 0;
6. f (x1, . . . , xn)2 is central valued on R and there exists an invertible element q ∈

Q such that α(x) = qxq−1, for any x ∈ R, with q−1u ∈ C and a(b + cu) ∈ C.

Proof If there exists an invertible element q ∈ Q, such that α(x) = qxq−1 for all
x ∈ R, then the conclusion follows from Proposition 1. Thus, we may assume that
α is not inner. In what follows we denote f α(x1, . . . , xn) the polynomial obtained
from f (x1, . . . , xn) by replacing each coefficient γσ with α(γσ ). By hypothesis, R
satisfies the generalized polynomial identity

[
a

(
b f (x1, . . . , xn) + c f α(α(x1), . . . , α(xn))u

)
f (x1, . . . , xn), xn+1

]
. (8)

Since α is not inner, R satisfies the generalized polynomial identity

[
a

(
b f (x1, . . . , xn) + c f α(y1, . . . , yn)u

)
f (x1, . . . , xn), xn+1

]
. (9)

Hence, the following are both generalized identities for R:

[
ac f α(y1, . . . , yn)u f (x1, . . . , xn), xn+1

]
(10)

and [
ab f (x1, . . . , xn)

2, xn+1

]
. (11)

By applying Lemmas 2 and 3 to relation (10), and since both f (x1, . . . , xn) and
f α(x1, . . . , xn) are not central valued on R, one has that either ac = 0 or u = 0.
Analogously, relation (11) implies that either ab = 0 or f (x1, . . . , xn)2 is central
valued on R and ab ∈ C .

Crossing all the cases just mentioned, we get each of the required conclusions in
the case α is not inner. �

4 The Main Result for Prime Rings

This part of our paper is devoted to the proof of Theorem 3 in the case I = R, more
precisely we prove the following:
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Theorem 10 Let R be a prime ring of characteristic different from 2, Q be its right
Martindale quotient ring and C be its extended centroid, a ∈ Q, G a nonzero X-
generalized skew derivation of R, f (x1, . . . , xn) a multilinear polynomial over C
with n non-commuting variables, and S the set of the evaluations of f (x1, . . . , xn)
on R. If f (x1, . . . , xn) is not central valued on R and aG(x)x ∈ Z(R) for all x ∈ S,
then:

1. If G(x) = bx + cα(x)u, for all x ∈ R, where a, b, c, u ∈ Q and α ∈ Aut (R),
one of the following holds:

(a) ab = ac = 0;
(b) ab = u = 0;
(c) ab ∈ C, ac = 0 and f (x1, . . . , xn)2 is central valued on R;
(d) ab ∈ C, u = 0 and f (x1, . . . , xn)2 is central valued on R;
(e) there exists an invertible element q ∈ Q such that α(x) = qxq−1, for any

x ∈ R, with q−1u ∈ C and a(b + cu) = 0;
(f) f (x1, . . . , xn)2 is central valued on R and there exists an invertible element

q ∈ Q such that α(x) = qxq−1, for any x ∈ R, with q−1u ∈ C and a(b +
cu) ∈ C.

2. If G(x) = bx + cd(x), for all x ∈ R, where b, c ∈ Q and d is a skew derivation
of R, then one of the following holds:

(a) ab = ac = 0;
(b) ab ∈ C, ac = 0 and f (x1, . . . , xn)2 is central valued on R.

Proof WewriteG(x) = bx + cd(x), for all x ∈ R, where b, c ∈ Q are suitable fixed
elements and d is a skew derivation of R with associated automorphism α. Denote

f (x1, . . . , xn) =
∑

σ∈Sn
γσ xσ(1) · xσ(2) · · · xσ(n), γσ ∈ C.

Let f d(x1, . . . , xn) be the polynomial obtained from f (x1, . . . , xn) by replacing
each coefficient γσ with d(γσ ), and f α(x1, . . . , xn) = α

(
f (x1, . . . , xn)

)
. By using

this notation, we have

d
(
γσ · xσ(1) · xσ(2) · · · xσ(n)

) =

d(γσ )xσ(1) · xσ(2) · · · xσ(n) + α(γσ )

n−1∑

j=0

α(xσ(1) · xσ(2) · · · xσ( j))d(xσ( j+1))xσ( j+2) · · · xσ(n)

and

d
(
f (x1, . . . , xn)

) =

f d(x1, . . . , xn) +
∑

σ∈Sn
α(γσ )

n−1∑

j=0

α(xσ(1) · xσ(2) · · · xσ( j))d(xσ( j+1))xσ( j+2) · · · xσ(n).
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Firstly we remark that, if either c = 0 or d = 0 or 0 �= d is an inner skew deriva-
tion, then the result is a consequence of Proposition 3.

Therefore, we always assume c �= 0 and d �= 0, moreover the skew derivation d
is not inner.

By hypothesis, R satisfies the generalized polynomial identity

[
a

(
b f (x1, . . . , xn) + cd( f (x1, . . . , xn))

)
f (x1, . . . , xn), xn+1

]
(12)

that is
[
a

(
b f (x1, . . . , xn) + c f d (x1, . . . , xn)

)
f (x1, . . . , xn)+

ac

( ∑

σ∈Sn
α(γσ )

n−1∑

j=0

α(xσ(1) · xσ(2) · · · xσ( j))d(xσ( j+1))xσ( j+2) · · · xσ(n)

)
f (x1, . . . , xn), xn+1

]

(13)

Since d is outer abd by (13), R satisfies

[
a

(
b f (x1, . . . , xn) + c f d (x1, . . . , xn)

)
f (x1, . . . , xn)+

ac

( ∑

σ∈Sn
α(γσ )

n−1∑

j=0

α(xσ(1) · xσ(2) · · · xσ( j))yσ( j+1)xσ( j+2) · · · xσ(n)

)
f (x1, . . . , xn), xn+1

]

(14)

In particular, R satisfies any blended component

[
ac

( ∑

σ∈Sn
α(γσ )

n∑

i=1

α(xσ(1) · xσ(2) · · · xσ(i−1))yσ(i)xσ(i+1) · · · xσ(n)

)
f (x1, . . . , xn), xn+1

]
.

(15)

Since R and Q satisfy the same generalized polynomial identities, Q satisfies
(15).

If α = idR ∈ Aut(R), then d is an ordinary derivation of R and (15) reduces to

[
ac

( n∑

i=1

f (x1, . . . , yi , . . . , xn)

)
f (x1, . . . , xn), xn+1

]
. (16)

Replacing in (16) any yi with [w, xi ], for a fixed elementw ∈ Q \ C , we have that

[
ac[w, f (x1, . . . , xn)] f (x1, . . . , xn), xn+1

]
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is a generalized identity for Q. Thus, by Proposition 1 and since w /∈ C , it follows
ac = 0. Thus, by (12), Q satisfies

[
ab f (x1, . . . , xn)

2, xn+1

]
(17)

and, once again by Proposition 1, one has that either ab = 0 or f (x1, . . . , xn)2 is
central valued on Q and ab ∈ C , as required.

Therefore, we may assume that α �= idR ∈ Aut(R).
If there exists an invertible element q ∈ Q \ C such that α(x) = qxq−1 for all

x ∈ Q, by replacing each yσ(i) with qxσ(i) in (15), it follows that Q satisfies the
generalized polynomial identity

[
ac

(
q

∑

σ∈Sn
γσ xσ(1) · · · xσ(n)

)
f (x1, . . . , xn), xn+1

]

that is
[
acq f (x1, . . . , xn)

2, xn+1

]
.

As above, Proposition 1 implies that either ac = 0 or f (x1, . . . , xn)2 is central
valued on Q and acq ∈ C .

In the first case relation (12) reduces to (17) and we conclude as done previously.
Thus we assume that ac �= 0, f (x1, . . . , xn)2 is central valued on Q and acq ∈ C .

By replacing each yσ(i) with q[q−1, xσ(i)] in (15), it follows that Q satisfies the
generalized polynomial identity

[
acq[q−1, f (x1, . . . , xn)] f (x1, . . . , xn), xn+1

]

that is

acq

[
[q−1, f (x1, . . . , xn)] f (x1, . . . , xn), xn+1

]
.

Since acq �= 0 and q /∈ C , and in light of Proposition 1, this last relation implies a
contradiction.

Finally, assume thatα is not inner.By (15) it follows thatQ satisfies the generalized
polynomial identity

[
ac

( ∑

σ∈Sn
α(γσ )

n∑

i=1

zσ(1) · zσ(2) · · · zσ(i−1)yσ(i)xσ(i+1) · · · xσ(n)

)
f (x1, . . . , xn), xn+1

]
.
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In particular, for any i = 1, . . . , n, Q also satisfies the generalized polynomial
identity

[
ac

( ∑

σ∈Sn−1

α(γσ )zσ(1) · zσ(2) · · · zσ(i−1) · zσ(i+1) · · · zσ(n) · yi
)
f (x1, . . . , xn), xn+1

]
.

(18)
Let us write

∑

σ∈Sn−1

α(γσ )xσ(1) · · · xσ( j−i)xσ( j+1) · · · xσ(n) = t j (x1, . . . , x j−1, x j+1, . . . , xn),

where any t j is a multilinear polynomial of degree n − 1 and x j never appears in any
monomial of t j . Thus

f α(x1, . . . , xn) =
∑

j

t j (x1, . . . , x j−1, x j+1, . . . , xn)x j

moreover f α(x1, . . . , xn) is not an identity for Q. Therefore there exists j ∈
{1, . . . , n} such that t j is not an identity for Q.

Starting from (18) it follows that, for any j = 1, . . . , n, Q satisfies

[
act j (z1, . . . , z j−1, z j+1, . . . , zn)y j f (x1, . . . , xn), xn+1

]
.

By Lemmas 2 and 3, and since f (x1, . . . , xn) is not central valued on Q, it follows
that one of the following holds:

– either ac = 0
– or t j (z1, . . . , z j−1, z j+1, . . . , zn)y j = 0, for any z1, . . . , z j−1, z j+1, . . . , zn and
any y j .

In case ac = 0 then Q satisfies (17) and we conclude as above.
On the other hand, if

t j (z1, . . . , z j−1, z j+1, . . . , zn)y j = 0

for all z1, . . . , z j−1, z j+1, . . . , zn ∈ Q and all y j ∈ Q, then f α(x1, . . . , xn) is an
identity for Q, which is a contradiction. �

As an easy consequence we have

Corollary 1 Let R be a prime ring of characteristic different from 2, Q be its right
Martindale quotient ring and C be its extended centroid, a ∈ Q, G a nonzero X-
generalized skew derivation of R, f (x1, . . . , xn) a multilinear polynomial over C
with n non-commuting variables, and S the set of the evaluations of f (x1, . . . , xn)
on R. If f (x1, . . . , xn) is not central valued on R and aG(x)x = 0 for all x ∈ S,
then one of the following holds:
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1. there exist b, c ∈ Q and a skew derivation d of R such that G(x) = bx + cd(x),
for all x ∈ R, with ab = ac = 0;

2. there exists b ∈ Q such that G(x) = bx, for all x ∈ R, with ab = 0.

We would like to conclude this section by providing a shorter and leaner formu-
lation of Theorem 10:

Theorem 11 Let R be a prime ring of characteristic different from 2, Q be its right
Martindale quotient ring and C be its extended centroid, a ∈ Q, G a nonzero X-
generalized skew derivation of R, f (x1, . . . , xn) a multilinear polynomial over C
with n non-commuting variables, and S the set of the evaluations of f (x1, . . . , xn)
on R. If f (x1, . . . , xn) is not central valued on R and aG(x)x ∈ Z(R) for all x ∈ S,
then one of the following holds:

1. aG(x) = 0, for all x ∈ R
2. f (x1, . . . , xn)2 is central valued on R and there exists λ ∈ C such that aG(x) =

λx, for all x ∈ R.

5 The Main Result

We are finally in the position to prove Theorem 3.

Lemma 4 Let R be a prime ring, f (x1, . . . , xn) a multilinear polynomial over C in
n non-commuting indeterminates, I a nonzero right ideal of R, and a ∈ R be a fixed
element.

Suppose that a f (r1, . . . , rn)2 ∈ C, for all r1, . . . , rn ∈ I . If the polynomial
f (x1, . . . , xn) is not central valued on R, then either char(R) = 2 and R satisfies
s4 or one of the following holds:

(i) f (x1, . . . , xn)xn+1 is an identity for I ;
(ii) a I = (0);
(iii) a ∈ C and f (x1, . . . , xn)2 is central valued on R.

Proof It is an easy consequence of Theorem 1. �

Lemma 5 Let R be a prime ring, f (x1, . . . , xn) a multilinear polynomial over C
in n non-commuting indeterminates, I a nonzero right ideal of R, and a, b ∈ R be
nonzero fixed elements. Suppose that a f (r1, . . . , rn)b = 0, for all r1, . . . , rn ∈ I .
Then one of the following holds:

1. a I = (0);
2. there exists an idempotent element e ∈ soc(Q) such that I = eR and

[ f (x1, . . . , xn), xn+1]xn+2 is an identity for I ;
3. there exists an idempotent element e ∈ soc(Q) such that I = eR, char(R) = 2

and s4(x1, x2, x3, x4)x5 is an identity for I ;
4. f (x1, . . . , xn) is central valued on R and ab = 0.
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Proof Firstly we remark that, in case f (x1, . . . , xn) is central valued on R and by the
primeness of R, we get easily that ab = 0. Moreover, if [ f (x1, . . . , xn), xn+1]xn+2

is an identity for I , then, by [35], there exists an idempotent element in the socle
of R such that I = eR. Thus, by contradiction, we suppose that the following hold
simultaneously:

– aI �= (0);
– [ f (x1, . . . , xn), xn+1]xn+2 is not an identity for I ;
– if char(R) = 2, s4(x1, x2, x3, x4)x5 is not an identity for I ;
– f (x1, . . . , xn) is not central valued on R.

Our aim is to show that a number of contradictions follows.
Assume firstly that I is not a PI-ring. By [8, Theorem 1] it follows that there exists

a non-PI right ideal of R, namely I0 ⊆ I , such that [I0, I ] ⊆ f (I ) and I I0 ⊆ I0.
By our hypothesis, a[I0, I ]b = (0), and in particular a[I0, I a I ]b = (0), that is

a[I0, I a]I b = (0). A fortiori we get a[I0, I a][I0, I ]b = (0). Thus, since a[I0, I ]b =
(0), it follows aIa I0[I0, I ]b = (0). Since aI �= (0), one has that either aI0 = (0) or
[I0, I ]b = (0).

Notice that, if aI0 = (0) then also (0) = aI I0 ⊆ aI0, implying the contradiction
aI = (0). On the other hand [I0, I ]b = (0) implies [I0, I0]b = (0) and, by applying
[18] and since b �= 0, we get [I0, I0]I0 = (0) which is again a contradiction, since
I0 is not PI.

Let now I be a PI-ring. Hence, by [35] there exists an idempotent element in the
socle of R such that I = eR. Since [ f (x1, . . . , xn), xn+1]xn+2 is not an identity for
I and, in case char(R) = 2, s4(x1, x2, x3, x4)x5 is not an identity for I , then, by [8,
Theorem 1], it follows both eR(1 − e) f (I ) and [I, I ] ⊆ f (I ), implying aeR(1 −
e)b = (0) and a[I, I ]b = (0).

By the primeness of R and since aI �= (0), aeR(1 − e)b = (0)means (1 − e)b =
0, that is either e = 1 or b = eb ∈ I .

Notice that, if e = 1 then I = R. Hence, since f (x1, . . . , xn) is not central valued
on R, a[R, R]b = (0) and a = 0 follows easily. Thus, for the rest of the proof we
assume b = eb ∈ I and a[I, I ]b = (0).

In particular

(0) = a

[
[I, I ], bR

]
b = abR[I, I ]b

and, by the primeness of R, either [I, I ]b = (0) or ab = 0.
If [I, I ]b = (0) and since b �= 0, it follows from [18] the contradiction [I, I ]I =

(0). Hence ab = 0, so that

(0) = a

[
I, bR

]
b = aIbRb

that is aIb = (0), which forcrs aI = (0), again a contradiction. �
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Lemma 6 Let m ≥ 2 and R = Mh(K ) be the ring of all h × h matrices over a field
K of characteristic different from 2, I a nonzero right ideal of R, f (x1, . . . , xn) a
non-central multilinear polynomial over K . Let a, b, c, u, q ∈ R be such that q is
an invertible element of R and

[
a
(
b f (s1, . . . , sn) + cq f (s1, . . . , sn)q

−1u
)
f (s1, . . . , sn), rn+1

]
= 0 (19)

for any s1, . . . , sn ∈ I and rn+1 ∈ R. Then one of the following holds:

1. there exists μ ∈ Z(R) such that q−1uI = μI and a(b + cu)I = (0);
2. there exists μ ∈ Z(R) such that q−1uI = μI , f (x1, . . . , xn)2 is central valued

on R and a(b + cu) ∈ Z(R);
3. there exists μ ∈ Z(R) such that q−1uI = μI and f (x1, . . . , xn)xn+1 is an iden-

tity for I ;
4. acq I = abI = (0);
5. acq I = (0), f (x1, . . . , xn)2 is central valued on R and ab ∈ Z(R);
6. acq I = (0) and f (x1, . . . , xn)xn+1 is an identity for I ;
7. [ f (x1, . . . , xn), xn+1]xn+2 is an identity for I .

Proof Denote ei j the usual unit matrix with 1 in (i, j)-entry and zero elsewhere,
acq = ∑

lm almelm , q−1u = ∑
lm blmelm , for alm, blm ∈ K .

Since there exists a set of matrix units that contains the idempotent generator
of a given minimal right ideal, any minimal right ideal is part of a direct sum of
minimal right ideals adding to R. Hence we may assume that any minimal right
ideal of R is a direct sum of minimal right ideals, each of the form eii R. More-
over I has a number of uniquely determined simple components, that are minimal
right ideals of R and I is their direct sum. So we may write I = eR for some
e = ∑p

i=1 eii and p ∈ {1, 2, . . . , h}. Moreover p ≥ 2, if not [I, I ]I = 0 and a for-
tiori [ f (x1, . . . , xn), xn+1]xn+2 is an identity for I .

Notice that, if h = 2 then p = 2 and I = R. In this case, the conclusion follows
from Proposition 3. Thus we may assume h ≥ 3.

By Lemma 3 in [7], if [ f (x1, . . . , xn), xn+1]xn+2 is not an identity for I , then for
all γ ∈ K , s ≤ p and t �= s there exist r1, . . . , rn ∈ I such that f (r1, . . . , rn) = γ est .
Then, by our hypothesis we have that

γ 2acqestq
−1uest ∈ Z(R). (20)

Since (20) represent a matrix of rank 1 and γ �= 0, one has acqestq−1uest = 0, that
is

aksbts = 0 ∀s ≤ p, t �= s and ∀k ≥ 1. (21)

Assume firstly there exist i, j ≤ p and i �= j such that b ji �= 0. Then, by (21),
aki = 0 for any k ≥ 1. Consider the following automorphisms of R:
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ϕ′(x) = (1 + e ji )x(1 − e ji ) = x + e ji x − xe ji − e ji xe ji

ϕ′′(x) = (1 − e ji )x(1 + e ji ) = x − e ji x + xe ji − e ji xe ji .

Note that ϕ′(I ) ⊆ I and ϕ′′(I ) ⊆ I are right ideals of R satisfying

[
ϕ′(a)

(
ϕ′(b) f (s1, . . . , sn) + ϕ′(cq) f (s1, . . . , sn)ϕ′(q−1u)

)
f (s1, . . . , sn), rn+1

]
= 0 (22)

for any s1, . . . , sn ∈ ϕ′(I ) and rn+1 ∈ R, and

[
ϕ′′(a)

(
ϕ′′(b) f (s1, . . . , sn) + ϕ′′(cq) f (s1, . . . , sn)ϕ′′(q−1u)

)
f (s1, . . . , sn), rn+1

]
= 0 (23)

for any s1, . . . , sn ∈ ϕ′′(I ) and rn+1 ∈ R. Denote ϕ′(acq) = ∑
lm a′

lmelm ,
ϕ′(q−1u) = ∑

lm b′
lmelm , ϕ′′(acq) = ∑

lm a′′
lmelm , ϕ′′(q−1u) = ∑

lm b′′
lmelm , for

a′
lm, b′

lm, a′′
lm, b′′

lm ∈ K .
By calculation one has that b′

j i = b ji + bii − b j j − bi j and b′′
kh = b ji − bii +

b j j − bi j . In case both b′
j i = 0 and b′′

j i = 0, then bi j = b ji �= 0. Hence, by by (21),
akj = 0 for any k ≥ 1.

On the other hand, if b′
j i �= 0 (or b′′

j i �= 0), then, again by (21), one has a′
ki = 0

(or a′′
ki = 0, respectively) for any k ≥ 1. In particular, for any k �= j , 0 = a′

ki =
aki − akj = −akj (or 0 = a′′

ki = aki + akj = akj , respectively).
Therefore, in any case, akj = 0 for any k ≥ j and aki = 0 for any k ≥ 1.
Let now r ≤ p, r �= j and consider the following automorphisms of R:

χ ′(x) = (1 + er j )x(1 − er j ) = x + er j x − xer j − er j xer j

χ ′′(x) = (1 − er j )x(1 + er j ) = x − er j x + xer j − er j xer j .

As above χ ′(I ) ⊆ I and χ ′′(I ) ⊆ I are right ideals of R satisfying

[
χ ′(a)

(
χ ′(b) f (s1, . . . , sn) + χ ′(cq) f (s1, . . . , sn)χ ′(q−1u)

)
f (s1, . . . , sn), rn+1

]
= 0 (24)

for any s1, . . . , sn ∈ χ ′(I ) and rn+1 ∈ R, and

[
χ ′′(a)

(
χ ′′(b) f (s1, . . . , sn) + χ ′′(cq) f (s1, . . . , sn)χ ′′(q−1u)

)
f (s1, . . . , sn), rn+1

]
= 0 (25)

for any s1, . . . , sn ∈ χ ′′ I ) and rn+1 ∈ R. Denote χ ′(acq) = ∑
lm a′′′

lmelm ,
χ ′(q−1u) = ∑

lm b′′′
lmelm , χ ′′(acq) = ∑

lm aivlmelm , χ ′′(q−1u) = ∑
lm bivlmelm , for

a′′′
lm, b′′′

lm, aivlm, bivlm ∈ K . Since b′′′
j i = bivji = b ji �= 0 and by the above argument, we

get both a′′′
k j = 0 and aivk j = 0, for any k �= j .
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In particular, for any k �= r, j

0 = a′′′
k j = akj − akr = −akr .

Moreover, for k = r ,

0 = a′′′
r j = ar j + a j j − arr − a jr = a j j − arr − a jr

and
0 = aivr j = ar j − a j j + arr − a jr = −a j j + arr − a jr .

These last two relations imply that a j j = arr and a jr = 0.
Summarizing, we obtain the following conclusion:

– If there exist i, j ≤ p, i �= j such that b ji = 0, then akr = 0 and arr = a j j , for
any r ≤ p and k �= r .

This means that there exists λ ∈ Z(R) such that acq I = λI .
If we suppose λ �= 0, by (20) it follows

γ 2λestq
−1uest ∈ Z(R)

that isbts = 0, a contradiction. Thusλ = 0,acq I = (0) and, by ourmain assumption,
we have [

ab f (s1, . . . , sn)
2, rn+1

]
= 0

for any s1, . . . , sn ∈ I and rn+1 ∈ R. Hence, by Lemma 4 it follows that one of the
following holds:

1. f (x1, . . . , xn)xn+1 is an identity for I ;
2. abI = (0);
3. ab ∈ C and f (x1, . . . , xn)2 is central valued on R.

In any case we are done.
Assume finally bts = 0, for any s, t ≤ p and t �= s. Then, by (21), aki = 0 for any

k ≥ 1. Let i, j ≤ p, i �= j and consider again the above defined automorphism ϕ′ of
R:

ϕ′(x) = (1 + e ji )x(1 − e ji ) = x + e ji x − xe ji − e ji xe ji

where ϕ′(acq) = ∑
lm a′

lmelm and ϕ′(q−1u) = ∑
lm b′

lmelm .
If b′

j i �= 0, by using the above argument, we obtain ϕ′(acq)ϕ′(I ) = (0), that is
acq I = (0) and, as previously remarked, the concusion follows from Lemma 4.

Thus we may admit that, for any i, j ≤ p, i �= j , the automorphism ϕ′ of R is
defined in such a way that b′

j i = 0, that is

0 = b′
j i = b ji + bii − b j j − bi j = bii − b j j .
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Hence, we obtain that

– bts = 0 and btt = bss , for any s, t ≤ p and t �= s.

Therefore there exists μ ∈ Z(R) such that q−1uI = μI and, by our hypothesis,
it follows that [

a(b + cu) f (s1, . . . , sn)
2, rn+1

]
= 0 (26)

for any s1, . . . , sn ∈ I and rn+1 ∈ R. Application of Lemma 4 implies that one of the
following conclusions holds:

1. f (x1, . . . , xn)xn+1 is an identity for I ;
2. a(b + cu)I = (0);
3. a(b + cu) ∈ C and f (x1, . . . , xn)2 is central valued on R

as required. �

Remark 2 ([4, Lemma]) Let I be a nonzero right ideal of R and p ∈ Q. Then the
following conditions are equivalent:

1. [p, I ]I = (0);
2. there exists β ∈ C such that (p − β)I = (0).

Lemma 7 Let R be a noncommutative prime ring of characteristic different from
2 with right Martindale quotient ring Q and extended centroid C, I a nonzero
right ideal of R. Let f (x1, . . . , xn) be a non-central multilinear polynomial over C,
a, b, c, u, q ∈ Q be such that q is an invertible element of R and I satisfies

a
(
b f (x1, . . . , xn) + cq f (x1, . . . , xn)q

−1u
)
f (x1, . . . , xn) ∈ C. (27)

If R does not satisfy any non-trivial generalized polynomial identity, then one of the
following holds:

1. there exists μ ∈ C such that q−1uI = μI and a(b + cu)I = (0);
2. acq I = abI = (0).

Proof For any w ∈ I , R satisfies the generalized polynomial identity

[
a
(
b f (wx1, . . . ,wxn) + cq f (wx1, . . . ,wxn)q

−1u
)
f (wx1, . . . ,wxn), xn+1

]
(28)

Since (28) must be trivial generalized polynomial identities for R, by [15] it follows
that abw = λwacqw, with λw ∈ C is depending on the choice of w ∈ I . Hence (28)
reduces to

[
acq f (wx1, . . . ,wxn)(λw + q−1u) f (wx1, . . . ,wxn), xn+1

]
. (29)
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Once again (29) is a trivial identity for R. This implies that either acqw = abw = 0
or (λw + q−1u)w = 0.

Therefore each element of I belongs to one of the sets S1 = {x ∈ I : acqx =
abx = 0} and S2 = {x ∈ I : (λx + q−1u)x = 0}. That is to say, I is the union of its
additive subgroups S1 and S2. However a group cannot be the union of two proper
subgroups, so we have that either I = S1 or I = S2. Hence, either acqx = abx = 0
for all x ∈ I , or [q−1u, x]x = 0 for all x ∈ I .

In this last case, by (27), it follows that and I satisfies

a(b + cu) f (x1, . . . , xn)
2 ∈ C. (30)

Hence, since R does not satisfy any non-trivial generalized polynomial identity, and
by Lemma 4, we conclude that a(b + cu)I = (0). �

Proposition 4 Let R be a noncommutative prime ring of characteristic different
from 2 with right Martindale quotient ring Q and extended centroid C, I a nonzero
right ideal of R. Let f (x1, . . . , xn) be a non-central multilinear polynomial over C,
a, b, c, u, q ∈ Q be such that q is an invertible element of R and

[
a
(
b f (s1, . . . , sn) + cq f (s1, . . . , sn)q

−1u
)
f (s1, . . . , sn), rn+1

]
= 0 (31)

for any s1, . . . , sn ∈ I and rn+1 ∈ R. Then one of the following holds:

1. there exists μ ∈ C such that q−1uI = μI and a(b + cu)I = (0);
2. there exists μ ∈ C such that q−1uI = μI , f (x1, . . . , xn)2 is central valued on

R and a(b + cu) ∈ C;
3. there exists μ ∈ C such that q−1uI = μI and f (x1, . . . , xn)xn+1 is an identity

for I ;
4. acq I = abI = (0);
5. acq I = (0), f (x1, . . . , xn)2 is central valued on R and ab ∈ C;
6. acq I = (0) and f (x1, . . . , xn)xn+1 is an identity for I ;
7. [ f (x1, . . . , xn), xn+1]xn+2 is an identity for I .

Proof Since if R does not satisfy any non-trivial generalized polynomial identity
the result follows from Lemma 7, in all that follows we may assume that R satisfies
some non-trivial generalized polynomial identity, that is R is a GPI-ring. By [40] RC
is a primitive ring and so Q has nonzero socle H with nonzero right ideal J = I H .
Moreover J and I satisfy the same generalized identities with coefficients in Q. Thus
replace R by H and I by J , then without loss of generality we may consider that R
is a simple ring and equal to its own socle and I = I R.

Notice that, if [q−1u, I ]I = (0), then, by Remark 2, there exists μ ∈ C such that
q−1uI = μI and [

a(b + cu) f (s1, . . . , sn)
2, rn+1

]
= 0 (32)
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for any s1, . . . , sn ∈ I and rn+1 ∈ R. Similarly, if acq I = (0) then

[
ab f (s1, . . . , sn)

2, rn+1

]
= 0 (33)

for any s1, . . . , sn ∈ I and rn+1 ∈ R.
In any case, we obtain the required conclusions as an application of Lemma 4.
Here, by contradiction, we assume that there exist h0, h1, h2, . . . , hn+4 ∈ I such

that

1. [q−1u, h0]h1 �= 0;
2. acqh2 �= 0;
3. [ f (h3, . . . , hn+2), hn+3]hn+4 �= 0.

Moreover choose F to be the algebraic closure of C or C , according to |C | = ∞ or
|C | < ∞. Note that I H ⊗C F is a completely reducible right H ⊗C F-module such
that

[
a
(
b f (s1, . . . , sn) + cq f (s1, . . . , sn)q

−1u
)
f (s1, . . . , sn), rn+1

]
= 0 (34)

for any s1, . . . , sn ∈ I H ⊗C F and rn+1 ∈ H ⊗C F . Thus there exists an idempotent
h ∈ I H ⊗C F such that h0, h1, h2, . . . , hn+4 ∈ h(I H ⊗C F). By Litoff’s Theorem
(for a proof see [29]) there exists e2 = e ∈ H ⊗C F such that

h, cqh, hcq, q−1uh, hq−1u, bh, hb, ah, ha, hi ∈ e(H ⊗C F)e ∀i = 0, . . . , n + 4

with e(H ⊗C F)e ∼= Mk(F), for k ≥ 2.
For all s1, . . . , sn ∈ he(H ⊗C F)e ⊆ (I H ⊗C F) ∩ e(H ⊗C F)e and rn+1 ∈

e(H ⊗C F)e, we have

0 =
[
a
(
b f (s1, . . . , sn) + cq f (s1, . . . , sn)q

−1u
)
f (s1, . . . , sn), rn+1

]

=
[
a
(
bh f (s1, . . . , sn) + cqh f (s1, . . . , sn)q

−1uh
)
f (s1, . . . , sn), rn+1

]

=
[
(eae)

(
(ebe) f (s1, . . . , sn) + (ecqe) f (s1, . . . , sn)(eq

−1ue)
)
f (s1, . . . , sn), rn+1

]
= 0.

By Lemma 6, we have that one of the following holds:

1. [e(q−1u)e, he(H ⊗C F)e]he(H ⊗C F)e = 0, which implies the contradiction
0 �= [q−1u, h0]h1 = [eq−1ue, heh0e]heh1e = 0;

2. (eae)(ecqe)he(H ⊗C F)e = 0, which implies the contradiction 0 �= acqh2 =
(eae)(ecqe)heh2e = 0;
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3. he(H ⊗C F)e satisfies [ f (x1, . . . , xn), xn+1]xn+2, which gives again a contra-
diction, since

[ f (heh3e, . . . , hehn+2e), hehn+3e]hehn+4e = [ f (h3, . . . , hn+2), hn+3]hn+4 �= 0.�

Proposition 5 Let R be a noncommutative prime ring of characteristic different
from 2 with right Martindale quotient ring Q and extended centroid C, I a nonzero
right ideal of R. Let f (x1, . . . , xn) be a non-central multilinear polynomial over C,
a, b, c, u ∈ Q, α ∈ Aut (R) be such that

[
a

(
b f (s1, . . . , sn) + cα

(
f (s1, . . . , sn)

)
u

)
f (s1, . . . , sn), rn+1

]
= 0 (35)

for any s1, . . . , sn ∈ I and rn+1 ∈ R. If α is not an inner automorphism of R, then
one the following holds:

1. acα(I ) = abI = (0);
2. acα(I ) = (0), f (x1, . . . , xn)2 is central valued on R and ab ∈ C;
3. acα(I ) = 0 and f (x1, . . . , xn)xn+1 is an identity for I ;
4. u I = abI = (0);
5. u I = (0), f (x1, . . . , xn)2 is central valued on R and ab ∈ C;
6. u I = 0 and f (x1, . . . , xn)xn+1 is an identity for I ;
7. [ f (x1, . . . , xn), xn+1]xn+2 is an identity for I .

Proof Clearly, in case either uI = (0) or acα(I ) = 0, then ab f (r1, . . . , rn)2 ∈ C ,
for all r1, . . . , rn ∈ I and the conclusion follows from Lemma 4. Thus we suppose
there are v1, v2 ∈ I such that acα(v1) �= 0 and uv2 �= 0.

We remark that, if acα(v1 − v2) = 0, then acα(v2) �= 0 follows. Analogously, in
case u(v1 − v2) = 0, one has uv1 �= 0.

Hence one of the following cases must occur:

– acα(v1) �= 0 and uv1 �= 0;
– acα(v2) �= 0 and uv2 �= 0;
– acα(v1 − v2) �= 0 and u(v1 − v2) �= 0.

In any case, there exists a suitable element w ∈ I such that acα(w) �= 0 and uw �= 0.
For such an element 0 �= w ∈ I , R satisfies

[
a

(
b f (wx1, . . . ,wxn) + c f α(α(w)α(x1), . . . , α(w)α(xn))u

)
f (wx1, . . . ,wxn), xn+1

]
.

(36)
Since α is X -outer, by Theorem 3 in [17], R satisfies

[
a

(
b f (wx1, . . . ,wxn) + c f α(α(w)y1, . . . , α(w)yn)u

)
f (wx1, . . . ,wxn), xn+1

]

(37)
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and in particular R satisfies the component

[
a

(
c f α(α(w)y1, . . . , α(w)yn)u

)
f (wx1, . . . ,wxn), xn+1

]
. (38)

Since acα(w) �= 0 and uw �= 0, we have that (38) is a non-trivial generalized poly-
nomial identity for R. By [40] Q is a primitive ring having nonzero socle H with the
fieldC as its associated division ring.Moreover R and Q satisfy the same generalized
polynomial identities with automorphisms [17, Theorem 1]. Therefore Q satisfies
(36). Suppose there exist a1, . . . , an+2 ∈ I such that [ f (a1, . . . , an), an+1]an+2 �= 0.
Since Q is a regular GPI-ring, there exists an idempotent element e ∈ I Q such that
eQ = ∑n+1

i=1 ai Q + wQ andw = ew, ai = eai , for any i = 1, . . . , n + 1. Therefore,
by (36), Q satisfies

[
a

(
b f (ex1, . . . , exn) + c f α(α(e)α(x1), . . . , α(e)α(xn))u

)
f (ex1, . . . , exn), xn+1

]
. (39)

We may assume e �= 1, if not eQ = Q and we conclude by Proposition 3. Moreover,
as above, relation (39) implies that Q satisfies

[
ac f α(α(e)y1, . . . , α(e)yn)u f (ex1, . . . , exn), xn+1

]
.

Replacing xn+1 with (1 − e)xn+1 and xi with xi e, for any i = 1, . . . , n, it follows
that Q satisfies

(1 − e)xn+1ac f
α(α(e)y1, . . . , α(e)yn)u f (ex1e, . . . , exne).

Hence, by the primeness of Q and since e �= 1,

ac f α(α(e)r1, . . . , α(e)rn)u f (es1e, . . . , esne) = 0

for any r1, . . . , rn, s1, . . . , sn ∈ Q.
Since f (ea1, . . . , ean)ean+1 �= 0 and uew �= 0, by Fact 5 it follows that

ac f α(α(e)y1, . . . , α(e)yn)

is a generalized identity for Q. By using the result in [18] and since acα(w) �= 0,
f α(α(e)y1, . . . , α(e)yn) is also an identity for Q. The last identity clearly leads to
the fact that Q satisfies f (eα−1(y1), . . . , eα−1(yn)), therefore f (ex1, . . . , exn) is an
identity for Q, a contradiction. �
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5.1 The Proof of Theorem 3

Proof Let b, c ∈ Q and d be a skew derivation of R such that G(x) = bx + cd(x).
In the case d is an inner skew derivation of R, the proof of ourmain result is contained
in Propositions 4 and 5. Therefore, in all that follows we assume that d is not inner.

As above, we write f (x1, . . . , xn) = ∑
σ∈Sn γσ xσ(1) · · · xσ(n) with γσ ∈ C and

denote by f d(x1, . . . , xn) the polynomial obtained from f (x1, . . . , xn) by replacing
each coefficient γσ with d(γσ ), and f α(x1, . . . , xn) the polynomial obtained from
f (x1, . . . , xn) by replacing each coefficient γσ with α(γσ ).
Since I Q satisfies

aG( f (x1, . . . , xn)) f (x1, . . . , xn) ∈ C

then, for all 0 �= u ∈ I , Q satisfies

[
a

(
b f (ux1, . . . , uxn) + c f d (ux1, . . . , uxn)

)
f (ux1, . . . , uxn), xn+1

]

+
[
ac

( ∑

σ∈Sn
α(γσ )

n−1∑

j=0

α(uxσ(1) . . . uxσ( j))d(uxσ( j+1))uxσ( j+2) . . . uxσ(n)

)
f (ux1, . . . , uxn), xn+1

]
.

(40)
By [19, Theorem 1], Q satisfies

[
a
(
b f (ux1, . . . , uxn) + c f d (ux1, . . . , uxn)

)
f (ux1, . . . , uxn), xn+1

]

+
[
ac

( ∑

σ∈Sn
α(γσ )

n−1∑

j=0

α(uxσ(1) . . . uxσ( j))d(u)xσ( j+1) . . . uxσ(n)

)
f (ux1, . . . , uxn), xn+1

]

+
[
ac

( ∑

σ∈Sn
α(γσ )

n−1∑

j=0

α(uxσ(1) . . . uxσ( j))α(u)yσ( j+1)uxσ( j+2) . . . uxσ(n)

)
f (ux1, . . . , uxn), xn+1

]
.

(41)

Of course we suppose [ f (x1, . . . , xn), xn+1]xn+2 is not an identity for I . Thus
there exist a1, . . . , an+2 ∈ I such that [ f (a1, . . . , an), an+1 + an+2 �= 0.

Case 1. We firstly assume acα(I ) = (0)

In this case, and supposing in addition that acd(I ) = (0), one has that I satisfies

ab f (x1, . . . , xn)
2 ∈ C.

Hence, by Lemma 4, and since f (x1, . . . , xn)xn+1 is not an identity for I , it fol-
lows that either abI = (0) (that is aG(x) = 0, for any x ∈ I ) or ab ∈ C and
f (x1, . . . , xn)2 is central valued on R, as required.
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Thus, we suppose there exists w ∈ I such that acd(w) �= 0. By (40), and since
acα(w) = 0, it follows that Q satisfies

[
a

(
b f (wx1, . . . ,wxn) + c f d(wx1, . . . ,wxn)

)
f (wx1, . . . ,wxn), xn+1

]

+
[
ac

(∑

σ∈Sn
α(γσ )d(w)xσ(1))wxσ(2) . . .wxσ(n)

)
f (wx1, . . . ,wxn), xn+1

]
.

(42)

Since acd(w) �= 0, (42) is a non-trivial generalized polynomial identity for Q, then
Q has nonzero socle H which satisfies the same generalized polynomial identities of
Q. Since R is prime, acd(w) �= 0 implies I acd(w) �= (0), that is there exists w′ ∈ I
such that w′acd(w) �= 0. Without loss of generality R is simple and equal to its own
socle, I R = I and a ∈ I . In fact, R is GPI and so Q has nonzero socle H with
nonzero right ideal J = I H [40]. H is simple and J = J H satisfies the same basic
conditions as I . Now just replace R by H and I by J .

Moreover R = H is a regular ring, hence there exists g = g2 ∈ R such that
wR + w′R + ∑n+1

i=1 R = gR. Then g ∈ I R = I , w = gw, w′ = gw′, and ai = gai
for each i = 1, . . . , n + 1. Since gR satisfies the same generalized identities with
skew derivations and automorphisms of I , wemay also assume g �= 1, if not gR = R
and the conclusion follows from Theorem 10.

For all s1, . . . , sn ∈ gR and rn+1 ∈ R, we have

[
a

(
b f (s1g, . . . , sng) + c f d(s1g, . . . , sng)

)
f (s1g, . . . , sng), (1 − g)rn+1

]

+
[
ac

(∑

σ∈Sn
α(γσ )d(g)sσ(1)g)sσ(2)g . . . sσ(n)g

)
f (s1g, . . . , sng), (1 − g)rn+1

]
= 0

that is

(1 − g)rn+1

{
a

(
b f (s1, . . . , sn) + c f d(s1, . . . , sn)

)
f (s1, . . . , sn)g

+ ac

(∑

σ∈Sn
α(γσ )d(g)sσ(1))sσ(2) . . . sσ(n)

)
f (s1, . . . , sn)g

}
= 0

(43)

By the primeness of R and since g �= 1,

a

(
b f (s1, . . . , sn) + c f d(s1, . . . , sn)

)
f (s1, . . . , sn)g

+ ac

(∑

σ∈Sn
α(γσ )d(g)sσ(1))sσ(2) . . . sσ(n)

)
f (s1, . . . , sn)g = 0

(44)
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for any s1, . . . , sn ∈ gR. Since acα(g) = 0 and left multiplying (44) byw′, it follows
that gR satisfies

{
(w′ab) f (x1, . . . , xn)2 + (w′ac)d

(
f (x1, . . . , xn)

)
f (x1, . . . , xn)

}
g (45)

Let gR = gR
gR∩lR(gR)

and notice that gR is a prime C-algebra. If we define the
following map on R

F(x) = (w′ab)x + (w′ac)d(x) ∀x ∈ R

it is easy to see that F(gR) ⊆ gR. Thus we may introduce

F : gR → gR

such that F(x) = F(x), for all x ∈ gR. Clearly F is a X -generalized skew derivation
of gR and, in light of (45),

{
F

(
f (x1, . . . , xn)

)
f (x1, . . . , xn)

}
g

is an identity for gR. In particular

F

(
f (x1, . . . , xn)

)
f (x1, . . . , xn) = 0. (46)

Application of Corollary 1 implies that one of the following holds:

– [ f (x1, . . . , xn), xn+1]xn+2 is an identity for gR, which gives a contradiction, since

[ f (ga1, . . . , gan), gan+1]gan+2 �=0

– w′acg = 0, which is again a contradiction, since 0 �= w′acd(w) = w′acd(gw) =
w′acgd(w′).

Case 2. In all that follows we assume there is u ∈ I such that acα(u) �= 0

Starting from (41) Q satisfies

[
ac

( ∑

σ∈Sn
α(γσ )

n−1∑

j=0

α(uxσ(1) . . . uxσ( j))α(u)yσ( j+1)uxσ( j+2) . . . uxσ(n)

)
f (ux1, . . . , uxn), xn+1

]
.

(47)
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Since 0 �= acα(u), (47) is a non-trivial generalized polynomial identity for Q, then
Q has nonzero socle H which satisfies the same generalized polynomial identities of
Q. In order to prove our result, wemay replace Q by H and assume that Q is a regular
ring. Thus there exists 0 �= e = e2 ∈ I Q such that

∑n+1
i=1 ai Q + uQ = eQ, u = eu

and ai = eai for each i = 1, . . . , n + 1. As above, we may also assume e �= 1, if not
the conclusion follows from Theorem 10.

Assume that α is X -outer. Thus, by (47) it follows that Q satisfies

[
ac

( ∑

σ∈Sn
α(γσ )

n−1∑

j=0

α(e)zσ(1) . . . α(e)zσ( j))α(e)yσ( j+1)exσ( j+2) . . . exσ(n)

)
f (ex1, . . . , exn), xn+1

]
.

(48)

In particular, by (48) Q satisfies
[
ac

(∑

σ∈Sn
α(γσ )α(e)yσ(1) · · ·α(e)yσ(n)

)
f (ex1, . . . , exn), xn+1

]
. (49)

Thus
[
ac f α(α(e)r1, . . . , α(e)rn

)
f (es1e, . . . , esne), (1 − e)rn+1

]
= 0 (50)

for all r1, . . . , rn, s1, . . . , sn, rn+1 ∈ Q. Hence we get

(1 − e)rn+1ac f
α(α(e)r1, . . . , α(e)rn

)
f (es1e, . . . , esne) = 0

and, by the primeness of Q and since e �= 1, it follows that Q satisfies

ac f α(α(e)r1, . . . , α(e)rn
)
f (es1e, . . . , esne) = 0

Since f (ea1, . . . , ean)ean+1 �= 0 and by Fact 5, it follows that
ac f α(α(e)y1, . . . , α(e)yn) is a generalized identity for Q. Moreover, by [18]
and since acα(u) �= 0, Q satisfies f α(α(e)y1, . . . , α(e)yn). As in the proof of
Proposition 5, this implies that f (ex1, . . . , exn) is an identity for Q, a contradiction.
Finally consider the case when there exists an invertible element q ∈ Q such that
α(x) = qxq−1, for all x ∈ Q. Thus from (47) we have that Q satisfies

[
ac

( ∑

σ∈Sn
α(γσ )

n−1∑

j=0

q(exσ(1) · · · exσ( j))eq
−1yσ( j+1)exσ( j+2) · · · exσ(n)

)
f (ex1, . . . , exn), xn+1

]
.

(51)
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Since α(γσ ) = γσ and by replacing yσ(i) with qxσ(i), for all σ ∈ Sn and for all i =
1, . . . , n, it follows that Q satisfies

[
acq

(∑

σ∈Sn
γσ exσ(1) · · · exσ( j)exσ( j+1)exσ( j+2) · · · exσ(n)

)
f (ex1, . . . , exn), xn+1

]

(52)
that is [

acq f (ex1, . . . , exn)
2, xn+1

]
. (53)

By Lemma 4, it follows that one of the following holds:

(i) f (x1, . . . , xn)xn+1 is an identity for eQ, which contradicts
[ f (a1, . . . , an), an+1]an+2 �= 0;

(ii) acqe = 0,which is again a contradiction, since 0 �= acq(u)q−1 = acq(eu)q−1;
(iii) acq ∈ C and f (x1, . . . , xn)2 is central valued on Q.

In order to complete our proof, we have to discuss only the last case (iii).
Since 0 �= acq ∈ C and by replacing in (51) yσ(i) with qyσ(i), for all σ ∈ Sn and

for all i = 1, . . . , n, it follows that Q satisfies

[(∑

σ∈Sn
γσ

n−1∑

j=0

exσ(1) · · · exσ( j)eyσ( j+1)exσ( j+2) · · · exσ(n)

)
f (ex1, . . . , exn), xn+1

]

and, in particular, for any i = 1, . . . , n, Q satisfies
[(∑

σ∈Sn
γσ exσ(1) · · · eyσ(i) · · · exσ(n)

)
f (ex1, . . . , exn), xn+1

]
. (54)

For yσ(i) = 0 when i �= 1, (54) leads to the identity
[
ey1

( ∑

σ∈Sn−1

γσ exσ(2) · · · exσ(n)

)
f (ex1, . . . , exn), xn+1

]
. (55)

We denote
∑

σ∈Sn−1
γσ )xσ(2) · · · xσ(n) = t1(x2, . . . , xn), then Q satisfies

[
ey1et1(ex2, . . . , exn) f (ex1, . . . , exn), xn+1

]
. (56)

In particular,

0 =
[
ey1et1(ex2, . . . , exn) f (ex1, . . . , exn), xn+1(1 − e)

]

= ey1et1(ex2, . . . , exn) f (ex1, . . . , exn)xn+1(1 − e)

(57)
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and, by the primeness of Q,

t1(ex2, . . . , exn) f (ex1, . . . , exn) = 0.

Repeating the same above process, for any i = 1, . . . , n we arrive at

ti (ex1, . . . , exi−1, exi+1, . . . , exn) f (ex1, . . . , exn) = 0 ∀i ≥ 1. (58)

Finally notice that

f (x1, . . . , xn) =
∑

j

x j t j (x1, . . . , x j−1, x j+1, . . . , xn),

where any t j is a multilinear polynomial of degree n − 1 and x j never appears in
any monomial of t j . This remark and relation (58) lead to f (ex1, . . . , exn)2 = 0.
By [18], we conclude that f (ex1, . . . , exn)e must be an identity for Q, which is a
contradiction again. �
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Commutative Polynomial Rings which
are Principal Ideal Rings

Henry Chimal-Dzul

Abstract A well-known result by Zariski and Samuel asserts that a commutative
principal ideal ring is a direct sum of finitely many principal ideal domains and
Artinian chain rings. Based on this result, it is shown, among other things, that a
commutative polynomial ring R[x] is a principal ideal ring if and only if R is a finite
direct sum of fields.

Keywords Principal ideal ring · Polynomial ring · Principal ideal domain ·
Artinian chain ring · Bézout domain

1 Introduction

A first exposure to the theory of rings almost certainly involves a study of various
examples of principal ideal rings. Themost common examples are the ring of integers
Z and the polynomial ring K [x] with coefficients in a field K . These are also exam-
ples of Euclidean domains. In general, it is well known that Euclidean domains are
principal ideal rings and that there are principal ideal rings which are not Euclidean
domains (see [4] and [3, Example 3.79] for more details). However, even with these
results in hand, more than likely K [x] is the only example that we would have come
across of a commutative polynomial ring that is a principal ideal ring. This remark
brings up the discussion of when a commutative polynomial ring is a principal ideal
ring.

The main goal of this paper is to characterize all commutative polynomial rings
R[x]which are principal ideal rings.We prove that R[x] is a principal ideal ring if and
only if R is a finite direct sumof fields. This result shows that in the commutative case,
polynomial rings with coefficients in a field are the building blocks of polynomial
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rings that are principal ideal rings, a fact that has been proved in [1, Theorem 2.3]
for finite commutative rings only. Thus, the main result in this paper, Theorem 4,
generalizes [1, Theorem 2.3] to arbitrary commutative rings.

In the background of the main contribution of this paper stands a more general
result by Zariski and Samuel [5], which establishes that a commutative ring is a
principal ideal ring if and only if it is a direct sum of finitely many principal ideal
domains and Artinian chain rings. For the reader’s convenience, this background
material is presented in Sect. 2. Section3 focuses on the main result of this paper,
which will be derived from studying polynomials over integral domains and local
rings (Theorems 2 and 3). In view of this study, we obtain that if R is an integral
domain or an Artinian local ring that is not a field, then R[x] is not a PIR. In Sect. 4,
we show how to construct some families of non-principal ideals in a polynomial ring
over an integral domain (resp., over an Artinian chain ring) with irreducible elements
(resp., with zero divisors). This leads to simple examples of integral domains and
unique factorization domains which are not Bézout domains.

2 Structure Theorem of PIRs

Throughout this paper, unless otherwise stated, all rings are assumed to be commuta-
tivewith identity. Let R be a ring.As often, R[x] denotes the ring of all polynomials in
an indeterminate x with coefficients in R; a1R + · · · + an R the ideal of R generated
by a1, . . . , an ∈ R; and U (R) the group of units of R. The quotient ring Z/mZ will
be written asZm and its elements will be identified with the integers 0, 1, . . . ,m − 1.

Recall that a ring in which every ideal is principal is called a principal ideal
ring (PIR). A principal ideal domain (PID) is an integral domain that is a PIR. The
following facts about PIRs are well-known and will be frequently used in this paper.

Lemma 1 1. If R is a PIR then R/I is also a PIR for any ideal I of R.
2. The direct sum

⊕n
i=1 Ri is a PIR if and only if so are all the rings R1, . . . , Rn.

A local ring is called an Artinian chain ring if its maximal ideal is principal and
generated by a nilpotent element. It can be proved that an Artinian chain ringA with
maximal ideal θA is a PIR and that every proper ideal of A is of the form θ iA for
some i ≥ 1. One may view fields as Artinian chain rings having zero maximal ideal.
Artinian chain rings are also referred to as special PIRs in [5, Sect. 15, p. 242].

Theorem 1 ([5, Theorem 33, p. 245]) Every PIR is (isomorphic) to a direct sum of
finitely many PIDs and Artinian chain rings.
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3 Characterization of Polynomial Rings that Are PIRs

In this section, we give necessary and sufficient conditions under which R[x] is a
PIR. Although, for our purposes, it is sufficient to study polynomials over PIDs and
Artinian chain rings, we extend our analysis to polynomials over integral domains
and local rings.

We start regarding the case when R is an integral domain. First, recall from [3,
Sect. 7.2] that every PID is a unique factorization domain (UFD), every polynomial
ring over a UFD is also a UFD, and that prime and maximal ideals coincide in a
UFD.

Theorem 2 For an integral domain D , D[x] is a PIR if and only if D is a field.

Proof By Lemma 1, if D[x] is a PIR then D ∼= D[x]/xD[x] is a PIR. Indeed, note
thatD is a PID. Thus,D is a UFD, where it follows thatD[x] is a UFD. Consider the
map ϕ : D[x] → D defined by ϕ

( ∑n
i=0 fi x i

)
= f0. Then ϕ is a ring epimorphism.

HenceD[x]/ ker ϕ ∼= D , and so ker ϕ is a prime ideal ofD[x]. SinceD[x] is a UFD,
ker ϕ is maximal. Therefore D is a field. The converse is clear.

Let A be an Artinian chain ring with maximal ideal θA and K = A /θA (the
residue field of A ). Note that the natural ring epimorphism : A → K , defined
as a �→ a = a + θA , induces a polynomial ring epimorphism � : A [x] → K [x]
given by

�
( n∑

i=0

fi x
i
)

=
n∑

i=0

f i x
i . (1)

The kernel of � is

ker� =
{

n∑

i=0

fi x
i ∈ A [x] : fi ∈ θA , 0 ≤ i ≤ n, n ∈ N

}

= θA [x].

If e is the nilpotency index of θ , then (ker�)e = (θA [x])e = θ eA [x] = 0. Thus
ker� is a nilpotent ideal of A [x], and so every element of ker� is nilpotent.

Lemma 2 LetA be an Artinian chain ring with residue field K . The group of units
of A [x] is

U (A [x]) = {u + f : u ∈ U (A ), f ∈ ker�}.

Moreover, �( f ) ∈ K [x] is a unit if and only if f ∈ U (A [x]).
Proof First observe that for every f ∈ ker�, 1 + f ∈ U (A [x]) because 1 = 1 +
f n = (1 + f )(1 − f + f 2 + · · · + (−1)n−1 f n−1). Thus, for any u ∈ U (A ) and
f ∈ ker�, u + f ∈ U (A [x]) because u + f = u(1 + u−1 f ) and u−1 f ∈ ker�.
Consequently, {u + f : u ∈ U (A ), f ∈ ker�} ⊆ U (A [x]). To prove the reverse
inclusion, let a ∈ U (A [x]). Then �(a) ∈ U (K [x]). An element g ∈ K [x] is a unit
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if and only if 0 	= g ∈ K . Thus 0 	= �(a) ∈ K , where it follows that a = u + f ,
where u ∈ U (A ) and f ∈ ker�.

Theorem 3 For a local ring R, R[x] is a PIR if and only if R is a field.

Proof Assume that R[x] is a PIR. Then R ∼= R[x]/x R[x] is a PIR by Lemma 1.
Hence R is a direct sum of finitely many PIDs and Artinian chain rings. Since R
is local, R is not a direct sum of two or more rings. Hence, R is either a PID or
an Artinian chain ring. If R is a PID then Theorem 2 implies that R is a field.
Thus, assume that R is an Artinian chain ring with residue field K . Let I be the
preimage of the ideal xK [x] of K [x] under the ring epimorphism � defined in (1).
Let � : R[x] → K [x]/xK [x] be the map given by a �→ �(a) + xK [x]. Then �

is a ring epimorphism, and so � induces a ring isomorphism �̃ : R[x]/ ker� →
K [x]/xK [x]. Since K [x]/xK [x] ∼= K , it follows that ker� is a maximal ideal
of R[x]. Because R[x] is a PIR, there is f ∈ R[x] such that ker� = f R[x]. Since
x ∈ ker�, then x = f g for some g ∈ R[x]. Hence x = �(x) = �( f )�(g) ∈ K [x].
The polynomial x is irreducible in K [x], so either�( f ) or�(g) is unit in K [x]. Since
ker� ismaximal,�( f ) is not a unit in K [x]. It follows that�(g) is a unit in K [x]. By
Lemma 2, g ∈ U (R[x]). Therefore ker� = x R[x], and so R ∼= R[x]/ ker� ∼= K ,
where we obtain that R is a field. The converse is simple.

We are now in a position to prove the main result of this paper.

Theorem 4 The polynomial ring R[x] is a PIR if and only if R is a finite direct sum
of fields.

Proof Assume R[x] is a PIR. By Lemma 1, R ∼= R[x]/x R[x] is a PIR. Thus, in light
of Theorem 1, R is a direct sum of finitely many PIDs and Artinian chain rings, say
R ∼= D1 ⊕ · · · ⊕ Dn ⊕ A1 ⊕ · · · ⊕ Am , where each Di is a PID and every A j is an
Artinian chain ring. This decomposition extends to a polynomial ring isomorphism
R[x] ∼= D1[x] · · · ⊕ Dn[x] ⊕ A1[x] ⊕ · · · ⊕ Am[x]. Lemma 1 implies that for all
i, j , Di [x] and A j [x] are PIRs. By Theorem 2, Di [x] is a PIR if and only if Di is a
field. Likewise, by Theorem 3, A j [x] is a PIR if and only if A j is a field. Hence R
is a finite direct sum of fields. The converse is evident.

Theorem 4 generalizes [1, Theorem 2.3], where it was shown that for a finite
(commutative ring) R, the polynomial ring R[x] is a PIR if and only if R is a direct
sum of finitely many finite fields. Some examples of finite rings R are analyzed in
[1] to determine whether R[x] is a PIR or not.

The following result is an instance of Theorem 4 andwill allow us to provide some
examples of polynomial rings that are PIRs (with either finitely many or infinitely
many elements).

Proposition 1 LetD be a PID, 0 	= d ∈ D a non-unit, and R = D/d D . Then R[x]
is a PIR if and only if d is a product of distinct irreducible elements in D .
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Proof Since d 	= 0 is a non-unit and D is a PID (and so a UFD), d can be
expressed as a product of irreducible elements in D , say d = pα1

1 · · · pαn
n . Notice

that the ideals pαi
i D and p

α j

j D are comaximal whenever i 	= j . Therefore, by the
Chinese Remainder Theorem (see [3, Exercise 7.14]), we obtain R = D/d D ∼=
D/pα1

1 D ⊕ · · · ⊕ D/pαn
n D . Let Ai = D/pαi

i D . Then Ai is an Artinian chain ring
with maximal ideal piAi . The nilpotency index of pi is αi . As in the proof of The-
orem 4, R[x] is a PIR if and only if Ai is a field for all 1 ≤ i ≤ n. But Ai is a field
if and only if αi = 1. Thus R[x] is a PIR if and only if d is a product of distinct
irreducible elements in D .

Remark 1 One may suspect that Propositional 1 can be stated for a UFD instead
of a PID. However, the fact that in a UFD irreducible elements could give rise to
prime ideals that are not maximal erases this possibility. For example, Z[t] is a UFD
and f = t is irreducible in Z[t]. But (Z[t]/tZ[t])[x] ∼= Z[x] is not a PIR. Note that
tZ[t] is a prime ideal in Z[t] but not maximal.

Corollary 1 The ring Zm[x] is a PIR if and only if m is square-free.

The previous corollary has been derived in [1] using the characterization of finite
rings R for which R[x] is a PIR (see [1, Theorem 2.3 and Sect. 3]). Here we have
recovered Corollary 1 from Proposition 1 by takingD = Z and d = m. Thus Propo-
sition 1 could be considered as a generalization of the remarks in [1].

Corollary 2 Let K be a field, f ∈ K [t] and R = K [t]/ f K [t]. Then R[x] is a PIR
if and only if f is a product of distinct irreducible polynomials in K [t].

For a ring R and a polynomial f = a0 + a1t + · · · + antn ∈ R[t], the formal
derivative of f is defined to be f ′ = a1 + 2a2t + · · · + nantn−1. If R = K is a field,
then f is a product of distinct irreducible factors provided that f and f ′ are relatively
prime (see [3, Exercise 3.34]).

Example 1 Let R = Q[t]/ fQ[t], where f = 2t4 − 3t2 + 2t + 4. We would like to
determine whether R[x] is a PIR. The formal derivative of f = 2t4 − 3t2 + 2t + 4
is f ′ = 8t3 − 6t + 2, which factorizes as f ′ = 2(t + 1)(2t − 1)2. Now f ′ and f are
relatively prime because neither t + 1 nor 2t − 1 divides f . Hence f is a product of
distinct irreducible factors in Q[t]. Therefore, by Corollary 2, R[x] is a PIR.

4 Non-principal Ideals in Some Polynomial Rings

In light of Theorem 2, if R is an integral domain that is not a field, then R[x] is
not a PIR. Likewise, if R is a local ring with zero divisors then R[x] has at least
one non-principal ideal by Theorem 3. In this section, we construct some families of
non-principal ideals in R[x] in some of these cases.
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Proposition 2 Let R be an integral domain with at least one irreducible element p,
and f ∈ R[x] of positive degree. If p does not divide f then I = pR[x] + x f R[x]
is a non-principal ideal of R[x].
Proof First, observe that I contains only polynomials in R[x] whose constant term
is divisible by p. Since p is irreducible, 1 /∈ I , i.e., I is a proper ideal of R[x]. For the
sake of contradiction, suppose that I = gR[x] for some g ∈ R[x]. Since p ∈ I then
g divides p. Because p is irreducible in R, then p is also irreducible in R[x]. Thus
g is a unit or g is an associate of p. Since I is a proper ideal, g is not a unit. Hence g
is an associate of p. Consequently, I = gR[x] = pR[x]. Because f ∈ I = pR[x],
then p divides f (a contradiction). Therefore I is a non-principal ideal of R[x].
Remark 2 It is important that the assumption on the integral domain R having at
least one irreducible element in Proposition 2 is sufficient but not necessary. That is,
there are integral domains D without irreducible elements for which D[x] is not a
PIR. An example of such domains is the ring of all algebraic integers:

O = {z ∈ C | f (z) = 0 for some monic polynomial f (x) ∈ Z[x]}.

There are no irreducible elements in O because any nonzero non-unit α ∈ O can be
written as α = √

α
√

α. Note that
√

α ∈ O since if f (x) = ∑n
i=0 ai x

i is such that
f (α) = 0 then

√
α is a root of g(x) = ∑n

i=0 ai x
2i ∈ Z[x]. Lastly, we observe that

O[x] is not a PIR. Indeed, if O[x] is a PIR, then from Lemma 1 we obtain that O is
a PIR, and so a Noetherian domain, i.e., it satisfies the Ascending Chain Condition
on ideals (see [3, Sect. 7.3] for more details). However, O is not Noetherian as, for
example,

3O ⊆ 31/2O ⊆ 31/4O ⊆ · · · ⊆ 31/2
n
O ⊆ · · ·

is an strictly ascending chain of principal ideals of O .

Example 2 Let Z[i] = {a + bi | a, b ∈ Z} be the ring of Gaussian integers. The
norm of a Gaussian integer z = a + bi is defined as N (a + bi) = a2 + b2. This
norm is multiplicative in the sense that N (zw) = N (z)N (w) for all z, w ∈ Z[i].
Hence, an element z ∈ Z[i] is a unit if and only if N (z) = 1. Moreover, if N (z) is
a prime integer, then z is irreducible in Z[i]. Thus, irreducible elements in Z[i] are
abundant. Consequently, for any irreducible ω ∈ Z[i] and f ∈ Z[i][x] such that ω

does not divide f , the ideal

ωZ[i][x] + x f Z[i][x]

of Z[i][x] is non-principal by Proposition 2. As a particular case, we can take f =
1 + x + · · · + xn and ω = 1 + i .

Recall that a Bézout domain is an integral domain in which the sum of any two
principal ideals is principal. Every PID is a Bézout domain. On the other hand,
Bézout domains and UFDs are independent classes of rings in the sense that there
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are examples of Bézout domains that are not UFDs, and vice-versa. In the same vein,
Proposition 2 provides simple examples of integral domains and UFDs which are
not Bézout domains. Moreover, note that these rings are not Artinian.

We now turn our attention on non-principal ideals inA [x], whereA is anArtinian
chain ring. The proof of Theorem3 establishes that the preimage of the ideal xK [x] of
K [x], under the ring epimorphism� : A [x] → K [x]defined in (1), is non-principal.
Note that �−1(xK [x]) = θA [x] + xA [x], where θA is the maximal ideal of A .
Thus, the ideal θA [x] + xA [x] of A [x] is non-principal. We now generalize this
construction.

Proposition 3 Let A be an Artinian chain ring with maximal ideal θA 	= 0 and
residue field K . Let� : A [x] → K [x] be the ring homomorphism defined in (1). For
any monic irreducible polynomial f ∈ A [x] and 0 	= m ∈ θA , the ideal mA [x] +
fA [x] of A [x] is non-principal.
Proof Let I = mA [x] + fA [x]. If 1 ∈ I then 1 = ma + f b for some a, b ∈
A [x]. Since m ∈ θA , it follows from Lemma 2 that f ∈ U (A [x]), which is
a contradiction. Thus 1 /∈ I , that is, I is a proper ideal of A [x]. For the sake
of contradiction, assume that I is principal. So, I = gA [x] for some g ∈ A [x].
Since f ∈ I , we can write f = gh for some h ∈ A [x]. Because f is irreducible,
either g or h is a unit. Since I is a proper ideal, necessarily h ∈ U (A [x]). Hence
I = gA [x] = f h−1A [x] = fA [x]. Since f is monic irreducible, for any nonzero
polynomial a ∈ A [x], the product f a has positive degree. This shows that m /∈ I ,
which is a contradiction. Therefore I is non-principal.

The previous result generalizes Theorem 2.2 in [1], which states that R[x] is not
a PIR whenever R is a finite local ring which is not a field. On the other hand, the
construction of non-principal ideals proposed in Proposition 3 depends on identifying
monic irreducible polynomials in A [x], where A is an Artinian chain ring. The
question of whether a polynomial in A [x] is irreducible is a bit subtle in many
ways because of the presence of zero divisors. For instance, in the ring Z4[x], the
polynomial x + 2 can be written as

x + 2 = (2x + 1)(2x2 + x + 2). (2)

Although, we cannot conclude yet that x + 2 is reducible in Z4[x] because 2x + 1 ∈
U (Z4[x]) (see Lemma 2). We now present a test for irreducibility for polynomials
with coefficients in an Artinian chain ring, which will lead us to the conclusion that,
for example, x + 2 is irreducible in Z4[x].
Lemma 3 LetA be an Artinian chain ring with residue field K . Let f ∈ A [x] and
� : A [x] → K [x] be the ring homomorphism defined in (1). If �( f ) is irreducible
in K [x] then f is irreducible in A [x].
Proof Assume that �( f ) is irreducible in K [x]. If f = ab for some a, b ∈ A [x],
then �( f ) = �(a)�(b). So either �(a) or �(b) is a unit in K [x]. Hence, in light
of Lemma 2, either a or b is a unit inA [x]. It follows that f is irreducible inA [x].
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Remark 3 The converse of Lemma 3 does not hold in general. For example, f (x) =
x2 + 2 ∈ Z4[x] is irreducible but �( f ) = x2 ∈ Z2[x] is reducible. Note that Z2 is
(isomorphic) to the residue field of Z4.

Irreducible polynomials in K [x], where K is a field, always exist: degree one
polynomials are irreducible. Thus, for an Artinian chain ring A , polynomials of
the form f = a + bx for which b ∈ U (A ) are irreducible in A [x]. On the other
hand, the existence of irreducible polynomials of degree higher than one in A [x]
depends on the residue field K . If K is a finite field, then there exist irreducible
polynomials of any degree [2]. But, if K has characteristic zero then there may be
irreducible elements up to certain degree. For example, if R = R[a]/anR[a] then R
is an Artinian chain ring with maximal ideal aR and residue field K ∼= R. In this
case, there are only irreducible polynomials of degree up to 2.

Example 3 The ideal I = 2Z4[x] + (2x2 + x + 2)Z4[x] of Z4[x] is non-principal.
To prove this, recall that 2x + 1 ∈ U (Z4[x]).Thus, in view of (2), I can be written
as

I = 2Z4[x] + (x + 2)Z4[x].

Therefore, by Proposition 3, I is non-principal.

Example 4 A polynomial f of degree 2 or 3 with coefficients in a field K is
irreducible if and only if f (k) 	= 0 for all k ∈ K . It follows that x3 + x2 + 1 and
x3 + x + 1 are the only irreducible polynomials of degree 3 in Z2[x]. Thus, for
a fix integer k ≥ 2, any polynomial f = x3 + ax2 + bx + c ∈ Z2k [x] such that
�( f ) ∈ {x3 + x2 + 1, x3 + x + 1} is irreducible by Lemma 3. Hence, by Propo-
sition 3, the ideal 2lZ2k [x] + f Z2k [x] of Z2k [x] is non-principal for 1 ≤ l ≤ k − 1.

Example 5 Let f = t − 1 ∈ Q[t], k ≥ 2 be an integer, and A = Q[t]/ f kQ[t].
Since f is irreducible inQ[t], the ringA is anArtinian chain ringwithmaximal ideal
fA and residue field K = A / fA ∼= Q. Let p ≥ 2 be a prime number and gp =
1 + x + x2 + · · · + x p−1 ∈ A [x]. Then�(gp) = 1 + x + x2 + · · · + x p−1 ∈ Q[x]
is the pth cyclotomic polynomial, which is irreducible in Q[x] by [3, Corol-
lary 3.104]. Thus, by Lemma 3, gp is irreducible in A [x]. Therefore, the ideal
Ip = fA [x] + gpA [x] of A [x] is non-principal for every prime number p ≥ 2.
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Two Remarks on Generalized Skew
Derivations in Prime Rings

Vincenzo De Filippis and Francesco Rania

Abstract Let R be a prime ring of characteristic different from 2, Qr its right
Martindale quotient ring, F and G two non-zero generalized skew derivations of R,
associated with the same automorphism α and commuting with α. In this work we
describe all possible forms of F and G in the following two cases: (a) there exist
a, b ∈ Qr and a non-central Lie ideal L of R such that aF(x)b = 0, for all x ∈ L; (b)
there exist a1, a2, b1, b2 ∈ Qr such that a1F(x)b1 + a2G(x)b2 = 0, for all x ∈ R.

Let R be a prime ring with center Z(R), Qr its right Martindale quotient ring, C the
center of Qr , usually called extended centroid of R (see [1] for more details).

An additive mapping d : R −→ R is said to be a derivation of R if

d(xy) = d(x)y + xd(y)

for all x, y ∈ R. An additivemapping F : R −→ R is called a generalized derivation
of R if there exists a derivation d of R such that

F(xy) = F(x)y + xd(y)

for all x, y ∈ R.
Let R be an associative ring and α be an automorphism of R. An additive mapping

d : R −→ R is said to be a skew derivation of R if

d(xy) = d(x)y + α(x)d(y)
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for all x, y ∈ R. The automorphisms α is called an associated automorphism of d.
An additive mapping F : R −→ R is called a generalized skew derivation of R if
there exists a skew derivation d of R with associated automorphism α such that

F(xy) = F(x)y + α(x)d(y)

for all x, y ∈ R. In this case, d is called an associated skew derivation of F and α is
called an associated automorphism of F .

In this paper we investigate some generalized differential identities involving
generalized skew derivations of a prime ring of characteristic different from 2.

In [2, Theorem 2.1] Brešar describes the form of three derivations d, g, h of a
prime ring R satisfying the condition d(x) = ag(x) + h(x)b, for any x ∈ R, where
a, b ∈ R \ Z(R). As a consequence he also studies the case when ag(x) + h(x)b =
0, for any x ∈ R [2, Corollary 2.4]. More precisely, in this last case he concludes
that there exists λ ∈ C such that g(x) = [λb, x] and h(x) = [λa, x], for any x ∈ R.
The results by Brešar extend a theorem of Herstein contained in [12].

Following this line of investigation, J.-C. Chang generalizes the previous results
to the case of both skew derivation (see [3]) and generalized skew derivations (see
[4]).

Here we would like to continue the study of linear differential identities having
the same flavor of the above-cited ones, and involving generalized skew derivations.
In this sense, the main goal of the present paper is to prove the following theorems:

Theorem 1 Let R be a prime ring of characteristic different from 2, F a non-zero
generalized skewderivation of R,with associated automorphismα, and a, b non-zero
elements of Qr such that

aF(w)b = 0 ∀w ∈ L .

Then one of the following holds:

(a) the associated automorphism α is not inner and there exist c, u ∈ Qr be such
that F(x) = cx + α(x)u, for any x ∈ R, with ac = ub = 0;

(b) there exist c, u, q ∈ Qr and λ ∈ C such that F(x) = cx + α(x)u, for any x ∈ R,
whereα(x) = qxq−1, for any x ∈ R, with a(c + λq) = 0 and (λ + q−1u)b = 0.

Theorem 2 Let R be a prime ring of characteristic different from 2, F,G two non-
zero generalized skew derivations of R, associated with the same automorphism α

and commuting with α. Let a1, a2, b1, b2 be non-zero elements of Qr such that

a1F(x)b1 + a2G(x)b2 = 0 ∀x ∈ R.

Then one of the following cases must occur

(a) There exist p, u, v,w, q ∈ Qr , where q is an invertible element, such that
F(x) = px + qxq−1u, G(x) = vx + qxq−1w, for any x ∈ R, and one of the
following holds:
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1. there exist α1, α2, α3, α4 ∈ C such that b1 = α1b2 + α2q−1wb2, q−1ub1 =
α3b2 + α4q−1wb2 andα1a1 p + α3a1q + a2v = α2a1 p + α4a1q + a2q = 0;

2. there exist λ, α1, α2, α3, α4 ∈ C such that q−1wb2 = λb2, b1 =
(α1 + λα2)b2, q−1ub1 = (α3 + λα4)b2 and (α1 + λα2)a1 p + (α3 + λα4)

a1q + a2(v + λq) = 0;
3. there exist 0 �= λ ∈ C and β1, β2 ∈ C such that a1 p = λa1q, a2v = β1a1q,

a2q = β2a1q and λb1 + q−1ub1 + β1b2 + β2q−1wb2 = 0;
4. there exist 0 �= λ ∈ C and μ, η ∈ C such that a1 p = λa1q, a2(v + μq) =

ηa1q, (λ + q−1u)b1 = −ηb2 and q−1wb2 = μb2.

(b) There exist p, u, v,w ∈ Qr such that F(x) = px + α(x)u, G(x) =
vx + α(x)w, for any x ∈ R, and one of the following holds:

5. a1 p = a2v = ub1 = wb2 = 0;
6. a1 p = a2v = 0 and there exists μ ∈ C such that ub1 = μwb2 and a2 =

−μa1;
7. ub1 = wb2 = 0 and there exists λ ∈ C such that a1 p = λa2v and b2 =

−λb1;
8. there exist λ,μ ∈ C such that a1 p = λa2v, b2 = −λb1, ub1 = μwb2 and

a2 = −μa1.

(c) There exist p, v ∈ Qr and d, δ skew derivations of R such that F(x) = px +
d(x),G(x) = vx + δ(x), for all x ∈ R, and one of the following holds:

9. there exist ϑ ∈ C and 0 �= η ∈ C such that δ(x) = ηd(x), for any x ∈ R,
a1 p = ϑa2v, b2 = −ϑb1, and a1 = ϑηa2;

10. there exist 0 �= ϑ ∈ C, 0 �= η ∈ C and p0 ∈ Qr such that δ(x) = p0x −
α(x)p0 + ηd(x), for any x ∈ R, a1 = ϑηa2, b2 = −ϑb1, p0b1 = 0 and
ηa2 p − a2(v + p0) = 0;

11. there exist ϑ ∈ C, 0 �= η ∈ C and p0, q ∈ Qr , where q is an invertible
element, such that δ(x) = p0x − qxq−1 p0 + ηd(x), for any x ∈ R, a1 =
ϑηa2, b2 = −ϑb1, q−1 p0b1 = ϑb1 and ηa2 p − a2(v + p0) + ϑa2q = 0.

Let us recall some basic facts which will be useful in the sequel.

Fact 1 Let R be a prime ring, then the following statements hold:

(a) Every generalized derivation of R can be uniquely extended to Qr [14, Theorem
3].

(b) Any automorphism of R can be uniquely extended to Qr [7, Fact 2].
(c) Every generalized skew derivation of R can be uniquely extended to Qr [4,

Lemma 2].

Fact 2 A generalized skew derivation having associated automorphism α and skew
derivation d assumes the following form:
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F(x) = ax + d(x) (1)

for all x ∈ R (see [4, Lemma 2], [5, Theorem 3.1 and Corollary 3.2]).

We also need to recall some well-known results on generalized polynomial iden-
tities for prime rings involving skew derivations and automorphisms.

Fact 3 ([9]) IfΦ(xi , D(xi )) is a generalized polynomial identity for R, where R is a
prime ring and D is an outer skewderivation of R, then R also satisfies the generalized
polynomial identity Φ(xi , yi ), where xi and yi are distinct indeterminates.

If Φ(xi , D(xi ), α(xi )) is a generalized polynomial identity for a prime ring R, D
is an outer skew derivation of R and α is an outer automorphism of R, then R also
satisfies the generalized polynomial identity Φ(xi , yi , zi ), where xi , yi , and zi are
distinct indeterminates.

Fact 4 ([13, Theorem 6.5.9, page 365]) Let a prime ring R obey a polynomial
identity of the type f (xαi	k

j ) = 0, where f (zi,kj ) is a generalized polynomial with the
coefficients fromQr ,	1, . . . , 	n aremutually different correctwords froma reduced
set of skew derivations commuting with all the corresponding automorphisms, and
α1, . . . , αm are mutually outer automorphisms. In this case the identity f (zi,kj ) = 0
is valid on Qr .

Fact 5 ([8, Theorem 1]) Let R be a prime ring and I be a two-sided ideal of R. Then
I , R, and Qr satisfy the same generalized polynomial identities with coefficients in
Qr (see [6]). Furthermore, I , R, and Qr satisfy the same generalized polynomial
identities with automorphisms.

Fact 6 ([9, Theorem 2]) Let R be a prime ring and I be a two-sided ideal of R. Then
I , R, and Qr satisfy the same generalized polynomial identities with a single skew
derivation.

In the sequel, R will be a non-commutative ring of characteristic different from 2,
F and G two non-zero generalized skew derivations of R, associated with the same
automorphism α and commuting with α.

1 Annihilating Condition for a Single Generalized Skew
Derivation

In this second section our aim will be to prove Theorem 1. More precisely, let F be
a generalized skew derivation of R and a, b are non-zero elements of R such that

aF(w)b = 0 ∀w ∈ L a non-central Lie ideal of R. (2)

The study of this result will be useful for the proof of our main Theorem (i.e.,
Theorem 2).
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We permit the following:

Lemma 1 Let R be a prime and ai , bi ∈ U, for 1 ≤ i ≤ n. If
∑n

i=1 ai [x, y]bi = 0,
for all x, y ∈ R. If ai �= 0 for some i , then b1, . . . , bn are C-dependent. Similarly, if
bi �= 0 for some i , then a1, . . . , an are C-dependent.

Proof The result follows easily from [15, Lemma 2.2] and [16, Lemma 1].

Lemma 2 Let c, u ∈ Qr be such that F(x) = cx + α(x)u, for any x ∈ R. If

aF([r1, r2])b = 0 ∀r1, r2 ∈ R. (3)

then one of the following holds:

(a) ac = ub = 0;
(b) there exist q ∈ Qr and λ ∈ C such that α(x) = qxq−1, for any x ∈ R, with

a(c + λq) = 0 and (λ + q−1u)b = 0.

Proof By our assumption R satisfies

a

(

c[x1, x2] + α([x1, x2])u
)

b. (4)

We consider firstly the case α(x) = qxq−1, for any x ∈ R, where q ∈ Qr is an
invertible element. In this case, by (4), R satisfies

a

(

c[x1, x2] + q[x1, x2]q−1u

)

b. (5)

A direct application of Lemma 1 leads to conclusion (b).
Therefore we may assume that α is not an inner automorphism of Qr . Thus, by

(4) and Fact 3, R satisfies the generalized polynomial identity

a

(

c[x1, x2] + [y1, y2]u
)

b. (6)

In particular R satisfies both the blended components ac[x1, x2]b and a[y1, y2]ub.
Since a �= 0 and b �= 0 and by the primeness of R, we get the required conclusion
ac = ub = 0.

Proof (Proof of Theorem 1) By Fact 2, F(x) = cx + d(x) for all x ∈ R, where
c ∈ Qr and d is the skew derivation associated with F .

Since L is not central and char(R) �= 2, it is well known that there exists a non-
zero ideal I of R such that 0 �= [I, R] ⊆ L (see [11, pages 4–5]). Therefore, by
(2), the ideal I satisfies aF([x1, x2])b. Since R and I satisfy the same generalized
identities with automorphisms and skew derivations, we may assume that R also
satisfies aF([x1, x2])b, that is
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a

(

c[x1, x2] + d([x1, x2])
)

b. (7)

In case d is an inner skew derivation of R, the conclusion follows from Lemma 2.
Then we may assume that d is not inner and prove that a contradiction follows.
Expansion of (7) says that R satisfies

a

(

c[x1, x2] + d(x1)x2 + α(x1)d(x2) − d(x2)x1 − α(x2)d(x1)

)

b. (8)

Since d is not inner and by Fact 3, (8) implies that R satisfies

a

(

c[x1, x2] + y1x2 + α(x1)y2 − y2x1 − α(x2)y1

)

b (9)

and in particular R satisfies

a

(

y1x2 − α(x2)y1

)

b. (10)

If α is outer, relation (10) implies that R satisfies

a

(

y1x2 − z2y1

)

b

and, in particular, a[r1, r2]b = 0, for any r1, r2 ∈ R. It follows that either a = 0 or
b = 0, which contradicts the assumption a, b �= 0.

On the other hand, if α(x) = qxq−1, where q is an invertible element of Qr ,
one may replace in (main-8) y1 with qx1. Hence R satisfies aq[x1, x2]b. Since q is
invertible, once again the contradiction that either a = 0 or b = 0 follows.

2 Annihilating Conditions for Two Generalized Skew
Derivations

We conclude our paper giving the description of two generalized skew derivations
F and G of a prime ring R satisfying the condition

a1F(x)b1 + a2G(x)b2 = 0 ∀x ∈ R (11)

where a1, a2, b1, b2 ∈ Qr .
In light of Theorem 1, wemay assume that a1, a2, b1, b2 are all non-zero elements

of Qr and also that both F �= 0 and G �= 0.
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We start with two useful results, that we quote as follows, by applying
[6, Theorem 2]:

Lemma 3 Let R be a prime and ai , bi ∈ Qr , for 1 ≤ i ≤ n. If
∑n

i=1 ai xbi = 0, for
all x ∈ R, and bi �= 0 for some i , then a1, . . . , an are C-dependent (see [15, Lemma
2.2]).

Lemma 4 Let R be a prime and ai , bi , ci , di ∈ Qr such that
∑m

i=1 ai xbi + ∑n
j=1

c j xd j = 0, for all x ∈ R. If a1, . . . , am are linearly C-independent then each bi is
a linear combination of d1, . . . , dn over C. Analogously, if b1, . . . , bm are linearly
C-independent then each ai is a linear combination of c1, . . . , cn over C. (see [17,
Lemma 1.2]).

Lemma 5 Let F and G be inner generalized skew derivations of R defined as

F(x) = px + qxq−1u, G(x) = vx + qxq−1w, ∀x ∈ R

where p, u, v,w, q ∈ Qr and q is an invertible element. If R satisfies (11), one of
the following holds:

(a) there exist α1, α2, α3, α4 ∈ C such that b1 = α1b2 + α2q−1wb2, q−1ub1 =
α3b2 + α4q−1wb2 and α1a1 p + α3a1q + a2v = α2a1 p + α4a1q + a2q = 0;

(b) there exist λ, α1, α2, α3, α4 ∈ C such that q−1wb2 = λb2, b1 = (α1 + λα2)b2,
q−1ub1 = (α3 + λα4)b2 and (α1 + λα2)a1 p + (α3 + λα4)a1q + a2(v + λq) =
0;

(c) there exist 0 �= λ ∈ C and β1, β2 ∈ C such that a1 p = λa1q, a2v = β1a1q,
a2q = β2a1q and λb1 + q−1ub1 + β1b2 + β2q−1wb2 = 0;

(d) there exist 0 �= λ ∈ C andμ, η ∈ C such that a1 p = λa1q, a2(v + μq) = ηa1q,
(λ + q−1u)b1 = −ηb2 and q−1wb2 = μb2.

Proof By our main hypothesis

a1F(x)b1 + a2G(x)b2 = 0 ∀x ∈ R.

Under the assumptions of the present Lemma,we have that R satisfies the generalized
identity

a1
(
px + qxq−1u

)
b1 + a2

(
vx + qxq−1w

)
b2 (12)

that is
(a1 p)xb1 + (a1q)x(q−1ub1) + (a2v)xb2 + (a2q)x(q−1wb2). (13)

By Lemma 3 and since a1, a2, b1, b2 are all non-zero we may divide the proof in two
cases.
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Case 1. {a1 p, a1q} is a linearly C-independent set

Application of Lemma 4 implies that there exist α1, α2, α3, α4 ∈ C such that

b1 = α1b2 + α2q
−1wb2

q−1ub1 = α3b2 + α4q
−1wb2.

(14)

Thus, by (13), R satisfies

(a1 p)x(α1b2 + α2q
−1wb2) + (a1q)x(α3b2 + α4q

−1wb2) + (a2v)xb2 + (a2q)x(q−1wb2)

that is

(α1a1 p + α3a1q + a2v)xb2 + (α2a1 p + α4a1q + a2q)xq−1wb2. (15)

Firstly we note that, if α2a1 p + α4a1q + a2q = 0 then, by the primeness of R and
since b2 �= 0, (15) implies α1a1 p + α3a1q + a2v = 0. Hence, in consideration of
what is stated in relations (14), we get conclusion (a) of the present Lemma.
On the other hand, if α2a1 p + α4a1q + a2q �= 0 and by Lemma 3, there is λ ∈ C
such that q−1wb2 = λb2. Thus (15) reduces to

(α1a1 p + α3a1q + a2v)xb2 + λ(α2a1 p + α4a1q + a2q)xb2. (16)

Again by the primeness of R and since b2 �= 0, α1a1 p + α3a1q + a2v + λ(α2a1 p +
α4a1q + a2q) = 0 follows.

Case 2. a1 p = λa1q, 0 �= λ ∈ C

In this case, again by (13), R satisfies

a1qx(λb1 + q−1ub1) + (a2v)xb2 + (a2q)x(q−1wb2). (17)

Notice that, in case {b2, q−1wb2} is a linearlyC-independent set, by (17) and Lemma
3, it follows

a2v = β1a1q, a2q = β2a1q β1, β2 ∈ C

and (17) reduces to

a1qx(λb1 + q−1ub1 + β1b2 + β2q
−1wb2).

Therefore, since a1q �= 0, we get λb1 + q−1ub1 + β1b2 + β2q−1wb2 = 0.
Assume finally that {b2, q−1wb2} is a linearly C-dependent set.
Without loss of generality we may write q−1wb2 = μb2, for a suitable μ ∈ C .

Hence, by (17), R satisfies
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a1qx(λb1 + q−1ub1) + (a2v + μa2q)xb2 (18)

implying that there exists η ∈ C such that

a2v + μa2q = ηa1q

λb1 + q−1ub1 = −ηb2.

Lemma 6 Let F and G be inner generalized skew derivations of R defined as

F(x) = px + α(x)u, G(x) = vx + α(x)w, ∀x ∈ R

where p, u, v,w ∈ Qr and α is an outer automorphism of R. If R satisfies (11), one
of the following holds:

(a) a1 p = a2v = ub1 = wb2 = 0;
(b) a1 p = a2v = 0 and there exists μ ∈ C such that ub1 = μwb2 and a2 = −μa1;
(c) ub1 = wb2 = 0 and there exists λ ∈ C such that a1 p = λa2v and b2 = −λb1;
(d) there exist λ,μ ∈ C such that a1 p = λa2v, b2 = −λb1, ub1 = μwb2 and a2 =

−μa1.

Proof Here R satisfies

a1
(
px + α(x)u

)
b1 + a2

(
vx + α(x)w

)
b2. (19)

Since α is outer, by (19), it follows that R satisfies the generalized identity

a1
(
px1 + x2u

)
b1 + a2

(
vx1 + x2w

)
b2. (20)

In particular, both
a1 px1b1 + a2vx1b2 (21)

and
a1x2ub1 + a2x2wb2 (22)

are satisfied by R. Relation (21) implies that

• either a1 p = a2v = 0
• or there exists λ ∈ C such that a1 p = λa2v and b2 = −λb1.

Analogously, (22) implies that

• either ub1 = wb2 = 0
• or there exists μ ∈ C such that ub1 = μwb2 and a2 = −μa1.
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Putting together all the previous informations, one of the following cases must occur:

(a) a1 p = a2v = ub1 = wb2 = 0;
(b) a1 p = a2v = 0 and there exists μ ∈ C such that ub1 = μwb2 and a2 = −μa1;
(c) ub1 = wb2 = 0 and there exists λ ∈ C such that a1 p = λa2v and b2 = −λb1;
(d) there exist λ,μ ∈ C such that a1 p = λa2v, b2 = −λb1, ub1 = μwb2 and a2 =

−μa1.

Before proceeding with the proof of our main result, we need to recall the follow-
ing:

Lemma 7 Let R be a prime ring, α, β ∈ Aut(Qr ) and d, δ : R → R be two skew
derivations, associated with the same automorphism α. If there exist 0 �= η ∈ C, and
u ∈ Qr such that

δ(x) =
(

ux − β(x)u

)

+ ηd(x), ∀x ∈ R (23)

then either α = β or δ(x) = ηd(x), for all x ∈ R.

Proof By the definition of δ we have

δ(xy) = uxy − β(x)β(y)u + ηd(x)y + ηα(x)d(y). (24)

On the other hand, right multiplying relation (23) by y ∈ R, it follows that

δ(x)y = uxy − β(x)uy + ηd(x)y ∀x, y ∈ R. (25)

Therefore, subtracting relation (25) from (24), and using again (23), we get

{
α(x) − β(x)

} · {
uy − β(y)u

} = 0 ∀x, y ∈ R. (26)

Replacing y by yt in (26) and then using (26) we have

{
α(x) − β(x)

} · β(y) · {
β(t)u − ut

} = 0 ∀x, y, t ∈ R. (27)

Then, by the primeness of R, above relation yields either α(x) − β(x) = 0 for any
x ∈ R, or β(t)u − ut = 0 for any t ∈ R. The last case and (23) imply δ(x) = ηd(x),
for all x ∈ R, as required.

Lemma 8 ([10, Lemma3.2])Let R be a prime ring,α, β ∈ Aut(Qr )andd : R → R
be a skew derivation, associated with the automorphism α. If there exist 0 �= θ ∈ C,
0 �= η ∈ C and u, b ∈ Qr such that

d(x) = θ

(

ux − α(x)u

)

+ η

(

bx − β(x)b

)

, ∀x ∈ R

then d is an inner skew derivation of R. More precisely, either b = 0 or α = β.
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Proof (Proof of Theorem 2) For sake of clearness we recall that we may write
F(x) = px + d(x) and G(x) = vx + δ(x), for all x ∈ R and suitable p, v ∈ Qr

and d, δ skew derivations associated with the same automorphism α. Moreover we
also recall that both d and δ commute with α.

We also remind that, by our main hypothesis R satisfies

a1

(

px + d(x)

)

b1 + a2

(

vx + δ(x)

)

b2. (28)

The case d = 0 and δ �= 0
We firstly study the case F(x) = px and G(x) = vx + δ(x), for all x ∈ R. Since

F �= 0, we may assume in what follows p �= 0. Moreover δ is not an inner skew
derivation of R, otherwise the conclusion follows by Lemmas 5 and 6. In this situa-
tion, by (28) we have that R satisfies

a1 px1b1 + a2

(

vx1 + x2

)

b2.

In particular a2yb2 = 0, for any y ∈ R, which is a contradiction, since both a2 �= 0
and b2 �= 0.

Analogously, we get a contradiction in the case we assume δ = 0 and d �= 0.
The case d �= 0, δ �= 0
Here we study the case when F(x) = px + d(x) and G(x) = vx + δ(x), for all

x ∈ R. We start with the case d, δ are linearly C-independent modulo inner skew
derivations. Hence, by (28),

a1

(

px1 + x2

)

b1 + a2

(

vx1 + x3

)

b2 (29)

is satisfied by R. In particular, a1x2b1 is a generalized identity for R, which is a
contradiction, since both a1 �= 0 and b1 �= 0.

Thus we assume that {d, δ} are linearly C-dependent modulo inner skew deriva-
tions. Hence there exist λ,μ ∈ C , u ∈ Qr and an automorphism β of R such that
λd(x) + μδ(x) = ux − β(x)u, for any x ∈ R.

If λ = 0 and μ �= 0, we write

δ(x) =
(

p0x − β(x)p0

)

, ∀x ∈ R

where p0 = μ−1u. Since the automorphism associated with a skew derivation is
unique, in this case α = β.

If d is also inner, the conclusion follows from Lemmas 5 and 6. Hence we may
assume that d is not inner. Thus, by (28), R satisfies
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a1

(

px1 + x2

)

b1 + a2

(

vx1 + p0x1 − β(x1)p0

)

b2 (30)

and in particular a1x2b1 is an identity for R, which is a contradiction.
Similarly, we get a contradiction in the case μ = 0 and λ �= 0.
Hence, in the sequel we assume that both λ �= 0 and μ �= 0. We may write

δ(x) =
(

p0x − β(x)p0

)

+ ηd(x), ∀x ∈ R (31)

where η = −λμ−1 �= 0 and, as above, p0 = μ−1u. By Lemma 7, either α = β or
p0 = 0 and δ(x) = ηd(x), for all x ∈ R.

Moreover, by Lemma 8, if d is an inner skew derivation, then also δ is inner and
the conclusion follows again from Lemmas 5 and 6.

Therefore, in what follows we assume that 0 �= d is outer.
In the case δ = ηd, (28) reduces to

a1

(

px + d(x)

)

b1 + a2

(

vx + ηd(x)

)

b2. (32)

Thus, since d is not inner, R satisfies

a1

(

px1 + x2

)

b1 + a2

(

vx1 + ηx2

)

b2. (33)

In particular, both
a1 px1b1 + a2vx1b2 (34)

and
a1x2b1 + ηa2x2b2 (35)

are identities for R. Those relations imply that there exists ϑ ∈ C such that

a1 p = ϑa2v b2 = −ϑb1 a1 = ϑηa2.

Suppose now α = β. By relations (31) and (28) R satisfies

a1

(

px + d(x)

)

b1 + a2

(

vx + p0x − α(x)p0 + ηd(x)

)

b2. (36)

Since d is not inner, it follows that

a1

(

px1 + x2

)

b1 + a2

(

vx1 + p0x1 − α(x1)p0 + ηx2

)

b2 (37)
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is a generalized identity for R. Hence R satisfies both

a1 px1b1 + a2

(

vx1 + p0x1 − α(x1)p0

)

b2 (38)

and
a1x2b1 + ηa2x2b2. (39)

By (39) and applying Lemma 3, we have that there exists 0 �= ϑ ∈ C such that

a1 = ϑηa2 b2 = −ϑb1.

Substituting a1 and b2 in relation (38), it follows that

ϑηa2 px1b1 − ϑa2

(

vx1 + p0x1 − α(x1)p0

)

b1. (40)

If α is not inner, by (40) we have that R satisfies

ϑηa2 px1b1 − ϑa2

(

vx1 + p0x1 − x2 p0

)

b1. (41)

Thus both a2x2 p0b1 and

(

ϑηa2 p − ϑa2(v + p0)

)

x1b1

are identities for R, implying p0b1 = 0 and ηa2 p − a2(v + p0) = 0.
On the other hand, if α(x) = qxq−1, for any x ∈ R, by (40) it follows that

(

ηa2 p − a2(v + p0)

)

x1b1 + a2qx1q
−1 p0b1

is a generalized identity for R. Thus, there exists ϑ ∈ C such that

q−1 p0b1 = ϑb1 ηa2 p − a2(v + p0) + ϑa2q = 0.
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Dimensional Dual Hyperovals—An
Updated Survey

Ulrich Dempwolff

Abstract A survey on dimensional dual hyperovals is the report of Satoshi Yoshiara
(Proceedings of a Conference on Pingree Park 2004, Colonel,USA, pp 247–266,
2006). It describes the initial investigations in this field and covers roughly the period
from 1995 to 2005. The present report is an update of this survey and tries to explain
relevant developments after 2005.

Keywords Dimensional dual hyperovals · Bilinear dual hyperovals · Quotients of
hyperovals · Universal covers · Automorphism groups

1 Introduction

Dimensional dual hyperovals are a fairly new topic in finite geometry. There has
been a steady output on this subject for the last 25 years. The number of researchers
remained to be low. However, the author of this report believes that dimensional
dual hyperovals deserve attention. Firstly, the theory is in an early stage meaning
that elementary questions can be asked, other elementary questions are still open.
Secondly, dimensional dual hyperovals have connections to other topics from finite
geometry, to topics from information theory and combinatorics. The very definition
of these objects suggests that one also can expect connections to translation planes.
We will discuss also connections with APN functions, distance regular graphs and
bent functions. As some dimensional dual hyperovals have a large automorphism
group, it is not surprising that representation theory of finite groups has sometimes
effective applications. In constructions of dimensional dual hyperovals, multilinear
algebra and arithmetic in finite fields are useful.

Yoshiara’s articleDimensional dual arcs [65] is in essence a surveyondimensional
dual hyperovals. It provides a nice overview of the research of the first ten years.
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Our aim is to continue this report and explain investigations afterwards. To keep this
report self-contained, we will—if necessary—repeat material from [65]. Following
Yoshiara I will pose a few problems which in my view deserve closer examination.

1.1 The Definition

A set S of n-dimensional subspaces, n ≥ 2, of a finite-dimensional vector space V
over a finite field Fq is called a dual hyperoval of rank n over Fq , we use the symbol
DHO as an abbreviation, if

(D) Every two members of S have a nontrivial intersection and for every X ∈ S and
every 1-space P ⊆ X there exist precisely one X ′ ∈ S, such that P = X ∩ X ′.

Axiom (D) is equivalent to

(D1) dim X1 ∩ X2 = 1 for two distinct X1, X2 ∈ S.
(D2) dim X1 ∩ X2 ∩ X3 = 0 for three distinct X1, X2, X3 ∈ S.
(D3) |S| = (qn − 1)/(q − 1) + 1.

We call a set A of subspaces of rank n a dual arc of rank n and use the symbol
DA as an abbreviation, if only axioms (D1) and (D2) hold.

In geometric settings, often the language of projective geometry is preferred and
one calls a DHO of rank n a (n − 1)-dimensional dual hyperoval. However, in this
report, we use the term dimension or rank only in the sense of linear algebra. For
n = 2, a DHO is an ordinary dual hyperoval (see [65, Lemma 2.4]). There exists an
extensive literature ([5, 30]) on hyperovals, and thus on ordinary dual hyperovals. In
this article, we are exclusively interested in the generalization

n ≥ 3.

1.2 Basic Notions

The space U (S) = 〈X | X ∈ S〉 is called the ambient space of S. Of course, in
studying DHOs, only the ambient spaces are relevant. Sometimes it is convenient to
require (as an additional axiom) that the DHO generates the surrounding space.

The DHO S in U splits over the subspace Y if

U = X ⊕ Y for all X ∈ S.

In particular, S (consider S as a DHO in U (S)) splits over U (S) ∩ Y too. We call
a DHO S split if S splits over some subspace and otherwise nonsplit. If U = U (S)

and S splits over Y we call Y a complement of S.
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Let U and U ′ be Fq -spaces and Φ : U → U ′ an additive mapping. Let α be an
automorphism of Fq . Then Φ is an α-semilinear map if (au)Φ = aα(uΦ) for all
a ∈ Fq and all u ∈ U (we will write linear (semilinear) mappings on the right-hand
side of an argument). TwoDHOsS andS ′ are isomorphic, if there exists an invertible
semilinear operator Φ, that sends the ambient space of S onto the ambient space of
S ′, such that S ′ = SΦ.

Again, let S be a DHO over Fq with the ambient space U = U (S). A linear
automorphism (α-linear automorphism) φ of S is a linear (α-linear) isomorphism
of U , which maps S onto S. The linear automorphisms form a group LinAut(S),
which is normal in the group of all semilinear automorphisms SemAut(S). If we
denote by �L(U ) the group of invertible semilinear operators, then SemAut(S)

is the stabilizer of the set S in �L(U ). The kernel K of the permutation action
of SemAut(S) on S is isomorphic to the multiplicative group of Fq . The group
Aut(S) = SemAut(S)/K is the automorphism group of S. For q = 2, of course,
LinAut(S) = SemAut(S) � Aut(S).

Let S and S ′ be DHOs of rank n with ambient spacesU andU ′, respectively. An
epimorphism π : U ′ → U is called a covering map, if S = S ′π. One says, that S is
a quotient of S ′ and S ′ a cover of S. Note, that the restriction of π to any member
of S ′ is a monomorphism. The cover is proper, if π is not an isomorphism. A DHO
is simply connected, if it has no proper cover.

LetS be aDHOoverF2 in the ambient spaceU . LetB = {X + u | X ∈ S, u ∈ U }
the set of all cosets of the members of the DHO in U (development of S). The
incidence structure Af(S) = (U,B,∈) is the affine expansion of the DHO S. We
call U the points and B the blocks of the affine expansion. The affine expansion
is a semibiplane: Any two points are connected by 2 or 0 blocks, any two blocks
intersect at 2 or 0 points. The incidence graph of the affine expansion will be denoted
by �(S). For the definition of the affine expansion of a DHO over an arbitrary field;
see [65, Sect. 2.7]. This definition is a little bit more complicated than the simplified
description of the affine expansion over F2 given here.

2 DHOs over Fq , q > 2

The theory of dimensional dual hyperovals is presently for the most part a theory of
DHOs over F2. We briefly report on what is known about DHOs over Fq , q > 2.

2.1 Odd Characteristic

It seems quite likely that there are no DHOs over finite fields of odd characteristic.
But the restrictions given in [65, Theorem2.5] have not been extended afterwards.
So
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Problem 1 Show that there exists no DHO of odd characteristic or disprove this
conjecture by a counterexample.

is completely open.

2.2 Even Characteristic

The knowledge about DHOs over Fq , q > 2 a 2-power, is also limited. The most
intriguing example is theMathieu DHOM [65, 5.1] of rank 3 whose ambient space
is a unitary space rank 6 over F4. This DHO plays an exceptional role among the
DHOs for several reasons. Presently, M is the only unitary DHO (unitary in the
sense of Sect. 6.2). To my knowledge, the Mathieu DHO is the only DHO, such that
the ambient space is an irreducible module for the group of linear automorphisms.
It plays an exceptional role among the doubly transitive DHOs (see Sect. 9.3): it
is the only doubly transitive DHO whose automorphism group has a simple socle.
The existence of M is an immediate consequence of a six-dimensional, unitary
representation over F4 of the triple cover 3 · M22 of the Mathieu group of degree 22.
An elementary treatment of M is Yoshiara [72]. In this article, it is shown that M
is simply connected and split (by similar methods which occur in splitness proofs
discussed in Sect. 4.3).

The Veronesean DHOs Vn(q) are described below. For large rank, one can expect
that many nonisomorphic quotients of the Veronesean DHOs exist. Quotients of
Vn(q) will be the topic of Sect. 5.2.

Problem 2 Find DHOs over Fq , q > 2 a 2-power, that are not quotients of Verone-
sean DHOs.

3 Split DHOs and DHO Sets

So far every (concrete) DHO which has been investigated with respect to being split
turned out to be split.

Problem 3 Try to find a nonsplit DHO.

Split DHOs have an obvious, but useful property: they can be represented in a
simple way within the framework of linear algebra.

Definition 1 Let X , Y be finite-dimensional Fq -spaces and � ⊆ HomFq (X,Y ),
|�| = (qn − 1)/(q − 1) + 1, with 0 ∈ �. We call � a DHO set if for every φ ∈ �

the mapping
κ = κφ : � − {φ} � ψ → κ(ψ) = ker(ψ − φ)

is a bijection of � − {φ} onto the set of 1-spaces of X .
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The next two lemmas have a straightforward verification. They show how split DHOs
can be coordinatized by DHO sets.

Lemma 1 Let X, Y be finite-dimensionalFq -spaces and� ⊆ HomFq (X,Y ) aDHO
set. Set U = X ⊕ Y and X (φ) = {(x, xφ) | x ∈ X} for φ ∈ �. Set S = {X (φ) | φ ∈
�}. Then S is a DHO over Fq of rank dimFq X and S splits over Y .

Lemma 2 Let S a DHO over Fq with ambient space U that splits over the subspace
Y . Let X ∈ S. Then there exists aDHO set� ⊆ HomFq (X,Y ) such thatS = {X (φ) |
φ ∈ �} and X = X (0).

The DHO sets are called linear systems in [72, Sect. 3.2]. We mimic the termi-
nology of translation planes where spreads, the analogues of DHOs, are represented
in a similar fashion by spread sets (see Sect. 7.1). The theory of translation planes
covers many aspects and has a vast literature (see [2]). So the analogy between DHO
sets and spread sets suggests

Problem 4 Look for topics on translation planes (spreads) that can be reformulated
for split DHOs.

DHOs, which can be coordinatized by additively closed DHO sets, are called
bilinear and have received special attention. Considering the size of a DHO, one
observes that a DHO set can be additively closed only if the DHO is defined over F2.

Definition 2 Let m, n be positive integers, n ≥ 3 and let B : Fn
2 × F

n
2 → F

m
2 be a

bilinear mapping. Set U = F
n
2 × F

m
2 and define for e ∈ F

n
2

X (e) = {(x, B(x, e)) | x ∈ F
n
2} ⊆ U and set SB = {X (e) | e ∈ F

n
2}.

If SB is a DHO (of rank n over F2) we call SB a bilinear DHO.

LetSB be aDHO.Note, that ifwe define B(e) ∈ End(Fn
2,F

m
2 ) by x B(e) = B(x, e)

then�B = {B(e) | e ∈ F
n
2} is an additively closed DHO set. The DHO SB splits over

Y = 0 × F
m
2 . In [18], some basic theory on bilinear DHOs is developed. Define for

e ∈ F
n
2 the transformation τe ∈ GL(U ) by

(x, y)τe = (x, y + B(x, e)) = (x, y + x B(e)).

Then τe maps X (a) onto X (a + e) and fixes the ambient space of SB . So τe induces
an automorphism of SB and the group TB = {τe | e ∈ F

n
2} ≤ Aut(SB) (restricted

to the ambient space) is called the standard translation group. The general notion
translation group is taken from [18] and will be introduced in Sect. 9.1. Bilinear
DHOs have a purely group theoretic characterization in terms of translation groups.

Define Bo : Fn
2 × F

n
2 → F

m
2 by Bo(x, e) = B(e, x). Then Bo defines a bilinear

DHO SBo too, the DHO opposite to SB . A bilinear DHO SB is called alternating if
B(e, e) = 0 for all e ∈ F

n
2 and it is called symmetric if B = Bo. Alternating DHOs

are in particular symmetric. The Huybrechts DHOs Hn and the Buratti–Del Fra
DHOs Dn from Sect. 4 are bilinear,Hn is alternating and Dn is symmetric. Another
important family of bilinear DHOs are the bilinear DHOs of Yoshiara
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Example 1 (DHOs ofYoshiara [63], [65, Sect. 5.5]) Let h,m, n be positive integers,
1 ≤ h,m < n, (n, h) = (n,m) = 1, F = F2n . Define B : F × F → F by

B(x, e) = xe2
m + x2

h
e.

Then SB = Sn
m,h is a bilinear DHO of rank n inU = F × F . If h + m �≡ 0 (mod n),

then U is the ambient space. If however h + m ≡ 0 (mod n), then the ambient
space has codimension 1 inU . The full automorphism group (see [58]) has the form
Aut(Sn

m,h) = T · H , with T = TB and H � �L(1, F).

These DHOs are contained in the larger class of Yoshiara DHOs of type Sn
σ,φ

(see [63], [65, Sect. 5.5])). Set again F = F2n , letσ be a generator ofGal(F : F2), and
let φ be an o-polynomial on F . For e ∈ F define X (e) = {(x, xσe + xφ(e)) | x ∈ F}
then Sn

σ,φ = {X (e) | e ∈ F} is a DHO in F × F . If φ is a monomial but not in
Gal(F : F2), then Aut(Sn

σ,φ) � �L(1, F) (see [58, Theorem 1.1]).

4 DHOs with Ambient Spaces of Maximal Rank

Clearly, the rank of the ambient space of a DHO of rank n is ≥ 2n − 1 and there
exist many DHOs over F2 whose rank of the ambient space obtains this lower bound
(see Sect. 7.1).

4.1 Yoshiara’s Upper Bound for the Rank of an Ambient
Space

Yoshiara [64], [65, Sect. 2.4] gives an upper bound for the rank of the ambient space
of a DHO.

Theorem 1 Let S be a DHO of rank n over Fq with ambient space U. Then

dimU (S) ≤
⎧
⎨

⎩

(n+1
2

) + 2, for q = 2,

(n+1
2

)
, for q > 2.

The family of Veronesean DHOs (see the first example below) shows that the
Yoshiara bound is sharp for q > 2. Yoshiara conjectures that dimU (S) ≤ (n+1

2

)

holds for q = 2 too [65, Problem 2.7].

Problem 5 Prove the conjecture of Yoshiara.
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4.2 DHOs Meeting Yoshiara’s (Conjectured) Bound
for the Rank of an Ambient Space

Presently, four families of simply connected DHOs of rank n in ambient spaces of
rank

(n+1
2

)
are known. Three of them are described already in [65].

Example 2 ([65, Sect. 5.2], [61]) Let q be a 2-power, n ≥ 3 and V be an n-
dimensional Fq -space. SetU = S2(V ) (symmetric square of V ). Define the Verone-
sean DHO of rank n as

Vn(q) = {X (∞)} ∪ {X (e) | 0 �= e ∈ V }

with
X (∞) = {x · x | x ∈ V } and X (e) = {x · e | x ∈ V }.

Note that X (e) = X (ke) for 0 �= k ∈ Fq . Denote by ρ : G → GL(U ) the action of
G = GL(V ) induced on the FqG-module U = S2(V ). Then X (∞)ρ(φ) = X (∞)

and X (e)ρ(φ) = X (eφ) forφ ∈ G, i.e. ρ(G) ≤ SemAut(Vn(q)). The action of a field
automorphism in Gal(Fq) can also be extended to U , such that this automorphism
induces an element of SemAut(Vn(q)). Indeed, SemAut(Vn(q)) � �L(n, q) and
Aut(Vn(q)) � P�L(n, q) (see [65, Sect. 5.2]).

Example 3 ([25], [65, Sect. 5.4], [61]) Let n ≥ 3 and V be an n-dimensional F2-
space. Set W = ∧2(V ) (alternating square of V ), U = V ⊕ W . Define the Huy-
brechts DHO of rank n as

Hn = {X (e) | e ∈ V } with X (e) = {(x, x ∧ e) | x ∈ V }.

Since V × V � (x, e) → x ∧ e ∈ W is bilinear, and e ∧ e = 0 the DHO Hn is
alternating. Denote by T the standard translation group with respect to this bilin-
ear mapping. For φ ∈ G = GL(V ) define an action φ on U by (x, y ∧ z)φ =
(xφ, (yφ) ∧ (zφ)). Then φ ∈ Aut(Hn) and X (e)φ = X (eφ). The full automorphism
group is Aut(Hn) = SemAut(Hn) � T · G with G � G = {φ | φ ∈ G} (see [65,
Sect. 5.2], [64, Proposition 10], [8, Theorem 2]).

Example 4 ([3], [65, Sect.5.4], [50, 60, 61]) Let n ≥ 4 and V be an n-dimensional
F2-space. Let {e0, e1, . . . , en−1} be a basis of V and let R be the subspace of
S2(V ) which is generated {e0 · e0, e0 · ei + ei · ei | 1 ≤ i < n}. Set W = S2(V )/R
and denote by v · w the image of v · w ∈ S2(V ) in W . Set U = V ⊕ W . Define the
Buratti–Del Fra DHO of rank n as

Dn = {X (e) | e ∈ V } with X (e) = {(x, x · e) | x ∈ V }.
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The mapping V × V � (x, e) → x · e ∈ W is bilinear and symmetric, i.e. Dn is
a symmetric DHO. Denote by T the standard translation group with respect to
this bilinear mapping. Let G0 be the stabilizer of e0 in G = GL(V ). For φ ∈ G0

define an action φ on U by (x, y · z)φ = (xφ, (yφ) · (zφ)). The full automorphism
group (see [65, Sect. 5.2], [64, Proposition 10], [8, Theorem 2]) is Aut(Dn) =
SemAut(Dn) � T · G0 where G0 � G0 = {φ | φ ∈ G0}.
Example 5 ([44, 50, 61]) Let n ≥ 4 and V be an n-dimensional F2-space. Let
{e0, e1, . . . , en−1} be a basis of V and set U = S2(V ). For vectors u = ∑

uiei , v =∑
i vi ei in V define u ∩ v = ∑

i uivi ei . Then set t (u, e0) = u · e0 and for v ∈ V −
F2e0 set

t (u, v) = u · u + u · v + (u ∩ v) · (u ∩ v) + (u + u ∩ v) · e0
and further

X (∞) = {x · x | x ∈ V }, X (e0) = {x · e0 | x ∈ V }

and for e ∈ V − F2e0 set

X (e) = {t (x, e) | x ∈ V }.

Then the Taniguchi DHO of rank n is defined as

Tn = {X (∞)} ∪ {X (e) | e ∈ V − {0}}.

Let G0 be the stabilizer of e0 in G = GL(V ). The full automorphism group (see [40,
Theorem 2]) is Aut(Tn) = SemAut(Tn) � ρ(G0) where the representation ρ : G →
GL(U ) is defined as in Example 2.

The original descriptions of the Buratti–Del Fra DHOs [3] and the Taniguchi
DHOs [44] are simplified in [50, 60]. A unified approach to all four families is [61]
of Taniguchi and Yoshiara.

4.3 Vn(q), Hn,Dn and Tn Are Split

Since the Huybrechts DHO and the Buratti–Del Fra DHO are bilinear, they are split.
The splitness of Vn(2) and Tn is proved in [74]. Let S be Vn(2) or Tn . Yoshiara shows
that each complement Y of S corresponds to a bilinear map h = hY : V × V → V
satisfying specific conditions. Conversely, any bilinearmapping h, which satisfies the
specific conditions, defines a complement Y = Y (h). Then hY (h) = h , Y (hY ) = Y ,
and in both cases, it is shown that such bilinear mappings exist.

The conditions for the bilinear mappings are somewhat technical if S = Tn and
they are not repeated here. They are simple in the case S = Vn(2): h defines on V
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the multiplication of a commutative presemifield (see Sect. 8.2) with the additional
property h(a, a) = a for a ∈ V . This sets up a nice correspondence between the set
of complements of Vn(2) with classes of commutative presemifields with regard to
strong isotopism (a natural notion of equivalence for presemifields). Yoshiara has
shown, that Vn(q), q > 2, splits too, but this result has not been published yet.

4.4 Bilinear DHOs Whose Ambient Space Has Maximal
Rank

Yoshiara [73] achieves a remarkable result for bilinear DHOs which can be summa-
rized as

Theorem 2 Let S be a bilinear DHO of rank n over F2. The following hold:

(a) dimU (S) ≤ (n+1
2

)
.

(b) Let dimU (S) = (n+1
2

)
. Then S is isomorphic to the Huybrechts DHO or the

Buratti–Del Fra DHO of rank n.

Assertion (a) strengthens the conjecture on the Yoshiara bound. Surprising is part
(b): DHOs of rank n whose rank of the ambient space meets the bound

(n+1
2

)
seem

to be rather scarce.

5 Quotients of DHOs

Before we consider examples of DHOs and their quotients, we explain how quotients
are determined in a given DHO. The following concrete description is taken from
Yoshiara [64, Proposition 13].

Let S be a DHO over Fq of rank n with ambient spaceU . For a subspaceW ⊆ U
set

S/W = {(X + W )/W | X ∈ S}.

Let π : U → U ′ a covering map sending S to the DHO S ′ of rank n in U ′. Let
W = ker π. Then S ′ is isomorphic to the DHO S/W inU/W . Conversely, ifW ⊆ U
is a subspace with

(X + X ′) ∩ W = 0 for all X, X ′ ∈ S,

then S/W is a DHO of rank n.
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5.1 Universal Covers

The role of simply connected DHOs is clarified in [13]:

Theorem 3 Let S be a DHO of rank n over Fq with ambient space U. Then there
exists up to a linear isomorphism a uniquely determined, simply connected DHO Ŝ
with ambient space Û and a linear covering map π : (Ŝ, Û ) → (S,U ), such that for
each α-linear covering map φ : (S ′,U ′) → (S,U ), there exists a unique α−1-linear
covering map ψ : (Ŝ, Û ) → (S ′,U ′), such that

π = ψ ◦ φ.

One calls Ŝ the universal cover of S. The universal cover controls the structure of
the automorphism group of its quotients

Corollary 1 Let S be a simply connected DHO of rank n over Fq with ambient
space U. Let W ⊆ U be a subspace, such that S/W is a DHO of rank n. Then the
stabilizer SemAut(S)W of W in SemAut(S) is isomorphic to SemAut(S/W ).

One is tempted to restrict the attention mainly to simply connected DHOs. How-
ever, the above results are merely existence statements. To determine the universal
cover of a DHO or to find the quotients of a DHO requires extra work.

5.2 Quotients of the Veronesean DHOs

Let q be a 2-power,m ≥ 3 and consider Fqm as a Fq -space. Let V be a n-dimensional
subspace of Fqm and σ be a generator of Gal(Fqn : Fq). For 0 �= e ∈ V define
in U = Fqm × Fqm the projective subspaces X (∞) = {Fq(x2, 0) | 0 �= x ∈ V } and
X (Fqe) = {Fq(xe, xσe + xeσ) | 0 �= x ∈ V }. Taniguchi [37], [65, Sect. 5.6] shows
that Tσ(V ) = {X (∞)} ∪ {X (Fqe) | 0 �= e ∈ V } is a DHO of rank n over Fq . The
rank of the ambient space depends on the choice of the space V . In particular, for
n = m, we get dimU (Tσ(Fqn )) = 2n. It turns out that the DHOs Tσ(V ) are quo-
tients of Vn(q) (see Yoshiara [66, Proposition 1]). Automorphism and isomorphism
questions are addressed in [65, Sect. 5.6] and [39].

Let σ ∈ Gal(F2n : F2) and H a F2-hyperplane in F2n . In [59], Taniguchi and
Yoshiara find an other family of DHOs denoted by Sσ,H , of rank n over F2 which are
quotients of Vn(2) and not isomorphic to DHOs of type Tσ(V ). The isomorphism
problem between DHOs of type Sσ,H is settled too.

Problem 6 Does Vn(q) have quotients whose ambient space has rank 2n − 1?
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5.3 Quotients of the Huybrechts DHOs

Let V = F
n
2 and B : V × V → W = F

m
2 be a bilinear mapping which defines an

alternating DHO SB . It is easy to see (see [15, Lemma 2.2]) that SB is a quotient
of Hn . Yoshiara (see [68, 70]) as well as Göloğlu and Pott [24] discovered that
quadratic APN functions define alternating DHOs. A function f : X → Y , both
X and Y are F2-spaces, is called quadratic if B f : X × X � (x, y) → B f (x, y) =
f (x + y) + f (x) + f (y) + f (0) ∈ Y is biadditive. A function f : X → Y is an
APN function if for all 0 �= a ∈ X and all b ∈ Y the equation f (x + a) + f (x) = b
has at most two solutions. If f is a quadratic APN function then indeed SB f is
an alternating DHO. On the other hand, Edel [22] shows that vice versa alternating
DHOs relate to quadraticAPN functions. In its general form, this connection between
quadratic APN functions and alternating DHOs can be expressed by

Theorem 4 ([18, Theorem 2.4]) Let f : X → Y be a quadratic APN function of
F2-spaces X,Y . Then B f : X × X → Y defines an alternating DHO SB f in U =
X ⊕ Y . For any alternatingDHOSB in X ⊕ Y , there exists a quadratic APN function
f : X → Y such that SB = SB f . Moreover, SB f = SBg

iff f + g is a linear function.

This implies that an alternating DHO of rank n has an ambient space of rank≥ 2n
(see [18, Lemma 5.12]). Quadratic APN functions f : F2n → F2n have received a
lot of attention; see [35, Sects. 5 and 6] for references. Quadratic APN functions
f : F2n → F2m , m ≥ n, are characterized in [18] in group theoretic terms (APN
functions with “translation groups”). Some basic theory is developed in this article.

For quotients ofHn which have a doubly transitive automorphism group; see [14]
and Sect. 9.3.

5.4 Quotients of the Buratti–Del Fra DHOs

In [46], Taniguchi shows that a quadratic APN function f : Fn
2 → F

n
2 gives rise to

a bilinear dual hyperoval D f = SB of rank n in F
n
2 ⊕ F

2(n−1)
2 where the bilinear

mapping B : Fn
2 × F

n
2 → F

2(n−1)
2 can be seen as a perturbation of the mappimg B f .

TheDHOD f is a quotient ofDn andD f � Dg iff f and g are EA equivalent (see [18,
p. 471] for the definition of EA equivalence).

Let X and Y be F2-spaces and B : X × X → Y a bilinear mapping which defines
a DHO SB of rank n inU = X ⊕ Y . For 0 �= e ∈ X let 0 �= κ(e) ∈ X be the unique
vector such that B(κ(e), e) = 0. In [60, Lemma 4], Taniguchi and Yoshiara give a
simple criterion for the kernel function κ which guarantees that SB is a quotient
of Dn . For instance, if n is odd, X = F2n then this criterion shows, that B(x, y) =
x4y + xy4 + xy + (xy)2 defines a quotient SB of Dn , whose ambient space have
rank 2n. In Sect. 7.3, we show that a bilinear DHO SB of rank n gives rise to a
DHO of rank n + 1, which is called the extension of SB . If SB is symmetric, then
the extension is bilinear. In [10], extensions of symmetric bilinear DHOs are studied
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whose twofold extension is bilinear again. It turns out that such DHOs are quotients
of the Huybrechts DHOs or the Buratti–Del Fra DHOs. More examples of quotients
of Dn with ambient spaces of rank 2n and 2n − 1 are found there.

5.5 Quotients of the Taniguchi DHOs

Taniguchi [48] investigates Tn for possible quotients. He associates σ ∈ Gal(F2n−1 :
F2) with some quotient—denoted by Tσ—of Tn whose ambient space has rank 3n −
2. He also shows that Tσ � Tρ iff ρ = σ or ρ = σ−1. The rank of the ambient spaces
of Tσ is significantly larger than the lower bound 2n − 1 (for the rank of the ambient
space a DHO of rank n). By [1], proper quotients of T4 have an ambient space of
rank 9.

Problem 7 Show or disprove that a quotient of Tn has an ambient space of rank
≥ 2n + 1.

6 Duality

Formanymathematical theories, the notion of duality is of general interest. Concepts
of duality for DHOs is the topic of this Section.

6.1 Doubly Dual Hyperovals

Let S be a DHO of rank n over Fq with an ambient spaceU of rank 2n. LetU � be the
dual space ofU (Fq -space of linear functionals) and define a set S t = {Xt | X ∈ S}
of n-spaces in U � (Xt is the space of linear functionals that vanish on X ). One
observes, that S t is a DHO iff U = X + Y + Z for every three X,Y, Z ∈ S. In this
case, we callS a DDHO (doubly dual hyperoval). In the next subsection, we consider
DHOs of polar type. Symplectic DHOs or orthogonal DHOs (in quadratic spaces of
maximal Witt index) provide examples of DDHOs. Some DHOs of Yoshiara of odd
rank are DDHOs (see Sect. 6.3). In [1], it is shown that there exist precisely 26 DHOs
of rank 4 over F2 whose ambient space have rank 8. None of these DHOs is a DDHO.

Problem 8 Show or disprove that a DDHO has an odd rank.

Let S be a DDHO inU � F
2n
2 . In [9], it is observed that the characteristic function

of the set (
⋃

X∈S X) − {0} ⊂ U is a bent function and if S splits over Y ⊆ U , then
the characteristic function of the set Y ∪ ⋃

X∈S X is a bent function too.
Taniguchi in [57] discusses connections between distance regular graphs and

DDHOs. In [34] the authors consider the incidence graphs of the affine expansions
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of bilinear Yoshiara DHOs and show that �(Sn
m,h) is a distance regular DHO iff

m + h is coprime to n (see [34, Theorem 1.8]). Taniguchi generalizes this result
significantly

Theorem 1 ([57, Theorem 2]) Let SB a bilinear DDHO. Then �(SB) is a distance
regular graph.

He conjectures

Problem 9 Let SB be a bilinear DHO of rank n with an ambient space of rank 2n.
Assume that �(SB) is distance regular. Then SB a DDHO.

has a positive answer.

6.2 DHOs in Polar Spaces

LetU be a finite dimensional, nondegenerate symplectic, orthogonal or unitary space
over Fq . If maximal isotropic (symplectic or unitary space) or maximal totally sin-
gular spaces (orthogonal space) have rank n, one callsU a polar space of rank n. Let
S be a DHO in a polar space U of rank n. We say that S is a symplectic or unitary
DHO (U is symplectic or unitary) if all members of S are isotropic spaces of rank
n and we say that S is a orthogonal DHO (U is orthogonal) if all members of S are
totally singular spaces of rank n. Section4 of Yoshiara’s report [65] is devoted to
DHOs in polar spaces.

Based on the work of Vanhove [62], Sheekey [36] makes the following important
contribution:

Theorem 2 Let S be DHO of rank n of isotropic or totally singular subspaces
ambient in the polar space U. Then n is odd or U � V−(2n + 2, q).

Here we denote by V−(2n, q) (by V+(2n, q)) a nondegenerate, orthogonal space
of dimension 2n and Witt index n − 1 (and Witt index n). In particular, Sheekey’s
Theorem answers question (1) of [65, Problem 4.7].

Problem 10 Let n > 3 be even and q be a prime power. Show that V−(2(n + 1), q)

does not contain an orthogonal DHO or give a counterexample.

On the other hand, many orthogonal DHOs of rank n, n odd, are constructed as
quotients of orthogonal spreads in V+(2n + 2, 2) (see Sect. 7.2). In [32], Nambu
and Yoshiara show that a Yoshiara DHO Sn

σ,φ is of polar type iff n is odd, σ,φ ∈
Gal(F2n : F2), and σ ◦ φ2 = 1. In this case, the DHO is not only symplectic, but
orthogonal too. Reference [9] contains examples of bilinear DHOs (of odd rank) that
are symplectic but not orthogonal. The Mathieu DHO M is a unitary DHO of rank
3 in a unitary F4-space of rank 6.
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6.3 Knuth Operations

Let B : X × X → X define a bilinear DHO SB with the ambient space X ⊕ X .
It is convenient to identify B with a monomorphism B : X → End(X) by defining
x B(y) = B(x, y). Let · : X × X → F2 be a nondegenerate, symmetric bilinear form
(for instance the ordinary dot product of X = F

n
2). Then X can be identified with

the dual space X � via the bilinear form and the operator adjoint to φ ∈ End(X)

is identified with the operator φt ∈ End(X) with xφt · y = x · yφ for all x, y ∈ X .
Then the monomorphism Bt : X → End(X) defined by Bt (e) = B(e)t may or may
not define a bilinear DHO. But if Bt defines a DHO (i.e. SB is a DDHO) then
SBt � S t

B . Recall the definition of the opposite DHO SBo from Sect. 3. In analogy to
the terminology of semifields, we call the operations B → Bt and B → Bo Knuth
operations and resulting isomorphism types of DHOs a Knuth class.

Lemma 1 ([23, Sect. 5], [9, Sect. 3], [47, p. 211]) Let B : X → End(X) be a
monomorphism which defines a bilinear DHO over F2 with ambient space U �
X ⊕ X. Assume that Bt defines a DHO too. Then SBoto � SBtot and the Knuth class
contains at most six nonisomorphic members coordinatized by B, Bt , Bo, Bto, Bot

and Btot .

As an example consider SB = Sn
m,h , a bilinear DHO of Yoshiara. Then SBo =

Sn
h,m . Assume thatSB is a DDHO. Then n is odd. In this case,SBt � Sn

m+h,n−h . More-
over, SBot � Sn

m+h,n−m , SBto � Sn
n−h,m+h , and SBoto � Sn

n−m,m+h � Sn
m,n−m−h �

SBtot . If, for instance, h �≡ ±m (mod n), then [58, Theorem 1.2] shows that the
Knuth class has size 6.

Let n be odd. Taniguchi [47] considers the alternating bilinear DHO SB where
B = B f is the bilinear mapping associated with the quadratic APN function f :
F2n � x → x3 + Tr(x9) (Tr denotes the absolute trace in F2n ) and proves that the
DHOs associated with Bt and Bto are not isomorphic to bilinear Yoshiara DHOs.

Let φ ∈ End(X). Then φ is selfadjoint if (xφ) · y = x · (yφ) for all x, y ∈ X and
φ is skewsymmetric if (xφ) · x = 0 for all x ∈ X . Define a nondegenerate quadratic
form Q on U = X ⊕ X by Q(x, y) = x · y. This turns U into an orthogonal space
of type V+(2n, 2). One verifies immediately that a DHO set of skewsymmetric
operators define via Lemma 1 inU an orthogonal DHO and a DHO set of selfadjoint
operators define inU a symplectic DHO (with respect to the bilinear form associated
with Q). So the Knuth operations induce a one-to-one correspondence between
symmetric DDHOs (alternating DDHOs) SBot and symplectic DHOs (orthogonal
DHOs) SB .

In [43], Taniguchi shows that an alternating DHO of rank n is a DDHO iff n is
odd and in [11], it is shown that n is odd for a symmetric DDHO (however, there
exist symmetric DHOs of odd rank which are not DDHOs). The above one-to-one
correspondence shows that both results follow Sheekey’s theorem [36, Corollary 1].
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7 Secondary Constructions

In this section, we consider DHOs derived from other structures.

7.1 Quotients of Spreads

Let V be a 2n-dimensional F2-space, n ≥ 3 and T be a spread in V , i.e. a collection
of n-spaces of V such that any two spaces from T have a trivial intersection and
V = ⋃

S∈T S. Then V together with the cosets L = {S + v | v ∈ V, S ∈ T } of the
elements from T form a translation plane π(T ) = (V,L,∈).

Let P ⊂ V be a 1-space and S0 ∈ T the unique space which contains P . Set

T /P = {(S + P)/P | S ∈ T − {S0}}.

By [6], [7, Example 1.2], [42, Proposition 6] T /P is a dimensional dual hyperoval in
U = V/P . As the examples show, the isomorphism type of such a quotient depends
on the choice of P . Concrete investigations of quotients of spreads are Taniguchi [41]
and [42]. A set � ⊆ GL(n, 2) ∪ {0n×n}, 0n×n ∈ �, is a spread set if |�| = 2n and
det(φ − ψ) �= 0 for φ,ψ ∈ �, φ �= ψ. A spread T in V = F

n
2 × F

n
2 can be described

by a spread set asT = {V (∞)} ∪ {V (φ) | φ ∈ �}with V (∞) = 0 × F
n
2 and V (φ) =

{(x, xφ) | x ∈ F
n
2}. If� − {0n×n} is a subgroup of GL(n, 2), one calls the associated

plane a nearfield plane. Such planes have been classified and Taniguchi studies
quotients T /P for spreads from nearfield planes choosing P ⊆ V (∞) (this quotient
does not depend on the choice of the particular subspace P in V (∞)). He shows [41]
that a T /P is a Yoshiara DHO if T is the desarguesian spread, but T /P is not
isomorphic to a Yoshiara DHO if T is the spread of a regular nearfield (Dickson
nearfield) plane. In [42], it is shown that the translation planes π(T1) and π(T2) are
isomorphic if the DHOs T1/P and T2/P are isomorphic.

The translation planes of order 16 have been classified [21] as well as the DHOs of
rank 4 overF2 with an ambient space of rank 7 [1]. It turns out that 28 of the 37DHOs
are quotients of one of the 8 spreads of order 16. However, there exist nonisomorphic
planes that produce isomorphic quotients. The group G = {φ ∈ GL(V ) | T φ = T }
is the translation complement. It is clear that T /P � T /P ′ if P and P ′ lie in the
sameorbit of the translation complement.However, for the quotients of the translation
planes of order 16, one observes T /P �� T /P ′ if P and P ′ lie in different orbits of
the translation complement.

Problem 11 Let T be a spread in V � F
2n
2 and let P , P ′ be 1-spaces in V . Suppose

T /P � T /P ′. Show or disprove that P and P ′ lie in the same orbit of the translation
complement.
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7.2 Quotients of Orthogonal Spreads

Let V be a (2n + 2)-dimensional F2-space and Q a nondegenerate quadratic form
on V such that (V, Q) is an orthogonal space of type V+(2n + 2, 2). A set O of
totally singular (n + 1)-spaces is called an orthogonal spread if any two members
of O have trivial intersection and

⋃
S∈O S contains all singular vectors. Orthogonal

spreads in V+(2n + 2, 2) only exist if n is odd.
Let P ⊂ V be a 1-space. If P is a nonsingular space then W = P⊥/P is turned

in an obvious way into a nondegenerate symplectic space and

O/P = {(S + P)/P | S ∈ O}

is a spread of (isotropic) spaces in W (see [27]). Translation planes arising in this
way have been studied in particular by Kantor et al. [28, 29].

Suppose now that P is a singular space. ThenU = P⊥/P is turned in an obvious
way into a nondegenerate orthogonal space of type V+(2n, 2). Let S0 the unique
member of O which contains P . Then

O/P = {(S + P)/P | S ∈ O − {S0}}

is an orthogonal DHO (see [20, Theorem 1.1]). In this way, one can obtain many
orthogonal DHOs: Denote by ρ(n) the number of prime factors of the integer n. It
is shown [20, Theorem 1.2] that for n odd V+(2n, 2) contains at least 2n(ρ(n)−2)/n2

pairwise nonisomorphic orthogonal DHOs. Moreover, it is shown that this construc-
tion leads to orthogonal DHOs in V+(2n, 2) with a cyclic automorphism group of
order 2n − 1 fixing one member of the DHO and acting transitively on the remaining
members [20, Theorem 1.3]. Finally, one can construct by this method orthogonal
DHOs in V+(2n, 2) having an elementary abelian automorphism group of order 2n

acting regularly on the DHO [20, Example 8.1].

7.3 Extensions of Bilinear DHOs

Let X,Y be finite-dimensional F2-spaces, dim X = n and let B : X × X → Y be
bilinear, such that SB is a bilinear DHO in U = X ⊕ Y . Recall the definition of the
opposite DHO SBo from Sect. 3. Set X = F2 ⊕ X and Y = X ⊕ Y . For e ∈ X , define
two subspaces of X ⊕ Y by

X (0, e) = {(b, be, be + x, (be + x)B(e)) | (b, x) ∈ X},

X (1, e) = {(b, be + x, be, (be + x)Bo(e)) | (b, x) ∈ X},

and set S = S B = {X (a, e) | (a, e) ∈ X}.
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Theorem 3 The set S is a DHO in X ⊕ Y . Moreover

(a) If S is symmetric, then S is bilinear.
(b) X ⊕ Y is the ambient space of S iff X ⊕ Y is the ambient space of S.

One calls the DHO S the extension of S. For symmetric DHOs, this construction
is introduced in [18]. The generalization to arbitrary DHOs is [49] where Taniguchi
also shows

Theorem 4 If S is a simply connected bilinear DHO, then S is simply connected
too.

The standard translation group of a bilinear DHO SB gives rise to the existence of
a large elementary abelian group of automorphisms of the extendedDHO: Let e ∈ X .
Define with respect to the decomposition U = F2 ⊕ X ⊕ X ⊕ Y two operators

n1,e =

⎛

⎜
⎜
⎝

1 e
1

1 B(e)
1

⎞

⎟
⎟
⎠ and n0,e =

⎛

⎜
⎜
⎝

1 e
1 Bo(e)

1
1

⎞

⎟
⎟
⎠ .

Then Na = {na,e | e ∈ X}, a ∈ F2, are elementary abelian 2-subgroups of Aut(S).
The group Na fixes all elements in Sa = {X (a, e) | e ∈ X} and it acts regularly
on Sa+1. In particular, X (0, e)n1, f = X (0, e + f ) and X (1, e)n0, f = X (1, e + f ).
Moreover, N = N0 × N1 is an elementary abelian group of order |X |2. In Sect. 9.2,
DHOs (of rank n + 1 over F2) will be considered which admit elementary abelian
automorphism groups of order 22n which have two orbits of length 2n on the DHO
and an action “like the group N”. This will lead to characterizations of extensions
of DHOs in group theoretic terms.

In [71], Yoshiara develops a more general concept of extensions: LetA be a DHO
of rank n + 1, n ≥ 3, over Fq . Let B a set of subspaces of rank n in U (A) which
forms a dual arc. The author calls B a sub-dual arc or subDA if for each B ∈ B there
exists a A ∈ A with B ⊂ A. Note, that A is uniquely determined by B. Let A(B)

be the set of A ∈ A which contain a member from B. Furthermore, B is a subDHO,
if B is even a DHO of rank n. Yoshiara goes on and writes A = B1 � · · · � Bm and
calls A the disjoint union of the Bi ’s if A = A(B1) ∪ · · · ∪ A(Bm) and if for all
1 ≤ i < j ≤ m and all Xi ∈ Bi , X j ∈ B j , we have Xi ∩ X j = 0. For instance, we
observe that the extension SB of the bilinear DHO SB can be viewed a disjoint union
of SB and SBo . Then:

Theorem 5 ([71, Proposition 1.2]) Let A be a DHO of rank n + 1 over Fq with
n ≥ 3. Assume A = B1 � · · · � Bm, m > 1 with subDHOs Bi of rank n. Then the
following hold:

(1) We have m = 2 and q = 2.
(2) U (A) is spanned by the members of B1 and one member from A(B2)
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(3) If, furthermore, B1 is simply connected and rkU (A) = rkU (B1) + n + 1, then
A is simply connected.

Based on this result, Yoshiara investigates split DHOs B1 of rank n over F2 such
that there exists a DHO of the form A = B1 � B2 of rank n + 1. Because of a lack
of space the concrete, technical conditions (see [71, Theorem1.3, Corollary1.4]) for
the existence of such DHOswill not be repeated. However, wemention that if a DHO
A of this form exists then its isomorphism type is essentially determined by a pair
(B1,Y1), where B1 splits over Y1 (see [71, Sect. 1.7]). Yoshiara considers possible
extensions of Veronesean, Huybrechts, Bruratti–Del Fra, Taniguchi or Yoshiara type.
So far extensions in this generalized form have only been found for bilinear DHOs.

8 Direct Constructions

In a series of papers, Taniguchi gives various constructions of DHOs over F2. He
proves that the number of DHOs (many of them are simply connected) grows expo-
nentially as a function of the rank.

8.1 DHOs of Type Sc

Before the appearance of [51], most of the known DHOs of rank n over F2 either
had an ambient space of rank ≤ 2n or were a quotient of one of the ”maximal”
DHOs of Sect. 4. In [51], Taniguchi produces with one construction, the DHOs of
type Sc, symmetric DHOs in large numbers over F2, which have rank n, which have
an ambient space of rank > 2n and which are not quotients of “maximal” DHOs. In
fact, the DHOs of type Sc depend on three parameters c, �, r and we denote them
here also by Sc,�,r . We sketch the construction which is a hybrid of the construction
of the Buratti–Del Fra DHOs and an example from [10].

Let �, r be positive integers, �r ≥ 4 and c ∈ F2r with absolute trace 1. Consider
three spaces: V1 = 〈e1, . . . , e�〉 ⊂ V2 = 〈e0, e1, . . . , e�〉 are F2r -spaces of rank � and
� + 1, respectively. We consider the additive group X = F2e0 ⊕ V1 as a F2-space
of rank �r + 1. Let S2(V2) the symmetric square of V2 and denote by W the F2r -
subspace generated by e0 · e0 and c(ei · ei ) + e0 · ei , 1 ≤ i ≤ �. Set Y = S2(V2)/W
and denote by x · y the homomorphic image of x · y in Y . Define B : X × X → Y by
B(x, y) = x · y. Then SB is a symmetric bilinear DHO of rank 1 + �r over F2 whose
ambient space has rank 1 + r(�2 + 3�)/2. This DHO is denoted by Sc = Sc,�,r .

For extreme choices of � and r , known examples are reproduced: If r = 1, c = 1,
then Sc is a Buratti–Del Fra DHO, and if � = 1, then Sc is the DHO from [10,
Example 3.4]. Taniguchi shows
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1. Let c �= 1. Then Sc is not a quotient of a ”maximal DHO” from Sect. 4.
2. Sc,�,r � Sc′,�′,r ′ iff (�, r) = (�′, r ′) and c′ is a Galois conjugate of c.

The DHOs of type Sc are a source of many simply connnected DHOs: Let Sc =
Sc,�,r thenSc is simply connected iffF2r = F2[c] (see [52]). By [49], the extensionSc

of Sc is simply connected too. If Sc′ = Sc′,�,r is simply connected too, then Sc � Sc′

iff Sc � Sc′ .
Automorphism groups and covering maps of DHOs of type Sc are studied in [54]:

Let T be the translation group ofSc = Sc,�,r , then T is normal inG = Aut(Sc) andG
is the semidirect product of T with a subgroup H , GL(�, 2r ) ≤ H ≤ �L(�, 2r ) and
H/GL(�, 2r ) � Gal(F2r : F2[c]). Moreover,Sc′,�′,r ′ is a cover ofSc,�,r iff there exists
a positive integer a such that r = ar ′, �′ = a� and there exists a field automorphism
σ : F2[c] → F2[c′] with c′ = cσ .

8.2 DHOs Constructed with Presemifields

In three articles [53, 55, 56], Taniguchi expands the hybrid construction of the pre-
vious subsection by invoking presemifields in the construction.

Let (S,+) be finite additive group. Let ◦ : S × S → S be a biadditive mapping
such that for 0 �= a ∈ S the mappings S � x → a ◦ x ∈ S and S � x → x ◦ a ∈ S
are bijective. Then (S,+, ◦) is called apresemifield. This presemifield is commutative
if x ◦ y = y ◦ x for all x, y ∈ S. It can be shown that (S,+) is an elementary abelian
p-group, p a prime. Therefore, one may identify (S,+) with the additive group of a
finite field. The equivalence of presemifields is based on the notion of isotopism. Let
S1 and S2 be presemifields whose additive groups are identified with F

n
p and with

multiplications ◦1 and ◦2, respectively. The presemifields are isotopic if there exist
λ, ρ,μ ∈ GL(n, p) such that (xλ) ◦2 (yρ) = (x ◦1 y)μ. The triple (λ,μ, ρ) is called
an isotopism.

Let d > 3 be a positive integer and q = 2d and F = Fq . In [53], Taniguchi con-
siders DHOs of rank n = d + 1 with a “small” ambient space of rank 2n − 1.
Let (S,+, ◦) be a commutative presemifield whose additive group is (F,+). Let
0 �= c ∈ F be an element such that

(c1) c(x ◦ x) = (cx) ◦ x for all x ∈ F .
(c2) x ◦ y + c(x ◦ x) + c(y ◦ y) �= 0 for all 0 �= x, y ∈ F .

One may consider (c2) as a criterion for an irreducible quadratic form over the
presemifield S. Let X = F ⊕ F2e0 be a F2-space of rank n + 1, U = X ⊕ F and
define a bilinear map B : X × X → F by B(x + αe0, y + βe0) = x ◦ y + αc(y ◦
y) + βc(x ◦ x). Then Sc(S) = SB is a symmetric DHO in U . If (c, c′) �= (1, 1) and
Sc(S) � Sc′(S′) then S and S′ are isotopic, say by (λ,μ, ρ), and the left multi-
plications are related by conjugation: Lc′ = λ−1Lcλ. Surprisingly, one may have
S1(S) � S1(S′) for non-isotopic presemifields S and S′. Kantor shows (see [28])
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that for d odd and highly composite there exists many nonisotopic commutative
presemifields of size 2d , which, in turn, define many nonisomorphic DHOs of type
Sc(S).

In [55], Taniguchi varies this construction and uses three presemifields: Let F =
F2d . Let S1 = (F,+, ◦), S2 = (F,+, ∗), and S3 = (F,+, �) be presemifields, S1
and S2 commutative. Let 0 �= c ∈ F be an element such that:

(c1) c(x ◦ x) = (cx) ◦ x , c(x ∗ x) = (cx) ∗ x for all x ∈ F .
(c2) (cx) � y = x � (cy) for all x, y ∈ F .
(c3) x ◦ y + c(x ◦ x) + c(y ◦ y) �= 0 and x ∗ y + c(x ∗ x) + c(y ∗ y) �= 0 for all

0 �= x, y ∈ F .

Set X = F ⊕ F ⊕ F2, Y = F ⊕ F ⊕ F and define a bilinear mapping B : X ×
X → Y by

B((x, a, α), (y, b, β)) = (x ◦ y + αc(y ◦ y) + βc(x ◦ x), a ∗ b + αc(b ∗ b) + βc(a ∗ a), x � b + y � a).

Then Sc(S1, S2, S3) = SB is a symmetric DHO of rank 2d + 1 over F2 in F
5d+1
2 .

In [56], Taniguchi presents a further generalization.
Let F = F2d . He now considers a family of presemifields Si, j = (F,+, �i j ), 1 ≤

i < j ≤ n. Let 0 �= c ∈ F be an element such that for all 1 ≤ i < j ≤ n and all
x, y ∈ F

(cx) �i j y = x �i j (cy)

holds. Set X =
n

︷ ︸︸ ︷
(F ⊕ · · · F)⊕F2 and Y =

n
︷ ︸︸ ︷
(F ⊕ · · · F)⊕

(n2)
︷ ︸︸ ︷
(F ⊕ · · · F). Define a

bilinear mapping B : X × X → Y by sending the pair

((. . . xi , . . . , x j , . . . ,α), (. . . yi , . . . , y j , . . . ,β))

to

(

n
︷ ︸︸ ︷

. . . , xi yi + αcy2i + βcx2i , . . .,

(n2)
︷ ︸︸ ︷
. . . , xi �i j y j + yi �i j x j , . . .).

Then Sc(n, {Si j | 1 ≤ i < j ≤ n}) = SB is a symmetric DHO of rank nd + 1 over
F2 which lies in a F2-space of rank d(

(n
2

) + 2n) + 1.
For DHOs of type Sc(S1, S2, S3) and Sc(n, {Si j | 1 ≤ i < j ≤ n}), there exist

isomorphism theorems similar to the isomorphism theorem for type Sc(S).

Problem 12 Determine the ambient spaces of DHOs of type Sc(S1, S2, S3) and
Sc(n, {Si j | 1 ≤ i < j ≤ n}).



Dimensional Dual Hyperovals—An Updated Survey 135

9 DHOs and Groups

A common theme in finite geometry is the classification of geometries that admit
specified group actions.

9.1 DHOs with Many Translation Groups

Bilinear DHOs can be characterized by group actions. Let S be a DHO over F2 with
ambient space U . An elementary abelian 2-subgroup T of the automorphism group
of S is a translation group, if T acts regularly on S, such that the DHO splits over
CU (T ) = {u ∈ U | uτ = u, τ ∈ T }, the centralizer of T in U . It is shown in [18,
Theorem 3.2], that if the rank of the DHO is ≥ 3, T has quadratic action on U , i.e.
[U, T ] ⊆ CU (T ), where [U, T ] = 〈u(1 + τ ) | u ∈ U, τ ∈ T 〉 is the commutator of
U and T . Moreover, S can be coordinatized as a bilinear DHO S = SB and T = TB

is the standard translation group with respect to B. The translation groups form a
conjugate class C of self-centralizing (TI)-subgroups in the automorphism group of
a DHO [18, Theorem 3.11]. In the case of the Huybrechts DHOs, the Buratti–Del
Fra DHOs or the bilinear Yoshiara DHOs, the class has a size 1, i.e. the translation
groups are normal. Indeed, if there exists more than one translation group, we are in
a very tight situation [18, Theorem 4.10] and [18, Theorem 5.10]:

Theorem 6 LetS be a bilinear DHO of rank n ≥ 4 in the ambient spaceU. Assume,
that S admits at least two translation groups. Then dimU ≥ 3(n − 1) and S is the
extension of a symmetric, bilinear DHO of rank n − 1.

Assume |C| = k > 1, let S be the extension of SB and set H = 〈C〉. Then
O2(H) = N where N is defined in Sect. 7.3 and H/N � D2k is a dihedral group of
order 2k (see [18, Theorem 5.7]). Let T be a spread of order 2n−1 in W = F

2(n−1)
2

associatedwith a translation plane of a commutative presemifield of order 2n−1. Then
one can choose a 1-space P in such a way that T /P is a symmetric bilinear DHO
of rank n − 1 in W/P . The extension T /P is bilinear and the size of the conjugacy
class of translation groups in Aut(T /P) is the same as the size of the middle nucleus
of the presemifield associated with T . In [18, Sect. 6], many DHOs are produced
that admit more than one translation group.

9.2 DHOs with Many Extension Groups

Dempwolff and Edel [19] provide a group theoretic description of extensions of bilin-
ear DHOs in analogy to the characterization of bilinear DHOs by translation groups.
Let S be a DHO of rank n + 1 over F2 with ambient space U . Let E = 〈E0, E1〉
be a subgroup of Aut(S). Set Ti = FixS(Ei ), Vi = 〈S ∩ S′ | S, S′ ∈ Ti , S �= S′〉 for
i = 0, 1. One calls E an extension group if:
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(E1) S = T0 ∪ T1 is a partition and |Ti | = 2n for i = 0, 1.
(E2) Ei acts regularly on T j for {i, j} = {0, 1}.
(E3) Set Y = CU (E). Then V0 + V1 + Y has codimension 1 in U and dim(V0 +

V1 + Y )/Y = 2n.

The group N defined in Sect. 7.3 is an extension group. If a DHO of rank n + 1
admits an extension group, then [19, Theorem 3.2] this DHO is the extension of a
bilinear DHO of rank n.

If S of rank n + 1 admits extension groups, then they form a conjugacy class C in
the automorphism group [19, Theorem 3.6]. If |C| > 1, then S is the result of at least
two iterated extensions [19, Theorem 6.1]. The structure of the group H = 〈C〉 can be
determined [19, Theorem 7.1]: H/O2(H) � SL(k + 1, 2) for some k ∈ {1, . . . , n}
and |O2(H)| = 2(k+1)(n−k+1).

9.3 Doubly Transitive DHOs

ADHOS is called doubly transitive if Aut(S) contains a subgroupG that acts doubly
transitive on the members of S. In that case, the automorphism group of the affine
expansion Af(S) acts flag transitive on this semibiplane (see [33]). A side product of
the classification of finite simple groups is the classification of finite doubly transitive
groups. See Cameron [4, p. 8] and Liebeck [31, Appendix 1] for a description of these
groups. A classification of doubly transitive DHOs requires two steps:

1. Determine doubly transitive groups that can act on a DHO.
2. Determine for these candidates the DHOs whose automorphism groups contain

the group in question.

The first step is completed by Yoshiara [69] (we denote by G(∞) the last member
of the derived series of the group G))

Theorem 7 Assume that S is a dual hyperoval of rank d with ambient Fq -space V .
If a subgroup G of Aut(S) acts on the members of S doubly transitively, one of the
following holds:

(1) q = 2 and G = N · GX, where N is a normal subgroup of G acting regularly
on S and the stabilizer GX in G of a member X ∈ S has one of the following
structures:

(a) G is solvable and GX is isomorphic to a subgroup of �L(1, 2d).
(b) G is non-solvable and (GX )(∞) � PSL(a, 2b), a ≥ 2, n = ab, (GX )(∞) �

PSp(2a, 2b), a ≥ 2, n = 2ab, (GX )(∞) � G2(2b), n = 6b, or (GX )(∞) �
G2(2)′, n = 6, (GX )(∞) � Alt(6),Alt(7), n = 4.

(2) q = 4, d = 3 and G(∞) � M22.
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Notice that this result is as best as possible. It follows from [26] (see also [7])
that the Mathieu DHO is the unique DHOwhich satisfies assertion (2). All groups of
assertion (1) are doubly transitive automorphism groups of the Huybrechts DHOs.

In [14], it is shown, that the Huybrechts DHO of rank n has doubly transitive
quotientsS such that (Aut(S)X )(∞) � PSL(a, 2b),a ≥ 2, n = ab, or� PSp(2a, 2b),
n = 2ab and the number of such quotients grows exponentially as a function of the
rank.

In order to classify doubly transitive DHOs, one has to determine the DHOs of
type (1). It turns out that case (1.b) is much easier than case (1.a)

Theorem 8 ([15]) Let S be a DHO with a non-solvable automorphism group, that
induces a doubly transitive action on its members. Then S is isomorphic to the
Mathieu DHO or S is a bilinear quotient of a Huybrechts DHO.

The first contribution to case (1.a) of Theorem 7 is [67]. There Yoshiara classifies
all doubly transitive dual hyperovals of rank n with ambient space F2n

2 which admit a
doubly transitive group isomorphic to AGL(1, 2n) � F

n
2 · GL(1, 2n). He shows that

these DHOs are DHOs of Yoshiara. In this case, the normal subgroup of order 2n is
a translation group, i.e. the DHOs in question are bilinear. It is natural to ask for the
doubly transitive, bilinear DHOs of rank n (which admit AGL(1, 2n)) without the
restriction on the ambient space. In [12], it is shown that such a DHO is a DHO of
Yoshiara, a quotient of the Huybrechts DHO of rank n, or a member of a new class of
DHOs in F2n+n0

2 , n = 2n0, n0 odd which are denoted by D[n, k] (the parameter k has
four possible values). Although in the generic case of (1.a) a doubly transitive group
in A�L(1, 2n) � F

n
2 · �L(1, 2n) contains the group GL(1, 2n) there exist positive,

composite numbers n and groups H ≤ �L(1, 2n) such thatFn
2 · H is doubly transitive

and GL(1, 2n) is not contained in H . In [17], it is shown that only for rank n = 6
new DHOs (with this kind of automorphism groups) can and do occur. One has

Theorem 9 Let n ≥ 4, n �= 6 and S a doubly transitive, bilinear DHO of rank n
over F2. Then S is DHO of Yoshiara, a quotient of the Huybrechts DHO of rank n,
or a DHO of type D[n, k].

The expectation, however, that all doubly transitive DHOs of type (1.a) would be
covered by this Theorem turns out to be false. In [16], the existence of non-bilinear
DHOs belonging to case (1.a) is established. Let 1 < d < n be divisor of n, such that
n/d is odd. Let 1 < b < n, be a multiple of d, such that (b, n) = d. Then there exist
a DHO S = D[n, d, b] non-bilinear of rank n, such that G = Aut(S) � A�L(1, 2n)
acts doubly transitive onS. For odd n0, there is a second class of non-bilinear, doubly
transitive DHOs of rank n = 2n0 denoted by D̂[2n0]. It turns out that D̂[2n0] is the
universal cover of D[2n0,−2n0+1 − 1] as well as of D[2n0, 2, n0 ± 1].
Problem 13 Try to find more non-bilinear, doubly transitive DHOs of type (1.a).

The final classification of doubly transitive DHOs appears to be difficult.
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10 Miscellaneous Topics

We do not report on the connection between DHOs and diagram geometry1: an intro-
duction to diagram geometry would extend this paper far beyond its intended length.
But an interested reader may consult [25, 26, 33, 34]. For DHOs with “property
(Ti )” and the connection of DHOs with property (T1) with Steiner Systems, we refer
to [65, Sect. 2.6].

10.1 Edel’s Characterization of Alternating DHOs

Let S be a DHO over F2 and X, X ′ ∈ S. Denote by X � X ′ the nontrivial vector in
X ∩ X ′. For three members X1, X2, X3 ∈ S, define

u(X1, X2, X3) = X1 � X2 + X1 � X3 + X2 � X3

and define in the ambient space the subspace

P(S) = 〈u(X1, X2, X3) | X1, X2, X3 ∈ S, X1 �= X2 �= X3 �= X1〉.

Edel [22, Theorem 1], [18, Theorem 3.6] gives the following geometric characteri-
zation of alternating DHOs:

Theorem 10 Let S be a DHO over F2. Equivalent are:

(a) S splits over P(S).
(b) S is an alternating DHO.

The space P(S) is a supplement of S
Lemma 2 U (S) = X + P(S) for every X ∈ S.
Proof ix X1 ∈ S and let X2, X3 ∈ S be two members of S different from X1.
Then X2 � X3 = (X1 � X2 + X1 � X3) + u(X1, X2, X3) ∈ X1 + P(S) and X1 �
X2 ∈ X1 for X1 �= X2. Hence, X1 + P(S) contains a set of generators of U (S).

So the statement “dimU (S) − dim P(S) is the rank of S” is equivalent to Asser-
tion (a) as well as Assertion (b) of Theorem 10.

Problem 14 Let S be a split DHO over F2. Show or disprove that P(S) contains a
complement.

1 I quote from the report of one referee: “…DHOs are fall down of diagram geometry; in fact, a fall
down of [26]. The expression “d-dimensional dual hyperoval” itself goes back to [26, 63] …”.
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10.2 Small DHOs over F2

Del Fra [7, Theorems 1, and 2] classifies the DHOs of rank 3 over F2. There exists
exactly one DHO with an ambient space of rank 5. It is the bilinear DHO S3

1,2 of
Yoshiara. There are exactly two DHOs with an ambient space of rank 6, namely
V3(2) and H3.

In [1], a partial classification of DHOs of rank 4 over F2 is obtained. In contrast
to del Fra [7], computer calculations are indispensable. One finds for an ambient
space of rank 7 precisely 37 isomorphism types, 7 of which are bilinear. For an
ambient space of rank 8, one obtains 26 isomorphism types, 11 of which are bilinear.
For ambient spaces of rank ≥ 9, the information is incomplete. However, computing
covers or quotients is feasible. In this way, one obtains 7 DHOs with an ambient
space of rank 9, and for rank 10, one recovers as expected V4(2),H4, D4 and T4.
Problem 15 Classify DHOs of rank 4 over F2 with an ambient space of rank ≥ 9.

For partial classifications of small DHOs over Fq , q > 2; see [7] and
[65, Sect. 4.2].
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A Note on FMS Modules and FCP
Extensions

Atul Gaur and Rahul Kumar

Abstract Let R be a commutative ring with unity and S be a (unital) subring of
R such that R is integral over S and S ⊆ R has FCP. Let M be an R-module. For
any submodule N of M , it is shown that R(+)N ⊆ R(+)M has FCP if and only if
S(+)N ⊆ S(+)M has FCP. We also discuss FMS modules.

Keywords FCP extension · Idealization · Artinian ring

1 Introduction

All rings considered below are commutative with nonzero identity; all ring exten-
sions, ring homomorphisms, and algebra homomorphisms are unital. By a local ring,
we mean a ring with a unique maximal ideal. The symbol ⊆ is used for inclusion,
while ⊂ is used for proper inclusion. For a ring extension S ⊆ R, the set of all
S-subalgebras of R is denoted by [S, R]. A chain of S-subalgebras of R is a set
of elements of [S, R] that are pairwise comparable with respect to inclusion. The
extension S ⊆ R satisfies FCP if each chain of S-subalgebras of R is finite.

Recall [4, cf. Nagata, 1962, p.2] that if R is a ring and M is an R-module, then
the idealization R(+)M is the ring defined as follows: Its additive structure is that
of the abelian group R ⊕ M , and its multiplication is defined by (r1,m1) (r2,m2) :=
(r1r2, r1m2 + r2m1) for all r1, r2 ∈ R andm1,m2 ∈ M . It will be convenient to view
R as a subring of R(+)M via the canonical injective ring homomorphism that sends
r to (r, 0). If R is a ring, then R is a subring of R × R via the canonical injective
ring homomorphism, Δ : R ↪→ R × R, given by Δ(r) = (r, r) for all r ∈ R.

In [5], G. Picavet and M. Picavet-L’Hermitte proved some results on FCP. They
investigated that when R ⊆ R(+)M satisfies FCP conditions, for an R-module M .
Motivated by their work, we prove that if S ⊆ R is a subring such that R is integral
over S and S ⊆ R has FCP and N is a submodule of an R-module M , then R(+)N ⊆
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R(+)M has FCP if and only if S(+)N ⊆ S(+)M has FCP (Proposition 1). We also
prove that R ⊆ R(+)R has FCP if and only if S ⊆ S(+)S has FCP, where S ⊆ R is
a subring such that R is integral over S and S ⊆ R has FCP (Proposition 2).

For any ring R, let Spec(R) denote the set of all prime ideals of R and Max(R)

denote the set of all maximal ideals of R. Recall from [5] that an R-module M is
an FMS module if M has finitely many R-submodules. A ring R with finitely many
ideals is termed as FMIR [5]. Gabriel Picavet andMartine Picavet-L’Hermitte proved
that a faithful R-module M is an FMS module if and only if R is an FMIR and is
a direct product of two rings R′ × R′′, where |R′| < ∞ and |R′′/P| = ∞ for any
P ∈ Spec(R′′) and M is the direct product of a finite R′-module and a rank one
projective R′′-module ([5, Theorem 2.13]). An example is given to show that the
above mentioned theorem is not true (Example 4).

Recall that a special principal ideal ring (SPIR) is a principal ideal ring R with a
unique nonzero prime ideal M , such that M is nilpotent of index n > 0. Note that a
SPIR is not a field. As usual, if M is an R-module, then lR(M) is its length and |X |
denotes the cardinality of a set X . If M and N are R-modules, then the set M ∼=R N
if M and N are isomorphic as R-modules.

2 Results

We start with the following lemma which is needed for the proof of the main result
of the paper.

Lemma 1 Let M be an R-module and S ⊆ R is a subring such that R is integral
over S and S ⊆ R has FCP. Then lR(M) < ∞ if and only if lS(M) < ∞.

Proof Firstwe claim that lS(R/M) < ∞ for everyM ∈ Max(R). LetM ∈ Max(R).
Setm = M ∩ S. Thenm ∈ Max(S), since R is integral over S. It follows by [3, The-
orem 4.2(a)] that lS(R/S) < ∞. We infer that lS(R/M) ≤ lS(R/m) = lS(S/m) +
lS(R/S) = 1 + lS(R/S) < ∞. It is obvious that lS(M) < ∞ implies that lR(M) <

∞.
To prove the converse, let lR(M) < ∞. Set l = lR(M) and let 0 = M0 ⊆ · · · ⊆

Ml = M be a composition series of M . Let j ∈ [1, l]. Since Mj/Mj−1 is a sim-
ple R-module, we infer that Mj/Mj−1

∼=R R/M for some M ∈ Max(R). Clearly,
Mj/Mj−1

∼=S R/M, and thus lS(Mj/Mj−1) = lS(R/M) < ∞ by the claim. Con-
sequently, lS(M) = ∑l

i=1 lS(Mi/Mi−1) < ∞.

Now we can state the main result of the paper.

Proposition 1 Let M be an R-module, N an R-submodule of M and S ⊆ R is a
subring such that R is integral over S and S ⊆ R has FCP. Then R(+)N ⊆ R(+)M
has FCP if and only if S(+)N ⊆ S(+)M has FCP.

Proof This is an immediate consequence of [5, Proposition 2.8(2)] and Lemma 1.
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The condition R is integral over S cannot be ignored in the Proposition 1, as we
have the following example:

Example 1 Let S = Z2Z, R = Q, M = Q × Q, and N = Q × {0}. Then M is an
R-module, N is an R-submodule of M , and S is an integrally closed subring of R
such that S ⊂ R has FCP. Clearly R(+)N ⊂ R(+)M has FCP. However, S(+)N ⊂
S(+)M does not have FCP.

We now give the immediate corollary to the last result.

Corollary 1 Let M be an R-module and S ⊆ R is a subring such that R is integral
over S and S ⊆ R has FCP. Then R ⊆ R(+)M has FCP if and only if S ⊆ S(+)M
has FCP.

Proof This follows from Proposition 1 with N = 0.

The condition R is integral over S in Corollary 1 is necessary as we have the
following example:

Example 2 Let S = Z2Z, R = Q, and M = Q × Q. Then M is an R-module and S
is an integrally closed subring of R such that S ⊂ R has FCP. Clearly, R ⊂ R(+)M
has FCP. However, S ⊂ S(+)M does not have FCP.

Proposition 2 Let S be a subring of R such that R is integral over S and S ⊆ R has
FCP. Then R ⊆ R(+)R has FCP if and only if S ⊆ S(+)S has FCP.

Proof By [5, Proposition 2.9(1)], it is sufficient to show that lR(R) < ∞ if and only
if lS(S) < ∞.

First suppose that lR(R) < ∞. Then lS(S) ≤ lS(R) < ∞ by Lemma 1.
To prove the converse, let lS(S) < ∞. By [3, Theorem 4.2(a)], we obtain that

lS(R/S) < ∞. This implies that lR(R) ≤ lS(R) = lS(S) + lS(R/S) < ∞.

Note that the condition R is integral over S cannot be ignored in the Proposition
2, as we have the following example:

Example 3 Let S = Z2Z and R = Q. Then S is an integrally closed subring of R
such that S ⊂ R has FCP. Clearly, R ⊂ R(+)R has FCP but S ⊂ S(+)S has no FCP.

In [5, Theorem 2.13], G. Picavet and M. Picavet-L’Hermitte proved that a faithful
R-module M is an FMS module if and only if the following two conditions are
satisfied:

(i) R is an FMIR and is a direct product of two rings R′ × R′′, where |R′| < ∞ and
|R′′/P| = ∞ for any P ∈ Spec(R′′).

(ii) M is the direct product of a finite R′-module and a rank one projective R′′-
module.

If R′ or R′′ is allowed to be a zero ring, then the above result is true which is
discussed in [6]. Otherwise, the above theorem needs some modifications which are
evident in the next example.
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Example 4 Consider any field F as a module over itself. Then F is an FMSmodule
but F �= R′ × R′′ for any rings R′ and R′′ as R′ × R′′ is not a domain. Thus, [5,
Theorem 2.13] is not true. Also, let R = M = Z/6Z. Then M is a faithful R-module
and an FMS module. Moreover, R is a finite ring and R ∼= Z/2Z × Z/3Z. Suppose
that [5, Theorem 2.13] is true. Then there are two rings R′ and R′′ such that R ∼= R′ ×
R′′ and |R′′/P| = ∞ for all P ∈ Spec(R′′). Since R′′ �= 0, it is clear that Spec(R′′) �=
∅. Therefore, R′′ is infinite, and hence R is infinite, a contradiction.

Clearly, if a zero ring is not permissible to be taken, then the above result needs
a modification. Our next corollary is a modified version of the above result. Though
the proof is similar to the proof of [5, Theorem 2.13], for the sake of completeness,
we are giving a proof

Corollary 2 A faithful R-module M is an FMS module if and only if exactly one of
the following two conditions hold:

(i) R is an FMIR which is either a finite ring with M is a finite R-module or
|R/P| = ∞ for any P ∈ Spec(R) with M is a rank one projective R-module.

(ii) R is an FMIR which is a direct product of two rings R′ × R′′, where |R′| < ∞
and |R′′/P| = ∞ for any P ∈ Spec(R′′) and M is the direct product of a finite
R-module and a rank one projective R′′-module.

Proof If M is an FMS module, then R is an FMIR and M is a finitely generated
R-module, by [5, Corollary 2.7]. Now, by [1, Corollary 2.4], we have R = ∏n

i=1 Ri ,
a product of local rings that are either finite, or an SPIR, or a field. Now, we consider
the following three cases:
Case 1: Let Ri be finite for all i ∈ [1, n]. Then R is a finite ring and hence |M | < ∞
as M is finitely generated R-module.
Case 2:Let Ri be infinite for all i ∈ [1, n]. Then for any SPIR factor (Ri , Pi ) of R, we
have |Ri/Pi | = ∞ as Ri is local artinian. If Ri is an infinite field, then take Pi = 0.
Thus, |R/P| = ∞ for any P ∈ Spec(R). Now, by the proof of [5, Theorem 2.13],
M is a rank one projective R-module.
Case 3: Let Ri be finite for some i ∈ [1, n] and R j be infinite for some j ∈ [1, n].
Let R′ be the ring product of the Ri that are finite and R′′ be the ring product of the
Ri that are infinite. Then the result follows from the proof of [5, Theorem 2.13].
Conversely, if (i i) holds, then result follows from the proof of [5, Theorem 2.13]. We
may now assume that (i) holds. If R is finite and M is a finite R-module, then we are
done. Now, if |R/P| = ∞ for all P ∈ Spec(R) and M is a rank one projective R-
module, then from [2, Théor èm 2, ch. I I, p. 141], we have M is finitely generated
over R, with MP is cyclic for each P ∈ Max(R). Thus, by [5, Corollary 2.7], M is
an FMS module.



A Note on FMS Modules and FCP Extensions 147

References

1. Anderson, D.D., Chun, S.: Commutative rings with finitely generated monoids of fractional
ideals. J. Algebra 320(7), 3006–3021 (2008)
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A Pair of Derivations of Prime Rings
with Involution

Shuliang Huang

Abstract Let (R, ) be a prime ring of characteristic different from two with invo-
lution of the second kind. Suppose that d and δ are a pair of derivations R such
that [d(x), δ(x∗)] ± [x, x∗] = 0 for all x ∈ R, then R is commutative. Also, some
examples are given to show that the restrictions imposed on the hypotheses of the
various results are crucial.

Keywords Prime rings · Derivations · Involution · Commutativity

Throughout this present paper, R will represent an associative ring with center Z(R).
For any x, y ∈ R, the symbol [x, y] denotes Lie product xy − yx and it is straight-
forward to check that [xy, z] = x[y, z] + [x, z]y and [x, yz] = y[x, z] + [x, y]z for
all x, y, z ∈ R. A ring R is prime if for any a, b ∈ R, aRb = (0) implies a = 0 or
b = 0 and is semiprime if for any a ∈ R, aRa = {0} implies a = 0. A ring R is
called 2-torsion free, if whenever 2x = 0, with x ∈ R, then x = 0. It is easy to check
that a prime ring of characteristic different from two is 2-torsion free. By a derivation
on R, we mean an additive mapping d : R −→ R such that d(xy) = d(x)y + xd(y)
holds for all x, y ∈ R. The standard identity s4 in four variables is defined as follows:
s4 = ∑

(−1)τ Xτ (1)Xτ (2)Xτ (3)Xτ (4), where (−1)τ is the sign of a permutation τ of
the symmetric group of degree 4.

Recall that an involution ∗ of a ring R is an anti-automorphism of order 2 (i.e.,
an additive mapping satisfying (xy)∗ = y∗x∗ and (x∗)∗ = x for all x, y ∈ R). An
element r in a ring with involution (R, ∗) is called to be Hermitian if r∗ = r and
skew-Hermitian if r∗ = −r . The sets of all Hermitian and skew-Hermitian elements
of R will be denoted by H(R) and S(R), respectively. The involution is said to
be the first kind if Z(R) ⊆ H(R), otherwise it is said to be of the second kind. In
the latter case, S(R)

⋂
Z(R) �= {0}. Following [3], if R is 2-torsion free then every

x ∈ R can be uniquely represented in the form of 2x = h + k, where h ∈ H(R) and
k ∈ S(R). Moreover, in this case, x is normal, i.e., [x, x∗] = 0, if and only if h and k
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commute. If all elements in R is normal, then R is said to be a normal ring. A classical
example is the ring of Hamilton quaternions. Especially, derivations, biderivations,
and superbiderivations of quaternion ringswere characterized in [11]. It isworthwhile
to note that every prime ring having an involution ∗ is ∗-prime (i.e., aRb = aRb∗ =
(0) yields that a = 0 or b = 0) but the converse is, in general, not true. A typical
example in [16] is as following: Let R be a prime ring, S = R × R◦ where R◦ is
the opposite ring of R, define ∗ex (x, y) = (y, x). From (0, x)S(x, 0) = 0, it follows
that S is not prime. For the ∗-primeness of S, we suppose that (a, b)S(x, y) =
0 and (a, b)S(x, y)∗ = 0, then we get aRx × yRb = 0 and aRy × x Rb = 0, and
hence aRx = yRb = aRy = x Rb = 0, or equivalently (a, b) = 0 or (x, y) = 0.
This example shows that every prime ring can be injected in a ∗-prime ring and from
this point of view ∗-prime rings constitute a more general class of prime rings.

A classical problem in ring theory is to investigate and extend conditions under
which a ring R becomes commutative. So far the best tools found for this purpose
are the derivations on rings and also on their modules. Many results in the literature
indicate that the global structure of a ring R is often lightly connected to the behavior
of additive mappings defined on R (see [5] for a partial bibliography). There has
been an ongoing interest concerning the relationship between the commutativity of a
prime ring R and the behavior of some special mappings on R. A number of authors
have discussed the commutativity of prime and semiprime rings admitting suitably
constrained mappings such as automorphisms, derivations, and multipliers acting on
appropriate subsets (for example, one-sided ideals, ideals, Lie ideals, and so on) of
the rings (see for example [1, 19]). Moreover, some well-known results on prime
rings have been extended to ∗-prime rings (see [6, 15], where further references can
be found).

We say a map f : R −→ R preserves commutativity if [ f (x), f (y)] = 0 when-
ever [x, y] = 0 for all x, y ∈ R. The study of describing commutativity preserving
mappings has been investigated widely in matrix theory, operator algebra theory
and ring theory (see [18] for references). As is well known, Bell and Mason in [8]
introduced the notion of a certain kind of commutativity preserving maps as follows.
For a nonempty subset S of R, a map f : R −→ R is said to be strong commuta-
tivity preserving (SCP) on S if [ f (x), f (y)] = [x, y] for all x, y ∈ S. In [7], Bell
and Daif showed that if R is a semiprime ring admitting a derivation d such that
[d(x), d(y)] = [x, y] for all x, y ∈ I , a nonzero right ideal of R, then I is central.
In particular, if I = R, then R is commutative. Later in [9], Deng and Ashraf proved
if a semiprime ring R admits a derivation d and a map f : I −→ R defined on a
nonzero ideal of R such that [ f (x), d(y)] = [x, y] for all x, y ∈ I , then R contains
a nonzero central ideal and R is commutative if I = R. In the same paper, they
studied SCP maps in the case of endomorphisms without involution. In fact, they
proved if R is a prime ring of characteristic different from two and ϕ is a non-
trivial endomorphism of R such that [ϕ(x),ϕ(y)] − [x, y] ∈ Z(R) for all x, y ∈ R,
then R is commutative. Taking x∗ in place of y in this result, Khan and Ali in [12]
proved that if a prime ring R with involution of characteristic different from two
admits a non-trivial endomorphism ϕ satisfying [ϕ(x),ϕ(x∗)] − [x, x∗] ∈ Z(R) for
all x ∈ R, then the involution is of the first kind of R satisfies s4 and [ϕ(x), x] = 0
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for all x ∈ R. Recently, in [4], Ali, Dar, and Khan obtained a similar result in ∗-prime
rings. To be more precisely, they proved that if R is a prime ring of characteristic
different from two with involution of the second kind and d is a nonzero derivation
of R such that [d(x), d(x∗)] = [x, x∗] for all x ∈ R, then R is commutative. Moti-
vated by these observations, we continue this line of investigation and we examine
what happens in case d and δ are a pair of derivations of a ∗-prime ring R such that
[d(x), δ(x∗)] ± [x, x∗] = 0 for all x ∈ R.

1 Some Preliminaries

In order to prove our result, we need to recall the following known facts:

Lemma 1 ([2, Lemma 2.2]) Let (R, ∗) be a prime ring of characteristic different
from two with involution of the second kind. If [x, x∗] = 0 for all x ∈ R, then R is
commutative.

Lemma 2 ([13, Fact 2]) Let (R, ∗) be a prime ring of characteristic different from
two with the second involution, then Z(R)

⋂
H(R) �= {0}.

Lemma 3 ([14, Fact 1]) Let (R, ∗) be a prime ring of characteristic different
from two with involution provided with a derivation d. Then d(h) = 0 for all
h ∈ Z(R)

⋂
H(R) implies that d(z) = 0 for all z ∈ Z(R).

Lemma 4 ([10, Theorem 1]) Let R be a prime ring of characteristic different from
two, I a nonzero ideal of R. If d and δ are nonzero derivations of R such that
[d(x), δ(y)] = [x, y] for all x, y ∈ I , then R is commutative.

Lemma 5 ([17,Theorem1])Let R beaprime ringwith center Z(R). If d is a nonzero
derivation of R such that [d(x), x] ∈ Z(R) for all x ∈ R, then R is commutative.

2 Main Results

Theorem 1 Let (R, ∗) be a prime ring of characteristic different from two with
involution of the second kind. Suppose that d and δ are a pair of derivations R such
that [d(x), δ(x∗)] − [x, x∗] = 0 for all x ∈ R, then R is commutative.

Proof. If either d = 0 or δ = 0, then [x, x∗] = 0 for all x ∈ R. In this case, we
are done by Lemma 1. Hence, onward we assume that both d �= 0 and δ �= 0. We
are given that

[d(x), δ(x∗)] − [x, x∗] = 0 for all x ∈ R. (1)
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The linearization of (1) gives that

[d(x), δ(y∗)] + [d(y), δ(x∗)] − [x, y∗] − [y, x∗] = 0 for all x, y ∈ R. (2)

Writing y∗ instead of y in (2), we obtain that

[d(x), δ(y)] + [d(y∗), δ(x∗)] − [x, y] − [y∗, x∗] = 0 for all x, y ∈ R. (3)

Since ∗ is the second kind, by Lemma 2.2, we find that Z(R)
⋂

H(R) �= {0}. For
all 0 �= h ∈ Z(R)

⋂
H(R) and y ∈ R, Substituting yh for y in (3) and using (3), we

obtain

[d(x), y]δ(h) + [y∗, δ(x∗)]d(h) = 0 for all x, y ∈ R. (4)

For 0 �= s ∈ Z(R)
⋂

S(R) and y ∈ R, replacing y by ys in (4) yields that

{[d(x), y]δ(h) − [y∗, δ(x∗)]d(h)}s = 0 for all x, y ∈ R. (5)

Comparing (4) and (5), we find that 2[d(x), y]δ(h)s = 0 for all x, y ∈ R,
which means [d(x), y]δ(h)s = 0 since the characteristic of R is different from
two. Hence, [d(x), y]δ(h)Rs = 0 for all x, y ∈ R. The primeness of R forces that
[d(x), y]δ(h) = 0 for all x, y ∈ R. Use the fact that δ(Z(R)) ⊆ Z(R) and the prime-
ness of R, we have δ(h) = 0 for all h ∈ Z(R)

⋂
H(R) or [d(x), y] = 0 for all

x, y ∈ R. Now we divide the proof into two cases:

Case 1. If δ(h) = 0 for all h ∈ Z(R)
⋂

H(R), then (4) reduces to [y∗, δ(x∗)]d(h) =
0 for all x, y ∈ R. By the same arguments as above, either d(h) = 0 for all
h ∈ Z(R)

⋂
H(R) or [y∗, δ(x∗)] = 0 for all x, y ∈ R.

Subcase 1. Assume that d(h) = 0 for all h ∈ Z(R)
⋂

H(R). In view of Lemma 3,
d(Z(R)) = 0. Substituting ys for y in (3), we are forced to conclude that

{[d(x), δ(y)] − [d(y∗), δ(x∗)] − [x, y] + [y∗, x∗]}s = 0 for all x, y ∈ R. (6)

Combining (3) with (6), we find that 2{[d(x), δ(y)] − [x, y]}s = 0 which implies
that [d(x), δ(y)] − [x, y] = 0 for all x, y ∈ R. By Lemma 4, R is commutative.

Subcase 2. Now suppose that [y∗, δ(x∗)] = 0 for all x, y ∈ R. In particular,
[δ(x), x] = 0 for all x ∈ R. By Lemma 5, R is commutative.
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Case 2. If [d(x), y] = 0 for all x, y ∈ R. Letting x = y, we have [d(x), x] = 0 for
all x ∈ R. Again by virtue of Lemma 5, we get the required result. This completes
the proof of the theorem.

Theorem 2 Let (R, ∗) be a prime ring of characteristic different from two with
involution of the second kind. Suppose that d and δ are a pair of derivations R such
that [d(x), δ(x∗)] + [x, x∗] = 0 for all x ∈ R, then R is commutative.

Proof. As a matter of fact, if [d(x), δ(x∗)] + [x, x∗] = 0 for all x ∈ R, then the
derivation −d satisfies the relation [(−d)(x), δ(x∗)] − [x, x∗] = 0 for all x ∈ R. It
follows from Theorem 1 that R is commutative.

Remark 1 Our results are still true if we assume that the various conditions are
satisfied on a nonzero ideal rather than on the whole ring R.

The following example demonstrates that the condition ∗ is of the second is
essential in the hypothesis of Theorems 1 and 2.

Example 1 Let R =
{(

m n
p q

)

| m, n, p, q ∈ S

}

, where S is the ring of

integers. It is easy to see that R, under matrix addition and matrix multi-
plication, is a prime ring of characteristic different from two. Define maps

d

(
m n
p q

)

=
(
0 −n
p 0

)

, δ

(
m n
p q

)

=
(
0 −n
p 0

)

and

(
m n
p q

)∗
=

(
q −n

−p m

)

. We

can find that Z(R) =
{(

m 0
0 m

)

| m ∈ S

}

. Therefore, x∗ = x for all x ∈ Z(R), and

hence Z(R) ⊆ H(R). This implies that the involution ∗ is of the first kind not the
second kind. Moreover, d and δ are a pair of derivation of R satisfying the property
[d(X), δ(X∗)] ± [X, X∗] = 0 for all X ∈ R. However, R is not a commutative ring.

The following example proves that the primeness hypothesis in Theorem 1 is not
superfluous.

Example 2 Take R andd the sameasExample 1.Let S = R × C ,whereC is the ring
of complex numbers. Then it is clear that (S,σ) is a semiprime ringwith involution of
the second kindwhereσ(r, z) = (r∗, z̄) for all (r, z) ∈ S. Take D(r, z) = (d(r), 0) =
�(r, z) for all (r, z) ∈ S. It is easy to verify that D and � is a pair of derivations of S
satisfying [D(X),�(X∗)] − [X, X∗] = 0 for all X ∈ S, but R is not commutative.
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Basic One-Sided Ideals of Leavitt Path
Algebras over Commutative Rings

Pramod Kanwar, Meenu Khatkar, and R. K. Sharma

Abstract In this article, basic left (right) ideals of Leavitt Path Algebra over a com-
mutative unital ring are studied. We give conditions under which a basic left (right)
ideal generated by a vertex is a minimal basic left (right) ideal. It is further shown that
if R has no non-zero nilpotent elements, then every minimal basic left ideal LR(E)x
of the Leavitt path algebra LR(E) contains a vertex. Among other techniques, the
proof depends on the fact that a Leavitt Path Algebra over a commutative unital ring
R is non-degenerate if and only if R has no non-zero nilpotent elements (equivalently,
R is a (commutative) semiprime ring).

Keywords Leavitt path algebra · Basic left ideal · Minimal basic left ideal

1 Introduction

Leavitt path algebras of row-finite graphs, introduced by Abrams and Aranda Pino
in [2] and independently by Ara, Moreno, and Pardo in [9], have been of interest to
algebraists as well as analysts due to their connections with algebraic structures such
asmatrix rings, Laurent polynomial rings and also withC∗-algebras (see for example
[1, 4–8, 11–14]). Several generalizations of these algebras have also been studied
in the last decade. On one hand, Abrams and Aranda Pino generalized the concept
to arbitrary graphs (see [3]) and on the other, Tomforde considered these algebras
where the coefficients came from a commutative unital ring in place of a field (see
[15]). It is not hard to see that several results about these algebras over a field do not
remain valid if we replace field with a commutative unital ring. For example, Leavitt
path algebra of a finite line graph, being a matrix ring over a field, is simple and that
the Leavitt path algebra of a graph over a field is always non-degenerate. In the case
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of a commutative unital ring neither of these, however, may not be true. Tomforde
showed that some of the well-known results about Leavitt path algebras over a field
can be generalized to Leavitt path algebras over commutative unital rings by suitably
modifying the statement. To accomplish this, Tomforde introduced the concepts of
basic ideals, basically simple Leavitt path algebras, among other things.

In this article, we continue this study of Leavitt path algebras over commutative
unital rings.We study basic one-sided ideals in these algebras and show, among other
things, that under the condition R has no non-zero nilpotent elements (equivalently, R
is a (commutative) semiprime ring), (1) if v ∈ E0 is a line point, then the left (right)
ideal LR(E)v (resp. vLR(E)) is a minimal basic left (right) ideal and conversely
(Theorem 6), (2) the left (right) ideal LR(E)v (resp. vLR(E)) is a minimal basic left
(right) ideal if and only if vLR(E)v ∼= R (Theorem 5), and (3) for any minimal basic
left ideal LR(E)x , there exists a line point v ∈ E0 such that LR(E)x ∼= LR(E)v
(Theorem 7). We also show that the Leavitt path algebra LR(E) over a commutative
unital ring R is non-degenerate if and only if R has no non-zero nilpotent elements,
that is, R is a (commutative) semiprime ring (Proposition 2) generalizing the result
that the Leavitt path algebra over a field is always non-degenerate. In particular, if
R is a (commutative) semiprime ring, then the Leavitt path algebra over R has no
non-zero nilpotent left, right, or two-sided ideals.

2 Preliminaries and Notation

Throughout this article, a ring will mean a commutative unital ring and a graph will
always mean a directed graph.

A graph with E0 as the set of vertices, E1, the set of edges, and the functions
r, s : E1 → E0 is denoted by E = (E0, E1, r, s). For each edge e ∈ E1, the vertices
s(e) and r(e) are called the source and range of e, respectively. For v ∈ E0, a loop
at v is an edge e for which r(e) = s(e). A vertex which does not receive any edge
is called a source. A vertex which does not emit any edge is called a sink. A vertex
v ∈ E0 such that |s−1(v)| = ∞ is called an infinite emitter. A vertex v which is
either a sink or an infinite emitter is called a singular vertex. A vertex v which is not
a singular vertex is called a regular vertex. A vertex which is both a source and a
sink is called an isolated vertex.

A path μ in a graph E is a finite sequence of edges μ = e1e2 · · · en such that
r(ei ) = s(ei+1) for i = 1, 2, . . . , n − 1. In this case, s(e1) is called the source of μ
(denoted by s(μ)), r(en) is called the range of μ (denoted by r(μ)), and n is called
the length of μ. We view the elements of E0 as paths of length 0. An edge e is an
exit for a path μ = e1e2 · · · en if there exists i such that s(e) = s(ei ) and e �= ei . If
μ = e1e2 . . . en , then we denote the set {s(ei ), r(ei ) : i = 1, 2, . . . , n} by μ0. If μ
is a path such that v = s(μ) = r(μ), then μ is called a closed path based at v. If
r(μ) = s(μ) and s(ei ) �= s(e j ) for every i �= j , then μ is called a cycle. A graph
without any cycles is called acyclic.
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We say that a graph E satisfies condition (NE) if no cycle in E has an exit and
that it satisfies condition (L) if every cycle in E has an exit.

For n ≥ 2, we denote the set of paths of length n by En and the set of all paths
by E∗. We define a relation ≤ on E0 by setting v ≤ w if there is a path μ ∈ E∗ with
s(μ) = v and r(μ) = w. The set T (v) = {w ∈ E0 | v ≤ w} is called the tree of v.

We say that a vertex v ∈ E0 is a bifurcation (or that there is a bifurcation at v) if
v is the source of at least two edges. A vertex v ∈ E0 will be called a line point if
there are neither bifurcations nor cycles at any vertex w ∈ T (v), the tree of v. We
will denote by Pl(E) the set of all line points in E0. We say that a path μ contains
no bifurcations if the set μ0 \ r(μ) contains no bifurcations, that is, if none of the
vertices of the path μ, except perhaps r(μ), is a bifurcation.

A graph is called row-finite if every vertex emits only a finite number of edges.
Note that, a row-finite graph is finite if E0 is finite. Throughout this paper, we will
be using row-finite graphs only.

Given a graph E , the extended graph of E is defined as the graph
Ê = (E0, E1 ∪ (E1)∗, r ′, s ′)where (E1)∗ = {e∗

i : ei ∈ E1} and r ′|E1 = r , r ′(ei ∗) =
s(ei ), s ′|E1 = s and s ′(ei ∗) = r(ei ). The elements of (E1)

∗ are called ghost edges.
Let R be a commutative unital ring and E be a graph. Following Tomforde, we

define a Leavitt E-family to be the set {v, e, e∗ : v ∈ E0, e ∈ E1} in R such that

1. vw = δvwv for all v,w ∈ E0,
2. s(e)e = er(e) = e for all e ∈ E1,
3. r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1,
4. e∗ f = δe f r(e) for all e, f ∈ E1, and
5. v = ∑

e∈s−1(v) ee
∗ for every regular vertex v ∈ E0.

Note that the Condition (2) and Condition (3) can be combined to read s ′(e)e =
er ′(e) = e for all e ∈ E1 ∪ (E1)∗. The conditions (4) and (5) are called Cuntz–
Kreiger relations and are denoted by (CK1) and (CK2), respectively.

The Leavitt path algebra of E with coefficients in R, denoted by LR(E), is defined
as the universal R-algebra generated by a Leavitt E-family.

We remark that if E0 is finite then LR(E) is unital R-algebra with unit as
sum of all the vertices. If E0 is infinite, then LR(E) is an algebra with local
units. Also, LR(E) is a Z-graded algebra with grading induced by degree(vi ) = 0,
degree(ei ) = 1, degree(ei ∗) = −1 for all vi ∈ E0 and ei ∈ E1, that is, LR(E) =⊕

n∈Z LR(E)n , where LR(E)0 = RE0 + A0, LR(E)n = An for n �= 0 and An =∑{rei1ei2 · · · eiσe j1∗e j2∗ · · · e jτ ∗ : σ + τ ≥ 0, eis ∈ E1, e jt
∗ ∈ (E1)

∗
, r ∈ R, σ −

τ = n} for all n.

3 Basic One-Sided Ideals

An ideal I of LR(E) is called basic if whenever 0 �= rv ∈ I for r ∈ R, v ∈ E0, we
have v ∈ I (see [15]). Following this we say that a left ideal I of LR(E) is a basic
left ideal if whenever 0 �= rv ∈ I for r ∈ R \ {0} and v ∈ E0, we have v ∈ I . Basic
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right ideals are defined similarly. A basic left (right) ideal in LR(E) is calledminimal
basic left (resp. right) ideal if it does not contain any non-zero basic left (resp. right)
ideal other than itself.

Example 1 Observe that if R = Z4 and E is the graph

then both

⎛

⎝
Z4 0 0
Z4 0 0
Z4 0 0

⎞

⎠ and

⎛

⎝
Z4 Z4 0
Z4 Z4 0
Z4 Z4 0

⎞

⎠ are basic left ideals of LR(E), whereas the

left ideals

⎛

⎝
2Z4 0 0
2Z4 0 0
2Z4 0 0

⎞

⎠ and

⎛

⎝
2Z4 2Z4 0
2Z4 2Z4 0
2Z4 2Z4 0

⎞

⎠ are not basic. Further, the basic left ideal

⎛

⎝
Z4 0 0
Z4 0 0
Z4 0 0

⎞

⎠ is minimal and the basic left ideal

⎛

⎝
Z4 Z4 0
Z4 Z4 0
Z4 Z4 0

⎞

⎠ is not minimal.

It is clear that every left (right) ideal of a Leavitt path algebra over a field is a
basic left (right) ideal. Further, since v = v · v for any v ∈ E0, the left ideal LR(E)v
contains v. Also, for any 0 �= r ∈ R and any vertex w ∈ E0, w �= v, rw /∈ LR(E)v.
It follows that for any vertex v ∈ E0, the left ideal LR(E)v is a basic left ideal. But
the basic left ideal LR(E)v is not necessarily a minimal basic left ideal.

Example 2 If R = Z4 and E is the graph

then LR(E) = M3(Z4).

Here both LR(E)v1 =
⎛

⎝
Z4 Z4 0
Z4 Z4 0
Z4 Z4 0

⎞

⎠ and LR(E)v2 =
⎛

⎝
0 0 Z4

0 0 Z4

0 0 Z4

⎞

⎠ are basic left

ideals. The left ideal LR(E)v2 is a minimal basic left ideal. The ideal LR(E)v1,
however, is not a minimal basic left ideal as it contains the non-zero basic left ideal⎛

⎝
Z4 0 0
Z4 0 0
Z4 0 0

⎞

⎠. Further, a minimal basic left ideal need not be minimal as a left ideal,

that is, a minimal basic left ideal may contain non-zero non-basic left ideal other than
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the left ideal itself. For example, the left ideal LR(E)v2 above is a minimal basic left

ideal that contains the non-zero left ideal

⎛

⎝
0 0 2Z4

0 0 2Z4

0 0 2Z4

⎞

⎠ which is not basic.

Wealsoobserve that forv1, v2, . . . , vn ∈ E0, the ideal
∑n

i=1 LR(E)vi is also basic.
Further, if v ∈ E0 is not a sink and s−1(v) = {e1, e2, . . . , en}, then by (CK2), v =∑n

i=1 ei ei
∗ and for 1 ≤ i ≤ n, the idempotents ei e∗

i are orthogonal. Thus, LR(E)v =⊕n
i=1 LR(E)ei ei ∗. We, in fact, have the following theorem.

Theorem 1 Let R be a commutative unital ring and E be a graph. If v is a vertex in E
which is not a sink and s−1(v) = {e1, e2, . . . , en}, then LR(E)v = ⊕n

i=1 LR(E)ei ei ∗.
Moreover, if r(ei ) �= r(e j ) for i �= j and r(ei ) = vi , then LR(E)v ∼= ⊕n

i=1 LR(E)vi .

Proof Wehave already shown LR(E)v = ⊕n
i=1 LR(E)ei ei ∗. Now, let r(ei ) �= r(e j )

for i �= j and let r(ei ) = vi . Consider the map φ : LR(E)v → ⊕n
i=1 LR(E)vi

defined by φ(x) = ∑n
i=1 xei . The map φ is clearly an LR(E)-homomorphism

between basic left ideals LR(E)v and
⊕n

i=1 LR(E)vi . Moreover, if φ(x) =∑n
i=1 xei = 0, then

(∑n
i=1 xei

)
r(e j ) = 0 for each j , that is, xe j = 0 for each j .

Thus, xe j e j ∗ = 0 for each j , and hence x = xv = ∑n
i=1 xei ei

∗ = 0. Thus, φ is one-
one. The map φ is also an epimorphism since for xi ∈ LR(E)vi , 1 ≤ i ≤ n, there
exists

∑n
i=1 xi ei

∗ ∈ ⊕n
i=1 LR(E)ei ei ∗ = LR(E)v and φ

(∑n
i=1 xi ei

∗) = ∑n
i=1 xi .

Thus, LR(E)v ∼= ⊕n
i=1 LR(E)vi .

Proposition 1 Let R be a commutative unital ring and E be a graph. If u, v are
vertices in E such that v ∈ T (u) and the path joining u to v contains no bifurcations
then LR(E)u ∼= LR(E)v as basic left L R(E)-modules.

Proof Let μ be a path from u to v. Clearly, μ∗μ = v. Since μ does not contain
any bifurcations, μμ∗ = u. Thus, the right multiplication f given by f (αu) = αuμ
gives a LR(E)-homomorphism from LR(E)u to LR(E)v. Since μμ∗ = u, αuμ = 0
givesαu = 0.Also, forαv ∈ LR(E)v,αvμ∗ = αμ∗u and f (αvμ∗) = αvμ∗μ = αv.
Hence, f is an isomorphism from LR(E)u to LR(E)v. Thus, LR(E)u ∼= LR(E)v as
basic left LR(E)-modules.

4 Minimal Basic Left Ideals Generated by a Vertex

We observed in the previous section that for any vertex v ∈ E0, the left ideal LR(E)v
is a basic left ideal and that this is not necessarily a minimal basic left ideal. We now
give conditions for the ideal LR(E)v to be a minimal basic left ideal.

Theorem 2 Let R be a commutative unital ring and E be a graph. If for u ∈ E0,
T (u) contains some bifurcation then LR(E)u is not a minimal basic left ideal.
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Proof Let v ∈ T (u) be a bifurcation and letμ = e1e2 . . . en be a path from u to v. Let
x ∈ μ0, the set of vertices ofμ, be the first bifurcation in μ. If x = u and f1, f2, . . . fn
are the distinct edges with s( fi ) = u, then LR(E)u = ⊕n

i=1 LR(E) fi fi
∗ giving

LR(E)u is notminimal basic left ideal. If x �= u then x = r(ei ) for some i . Therefore,
the path e1e2 . . . ei from u to x contains no bifurcations. Hence, by Proposition 1,
LR(E)u ∼= LR(E)x as LR(E)-modules. Now the path from x to v has a bifurcation
at x . Thus, as in the case when x = u, LR(E)x is not a minimal basic left ideal. Since
LR(E)u ∼= LR(E)x , LR(E)u is not a minimal basic left ideal.

We next prove that if there is a closed path based at a vertex u in E0 then also
LR(E)u is not minimal basic left ideal. We first prove the following result that is
also of independent interest.

Theorem 3 Let R be a commutative unital ring and E beagraph. If for u ∈ E0, T (u)
has no bifurcations andμ is a closed path based at u then the left ideal L R(E)(μ + u)
is basic.

Proof Observe that for 0 �= r ∈ R, ru �= 0 ([15], Proposition 3.4) and rμ �= 0 ([15],
Proposition 4.9). Since T (u) has no bifurcations, μ is a cycle and μμ∗ = u = μ∗μ.
Clearly, for any vertex v ∈ E0, v �= u and 0 �= r ∈ R, rv /∈ LR(E)(μ + u) for if rv =
α(μ + u) then rv = (rv)v = 0. We show that for 0 �= r ∈ R, ru /∈ LR(E)(μ + u).
If for 0 �= r ∈ R, ru ∈ LR(E)(μ + u) then ru = ∑

i riαi (μ + u)where each αi is a
non-zeromonomial in LR(E) and ri ∈ R.Observe that for each i ,αi �= 0 and r(αi ) =
u = s(αi ). SinceT (u) contains nobifurcations, eachmonomialαi is either a power of
μ or a power of μ∗ or simply u. Consequently, there exists non-negative integersm, n
and si ∈ R for −n ≤ i ≤ m such that p(μ,μ∗) = smμm + sm−1μ

m−1 + · · · + s1μ +
s0u + s−1μ

∗ + · · · + s−n(μ
∗)n and ru = p(μ,μ∗)(μ + u). Since μ∗μ = u = μμ∗,

we get rμn = ruμn = (smμm+n + · · · + s−nu)(μ + u). Since the subalgebra of R-
algebra LR(E) generated by μ and u is isomorphic to R[x], we get a polynomial
q(x) in R[x] such that r xn = q(x)(x + 1) which is not possible as for x = −1,
the right-hand side is 0 but the left-hand side is non-zero. Thus, for 0 �= r ∈ R,
ru /∈ LR(E)(μ + u). Hence, LR(E)(μ + u) is a basic left ideal.

Corollary 1 Let R be a commutative unital ring and E be a graph. If there is some
closed path based at u ∈ E0, then LR(E)u is not a minimal basic left ideal.

Proof Let μ be a closed path based at u such that LR(E)u is a minimal basic left
ideal. By Theorem 2, there does not exist any bifurcation at any vertex of μ. Thus, μ
is a cycle. Since μ + u = (μ + u)u, we have 0 �= LR(E)(μ + u) ⊆ LR(E)u. Since
LR(E)u is aminimal basic left ideal and LR(E)(μ + u) is basic (Theorem3),wehave
LR(E)(μ + u) = LR(E)u. Therefore, u ∈ LR(E)(μ + u) which is a contradiction
as in Theorem 3. Hence, LR(E)u is not a minimal basic left ideal.

Theorem 4 Let R be a commutative unital ring and E be a graph. If u is a vertex
in E such that L R(E)u is a minimal basic left ideal then u is a line point.
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Proof Let v ∈ T (u). If there is a bifurcation at v then, by Theorem 2, LR(E)u is not
a minimal basic left ideal, a contradiction. If there is a cycle based at v then LR(E)v
is not a minimal basic left ideal (Corollary 1). Since LR(E)u is minimal basic left
ideal, by Theorem 2, there does not exist any bifurcations in the unique path joining
u to v. But then, by Proposition 1, LR(E)u ∼= LR(E)v, a contradiction as LR(E)u
is not a minimal basic left ideal. Hence, u is a line point.

Before giving necessary and sufficient conditions for the left ideal LR(E)v to be
a minimal basic left ideal, we recall that an algebra A is said to be non-degenerate if
aAa = 0 for a ∈ A implies a = 0. It is known that the Leavitt path algebra over a
field is non-degenerate ([14], Proposition 1.1). This is not true when we replace the
field with a commutative unital ring. For example, if R = Z4 and E is the graph

then 2v1LR(E)2v1 = 0 and 2v1 �= 0 so that LR(E) is not non-degenerate. In fact if
R is any commutative unital ring that has non-zero nilpotent elements, equivalently,
if R is any commutative semiprime unital ring and E is any graph then the Leavitt
path algebra LR(E) is not non-degenerate, for if r is a non-zero nilpotent element in
R having index of nilpotency 2 and v is any vertex in E then rvLR(E)rv = 0 but
rv �= 0. If R is a commutative unital ring that has no non-zero nilpotent elements,
then LR(E) is, indeed, non-degenerate as is shown in the following proposition.

Proposition 2 Let R be a commutative unital ring and E be a graph. Then theLeavitt
path algebra LR(E) is non-degenerate if and only if R has no non-zero nilpotent
elements, equivalently, R is a (commutative) semiprime ring. In particular, if R is a
commutative ring with no non-zero nilpotent elements, then the Leavitt path algebra
over R has no non-zero nilpotent left, right, or two-sided ideals.

Proof As observed above, if R has non-zero nilpotent elements, then LR(E) is
not non-degenerate. Now let R has no non-zero nilpotent elements. To prove that
LR(E) is non-degenerate, our technique is similar to the one used to prove the
result in the case of a field. We first prove that if a is a homogeneous element in
the Z graded R-algebra LR(E) such that aLR(E)a = 0 then a = 0. Let Z = {z ∈
LR(E) : zL R(E)z = 0}. Then Z is an ideal of LR(E) and for every z ∈ Z and r ∈ R,
r z and z∗ belongs to Z . Further as R has no non-zero nilpotent elements, Z is a basic
ideal. In fact, there does not exist any r ∈ R, v ∈ E0 such that 0 �= rv ∈ Z , for if
0 �= rv ∈ Z then rvLR(E)rv = 0 and hence r2vxv = 0 for all x ∈ LR(E). If E is
finite, then LR(E) is unital, and hence r2v = 0 giving r2 = 0, a contradiction. If E
is not finite, then LR(E) has local units. Therefore, there exists t ∈ LR(E) such that
vt = tv = v. Thus, taking x = t in r2vxv = 0, we get r2v = 0, and hence r2 = 0,
a contradiction again. Clearly, Z does not contain any paths. We now show that Z
does not contain homogeneous elements of any degree.

Let x ∈ LR(E)0 and let xLR(E)x = 0. As observed earlier x �= rv for any vertex
v and r ∈ R. Assume that x is a linear combination of vertices and monomials ab∗,
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where a and b are paths of same positive degree. Since any vertex u that is not a
sink can be replaced with

∑
{e∈E1|s(e)=u} ee∗ (see CK2), we can rewrite x as linear

combination of sinks and monomials ab∗, where a and b are paths of same positive
degree. Let x = x1 + x2, where x1 is a linear combination of sinks and x2 is a linear
combination of zero degree monomials.

Consider a monomial ab∗ appearing in the representation of x2 such that degree
of a is maximum and write a = ea′, b = f b′, where e, f ∈ E1 and a′, b′ are paths
of degree 1 less than the degree of a. Combining all monomials pq∗ in x2 where
p = ea1 and q = f b1, we can write x2 = ex ′ f ∗ + y where 0 �= x ′ ∈ LR(E) and
e∗y f = 0. Since x1 contains only sinks, e∗x1 f = 0. Thus

e∗x f = e∗x1 f + e∗x2 f = e∗x1 f + e∗ex ′ f ∗ f + e∗y f = 0 + x ′ + 0 = x ′.

Since Z is an ideal of LR(E), x ′ = e∗x f is a non-zero element of Z . Applying this
argument recursively to x ′, we get that Z contains a non-zero linear combination of
vertices, which is a contradiction.

Suppose that Z does not contain non-zero homogeneous elements of positive
degree < k. We prove that Z does not contain non-zero homogeneous elements of
degree k. Let 0 �= x ∈ LR(E)k ∩ Z . For any e ∈ E1, we have e∗x ∈ Z and it is a
homogeneous element of degree < k. Therefore, e∗x = 0 for any e ∈ E1. Conse-
quently, vx = 0 for any vertex v such that s−1(v) �= φ. On the other hand, if v is a
vertex such that s−1(v) = φ, then for any e ∈ E1, we have ve = vs(e)e = 0 since
v �= s(e). Thus, vx = 0 for any vertex v and this implies x = 0 since LR(E) has
local units. Also, since LR(E)−n = (LR(E)n)∗, it is clear that LR(E) does not con-
tain non-zero homogeneous elements of negative degree. Therefore, LR(E) does not
contain any homogeneous elements x such that xLR(E)x = 0.

Now let a be any element of LR(E) such that a ∈ Z , that is, aLR(E)a = 0. Since
LR(E) is Z -graded, writing a = aσ1 + aσ2 + · · · + aσn where σ1 < σ2 < · · · < σn

and using aLR(E)a = 0 we get aσn L R(E)aσn = 0 (see Proposition II.1.4 in [13]).
Since aσn is a homogeneous element, we get aσn = 0. Repeating this argument, we
get a = 0. Hence, Z = 0, that is, LR(E) is non-degenerate.

It is, now, not hard to see that if R is a commutative ringwith no non-zero nilpotent
elements then the Leavitt path algebra over R has no non-zero nilpotent left, right,
or two-sided ideals.

Theorem 5 Let R be a commutative unital ring having no non-zero nilpotent ele-
ments, equivalently, R is a commutative semiprime ring and E be a graph. For any
u ∈ E0, L R(E)u is a minimal basic left ideal if and only if uLR(E)u = Ru ∼= R.

Proof Let LR(E)u be a minimal basic left ideal. By Theorem 4, u is a line
point. Therefore, for every v ∈ T (u), there exists only a unique path from u to v.
Also, uLR(E)u = spanR{αβ∗ : r(α) = r(β) and s(α) = s(β) = u}. Since there is
a unique path from u to v for every v ∈ T (u) and r(α) = r(β), it follows that α = β.
SinceT (u)has nobifurcations, and s(α) = u,αα∗ = u. Thus,uLR(E)u = Ru ∼= R.
Conversely, let uLR(E)u = Ru ∼= R. We first prove that for every a ∈ LR(E),
u ∈ LR(E)au. Since R has no non-zero nilpotent elements, LR(E) is non-degenerate



Basic One-Sided Ideals of Leavitt Path Algebras … 163

and hence auLR(E)au �= 0 as au �= 0. Thus, there exists some x ∈ LR(E) such that
uxau �= 0, for if uxau = 0 for all x then auLR(E)au = 0 which is a contradic-
tion. Since 0 �= uxau ∈ uLR(E)u = Ru, we have uxau = ru for some r ∈ R. Since
LR(E)au is a basic left ideal and ru = uxau ∈ LR(E)au, we have u ∈ LR(E)au.
Hence, LR(E)u is a minimal basic left ideal.

Since for any sink u in E0, uLR(E)u = Ru ∼= R, we have the following corollary.

Corollary 2 Let R be a commutative unital ringwith no non-zero nilpotent elements,
equivalently, R is a commutative semiprime ring and E be a graph. If u ∈ E0 is a
sink and v ∈ E0 is a vertex connected to u by a path without bifurcations, then both
LR(E)u and LR(E)v are minimal basic left ideals.

Theorem 6 Let R be a commutative unital ring having no non-zero nilpotent ele-
ments, equivalently, R is a commutative semiprime ring and E be a graph. For any
u ∈ E0, L R(E)u is a minimal basic left ideal if and only if u is a line point in E.

Proof One direction is given by Theorem 4. For the other direction, let u ∈ E0

be a line point. Then for every vertex v ∈ T (u), there is a unique path (say α)
from u to v. Thus, uLR(E)u = spanR{αβ∗ : r(α) = r(β) and s(α) = s(β) = u} =
spanR{αα∗} = Ru. Hence, LR(E)u is a minimal basic left ideal by Theorem 5.

We remark that arguments used to prove the results in this section as well as the
previous section for basic left ideals can be suitably modified to prove similar results
for basic right ideals. Since the conditions “u is a line point” and “uLR(E)u = Ru ∼=
R” are symmetric, we have the following corollary.

Corollary 3 Let R be a commutative unital ring having no non-zero nilpotent ele-
ments, equivalently, R is a commutative semiprime ring and E be a graph and let
u ∈ E0. The following conditions are equivalent:

1. L R(E)u is a minimal basic left ideal,
2. uLR(E) is a minimal basic right ideal,
3. uLR(E)u = Ru ∼= R,
4. u is a line point in E.

Theorem 7 Let R be a commutative unital ring having no non-zero nilpotent ele-
ments, equivalently, R is a commutative semiprime ring and E be a graph. Let
x ∈ LR(E) be such that L R(E)x is a minimal basic left ideal. Then there exists a
line point v in E such that L R(E)x ∼= LR(E)v as basic left L R(E)-modules.

Proof Let x ∈ LR(E) be such that LR(E)x is a minimal basic left ideal. We first
claim that there does not exists any vertex u and a cycle c based at u with no
exits such that y = μ1μ2 . . .μr xν1ν2 . . . νs is a non-zero element in uLR(E)u =
{∑n

i=−m ri ci ; m, n ∈ N and ri ∈ R}. On the contrary, let there exists a vertex u and
a cycle c based at u with no exits such that y = μ1μ2 . . .μr xν1ν2 . . . νs is a non-zero
element in uLR(E)u. The map φ : R[t, t−1] → LR(E) defined by φ(1) = u, φ(t) =
c and φ(t−1) = c∗ is a monomorphism with image uLR(E)u. Thus, uLR(E)u ∼=
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R[t, t−1] as R-algebras. Now since LR(E)y = LR(E)μ1μ2 . . .μr xν1ν2 . . . νs ∼=
LR(E)x , LR(E)y is aminimal basic left ideal of LR(E). Since uLR(E)y is aminimal
basic left ideal of LR(E) contained in uLR(E)u, the preimage 0 �= φ−1(uLR(E)y)
is a minimal basic left ideal of R[t, t−1], a contradiction as R[t, t−1] has no minimal
basic left ideals.

Since there exists a path μ ∈ LR(E) such that xμ is in only real edges and is
non-zero (see Theorem 2.2.11 and Corollary 2.2.12 in [1] and Theorem 5.1 in
[10]), we can assume that x is only in real edges. Then we can write 0 �= x =∑t

i=1 riβi where βi ’s are distinct paths and ri ∈ R. We will use induction on t
to prove that there exists μ1,μ2, . . . ,μr , ν1, ν2, . . . , νs ∈ E0 ∪ E1 ∪ E1∗ such that
0 �= μ1μ2 . . .μr xν1ν2 . . . νs = rv for some r ∈ R and v ∈ E0.

For t = 1,we have 0 �= x = r1β1. Ifβ1 has degree 0 then 0 �= x = rv for some v ∈
E0. If β1 has non-zero degree, that is, x = r1β1 = r1e1e2 . . . en(say) where ei ’s are
edges, then e∗

ne
∗
n−1 . . . e

∗
1r1β1 = e∗

ne
∗
n−1 . . . e

∗
1r1e1e2 . . . en = r1v where v = r(en) =

r(β1) ∈ E0.
Now let the claim holds for any non-zero element which is a R-linear

combination of less than t paths. Let 0 �= x = ∑t
i=1 riβi . We can assume that

deg(βi ) ≤ deg(βi+1) for 1 ≤ i ≤ t . Then 0 �= β∗
1 x = r1β∗

1β1 + ∑t
i=2 riβ

∗
1βi =

r1v + ∑t
i=2 riγi where v = r(β1) and γi = β∗

1βi . If γi = 0 for some i , then applying
induction to β∗

1 x we are done. Let us now assume that γi �= 0 for all i . If some γi
does not start or end in v = r(β1), then applying induction to 0 �= vβ∗

1 x = r1v +∑t
i=2 rivγi or 0 �= β∗

1 xv = r1v + ∑t
i=2 riγiv, we get the result. Now, let us assume

that 0 �= β∗
1 x = r1v + ∑t

i=2 riγi = z (say), where 0 < deg(γ2) < deg(γ3) < · · · <
deg(γt ) and for 2 ≤ i ≤ t , v = r(γi ) = s(γi ) = r(β1). If there exists some path μ′
such thatμ′∗γi = 0 for some i but not for all, then applying induction to 0 �= μ′∗zμ′ =
r1μ′∗vμ′ + ∑t

i=1 riμ
′∗γiμ′ we get the claim. So now let μ′∗γi = 0 for all i . Thus,

γi+1 = γiδi for some path δi . Hence, z = r1v + r2τ1 + r3τ1τ2 + · · · + rtτ1 . . . τt−1,
where each τi starts and finishes in v. If all the paths τi ’s are not identical, then
τ1 �= τi for some i . Hence, 0 �= τ ∗

1 zτi = r1v and we are done. If all the paths
τi ’s are identical, then z is a polynomial in a cycle c = τ1 with an independent
term r1v which is an element of vLR(E)v. But then by what we proved at the
beginning of the proof, c must have an exit. Thus, there exists w ∈ T (v) and two
distinct edges e and f having same source w and such that c = aweb = aeb
for some paths a and b. Let η = a f . Then η∗c = f ∗a∗aeb = f ∗eb = 0. Thus,
η∗zη = r1η∗vη = r1η∗η = r1r(η) = r1r( f ) �= 0 and is scalar multiple of a vertex.

Hence, there always exists μ1,μ2, . . . ,μr , ν1, ν2, . . . , νs ∈ E0 ∪ E1 ∪ (E1)∗ and
r ∈ R such that 0 �= μ1μ2 . . .μr xν1ν2 . . . νs = rv for some v ∈ E0. Thus, rv ∈
LR(E)μ1μ2 . . .μr xν1ν2 . . . νs which is a basic left ideal because it is isomorphic to
LR(E)x . Hence, v ∈ LR(E)μ1μ2 . . .μr xν1ν2 . . . νs . Thus, LR(E)v = LR(E)μ1μ2

. . .μr xν1ν2 . . . νs ∼= LR(E)x . Also, LR(E)v, being isomorphic to LR(E)x , is a min-
imal basic left ideal. Thus, v is a line point.
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On Certain ∗-differential Identities
in Prime Rings with Involution

Abdul Nadim Khan, Shakir Ali , Adnan Abbasi, and Mohammed Ayedh

Abstract The purpose of this paper is to study the ∗-differential identities in prime
rings with involution ∗ which admits a pair of derivations. In particular, if a prime
ring with involution ∗ of the second kind with char(R) �= 2 admits derivations d1
and d2 such that

d1([x, x∗]) + [d2(x), d2(x∗)] ± [x, x∗] ∈ Z(R) for all x ∈ R,

then either R is commutative or dimC RC = 4. Apart from proving some other
results, we provide some examples to show that the hypotheses imposed on our
results are not superfluous.

Keywords Prime ring · Derivation · Involution · ∗-differential identity

1 Introduction

Throughout this article, R will represent an associative ring with center Z(R). An
additive mapping ∗ : R → R is called an involution if ∗ is an anti-automorphism of
order 2, that is, (x∗)∗ = x for all x ∈ R. An element x in a ring with involution is said
to be hermitian if x∗ = x and skew-hermitian if x∗ = −x . The sets of all hermitian
and skew-hermitian elements of R will be denoted by H(R) and S(R), respectively.
A ring equipped with an involution is known as ring with involution or ∗-ring. The
involution is said to be of the first kind if Z(R) ⊆ H(R), otherwise it is said to be
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of the second kind. In the latter case, S(R) ∩ Z(R) �= (0). If R is 2-torsion free then
every x ∈ R can be uniquely represented in the form 2x = h + k, where h ∈ H(R)

and k ∈ S(R). Note that in this case, x is normal, i.e., xx∗ = x∗x if and only if h
and k commute. If all elements in R are normal, then R is called a normal ring. An
example is the ring of quaternions. A description of such rings can be found in [14].

A derivation on R is an additive mapping d : R → R such that d(xy) = d(x)y +
xd(y) for all x, y ∈ R. In last few decades, many algebraists have investigated
commutativity of the ring R through some special types of maps on R. A special
contribution is due to Posner [26], who established the commutativity of a prime ring
R through a nonzero centralizing derivation on R (see also [11]). A growing interest
in this field can be seen in [1, 3, 5–7, 9].

In [15],Herstein proved that a prime ring R of characteristic not twowith a nonzero
derivation d satisfying d(x)d(y) = d(y)d(x) for all x, y ∈ R must be commutative.
Further, Daif [10] showed that if a 2-torsion free semiprime ring R admitting a
derivation d such that d(x)d(y) = d(y)d(x) for all x, y ∈ I , where I is a nonzero
ideal of R and d is nonzero on I , then R contains a nonzero central ideal (see also
[4, 16]).

We say that a map f : R → R preserves commutativity if [ f (x), f (y)] = 0
whenever [x, y] = 0 for all x, y ∈ R. According to [8], let S be a subset of R,
a map f : R → R is said to be strong commutativity preserving (SCP) on S if
[ f (x), f (y)] = [x, y] for all x, y ∈ S. In [6], Bell and Daif investigated the com-
mutativity in rings admitting a derivation which is SCP on a nonzero right ideal.
Precisely, they proved that if a semiprime ring R admits a derivation d satisfying
[d(x), d(y)] = [x, y] for all x, y in a right ideal I of R, then I ⊆ Z(R). In partic-
ular, R is commutative if I = R. Later, Deng and Ashraf [13] proved that if there
exists a derivation d of a semiprime ring R and a map f : I → R defined on a
nonzero ideal I of R such that [ f (x), d(y)] = [x, y] for all x, y ∈ I , then R con-
tains a nonzero central ideal. In particular, they showed that R is commutative if
I = R. Recently, this result was extended to the Lie ideals and symmetric elements
of prime rings by Lin and Liu in [20, 21], respectively. Recently, Ali et al. [2] studied
strong commutativity-preserving problems in the setting of rings with involution.
Many related generalizations of these results can be found in the literature (see for
instance [9, 18, 19, 22, 25]).

Our purpose here is to continue this line of investigation by studying commutativ-
ity criteria for rings with involution admitting a pair of derivations satisfying certain
∗-differential identities in prime rings with involution. In fact, our results extended
and unify several results proved in [23, 24].

2 The Main Results

We begin our discussions with the following known results.
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Lemma 1 (Lemma 2.1, [23]) Let R be a prime ring with involution ∗ of the second
kind. Then [x, x∗] ∈ Z(R) for all x ∈ R if and only if R is commutative.

Lemma 2 (Lemma 2.2, [23]) Let R be a prime ring with involution ∗ of the second
kind. Then x ◦ x∗ ∈ Z(R) for all x ∈ R if and only if R is commutative.

Proposition 1 Let R be a prime ring and d be a nonzero derivation of R. If
[d(x)2, x] ∈ Z(R) for all x ∈ R, then dimC RC = 4.

Proof We have

[d(x)2, x] ∈ Z(R) (1)

for all x ∈ R. This can be rewritten as

[[d(x)2, x], y] = 0 (2)

for all x, y ∈ R. Replacing y by yd(x) in above expression, we get

[[d(x)2, x], y]d(x) + y[[d(x)2, x], d(x)] = 0 (3)

for all x, y ∈ R. From (2), we have

y[[d(x)2, x], d(x)] = 0 (4)

for all x, y ∈ R. Primeness of R forces that

[[x, d(x)2], d(x)] = 0 (5)

for all x ∈ R. In view of [17, Theorem 2.2], we have the required result.

Since [d(x)2, x] = [d(x2), d(x)] for all x ∈ R, so we have the following result:

Corollary 1 Let R be a prime ring and d be a nonzero derivation of R. If
[d(x2), d(x)] ∈ Z(R) for all x ∈ R, then dimC RC = 4.

Theorem 1 Let R be a prime ring with involution ∗ of the second kind such that
char(R) �= 2. If R admits derivations d1 and d2 such that

d1([x, x∗]) + [d2(x), d2(x∗)] ± [x, x∗] ∈ Z(R) for all x ∈ R,

then either R is commutative or dimC RC = 4.

Proof By the assumption, we have

d1([x, x∗]) + [d2(x), d2(x∗)] ± [x, x∗] ∈ Z(R) for all x ∈ R. (6)

We discuss and divide the proof in the following cases.
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Case (i) : If d1 = 0, then we have

[d2(x), d2(x∗)] ± [x, x∗] ∈ Z(R) for all x ∈ R.

Thus, in view of [23, Theorem 3.1], we obtain R is commutative.
Case (ii) : If d2 = 0, then we have

d1([x, x∗]) ± [x, x∗] ∈ Z(R) for all x ∈ R,

which is same as [24, Theorem 2.3], and hence result follows.
Case (iii) : If both d1 and d2 are zero, then in view of Lemma 1, we get R is com-
mutative.
Case (iv) : If neither d1 nor d2 is zero, then the linearization of (6) gives

d1([x, y∗]) + d1([y, x∗]) + [d2(x), d2(y∗)] + [d2(y), d2(x∗)]

± [x, y∗] ± [y, x∗] ∈ Z(R) for all x, y ∈ R. (7)

Replacing y by yh in (7), where h ∈ H(R) ∩ Z(R), we obtain

(d1([x, y∗]) + d1([y, x∗]) + [d2(x), d2(y∗)] + [d2(y), d2(x∗)] (8)

±[x, y∗] ± [y, x∗])h + ([x, y∗] + [y, x∗])d1(h)

+([d2(x), y∗] + [y, d2(x∗)])d2(h) ∈ Z(R) for all x, y ∈ R.

Therefore, with the help of (7), we get

([x, y∗] + [y, x∗])d1(h) + ([d2(x), y∗] + [y, d2(x∗)])d2(h) ∈ Z(R) (9)

for all x, y ∈ R. Taking y by ky in (9), where k ∈ S(R) ∩ Z(R), we obtain

−[x, y∗]kd1(h) + [y, x∗]kd1(h) − [d2(x), y∗]kd2(h)

+ [y, d2(x∗)]kd2(h) ∈ Z(R) for all x, y ∈ R. (10)

Combining (9) and (10) yields that

2([y, x∗]d1(h) + [y, d2(x∗)]d2(h))k ∈ Z(R) for all x, y ∈ R.
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Since char(R) �= 2 and S(R) ∩ Z(R) �= (0), we get

[y, x∗]d1(h) + [y, d2(x∗)]d2(h) ∈ Z(R) for all x, y ∈ R. (11)

Taking y by x∗ in above,we obtain [x∗, d2(x∗)]d2(h) ∈ Z(R) for all x ∈ R. Applying
the primeness of the ring R, we get either [x∗, d2(x∗)] ∈ Z(R) for all x ∈ R or
d2(h) = 0 for all h ∈ H(R) ∩ Z(R). If we consider the case [x∗, d2(x∗)] ∈ Z(R)

for all x ∈ R, thus in view of Posner’s result [26], we get R is commutative. Now
consider the case in which we have d2(h) = 0 for all h ∈ H(R) ∩ Z(R), using it in
(11), we get [y, x∗]d1(h) ∈ Z(R) for all x, y ∈ R, and with the help of primeness
of the ring R, we obtain either [y, x∗] ∈ Z(R) for all x, y ∈ R or d1(h) = 0 for all
h ∈ H(R) ∩ Z(R). If [y, x∗] ∈ Z(R) for all x, y ∈ R, substituting x for y, we get
[x, x∗] ∈ Z(R) for all x ∈ R.Thus, in viewofLemma1,we obtain R is commutative.
If d1(h) = 0 for all h ∈ H(R) ∩ Z(R), this implies that d1(z) = 0 for all z ∈ Z(R).
Now Replacing y by h in (7), we obtain

d1([x, h]) + d1([h, x∗]) + [d2(x), d2(h)] + [d2(h), d2(x
∗)]

± [x, h] ± [h, x∗] ∈ Z(R) for all x ∈ R and h ∈ H(R). (12)

Substituting xk0 for x in (12),where k0 ∈ S(R) ∩ Z(R), and usingd1(z) = d2(z) = 0
for all z ∈ Z(R), we get

(d1([x, h]) − d1([h, x∗]) + [d2(x), d2(h)] − [d2(h), d2(x
∗)]

± [x, h] ∓ [h, x∗])k0 ∈ Z(R) for all x ∈ R, (13)

h ∈ H(R) and k0 ∈ S(R) ∩ Z(R). Combining (13) and (12), we get

2(d1([x, h]) + [d2(x), d2(h)] ± [x, h])k0 ∈ Z(R) for all x ∈ R,

h ∈ H(R) and k0 ∈ S(R) ∩ Z(R). Since char(R) �= 2 and S(R) ∩ Z(R) �= (0), we
obtain

d1([x, h]) + [d2(x), d2(h)] ± [x, h] ∈ Z(R) for all x ∈ R, (14)

h ∈ H(R). Taking h = kk0 in (14), where k0 ∈ S(R) ∩ Z(R), k ∈ S(R), using
d1(z) = d2(z) = 0 for all z ∈ Z(R) and reasoning as above, we get

d1([x, k]) + [d2(x), d2(k)] ± [x, k] ∈ Z(R) (15)

for all x ∈ R and k ∈ S(R). Now consider
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2d1([x, y]) + 2[d2(x), d2(y)] ± 2[x, y] = d1([x, 2y]) ± [x, 2y]
+[d2(x), d2(2y)]

= d1[x, h + k] ± [x, h + k]
+[d2(x), d2(h) + d2(k)]

= d1([x, h]) + d1([x, k]) ± [x, h]
+[d2(x), d2(h)] + [d2(x), d2(k)]
±[x, k].

In view of (14) and (15), we have

2(d1([x, y]) + [d2(x), d2(y)] ± [x, y]) ∈ Z(R) for all x, y ∈ R.

Since char(R) �= 2, the last relation implies that

d1([x, y]) + [d2(x), d2(y)] ± [x, y] ∈ Z(R) for all x, y ∈ R. (16)

Replacing y by x2 in (16), we get [d2(x), d2(x2)] ∈ Z(R) for all x ∈ R. Hence, in
view of Corollary 1, we get the required result.

Corollary 2 (Theorem 3.1, [23]) Let R be a prime with involution ∗ of the second
kind and char(R) �= 2. If R admits a derivation d such that [d(x), d(x∗)] ± [x, x∗] ∈
Z(R) for all x ∈ R, then R is commutative.

Corollary 3 (Theorem 2.3, [24]) Let R be a prime with involution ∗ of the second
kind and char(R) �= 2. If R admits a derivation d such that d([x, x∗]) ± [x, x∗] ∈
Z(R) for all x ∈ R, then R is commutative.

Corollary 4 (Lemma 2.1, [23]) Let R be a prime with involution ∗ of the second
kind and char(R) �= 2. If [x, x∗] ∈ Z(R) for all x ∈ R, then R is commutative.

Theorem 2 Let R be a prime with involution ∗ of the second kind and char(R) �= 2.
If R admit derivations d1 and d2 such that

d1([x, x∗]) + d2(x) ◦ d2(x
∗) ± x ◦ x∗ ∈ Z(R)

for all x ∈ R, then R is commutative.

Proof We have

d1([x, x∗]) + d2(x) ◦ d2(x
∗) ± x ◦ x∗ ∈ Z(R) for all x ∈ R. (17)

Case (i) : If we take d1 = 0, then we have d2(x) ◦ d2(x∗) ± x ◦ x∗ ∈ Z(R) for all
x ∈ R. [Theorem 3.5, [23]] gives us R is commutative.
Case (ii) : If we consider d2 = 0, then (17) becomes d1([x, x∗]) ± x ◦ x∗ ∈ Z(R)

for all x ∈ R. Hence, in view of [Theorem 2.7, [24]], we obtain R is commutative.
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Case (iii) :Taking both d1 and d2 are zero, thenwe have x ◦ x∗ ∈ Z(R) for all x ∈ R.

Lemma 2 implies that R is commutative.
Case (iv) :Consider neither d1 nor d2 are zero. Now taking h for x in (17), we obtain

(d2(h))2 ± h2 ∈ Z(R) for all h ∈ H(R). (18)

Replacing h by h + h1 in (18), where h ∈ H(R) and h1 ∈ H(R) ∩ Z(R), we obtain

(d2(h))2 ± h2 + (d2(h1))
2 ± h1

2 + 2d2(h)d2(h1) ± 2hh1 ∈ Z(R)

for all h ∈ H(R) and h1 ∈ H(R) ∩ Z(R). Application of (18) yields that

2d2(h)d2(h1) ± 2hh1 ∈ Z(R) for all h ∈ H(R) and h1 ∈ H(R) ∩ Z(R).

Since char(R) �= 2, which yields

d2(h)d2(h1) ± hh1 ∈ Z(R) for all h ∈ H(R) and h1 ∈ H(R) ∩ Z(R).

This implies that

[d2(h), r ]d2(h1) ± [h, r ]h1 = 0 for all r ∈ R, h ∈ H(R) (19)

and h1 ∈ H(R) ∩ Z(R). Replacing r by d2(h) in (19), we obtain

[h, d2(h)]h1 = 0 for all h ∈ H(R).

By the hypotheses, we have

[d2(h), h] = 0 for all h ∈ H(R). (20)

Linearization of (20) gives

[d2(h), h′] + [d2(h′), h] = 0 for all h, h′ ∈ H(R). (21)

Substituting kk0 for h′ in (21) where k ∈ S(R) and k0 ∈ S(R) ∩ Z(R), we obtain

[d2(h), k]k0 + [d2(k), h]k0 + [k, h]d2(k0) = 0 (22)

for all h ∈ H(R) and k ∈ S(R). Now replacing h by kk0 in (20), we get

[d2(k), k]k02 = 0 for all k ∈ S(R) and k0 ∈ S(R) ∩ Z(R). (23)

Since S(R) ∩ Z(R) �= (0), the above relation reduces to

[d2(k), k] = 0 for all k ∈ S(R). (24)



174 A. N. Khan et al.

Replacing k by k + k1 in (24), we get

[d2(k), k1] + [d2(k1), k] = 0 for all k, k1 ∈ S(R). (25)

Substituting hk0 for k1, where k0 ∈ S(R) ∩ Z(R) in (25), we obtain

[d2(k), h]k0 + [d2(h), k]k0 + [h, k]d2(k0) = 0 (26)

for all h ∈ H(R) and k ∈ S(R) and k0 ∈ S(R) ∩ Z(R). Combining (22) and (26),
we obtain

2([d2(k), h] + [d2(h), k])k0 = 0 for all h ∈ H(R), k ∈ S(R) and

k0 ∈ S(R) ∩ Z(R). This implies that

[d2(k), h] + [d2(h), k] = 0 for all h ∈ H(R) and k ∈ S(R). (27)

Consider 4[d2(x), y] = [d2(2x), 2y] = [d2(h + k), h + k] = [d2(h), h] + [d2(k), k]
+[d2(k), h] + [d2(h), k] = 0. By the application of (20), (24) and (27), we get
4[d2(x), y] = 0 for all x, y ∈ R. Since char(R) �= 2 implies that [d2(x), y] = 0 for
all x, y ∈ R. Hence, R is commutative by Posner’s [26] result.

Corollary 5 (Theorem 3.5, [23]) Let R be a prime with involution ∗ of the second
kind and char(R) �= 2. If R admits a derivation d such that d(x) ◦ d(x∗) ± x ◦ x∗ ∈
Z(R) for all x ∈ R, then R is commutative.

Corollary 6 (Theorem 2.7, [24]) Let R be a prime with involution ∗ of the second
kind and char(R) �= 2. If R admits a derivation d such that d([x, x∗]) ± x ◦ x∗ ∈
Z(R) for all x ∈ R, then R is commutative.

Corollary 7 (Lemma 2.1, [23]) Let R be a prime with involution ∗ of the second
kind and char(R) �= 2. If x ◦ x∗ ∈ Z(R) for all x ∈ R, then R is commutative.

Theorem 3 Let R be a prime with involution ∗ of the second kind and char(R) �= 2.
If R admits derivations d1 and d2 such that

[d1(x), d1(x∗)] + d2(x) ◦ d2(x
∗) ± [x, x∗] ∈ Z(R)

for all x ∈ R, then R is commutative.

Proof In view of our hypotheses, we have

[d1(x), d1(x∗)] + d2(x) ◦ d2(x
∗) ± [x, x∗] ∈ Z(R) for all x ∈ R. (28)

Case (i) : If we take d1 = 0, then we have d2(x) ◦ d2(x∗) ± [x, x∗] ∈ Z(R) for all
x ∈ R. [Theorem 3.8, [23]] gives us R is commutative.
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Case (ii) : If we consider d2 = 0, then (28) becomes [d1(x), d1(x∗)] ± [x, x∗] ∈
Z(R) for all x ∈ R. This follows from case (i) of Theorem 1; from there, we obtain
R is commutative.
Case (iii) : If both d1 and d2 are zero, then we have [x, x∗] ∈ Z(R) for all x ∈ R.

Lemma 1 implies that R is commutative.
Case (iv) : Let both d1 and d2 be nonzero. Taking h for x in (28), we get

(d2(h))2 ∈ Z(R) for all h ∈ H(R). (29)

Substituting h + h1 in (29) where h ∈ H(R) and h1 ∈ H(R) ∩ Z(R), we have

(d2(h))2 + (d2(h1))
2 + d2(h)d2(h1) ∈ Z(R) for all h ∈ H(R) and

h1 ∈ H(R) ∩ Z(R). Application of (29) yields

d2(h)d2(h1) ∈ Z(R) for all h ∈ H(R) and h1 ∈ H(R) ∩ Z(R). (30)

This can be further written as [d2(h), r ]d2(h1) = 0 for all r ∈ R, h ∈ H(R) and h1 ∈
H(R) ∩ Z(R). Using the primeness of R, we get either [d2(h), r ] = 0 for all r ∈ R,
h ∈ H(R)ord2(h1) = 0 for allh1 ∈ H(R) ∩ Z(R). Ifwe consider the [d2(h), r ] = 0
for all r ∈ R, h ∈ H(R), which is same (20), follow the same line of proof, we get
R is commutative. Consider d2(h1) = 0 for all h1 ∈ H(R) ∩ Z(R), which implies
that d2(z) = 0 for all z ∈ Z(R). Linearization of (28) yields that

[d1(x), d1(y∗)] + d2(x) ◦ d2(y
∗) ± [x, y∗] + [d1(y), d1(x∗)]

+ d2(y) ◦ d2(x
∗) ± [y, x∗] ∈ Z(R) (31)

for all x, y ∈ R. Replacing y by yk in (31), where k ∈ S(R) ∩ Z(R), and using
d2(z) = 0 for all z ∈ Z(R), we get

−[d1(x), d1(y∗)]k − (d2(x) ◦ d2(y
∗))k ∓ [x, y∗]k + [d1(y), d1(x∗)]k ± [y, x∗]k

+ (d2(y) ◦ d2(x
∗)k − [d1(x), y∗]d1(k) + [y, d1(x∗)]d1(k) ∈ Z(R) (32)

for all x, y ∈ R and k ∈ S(R) ∩ Z(R). Combining (31) and (32), we obtain

−[d1(x), y∗]d1(k) + 2[d1(y), d1(x∗)]k + [y, d1(x∗)]d1(k)

+ 2(d2(y) ◦ d2(x
∗))k ± 2[y, x∗]k ∈ Z(R) (33)

for all x, y ∈ R and k ∈ S(R) ∩ Z(R). Again repeating the same step for (33) and
combining it with (33), we get

− 2[d1(x), y∗]kd1(k) − 2[y, d1(x∗)]kd1(k) ∈ Z(R) for all x, y ∈ R (34)
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and k ∈ S(R) ∩ Z(R). Replacing y by yk in (34) and combining it with (34), we
obtain 4[y, d1(x∗)]k2d1(k) ∈ Z(R) for all x, y ∈ R. This yields [y, d1(x∗)]d1(k) ∈
Z(R) for all x, y ∈ R and S(R) ∩ Z(R) �= (0). Primeness of the ring R implies
that [y, d1(x∗)] ∈ Z(R) for all x, y ∈ R or d1(k) = 0 for all k ∈ S(R) ∩ Z(R). If
[y, d1(x∗)] ∈ Z(R) for all x, y ∈ R, then R is commutative. Now consider d1(k) = 0
for all k ∈ S(R) ∩ Z(R). This reduces (32) into

−[d1(x), d1(y∗)]k − (d2(x) ◦ d2(y
∗))k ∓ [x, y∗]k + [d1(y), d1(x∗)]k

+ (d2(y) ◦ d2(x
∗)) ± [y, x∗]k ∈ Z(R) for all x, y ∈ R and (35)

k ∈ S(R) ∩ Z(R). In view of (35) and (31), we have

2([d1(y), d1(x∗)] + d2(y) ◦ d2(x
∗) ± [y, x∗])k ∈ Z(R) for all x, y ∈ R.

This implies

[d1(y), d1(x∗)] + d2(y) ◦ d2(x
∗) ± [y, x∗] ∈ Z(R) for all x, y ∈ R. (36)

Taking x∗ for y in (36), we obtain

(d2(x))
2 ∈ Z(R) for all x ∈ R. (37)

Replacing x by x + y, we get

(d2(x))
2 + (d2(y))

2 + d2(x) ◦ d2(y) ∈ Z(R)

for all x, y ∈ R. Application of (37) yields d2(x) ◦ d2(y) ∈ Z(R) for all x, y ∈ R.

Taking x∗ for y in last relation gives d2(x) ◦ d2(x∗) ∈ Z(R) for all x ∈ R. Therefore,
in view of [Theorem 3.5, [23]], we get the required conclusion.

Corollary 8 (Theorem 3.8, [23]) Let R be a prime with involution ∗ of the second
kind and char(R) �= 2. If R admits derivations d1 and d2 such that d2(x) ◦ d2(x∗) ±
[x, x∗] ∈ Z(R) for all x ∈ R, then R is commutative.

Corollary 9 (Theorem 3.1, [23]) Let R be a prime with involution ∗ of the second
kind and char(R) �= 2. If R admits derivations d1 and d2 such that [d2(x), d2(x∗)] ±
[x, x∗] ∈ Z(R) for all x ∈ R, then R is commutative.

Corollary 10 (Lemma 2.1, [23]) Let R be a prime with involution ∗ of the second
kind and char(R) �= 2. If ±[x, x∗] ∈ Z(R) for all x ∈ R, then R is commutative.

Theorem 4 Let R be a prime with involution ∗ of the second kind and char(R) �= 2.
If R admits derivations d1 and d2 such that
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d1(x ◦ x∗) + [d2(x), d2(x∗)] ± x ◦ x∗ ∈ Z(R)

for all x ∈ R, then R is commutative.

Proof We have

d1(x ◦ x∗) + [d2(x), d2(x∗)] ± x ◦ x∗ ∈ Z(R) for all x ∈ R. (38)

Case (i) : Consider d1 = 0, then we have [d2(x), d2(x∗)] ± x ◦ x∗ ∈ Z(R) for all
x ∈ R. In view of [Theorem 3.8, [23]], we get the required result.
Case (ii) : If d2 = 0, then d1(x ◦ x∗) ± x ◦ x∗ ∈ Z(R) for all x ∈ R. In view of
[Theorem 2.5, [24]], we get R is commutative.
Case (iii) : If both d1 and d2 are zero, then by Lemma 2, R is commutative.
Case (iv) : Assume that d1 �= 0 and d2 �= 0 and substitute h for x in (38), where
h ∈ H(R), we get

2(d1(h
2) ± h2) ∈ H(R) for all h ∈ Z(R).

Since char(R) �= 2, this implies that

d1(h
2) ± h2 ∈ H(R) for all h ∈ Z(R).

This can be further written as

[d1(h2), h2] = 0 for all h ∈ Z(R).

[d1(h)h, h2] + [hd1(h), h2] = 0 for all h ∈ R.

[d1(h), h2]h + h[hd1(h), h2] = 0 for all h ∈ R. (39)

Taking h + h0 in (39), where h0 ∈ H(R) ∩ Z(R), and using (39), we get

2[d1(h), h2]h0 + 4[d1(h), h]h20 + 2[d1(h)]hh0 + 2h[d1(h), h]h0 = 0

for all h ∈ H(R) and h0 ∈ H(R) ∩ Z(R). This implies that

2[d1(h), h2] + 4[d1(h), h]h0 + 2[d1(h)]h + 2h[d1(h), h] = 0. (40)

Again replacing h by h + h0 in (40) where h0 ∈ H(R) ∩ Z(R) and by application
of (40), we obtain

8[d1(h), h]h0 = 0 for all h ∈ H(R) and h0 ∈ H(R) ∩ Z(R).

This implies that [d1(h), h] = 0 for all h ∈ H(R), which is same as (20). So the
result is done from Theorem 2.
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Corollary 11 (Theorem 3.8, [23]) Let R be a prime with involution ∗ of the second
kind and char(R) �= 2. If R admits derivations d1 and d2 such that d2(x) ◦ d2(x∗) ±
[x, x∗] ∈ Z(R) for all x ∈ R, then R is commutative.

Corollary 12 (Theorem 2.7, [24]) Let R be a prime with involution ∗ of the second
kind and char(R) �= 2. If R admits derivation d1 such that d1(x ◦ x∗) ± [x, x∗] ∈
Z(R) for all x ∈ R, then R is commutative.

Corollary 13 (Lemma 2.1, [23]) Let R be a prime with involution ∗ of the second
kind and char(R) �= 2. If ±[x, x∗] ∈ Z(R) for all x ∈ R, then R is commutative.

Theorem 5 Let R be a prime with involution ∗ of the second kind and char(R) �= 2.
If R admits two derivations d1 and d2 such that

d1(x ◦ x∗) + d2(x) ◦ d2(x
∗) ± [x, x∗] ∈ Z(R)

for all x ∈ R, then R is commutative.

Proof Following the same approach as above, we get the required assertion.

In the end, let us write an example which shows that the restriction of the second
kind of involution in our main results is not superfluous.

Example 1 Let R =
{(

a1 a2
a3 a4

) ∣∣∣ a1, a2, a3, a4 ∈ R

}
with center Z(R) ={(

a1 0
0 a1

) ∣∣∣ a1 ∈ R

}
.Definemappingsd1, d2 : R −→ R and∗ : R −→ R such that

d1

(
a1 a2
a3 a4

)
=

(
0 a2

−a3 0

)
, d2

(
a1 a2
a3 a4

)
=

(
0 −a2
a3 0

)
,

(
a1 a2
a3 a4

)∗
=

(
a4 −a2

−a3 a1

)
.

It can be easily verified that the involution ∗ is of the first kind and R is a prime ring.
Moreover, d1, d2 are nonzero derivations and the identities of various Theorems 2,
3, 4 and 5 are satisfied. However, R is not commutative. Hence, the hypothesis of
second kind of involution is crucial in our results.

We conclude the manuscript with the following example which reveals that our
theorems cannot be extended to semiprime rings.

Example 2 Let (R, ∗) and d1, d2 be same as in Example 1 and R′ = C, the ring
of complex numbers. Define involution on R′ by conjugate of complex number.
Construct a new ring A = R × R′ with component-wise addition and multiplica-
tion. It is clear that A is a semiprime ring with char(R) �= 2. Defining a map α on
A as follows α(x, y) = (x∗, y), it can be easily checked that α is a second kind of
involution. Now define derivations D1 and D2 on A by D1(x, y) = (d1(x), 0) and
D2(x, y) = (d2(x), 0), respectively, and are satisfying the requirements of our theo-
rems. Note that R is not commutative. Hence, the primeness hypotheses in our results
is not superfluous.
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On b-Generalized Derivations in Prime
Rings

Mohammad Salahuddin Khan

Abstract Let R be a noncommutative prime ring with extended centroid C and
I a nonzero ideal of R. If R admits a b-generalized derivation G which satisfies
[G(x), y]k = G(x ◦k y) or G(x) ◦k y = x ◦k y for all x, y ∈ I , where k is a fixed
positive integer, then there exists λ ∈ C such that G(x) = λx for all x ∈ R.

Keywords b-generalized derivation · Derivation · Ideal · Prime ring

1 Introduction and Notations

In all that follows, unless specially stated, R always denotes an associative ring
with center Z(R). A ring R is called prime if aRb = (0) (where a, b ∈ R) implies
a = 0 or b = 0. We denote by Q maximal right ring of quotient of R and C
is the center of Q which is called the extended centroid of R; see [6, Chap. 2]
for more details. As usual, the symbols [x, y] and x ◦ y will denote the com-
mutator xy − yx and anti-commutator xy + yx , respectively. Given x, y ∈ R, set
[x, y]1 = xy − yx and inductively [x, y]k = [[x, y]k−1, y] for k > 1. Note that

Engel condition is a polynomial [x, y]k =
k∑

i=0
(−1)i

(
k
i

)

yi xyk−i in noncommuta-

tive indeterminates x, y and [x + y, z]k = [x, z]k + [y, z]k .For anti-commutator, set
x ◦0 y = x, x ◦1 y = xy + yx and inductively x ◦k y = (x ◦k−1 y) ◦ y for k > 1.

Anadditivemappingd : R → R is said to be aderivationof R ifd(xy) = d(x)y +
xd(y) for all x, y ∈ R. An additive mapping G : R → R is called a generalized
derivation of R if there exists a derivation d of R such that G(xy) = G(x)y +
xd(y) for all x, y ∈ R. Obviously, any derivation is a generalized derivation, but
the converse is not true in general. A significative example is a map of the form
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F(x) = ax + xb for some a, b ∈ R; such generalized derivations are called inner.
Over the last few decades, several authors have studied prime and semiprime rings
with generalized derivations (viz.; [1–3, 7, 9, 13] and references therein).

In a recent paper [11], Koşan and Lee proposed the following definition. Let
d : R → Q be an additive mapping and b ∈ Q. An additive map G : R → Q
is called a left b-generalized derivation, with associated mapping d, if G(xy) =
G(x)y + bxd(y) for all x, y ∈ R. In the same paper, it is proved that, if R is prime
ring, then d is a derivation of R. For simplicity of notation, this mapping G will be
called b-generalized derivation with associated pair (b, d). Clearly, any generalized
derivation with associated derivation d is a b-generalized derivation with associ-
ated pair (1, d). Similarly, the mapping x �→ ax + b[x, c], for a, b, c ∈ Q, is an
b-generalized derivation with associated pair (b, ad(c)), where ad(c)(x) = [x, c]
denotes the inner derivation of R induced by the element c. More generally, the map-
ping x �→ ax + qxc, for a, q, c ∈ Q, is a b-generalized derivation with associated
pair (q, ad(c)). This mapping is called inner b-generalized derivation. In this paper,
we characterize b-generalized derivations of prime rings. Precisely, we prove that if a
prime ring R admits a b-generalized derivation G such that [G(x), y]k = G(x ◦k y)
for all x, y ∈ I , where I is a nonzero ideal of R and k is a fixed positive integer, then
there exists λ ∈ C such that G(x) = λx for all x ∈ R.

2 The Results

Let R be a prime ring. Then Q is a prime ring and C is a field. Let Q ∗C C{X} be the
free product of Q and the free algebra C{X} over C on an infinite set X of indeter-
minates. Elements of Q ∗C C{X} are called generalized polynomials and a typical
element inQ ∗C C{X} is a finite sumofmonomials of the formαai0x j1ai1x j2 · · · x jn ain
where α ∈ C, aik ∈ Q and x jk ∈ X. We say that R satisfies a nonzero generalized
polynomial identity (abbreviated as GPI) if there exists a nonzero generalized poly-
nomial φ(xi ) ∈ Q ∗C C{X} such that φ(ri ) = 0 for all ri ∈ R.

Let V be a right vector space over a field F and let End(VF ) denote the ring of
F-linear transformations on V . A subring R of End(VF ) is said to be dense if given
any finitely many F-independent vi ∈ V and arbitrary wi ∈ V, where 1 ≤ i ≤ n,
there exists a ∈ R such that avi = wi for all 1 ≤ i ≤ n.

We begin with the following lemmas which are essential for developing the proof
of our main results.

Lemma 1 Let R be a noncommutative prime ring, I a nonzero ideal of R and
a ∈ Q. If [axm, yn]k − a(xm ◦k yn) = 0 for all x, y ∈ I, where m, n, k are fixed
positive integers, then a ∈ C.

Proof By the assumption, we have

[axm, yn]k − a(xm ◦k yn) = 0 for all x, y ∈ I (1)
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and hence for all x, y ∈ R by [6, Theorem 6.4.4]. Suppose on the contrary that a /∈ C.
Then ψ(x, y) = [axm, yn]k − a(xm ◦k yn) is a nontrivial generalized polynomial
identity (GPI) for R and hence for all x, y ∈ Q by [6, Theorem 6.4.4]. Let F be the
algebraic closure of C if C is infinite and set F = C for C finite. Clearly, the map
r ∈ Q �−→ r ⊗ 1 ∈ Q ⊗C F gives a ring embedding. By [14, Proposition], Q ⊗C F
is a prime ring with F as its extended centroid. Thus, Q = Q ⊗C F is a prime ring
satisfying a nonzeroGPIψ(x, y) and its extended centroid F is either an algebraically
closed field or a finite field. By Martindale’s theorem [6, Theorem 6.1.6], Q is
isomorphic to a dense subring of End(VD), where V is a right vector space over a
division ring D and D is a finite-dimensional central division algebra over F . Recall
that F is either algebraically closed or finite. From the finite-dimensionality of D over
F , it follows that D = F . Hence, Q is isomorphic to a dense subring of End(VF ).
Assume first dimVF = 1; then Q is commutative and hence R is commutative, a
contradiction.

Assume next that dimVF ≥ 2. By [5, Lemma 7.1], there exists v ∈ V such that
v and av are linearly independent over F . By the density of R, there exist x, y ∈ R
such that xv = v, yv = 0, yav = av. Therefore, from (1), we have

0 = ([axm, yn]k − a(xm ◦k yn))v

=
k∑

i=0

(−1)i
(
k
i

)

yniaxm yn(k−i)v − a(xm ◦k yn)v

= (−1)k ynkaxmv = (−1)k ynkav

= (−1)kav,

which gives a contradiction. This completes the proof of lemma.

For m = n = 1, we have the following corollary.

Corollary 1 Let R be a noncommutative prime ring, I a nonzero ideal of R and
a ∈ Q. If [ax, y]k − a(x ◦k y) = 0 for all x, y ∈ I , where k is a fixed positive integer,
then a ∈ C.

Similarly, we can prove the following lemma.

Lemma 2 Let R be a noncommutative prime ring, I a nonzero ideal of R and a ∈ Q.

If ((axm) ◦k yn) − (xm ◦k yn) = 0 for all x, y ∈ I, where m, n, k are fixed positive
integers, then a ∈ C.

In particular, for m = n = 1, we get the following corollary.

Corollary 2 Let R be a noncommutative prime ring, I a nonzero ideal of R and
a ∈ Q. If ((ax) ◦k y) − (x ◦k y) = 0 for all x, y ∈ I, where k is a fixed positive
integer, then a ∈ C.

Now we are in a position to state our first main result of this paper.
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Theorem 1 Let R be a noncommutative prime ring, I a nonzero ideal of R and
b ∈ Q. If R admits a nonzero b-generalized derivation G associated with the map d
such that [G(x), y]k = G(x ◦k y) for all x, y ∈ I , where k is a fixed positive integer,
then there exists λ ∈ C such that G(x) = λx for all x ∈ R.

Proof Suppose first that b 
= 0. By [11, Theorem 2.3], d : R → Q is a derivation
and there exists a′ ∈ Q such that G(x) = a′x + bd(x) for all x ∈ R. It is known that
d can be uniquely extended to a derivation of Q [12, Lemma 2]. By the assumption,
we have

[G(x), y]k = G(x ◦k y) for all x, y ∈ I. (2)

If d = 0, then [a′x, y]k = a′(x ◦k y) for all x, y ∈ I and hence for all x, y ∈ Q by
[6, Theorem 6.4.4]. In view of Corollary1, we get a′ ∈ C , so proof is done.

Assume now that d 
= 0. We divide the proof into two cases.
Case 1. d is Q-inner. That is, there exists c′ ∈ Q such that d(x) = [c′, x] for all

x ∈ R. So G(x) = a′x + bd(x) = a′x + b[c′, x] = ax + bxc for all x ∈ R, where
a = a′ + bc′ and c = −c′. By (2), we have

[ax + bxc, y]k − a(x ◦k y) − b(x ◦k y)c = 0 for all x, y ∈ I. (3)

Since I , R and Q satisfy the same polynomial identities [6, Theorem6.4.4], therefore,
[ax + bxc, y]k = a(x ◦k y) + b(x ◦k y)c for all x, y ∈ Q. If c ∈ C , then d = 0 as
c = −c′ ∈ C and G(x) = λx for all x ∈ R, we get the required form of G. Now we
assume that c /∈ C . Letϕ(x, y) = [ax + bxc, y]k − a(x ◦k y) − b(x ◦k y)c. Clearly,
if c /∈ C, then by (3), ϕ(x, y) is a nonzero GPI of Q. Let F be the algebraic closure
of C if C is infinite and set F = C for C finite. Clearly, the map r ∈ Q �→ r ⊗ 1 ∈
Q ⊗C F gives a ring embedding. So we may assume Q is a subring of Q ⊗C F. By
[14, Proposition], ϕ(x, y) is also a nonzero GPI of Q ⊗C F. Moreover, in view of
[8, Theorem 3.5], Q ⊗C F is a prime ring with F as its extended centroid. Thus,
Q = Q ⊗C F is a prime ring that satisfies a nonzero GPI ϕ(x, y), and its extended
centroid F is either an algebraically closed field or a finite field. By Martindale’s
Theorem [6, Theorem 6.1.6], Q is a primitive ring having nonzero socle with F
as its associated division ring. Moreover, Q is a dense subring of End(VF ), where
V is a vector space over F. If dimVF = 1, then Q is commutative and hence R is
commutative, a contradiction. So dimVF ≥ 2. Assume first that dimVF = 2, then
by [5, Lemma 7.1], there exists v ∈ V such that v and cv are linearly independent
over F . So bv = vα + cvβ for some α,β ∈ F . Since b 
= 0, clearly α,β are not all
zero. Using the density of R, there exist x, y ∈ R such that xv = 0, yv = 0, xcv =
v, ycv = v + cv. Then (x ◦k y)v = 0 and (x ◦k y)cv = v. Therefore, from (3), we
have
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0 = ([ax + bxc, y]k − a(x ◦k y) − b(x ◦k y)c)v

=
k∑

i=0

(−1)i
(
k
i

)

yi (ax + bxc)yk−iv − a(x ◦k y)v − b(x ◦k y)cv

= (−1)k yk(ax + bxc)v − bv

= (−1)k ykbv − bv = (−1)k yk(vα + cvβ) − (vα + cvβ)

= (−1)kvβ − vα + {
(−1)k − 1

}
cvβ,

which leads a contradiction.
Now if dimVF ≥ 3, then by [5, Lemma 7.1], there exists v ∈ V such that v and cv

are linearly independent over F . Suppose if bv ∈ spanF {v, cv}, then using the same
arguments as we have used above, we get a contradiction. Now, if bv /∈ spanF {v, cv},
then v, cv, bv are linearly independent over F . By the density of R, there exist x, y ∈
R such that xv = 0, yv = 0, xcv = v, ycv = 0 and ybv = bv.Then (x ◦k y)v = 0
and (x ◦k y)cv = 0. From (3), we have

0 = ([ax + bxc, y]k − a(x ◦k y) − b(x ◦k y)c)v

=
k∑

i=0

(−1)i
(
k
i

)

yi (ax + bxc)yk−iv − a(x ◦k y)v − b(x ◦k y)cv

= (−1)k yk(ax + bxc)v

= (−1)k ykbv = (−1)kbv,

which gives again a contradiction.
Case 2. d is not Q-inner. We have from (2)

[a′x + bd(x), y]k − a′(x ◦k y) − bd(x ◦k y) = 0 (4)

for all x, y ∈ I and thus for all x, y ∈ R [12, Theorem 2]. This can be written as

[a′x + bd(x), y]k = a′(x ◦k y) + b
k∑

i=0

(
k
i

)

yid(x)yk−i

+b
k−1∑

i=0

(
k
i

)

yi x

(
∑

r+s=k−i−1

yrd(y)ys
)

+b
k∑

i=1

(
k
i

) (
∑

r+s=i−1

yrd(y)ys
)

xyk−i .

Applying Kharchenko’s theorem [10], we obtain
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[a′x + bz1, y]k = a′(x ◦k y) + b
k∑

i=0

(
k
i

)

yi z1y
k−i

+b
k−1∑

i=0

(
k
i

)

yi x

(
∑

r+s=k−i−1

yr z2y
s

)

+b
k∑

i=1

(
k
i

) (
∑

r+s=i−1

yr z2y
s

)

xyk−i

for all x, y, z1, z2 ∈ R and hence for all x, y, z1, z2 ∈ Q by [6, Theorem 6.4.4]. In
particular, choosing u /∈ C and taking z1 = [u, x], z2 = [u, y] in the above expres-
sion, we get

[a′x + b[u, x], y]k = a′(x ◦k y) + b
k∑

i=0

(
k
i

)

yi [u, x]yk−i

+b
k−1∑

i=0

(
k
i

)

yi x

(
∑

r+s=k−i−1

yr [u, y]ys
)

+b
k∑

i=1

(
k
i

) (
∑

r+s=i−1

yr [u, y]ys
)

xyk−i

= a′(x ◦k y) + b[u, x ◦k y].

This can be rewritten as

[ax + bxc, y]k − a(x ◦k y) − b(x ◦k y)c = 0 for all x, y ∈ R, (5)

where a = a′ + bu and c = −u. In view of (3) and (5), since c = −u /∈ C , the proof
is completed by Case 1.

Suppose b = 0. Then G(xy) = G(x)y for all x, y ∈ R. By [4, Lemma 2.3], there
is a ∈ Q such thatG(x) = ax for all x ∈ R. In this case, from (2), we have [ax, y]k =
a(x ◦k y) for all x, y ∈ R. Therefore, in view of Corollary1, a ∈ C . This completes
the proof of theorem.

Corollary 3 Let R be a noncommutative prime ring, I a nonzero ideal of R and
b ∈ Q. If R admits a nonzero b-generalized derivation G associated with the map
d such that [G(x), y] = G(x ◦ y) for all x, y ∈ I , then there exists λ ∈ C such that
G(x) = λx for all x ∈ R.

Theorem 2 Let R be a noncommutative prime ring, I a nonzero ideal of R and
b ∈ Q. If R admits a nonzero b-generalized derivation G associated with the map
d such that G(x) ◦k y = x ◦k y for all x, y ∈ I , where k is a fixed positive integer,
then there exists λ ∈ C such that G(x) = λx for all x ∈ R.
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Proof Suppose first that b 
= 0. By [11, Theorem 2.3], d : R → Q is a derivation d
and there exists a′ ∈ Q such that G(x) = a′x + bd(x) for all x ∈ R. It is known that
d can be uniquely extended to a derivation of Q [12, Lemma 2]. By the assumption,
we have

G(x) ◦k y = x ◦k y for all x, y ∈ I. (6)

If d = 0, then (a′x) ◦k y = x ◦k y for all x, y ∈ I and hence for all x, y ∈ Q by [6,
Theorem 6.4.4]. Application of Corollary2 yields that a′ ∈ C and hence the proof is
done.

Assume now that d 
= 0. We divide the proof into two cases.
Case 1. d is Q-inner. That is, there exists c′ ∈ Q such that d(x) = [c′, x] for all

x ∈ R. So G(x) = a′x + bd(x) = a′x + b[c′, x] = ax + bxc for all x ∈ R, where
a = a′ + bc′ and c = −c′. By (2), we have

((ax + bxc) ◦k y) − (x ◦k y) = 0 for all x, y ∈ I. (7)

In view of [6, Theorem 6.4.4], we have ((ax + bxc) ◦k y) − (x ◦k y) = 0
for all x, y ∈ Q. If c ∈ C , then d = 0 as c = −c′ ∈ C and G(x) = λx for all x ∈ R
this proving the theorem. Now we assume that c /∈ C . Let φ(x, y) = ((ax + bxc) ◦k
y) − (x ◦k y). Clearly, if c /∈ C, then φ(x, y) is a nonzero GPI of R by (7). So we
conclude that φ(x, y) is a nonzero GPI of Q. Let F be the algebraic closure ofC ifC
is infinite and set F = C for C finite. Clearly, the map r ∈ Q �→ r ⊗ 1 ∈ Q ⊗C F
gives a ring embedding. Sowemay assume Q is a subring of Q ⊗C F.By [14, Propo-
sition], φ(x, y) is also a nonzero GPI of Q ⊗C F.Moreover, in view of [8, Theorem
3.5], Q ⊗C F is a prime ring with F as its extended centroid. Thus, Q = Q ⊗C F
is a prime ring satisfies a nonzero GPI φ(x, y), and its extended centroid F is either
an algebraically closed field or a finite field. By Martindale’s Theorem [6, Theorem
6.1.6], Q is a primitive ring having nonzero socle with F as its associated division
ring. Moreover, Q is a dense subring of End(VF ), where V is a vector space over F.
If dimVF = 1, then Q is commutative and hence R is commutative, a contradiction.
So dimVF ≥ 2. Assume first that dimVF = 2, then by [5, Lemma 7.1], there exists
v ∈ V such that v and cv are linearly independent over F . So bv = vα + cvβ for
some α,β ∈ F . If β = 0, then we have bv = vα and hence

[b, x]v = bxv − xbv = b(xv) − x(bv) = xvα − xvα = 0 for all x ∈ R.

This implies that [b, x]V = (0) for all x ∈ R, and since V is faithful, it follows that
[b, x] = 0 for all x ∈ R. Thus, b ∈ Z(R). In this case by using the density of R,
there exist x, y ∈ R such that xv = 0, yv = v, xcv = v. Hence, from (7), we have

0 = (((ax + bxc) ◦k y) − (x ◦k y))v
= ((ax + bxc) ◦k y)v − (x ◦k y)v
= 2kbv,



188 M. S. Khan

a contradiction as b 
= 0. So, if β 
= 0, then again using the density of R, there exist
x, y ∈ R such that xv = 0, yv = 0, xcv = v, ycv = cv. Therefore, from (7),

0 = (((ax + bxc) ◦k y) − (x ◦k y))v
= ((ax + bxc) ◦k y)v − (x ◦k y)v
= cvβ,

which leads a contradiction.
Now if dimVF ≥ 3, then by [5, Lemma 7.1], there exists v ∈ V such that v and cv

are linearly independent over F . Suppose if bv ∈ spanF {v, cv}, then using the same
arguments as we have used above, we get a contradiction. Now, if bv /∈ spanF {v, cv},
then v, cv, bv are linearly independent over F . By the density of R, there exist
x, y ∈ R such that xv = 0, yv = 0, xcv = v, ycv = cv and ybv = cv. So, ((ax +
bxc) ◦k y)v = cv, (x ◦k y)v = 0. Then, from (7), we have

0 = (((ax + bxc) ◦k y) − (x ◦k y))v
= ((ax + bxc) ◦k y)v − (x ◦k y)v
= cv,

which gives again a contradiction.
Case 2. d is not Q-inner. We have from (6)

((a′x + bd(x)) ◦k y) − (x ◦k y) = 0 (8)

for all x, y ∈ I and thus for all x, y ∈ R [12, Theorem 2]. Applying Kharchenko’s
theorem [10], we obtain

(a′x + bz) ◦k y = x ◦k y

for all x, y, z ∈ R and hence for all x, y, z ∈ Q. Choosing u /∈ C and taking z =
[u, x] in the above expression, we get (a′x + b[u, x]) ◦k y = x ◦k y for all x, y ∈ Q.

This implies that

((ax + bxc) ◦k y) − (x ◦k y) = 0 for all x, y ∈ R, (9)

where a = a′ + bu and c = −u. In view of (7) and (9), since c = −u /∈ C , the proof
is completed by Case 1.

Suppose b = 0. Then G(xy) = G(x)y for all x, y ∈ R. By [4, Lemma 2.3], there
is a ∈ Q such that G(x) = ax for all x ∈ R. From (6), we have (ax) ◦k y = x ◦k y
for all x, y ∈ R. Application of Corollary2 yields that a ∈ C . Thereby the proof is
completed.

Corollary 4 Let R be a noncommutative prime ring, I a nonzero ideal of R and
b ∈ Q. If R admits a nonzero b-generalized derivation G associated with the map
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d such that G(x) ◦ y = x ◦ y for all x, y ∈ I , then there exists λ ∈ C such that
G(x) = λx for all x ∈ R.
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Commutativity of ∗-Prime Rings with
Generalized Derivations on ∗-Jordan
Ideals

Deepak Kumar and Bharat Bhushan

Abstract The purpose of this paper is to find commutativity conditions in
∗-prime rings with generalized derivations, where ′∗′ is involution of the second
kind. More specifically, it is shown that if a 2-torsion free ∗-prime ringR with invo-
lution of the second kind satisfies any of the following assertions: (i) [F (α), α∗] ∈
Z(R), (ii) F (α) ◦ (α∗) ∈ Z(R), (iii) F (α) ◦ d(α∗) ± α ◦ α∗ ∈ Z(R) and (iv)
[F (α), d(α∗)] ± α ◦ α∗ ∈ Z(R), where F is a generalized derivation associated
with a derivation d such that d is commuting with ∗ and α varies over a nonzero
∗-Jordan ideal of R, then R is commutative.

Keywords ∗-prime rings · Generalized derivations · Involution

1 Introduction

In this paper, R denotes an associative ring with center Z(R). For any α, β ∈ R,
commutator (resp. anti-commutator) is defined as [α, β] = αβ − βα (resp. α ◦ β =
αβ + βα). A ringR is said to be a n-torsion free, where n is a positive integer, if for
any α ∈ R, nα = 0 implies α = 0. An anti-automorphism of order two is called an
involution ′∗′. A ringR equipped with an involution ′∗′ is called ∗-ring. An ideal I of
∗-ring is called a ∗-ideal if I ∗ = I . An additive subgroup J of ringR is called Jordan
ideal if α ◦ r ∈ J ∀ α ∈ J , r ∈ R. A Jordan ideal J of ∗-ring is called ∗-Jordan
ideal if J ∗ = J . An element α ∈ R is a symmetric (resp. skew symmetric) element
if α∗ = α (resp. α∗ = −α). The sets of symmetric and skew symmetric elements are
denoted by H(R) and S(R), respectively. The set Sa∗(R) = {α ∈ R | α∗ = ±α}
is the collection of all symmetric and skew symmetric elements. An involution ′∗′ is
said to be of the first kind if Z(R) ⊆ H(R) and otherwise it is of the second kind.
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Thus, in an involution of the second kind, we have Z(R) ∩ S(R) 	= {0}. A ∗-ring is
called ∗-prime ring if αRβ = αRβ∗ = {0} implies either α = 0 or β = 0.

An additive map d : R → R is called a derivation if d(αβ) = d(α)β + αd(β) ∀
α, β ∈ R. A map Ix : R → R defined as Ix (α) = [x, α], where x is any fixed ele-
ment inR, is an example of derivation known as inner derivation. For fixed elements
x, y ∈ R, a map Ix,y : R → R defined as Ix,y(α) = xα + αy is a generalized inner
derivation. Motivated by it, the notion of a generalized derivation was introduced by
Bres̆ar [2] as follows: an additivemapF : R → R is called a generalized derivation
associated with a derivation d if F (αβ) = F (α)β + αd(β) ∀ α, β ∈ R. A deriva-
tion d is called commuting with ∗ if d(α∗) = (d(α))∗ ∀ α ∈ R.

Amap f is called commuting (resp. centralizing) on a set S if [ f (α), α] = 0 (resp.
[ f (α), α] ∈ Z(R)) ∀ α ∈ S. Motivated by the commuting and centralizing map-
pings, Ali and Dar [1] defined ∗-centralizing and ∗commuting mappings as follows:
amap f is called ∗-centralizing (resp. ∗-commuting) on a set S if [ f (α), α∗] ∈ Z(R)

(resp. [ f (α), α∗] = 0) ∀ α ∈ S and proved that in a 2-torsion free noncommu-
tative prime ring R with involution of the second kind, there exists no nonzero
derivation d : R → R such that d is ∗-centralizing on R. There has been a lot of
work done in ∗−prime rings to find conditions that finally imply commutativity of
rings with the help of derivations (see [5–8]). For any prime ring R with involu-
tion of second kind in Nejjar et al., [4] obtained the commutativity of rings if it
satisfy any of the following conditions (i) d(α) ◦ d(α∗) ± α ◦ α∗ ∈ Z(R) and (ii)
d(α) ◦ d(α∗) ± [α, α∗] ∈ Z(R) ∀ α ∈ R. In 2019, Mamouni et al. [3] proved that
for any prime ring R with involution of second kind and J is a Jordan ideal of R,

ifF (α ◦ β) ∈ Z(R) ∀ α, β ∈ J, whereF is a generalized derivation, thenR must
be a commutative.

In this paper, we continue the line of investigation and study the commutativ-
ity of ∗-prime rings satisfying certain differential identities involving generalized
derivations acting on ∗-Jordan ideals.

2 Auxiliary Lemmas

Since it is well-known that the center of a prime ring has no proper zero-divisor, this
statement is not true in ∗-prime rings. The following example justifies that the center
of a ∗-prime ring is not free from the proper zero-divisors.

Example 1 LetR =
{(

α 0
0 β

)
|α, β ∈ Z

}
, whereZ is the set of integers. Amap ∗ :

R → R is defined as

(
α 0
0 β

)∗
=

(
β 0
0 α

)
. It is easy to verify thatR is a commutative

∗-prime ring. For any nonzero α,

(
α 0
0 0

)
∈ Z(R) and 0 	= β,

(
0 0
0 β

)
∈ R, we have
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(
α 0
0 0

)(
0 0
0 β

)
=

(
0 0
0 0

)
. It shows that the center of ∗-prime ringR is not free from

proper zero-divisors.

As a matter of fact, we now find a certain subset of the center of a ∗-prime ring
which is indeed free from proper zero-divisors.

Lemma 1 Let R be a ∗-prime ring. Then Sa∗(R) ∩ Z(R) has no proper zero-
divisor.

Proof Let t ∈ Sa∗(R) ∩ Z(R) be a zero-divisor. Then there exists some 0 	= r ∈ R
such that tr = 0. We have r ts = 0 for all s ∈ R. Since t ∈ Z(R), it gives that

tRr = {0}. (1)

As tr = 0 implies (r t)∗ = 0, that is, t∗r∗ = 0 implies ±tr∗ = 0. Therefore, we
conclude that

tRr∗ = {0}. (2)

From (1) and (2), ∗-primeness of R yields that t = 0. Hence, Sa∗(R) ∩ Z(R) has
no proper zero-divisor.

Lemma 2 Let R be a 2-torsion free ∗-prime ring and I be a nonzero ∗-ideal.
If I ⊆ Z(R), then R is commutative.

Proof By the given hypothesis, we find [α, r ] = 0 ∀ α ∈ I, r ∈ R. Replace α by
αs, where s ∈ R, to get α[s, r ] = 0. Replacing α by tα, where t ∈ R, we have
tα[s, r ] = 0. Replace t by t∗ to obtain t∗α[s, r ] = 0 ∀ α ∈ I, r, s, t ∈ R. Applica-
tion of [7, Lemma 1] yields the desired result.

Lemma 3 LetR be a 2-torsion free ∗-prime ring with involution of the second kind
and I be a nonzero ∗-ideal. If [α, α∗] ∈ Z(R) ∀ α ∈ I , then R is commutative.

Proof Polarize given hypothesis to obtain

[[α, β∗], α] + [[β, α∗], α] = 0 ∀ α, β ∈ I. (3)

Replace β by β∗ in (3) to get

[[α, β], α] + [[β∗, α∗], α] = 0. (4)

Replacing β by βα in (4) and using it, we conclude

[[α, β], α]α − α∗[[α, β], α] + [α∗, α][β∗, α∗] = 0 ∀ α, β ∈ I. (5)

Substituting βα in place of β in (5) and using it, we conclude

− [α∗, α][β∗, α∗]α + [α∗, α]α∗[β∗, α∗] = 0. (6)
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Replace α by α∗ and β by β∗ in (6) to obtain

[α, α∗]([β, α]α∗ − α[β, α]) = 0 ∀ α, β ∈ I. (7)

Replacing β by βα in (7) and using it, we conclude

[α, α∗][β, α][α, α∗] = 0. (8)

Since [α, α∗]∗ = [α, α∗] and by the given hypothesis, we have [α, α∗] ∈ Z(R). Thus,
[α, α∗] ∈ Sa∗(R) ∩ Z(R). Replace β by α∗ in (8) to find [α, α∗]3 = 0 ∀ α ∈ R. By
application of Lemma1, we conclude [α, α∗] = 0 ∀ α ∈ R. Replace α by k + h,

where k ∈ S(R) ∩ I, h ∈ H(R) ∩ I , to obtain

[h, k] = 0. (9)

Replace k by α − α∗, where α ∈ I , in (9) to obtain

[h, α − α∗] = 0 ∀ α ∈ I, h ∈ H(R) ∩ I. (10)

For any 0 	= kc ∈ S(R) ∩ Z(R), replace k by kc(α + α∗) in (9) to get

[h, α + α∗]kc = 0 ∀α ∈ I, h ∈ H(R). (11)

As 0 	= kc ∈ Sa∗(R) ∩ Z(R), from Lemma1 in (11), we conclude

[h, α + α∗] = 0 ∀ α ∈ I, h ∈ H(R) ∩ I. (12)

Add (10) and (12) to get

[h, α] = 0 ∀ α ∈ I, h ∈ H(R) ∩ I. (13)

For any β ∈ I , replacing h by β + β∗ in above equation and using similar arguments,
we conclude [α, β] = 0 ∀ α, β ∈ I . Replace β by rβ, where r ∈ R to get [α, rβ] =
0. It implies [α, r ]β = 0 ∀ α, β ∈ I, r ∈ R. Replace β by sβ, where s ∈ R to get
[α, r ]sβ = 0. Replace β by β∗ to get [α, r ]sβ∗ = 0 ∀ α, β ∈ I, r, s ∈ R. From ∗-
primeness of R and I 	= {0}, we conclude [α, r ] = 0 ∀ α ∈ I, r ∈ R. Thus, R is
commutative by Lemma2.

Lemma 4 LetR be a 2-torsion free ∗-prime ring with involution of the second kind
and I be a nonzero ∗-ideal. If α ◦ α∗ ∈ Z(R) ∀ α ∈ I, then R is commutative.

Proof First let
α ◦ α∗ = 0 ∀ α ∈ I. (14)

Polarize (14) to obtain
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α ◦ β∗ + β ◦ α∗ = 0 ∀ α, β ∈ I. (15)

Replace β by βkc, where kc ∈ S(R) ∩ Z(R), to obtain

(−α ◦ β∗ + β ◦ α∗)kc = 0. (16)

As 0 	= kc ∈ Sa∗(R) ∩ Z(R), by Lemma1 in (16), we find

− (α ◦ β∗) + β ◦ α∗ = 0 ∀ α, β ∈ I. (17)

Add (15) and (17) to get
β ◦ α∗ = 0 ∀ α, β ∈ I. (18)

Replace α by α∗ and β by βr, where r ∈ R, in (18) to get β[r, α] = 0. Replacing β

by βs, where s ∈ R, we get βs[r, α] = 0. Replace β by β∗ to obtain β∗s[r, α] = 0.
From ∗-primeness of R and I 	= 0, we have I ⊆ Z(R). Thus, Lemma2 gives the
desired result.

If α ◦ α∗ 	= 0, then there exists 0 	= z ∈ I ∩ Z(R). By the given hypothesis, we
have

α ◦ α∗ ∈ Z(R) ∀ α ∈ I. (19)

Polarize (19) to obtain

α ◦ β∗ + β ◦ α∗ ∈ Z(R) ∀ α, β ∈ I. (20)

Replace β by z in (20) to get

[αz∗ + α∗z, r ] = 0 ∀ α ∈ I, r ∈ R. (21)

Replace α by αkc, where 0 	= kc ∈ S(R) ∩ Z(R), to conclude

[−αz∗ + α∗z, r ]kc = 0. (22)

As 0 	= kc ∈ Sa∗(R) ∩ Z(R), using application of Lemma1 in (22), we find

[−αz∗ + α∗z, r ] = 0 ∀ α ∈ I, r ∈ R. (23)

Add (21) and (23) to obtain

[2α∗z, r ] = 0 ∀ α ∈ I, r ∈ R. (24)

Replace r by rs, where s ∈ R, in (24) to obtain

[α∗, r ]sz = 0 ∀ α ∈ I, r, s ∈ R. (25)
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Subtract (23) from (21) to obtain

[α, r ]z∗ = 0 ∀ α ∈ I, r ∈ R. (26)

Replace α by α∗ and r by rs in (26) to obtain

[α∗, r ]sz∗ = 0 ∀ α ∈ I, r, s ∈ R. (27)

From (25) and (27), ∗-primeness ofR, we conclude I ⊆ Z(R). Thus,R is commu-
tative by Lemma2.

Lemma 5 LetR be a 2-torsion free ∗-prime ring with involution of the second kind.
If d(h) = 0 ∀ h ∈ H(R) ∩ Z(R), then d(z) = 0 ∀ z ∈ Z(R).

Proof By the given hypothesis, we have d(h) = 0 ∀ h ∈ H(R) ∩ Z(R). For
any 0 	= t ∈ Sa∗(R) ∩ Z(R) implies t2 ∈ H(R) ∩ Z(R). Thus, d(t2) = 0 which
implies 2d(t)t = 0. Using Lemma1, we have d(t) = 0 ∀ t ∈ Sa∗(R) ∩ Z(R). For
any z ∈ Z(R), we have 2z = z + z∗ + z − z∗. It implies d(2z) = d(z + z∗) + d(z −
z∗) = 0. Using 2-torsion free condition, we have d(z) = 0 ∀ z ∈ Z(R).

Lemma 6 Let R be a 2-torsion free ∗-prime ring. If F : R → R is a nonzero
generalized derivation associated with a derivation d such that d is commuting
with ∗ and I is a nonzero ∗-ideal. If [F (α), β] ∈ Z(R) ∀ α, β ∈ I, then R is a
commutative ring.

Proof Replacing β by β2 in given hypothesis and using it, we conclude that
2[F (α), β]β ∈ Z(R). It implies β[F (α), β] ∈ Z(R) for all α, β ∈ I . Now for
any s ∈ R, we have sβ[F (α), β] = β[F (α), β]s. By the given hypothesis,
we have sβ[F (α), β] = βs[F (α), β]. So [s, β][F (α), β] = 0 ∀ α, β ∈ I, s ∈ R.
Replace s by F (α) in last equation to obtain [F (α), β]2 = 0 ∀ α, β ∈ I . Since
we have [F (α), β] ∈ Z(R), we conclude [F (α), β]R[F (α), β][F (α), β]∗ =
0. We have ([F (α), β][F (α), β]∗)∗ = [F (α), β][F (α), β]∗. From ∗-primeness
of R, we conclude either [F (α), β] = 0 or [F (α), β][F (α), β]∗ = 0. Sup-
pose [F (α), β][F (α), β]∗ = 0. Thereby using [F (α), β] ∈ Z(R) implies
[F (α), β]R[F (α), β]∗ = 0. From the equation [F (α), β]2 = 0, we conclude
[F (α), β]R[F (α), β] = 0. From ∗-primeness of R, we have [F (α), β] =
0 ∀ α, β ∈ I . Replacing α by αβ in last expression and using it, we conclude
[α, β]d(β) + α[d(β), β] = 0 ∀ α, β ∈ I . Thereby replacing α by rα, where r ∈ R,
we have [r, α]βd(α) = 0 ∀ α, β ∈ I, r ∈ R. Thence by [8, Lemma 2.2], we con-
clude d(r) = 0 ∀ r ∈ R. Replace α by αr where r ∈ R in [F (α), β] = 0 to obtain
F (α)[r, β] = 0 ∀ α, β ∈ I, r ∈ R. Replacing r by sr, we obtain F (α)s[r, β] =
0 ∀ α, β ∈ I, r, s ∈ R. Replace r by r∗ and β by β∗ to obtain F (α)s[r, β]∗ =
0 ∀ α, β ∈ I, r, s ∈ R. From ∗-primeness of R, nonzero generalized derivation,
we compute I ⊆ Z(R). Thus, R is commutative by Lemma2.
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3 Main Results

Theorem 1 Let R be a 2-torsion free ∗-prime ring with involution of the second
kind. IfF : R → R is a nonzero generalized derivation associatedwith a derivation
d such that d is commuting with ∗ and I is a nonzero ∗-ideal inR, then the following
assertions are equivalent:

(1) [F (α), α∗] ∈ Z(R) ∀ α ∈ I ;
(2) F (α) ◦ (α∗) ∈ Z(R) ∀ α ∈ I ;
(3) R is commutative.

Proof It is obvious that ifR is commutative, then (1) and (2) hold. We need to prove
(1)⇒ (3) and (2)⇒ (3).

First, we prove (1) ⇒ (3). By the given hypothesis, we have

[F (α), α∗] ∈ Z(R) ∀ α ∈ I. (28)

Polarize (28) to obtain

[F (α), β∗] + [F (β), α∗] ∈ Z(R) ∀ α, β ∈ I. (29)

Replace β by βhc, where hc ∈ H(R) ∩ Z(R), in (29) to get

[F (α), β∗]hc + [F (β), α∗]hc + [β, α∗]d(hc) ∈ Z(R). (30)

From (29) and (30), we conclude

[[β, α], r ]d(hc) = 0 ∀ α, β ∈ I, r ∈ R, hc ∈ H(R) ∩ Z(R). (31)

Using d(α∗) = (d(α))∗ and h∗
c = hc, we have d(hc)∗ = d(h∗

c) = d(hc). Thus,
d(hc) ∈ Sa∗(R) as hc ∈ Z(R) implies d(hc) ∈ Z(R). It implies d(hc) ∈ Sa∗(R) ∩
Z(R). Let there exists hc ∈ H(R) ∩ Z(R) such that d(hc) 	= 0. Using Lemma1 in
(31),we conclude [[β, α], r ] = 0 ∀ α, β ∈ I, r ∈ R. Replaceβ byα∗.ByLemma3,
we conclude R is commutative. In case d(hc) = 0 ∀ hc ∈ H(R) ∩ Z(R). From
Lemma5, we have d(t) = 0 ∀ t ∈ Z(R). Replace β by βt, where t ∈ Z(R), in (29)
to obtain

[F (α), β∗]t∗ + [F (β), α∗]t ∈ Z(R) ∀ α, β ∈ I, t ∈ Z(R). (32)

Using (29) and (32), we conclude

[F (α), β](t∗ − t) ∈ Z(R) ∀ α, β ∈ I, t ∈ Z(R).

It implies

[[F (α), β], r ](t∗ − t) = 0 ∀ α, β ∈ I, r ∈ R, t ∈ Z(R). (33)
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As R is a ring with involution of the second kind. So, there exists some t ∈ Z(R)

such that 0 	= t − t∗ ∈ Sa∗(R) ∩ Z(R). Using Lemma1 in (33), we conclude

[F (α), β] ∈ Z(R) ∀ α, β ∈ I. (34)

From (34), Lemma6, we find R is a commutative.
(2) ⇒ (3)
From given condition, we have

F (α) ◦ α∗ ∈ Z(R) ∀ α ∈ I. (35)

Polarize (35) to obtain

F (α) ◦ β∗ + F (β) ◦ α∗ ∈ Z(R) ∀ α, β ∈ I. (36)

Replacing β by βhc, where hc ∈ H(R) ∩ Z(R), in (36) and using it, we conclude

(β ◦ α∗)d(hc) ∈ Z(R).

It implies

[β ◦ α∗, r ]d(hc) = 0 ∀ α, β ∈ I, r ∈ R, hc ∈ H(R) ∩ I. (37)

Since, d(hc)∗ = d(h∗
c) = d(hc). It implies d(hc) ∈ Sa∗(R) ∩ Z(R). If there exists

hc ∈ H(R) ∩ Z(R) such that d(hc) 	= 0, then application of Lemma1 in (37)
provides [β ◦ α∗, r ] = 0 ∀ α, β ∈ I, r ∈ R. Replacing β by α and thereby from
Lemma4, we concludeR is commutative. In case d(hc) = 0 ∀ hc ∈ Z(R) ∩ H(R).
From Lemma5, we have d(t) = 0 ∀ t ∈ Z(R). Replace β by βkc, where 0 	= kc ∈
S(R) ∩ Z(R), in (36) to get

(−F (α) ◦ β∗ + F (β) ◦ α∗)kc ∈ Z(R).

It implies

[−F (α) ◦ β∗ + F (β) ◦ α∗, r ]kc = 0 ∀ α, β ∈ I, r ∈ R, kc ∈ S(R) ∩ Z(R).

(38)
As 0 	= kc ∈ S(R) ∩ Z(R), using Lemma1 in (38), we obtain

[−F (α) ◦ β∗ + F (β) ◦ α∗, r ] = 0 ∀ α, β ∈ I, r ∈ R. (39)

Compare (36) and (39) to obtain

[F (α) ◦ β∗, r ] = 0 ∀ α, β ∈ I, r ∈ R. (40)

It implies
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F (α) ◦ β ∈ Z(R) ∀ α, β ∈ I. (41)

As β ∈ I , F (α) ◦ β ∈ I . We divide the prove into following two parts:
Case 1: If F (α) ◦ β 	= 0, then there exists 0 	= z ∈ I ∩ Z(R). Replace β by z in
(40) to obtain

[F (α), r ]z = 0 ∀ α ∈ I, r ∈ R. (42)

Replacing r by rs in (42) and using it, we conclude

[F (α), r ]sz = 0 ∀ α ∈ I, r, s ∈ R. (43)

As 0 	= z ∈ Z(R) ∩ I implies 0 	= z∗ ∈ Z(R) ∩ I . Replace β by z∗ in (40) and use
similar arguments to obtain

[F (α), r ]sz∗ = 0 ∀ α ∈ I, r, s ∈ R. (44)

From (43) and (44), ∗-primeness ofR, we conclude [F (α), r ] = 0 ∀ α ∈ I, r ∈ R.
Thus, by Lemma6, we have the desired result.
Case 2: If F (α) ◦ β = 0, then replace β by βr, where r ∈ R in F (α) ◦ β = 0 to
obtain

(F (α) ◦ β)r + β[r,F (α)] = 0.

It implies
β[r,F (α)] = 0 ∀ α, β ∈ I, r ∈ R. (45)

Replace β by βs, where s ∈ R in (45) to get

βs[r,F (α)] = 0 ∀ α, β ∈ I, r, s ∈ R. (46)

Replace β by β∗ in (46) to obtain

β∗s[r,F (α)] = 0 ∀ α, β ∈ I, r, s ∈ R. (47)

From (46) and (47), ∗-primeness ofR, and I 	= 0,we conclude [F (α), r ] = 0 ∀ α ∈
I , r ∈ R. Therefore, R is commutative by Lemma6.

Theorem 2 Let R be a 2-torsion free ∗-prime ring with involution of the second
kind. IfF : R → R is a generalized derivation associated with a derivation d such
that d is commuting with ∗ and I is a nonzero ∗-ideal of R, then the following
assertions are equivalent:

(1) F (α) ◦ d(α∗) − α ◦ α∗ ∈ Z(R) ∀ α ∈ I ;
(2) F (α) ◦ d(α∗) + α ◦ α∗ ∈ Z(R) ∀ α ∈ I ;
(3) R is commutative.
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Proof Clearly, if R is commutative, then (1) and (2) hold. We need to prove (1)⇒
(3) and (2)⇒ (3).

If d = 0, then ±α ◦ α∗ ∈ Z(R) ∀ α ∈ I . Therefore, R is commutative by
Lemma4. So, we take d 	= 0. First, we prove (1)⇒ (3). By the given hypothesis,
we have

F (α) ◦ d(α∗) − α ◦ α∗ ∈ Z(R) ∀ α ∈ I. (48)

Polarize (48) to obtain

F (α) ◦ d(β∗) + F (β) ◦ d(α∗) − α ◦ β∗ − β ◦ α∗ ∈ Z(R) ∀ α, β ∈ I. (49)

Replacing β by βhc, where hc ∈ Z(R) ∩ H(R), in (49) and using it, we conclude

[F (α) ◦ β∗ + β ◦ d(α∗), r ]d(hc) = 0 ∀ α, β ∈ I, r ∈ R. (50)

Since, we have d(hc)∗ = d(h∗
c) = d(hc). Therefore, Lemma1 implies either d(hc) =

0 ∀ hc ∈ H(R) ∩ Z(R) or [F (α) ◦ β∗ + β ◦ d(α∗), r ] = 0 ∀ α, β ∈ I, r ∈ R.
Let d(hc) = 0 ∀ hc ∈ Z(R) ∩ H(R). Application of Lemma5 implies d(t) =
0 ∀ t ∈ Z(R). Replace β by βt, where t ∈ Z(R), in (49) to obtain

F (α) ◦ (d(β∗)t∗) + (F (β)t) ◦ d(α∗) − α ◦ (β∗t∗) − (βt) ◦ α∗ ∈ Z(R).

It implies

(F (α) ◦ d(β∗) − α ◦ β∗)t∗ + (F (β) ◦ d(α∗) − β ◦ α∗)t ∈ Z(R) ∀ α, β ∈ I, t ∈ Z(R).

(51)
From (49) and (51), we have

(F (α) ◦ d(β∗) − α ◦ β∗)(t∗ − t) ∈ Z(R) ∀ α, β ∈ I, t ∈ Z(R).

It implies

[F (α) ◦ d(β∗) − α ◦ β∗, r ](t∗ − t) = 0 ∀ α, β ∈ I, t ∈ Z(R), r ∈ R. (52)

AsR is a ringwith involution of the second kind. So, there exists some t ∈ Z(R) such
that 0 	= t − t∗ ∈ Sa∗(R) ∩ Z(R). Therefore, using Lemma1 in (52), we conclude
[F (α) ◦ d(β∗) − α ◦ β∗, r ] = 0 ∀ α, β ∈ I, , r ∈ R. Replace β by β∗ and α by αγ

to obtain
F (αγ ) ◦ d(β) − (αγ ) ◦ β ∈ Z(R) ∀ α, β, γ ∈ I. (53)

As α, β, γ ∈ I , we have (F (α)γ + αd(γ )) ◦ d(β) − (αγ ) ◦ β ∈ I ∩ Z(R). We
divide the prove into following two parts:
Case 1: If F (αγ ) ◦ d(β) − (αγ ) ◦ β 	= 0, then there exists some 0 	= t ∈ I ∩
Z(R). Replacing β by t in (53) and thereby using d(Z(R)) = {0}, we con-
clude [αγ, r ]t = 0 ∀ α, γ ∈ I , r ∈ R. Replace r by rs, where s ∈ R to obtain
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[αγ, r ]st = 0 ∀ α, γ ∈ I , r, s ∈ R. Replacing β by t∗ in (53) and using similar argu-
ments, we conclude [αγ, r ]st∗ = 0 ∀ α, γ ∈ I , r, s ∈ R. From ∗-primeness of R,
we have [αγ, r ] = 0 ∀ α, γ ∈ I , r ∈ R. It implies [α, r ]γ + α[γ, r ] = 0. Replac-
ing α by sα, where s ∈ R, we conclude [s, r ]αγ = 0. Since I is ∗-Ideal. It implies
[s, r ]αγ ∗ = 0 ∀ α, γ ∈ I , r, s ∈ R. From ∗-primeness of R and [7, Lemma 1], we
concludeR is commutative or I = 0. Latter case is not possible. Thus, we have the
result.
Case 2: IfF (αγ ) ◦ d(β) − (αγ ) ◦ β = 0, then we have

(F (α)γ + αd(γ )) ◦ d(β) − ((αγ ) ◦ β) = 0 ∀ α, β, γ ∈ I. (54)

It implies that

(F (α) ◦ d(β))γ + F (α)[γ, d(β)] + (α ◦ d(β))d(γ ) + α[d(γ ), d(β)] − (α ◦ β)γ

−α[γ, β] = 0. (55)

Replace γ by γ s, where s ∈ R, in above equation to obtain

(F (α) ◦ d(β))γ s + F (α)[γ, d(β)]s + F (α)γ [s, d(β)] + (α ◦ d(β))d(γ )s

+(α ◦ d(β))γ d(s) + α[d(γ ), d(β)]s + αd(γ )[s, d(β)] + αγ [d(s), d(β)]
+α[γ, d(β)]d(s) − (α ◦ β)γ s − α[γ, β]s − αγ [s, β]

= 0 ∀ α, β, γ ∈ I, s ∈ R.

(56)

Using (55) in (56), we conclude

F (α)γ [s, d(β)] + (α ◦ d(β))γ d(s) + αd(γ )[s, d(β)] + αγ [d(s), d(β)]
+α[γ, d(β)]d(s) − αγ [s, β] = 0 ∀ α, β, γ ∈ I, s ∈ R.

Replacing s by d(β), we compute

(α ◦ d(β))γ d2(β) + αγ [d2(β), d(β)] + α[γ, d(β)]d2(β) − αγ [d(β), β] = 0.
(57)

Replacing α by sα, where s ∈ R, in (57) and comparing with it, we conclude

[s, d(β)]αγ d2(β) = 0. (58)

Replace β by h, where h ∈ H(R) ∩ I , in (58) to obtain

[s, d(h)]αγ d2(h) = 0 ∀ s ∈ R, α, γ ∈ I, h ∈ H(R) ∩ I. (59)

Replacing s by s∗ and using d(h)∗ = d(h) in above equation, we conclude

[s, d(h)]∗αγ d2(h) = 0 ∀ s ∈ R, α, γ ∈ I, h ∈ H(R) ∩ I. (60)
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For any fixed h, from (59) and (60), ∗-primeness of R, [7, Lemma 1], we conclude
either [s, d(h)] = 0 ∀s ∈ R or d2(h) = 0. Let U = {h ∈ H(R) ∩ I : [R, h] =
{0}}, V = {h ∈ H(R) ∩ I : d2(h) = 0}. We note that H(R) ∩ I can be written
as the set-theoretic union of the additive subgroups U and V , which is not possi-
ble. Thus, either H(R) ∩ I = U or H(R) ∩ I = V . We have d(h) ∈ Z(R) ∀ h ∈
H(R) ∩ I or d2(h) = 0 ∀ h ∈ I ∩ H(R). In former case, we have d2(h) = 0 as d is
vanishing on center. Thus, we have d2(h) = 0 ∀ h ∈ H(R) ∩ I . Replacing β by k,
where k ∈ S(R) ∩ I , in (58) and using similar arguments, we have d2(k) = 0 ∀ k ∈
S(R) ∩ I . For any α ∈ I , we have 2α = α + α∗ + α − α∗. It implies d2(2α) = 0.
That is, d2(I ) = 0. Using [7, Lemma 4], we have d = 0, which is a contradiction.
If

[F (α) ◦ β∗ + β ◦ d(α∗), r ] = 0 ∀ α, β ∈ I, r ∈ R. (61)

Replacing β by βt in (61), where t ∈ Z(R), we find

[(F (α) ◦ β∗)t∗ + (β ◦ d(α∗))t, r ] = 0. (62)

From (61) and (62), we conclude

[F (α)β + βF (α), r ](t − t∗) = 0 ∀ α, β ∈ I, r ∈ R, t ∈ Z(R). (63)

As R is a ring with involution of the second kind. So, there exists some t ∈ Z(R)

such that 0 	= t − t∗ ∈ Sa∗(R) ∩ Z(R). Using Lemma1 in (63), we get

[F (α) ◦ β, r ] = 0 ∀ α, β ∈ I, r ∈ R. (64)

Replacing β by α∗ and using Theorem1, we concludeR is commutative as desired.
Now (2)⇒ (3). From given condition, we have

F (α) ◦ d(α∗) + α ◦ α∗ ∈ Z(R) ∀ α ∈ I. (65)

Polarize (65) to obtain

F (α) ◦ d(β∗) + F (β) ◦ d(α∗) + α ◦ β∗ + β ◦ α∗ ∈ Z(R) ∀ α, β ∈ I. (66)

Replacing β by βhc, where hc ∈ Z(R) ∩ H(R), in (66) and using it, we get

(F (α) ◦ β∗ + β ◦ d(α∗))d(hc) ∈ Z(R). (67)

Since (67) is same as (50), so using arguments, we obtainR is commutative.

Theorem 3 Let R be a 2-torsion free ∗-prime ring with involution of the second
kind. IfF : R → R is a generalized derivation associated with a derivation d such
that d is commuting with ∗ and I is a nonzero ∗-ideal of R, then the following
assertions are equivalent:
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(1) [F (α), d(α∗)] − α ◦ α∗ ∈ Z(R) ∀ α ∈ I ;
(2) [F (α), d(α∗)] + α ◦ α∗ ∈ Z(R) ∀ α ∈ I ;
(3) R is commutative.

Proof It is obvious that ifR is commutative, then (1) and (2) hold. We need to prove
(1)⇒ (3) and (2)⇒ (3). If F = 0, then our theorem is proved by Lemma4. So, we
assume that F 	= 0. First, we prove (1)⇒ (3). We have

[F (α), d(α∗)] − α ◦ α∗ ∈ Z(R) ∀ α ∈ I. (68)

Polarize (68) to obtain

[F (α), d(β∗)] + [F (β), d(α∗)] − α ◦ β∗ − β ◦ α∗ ∈ Z(R) ∀ α, β ∈ I. (69)

Replacing β by βhc, where hc ∈ H(R) ∩ Z(R), in (69) and using it, we conclude

([F (α), β∗] + [β, d(α∗)])d(hc) ∈ Z(R).

It implies

[[F (α), β∗] + [β, d(α∗)], r ]d(hc) = 0 ∀ α, β ∈ I, r ∈ R , hc ∈ H(R) ∩ Z(R).

(70)
Since d(hc)∗ = d(h∗

c) = d(hc). Thus, d(hc) ∈ Sa∗(R) ∩ Z(R). Using Lemma1,
we find either d(hc) = 0 ∀ hc ∈ H(R) ∩ Z(R) or [[F (α), β∗] + [β, d(α∗)], r ] =
0 ∀ α, β ∈ I, r ∈ R. If d(hc) = 0 ∀ hc ∈ H(R) ∩ Z(R). From Lemma5, we have
d(t) = 0 ∀ t ∈ Z(R). Replace β by βt, where t ∈ Z(R), in (70) to obtain

[[F (α), β∗]t∗ + [β, d(α∗)]t, r ] = 0 ∀ α, β ∈ I, r ∈ R, t ∈ Z(R). (71)

Comparing (70) and (71), we conclude

[[F (α), β∗], r ](t∗ − t) = 0 ∀ α, β ∈ I, r ∈ R, t ∈ Z(R). (72)

As R is a ring with involution of second kind. So, there exists some t ∈ Z(R)

such that 0 	= t∗ − t ∈ Sa∗(R) ∩ Z(R). Using Lemma1 in (72), we conclude
[[F (α), β∗], r ] = 0 ∀ α, β ∈ I, r ∈ R. Replace β by β∗ to obtain

[F (α), β] ∈ Z(R) ∀ α, β ∈ I. (73)

From (73) and Lemma6, we conclude R is commutative.
If we have

[[F (α), β∗] + [β, d(α∗)], r ] = 0 ∀ α, β ∈ I, r ∈ R. (74)

Replacing β by −βkc, where kc ∈ S(R) ∩ Z(R), in (74) and using it, we conclude



204 D. Kumar and B. Bhushan

[[F (α), β∗] − [β, d(α∗)], r ]kc = 0. (75)

As 0 	= kc ∈ Sa∗(R) ∩ Z(R), using Lemma1 in (75), we conclude

[[F (α), β∗] − [β, d(α∗)], r ] = 0 ∀ α, β ∈ I, r ∈ R. (76)

Adding (74) and (76), we obtain

2[[F (α), β∗], r ] = 0 ∀ α, β ∈ I, r ∈ R. (77)

From (77), 2-torsion free condition and Lemma6, we conclude R is commutative
as desired.
(2) ⇒ (3)
From given condition, we have

[F (α), d(α∗)] − α ◦ α∗ ∈ Z(R) ∀ α ∈ I. (78)

Polarize (78) to get

[F (α), d(β∗)] + [F (β), d(α∗)] − α ◦ β∗ − β ◦ α∗ ∈ Z(R) ∀ α, β ∈ I. (79)

Replacing β by βhc, where hc ∈ H(R) ∩ Z(R), in (79) and using it, we get

([F (α), β∗] + [β, d(α∗)])d(hc) ∈ Z(R). (80)

Since (80) is same as (70), so using same arguments, we obtain R is commutative.

Theorem 4 Let R be a 2-torsion free ∗-prime ring with involution of second kind
and J 	⊂ Z(R) be a ∗-Jordan ideal of R. Then J contains a nonzero ∗-ideal of R.

Proof From [10, Lemma 2.1], we have [[a, b], r ] ∈ J for any a, b ∈
J, r ∈ R. For some c ∈ J , we find [a, b]cr − cr [a, b] = [a, b]cr + c[a, b]r −
c[a, b]r − cr [a, b] = c[[a, b], r ] + [[a, b], c]r ∈ J . By [11, Lemma 2.4], we have
−2c[ba, r ] ∈ J and 2c[ab, r ] ∈ J ∀ a, b, c ∈ J , r ∈ R. Adding these equa-
tions, we obtain 2c[a, b], r ] ∈ J . Using c[[a, b], r ] + [[a, b], c]r ∈ J , we con-
clude 2[[a, b], c]r ∈ J ∀ a, b, c ∈ J , r ∈ R. Using definition of Jordan ideal,
for any s ∈ R, we obtain 2[[a, b], c]rs + 2s[[a, b], c]r ∈ J , where a, b, c ∈
J, r, s ∈ R. It implies 2R[[J, J ], J ]R ⊆ J . Clearly (2R[[J, J ], J ]R)∗ =
2R[[J, J ], J ]R. Thus, 2R[[J, J ], J ]R is a ∗-ideal in J . Now, we will show that
2R[[J, J ], J ]R 	= {0}. If 2R[[J, J ], J ]R = {0}, i.e., R[[J, J ], J ]R[[J, J ], J ] =
{0}. As ([[J, J ], J ])∗ = [[J, J ], J ], ∗-primeness of R forces R[[J, J ], J ] =
{0}. Again by using ∗-primness of R, we conclude [[J, J ], J ] = {0}, i.e.,
[[a, b], c] = 0 ∀ a, b, c ∈ J . Now, replacing c by 2c[r, s], where r, s ∈ R, we
get c[[a, b], [r, s]] = 0 ∀ a, b, c ∈ J, r, s ∈ R. Now replacing c by c ◦ r, where
r ∈ R, we get cr [[a, b], [r, s]] = 0 ∀ a, b, c ∈ J, r, s ∈ R. Replacing c by c∗ gives
c∗r [[a, b], [r, s]] = 0. From the last two equations, ∗-primeness ofR, we conclude
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[[a, b], [r, s]] = 0 ∀ a, b ∈ J, r, s ∈ R. Replacing r by rs, where s ∈ R, we reach
at

[r, s][[a, b], s] = 0 ∀ a, b ∈ J, r, s ∈ R. (81)

Replacing r by r t, where t ∈ R, we have [r, s]t[[a, b], s] = 0. Replacing r by
h and s by k, where h ∈ H(R) and k ∈ S(R), implies [h, k]t[[a, b], k] = 0. As
[h, k]∗ = [h, k] , so last equation can also can be written as [h, k]∗t[[a, b], k] =
0 ∀ a, b ∈ J, t ∈ R, h ∈ H(R), k ∈ S(R). For any fixed k ∈ S(R), applica-
tion of ∗-primeness in last two equations yields to either [h, k] = 0 ∀ h ∈ H(R)

or [[a, b], k] = 0 ∀a, b ∈ J . Let U = {k ∈ S(R) : [H(R), k] = {0}} V = {k ∈
S(R) : [[J, J ], k] = {0}}. We note that S(R) can be written as the set-theoretic
union of the additive subgroups U and V , which is not possible. Thus, either
S(R) = U or S(R) = V . Thus, we get either [H(R), k] = {0} ∀ k ∈ S(R) or
[[J, J ], k] = {0} ∀ k ∈ S(R). Now if [h, k] = 0 ∀ h ∈ H(R), k ∈ S(R). Replace
h by r + r∗ and k by r − r∗, where r ∈ R, to get 2[r, r∗] = 0 ∀r ∈ R. Using tor-
sion free condition with Lemma3, we find R is a commutative ring that implies
J ⊆ Z(R), i.e., is a contradiction. So we left with [[J, J ], k] = {0} ∀ k ∈ S(R).
Replace r by k and s by h, where k ∈ S(R) and h ∈ H(R), in (81) and use similar
arguments to obtain [[J, J ], h] = {0} ∀ h ∈ H(R). Further, the last two equations
imply [[J, J ],R] = {0}. By [9, Lemma 5], we get R is commutative, which is a
contradiction. So 2R[[J, J ], J ]R is required nonzero ∗-ideal.
Corollary 1 Let R be a ∗-prime ring with involution of second kind. If F is a
generalized derivation associated with a derivation d such that d is commuting with
∗, and J is nonzero ∗-Jordan ideal ofR, then the following assertions are equivalent:

(1) [F (α), α∗] ∈ Z(R) ∀ α ∈ J.
(2) F (α) ◦ (α∗) ∈ Z(R) ∀ α ∈ J.
(3) F (α) ◦ d(α∗) ± α ◦ α∗ ∈ Z(R) ∀ α ∈ J.
(4) [F (α), d(α∗)] ± α ◦ α∗ ∈ Z(R) ∀ α ∈ J.
(5) R is commutative.

4 Examples

Example 2 Let us consider R =
{(

a b
c d

)
|a, b, c, d ∈ Z

}
, where Z is the

ring of integers. Define mappings ∗, d,F : R → R as

(
a b
c d

)∗
=

(
d −b

−c a

)
,

F

(
a b
c d

)
=

(
0 −b
c 0

)
and d

(
a b
c d

)
=

(
0 −b
c 0

)
. Then it is easy to verify that ∗

is an involution of the first kind, F is a generalized derivation and d is a derivation
of a noncommutative ∗-prime ringR. Clearly, one can see thatF (α) ◦ d(α∗) − α ◦
α∗ ∈ Z(R) ∀ α ∈ R; F (α) ◦ d(α∗) + α ◦ α∗ ∈ Z(R) ∀ α ∈ R; [F (α), d(α∗)] −
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α ◦ α∗ ∈ Z(R) ∀ α ∈ R; [F (α), d(α∗)] + α ◦ α∗ ∈ Z(R) ∀ α ∈ R. It shows the
importance of involution of the second kind in our theorems.

Example 3 Let R be a ring with involution ∗,F , d same as in Example 2
and C be the field of complex numbers. Consider the set R = R × C . We
define mappings σ,F ′, d′ : R → R by (r, z)σ = (r∗, z̄), F ′(r, z) = (F (r), 0),
d′(r, z) = (d(r), 0) ∀ (r, z) ∈ R × C . It is straight forward to check that σ is invo-
lution of second kind, F ′ is a generalized derivation, d′ is a derivation and R is
a semiprime ring. It can be seen that F (α) ◦ d(α∗) − α ◦ α∗ ∈ Z(R) ∀ α ∈ R;
F (α) ◦ d(α∗) + α ◦ α∗ ∈ Z(R) ∀ α ∈ R; [F (α), d(α∗)] − α ◦ α∗ ∈ Z(R) ∀ α ∈
R; [F (α), d(α∗)] + α ◦ α∗ ∈ Z(R) ∀ α ∈ R, which exhibits the importance of ∗-
primeness in our theorems.

Acknowledgements The authors are greatly indebted to the referees for their valuable suggestions
and careful reading of the article.
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Local Subsemigroups and Variants
of Some Classes of Semigroups

Siji Michael and P. G. Romeo

Abstract For an element a in a semigroup S, the local subsemigroup of S with
respect to a is the subsemigroup aSa of S. Here we study the structure of local
subsemigroups of full transformation semigroups and symmetric inverse monoids.
We obtain some results regarding the local subsemigroups and when they are iso-
morphic to the semigroup itself. Further it is also shown that the set of all local
subsemigroups of all finite symmetric inverse monoids and the set of all variants of
all finite symmetric inverse monoids is same up to isomorphism.

Keywords Transformation semigroups · Local subsemigroups · Variants
Local subsemigroups and semigroup variants are two well-known constructions in
semigroups. In [6], James East studied the link between these two and it is shown that
in the case of full transformation semigroup on a set X , the two constructions lead
exactly to the same class of semigroups up to isomorphism. In this paper, we discuss
the structure of local subsemigroups of finite full transformation semigroups and
symmetric inverse monoids. The structure studies are carried out using the egg-box
diagrams obtained with the semigroups package (cf. [10]) for GAP (cf. [11]) and (cf.
[3, 9]).

1 Preliminaries

In the following we briefly recall some basic notions and results concerning finite
transformation semigroups and symmetric inverse monoids. A semigroup S is a
nonempty set together with an associative binary operation. An element x ∈ S is
regular if xyx = x and yxy = y for some y ∈ S and a semigroup S is called regular
if all elements of S are regular. An element x ∈ S is called an idempotent if x2 = x .
The collection of all idempotents in S will be denoted by E(S). Two elements of a
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semigroup S are said to beL ,R,J -equivalent if they generate the same principal
left, right, two-sided ideals, respectively.

The join of the equivalence relations L and R is denoted by D and their inter-
section by H . These equivalence relations are introduced by J.A. Green and are
known as Green’s relations and are of fundamental importance in the study of the
structure of semigroups. The egg-box diagram visualizes D-class structure of semi-
group S using rectangular patterns. In each rectangular pattern (which corresponds
to eachD-class), the rows correspond to theR-classes and the columns toL -classes
contained in a D-class.

Definition 1 (Definition 1.2; cf. [6]) Let S be a semigroup and a an element of S.
The set aSa = {axa : x ∈ S} is a subsemigroup of S called local subsemigroup of
S with respect to a.

Definition 2 (Definition 1.1; cf. [8]) Let S be a semigroup and a be an element of
S. An associative sandwich operation �a can be defined on S by x �a y = xay for
all x, y ∈ S. The semigroup (S, �a) is called the variant of S with respect to a and is
denoted as Sa .

For a semigroup S and a ∈ S is invertible, then the variant of S with respect to a,
Sa ∼= S (cf. [7]). The variants of full transformation semigroups and semigroup of
binary relations are widely studied (cf. [2, 5, 12, 13]).

For a finite set X with |X | = n, the set of all transformations of X (that is, all
functions X → X ), under the operation of composition of maps is the full transfor-
mation semigroup on X and is denoted as TX (also denoted as Tn). It is well known
that TX is a regular semigroup. For f ∈ TX , the image and rank of f will be denoted
by

im( f ) = { f (x) : x ∈ X}

rank( f ) = |im( f )|.

Symmetric inverse monoid on a finite set X is the set of all partial bijections on X
(that is, all bijections from a subset of X to a subset of X ) with composition of maps
as the binary operation and is written as I SX . The domain and range of a partial
permutation α is denoted as domα and ranα respectively. We denote the rank of
empty partial permutation as zero. Idempotents of I SX are the identity mappings on
each of the subsets of X , i.e.,

E(I SX ) = {1A : A ⊆ X}.
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2 Local Subsemigroups and Variants of Full
Transformation Semigroups

In this section we discuss the local subsemigroups of full transformation semigroup
on a finite set X and obtain some results connecting local subsemigroups and variants.
It is observed that there is an explicit connection between local subsemigroups and
variants of full transformation semigroups as stated in the following theorem.

Theorem 1 (Theorem 1.4; cf. [6]) Let n be a positive integer and let a ∈ Tn with
rank(a) = r . Then

1. aTna ∼= T c
r for some c ∈ Tr with rank(c) = rank(a2).

2. T a
n

∼= bT2n−r b for some b ∈ T2n−r with rank(b) = n.

Proposition 1 Let X be any setwith |X | = n and letα ∈ TX with rank(α) = m ≤ n.
Then αTXα is a local subsemigroup of TX with respect to α and

|αTXα| = |Tm |.

Proof From Theorem1, αTnα ∼= T c
m with rank(c) = rank(α2). Since αTnα is a

variant of Tm , it contains as many elements as in Tm .

Corollary 1 If α ∈ TX with |X | = n and rank(α) = n then αTXα is same as TX .

Proof Since α is a permutation, every element β of TX is equal to α(α−1βα−1)α.
Hence αTXα = TX .

Comparing egg-box diagrams of local subsemigroups αTXα with rank(α) = m, it
can be seen that there are different structures available such as full transformation
semigroup of order m and variants of full transformation semigroup of order m.

Definition 3 (Definition 3.1; cf. [1]) For α ∈ TX we can define the stable image of
α denoted as sim(α) by

sim(α) = {x ∈ X : x ∈ im(αn) f or every n ≥ 0}.

Definition 4 (Definition 3.3; cf. [1]) For α ∈ TX we define the stabilizer of α as the
smallest positive integer s ≥ 0 such that im(αs) = im(αs+1).

From the above two definitions it is clear that if α has the stabilizer s, then
sim(α) = im(αs). Further it is known that the local subsemigroups of full trans-
formation semigroups can be classified using stabilizer and stable image of transfor-
mations. By comparing the egg-box diagrams of local subsemigroups of finite full
transformation semigroups, we obtain the following results.

Proposition 2 Let α ∈ Tn with rank(α)= m ≤ n and stabilizer of α is 1. Then αTnα
is isomorphic to Tm.
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Proof From Theorem1, αTnα ∼= T c
m with rank(c) = rank(α2). Since stabilizer of

α is 1, rank(α2) = rank(α) = m. c being a permutation in Tm , T c
m

∼= Tm . Hence,
αTnα ∼= Tm .

Example 1 Consider transformation α = (
1 2 3 4
2 4 3 2

) ∈ T4 which is denoted as (2432).
Then rank(α) is 3 and α2 = (4234). Now rank(α) = rank(α2) = 3 and we get the
stabilizer of α is 1. Then by Proposition2, local subsemigroup of α is isomorphic to
T3 (see Fig. 1).

Fig. 1 Egg-box diagram of
local subsemigroup when α

= (2432)

 1

*

*

*

 2

* *

* *

* *

 3

*
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3 Variants of Symmetric Inverse Monoids

In the following, we discuss certain results regarding variants of symmetric inverse
monoids and their improvements (cf. [4]) with some advances. Let X = {1, 2, . . . , n}
and I Sn denotes symmetric inverse monoid on X . For an element α ∈ I Sn , variant
of I Sn with respect to α is denoted as I Sα

n . Now we characterize Green’s relations of
variants of symmetric inverse monoids on X . Green’s relations R,L ,J ,H and
D on I Sα

n will be denoted by Rα,L α,J α,H α and Dα, respectively. Consider
the following sets. Let α ∈ I Sn

P1 = { f ∈ I Sn : f α R f }

P2 = { f ∈ I Sn : α f L f }

and P = P1 ∩ P2.
For an element α ∈ I Sn there exists an element β ∈ I Sn such that αβ is an idem-

potent. As noted earlier, we get I Sα
n

∼= I Sαβ
n . Since all the idempotents of I Sn are

identity mappings on subsets of X , we have α to be 1A, A ⊆ X and |A| = r .

Proposition 3 Let α = 1A, A ⊆ X. Then

1. P1 = { f ∈ I Sn : f α R f } = { f ∈ I Sn : im( f ) ⊆ A};
2. P2 = { f ∈ I Sn : α f L f } = { f ∈ I Sn : dom( f ) ⊆ A};
3. P = P1 ∩ P2 = { f ∈ I Sn : dom( f ) ⊆ A, im( f ) ⊆ A}.
Proof Let f ∈ I Sn and rank( f ) = m. Since f is a partial bijection, f can be con-
sidered as a mapping from B 	→ C for some B,C ⊆ X .

1. Now f ∈ P1 ⇔ f α R f ⇔ ker( f α) = ker( f )
⇔ rank( f α) = rank( f ). It is clear that rank( f α) = rank( f ) only when m ≤
r , which implies im( f ) ⊆ A.

2. f ∈ P2 ⇔ α f L f ⇔ im(α f ) = im( f ) ⇔ rank(α f ) = rank( f ). It can be
observed that rank(α f ) = rank( f ) only when m ≤ r which implies dom( f ) ⊆
A.

3. easily follows from (1) and (2).

By Proposition 3.2 of [5], we obtain Green’s relations on I Sα
n as follows.

Theorem 2 If f ∈ I Sα
n , then

1. Rα
f =

{
R f ∩ P1 i f f ∈ P1
f i f f ∈ I Sn \ P1

2. Lα
f =

{
L f ∩ P2 i f f ∈ P2
f i f f ∈ I Sn \ P2

3. Hα
f =

{
Hf i f f ∈ P

f i f f ∈ I Sn \ P
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4. Dα
f =

⎧
⎪⎪⎨

⎪⎪⎩

D f ∩ P i f f ∈ P
Lα

f i f f ∈ P2 \ P1
Rα

f i f f ∈ P1 \ P2
f i f f ∈ I Sn \ (P1 ∪ P2)

Remark 1 Here P = Reg(I Sα
X ) = { f ∈ I Sn : dom( f ) ⊆ A, im( f ) ⊆ A} = I SA.

That is, the regular elements of the variant of I SX with respect to α = 1A, A ⊆ X is
I SA

Next result is about the rank of I Sα
X where rank of a finite semigroup is the minimum

cardinality of generating set. That is, rank(S) = min{|A| :< A >= S}. We know
that rank(SX ) = 2 and rank(I SX ) = 3 for |X | ≥ 3. The next result states about the
minimal generating set and the rank for I Sα

X .

Theorem 3 Let M = { f ∈ I SX : rank( f ) > r}. Then I Sα
X = 〈M〉α . Further, any

generating set for I Sα
X contains M. Consequently, M is the unique minimal gener-

ating set I Sα
X and

rank(I Sα
X ) = |M | =

n∑

m=r+1

(
m

k

)2

k!.

Proof We assume that α = 1A = ( ai
ai .

)
where i = 1, . . . , r . Since M = { f ∈ I SX :

rank( f ) > r}. We only need to prove that for 1 ≤ rank( f ) ≤ r f ∈ 〈M〉α . For
this, we choose any f ∈ Dm where 1 ≤ m ≤ r . Let

f = ( x1 x2 ··· xm
y1 y2 ··· ym

)

where m ≤ r < n.
We can choose g = ( x1 x2 ··· xm xm+1

a1 a2 ··· am x

)
where x /∈ {a1, a2, . . . ar }, since r < n. Then

g ∈ Dm+1 ⊆ M .
Also let h be the permutation that extends the partial map

( a1 a2 ··· am
y1 y2 ··· ym

)
, then h ∈

SX ⊆ M , so we get f = gαh = g �α h. Hence f ∈< M >α . That is, M generates
I Sα

X .
Since any f ∈ M belongs to singleton maximal Dα-classes, any generating set

of I Sα
X must contain M . Hence M is the minimal generating set. Now

rank(I Sα
X ) = |M | =

n∑

m=r+1

|Dm | =
n∑

m=r+1

(
m

k

)2

k!

where |Dm | = (m
k

)2
k!. (cf. [7]).
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4 Local Subsemigroups and Variants of Symmetric Inverse
Monoids

In the following, we compare the structures of local subsemigroups and variants of
symmetric inverse monoids.

Proposition 4 For α ∈ I Sn with rank(α) = m, |α I Snα| = |I Sm | = ∑m
k=0

(m
k

)2
k!.

Proof Let β ∈ I Sn . Then
dom(αβα) ⊆ dom(α)

and ran(αβα) ⊆ ran(α). Thus rank(αβα) ≤ rank(α).
Therefore all the elements of α I Snα will be of rank ≤ rank(α). There will be

(m
k

)

different choices for dom(αβα) with rank k and
(m
k

)
different choices for ran(αβα).

For each domain and range, there will be k! different bijections. Hence we have(m
k

)(m
k

)
k! bijections of rank k. Since the rank can be varied from 0 to m, we get

α I SXα has
∑m

k=0

(m
k

)2
k! elements.

Proposition 5 For α ∈ I Sn with rank(α ) = n, local subsemigroup α I Snα is iso-
morphic to I Sn.

Proof Clearly, α I Snα ⊆ I Sn .

For the reverse inclusion, let β ∈ I Sn . Since rank(α) = n, α ∈ Sn . Therefore
there exists α−1 in I Sn such that α−1βα−1 ∈ I Sn which implies α(α−1βα−1)α =
β ∈ α I Snα. So, I Sn ⊆ α I Snα and hence the proof.

Proposition 6 Ifα ∈ I Sn with rank(α) < n and rank(α2) = rank(α), thenα I SXα

is isomorphic to I SA, where A = ran(α).

Proof Let α ∈ I Sn with rank(α) < n and α be a permutation on a subset A of X .
For β ∈ I Sn , dom(αβα) ⊆ A and ran(αβα) ⊆ A which implies αβα ∈ I SA.

Therefore, α I Snα ⊆ I SA. By result 2, they have the same number of elements.
Hence α I Snα is isomorphic to I SA.

Now, we describe the relation between local subsemigroups and variants of finite
symmetric inverse monoids.

Theorem 4 Let n be a positive integer and let α ∈ I Sn, with rank(α) = r . Then

1. α I Snα ∼= I Scr for some c ∈ I Sr with rank(c) = rank(α2).
2. I Sα

n
∼= β I S2n−rβ for some β ∈ I S2n−r , rank(β) = n and rank(β2) = r .

Before proving the theorem, some results of variants of semigroups are recalled
below (cf. [6]).

Lemma 1 Let a and b be regular elements of a semigroup S and define the idem-
potents e = ab and f = ba. Then aSb = eSe and bSa = f S f .
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Lemma 2 If a and b are elements of a semigroup S satisfying a = aba and b = bab,
then

(aSa, ·) ∼= (aSb, �aab) ∼= (bSa, �baa).

Lemma 3 If φ : S → T is a semigroup isomorphism and if c ∈ S, then Sc ∼= T φ(c).

Proof We have for a, b ∈ S, φ(ab) = φ(a)φ(b). Now, φ(a �c b) = φ(acb) =
φ(a)φ(c)φ(b) = φ(a) �φ(c) φ(b). Hence the result follows.

Proof (of Theorem4) Let n be a positive integer and fix some α ∈ I Sn with
rank(α) = r . Let X = {1, 2, . . . , n}, Y = {1, 2, . . . , r} and Z = {1, 2, . . . , 2n − r},
re-labeling if necessary we assume ranα = Y and we can write α = ( xi

i

)
, where

xi ∈ X, i = 1, . . . , r .

1. Let β be the unique inverse of α in I SX .Then e = αβ = 1domα . α = αβα implies
rank(α2) = rank(α2β). Now, by Lemma2, (α I Snα, ·) ∼= (α I Snβ, �ααβ). Also
by Lemma1, α I Snβ = eI Sne. Now by Proposition6, (α I Snβ, ·) ∼= (eI Sne, ·) ∼=
(I Sdomα, ·).Hence,α I Snα = (α I Snα, ·) ∼= (α I Snβ, �ααβ) ∼= (I Sdomα, �c) = I Scr
where c ∈ I Sr . Also we get rank(c) = rank(α2).

2. Let β ∈ I S2n−r with rank(β) = n and rank(β2) = r . By Part (1), β I S2n−rβ is
isomorphic to I Scn for some c ∈ I Sn with rank(c) = r . By Theorem 1.1 of [13],
I Sc ∼= I Sα if rank(c) = rank(α). Hence the proof.

Proposition 7 If α, β ∈ I SX with same rank such that rank(α2) = rank(β2) then
the local subsemigroups of α and β are isomorphic.

Proof Let rank(α) = rank(β) = r . By Theorem4, α I Snα ∼= I Scr for some c ∈ I Sr
with rank(c) = rank(α2). Similarly we get β I Snβ ∼= I Sdr for some d ∈ I Sr with
rank(d) = rank(β2). Theorem 1.1 of [13] states that I Sc ∼= I Sd if rank(c) =
rank(d). Since rank(α2) = rank(β2), the local subsemigroups of α and β are iso-
morphic.
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Closed Weak Supplemented Lattices

Shriram K. Nimbhorkar and Deepali B. Banswal

Abstract We introduce the concept of a Closed Weak Supplemented Lattice
(CWS—Lattice), which is a generalization of a supplemented lattice. We show that
a finite direct sum of CWS—lattices is a CWS-lattice.

Keywords Supplemented lattice · Weak supplemented lattice · Closed weak
supplemented lattice · Refinable lattice

1 Introduction

The concept of a supplemented module and its generalizations are studied by several
authors, e.g., Mutlu [6], Tohidi [12], Wang and Ding [13], Wisbauer [14], Zeng et al.
[15]. In 2006, Zeng [15] introduced a generalization of the concept of a supplemented
module, namely, a closed weak supplemented module.

Călugăreanu [3] translated many concepts from module theory to lattice theory.
He introduced the concept of a supplement in terms of elements of a lattice. Alizade
and Toksoy [1] introduced the concepts of an ample supplement and an amply sup-
plemented lattice. In [2] they have introduced the concepts of a weak supplement and
a weakly supplemented lattice. Nimbhorkar and Shroff [9–11] have introduced some
generalizations of extended modules in lattice context. Nimbhorkar and Banswal [7,
8] have studied CESS-lattices and some generalizations of supplemented lattices.

In this paper, we introduce the concept of a closed weak supplemented lattice and
obtain some results. This concept generalizes both an extending lattice and a weak
supplemented lattice.

S. K. Nimbhorkar (B)
Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University,
Aurangabad 431004, India
e-mail: sknimbhorkar@gmail.com

D. B. Banswal
Department of Mathematics, B. P. Arts, S. M. A. Science and K. K. C. Commerce College,
Chalisgaon 424101, India

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
M. Ashraf et al. (eds.), Algebra and Related Topics with Applications,
Springer Proceedings in Mathematics & Statistics 392,
https://doi.org/10.1007/978-981-19-3898-6_18

217

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-3898-6_18&domain=pdf
mailto:sknimbhorkar@gmail.com
https://doi.org/10.1007/978-981-19-3898-6_18


218 S. K. Nimbhorkar and D. B. Banswal

2 Preliminaries

The undefined terms related to lattices can be found in Grätzer [4]. Throughout this
paper L denotes a bounded lattice.

We recall some definitions fromAlizade and Toksoy [1, 2] and from Călugăreanu
[3].

Definition 1 An element a ∈ L is said to be small in L if a ∨ b �= 1 for every b �= 1.
We then write a � L .

Definition 2 An element a ∈ L is called a supplement of an element b in L if
a ∨ b = 1 and a is minimal with respect to this property.

Equivalently, a is a supplement of b in L if and only if a ∨ b = 1 and a ∧ b is
small in [0, a].

L is called supplemented if every element a ∈ L has a supplement in L .

Definition 3 An element a is a weak supplement of b in L if and only if a ∨ b = 1
and a ∧ b � L .

L is said to beweakly supplemented if every elementa ∈ L has aweak supplement
in L .

Grzeszczuk and Puczylowski [5] developed the concept of an essential element
in a lattice with least element 0, see also Călugăreanu [3].

The following definitions are from Nimbhorkar and Shroff [9].

Definition 4 We say that a ∈ L is essential in L , if there is no nonzero x ∈ L such
that a ∧ x = 0.

Let a, b ∈ L , 0 �= a ≤ b. We say that a is essential in b (or b is an essential
extension of a), if there is no nonzero c ≤ b with a ∧ c = 0. We then write a ≤e b.

Definition 5 If a ≤e b and for any c > b, a is not essential in c, then b is called a
maximal essential extension of a.

Definition 6 An element a ∈ L is called closed (or essentially closed) in L , if a has
no proper essential extension in L .

Let a, b ∈ L , a ≤ b. We say that a is closed in b, if a has no proper essential
extension in b. we write a ≤cl b.

Definition 7 If a, b, c ∈ L are such that a ∨ b = c and a ∧ b = 0 then we say that
a, b are direct summand of c and we write c = a ⊕ b. We say that c is a direct sum
of a and b.

The following definition is from Nimbhorkar and Shroff [10].

Definition 8 Abounded lattice L is called CS or extending if every nonzero element
is essential in a direct summand of 1.

A nonzero element a ∈ L is called extending if, every nonzero b ≤ a is essential
in a direct summand of a.
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The proof of the following lemma is the same as that of Proposition 3.1 from
Nimbhorkar and Shroff [9].

Lemma 1 Let 0 �= a ∈ L. Then the following statements are equivalent.
(1) Every closed element c ≤ a in a is a direct summand of a.
(2) For every d ≤ a, there exists a direct summand k of a such that d ≤e k.

The following proposition is from Nimbhorkar and Shroff [11].

Proposition 1 Let L be a modular lattice with 0. For a, b, c ∈ L, if a ≤cl b and
b ≤cl c then a ≤cl c.

3 Closed Weak Supplemented Lattices

Zeng et al. [15] defined the concept of a closed weak supplemented module. We
introduce this concept in the context of a lattice.

Definition 9 An element a ∈ L is called a closed weak supplemented element if
for any closed element c ≤ a, there exists an element b ≤ a such that b ∨ c = a and
b ∧ c � a.

In short we say that a is a CWS-element.
L is called closed weak supplemented if for any closed element c ∈ L there exists

an element a ∈ L such that 1 = a ∨ c and a ∧ c � L .
In short we say that L is a CWS-lattice.

0

a b c d e

f g h

1

0

a b c

d e f

g

1

Figure 1 Figure 2

Example 1 Consider the element f in the lattice L shown in Figure 1. We note that
a, b, c ≤ f are closed elements. We have a ∨ b = a ∨ c = b ∨ c = f and a ∧ b =
a ∧ c = b ∧ c = 0 � 1. Hence f is closed weak supplemented.

Consider the element g in the lattice L shown in Figure 2. We note that d is closed
in g and f ≤ g is such that d ∧ f = b. Since b ∨ e = g and e �= g, b is not small in
g. Hence g is not closed weak supplemented.
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Lemma 2 Let ai ∈ L, 1 ≤ i ≤ n. Then a1 ∨ a2 ∨ . . . ∨ an � 1 if and only if ai � 1
for each i = 1, . . . , n.

Proof Suppose that a1 ∨ a2 ∨ . . . ∨ an � 1.
Then for any b ∈ L , b �= 1, (a1 ∨ a2 ∨ . . . ∨ an) ∨ b �= 1.
Hence ai ∨ b �= 1. Thus ai � 1 for each i, 1 ≤ i ≤ n.
Conversely, suppose that ai � 1 for each i = 1, . . . , n.
To show that a1 ∨ a2 ∨ . . . ∨ an � 1.
Without loss of generality, we may assume that a1 ∨ . . . ∨ an �= 1.
Suppose that (a1 ∨ . . . ∨ an) ∨ b = 1 for some b ∈ L .
Then a1 ∨ (a2 ∨ . . . ∨ an ∨ b) = 1.
Since a1 � 1, we conclude that a2 ∨ . . . ∨ an ∨ b = 1.
By repeating the arguments, we get an ∨ b = 1, a contradiction to an � 1.

Lemma 3 Let L , L ′ be lattices. Let f : L → L ′ be a one to one and onto homo-
morphism. If a ∈ L and a � 1, then f (a) � 1′, where 1 ∈ L , 1′ ∈ L ′.

Proof Let f : L → L ′ be an onto homomorphismanda � 1. Letb ∈ L ′ be such that
f (a) ∨ b = 1′. Since f is onto b = f (c) for some c ∈ L . Then f (a) ∨ f (c) = 1′
implies f (a ∨ c) = 1′. Since f is one to one, we conclude that a ∨ c = 1. Since
a � 1, we get c = 1. Hence f (c) = b = 1′.

Lemma 4 Let L be a modular lattice. Let a, b ∈ L be such that b ≤ a. If a is a
direct summand of 1, then b � a if and only if b � L.

Proof Let b � a and b ∨ c = 1 for some c ∈ L . To show that c = 1.
We have a = a ∧ 1 = a ∧ (b ∨ c) = b ∨ (a ∧ c) by using modularity. Since b �

a, we have a ∧ c = a. Thus a ≤ c and so b < a ≤ c. Hence c = b ∨ c = 1.
Conversely, suppose that b � 1. To show that b � a.
Let b ∨ d = a for some d ∈ L . Since a is a direct summand of 1, there exists

e ∈ L such that a ⊕ e = 1. Then b ∨ d ∨ e = 1.
Since b � 1 we get d ∨ e = 1. Thus d = d ∨ 0 = d ∨ (a ∧ e) = a ∧ (d ∨ e) =

a. Hence b � a.

Theorem 1 Every weak supplemented lattice is a closed weak supplemented lattice.

Proof Let L be aweak supplemented lattice. Leta be a closed element in L . Since L is
a weak supplemented lattice, there exists b ∈ L such that a ∨ b = 1 and a ∧ b � L .
Thus L is a closed weak supplemented lattice.
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Lemma 5 Every extending lattice is a closed weak supplemented lattice.

Proof Let L be an extending lattice. Let c be a closed element in L . Since L is an
extending lattice, c is a direct summand of 1 that is c ⊕ b = 1 for some b ∈ L . Since
c ∧ b = 0, c ∧ b � L . Hence L is a closed weak supplemented lattice.

Lemma 6 Let L be a modular lattice. If L is a supplemented lattice, then L is a
weak supplemented lattice.

Proof Suppose that L is a supplemented lattice. Let a ∈ L . Then there exists a
supplement b of a such that a ∨ b = 1 and a ∧ b � b. To show that a ∧ b � 1. Let
c be such that (a ∧ b) ∨ c = 1. Then [(a ∧ b) ∨ c] ∧ b = b implies by modularity
that (a ∧ b) ∨ (c ∧ b) = b. Since a ∧ b � b, we conclude that b ∧ c = b and so
a ∧ b ≤ c. Hence c = 1, i.e., a ∧ b � 1.

Theorem 2 Let L be a modular CWS-lattice. Then any direct summand of 1 is a
CWS-element.

Proof Let a ∈ L be a direct summand of 1 and b be a closed element in a. Since b is
closed in a and a is closed in L , by Proposition1, b is closed in L . Since L is a closed
weak supplemented lattice, there exists c ∈ L such that 1 = c ∨ b and c ∧ b � 1.
Thus a = 1 ∧ a = (b ∨ c) ∧ a = (a ∧ c) ∨ b. Since a is a direct summand of 1, by
Lemma4, a ∧ c ∧ b = c ∧ b � a. Thus a is a CWS-element.

Theorem 3 Let L be a modular lattice. Let a, b ∈ L. Suppose that c is a weak
supplement of a ∨ b in L and d is a weak supplement of a ∧ (b ∨ c) in a. Then c ∨ d
is a weak supplement of b in L.

Proof Since c is a weak supplement of a ∨ b, we have

a ∨ b ∨ c = 1 and (a ∨ b) ∧ c � 1.

As d is a weak supplement of a ∧ (b ∨ c) in a, we have

[a ∧ (b ∨ c)] ∨ d = a and a ∧ (b ∨ c) ∧ d = (b ∨ c) ∧ d � a.

We have

1 = a ∨ b ∨ c

= [a ∧ (b ∨ c)] ∨ d ∨ b ∨ c

= d ∨ b ∨ c By absorption identity.

Hence to show that c ∨ d is a weak supplement of b in L , it is sufficient to show that
b ∧ (c ∨ d) � 1.

From (a ∨ b) ∧ c � 1, (b ∨ c) ∧ d � a andLemma7.5, p. 78 from [3], it follows
that
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[(a ∨ b) ∧ c] ∨ [(b ∨ c) ∧ d] � 1 ∨ a = 1. (1)

We have

[(a ∨ b) ∧ c] ∨ [(b ∨ c) ∧ d] ≥ b ∧ (c ∨ d).

From (1) and Lemma 7.3, p. 78 from [3], we conclude that

b ∧ (c ∨ d) � 1.

Hence c ∨ d is a weak supplement of b in L .

Theorem 4 Let L be a modular lattice and b ∈ L be any closed element. Suppose
that 1 = a1 ⊕ a2 where each ai (i = 1, 2) is closed weak supplemented. Suppose that
c is any weak supplement of ai ∧ (a j ∨ b) in ai , i �= j such that ai ∧ (a j ∨ b) ≤cl ai
and a j ∧ (b ∨ c) ≤cl a j . Then L is a CWS-lattice.

Proof Let b be a closed element in L . We note that 1 = a1 ∨ (a2 ∨ b) has a weak
supplement 0 in L . Since a1 ∧ (a2 ∨ b) ≤cl a1 and a1 is closed weak supplemented,
there exist an element c ≤ a1 such that

a1 = c ∨ [a1 ∧ (a2 ∨ b)] and c ∧ (a1 ∧ (a2 ∨ b)) = c ∧ (a2 ∨ b) � a1.

By Theorem3, c is a weak supplement of a2 ∨ b in L . Hence 1 = c ∨ (a2 ∨ b). Since
a2 ∧ (c ∨ b) ≤cl a2 and a2 is a closed weak supplemented, a2 ∧ (c ∨ b) has a weak
supplement d in a2. By Theorem3, c ∨ d is a weak supplement of b in L . Hence L
is closed weak supplemented.

Theorem 5 Let L be a modular lattice and a, b ∈ L. Let 1 = a ∨ b. Suppose that
a is closed weak supplemented and that for any closed element c ∈ L, c ∧ a ≤cl a.
Then L is closed weak supplemented if and only if every closed element c ∈ L with
b ≤ c has a weak supplement.

Proof Suppose that c ∈ L is a closed element such that b ≤ c. We have 1 = a ∨ b =
a ∨ c and a ∨ c has a weak supplement 0. Since c ∧ a ≤cl a and a is closed weak
supplemented, c ∧ a has a weak supplement e in a. By Theorem3, e is a weak
supplement of c in L .

The converse is obvious.

The following definitions are from Nimbhorkar and Banswal [7].

Definition 10 Let L be a lattice with 0 and a, b ∈ L . If b is a maximal element in
the set {x | x ∈ L and a ≤e x}, then we say that b is an essential closure of a in L .

Definition 11 A lattice L is called a UC-lattice if each of its nonzero elements has
a unique essential closure in L .
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The following theorem is from Nimbhorkar and Banswal [7].

Theorem 6 A lattice L is a UC-lattice if and only if for any closed element a in L
and for any b ∈ L, a ∧ b is closed in b.

Theorem 7 Let L be a distributive UC-lattice. Let 1 = a1 ∨ a2 such that a1, a2 ∈ L.
Then L is closed weak supplemented if and only if ai is closed weak supplemented.

Proof Let c ∈ L be any closed element. Then for each i , c ∧ ai is closed in ai . Sup-
pose that c ∧ a1 ≤e d ≤ a1. Clearly, a2 ∧ c ≤e a2 ∧ c. We have c = (c ∧ a1) ⊕ (c ∧
a2) ≤e d ⊕ (a2 ∧ c). Since c is closed in L , c = (a1 ∧ c) ⊕ (a2 ∧ c) = d ⊕ (a2 ∧ c).

So d = a1 ∧ c and a1 ∧ c is closed in a1.
Therefore, there exist elements di ≤ ai such that ai = di ∨ (c ∧ ai ) and c ∧ ai ∧

di = c ∧ di � ai , i = 1, 2.
Hence 1 = a1 ∨ a2 = d1 ∨ d2 ∨ (c ∧ a1) ∨ (c ∧ a2) and a1 ∧ a2 = d1 ∧ d2 ∧

(c ∧ a1) ∧ (c ∧ a2) = 0. Thus 1 = a1 ⊕ a2 = d1 ⊕ d2 ⊕ (c ∧ a1) ⊕ (c ∧ a2) =
d1 ⊕ d2 ⊕ c and c ∧ (d1 ⊕ d2) = (c ∧ a1) ⊕ (c ∧ a2) � a1 ⊕ a2 = 1.

Thus L is a closed weak supplemented lattice.
The converse follows from Theorem2.

Theorem 8 Let L be a modular lattice. Suppose that for any element a ∈ L there
is a closed element b ∈ L such that b = a ∨ c for some c � L. Then L is weak
supplemented if and only if L is closed weak supplemented.

Proof Suppose that there is a closed element b ∈ L such that b = a ∨ c for some
c � 1. Since L is closed weak supplemented lattice, there exists an element d ∈ L
such that 1 = d ∨ b and d ∧ b � L . So 1 = d ∨ a ∨ c. Since c � L , 1 = d ∨ a.
Now, d ∧ a ≤ d ∧ b � 1. Thus L is weak supplemented.

The converse follows by Theorem1.

Definition 12 A lattice L is called⊕-supplemented if for every element a ∈ L there
is a direct summand b ∈ L of 1 which is a supplement of a in L .

Example 2 Consider the lattice L shown in Figure 1. We note that for a ∈ L , d ∈ L
is a direct summand of 1 such that a ∨ d = 1 and d is minimal with this property.
Thus d is a supplement of a. Similarly, we can check for all elements of L . Hence L
is a ⊕-supplemented lattice.

Zeng et al. [15] have defined the concept of a refinable module. We introduce this
concept in the context of a lattice.

Definition 13 A lattice L is called refinable if for elements a, b ∈ L with a ∨ b = 1,
there is a direct summand c of 1 with c ≤ a and c ∨ b = 1.
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Example 3 Consider the elements c, b in the lattice L shown in Figure 3. We note
that c ∨ b = 1 and there exists a direct summand a ≤ c such that a ∨ b = 1. Simi-
larly, we can verify for all elements of L . Hence L is refinable.

Example 4 Consider the elements d, e in the lattice L shown in Figure 4. We note
that d ∨ e = 1. But there does not exist any direct summand x of 1 such that x ≤ d
and x ∨ c = 1. Hence L is not refinable.

Theorem 9 Let L be a refinable lattice. Suppose that for any element a ∈ L, there is
a closed element b ∈ L such that either a = b ∨ c or b = a ∨ d for some, c, d � L.
Then the following statements are equivalent,

1. L is ⊕-supplemented.
2. L is supplemented.
3. L is weak supplemented.
4. L is closed weak supplemented.

Proof (1) ⇒ (2): Follows from the definition of ⊕-supplemented.
(2) ⇒ (3) : Follows by Lemma6
(3) ⇒ (4) : Follows by Theorem1.
(4) ⇒ (1) : Let L be closed weak supplemented. To show L is ⊕-supplemented.

Case (I): Suppose that there is a closed element b ∈ L such that a = b ∨ c for
some c � 1.

Since L is closed weak supplemented, there is an element e ∈ L such that 1 =
b ∨ e and e ∧ b � 1.

Hence 1 = b ∨ e = a ∨ e and a ∧ e � 1.
Since L is refinable, there exist a direct summand f ∈ L such that f ≤ a and

1 = f ∨ e. So f ∧ e ≤ a ∧ e � 1.
As f is a direct summand of 1, we have f ∧ e � f , which shows that L is

⊕-supplemented.
Case (II): Suppose that there is a closed element a ∈ L such that b = a ∨ d for

some d � 1.
Since L is a closed weak supplemented, there is an element e ∈ L such that

1 = b ∨ e and b ∧ e � 1.
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Thus 1 = b ∨ e = a ∨ d ∨ e = a ∨ e and a ∧ e � 1.
As L is refinable, then there is a direct summand f ∈ L such that f ≤ a and

1 = f ∨ e.
Therefore f ∧ e ≤ a ∧ e � f , since f is a direct summand of 1. Thus L is ⊕-

supplemented lattice.
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On Compatible Ring Structures of the
Injective Hull of a Ring

Jae Keol Park and S. Tariq Rizvi

Abstract For a ring R, let E(RR) and Q(R) be the injective hull of RR and the
maximal right ring of quotients of R, respectively. If R is right nonsingular, then
E(RR) = Q(R) and E(RR) has a unique overring structure of R. If R is not right
nonsingular, E(RR) does not necessarily have a compatible overring structure with
the ring R, in general. We discuss the disparity between the right rings of quotients
and the right essential overrings of a ring R. Several examples and counterexamples
for the disparity are given. An example of a right Kasch ring R (hence, Q(R) = R)
for which E(RR) has (even infinitely many) distinct compatible overring structures
of R is constructed. We discuss such compatible overring structures on E(RR) in
detail. When rings U and T are isomorphic, we show that U is right compatible if
and only if T is right compatible.

Keywords Right essential overrings · Right rings of quotients · Compatible ring
structures · Right compatible rings

1 Introduction

In this paper, we study the compatibility of overring structures of the injective hull
E(RR) of a ring R. It is well known that a ring R is right nonsingular if and only if
E(RR) = Q(R) and Q(R) is right self-injective (von Neumann) regular. Moreover,
in this case the overring structure of E(RR) is unique (see Corollary2.4). However,
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if a ring R is not right nonsingular, disparities between overring structures on E(RR)

and Q(R) occur.
First, we study the disparity of right rings of quotients and right essential overrings

of a ring R. We present several examples and counterexamples. Motivated by such
examples and counterexamples, right essential overring structures of the injective
hull E(RR) of the module RR are discussed.

If R is a right Kasch ring which is not right self-injective, then Q(R) = R but
E(RR) �= R. Beyond the ring Q(R), we study overring structures on E(RR), where
R is a right Kasch ring which is not right self-injective.

There exists a right Kasch ring R which is not right self-injective such that E(RR)

has an overring structure of the ring R. From this overring structure of E(RR),
construction and explicit description of other compatible ring structures on E(RR)

are exhibited in details by using an R-isomorphism extension to E(RR) of the identity
of RR (Theorem2.14 and Example2.16). As a consequence of our method, we show
that there exist even infinitely many distinct compatible ring structures on E(RR).

Motivated by Remark2.15, we investigate relationships between compatible ring
structures and noncompatible ring structures of the injective hull of a ring in Sect. 3.
Moreover, when rings U and T are isomorphic, we show that U is right compatible
if and only if T is right compatible.

Ideals of a ring mean two-sided ideals. For a ring R, I � R denotes that I is an
ideal of R. For a nonempty subset X of a ring R, we use �(X) to denote the left
annihilator of X in R. For a given module M , N ≤ M ,N ≤ess M , and N ≤den M
denote N is a submodule ofM , N is essential inM , and N is dense inM , respectively.
When n is an integer n such that n > 1, Zn denotes the ring of integers modulo n.
For a ring R and a positive integer n, Tn(R) stands for the n × n upper triangular
matrix ring over the ring R. Let X be a set. Then |X | denotes the cardinal number of
X .

2 Essential Overrings Versus Rings of Quotients

The disparity between the right ring of quotients of R and the right essential overrings
of R is important and we will discuss it first. For a ring R, we use E(RR) to denote
the injective hull of RR . In this section, we study compatible ring structures of E(RR)

(when they exist) with the ring structure of R. Examples of rings R for which E(RR)

has distinct compatible ring structures are exhibited. Furthermore, an example of
a ring R for which E(RR) has infinitely many distinct compatible ring structures
is provided. For a given ring R, right ring of quotients of R and right essential
overrings of R are compared. Various examples and counterexamples are provided
for illustration.

Let MR be a module and N ≤ M . Then we say that NR is dense in MR if for
x, y ∈ M with y �= 0, there exists r ∈ R such that xr ∈ N and yr �= 0. We use
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N ≤den M to denote that N is dense inM . We note that if N ≤den M , then N ≤ess M .
The converse does not hold in general.

Definition 2.1 An overring S of a ring R is called a right essential overring of R if
RR ≤ess SR . For a ring R, Q(R) denotes the maximal right ring of quotients of R.
An intermediate ring between a ring R and Q(R) is called a right ring of quotients
of R. Thereby, an overring T of a ring R is said to be a right ring of quotients of R
if and only if RR ≤den TR .

Since every dense overmodule is an essential overmodule, any right ring of quo-
tients of a ring R is a right essential overring of R. In Example2.5, we provide a
right essential overring of a ring which is not a right ring of quotients.

Definition 2.2 Assume that R is a ring and RR ≤ TR . Let (T,+, ◦)be a ring structure
on T , where+ is the given addition on TR and ◦ is themultiplication on T .We say that
the ring structure (T,+, ◦) is compatiblewith R if ◦ extends the scalar multiplication
of T over R. In other words,

t ◦ r = tr for t ∈ T and r ∈ R.

Thereby, T is an overring of R.
We note that, for a ring R, if S is either a right essential overring of R or S is a

right ring of quotients of R, then the ring structure on S is compatible with R.

Thenext result shows that if RR is dense inTR andT has a compatible ring structure
(i.e., T is a right ring of quotients of R), then it is unique (see [2, Proposition 7.1.6]).

Proposition 2.3 Let R be a ring and RR ≤den TR . If T has a compatible ring struc-
ture, then all of the compatible ring structures on TR coincide with each other.
Thereby, T becomes an intermediate ring between R and Q(R) under this unique
compatible ring structure on T .

Proof Let (T,+, ◦1) and (T,+, ◦2) be two compatible ring structures on TR .

Assume on the contrary that there are x, y ∈ T with x ◦1 y − x ◦2 y �= 0.Then there
exists r ∈ R such that yr ∈ R and (x ◦1 y − x ◦2 y)r �= 0 because RR ≤den TR .Thus

(x ◦1 y − x ◦2 y)r = x ◦1 (yr) − x ◦2 (yr) = x(yr) − x(yr) = 0,

which is a contradiction. Therefore, ◦1 = ◦2. �

From Proposition2.3, we have the following corollary which shows Q(R) has a
unique overring structure of a ring R.

Corollary 2.4 Let R be a ring. Then Q(R) has a unique overring structure of R.

Proof The proof follows immediately fromProposition2.3 because RR ≤den Q(R)R
and Q(R) has an overring structure of R. �
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A ring R is called right Kasch if every simple right R-module is embedded in RR .
It is well known that a ring R is right Kasch if and only if the only dense right ideal
of R is R itself. Thus, if R is a right Kasch ring, then R = Q(R). (See [4, Corollary
8.28, p. 281 and Corollary 13.24, p. 371].)

In the following example (see [2, Example 7.1.8]), there exists a ring R for which
there is an essential overmodule TR of RR such that T has two distinct compatible
overring structures of R.

Example 2.5 Let R =
[
Z4 2Z4

0 Z4

]
. The addition on R is the usual componentwise

addition. For

[
u1 2v1
0 w1

]
,

[
u1 2v1
0 w1

]
∈ R with ui , vi , wi ∈ Z4, 1 ≤ i ≤ 2, the multi-

plication is defined by

[
u1 2v1
0 w1

] [
u2 2v2
0 w2

]
=

[
u1u2 2u1v2 + 2v1w2

0 w1w2

]
.

Then R is a ring. Let

T =
[
Z4 Z4

0 Z4

]
.

The addition on T is also the usual componentwise addition. For

[
a b
0 c

]
∈ T (where

a, b, c ∈ Z4) and

[
u 2v
0 w

]
∈ R (where u, v, w ∈ Z4), the R-module scalar multipli-

cation on T is defined by

[
a b
0 c

] [
u 2v
0 w

]
=

[
au 2av + bw
0 cw

]
.

Then TR is a right R-module, and RR ≤ess TR .

From [2, Example 7.1.8], there exist exactly two distinct compatible ring multi-
plications on T , which are:

[
a1 b1
0 c1

]
�1

[
a2 b2
0 c2

]
=

[
a1a2 a1b2 + b1c2
0 c1c2

]

and [
a1 b1
0 c1

]
�2

[
a2 b2
0 c2

]
=

[
a1a2 a1b2 + 2b1b2 + b1c2
0 c1c2 + 2a1b2 + 2c1b2

]
.

Note that (T,+,�1) = T2(Z4), the 2 × 2 upper triangular matrix ring over the
ring Z4. Further, the ring structure given on R is (R,+,�1).

We can check that the ring R is right Kasch (see Example2.9 and Remark2.10).
Therefore, we have that R = (R,+,�1) = Q(R,+,�1). Note that �1 on T extends
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the R-module scalar multiplication of T over R. As before, we see that

RR = (R,+,�1)(R,+,�1) ≤ess (T,+,�1)(R,+,�1) = TR .

Hence, the ring (T,+,�1) is a right essential overring of R = (R,+,�1).
Now, R = (R,+,�1) = Q(R,+,�1) � (T,+,�1), hence, we have that

(R,+,�1)(R,+,�1) is not dense in TR = (T,+,�1)(R,+,�1). So, the ring (T,+,

�1) is not a right ring of quotients of R = (R,+,�1).
Next, (T,+,�2) is a right essential overring of the ring R = (R,+,�1) =

(R,+,�2) and �1 �= �2 on T . The ring (T,+,�2) is a right essential overring of
the ring (R,+,�1), which is not a right ring of quotients of the ring R = (R,+,�1).

Because �1 �= �2, T has no unique compatible ring structure with the ring R. By
Proposition2.3, RR is not dense in TR .

In a different way, we show that RR is not dense in TR . Indeed, take

x =
[
0 1
0 0

]
and y =

[
0 0
0 2

]

in T . Assume on the contrary that RR ≤den TR . Then there exists r ∈ R such that

xr ∈ R and yr �= 0. Say r =
[
u 2v
0 w

]
∈ R, where u, v, w ∈ Z4. Because xr ∈ R,

w ∈ 2Z4. Thus, yr = 0, which is a contradiction.

Remark 2.6 Let (T,+,�1) and (T,+,�2) be as in Example2.5. Then (T,+,�1) ∼=
(T,+,�2) (as rings) with an isomorphism f : (T,+,�1) → (T,+,�2) defined by

f

[
a b
0 c

]
=

[
a b
0 2b + c

]
,

for

[
a b
0 c

]
∈ (T,+,�1).

Definition 2.7 A ring R is called right compatible (also called right Osofsky com-
patible ) if some injective hull E(RR) of RR has a ring structure, where the ring
multiplication of E(RR) extends the R-module scalar multiplication of E(RR) over
R. Similarly, a left compatible ring is defined.

Every ring R satisfying Q(R) = E(RR) is right compatible. Hence, a ring R is
right nonsingular, then R is right compatible. The following are well known:

(1) A ring R is right nonsingular if and only if Q(R) = E(RR) and Q(R) is a
right self-injective (von Neumann) regular ring (see [2, Theorem 2.1.31]).

(2) Let T be a right ring of quotients of a ring R. Then T is right self-injective if
and only if T = E(RR) (see [2, Theorem 7.1.3]).

The next result (see [2, Proposition 7.1.10]) shows that if one injective hull of RR

has a compatible ring structure, then every injective hull of RR has a compatible ring
structure.
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Proposition 2.8 Let R be a ring. If R is right compatible, then every injective hull
of RR has a compatible ring structure.

Proof Assume that there is an injective hull E(RR) of RR such that (E(RR),+, �)

is a compatible ring structure. Let ER be an arbitrary injective hull of RR . Then
there is an isomorphism φ : ER → E(RR) such that φ(r) = r for each r ∈ R. For
x, y ∈ ER,

Define x ◦ y = φ−1(φ(x) � φ(y)) for x, y ∈ ER . Then (ER,+, ◦) is a ring. Fur-
ther,

x ◦ r = φ−1(φ(x) � φ(r)) = φ−1(φ(x) � r)

= φ−1(φ(x)r) = φ−1(φ(xr))

= xr,

for x ∈ ER and r ∈ R. Thus (ER,+, ◦) is a compatible ring structure. In this case,
(ER,+, ◦) ∼= (E(RR),+, �) via φ.

�
Recall that a ring R is said to beQF (quasi-Frobenius) if R is right (or left) Artinian

and right (or left self-injective). It is well known that if R is a Dedekind domain, then
A = R/I is a QF-ring for any nonzero proper ideal I of R (see [8, Theorem 6.14,
p. 174]). Also note that if A is right self-injective and G is a finite group, then the
group ring A[G] is right self-injective (see [3]). Hence, the group algebra F[G] of a
finite group G over a field F is QF.

In the following, there exists a ring R such that Q(R) is not equal to E(RR), and
E(RR) has no compatible ring structure with the R-module scalar multiplication on
E(RR) over R.

We use J (−) to denote the Jacobson radical of a ring and Soc(MR) to denote the
socle of a module MR . When A is a commutative ring, Soc(A) denotes Soc(AA).

Example 2.9 Let A be a commutative local QF-ring with J (A) �= 0 (e.g., A = Z4),
and let

R =
[
A Soc(A)

0 A

]
.

Then we have the following.
(i) Q(R) = R. Since A is Artinian, Soc(A)A ≤ess AA. Note that E(Soc(A)A) = A

because AA is injective. Since A is local and End(AA) ∼= A, AA is uniform. Thus,
Soc(A)A is a simple A-module.

Let 0 �= V � A. Now 0 �= Soc(VA) = V ∩ Soc(A), so Soc(A) ⊆ V because
Soc(A)A is simple. Therefore, Soc(A) is the nonzero smallest ideal of A. Let
0 �= s ∈ Soc(A). Then Soc(A) = s A. We note that

J (R) =
[
J (A) Soc(A)

0 J (A)

]
.

Let M be a maximal right ideal of R. Then J (R) ⊆ M , and hence, M is either
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M1 =
[
J (A) Soc(A)

0 A

]
or M2 =

[
A Soc(A)

0 J (A)

]
.

We show that M1 is not a dense right ideal of R. For this, consider

[
1 0
0 0

]
∈ R and

[
s 0
0 0

]
∈ R.

If M1 is a dense right ideal of R, then there exists

[
a sb
0 c

]
∈ R with a, b, c ∈ A

such that [
1 0
0 0

] [
a sb
0 c

]
∈ M1 and

[
s 0
0 0

] [
a sb
0 c

]
�= 0.

Therefore, a ∈ J (A). Note that s2b = 0 because s2 ∈ Soc(A)2 ⊆ Soc(A)J (A) = 0.
Thus, sa �= 0. But sa ∈ Soc(A)J (A) = 0, a contradiction. Hence, M1 is not a dense
right ideal of R.

Next to prove that M2 is not a dense right ideal, consider

x =
[
0 0
0 1

]
∈ R and y =

[
0 0
0 s

]
∈ R.

Then as in the preceding argument, there does not exist r ∈ R such that xr ∈ M2 and
yr �= 0. Hence, M2 is not a dense right ideal of R.

Now, let I be a proper right ideal of R such that IR ≤den RR . Since M1 and M2

are the only maximal right ideals of R, I ⊆ M1 or I ⊆ M2. Neither M1 nor M2 is a
dense right ideal of R, so I is not a dense right ideal of R. Therefore, the only dense
right ideal of R is R itself. Hence, Q(R) = R.

(ii) For f ∈ Hom(Soc(A)A, AA) and x ∈ A, we let f · x defined by ( f · x)(a) =
f (xa) for a ∈ Soc(A). Then f · x ∈ Hom(Soc(A)A, AA). We now let

E =
[
A ⊕ Hom(Soc(A)A, AA) A
Hom(Soc(A)A, AA) A

]
,

where the addition is componentwise and the R-module scalarmultiplication is given
by [

a + f b
g c

] [
x y
0 z

]
=

[
ax + f · x ay + f (y) + bz

g · x g(y) + cz

]
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for

[
a + f b

g c

]
∈ E and

[
x y
0 z

]
∈ R. Then ER is an injective hull of RR (see [2,

Theorem 7.1.14]). Furthermore, since Q(R) = R by part (i), we have that Q(R) �=
ER .

(iii) Since Soc(A) is the smallest nonzero ideal of A by the argument in part (i),
we have that Soc(A) = s A, where 0 �= s ∈ Soc(A). Let f0 ∈ Hom(Soc(A)A, AA)

such that f0(b) = b for every b ∈ Soc(A).
Assume that E has a compatible ring structure.Note that ( f0 · s)(sa) = f0(s2a) =

0 for each sa ∈ s A = Soc(A),wherea ∈ A because s2 ∈ Soc(A)2 ⊆ Soc(A)J (A) =
0. Thus, f0 · s = 0. Therefore,

[
0 s
0 0

]
=

[
f0 0
0 0

] [
0 s
0 0

]
=

[
f0 0
0 0

] ([
s 0
0 0

] [
0 1
0 0

])

=
([

f0 0
0 0

] [
s 0
0 0

])[
0 1
0 0

]
=

[
f0 · s 0
0 0

] [
0 1
0 0

]

=
[
0 0
0 0

] [
0 1
0 0

]

= 0,

a contradiction. Hence, R is not right compatible. By Theorem 2.8, there is no
injective hull of RR with a compatible ring structure.

Remark 2.10 Let R be the ring of Example2.9. Then R is right Kasch because the
only dense right ideal of R is R itself as is shown in Example2.9. So, every simple
right R-module is embedded in RR . In fact, from the argument used in Example2.9,
M1 and M2 are the only maximal right ideals of R. Now let N be a simple right
R-module. Then N ∼= R/M1 or N ∼= R/M2 as R-modules.

As was shown in Example2.9(i), Soc(A) is the smallest nonzero ideal of A and
Soc(A)A is simple. Now take 0 �= s ∈ Soc(A). Then Soc(A) = s A. Consider

ϕ : A → Soc(A) = s A

defined by ϕ(a) = sa for a ∈ A. Assume sa = 0 with a ∈ A. Then Soc(A)a =
0. If a /∈ J (A), then a is invertible because A is local, and hence, Soc(A) = 0,
a contradiction. Thus, a ∈ J (A). Conversely, if a ∈ J (A), then Soc(A)a = 0. So
sa = 0. Therefore, Ker(ϕ) = J (A).

We define

γ : R/M1 → R by γ

([
a 0
0 0

]
+ M1

)
=

[
sa 0
0 0

]
,

where a ∈ A. Then γ is an R-monomorphism from R/M1 to RR because Ker(ϕ) =
J (A). Next define
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λ : R/M2 → R by λ

([
0 0
0 c

]
+ M2

)
=

[
0 0
0 sc

]
,

where c ∈ A. Then λ is also an R-monomorphism from R/M2 to RR . Consequently,
every simple right R-module is embedded in RR .

Remark 2.11 In Example2.9, when A = Z4, it is shown that the ring R is not right
compatible without explicitly constructing an injective hull of RR (see [6]).

The following, due to Lang [5], shows that a commutative Artinian ring is (right)
compatible precisely when R is self-injective.

Theorem 2.12 Let R be a commutative Artinian ring. Then R is right compatible if
and only if R = E(RR).

Proof See [2, Theorem 7.3.12] for the proof. �

For an illustration of Theorem2.12, we provide the next example.

Example 2.13 Assume that A is a commutative QF-ring with J (A) �= 0 (e.g., A =
Z4), where J (A) is the Jacobson radical of A. Let R be the trivial extension of A by
J (A), that is,

R =
{[

x y
0 x

]
| x ∈ A and y ∈ J (A)

}
.

Then R is a commutative Artinian ring. We claim that R is not right compatible. For
this, take 0 �= y0 ∈ Soc(A). We put

I =
[
0 y0
0 0

]
R =

{[
0 y0x
0 0

]
| x ∈ A

}
.

Consider f : I → R defined by

f

[
0 y0x
0 0

]
=

[
y0x y0x
0 y0x

]
.

Then f ∈ Hom(IR, RR) because Soc(A)J (A) = 0. Assume on the contrary that RR

is injective. Then by Baer’s Criterion, there exists

[
a b
0 a

]
∈ R such that

[
a b
0 a

] [
0 y0
0 0

]
=

[
y0 y0
0 y0

]
.

So, we get a contradiction, and hence, RR is not injective. By Theorem2.12, E(RR)

has no compatible ring structure, i.e., R is not right compatible.
The following is useful to construct and describe explicitly other compatible

overring structures on the injective hull ER of RR if (ER,+, ·) has a compatible
overring structure.
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Theorem 2.14 Assume that R is a ring and ER is an injective hull of RR with a
given compatible ring structure (ER,+, ·) on ER. Let f : ER → (ER,+, ·) be a
right R-module isomorphism such that f (r) = r for all r ∈ R. Define

v1 � v2 = f −1[ f (v1) · f (v2)]

for v1, v2 ∈ ER. Then (ER,+,�) is also a compatible ring structure on ER and
(ER,+,�) ∼= (ER,+, ·) as rings.
Proof Say v1, v2 ∈ ER . Then since v1 � v2 = f −1[ f (v1) · f (v2)], we have that

f (v1 � v2) = f (v1) · f (v2).

Also, f (v1 + v2) = f (v1) + f (v2) as f is additive. Because (ER,+, ·) is a ring
and f is one-to-one and onto, (ER,+,�) is a ring. Moreover, f : (ER,+,�) →
(ER,+, ·) is a ring isomorphism.

Next, for v ∈ ER and r ∈ R,

v � r = f −1( f (v) · f (r)) = f −1( f (v) · r)
= f −1( f (v)r) = f −1( f (vr))

= vr

as f (r) = r and f (v) · r = f (v)r = f (vr). Hence, (ER,+,�) is a compatible ring
structure on ER . �

In the following, we remark that the assumption
“ f (r) = r for all r ∈ R”

of Theorem2.14 is crucial for the compatibility of the ring structure (ER, +, �) in
Theorem2.14.

Remark 2.15 Assume that R is a ring and ER is an injective hull of RR with a
compatible ring structure (ER,+, ·) on ER . Let u ∈ R be an invertible element such
that u �= 1R , where 1R is the identity of the ring R. Define

h : ER → (ER, +, ·) by h(y) = u−1 · y for y ∈ ER .

Since u is invertible in (ER, +, ·), h is an additive abelian group isomorphism.
Furthermore, h is an R-isomorphism of ER . For y1, y2 ∈ ER , let

y1 � y2 = h−1[h(y1) · h(y2)].

By the proof of Theorem2.14, (ER, +, �) is a ring and (ER, +, �) ∼= (ER, +, ·)
(as rings) via h.

But (ER, +, �) is not compatible. To show this, let 1E be the identity of the
ring (ER, +, ·). Then 1E = 1R . In fact, if 1E �= 1R , then 1E − 1R �= 0. Since RR is
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essential in ER , there exists r ∈ R such that

0 �= (1E − 1R)r = (1E − 1R) · r = 1E · r − 1T r = r − r = 0,

which is a contradiction. Hence, 1E = 1R . Now

1E � 1R = h−1[h(1E ) · h(1R)] = h−1[h(1E ) · h(1E )]
= h−1(u−1 · 1E · u−1 · 1E ) = h−1(u−1 · u−1) = u−1

�= 1E

because u �= 1R = 1E . Therefore, the ring structure (ER, +, �) is not compatible.

We note that h(1R) = u−1 �= 1E = 1R, so h(1R) �= 1R . Therefore, the assump-
tion “ f (r) = r for all r ∈ R” is crucial for the compatibility of the ring structure
(ER, +, �) in Theorem2.14.

When R is a right nonsingular ring, E(RR) = Q(R) and R is right compatible.
Furthermore, in this case, E(RR)has a unique compatible structure byProposition2.3
and Corollary2.4.

In contrast to Theorem2.12 and Example2.13, there exists a noncommutative
Artinian ring R which is right compatible in the following Example2.16 for which,
there exists a right compatible ring R such that R is right Kasch (hence, Q(R) = R)
but E(RR) has (even infinitely many) distinct compatible ring structures.

Example2.16 is based on [1] and [2, Proposition 7.3.16 and Theorem 7.3.17], and
here we describe compatible ring structures on the injective hull E(RR) of a ring R
in details as much as possible by using a useful tool established in Theorem2.14.

Example 2.16 Assume that A is a local commutativeQF-ringwith J (A) �= 0,where
J (A) is the Jacobson radical of A. Let

R =
[
A A/J (A)

0 A/J (A)

]
and E =

[
A ⊕ (A/J (A)) A/J (A)

A/J (A) A/J (A)

]
.

(i) Q(R) = R. There are exactly two maximal right ideals of R, which are

M1 =
[
J (A) A/J (A)

0 A/J (A)

]
and M2 =

[
A A/J (A)

0 0

]
.

Let I be a dense right ideal of R such that I �= R. Then either I ⊆ M1 or I ⊆
M2. First, assume that I ⊆ M1. Hence, M1 is a dense right ideal of R. As A is a
commutative local QF-ring, Soc(A) is the smallest nonzero ideal and Soc(A) is a
simple A-module (from the argument used in Example2.9(i)). Let 0 �= v ∈ Soc(A).
Then Soc(A) = vA. Take
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x =
[
1 0
0 0

]
∈ R and 0 �= y =

[
v 0
0 0

]
∈ R.

Since M1 is dense in RR , there exists r ∈ R such that xr ∈ M1 and yr �= 0. Say

r =
[
a b
0 c

]
,

where a and b are images of a and b in A/J (A), respectively. As xr ∈ M1, a ∈ J (A).
Note that Soc(A)J (A) = 0 and Soc(A) ⊆ J (A). Hence, yr = 0, a contradiction.
Therefore, M1 is not dense in RR .

Next, we see that M2 ∩
[
0 0
0 1

]
R = 0. Thus, M2 is not essential in RR , so M2 is

not dense in RR . Thus, IR is not dense in RR . Therefore, R itself is the only dense
right ideal of R, and hence, R is a right Kasch ring. So Q(R) = R.

(ii) The addition + of E is componentwise. The right R-module scalar multipli-
cation of E over R is given as follows:

For v =
[
s + x y
z w

]
∈ E and r =

[
a b
0 c

]
∈ R, where s, x, y, z, w, a, b, c ∈ A and

x, b ∈ A/J (A), etc., denote the images of x, b ∈ A, etc., respectively, we define

vr =
[
s + x y
z w

] [
a b
0 c

]
=

[
sa + xa sb + xb + yc

za zb + wc

]
.

Then E is a right R-module.
We show that the right R-module E is the injective hull of RR . It was shown by G.

F. Birkenmeier, J. K. Park, and S. T. Rizvi in their unpublished paper “An injective
hull with distinct ring structures”. In the next parts (iii) and (iv), we give their proof
in detail as follows (cf. [2, Proposition 7.3.16]).

(iii) First, we show that RR ≤ess ER . For this, take 0 �= v =
[
s + a b
c d

]
∈ E . We

consider the following four cases.
• d �= 0. Since A/J (A) is a field, there exists d1 ∈ A/J (A) such that d d1 = 1.

Then we have that

[
0 0
0 d1

]
∈ R and 0 �= v

[
0 0
0 d1

]
=

[
0 b d1

0 1

]
∈ R.

• d = 0 and b �= 0. Then there exists b1 ∈ A/J (A) such that b b1 = 1. Hence,[
0 0
0 b1

]
∈ R and 0 �= v

[
0 0
0 b1

]
=

[
0 1
0 0

]
∈ R.

• d = 0, b = 0, and c �= 0.Take c1 ∈ A/J (A) such that c c1 = 1.Then

[
0 c1
0 0

]
∈

R and 0 �= v

[
0 c1
0 0

]
=

[
0 (s + a)c1
0 1

]
∈ R.
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• d = 0, b = 0, c = 0, and s + a �= 0. In this case, if a = 0, then s �= 0. Hence,

0 �= v ∈ R. Suppose that a �= 0. If s + a �= 0, then 0 �= v

[
0 1
0 0

]
=

[
0 s + a
0 0

]
∈ R

with

[
0 1
0 0

]
∈ R. If s + a = 0, then s �= 0 because a �= 0. Hence, s /∈ J (A) =

�A(Soc(A)). Thus, there existsw ∈ Soc(A) such that sw �= 0. Thus, 0 �= v

[
w 0
0 0

]
=[

sw 0
0 0

]
∈ R with

[
w 0
0 0

]
∈ R.

From the previous cases, for each 0 �= v ∈ E , there exists r ∈ R such that 0 �=
vr ∈ R. Therefore, RR ≤ess ER .

(iv) Next, we show that E = E(RR), the injective hull of RR . For this, let

V =
[
A ⊕ ((A/J (A)) A/J (A)

0 0

]
and W =

[
0 0

A/J (A) A/J (A)

]
.

Then V and W are R-submodules of ER and ER = VR ⊕ WR .
Step 1. VR is an injective R-module. For this, let I be a proper essential right ideal

of R. Then

[
0 0
0 1

]
R ∩ I �= 0. Since A/J (A) is a field,wehave that

[
0 0
0 A/J (A)

]
⊆ I.

Also as

[
0 1
0 0

]
R ∩ I �= 0, and so

[
0 A/J (A)

0 0

]
⊆ I . Further, for any 0 �= a ∈ J (A),[

a 0
0 0

]
R ∩ I �= 0. Thus, there exists a nonzero proper ideal K of A such that

I =
[
K A/J (A)

0 A/J (A)

]
.

Let φ : IR → VR be an R-homomorphism. For each k ∈ K , we have that

φ

[
k 0
0 0

]
=

[
sk + ak bk

0 0

]

with sk ∈ A and ak, bk ∈ A/J (A). Then

0 = φ

([
k 0
0 0

] [
0 0
0 1

])
=

(
φ

[
k 0
0 0

])[
0 0
0 1

]
=

[
0 bk
0 0

]
,

and so bk = 0. Note that since K is a proper ideal of A and thus K ⊆ J (A). As
k ∈ K , it follows that k = 0. Hence, we have that
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0 = φ

[
0 k
0 0

]
= φ

([
k 0
0 0

] [
0 1
0 0

])
=

(
φ

[
k 0
0 0

]) [
0 1
0 0

]

=
[
0 sk + ak
0 0

]
.

Thus, sk + ak = 0. Now let

f : KA → AA defined by f (k) = sk .

Then f is an A-homomorphism. For this, say k, � ∈ K . Then

φ

[
k + � 0
0 0

]
=

[
sk+� + ak+� 0

0 0

]

and

φ

[
k + � 0
0 0

]
= φ

[
k 0
0 0

]
+ φ

[
� 0
0 0

]
=

[
sk + ak 0

0 0

]
+

[
s� + a� 0

0 0

]

=
[
sk + s� + ak + a� 0

0 0

]
.

Therefore sk+� = sk + s�. Thus f (k + �) = f (k) + f (�). Next take k ∈ K
and w ∈ A. Then

φ

[
kw 0
0 0

]
=

[
skw + akw 0

0 0

]

and

φ

[
kw 0
0 0

]
= φ

([
k 0
0 0

] [
w 0
0 0

])
=

(
φ

[
k 0
0 0

])[
w 0
0 0

]

=
[
sk + ak 0

0 0

] [
w 0
0 0

]
=

[
skw + akw 0

0 0

]
.

Therefore skw = skw. Hence f (kw) = f (k)w. So f is an A-homomorphism.
Since AA is injective, there exists t ∈ A such that tk = f (k) = sk for all k ∈ K .

So sk = t k = 0, and hence, ak = 0 because sk + ak = 0. Therefore,

φ

[
k 0
0 0

]
=

[
sk 0
0 0

]
=

[
tk 0
0 0

]

for all k ∈ K . Next, we let φ

[
0 1
0 0

]
=

[
s + a b
0 0

]
with s ∈ A and a, b ∈ A/J (A).

Then

0 = φ(0) = φ

([
0 1
0 0

] [
1 0
0 0

])
=

(
φ

[
0 1
0 0

])[
1 0
0 0

]
=

[
s + a 0
0 0

]
.
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So φ

[
0 1
0 0

]
=

[
0 b
0 0

]
. Further, we let φ

[
0 0
0 1

]
=

[
w + c d
0 0

]
with w ∈ A and c, d ∈

A/J (A). Then, it follows that

0 = φ(0) = φ

([
0 0
0 1

] [
1 0
0 0

])
=

(
φ

[
0 0
0 1

])[
1 0
0 0

]
=

[
w + c 0
0 0

]
.

Hence, w + c = 0, so we have that φ

[
0 0
0 1

]
=

[
0 d
0 0

]
. Now we take

v0 =
[
t + (−t) + b d

0 0

]
∈ V .

Thenφ(x) = v0x for each x ∈ I . Letϕ : RR → V such thatϕ(r) = v0r for all r ∈ R.
Then ϕ ∈ Hom(RR, VR) and ϕ is an extension of φ.

In general, let B be a right ideal of R and left f ∈ Hom(BR, VR). Let CR be
a complement of BR in RR . Then (B ⊕ C)R ≤ess RR . Define g : B ⊕ C → V by
g(b + c) = f (b) for b ∈ B and c ∈ C . Then g ∈ Hom((B ⊕ C)R, VR).

From the preceding arguments, there exists h ∈ Hom(RR, VR), which is an exten-
sion of g. Then for b ∈ B, h(b) = g(b) = f (b) and therefore h is an extension of f .
Hence, VR is an injective R-module by Baer’s Criterion.

Step 2. WR is an injective R-module. For this, let I be a proper essential right
ideal of R. Then as in Step 1,

I =
[
K A/J (A)

0 A/J (A)

]

for some proper ideal K of A. So K ⊆ J (A). Let ψ : IR → WR be an
R-homomorphism. Then

ψ

[
0 1
0 0

]
=

[
0 0
c1 d1

]

with c1, d1 ∈ A/J (A). Then

0 = ψ(0) = ψ

([
0 1
0 0

] [
1 0
0 0

])
=

(
ψ

[
0 1
0 0

]) [
1 0
0 0

]
=

[
0 0
c1 0

]
.

Thus, c1 = 0, so it follows that

ψ

[
0 1
0 0

]
=

[
0 0
0 d1

]
.

Next, say

ψ

[
0 0
0 1

]
=

[
0 0
c2 d2

]
,
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where c2, d2 ∈ A/J (A). Then it can be checked that c2 = 0, and hence ψ

[
0 0
0 1

]
=[

0 0
0 d2

]
. Finally, by routine computation, we have that ψ

[
k 0
0 0

]
= 0 for all k ∈ K

since k = 0. Now we take

w0 =
[
0 0
d1 d2

]
∈ W.

Then ψ(x) = w0x for each x ∈ I . Let μ : RR → W defined by μ(r) = w0r for all
r ∈ R. Then μ ∈ Hom(RR,WR) and μ is an extension of ψ.

In general, let B be a right ideal of R and let α ∈ Hom(BR,WR). Then by the
argument used in the proof of Step 1, there exists β ∈ Hom(RR,WR), which is an
extension of α. Therefore, WR is an injective R-module by Baer’s Criterion.

From Step 1 and Step 2, VR and WR are injective R-modules. Hence, ER =
VR ⊕ WR is an injective R-module. Because RR ≤ess ER by (iii), ER is the injective
hull of RR .

(v) We establish a compatible ring structure on E = E(RR). For this, we need to
establish multiplication so that the associativity under the induced multiplication as
well as distributive laws under the given addition on E and the inducedmultiplication
hold.

It is useful to adopt the idea in the proof of Theorem2.14. Hence, it is necessary
to consider first a ring whose additive abelian group is isomorphic to the additive
abelian group (E,+).

Consider the following E adopted from private communications with B. L. Osof-
sky, which is

E =
⎧⎨
⎩

⎡
⎣s 0 0
0 x y
0 z w

⎤
⎦ | s, x, y, z, w ∈ A

⎫⎬
⎭ ,

where x, y, z, and w are images of x, y, z, and w in A/J (A), respectively. The
addition of E is componentwise and the multiplication � is defined as follows:

For v1 =
⎡
⎣s1 0 0
0 x1 y1
0 z1 w1

⎤
⎦ ∈ E and v2 =

⎡
⎣s2 0 0
0 x2 y2
0 z2 w2

⎤
⎦ ∈ E, we define

v1 � v2 =
⎡
⎣s1s2 0 0

0 x1x2 + y1z2 x1y2 + y1w2

0 z1x2 + w1z2 z1y2 + w1w2

⎤
⎦ .

Then (E,+,�) is ring. Further, (E,+,�) ∼= A ⊕ Mat2(A/J (A)) as rings, and so
(E,+,�) is a QF-ring because A/J (A) is a field.

To induce a compatible ring structure on E from the ring (E,+,�), first, consider
η : E → E defined by
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η

[
s + x y
z w

]
=

⎡
⎣s 0 0
0 x y
0 z w

⎤
⎦ ,

where s, x, y, z, w ∈ A, and x, y, etc., are images of x, y, etc., in A/J (A). Then
η is an additive abelian group isomorphism. By adopting the idea in the proof of

Theorem2.14,wedefine a ringmultiplication•on E . For this, letv1 =
[
s1 + x1 y1

z1 w1

]
∈

E and v2 =
[
s2 + x2 y2

z2 w2

]
∈ E . Define

v1 • v2 = η−1(η(v1) � η(v2)).

Then we have that

v1 • v2 = η−1(η(v1) � η(v2)) = η−1

⎛
⎝

⎡
⎣s1 0 0
0 x1 y1
0 z1 w1

⎤
⎦ �

⎡
⎣s2 0 0
0 x2 y2
0 z2 w2

⎤
⎦

⎞
⎠

= η−1

⎡
⎣s1s2 0 0

0 x1x2 + y1z2 x1y2 + y1w2
0 z1x2 + w1z2 z1y2 + w1w2

⎤
⎦ =

[
s1s2 + x1x2 + y1z2 x1y2 + y1w2

z1x2 + w1z2 z1y2 + w1w2

]
.

Thus, (E,+, •) ∼= (E,+,�) (as rings) via η since ηis an additive abelian group
isomorphism and η(v1 • v2) = η(v1) � η(v2) for v1, v2 ∈ E .

Now for v =
[
s + x y
z w

]
∈ E with s, x, y, z, w ∈ A and r =

[
a b
0 c

]
∈ R with

a, b, c ∈ A, we note that v • r = η−1(η(v) � η(r)). Hence we have that

v • r =
[
sa xb + yc
0 zb + wc

]
, while vr =

[
sa + xa sb + xb + yc

za zb + wc

]
.

So v • r �= vr in general. Thus, (E,+, •) is not compatible with the given R-module
scalar multiplication of E over R.

Because the ring multiplication • on E is disqualified to be compatible with the
given R-module scalar multiplication of E = E(RR) over R, first, we let σ : R → E

defined by

σ

[
a b
0 c

]
=

⎡
⎣a 0 0
0 a b
0 0 c

⎤
⎦ where

[
a b
0 c

]
∈ R.

Then σ is a one-to-one ring homomorphism. Consider an extension θ : E(RR) → E

of σ defined by
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θ

[
s + x y
z w

]
=

⎡
⎣s 0 0
0 s + x y
0 z w

⎤
⎦ for

[
s + x y
z w

]
∈ E(RR).

Then θ is an additive abelian group isomorphism. For v1, v2 ∈ E , define

v1 ◦ v2 = θ−1(θ(v1) � θ(v2))

by adopting the idea in the proof of Theorem2.14.

Say v1 :=
[
s1 + x1 y1

z1 w1

]
, v2 :=

[
s2 + x2 y2

z2 w2

]
∈ E, where s1, s2, x1, x2, etc.,

are in A. Then

v1 ◦ v2 = θ−1(θ(v1) � θ(v2)) = θ−1

⎛
⎝

⎡
⎣s1 0 0
0 s1 + x1 y1
0 z1 w1

⎤
⎦ �

⎡
⎣s2 0 0
0 s2 + x2 y2
0 z2 w2

⎤
⎦

⎞
⎠

= θ−1

⎡
⎣s1s2 0 0

0 s1s2 + s1x2 + x1s2 + x1x2 + y1z2 s1y2 + x1y2 + y1w2

0 z1s2 + z2x2 + w1z2 z1y2 + w1w2

⎤
⎦

=
[
s1s2 + s1x2 + x1s2 + x1x2 + y1z2 s1y2 + x1y2 + y1w2

z1s2 + z1x2 + w1z2 z1y2 + w1w2

]
.

Consequently, we have that

v1 ◦ v2 =
[
s1s2 + s1x2 + x1s2 + x1x2 + y1z2 s1y2 + x1y2 + y1w2

z1s2 + z1x2 + w1z2 z1y2 + w1w2

]
.

Furthermore, since θ is an additive abelian group isomorphism and θ(v1 ◦ v2) =
θ(v1) � θ(v2) for v1, v2 ∈ E , it follows that (E, +, ◦) ∼= (E, +, �) (as rings) via θ.
Therefore, (E,+, ◦) is a QF-ring because (E,+,�) is a QF-ring.

Finally, for the compatibility of themultiplication ◦ of E with the R-module scalar

multiplication of E over R, take v =
[
s + x y
z w

]
∈ E , where s, x, y, z, w ∈ A, and

r =
[
a b
0 c

]
∈ R, where a, b, c ∈ A. Then

v ◦ r =
[
s + x y
z w

]
◦

[
a b
0 c

]
=

[
sa + xa sb + xb + yc

za zb + wc

]
= vr.

Therefore, the ring structure (E, +, ◦) is compatible with the R-module scalar mul-
tiplication of E over R.

(vi) It is interesting to remark from part (v):
(1) (E, +, ◦) ∼= (E, +, •) (as rings), which are QF-rings. Indeed, note that

θ : (E,+, ◦) → (E,+,�) and η : (E,+, •) → (E,+,�) are ring isomorphisms.
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Thus, η−1θ : (E,+, ◦) → (E,+, •) is a ring isomorphism. Further, as (E,+,�)

is a QF-ring, so are (E,+, ◦) and (E,+, •).
(2) (E, +, ◦) is compatible with the right R-module scalar multiplication of E ,

but (E, +, •) is not compatible with the R-module scalar multiplication of E over
R by part (v).

(vii) We construct other compatible ring structures on E which are distinct from
(E, +, ◦). For this, first, note that the identity map of RR can be extended to an
R-isomorphism of E since E is an injective hull of RR . Now let f : E → E be an
R-isomorphism such that f (r) = r for all r ∈ R, that is, f is an R-isomorphism of
E which is an extension of the identity map of RR . Then there exist α,β ∈ Soc(A)

such that

f

[
1 0
0 0

]
=

[
α + 1 0
0 0

]
and f

[
0 0
1 0

]
=

[
β 0
1 0

]
.

For this, first,weput f

[
1 0
0 0

]
=

[
s1 + a b

c d

]
∈ E,where s1, a, b, c, d ∈ A. Then

f

[
1 0
0 0

]
= f

([
1 0
0 0

] [
1 0
0 0

])
=

(
f

[
1 0
0 0

]) [
1 0
0 0

]

=
[
s1 + a b

c d

] [
1 0
0 0

]
=

[
s1 + a 0

c 0

]

because

[
1 0
0 0

]
∈ R. Note that

[
0 1
0 0

]
∈ R. As f (r) = r for all r ∈ R, we have that

[
0 1
0 0

]
= f

[
0 1
0 0

]
= f

([
1 0
0 0

] [
0 1
0 0

])
=

(
f

[
1 0
0 0

])[
0 1
0 0

]

=
[
s1 + a 0

c 0

] [
0 1
0 0

]
=

[
0 s1 + a
0 c

]
.

Therefore, s1 + a = 1and c = 0. So f

[
1 0
0 0

]
=

[
s1 + a 0

0 0

]
with s1 + a = 1.Take

x ∈ J (A). Then f

([
1 0
0 0

] [
x 0
0 0

])
= f

[
x 0
0 0

]
= f (0)=0. On the other hand, as[

x 0
0 0

]
∈ R, we have that

f

([
1 0
0 0

] [
x 0
0 0

])
=

(
f

[
1 0
0 0

]) [
x 0
0 0

]
=

[
s1 + a 0

0 0

] [
x 0
0 0

]

=
[
s1x + ax 0

0 0

]
=

[
s1x 0
0 0

]
.
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Thus, 0 =
[
s1x 0
0 0

]
because ax=0, so s1x = 0 for any x ∈ J (A). Since Soc(A)=

�(J (A)), it follows that s1 ∈ Soc(A). Nowwe putα=s1. Then f

[
1 0
0 0

]
=

[
α + a 0
0 0

]

with α + a = 1. Since α ∈ Soc(A) ⊆ J (A), a = 1 from α + a = 1. Therefore, we
have that

f

[
1 0
0 0

]
=

[
α + 1 0
0 0

]
with α ∈ Soc(A).

Next, we put f

[
0 0
1 0

]
=

[
s2 + a b

c d

]
∈ E with s2, a, b, c, d ∈ A. Then since[

1 0
0 0

]
∈ R,

f

[
0 0
1 0

]
= f

([
0 0
1 0

] [
1 0
0 0

])
=

(
f

[
0 0
1 0

]) [
1 0
0 0

]

=
[
s2 + a b

c d

] [
1 0
0 0

]
=

[
s2 + a 0

c 0

]
.

On the other hand, since

[
0 0
0 1

]
∈ R and f (r) = r for all r ∈ R, it follows that

[
0 0
0 1

]
= f

[
0 0
0 1

]
= f

([
0 0
1 0

] [
0 1
0 0

])
=

(
f

[
0 0
1 0

])[
0 1
0 0

]

=
[
s2 + a 0

c 0

] [
0 1
0 0

]
=

[
0 s2 + a
0 c

]
.

So s2 + a = 0 and c = 1. Therefore f

[
0 0
1 0

]
=

[
s2 + a 0

1 0

]
with s2 + a = 0.

Take x ∈ J (A). Then

[
x 0
0 0

]
∈ R and

[
0 0
1 0

] [
x 0
0 0

]
= 0. Hence

0 = f

([
0 0
1 0

] [
x 0
0 0

])
=

(
f

[
0 0
1 0

])[
x 0
0 0

]
=

[
s2 + a 0

1 0

] [
x 0
0 0

]

=
[
s2x + a x 0

x 0

]
=

[
s2x 0
0 0

]

as x ∈ J (A). Thus, s2x = 0 for any x ∈ J (A) and s2 ∈ Soc(A) since Soc(A) =
�(J (A)). Further, 0 = s2 + a and s2 ∈ Soc(A) ⊆ J (A). So s2 = 0 and thus a = 0.

f

[
0 0
1 0

]
=

[
s2 + a 0

1 0

]
=

[
s2 0
1 0

]
.

Now put β = s2. Then
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f

[
0 0
1 0

]
=

[
β 0
1 0

]
with β ∈ Soc(A).

For

[
s + a b
c d

]
∈ E , we have that

f

[
s + a b
c d

]
= f

[
s b
0 d

]
+ f

[
a 0
0 0

]
+ f

[
0 0
c 0

]

=
[
s b
0 d

]
+ f

([
1 0
0 0

] [
a 0
0 0

])
+ f

([
0 0
1 0

] [
c 0
0 0

])

=
[
s b
0 d

]
+

(
f

[
1 0
0 0

]) [
a 0
0 0

]
+

(
f

[
0 0
1 0

])[
c 0
0 0

]

=
[
s b
0 d

]
+

[
α + 1 0
0 0

] [
a 0
0 0

]
+

[
β 0
1 0

] [
c 0
0 0

]

=
[
s b
0 d

]
+

[
αa + a 0

0 0

]
+

[
βc 0
c 0

]

=
[
s + αa + βc + a b

c d

]
.

Conversely, for (α,β) ∈ Soc(A) × Soc(A), let

f(α,β)

[
s + a b
c d

]
=

[
s + αa + βc + a b

c d

]
.

Then f(α,β) is an R-homomorphismof E such that f(α,β)(r) = r for all r ∈ R because
α, β ∈ Soc(A). So f(α,β) is an R-isomorphism of E . Therefore

{ f(α,β) | (α,β) ∈ Soc(A) × Soc(A)}

is the set of all R-isomorphisms of E for which each R-isomorphism of E is an
extension of the identity map of RR .

Take (α,β) ∈ Soc(A) × Soc(A). Define ◦(α,β) on E by adopting the idea of
Theorem2.14:

For v1 =
[
s1 + a1 b1

c1 d1

]
, v2 =

[
s2 + a2 b2

c2 d2

]
∈ E, let

v1 ◦(α,β) v2 = f −1
(α,β)[ f(α,β)(v1) ◦ f(α,β)(v2)],

where ◦ is the ring multiplication of E defined in part (v). Then

v1 ◦(α,β) v2 = f(−α,−β)[ f(α,β)(v1) ◦ f(α,β)(v2)]
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because f −1
(α,β) = f(−α,−β). We can check that ◦(α,β) extends the R-module scalar

multiplication of E over R. Therefore, (E,+, ◦(α,β)) is a compatible ring structure
on E .

By routine calculation,

[
s1 + a1 b1

c1 d1

]
◦(α,β)

[
s2 + a2 b2

c2 d2

]
=

[
x y
z w

]
,

where

x = s1s2 + (−α)a1a2 + (−β)c1a2 + βs1c2 + (−α)b1c2 + (−β)d1c2

+ a1a2 + a1s2 + s1a2 + b1c2,

y = a1b2 + s1b2 + b1d2,

z = c1s2 + c1a2 + d1c2, and w = c1b2 + d1d2.

We see that ◦ = ◦(0,0). Further, as v1 ◦(α,β) v2 = f −1
(α,β)[ f(α,β)(v1) ◦ f(α,β)(v2)], it fol-

lows that
f(α,β)(v1 ◦(α,β) v2) = f(α,β)(v1) ◦ f(α,β)(v2).

Therefore, f(α,β) : (E,+, ◦(α,β)) → (E,+, ◦) is a ring isomorphism. So the ring
(E,+, ◦(α,β)) is a QF-ring for any (α,β) ∈ Soc(A) × Soc(A) because the ring
(E,+, ◦) is a QF-ring by part (v).

(viii) For (α,β), (γ, δ) ∈ Soc(A) × Soc(A), we show that

◦(α,β) = ◦(γ,δ) if and only if (α,β) = (γ, δ).

First, suppose that ◦(α,β) = ◦(γ,δ). As Soc(A) ⊆ J (A), Soc(A) = �A(J (A)), and
f −1
(α,β) = f(−α,−β), it follows that

[
1 0
0 0

]
◦(α,β)

[
1 0
0 0

]
= f(−α,−β)

(
f(α,β)

[
1 0
0 0

]
◦ f(α,β)

[
1 0
0 0

])

= f(−α,−β)

([
α + 1 0
0 0

]
◦

[
α + 1 0
0 0

])

= f(−α,−β)

[
1 0
0 0

]
=

[
(−α) + 1 0

0 0

]
.

Similarly, [
1 0
0 0

]
◦(γ,δ)

[
1 0
0 0

]
=

[
(−γ) + 1 0

0 0

]
.

Since ◦(α,β) = ◦(γ,δ), it follows that (−α) + 1 = (−γ) + 1, and hence, −α = −γ.

Therefore, α = γ.
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On the other hand, we have that

[
0 0
1 0

]
◦(α,β)

[
1 0
0 0

]
= f(−α,−β)

(
f(α,β)

[
0 0
1 0

]
◦ f(α,β)

[
1 0
0 0

])

= f(−α,−β)

([
β 0
1 0

]
◦

[
α + 1 0
0 0

])

= f(−α,−β)

[
0 0
1 0

]
=

[−β 0
1 0

]
.

Similarly, [
0 0
1 0

]
◦(γ,δ)

[
1 0
0 0

]
=

[−δ 0
1 0

]
.

Since ◦(α,β) = ◦(γ,δ), it follows that −β = −δ, and hence, β = δ. Consequently,
(α,β) = (γ, δ). Conversely, if (α,β) = (γ, δ), then α = γ and β = δ, so obviously
◦(α,β) = ◦(γ,δ).

(ix) Let F be the set of all R-isomorphisms f of E such that f (r) = r for any
r ∈ R. Define

θ : Soc(A) × Soc(A) → F by θ(α,β) = f(α,β)

for (α,β) ∈ Soc(A) × Soc(A). Then by parts (vii) and (viii), θ is a one-to-one
onto map. Therefore, it follows that F = { f(α,β) | (α,β) ∈ Soc(A) × Soc(A)} and
|Soc(A) × Soc(A)| = |F |. Also note that the map

ν : F → {◦α,β) | (α,β) ∈ Soc(A) × Soc(A)} defined by ν( f(α,β)) = ◦(α,β)

is a one-to-one onto map. Hence

|{(E,+, ◦(α, β)) | (α, β) ∈ Soc(A) × Soc(A)}| = |F | = |Soc(A)|2.

Therefore, E has |Soc(A)|2 compatible ring structures which are

{(E,+, ◦(α, β)) | (α, β) ∈ Soc(A) × Soc(A)}.

(x) From the preceding arguments, as a byproduct we can construct a ring R for
which E(RR) has infinitely many distinct compatible ring structures. For this, let F
be an infinite field, p(x) ∈ F[x] be an irreducible polynomial, and let n be an integer
such that n > 1. We put

A = F[x]/p(x)n F[x].

Since F[x] is a Dedekind domain, the ring A is a commutative QF-ring (see
[8, Theorem 6.14, p. 174]). Because J (A) = p(x)F[x]/p(x)n F[x], A/J (A) ∼=
F[x]/p(x)F[x] (so A/J (A) is a field), and thus the ring A is local.
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Note that |Soc(A)| ≥ |F | because Soc(A) = p(x)n−1F[x]/p(x)n F[x] is a vector
space over the field F . Since F is infinite, so is |Soc(A)|. Let

R =
[
A A/J (A)

0 A/J (A)

]

as in part (i). Then E(RR) has |Soc(A)|2 compatible ring structures by the preceding
arguments.

(xi) Let p be a prime integer, G be the cyclic group of order p, and let K be an
infinite field of characteristic p. Consider A = K [G], the group ring of the group G
over the field K . Then from [7, Lemma 1.17, p. 314],

J (A) =
{∑

agg |
∑

ag = 0, where ag ∈ K and g ∈ G
}

,

which is the augmentation ideal ω(K [G]). Hence, A/J (A) ∼= K , and so A is local
and commutative. Further, A isQFby [3].Hence, Soc(A) �= 0, soSoc(A) is a nonzero
vector space over the infinite field K . Therefore, |Soc(A)| is infinite. As in part (i),
put

R =
[
A A/J (A)

0 A/J (A)

]
.

In this case, also from the preceding arguments, E(RR) has |Soc(A)|2 compatible
ring structures.

(xii) When A = Zpm , where p is a prime integer and m is an integer such that
m ≥ 2. Then A is a local commutative QF-ring. Also let

R =
[
A A/J (A)

0 A/J (A)

]
.

In this case, if (E,+, ·) is a compatible ring structure, then there exists (α,β) ∈
Soc(A) × Soc(A) such that · = ◦(α,β). Thus,

{(E,+, ◦(α, β)) | (α, β) ∈ Soc(A) × Soc(A)}

is the set of all compatible ring structures on E . Note that |Soc(A)| = p since
Soc(A) = pm−1

Zpm , Therefore, E has exactly |Soc(A)|2 = p2 compatible ring struc-
tures (see [2, Theorem 7.3.17]).

3 More on Compatible Ring Structures of E(RR)

In this section, the right compatibility of isomorphic rings is investigated further. It is
shown that ifU and T are isomorphic rings, thenU is right compatible if and only if T
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is right compatible (Theorem3.2). Motivated by Remark2.15, relationships between
compatible ring structures and noncompatible ring structures on the injective hull of
a ring are studied (Proposition3.7).

We begin with the following which exhibits relationships between E(UU ) and
E(TT ) when rings U and T are isomorphic.

Lemma 3.1 Let U and T be isomorphic rings with λ : U → T a ring isomorphism.
Then there exists an additive abelian group isomorphism σ : E(UU ) → E(TT ) such
that:

(i) σ is an extension λ ;
(ii) σ(yu) = σ(y)λ(u) for y ∈ E(UU ) and u ∈ U.

Proof For x ∈ E(TT ) and u ∈ U , we define

x � u = xλ(u).

Then E(TT ) is a right U -module for which � is the scalar multiplication of E(TT )

overU . Thus, for t ∈ T andu ∈ U ,we have t � u = tλ(u).Hence, TU is a submodule
of the U -module E(TT )U .

We show that E(TT )U is an injective hull of TU . For this, assume that I is a
right ideal of U and f ∈ HomU (IU , E(TT )U ). Then λ(I ) is a right ideal of T . Let
g : λ(I )T → E(TT ) be defined by g(λ(a)) = f (a) for λ(a) ∈ λ(I ) with a ∈ I . Let
a ∈ I and t = λ(u) ∈ T with u ∈ U . Then

g(λ(a)t) = g(λ(a)λ(u)) = g(λ(au)) = f (au) = f (a) � u

= f (a)λ(u) = f (a)t

= g(λ(a))t.

Therefore, g ∈ HomT (λ(I )T , E(TT )) because g is additive. Hence there exists g0 ∈
HomT (TT , E(TT )), which is an extension of g.

Now let f0 : UU → E(TT )U defined by f0(u) = g0(λ(u)) for u ∈ U . Then obvi-
ously f0 is additive. For u1, u2 ∈ U , we have that

f0(u1u2) = g0(λ(u1u2)) = g0(λ(u1)λ(u2)) = g0(λ(u1))λ(u2)

= f0(u1) � u2.

So f0 ∈ HomU (UU , E(TT )U ). Further, for a ∈ I , we see that f0(a) = g0(λ(a)) =
g(λ(a)) = f (a).Hence f0 is an extension of f . Consequently, E(TT )U is an injective
U -module.

Recall that TU is a submodule of the U -module E(TT )U . To show that TU is
essential in E(TT )U , let 0 �= y ∈ E(TT )U . Since TT is essential in E(TT ), there
exists t ∈ T such that 0 �= yt ∈ T . Say t = λ(u) with u ∈ U . Then

0 �= yt = yλ(u) = y � u ∈ T .
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So TU is essential in E(TT )U . As E(TT )U is an injective U -module, E(TT )U is an
injective hull of TU .

Next for u1, u2 ∈ U , we see that λ(u1u2) = λ(u1)λ(u2) = λ(u1) � u2. Thus, λ :
UU → TU is a U -module isomorphism because λ is one-to-one, onto, and additive.
Since E(TT )U is an injective hull of TU , there exists σ ∈ HomU (E(UU ), E(TT )U ),
which is an extension of λ, and σ is an isomorphism.

Now, for y ∈ E(UU ) and u ∈ U ,

σ(yu) = σ(y) � u = σ(y)λ(u)

because σ ∈ HomU (E(UU ), E(TT )U ). �

The following result is naturally expected to be true. We here provide the proof
explicitly.

Theorem 3.2 Let U and T be isomorphic rings. Then E(UU ) has ℵ distinct com-
patible ring structures with U if and only if E(TT ) has ℵ distinct compatible ring
structures with T , where ℵ is a cardinal number. Thereby, U is right compatible if
and only if T is right compatible.

Proof Assume that E(TT ) has ℵ distinct compatible ring structures. Say � is a set
with the cardinal number ℵ, and let

M = {�ω | ω ∈ �}

be the set of ℵ distinct compatible ring multiplications on E(TT ).
Let λ : U → T be a ring isomorphism. By Lemma3.1, there exists an additive

abelian group isomorphism σ : E(UU ) → E(TT ) such that σ is an extension of λ
and σ(yu) = σ(y)λ(u) for y ∈ E(UU ) and u ∈ U .

For a given compatible ring structure (E(TT ),+, �ω) on E(TT ), define a mul-
tiplication •ω on E(UU ), by adopting the idea in Theorem2.14, as follows: For
y1, y2 ∈ E(UU ), let

y1 •ω y2 = σ−1(σ(y1) �ω σ(y2)).

Then σ(y1 •ω y2) = σ(v1) �ω σ(y2) for y1, y2 ∈ E(UU ).
Since σ is additive, σ(y1 + y2) = σ(y1) + σ(y2) for y1, y2 ∈ E(UU ). Further, as

σ is one-to-one and onto, and (E(TT ),+, �ω) is a ring, it follows that (E(UU ),+, •ω)

is also a ring. Therefore,

σ : (E(UU ),+, •ω) → (E(TT ),+, �ω)

is a ring isomorphism. To show that (E(UU ),+, •ω) is a compatible ring structure,
let y ∈ E(UU ) and u ∈ U . Then we see that σ(u) = λ(u) ∈ T , so

σ(y) �ω σ(u) = σ(y) �ω λ(u) = σ(y)λ(u) = σ(yu)
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because �ω is a ring multiplication of E(TT ) which is compatible with the T -module
scalar multiplication of E(TT ) over T and σ(yu) = σ(y)λ(u) from the preceding
argument (by using Lemma3.1). Now as σ(y) �ω σ(u) = σ(yu), we have that

y •ω u = σ−1(σ(y) �ω σ(u)) = σ−1(σ(yu)) = yu.

Thus, (E(UU ),+, •ω) is a compatible ring structure.
Next suppose �ω �= �ν in M. In other words, (E(TT ),+, �ω) and (E(TT ),+, �ν)

are distinct compatible ring structures on E(TT ). Then there exist x and y in E(TT )

such that x �ω y �= x �ν y. Say x = σ(v) and y = σ(w) with v,w ∈ E(UU ). Then

σ(v) �ω σ(w) �= σ(v) �ν σ(w),

and hence, σ−1(σ(v) �ω σ(w)) �= σ−1(σ(v) �ν σ(w)). So v •ω w �= v •ν w. There-
fore, (E(UU ),+, •ω) and (E(UU ),+, •ν) are distinct compatible ring structures on
E(UU ). Consequently, E(UU ) has ℵ distinct compatible ring structures.

Conversely, assume that E(UU ) has ℵ distinct compatible ring structures. Using
the preceding arguments, E(TT ) has ℵ distinct compatible ring structures. �

Proposition 3.3 Let U and T be two rings, and let WT be an overmodule of TT .
Assume that there exists an additive abelian group isomorphism σ : E(UU ) → WT

such that:
(i) σ|U : U → T is a ring isomorphism;
(ii) σ(yu) = σ(y)σ(u) for y ∈ E(UU ) and u ∈ U.
Then WT is an injective hull of TT .

Proof Weobserve first thatσ−1(wt) = σ−1(w)σ−1(t) forw ∈ W and t ∈ T . Indeed,
we note that σ(σ−1(wt)) = wt and σ(σ−1(w)σ−1(t)) = σ(σ−1(w))σ(σ−1(t)) = wt
by the assumption (ii). Therefore, σ−1(wt) = σ−1(w)σ−1(t).

We show that TT is an essential submodule of WT . For this, let 0 �= y ∈ W . Then
0 �= σ−1(y) ∈ E(UU ), so there existsu ∈ U such that 0 �= σ−1(y)u ∈ U .Hence, 0 �=
σ(σ−1(y)u) ∈ T . From the condition (ii), 0 �= σ(σ−1(y)u) = σ(σ−1(y))σ(u) =
yσ(u) ∈ T with σ(u) ∈ T . Therefore TT ≤ess WT .

Next, we prove that WT is an injective module. Say I is a right ideal of T and
f ∈ HomT (IT ,WT ). Note that σ−1(I ) is a right ideal of U . Define

g : σ−1(I ) → E(UU ) by g(r) = (σ−1 f σ)(r) for r ∈ σ−1(I ).

Then g ∈ HomU (σ−1(I )U , E(UU )). Indeed, clearly g is additive. Now, for r ∈
σ−1(I ) and a ∈ U , note that σ(ra) = σ(r)σ(a) by the assumption (ii) and
σ−1[ f (σ(r))σ(a)] = σ−1( f (σ(r))σ−1(σ(a)) = σ−1( f σ(r))a from the preceding
argument. Hence, we have that
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g(ra) = (σ−1 f σ)(ra) = σ−1 f (σ(ra))

= σ−1[ f (σ(r)σ(a))] = (σ−1 f σ(r))a

= g(r)a.

As E(UU ) is an injective hull ofUU , there exists g0 ∈ HomU (UU , E(UU )), an exten-
sion of g. Define

f0 : TT → WT by f0(t) = (σg0σ
−1)(t) for t ∈ T .

Now, we show that f0 ∈ HomT (TT ,WT ). Obviously, f0 is additive. Let t1, t2 ∈ T .
Then there exist u1, u2 ∈ U such that t1 = σ(u1) and t2 = σ(u2). Thus

f0(t1t2) = f0(σ(u1)σ(u2)) = f0(σ(u1u2)) = (σg0σ
−1)(σ(u1u2))

= σ(g0(u1u2)) = σ(g0(u1)u2) = σ(g0(u1))σ(u2)

= (σg0σ
−1)(t1)σ(u2) = f0(t1)σ(u2)

= f0(t1)t2

becauseσ(g0(u1)u2) = σ(g0(u1))σ(u2) from the assumption (ii). Therefore,we have
that f0 ∈ HomT (TT ,WT ).

Finally, to show that f0 is an extension of f , let s ∈ I , and put s = σ(r). Then
r = σ−1(s) ∈ σ−1(I ) ⊆ U . Hence

f0(s) = (σg0σ
−1)(s) = σg0(r) = σg(r)

= σ(σ−1 f σ(r)) = f σ(r) = f (σ(r))

= f (s).

Hence, f0 is an extension of f . Consequently, WT is injective by Baer’s Criterion.
So WT is an injective hull of TT . �

The following example illustrates Theorem3.2 and Proposition3.3.

Example 3.4 Assume that A is a commutative local QF-ring with J (A) �= 0. As in
Example2.16, let

R =
[
A A/J (A)

0 A/J (A)

]
and E =

[
A ⊕ (A/J (A)) A/J (A)

A/J (A) A/J (A)

]
.

The addition+ of E is componentwise. The right R-module scalar multiplication
of E over R is given as in Example2.16:

For

[
s + x y
z w

]
∈ E and

[
a b
0 c

]
∈ R,where s, x, y, z, w, a, b, c ∈ A and x, y ∈

A/J (A), etc., denote the images of x, y ∈ A, etc., respectively, we define
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[
s + x y
z w

] [
a b
0 c

]
=

[
sa + xa sb + xb + yc

za zb + wc

]
.

Then E is a right R-module, and E = E(RR) (see Example2.16).
(i) Consider the following E1 adopted from private communications with B. L.

Osofsky, which is

E1 =
{
s +

[
s + x y
z w

]
| s, x, y, z, w ∈ A

}
,

where x, y, etc., are images of x, y in A/J (A), respectively. Addition on E1 is
defined as follows:

For v1 = s1 +
[
s1 + x1 y1

z1 w1

]
and v2 = s2 +

[
s2 + x2 y2

z2 w2

]
in E1,

v1 + v2 = (s1 + s2) +
[
s1 + s2 + x1 + x2 y1 + y2

z1 + z2 w1 + w2

]
.

Let

B =
{
a +

[
a b
0 c

]
| a, b, c ∈ A

}
⊆ E1.

For a1 +
[
a1 b1
0 c1

]
and a2 +

[
a2 b2
0 c2

]
in B, the addition is defined as follows:

(
a1 +

[
a1 b1
0 c1

])
+

(
a2 +

[
a2 b2
0 c2

])
= (a1 + a2) +

[
a1 + a2 b1 + b2

0 c1 + c2

]
.

Then B is an additive subgroup of E . Next, the multiplication is defined by

(
a1 +

[
a1 b1
0 c1

])(
a2 +

[
a2 b2
0 c2

])
= a1a2 +

[
a1a2 a1b2 + b1c2
0 c1c2

]
.

Then B forms a ring. Furthermore, R ∼= B as rings by a ring isomorphism τ : R → B
defined by

τ

[
a b
0 c

]
= a +

[
a b
0 c

]
.

Now for s +
[
s + x y
z w

]
∈ E1 and a +

[
a b
0 c

]
∈ B, define the B-module scalar

multiplication

(
s +

[
s + x y
z w

]) (
a +

[
a b
0 c

])
= sa +

[
sa + xa sb + xb + yc

za zb + wc

]
.
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Then E1 is a right B-module. Further, E1 is an overmodule of BB .
We let σ : E(RR) → E1 defined by

σ

[
s + x y
z w

]
= s +

[
s + x y
z w

]

for

[
s + x y
z w

]
∈ E(RR). Thenσ is an additive abelian group isomorphismandσ|R =

τ . Furthermore, for v ∈ E(RR) and r ∈ R, σ(vr) = σ(v)τ (r) = σ(v)σ(r). Hence,
Proposition3.3 yields that E1 is the injective hull of BB . Further, as E = E(RR) has
|Soc(A)|2 compatible ring structures by Example2.16, E1 has also |Soc(A)|2 distinct
compatible ring structures from Theorem3.2.

(ii) As in [2, Theorem 7.3.14], we put

A = {(a,−a) | a ∈ A} ⊆ A × (A/J (A)).

The addition on A is componentwise. Define

(a,−a)b = (ab,−ab) for (a,−a) ∈ A and b ∈ A.

Then A is a right A-module and AA
∼= AA via corresponding (a,−a) to a. Let

A =
[
A 0
0 0

]
=

{[
(a,−a) 0

0 0

]
| a ∈ A

}
.

Then A is a right R-module under the componentwise addition and the R-module
scalar multiplication is defined by

[
(a,−a) 0

0 0

] [
x y
0 z

]
=

[
(ax,−ax) 0

0 0

]

for

[
(a,−a) 0

0 0

]
∈ A and

[
x y
0 z

]
∈ R. We put

E2 = A ⊕
[
A/J (A) A/J (A)

A/J (A) A/J (A)

]
.

For u1 :=
[
(s1,−s1) 0

0 0

]
+

[
x1 y1
z1 w1

]
and u2 :=

[
(s2,−s2) 0

0 0

]
+

[
x2 y2
z2 w2

]
in E2,

define

u1 + u2 =
[
(s1 + s2,−(s1 + s2)) 0

0 0

]
+

[
x1 + x2 y1 + y2
z1 + z2 w1 + w2

]
.

Then E2 is an additive abelian group. Next, let



On Compatible Ring Structures of the Injective Hull of a Ring 257

C =
{[

(a,−a) 0
0 0

]
+

[
a b
0 c

]
| a, b, c ∈ A

}
,

which is an additive abelian subgroup of (E2,+).

For k1 :=
[
(a1,−a1) 0

0 0

]
+

[
a1 b1
0 c1

]
and k2 :=

[
(a2,−a2) 0

0 0

]
+

[
a2 b2
0 c2

]
in C ,

define the multiplication by

k1k2 =
[
(a1a2,−a1a2) 0

0 0

]
+

[
a1a2 a1b2 + b1c2
0 c1c2

]
.

Then C is a ring. Moreover, R ∼= C as rings by a ring isomorphism κ : R → C
defined by

κ

[
a b
0 c

]
=

[
(a,−a) 0

0 0

]
+

[
a b
0 c

]
.

Let α :=
[
(s,−s) 0

0 0

]
+

[
s + x y
z w

]
∈ E2 and γ :=

[
(a,−a) 0

0 0

]
+

[
a b
0 c

]
∈ C .

We define

α γ =
[
(sa,−sa) 0

0 0

]
+

[
sa + xa sb + xb + yc

za zb + wc

]
.

Then E2 is a right C-module and E2 is an overmodule of CC .
Consider μ : E → E2 defined by

μ

([
s + x y
z w

])
=

[
(s,−s) 0

0 0

]
+

[
s + x y
z w

]

for

[
s + x y
z w

]
∈ E . Then μ is an additive abelian group isomorphism. Also we see

that κ = μ|R : R → C is a ring isomorphism.
Now, for v ∈ E and r ∈ R, we see that μ(vr) = μ(v)κ(r) = μ(v)μ(r). Since E

is an injective hull of RR , by Proposition3.3, E2 is an injective hull of CC . As E =
E(RR) has |Soc(A)|2 compatible ring structures from Example2.16, Theorem3.2
yields that E2 = E(CC) has |Soc(A)|2 distinct compatible ring structures.

(iii) (see Example2.16(v)) We let

E3 =
⎧⎨
⎩

⎡
⎣s 0 0
0 x y
0 z w

⎤
⎦ | s, x, y, z, w ∈ A

⎫⎬
⎭ .

Then we see that
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E3 =
⎧⎨
⎩

⎡
⎣s 0 0
0 s + x y
0 z w

⎤
⎦ | s, x, y, z, w ∈ A

⎫⎬
⎭ .

Note that E3 = E, where E is in Example2.16(v). The addition in E3 is defined
componentwise.

Next, let

D =
⎧⎨
⎩

⎡
⎣a 0 0
0 a b
0 0 c

⎤
⎦ | a, b, c ∈ A

⎫⎬
⎭ ⊆ E3.

In D, the addition is componentwise and the multiplication is defined by

⎡
⎣a1 0 0
0 a1 b1
0 0 c1

⎤
⎦ ·

⎡
⎣a2 0 0
0 a2 b2
0 0 c2

⎤
⎦ =

⎡
⎣a1a2 0 0

0 a1a2 a1b2 + b1c2
0 0 c1c2

⎤
⎦

for

⎡
⎣a1 0 0
0 a1 b1
0 0 c1

⎤
⎦ and

⎡
⎣a2 0 0
0 a2 b2
0 0 c2

⎤
⎦ in D. Then (D,+) is a subgroup of (E3,+) and

(D,+, ·) is a ring.
Define λ : R → D by

λ

[
a b
0 c

]
=

⎡
⎣a 0 0
0 a b
0 0 c

⎤
⎦ .

Then λ is a ring isomorphism. The scalar multiplication of E3 over D is defined by

⎡
⎣s 0 0
0 s + x y
0 z w

⎤
⎦

⎡
⎣a 0 0
0 a b
0 0 c

⎤
⎦ =

⎡
⎣sa 0 0
0 sa + xa sb + xb + yc
0 za zb + wc

⎤
⎦

for

⎡
⎣s 0 0
0 s + x y
0 z w

⎤
⎦ ∈ E3 and

⎡
⎣a 0 0
0 a b
0 0 c

⎤
⎦ ∈ D.

We can check that E3 is a right D-module and DD is a submodule of E3. Consider
θ : E = E(RR) → E3 defined by

θ

([
s + x y
z w

])
=

⎡
⎣s 0 0
0 s + x y
0 z w

⎤
⎦

for

[
s + x y
z w

]
∈ E(RR). Then θ is an additive abelian group isomorphism from

E(RR) to E3. Note that θ|R = λ, which is a ring isomorphism from R to D. Fur-
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thermore, for v ∈ E(RR) and r ∈ R, we have θ(vr) = θ(v)λ(r) = θ(v)θ(r). As E
is the injective hull of RR from Example2.16, E3 is the injective hull of DD by
Proposition3.3. Recall that E has |Soc(A)|2 distinct compatible ring structures from
Example2.16.Therefore, Theorem3.2 yields that E(DD)has |Soc(A)|2 distinct com-
patible ring structures.

(iv) As a consequence, by parts (i), (ii), and (iii), the rings R, B, C , and D are
mutually ring isomorphic and right compatible. Furthermore, each of E(BB), E(CC),
and E(DD) has |Soc(A)|2 distinct compatible ring structures.

Remark 3.5 It is shown in [1, Theorem 1] that E1 is the injective hull of BB , while
it is shown in [2, Theorem 7.3.14] that E2 is the injective hull of CC .

Remark 3.6 Let A be a commutative local QF-ring with J (A) �= 0 and let R be
the ring as in Example2.16. Then there exists a compatible ring structure, say
(E(RR),+, ◦) on E(RR) from Example2.16.We take 0 �= a ∈ A/J (A)with a ∈ A,
and put

u =
[
1 a
0 1

]
∈ R.

Then u is invertible in R such that u �= 1R and the inverse of u is

u−1 =
[
1 −a
0 1

]
.

In Remark2.15, there exists a ring structure E(RR),+, �) on E(RR) which is not
compatible with the R-module scalar multiplication of E(RR) over R. However,
(E(RR),+, �) ∼= E(RR),+, ·).

Motivated by Remarks2.15 and 3.6, we obtain the following from our previous
results of this section, which exhibits the relationships between compatible ring
structures and noncompatible ring structures of the injective hull of a given ring.

Proposition 3.7 Let (R,+, ·) be a ring and E the injective hull of (R,+, ·)(R,+,·)
such that the ring (E,+, ·) is compatible with the (R,+, ·)-module scalar multipli-
cation of E over (R,+, ·).

Let E+ = (E, +)be the underlying additive abelian groupof E. Let u ∈ (R,+, ·)
be an invertible element. Then we have the following.

(i) There exists a ring structure (R,+,�) on R for which u is the identity of
(R,+,�).

(ii) There exists a ring isomorphism λ : (R,+, ·) → (R,+,�) such that λ(1R) =
u, where 1R is the identity of the ring (R,+, ·).

(iii) There exists a scalar multiplication � of E+ over the ring (R,+,�) so that
E+ is the injective hull of (R,+,�)(R,+,�).

(iv) E has ℵ distinct compatible ring structures with the (R,+, ·)-module scalar
multiplication over the ring (R,+, ·) if and only if E has ℵ distinct compatible ring
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structures with the (R,+,�)-module scalar multiplication over the ring (R,+,�),
where ℵ is a cardinal number.

(v) If u �= 1R, then the ring structure (E,+,�) is not compatible with the
(R,+, ·)-module scalar multiplication of E over (R,+, ·).
Proof For (i) and (ii), define

λ : (R,+, ·) → (R,+) by λ(a · u−1) = a for a ∈ R.

Then λ is an additive abelian group isomorphism. We provide a new ring multipli-
cation � on (R,+) as follows: for a1, a2 ∈ R, let

a1 � a2 = λ(λ−1(a1) · λ−1(a2)).

Then a1 � a2 = λ(a1u−1a2u−1) = a1u−1a2. Since λ−1(a1 � a2) = λ−1(a1)λ−1(a2)
and further λ−1 is also an additive abelian group isomorphism. Thus, (R,+,�) is a
ring and λ−1 : (R,+,�) → (R,+, ·) is a ring isomorphism. Hence,

λ : (R,+, ·) → (R,+,�)

is also a ring isomorphism. Also note that u is the identity of the ring (R,+,�).
Moreover, say 1R is the identity of the ring (R,+, ·). Then λ(1R) = λ(uu−1) = u.

(iii) We provide a right (R,+,�)-module scalar multiplication on E+ so that
E+ becomes an injective hull of (R,+,�)(R,+,�). For this, first, we observe that
E = {vu−1 | v ∈ E}. Define

σ : E → E+ by σ(vu−1) = v for vu−1 ∈ E .

Then σ is an additive abelian group isomorphism. Next, for v ∈ E+ and a ∈ R, let

v � a = σ(σ−1(v)σ−1(a)) = σ(vu−1au−1) = vu−1a.

It can be checked that E+ becomes a right (R,+,�)-module under the scalar mul-
tiplication �. For example, say v ∈ E+ and a1, a2 ∈ R. Then we have that

v � (a1 � a2) = v � (a1u
−1a2) = vu−1(a1u

−1a2),

and

(v � a1) � a2 = (vu−1a1) � a2 = (vu−1a1)u
−1a2 = vu−1(a1u

−1a2).

Thus v � (a1 � a2) = (v � a1) � a2.
Furthermore, σ is an extension of λ and λ : (R,+, ·) → (R,+,�) is a ring iso-

morphism from part (ii). Also for vu−1 ∈ E and au−1 ∈ R, we have
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σ((vu−1)(au−1)) = σ(vu−1au−1) = vu−1a = v � a.

On the other hand, σ(vu−1) � σ(au−1) = σ(vu−1) � λ(au−1) = v � a. Therefore,

σ((vu−1)(au−1)) = σ(vu−1) � σ(au−1).

Since E is an injective hull of (R,+, ·)(R,+,·), Proposition3.3 yields E+ is an injective
hull of (R,+,�)(R,+,�) under the scalar multiplication � over the ring (R,+,�).

(iv) Since (R,+, ·) ∼= (R,+,�), Theorem3.2 yields that E has ℵ distinct com-
patible ring structures if and only if E+ has ℵ distinct compatible ring structures,
where ℵ is a cardinal number.

(v) The proof follows from Remark2.15. �

Let R be the ring in Example2.16. Then R is also left compatible (see [1, Theorem
1] or [2, Theorem 7.3.14]). Let B, C , and D be rings in Example3.4(i), (ii), and (iii),
respectively. Then R ∼= B ∼= C ∼= D and further B, C , and D are right compatible
from Example3.4. Since C is left comptible (see [1, Theorem 1] or [2, Theorem
7.3.14]), the left-hand side version of Theorem3.2 yields that R, B, and D are also
left compatible. In view of this, the following question may be raised.

Question 3.8 Let V be a ring. Then is it true that V is right compatible if and only
if V is left compatible?
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On Commutators Involving Derivations
and Automorphisms in Prime Rings

Mohd Arif Raza, Mohammad Shadab Khan, and Nadeem ur Rehman

Abstract LetR be a prime ring of characteristics different from two,L a noncentral
Lie ideal of R, d a derivation of R, and ξ an automorphism of R. The goal of
this manuscript is to discuss the behavior of derivation and structure ofR satisfying
[[ud , u], uξ ] = 0 on noncentral Lie idealL ofR. This results in the spirit of Posner’s
theorem.

Keywords Prime ring · Automorphisms · Maximal right ring of quotient ·
Generalized polynomial identity (GPI)

1 Motivation

This work is inspired by the work of several algebraist in which they have evaluated
certain identities having commutators with derivations or automorphisms. In the
last few decades, there has been a continuing interest pertaining to the relationship
between structure of rings and the existence of certain specific types of mappings,
viz., derivations, automorphisms, etc. In [20], Posner discussed the commutativity
of prime rings. Absolutely, he showed that if R is a prime ring and d a derivation
of R such that [xd , x] = 0 for all x ∈ R, then either R is commutative or d = 0.
Many researchers have studied and made an effort to generalize the results obtained
on derivations to automorphisms. In [19], Mayne studied Posner’s second theorem
on derivations [20] for automorphisms of prime rings. Precisely, he proved that let
R be a prime ring with center Z (R) and ξ be a nontrivial automorphism of R.
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If [xξ , x] ∈ Z (R) for every x ∈ R, then R is a commutative integral domain. In
[15], Lee and Lee established that if characteristic not equal to 2 and [xd , x] ∈ Z
for all x in a noncentral Lie ideal L of R, then R is commutative. An analogous
extension for Lie ideals in the automorphism case was obtained by Mayne [17]. He
was able to accurately draw a conclusion that letR be a prime ring of characteristic
not equal to 2 and ξ be an automorphism of R. If L is a Lie ideal of R such that
ξ is nontrivial on L and [xξ , x] is in the center of R for every x in L , then L is
contained in the center ofR. In 1990, Vukman [23] showed thatR is commutative if
[[xd , x], x] = 0 for all x ∈ R, where d is a nonzero derivation ofR and characteristic
ofR is 2. In 2005, Cheng [9] discussed Vukman problem [23] in case of derivations
on prime rings.More precisely, he proved that ifR is a 2-torsion free noncommutative
prime ring and d a derivation of R such that [[xd , x], xd ] = 0, for all x ∈ R, then
d = 0. Recently, Ashraf and Pary [1] obtained the analogous result of Cheng [9] for
nontrivial automorphisms of prime rings. In fact, they proved that if R is a prime
ring of characteristic different from two which admits a nontrivial automorphism
ξ such that [[xξ , x], xξ ] ∈ Z (R) for all x ∈ L , a noncentral Lie ideal of R, then
R satisfies s4, the standard identity in four variables. Recently, a lot of work has
been done considering derivations/automorphisms on rings, which is fascinating the
courtesy of many algebrists, see [2–4, 10, 18, 21–24] and other references in their
bibliographic content.

Inspired by the above-mentioned works, the goal of this manuscript is to discuss
the behavior of derivation and structure ofR satisfying [[ud , u], uξ ] = 0 on noncen-
tral Lie ideal L of R. This result generalized several theorems in the literature.

2 Preliminaries and Results

For a given x, y ∈ R, the commutator of x, y is denoted by [x, y] and defined by
[x, y] = xy − yx . Recall that a ring R is prime, if for any a, b ∈ R, aRb = (0)
implies either a = 0 or b = 0. Throughout, R is a prime ring with center Z and
Q = Qmr (R) is the maximal right ring of quotient ofR. To be noted thatQ is also
a prime ring and the center C of Q, which is called the extended centroid of R, is
a field. Moreover, Z ⊆ C (further explanation refer to [6]). It is well known that
any automorphism of R can be uniquely extended to an automorphism of Q. An
automorphism ξ of R is called Q-inner if there exists an invertible element g ∈ Q
such that xξ = gxg−1 for all x ∈ R. Moreover, ξ is calledQ-outer if it is not inner.
An additive mapping d : R −→ R is said to be a derivation if (xy)d = xd y + xyd

holds for every x, y ∈ R. A derivation d : R −→ R is inner in case d is of the form
xd = [q, x] for every x ∈ R and some fixed element q ∈ R. A derivation of R is
called Q-inner if its extension to Q is inner. Also, d is called Q-outer if it is not
inner. Herein, we present some well-known facts and results that will be used in the
follow-up which are indispensable to establish our principle theorem.
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Fact 1 ([8, Theorem3]) Suppose thatR is a prime ring andA an independent subset
of G modulo Ai . Letφ = χ(x

a j

i ) = 0 be a generalized identitywith automorphisms of
R reducedwith respect toA. If for all xi ∈ X, a j ∈ A, the x

a j

i -degree ofφ = χ(x
a j

i ) is
strictly less than char(R)when char(R) �= 0, then χ(zi j ) = 0 is also a generalized
polynomial identity of R.

Fact 2 LetR be a prime ring andL a noncentral Lie ideal ofR. If char(R) �= 2,
then there exists a nonzero ideal I ofR such that 0 �= [I,R] ⊆ L . If char(R) = 2
and dimC RC > 4, then there exists a nonzero ideal I ofR such that 0 �= [I,R] ⊆
L . Thus, if either char(R) �= 2 or dimC RC > 4, then we may conclude that there
exists a nonzero ideal I of R such that [I, I ] ⊆ L .

Fact 3 ([5, Lemma 7.1]) Let VD be a vector space over a division ring D with
dimVD ≥ 2 andS ∈ End(V ). If s andS s areD-dependent for every s ∈ V , then
there exists χ ∈ D such that S s = χs for every s ∈ V .

Fact 4 ([11, Lemma 1.5]) Let C be an infinite field and n ≥ 2. Let A1, . . . ,An

are not scalar matrices in Mm(H ), then there exists some invertible matrix P ∈
Mm(H ) such that each matrixPA1P−1, . . . ,PAkP−1 has all nonzero entries.

Fact 5 ([12, Proposition 1]) Let C be a field of characteristic different from 2,
R = Mt (C )be thematrix ring overC and t ≥ 3. Assume that a andb are elements of
R witha = ∑t

r,s=1 arsers andb = ∑t
r,s=1 brsers for ars, brs ∈ C and further suppose

that a and b satisfy the following condition. If i �= j are fixed integers such that
ai j bi j = 0, then for any inner automorphismφ ofR follows a′

i j b
′
i j = 0, whereφ(a) =

∑t
r,s=1 a

′
rsers and φ(b) = ∑t

r,s=1 b
′
rsers . Therefore, if ai j bi j = 0 for all i �= j , then

either a ∈ C or b ∈ C .

Remark 1 LetR be a prime ring of characteristic different from 2 and ξ be an auto-
morphism ofR such that for every x1, y1, x2, y2 ∈ R, [[[x2, y2], [x1, y1]], [x1, y1]ξ ]
= 0. Then R is commutative.

Proof If one choose any two fixed elements x1, y1 ∈ R and denote a = [x1, y1],
b = [x1, y1]ξ , then our identity can be rewritten as

[[[x2, y2], a
]
, b

]
= 0

for all x2, y2 ∈ R, which gives

[x2, y2]δaδb = 0

for all x2, y2 ∈ R, where δa and δb are the inner derivations induced, respectively,
by elements a and b. In light of [7, Theorem 4], it follows that either a ∈ Z (R)

or b ∈ Z (R). In any case, [x1, y1] ∈ Z (R). By the arbitrariness of x1, y1, the
commutativity ofR follows.
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From now on, we are going to investigate the generalized polynomial identity

[[[x1, y1]d , [x1, y1]], [x1, y1]ζ ] = 0

in prime ringR involving derivation and automorphism. In case of inner derivation
and automorphism, one can rewrite as

[[[q, [x1, y1]]2,T [x1, y1]T −1] = 0 for all x1, y1 ∈ R

or

Ψ (x1, y1) = a1[x1, y1]2a2[x1, y1]a3 − 2[x1, y1]a1[x1, y1]a2[x1, y1]a3
+[x1, y1]2a4[x1, y1]a3 − a2[x1, y1]a5[x1, y1]2
+2a2[x1, y1]a3[x1, y1]a1[x1, y1] − a2[x1, y1]a3[x1, y1]2a1, (1)

where a1 = q, a2 = T , a3 = T −1, a4 = T qT , and a5 = T −1q.

Lemma 1 LetR = M2(C ), the 2 × 2 matrix ring over C such thatR satisfies (1).
Then either q ∈ C or R ⊆ M2(C ), where C is a finite field of characteristic 3.

Proof Assume first that C , then, by Fact 4, there exists some invertible matrix
B ∈ Mk(C ) such that each matrix Ba1B−1, Ba2B−1, Ba3B−1, Ba4B−1,
Ba5B−1 has all nonzero entries. Denote by �(x) = BxB−1 the inner automor-
phism induced by B. Say �(a1) = ∑

hl a1hlehl , �(a2) = ∑
hl a2hlehl , �(a3) =∑

hl a3hlehl , �(a4) = ∑
hl a4hlehl , and �(a5) = ∑

hl a5hlehl for 0 �= a1hl, 0 �=
a2hl, 0 �= a3hl, 0 �= a4hl , 0 �= a5hl ∈ C . Without loss of generality, we may replace
a1, a2, a3, a4, and a5 with �(a1),�(a2),�(a3),�(a4), and �(a5), respectively. As
above, in relation (1), let i �= j , [x1, y1] = ei j and multiply on the right by ei j . Thus,
it follows ei j a2ei j a3ei j a1ei j = 0 which gives a contradiction.

Now, let E be an infinite field which is an extension of the field C and let R =
Mt (E ) ∼= R ⊗ CE . The generalized identity Ψ (x1, y1) is homogeneous in both x1
and y1 of degree 3. Hence, the complete linearization of Ψ (x1, y1) is a multilinear
generalized polynomial 	(x1, y1, x2, y2), and

	(x1, y1, x1, y1) = 32Ψ (x1, y1)

Clearly, the multilinear polynomial 	(x1, y1, x2, y2) is a generalized polynomial
identity for R and R too. If char(C ) �= 3, we obtain Ψ (x1, y1) for all x1, y1 ∈ R
and the conclusion a1 = q ∈ C follows from the first part of the proof.

Proposition 1 LetR be a prime ring of characteristic different from 2 and ξ be an
automorphism of R such that [[q, [x1, y1]]2, [x1, y1]ξ ] = 0 for all x1, y1 ∈ R and
q ∈ Q. Then either q ∈ C orR ⊆ M2(C ), whereC is a finite field of characteristic
3.
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Proof We are given that [[q, [x1, y1]]2, [x1, y1]ξ ] = 0 for all x1, y1 ∈ R. If ξ is an
identity automorphism, thenR satisfies [[q, [x1, y1]]3 = 0 and hence application of
[14, Theorem 3] yields the required conclusion. Next, we suppose that ξ is non-
identity automorphism. Further, if ξ is an outer automorphism and as xi , yi -degree is
less than char(R), therefore by Fact1, R satisfies [[q, [x1, y1]]2, [x2, y2]] = 0 for
all x1, y1, x2, y2,∈ R. In particular, [[q, [x1, y1]]3 = 0 for all x1, y1 ∈ R and hence
again we get the required conclusion, by considering the above presentation. Finally,
if ξ is an inner automorphism, then there exists an invertible element T ∈ Q, such
that xξ = T xT −1 for all x ∈ R. Therefore (1) a nontrivial generalized polyno-
mial identity as q /∈ C and ξ is non-identity automorphism. Hence, by [16], Q is
a primitive ring, which is isomorphic to a dense subring of the ring of linear trans-
formations of a vector space V over C , containing nonzero linear transformations
of finite rank. Consider the case dimC V = k with k a finite positive integer greater
than or equal to 3. Notice that, for k ≥ 2, we get our conclusion by Lemma1. Now,
we assume that k ≥ 3, in this condition,Q is a simple ring which satisfies a nontriv-
ial generalized polynomial identity, moreoverMk(C ) satisfies the same generalized
identity of Q. Now, in (1), we choose [x1, y1] = ei j for i, j different indices. Then,
by computations, it follows that 2ei j a2ei j a3ei j a1ei j = 0. Since a3 = T −1 �= 0 and
the ( j, i)-entry of the above matrix is zero with the application of Fact 5, we get
a1 = q ∈ C as a2 = T /∈ C .

Let us now consider dimC V = ∞. As we know the fact that (1) is a generalized
polynomial identity ofQ. Since a1 = q does not centralize the nonzero ideal Soc(R)

of R. Thus, there exists h0 ∈ Soc(R) such that [q, h0] �= 0. In view of Litoff’s
theorem (see Theorem4.3.11 in [6]), there exists an idempotent element e ∈ Soc(R),
such that h0, a1, a2, a3, a4 ∈ eQe ∼= Mk(C ) for some integer k. Also, it is easy to see
that (1) is a generalized polynomial identity for eQe. Then by the finite-dimensional
case, we have that eqe ∈ Z(eQe). Thus, the following is a contradiction:

qh0 = eqh0 = eqeh0 = h0eqe = h0qe = h0q.

Theorem 1 LetR be a prime ring of characteristic different from 2,L a noncentral
Lie ideal of R, d a derivation of R, and ξ be an automorphism of R such that
[[xd , x], xξ ] = 0 for all x ∈ L . Then either d = 0 or R ⊆ M2(C ), where C is a
finite field of characteristic 3.

Proof In view of Fact 2, there exist a nonzero two-sided ideal I of R such that
0 �= [I,R] ⊆ L . Therefore, I satisfies [[[x1, y1]d , [x1, y1]], [x1, y1]ζ ] = 0.Wewill
divide proof into two cases: If d is an inner derivation induced by an element q ∈ Q,
i.e., xd = [q, x] for all x ∈ R and hence it follows that [[q, [x1, y1]]2, [x1, y1]ξ ] = 0.
In view of Proposition1, we get the required conclusion. Next, we assume that d is
an outer derivation. In light of Kharchenko’s theory [13] and as I ,R satisfy the same
differential identities [14, Theorem 3], so we have [[[x2, y2], [x1, y1]], [x1, y1]ξ ] = 0
for all x, y ∈ R. In view of Remark1, we have nothing to prove.
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Modules Invariant Under Clean
Endomorphisms of Their Injective Hulls

Jane Roseline and Manoj Kumar Patel

Abstract A module is quasi-injective if and only if it is invariant under endomor-
phisms of its injective hull. In this paper, we study the class of modules which are
invariant under all clean endomorphisms of their injective hulls and show that this
class of modules coincide with the class of quasi-injective modules. Some facts and
results of this class ofmodules are obtained.Wealso establish some relations of clean-
invariantmoduleswith automorphism-invariantmodules, idempotent-invariantmod-
ules, pseudo-continuous modules, and Utumi modules. Apart from these, we have
given several sufficient conditions under which automorphism-invariant modules can
be clean-invariant.

Keywords Automorphism-invariant modules · Idempotent-invariant modules ·
Clean-invariant modules

1 Introduction

Let R be an associative ring with unity. Johnson andWong [15] proved that a module
is quasi-injective if and only if it is invariant under endomorphisms of its injective
hull; a module M is called quasi-injective [10], if for any submodule A of M , every
homomorphism f : A → M can be extended to an endomorphism of M . Jeremy
[14] characterized quasi-continuous modules as those modules that are invariant
under idempotent-endomorphisms of their injective hulls. Goel and Jain [11] call a
moduleM ,π-injective if for every pair of submodulesM1 andM2 withM1 ∩ M2 = 0,
each projection πi : M1 ⊕ M2 → Mi , i = 1, 2, can be lifted to an endomorphism
of M . π-injective modules are precisely the quasi-continuous modules defined by
Jeremy [14]. Thus, the class of modules which are invariant under projections of
their injective hulls coincide with the class of modules which are invariant under
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idempotent-endomorphisms of their injective hulls. Noyan et al. ([9], Theorem 16)
proved that automorphism-invariant modules [12] are precisely the pseudo-injective
modules, where a module M is called pseudo-injective [7], if for any submodule A
of M , every monomorphism f : A → M can be extended to an endomorphism of
M .

Clean rings were introduced by Nicholson [18]. An element a ∈ R is said to be
clean if a = e + u where e is an idempotent and u is a unit in R. If every element
of R is clean, then R is called a clean ring. Nicholson proved that every clean ring
is an exchange ring, and a ring with central idempotents is clean if and only if
it is an exchange ring. A ring is said to be clean (almost clean) [1] if each of its
elements is the sum of a unit (regular element) and an idempotent. A module is clean
(almost clean) if its endomorphism ring is clean (almost clean). A module which
is invariant under automorphisms of its injective hull is called an automorphism-
invariant module, i.e., M is called an automorphism-invariant module if f (M) ⊆ M
for all f ∈ Aut (E(M)) [12]. A module M is called an idempotent-invariant module
if f (M) ⊆ M for all idempotent f ∈ End(E(M)).

The objective of this paper is to characterize the class of modules which are
invariant under clean endomorphisms of their injective hulls and show that this
class coincides with the class of quasi-injective modules [10]. By a clean endo-
morphism, we mean an endomorphism which is the sum of an automorphism and an
idempotent-endomorphism, i.e., for an R-module M , f ∈ End(M) is said to be a
clean endomorphism if f = g + h, where g2 = g ∈ End(M) and h ∈ Aut (M). We
shall denote the class of clean endomorphisms ofM byClEnd(M). Amodule which
is invariant under clean endomorphisms of its injective hull will be called a clean-
invariant module, i.e.,M will be called a clean-invariant module if f (M) ⊆ M for all
f ∈ ClEnd(E(M)). A submodule N ⊆ M is said to be clean-invariant if f (N ) ⊆ N
for all f ∈ ClEnd(M). A submodule N of a module M is said to be essential in M
if N ∩ A �= 0 for all A ⊆ M .

Consider the following conditions for an R-module M [3, 13]:
(C1) Every submodule of M is essential in a direct summand of M .
(C2) Every submodule of M isomorphic to a direct summand of M is itself a direct
summand of M .
(C3) If A and B are summands of M with A ∩ B = 0 then A ⊕ B is also a direct
summand of M .
M is called a CS (or an extending) module if it satisfies (C1); M is called continuous
if it satisfies (C1) and (C2); M is called quasi-continuous if it satisfies (C1) and
(C3). Modules satisfying (C1), (C2), and (C3) are calledC1-,C2-, andC3-modules,
respectively. It is well known that the following implications hold:
Injective =⇒ quasi-injective =⇒ continuous =⇒ quasi-continuous =⇒ CS.

But none of the converses hold in general. We refer to [8, 17] for background on
(quasi-)injective, (quasi-)continuous, and CS modules.

A right R-module M is said to satisfy the exchange property [19] if for every
right R-module A and any two direct sum decompositions A = M1 ⊕ N = ⊕i∈I Ai

with M1 	 M there exist submodules Bi of Ai such that A = M1 ⊕ (⊕i∈I Bi ). If
this holds only for |I | < ∞, then M is said to satisfy the finite exchange property.
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Clean-invariant modules satisfy the exchange property. Similar results do not hold
for idempotent-invariant modules. We provide examples to show that a direct sum
of clean-invariant modules need not be clean-invariant although summands of clean-
invariant modules inherit the property. Finally, we also establish some of the rela-
tions of clean-invariant modules with automorphism-invariant modules, idempotent-
invariant modules, and Utumi modules.

Throughout, all rings R are associative with unity and all modules are unitary
R-modules, unless otherwise stated. For a module M , we use E(M), End(M),
and Aut (M) to denote the injective hull, the endomorphism ring, and the set of
automorphisms of M , respectively. ker f and Im f denote the kernel of f and the
image of f , respectively. We write N ⊆ M if N is a submodule of M , N ⊆ess M if
N is an essential submodule of M , and N ⊆⊕ M if N is a direct summand of M .

2 Clean-Invariant Modules

Amodule which is invariant under clean endomorphisms of its injective hull is called
a clean-invariant module, i.e., M is called a clean-invariant module if f (M) ⊆ M
for all f ∈ ClEnd(E(M)).

By the following theorem we will prove that the class of clean-invariant modules
coincide with the class of quasi-injective modules.

Theorem 1 A module M is quasi-injective if and only if it is clean-invariant.

Proof By [15], we know that a moduleM is quasi-injective if and only ifM is invari-
ant under any endomorphism of its injective hull. Since E(M) is an injective module,
it is clean [5] and so End(E(M)) is a clean ring. Thus, every f ∈ End(E(M)) is
the sum of an idempotent-endomorphism and an automorphism. Thus, module M
is quasi-injective if and only if M is invariant under any clean endomorphism of its
injective hull.

Clean-invariant modules are automorphism-invariant but the converse is not true,
in general.

Example 1 If R is the ring of all eventually constant sequences (xn)n∈N of elements
in Z2, then E(RR) = ∏

n∈N Z2 has only one automorphism, namely, the identity
automorphism. Thus RR is an automorphism-invariant module but RR is not clean-
invariant.

Clean-invariant modules are idempotent-invariant but the converse is not true, in
general.

Example 2 If Z denotes the ring of integers, ZZ is an idempotent-invariant module
but not clean-invariant.

However, it is worth mentioning that the class of automorphism-invariant modules
and the class of idempotent-invariant modules are not contained in one another as
shown by the following examples:
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(i) If Z, Q denote the ring of integers and rational numbers, respectively, ZZ is
an idempotent-invariant module which is not automorphism-invariant because the

injective hull QZ of ZZ has the automorphism ϕ : q → q

2
but ϕ(Z) � Z.

(ii) If R is the ring of all eventually constant sequences (xn)n∈N of elements in Z2,
then E(RR) = ∏

n∈N Z2 has only one automorphism, namely, the identity automor-
phism. Thus, RR is an automorphism-invariant module but RR cannot beCS because
by Theorem1, a module M is quasi-injective if and only if it is automorphism-
invariant CS. So if RR is CS, then RR would be quasi-injective which is not so.
Hence, RR is not an idempotent-invariant module.

It is to be noted that a summand of a clean-invariant module is also clean-invariant.
However, a direct sum of clean-invariant modules need not be clean-invariant as
shown by the following examples:

(i) The Z-module Zp ⊕ Q is not clean-invariant although Zp and Q are clean-
invariant as Z-modules.

(ii) Let R =
(
F F
0 F

)

where F is a field. Then A =
(
F F
0 0

)

is an injective R-

module and B =
(
0 0
0 F

)

is a clean-invariant R-module. But A ⊕ B = R is not a

clean-invariant R-module.
(iii) The Z-modules Zp and Zp2 , where p is a prime number, are clean-invariant

modules. However Zp ⊕ Zp2 is not a clean-invariant Z-module.

Theorem 2 Every submodule N of a clean-invariant module M is also clean-
invariant.

Proof We need to show that N is invariant under all clean endomorphisms of its
injective hull E(N ). Let f ∈ ClEnd(E(N )). Since E(N ) is injective, it is a direct
summand of E(M) and so there exists a g ∈ ClEnd(E(M))which extends f . Since
M is clean-invariant, M is invariant under all clean endomorphisms of E(M) and
so g(M) ⊆ M . Thus, we have g|M ∈ ClEnd(M). Since N is a clean-invariant sub-
module of M , we have g(N ) ⊆ N . From g|E(N ) = f , we get f (N ) ⊆ N .

An R-module M is called co-Hopfian if any injective endomorphism of M is
an automorphism. A module M is said to be Dedekind finite (or directly finite) if
M ∼= M ⊕ X implies X = 0, i.e., M is not isomorphic to a proper summand of itself
[2, 20].

Theorem 3 If M is a clean-invariant module, then M is non-co-Hopfian if and only
if there exists a decomposition M = Nr ⊕ (⊕r

i=1Mi ) for any positive integer r , where
Nr

∼= M and Mi �= 0 for i = 1, 2, 3, . . . , r.

Proof LetM be non-co-Hopfian, thenwe have an injective endomorphism f : M →
M which is not an automorphism. Let N1 = f (M), N1 �= M and g : N1 → M be
an isomorphism; then there exists an endomorphism h : M → M such that h|N1 =
g, because M is clean-invariant. Therefore M = N1 ⊕ ker(h) = N1 ⊕ M1, where
M1 = ker(h). It is clear that M1 �= 0. Since N1 is non-co-Hopfian, by a similar
argument we get N1 = N2 ⊕ M2, with N2

∼= N1 and M2 �= 0. Thus we have M =
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N2 ⊕ (M1 ⊕ M2). Now applying the principle of mathematical induction and the
definition of co-Hopfian module we attain the desired result M = Nr ⊕ (⊕r

i=1Mi )

for r ∈ Z+, where Nr
∼= M and Mi �= 0 for i = 1, 2, 3, . . . , r. The converse is clear.

A module M is said to satisfy the cancellation property if whenever M ⊕ N ∼=
M ⊕ K , then N ∼= K [2, 20].

Theorem 4 Let M be a clean-invariant module, then M is co-Hopfian if and only
if it satisfies the cancellation property.

Proof Assume that M is co-Hopfian. As every co-Hopfian module is directly finite,
so M is directly finite and it is clear that clean-invariant directly finite modules
satisfy the cancellation property. Conversely, assume that M satisfies the cancella-
tion property. Suppose that M is non-co-Hopfian. Then by Theorem3, we have a
decomposition M = M ⊕ 0 = N1 ⊕ M1 such that N1

∼= M and M1 �= 0. So by the
cancellation property, we get M1 = 0, which is a contradiction to our assumption
that M1 �= 0. Hence, our supposition that M is non-co-Hopfian is wrong.

A nonzero module M is called uniform if any two nonzero submodules of M have
nonzero intersection (intersect crossrefer). An R-module M is said to have uniform
dimension n (written u.dimM = n) if there is an essential submodule V ⊆ess M that
is a direct sum of n uniform submodules [3, 13].

Theorem 5 Every automorphism-invariantmodule M with finite uniformdimension
is Dedekind finite.

Proof Let M be an automorphism-invariant module with finite uniform dimension
and let f : M → M be an injective endomorphism of M . Then f extends to an
endomorphism g : E(M) → E(M), which is injective. Since M has finite uniform
dimension, g ∈ Aut (E(M)) and because M is automorphism-invariant, g(M) = M
([21], Corollary 2.3). Thus f (M) = M which implies that f is also surjective and
so f is an automorphism. Since every injective f ∈ End(M) is an automorphism,
M is co-Hopfian. As every co-Hopfian module is Dedekind finite, so M is Dedekind
finite.

Corollary 1 Every clean-invariant module with finite uniform dimension is
Dedekind finite.

A module M is called square-free [2, 20] if it contains no nonzero submodules
isomorphic to a square A ⊕ A. Equivalently, a module M is square-free if whenever
N ⊆ M and N = Y1 ⊕ Y2 with Y1 ∼= Y2, then Y1 = Y2 = (0).

Theorem 6 Every square-free automorphism-invariant module is Dedekind finite.

Proof Let M be an automorphism-invariant module which is square-free and let f :
M → M be an injective endomorphism of M . Then f extends to an endomorphism
g : E(M) → E(M), which is injective and so g(E(M)) is a direct summand of
E(M). Thus there exists a submodule A of M such that E(M) = g(E(M)) ⊕ A, so
that E(M) = g2(E(M)) ⊕ g(A) ⊕ A, where g(A) ∼= A. E(M) being the injective
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hull of the square-free module M , is also square-free and so A = 0. Thus E(M) =
g(E(M)) shows that g is surjective and so g is an automorphism of E(M). But M
being automorphism-invariant, g(M) = M [21]. Thus f (M) = M which implies
that f is also surjective and so f is an automorphism. Hence M is co-Hopfian and
so Dedekind finite.

Corollary 2 Every clean-invariant square-free module is Dedekind finite.

An R-module M satisfies (C4) [6] if, whenever A and B are submodules of M
with M = A ⊕ B and f : A → B is an R-homomorphism with ker f ⊆⊕ A, then
Im f ⊆⊕ B. An R-moduleM satisfying (C4) is called aC4-module [6]. AC4-module
which is also CS is called a pseudo-continuous module. Some examples of C4-
modules are automorphism-invariant modules and square-free modules. We know
that (C2) ⇒ (C3) ⇒ (C4). Thus, clean-invariant module satisfies C4 as it satisfies
C3, which further yields the proper implications:

clean-invariant ⇒ continuous ⇒ idempotent-invariant ⇒ pseudo-continuous.
A right R-moduleM is called aUtumimodule (U -module in short) if, whenever A

and B are submodules of M with A ∼= B and A ∩ B = 0, there exist two summands
P and Q of M such that A ⊆ess P, B ⊆ess Q, and P ⊕ Q ⊆⊕ M .

Theorem 7 Every clean-invariant module is a U-module.

Proof Let M be a clean-invariant module, then M is an automorphism-invariant
module. Since every automorphism-invariant module is a U -module. Thus M is a
U -module.

Theorem 8 If M = A ⊕ B is an automorphism-invariant module, where both A
and B are clean-invariant modules, then M is a clean-invariant module.

Proof SinceM = A ⊕ B is automorphism-invariant, A and B are relatively injective
[16]. Since both A and B are clean-invariant modules by Theorem1, A and B are
quasi-injective and so M is quasi-injective ([17], Proposition 1.17). Thus M = A ⊕
B is clean-invariant by Theorem1.

Corollary 3 If M = M1 ⊕ M2 ⊕ · · · ⊕ Mn is an automorphism-invariant module,
where each Mi is a clean-invariant module, then M is clean-invariant.

Theorem 9 If M = A ⊕ B is an automorphism-invariant module, where both A
and B are uniform modules, then M is a clean-invariant module.

Proof SinceM = A ⊕ B is an automorphism-invariant module, both A and B being
summands of M are automorphism-invariant. Also A and B being uniform modules
are clean-invariant ([16], Corollary 13) as every uniform module is CS. Thus M is
clean-invariant by Theorem8.

Corollary 4 If M = M1 ⊕ M2 ⊕ · · · ⊕ Mn is an automorphism-invariant module,
where each Mi is a uniform module, then M is clean-invariant.
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Theorem 10 If 2 is a unit of R, then every automorphism-invariant R-module is
clean-invariant.

Proof Let M be an automorphism-invariant R-module and let E(M) be its injective
hull. Since 2 is a unit of R, 2 is a unit of End(E(M)). E(M)being an injectivemodule,
it is clean by [5] and so End(E(M)) is a clean ring. Thus, every f ∈ ClEnd(E(M))

will be the sum of two automorphisms [4] and since M is automorphism-invariant,
f (M) ⊆ M for all f ∈ Aut (E(M)). As f (M) ⊆ M for all f ∈ ClEnd(E(M)), M
is clean-invariant.
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A Note on Central Idempotents in Finite
Group Rings of Symmetric Groups

Anuradha Sabharwal, Pooja Yadav, and R. K. Sharma

Abstract The number of central idempotents in the group ring Zn[S4] has been
computed, for n = p1 p2 · · · pl where p′

i s are distinct primes. It is proved that the
number of central idempotents is 25l−2 when 2 � n; 25l−4 when 3 � n; 25l when 6 � n,
and 25l−6 when 6|n. Further, it has been proved that the number of central idempotents
is 2kl in Zn[Sm] if (n,m!) = 1. Here k is the number of disjoint conjugacy classes in
Sm and l is the number of distinct primes involved in the prime factorization of n.

Keywords Group ring · Symmetric group · Central idempotent

1 Introduction

Idempotents in rings and group rings play a very vital role in determining their
structure. Therefore, numerous efforts have been made to compute different types
of idempotents. Important contributions have been made for computing primitive
central idempotents (for example, see [1, 2, 4]).Meyer [2] computed primitive central
idempotents of Fq [G] for arbitrary prime powers q, and arbitrary finite groups G.
Also, awell-known result ofOsima [4, p. 178] gives the explicit form for the primitive
central idempotents in K [G], when K is a field. Martinez [1] computed central
irreducible idempotents of dihedral group algebra Fq [D2n].

In this paper, we prove the following two main theorems.
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Theorem 1 Let n = p1 p2 · · · pl where pi ’s are distinct primes. Then the number of
central idempotents in Zn[S4] is

(i) 25l , if pi > 3 ∀1 ≤ i ≤ l;
(ii) 25l−4, if p1 = 2 and pi > 3 ∀ 2 ≤ i ≤ l;

(iii) 25l−2, if p1 = 3 and pi > 3 ∀ 2 ≤ i ≤ l;
(iv) 25l−6, if p1 = 2, p2 = 3 and pi > 3 ∀ 3 ≤ i ≤ l.

Theorem1 can be partly generalized as follows:

Theorem 2 Let n = p1 p2 · · · pl where p′
i s are distinct primes. If (n,m!) = 1, then

the number of central idempotents in Zn[Sm] is 2kl where k is the number of conjugacy
classes in Sm.

In this article, we study the number of central idempotents of the symmetric group
Sm over Zn , the ring of integers modulo n, in the case when every prime divisor of n
does not divide |Sm |. Also, we compute the number of central idempotents in Zn[S4]
for the case when n is the product of distinct primes. We have already calculated
the number of central idempotents in Zn[S3] for every positive integer n, and further
we have provided an explicit form of these central idempotents [A Note on Central
Idempotents in Group Ring of Symmetric Group over Zn . Anuradha Sabharwal, R.
K. Sharma, Pooja Yadav (Preprint)]. Let G be a group and R be a ring. We denote
byZ (R[G]) the set of central elements of the group ring of G over R. For any ring
R, E(R) will denote the set of all idempotents in R.

Let n = pn1
1 pn2

2 · · · pnl
l be the prime factorization of n. Then by Chinese Remain-

der Theorem, we see that

φ : Zn −→ Zp
n1
1

⊕ Zp
n2
2

⊕ · · · ⊕ Zp
nl
l

is an isomorphism. This isomorphism maps the residue class of an integer a(mod n)
to a vector with all the components equal to the residue class of a(mod pni

i ):

ā �→ (ā, ā, . . . , ā).

So the residue class of a in Zn is an idempotent, if and only if, for each i , a(mod pni
i )

is an idempotent in Zp
ni
i
. The congruence a2 ≡ a(mod pni

i ) holds, if and only if

pni
i |(a2 − a). Here only one of the factors of a or (a − 1) can be divisible by pi , and

hence either a or (a − 1) has to be divisible by pni
i . Thus a ≡ 0, 1(mod pni

i ) are the
only idempotents in Zp

ni
i
. By Chinese Remainder Theorem these congruences are

independent for different i and hence we have the following lemma:

Lemma 1 The number of pairwise non-congruent idempotents in Zn is equal to 2l ,
where l is the number of distinct prime factors of n.

Lemma 2 ([3], p. 134) Let {Ri }i∈I be a family of rings, and let R = ⊕i∈I Ri . Then
for any group G, we have R[G] 
 (⊕i∈I Ri )[G] 
 ⊕i∈I (Ri [G]).
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Recall that a ring R is called a simple ring if it has no non-trivial ideals.
Note that Mn(D), the ring of n × n matrices over any division ring D is a simple

ring. A ring R is said to be semisimple if it can be decomposed as a direct sum of
finitely many minimal left ideals.

We now state some well-known results that will be needed later.

Theorem 3 ([3], Maschke’s Theorem) Let G be a group and R a ring. Then R[G]
is semisimple if the following conditions hold:

(i) R is semisimple.
(ii) G is finite.

(iii) |G| is invertible in R.

Corollary 1 ([3], Corollary 3.4.8) Let G be a group and K be a field. Then K [G]
is semisimple if and only if G is finite and the char(K ) � |G|.

The following Wedderburn–Artin theorem applied to group rings helps to deter-
mine the structure of a group algebra.

Theorem 4 ([3], Theorem 3.4.9) Let G be a finite group and K be a field such that
char(K ) � |G|. Then:

(i) K [G] is a direct sum of a finite number of two-sided ideals {Bi }1≤i≤s , the simple
components of K [G]. Each Bi is a simple ring.

(ii) Any two-sided ideal of K [G] is a direct sum of some of the members of the
family {Bi }1≤i≤s .

(iii) Each simple component Bi is isomorphic to a full matrix ring of the form
Mni (Di ), where Di is a division ring containing an isomorphism copy of K in
its center, and the isomorphism K [G] 
 ⊕s

i=1Mni (Di ) is an isomorphism of
K -algebras.

(iv) In each matrix ring Mni (Di ), the set

I =

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

x1 0 . . . 0
x1 0 . . . 0

. . .

x1 0 . . . 0

⎤

⎥
⎥
⎦ : x1, x2, . . . , xni ∈ Di

⎫
⎪⎪⎬

⎪⎪⎭


 Dni
i

is a minimal left ideal.
(v) Ii �
 I j if i �= j .

(vi) Any simple K [G]-module is isomorphic to some Ii , 1 ≤ i ≤ s.

Note that this decomposition is unique.

Corollary 2 ([3], Corollary 3.4.8) Let G be a finite group and K an algebraically
closed field, where char(K ) � |G|. Then

K [G] 
 ⊕s
i=1Mni (K ) and |G| =

s∑

i=1

n2
i .
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Corollary 3 ([3], Proposition 3.6.3) Let G be a finite group and K an algebraically
closed field such that char(K ) � |G|. Then, the number of simple components of K G
is equal to the number of conjugacy classes of G.

Lemma 3 Let G be a finite group and p be a prime number such that p � |G|. Then

Zp[G] 
 ⊕s
i=1Mni (Zp) and |G| =

s∑

i=1

n2
i .

Proof Since char(Zp) = p and p � |G|,wehave thatZp[G] 
 ⊕s
i=1Mni (Di ),where

Di is a division ring containing a copy of Z p in its center. As Zp is a field, Zp[G] 

⊕s

i=1Mni (Zp). Computing dimensions over Zp on both sides of the equation above,
we have that |G| = ∑s

i=1 n2
i .

Lemma 4 The center Z (Mn(K )) = {In×n}K .

Lemma 5 Let G be a finite group and p be a prime number such that p � |G|. Then,
the number of simple components of Zp[G] is equal to the number of conjugacy
classes of G.

Proof As we know that the set of all class sums of G over Zp forms a basis
of Z (Zp[G]) over Zp ([3],Theorem 3.6.2, p. 151), it will suffice to show that
the dimension of Z (Zp[G]) over Zp is equal to the number of simple compo-
nents of Zp[G]. From Lemma3 we know that Zp[G] 
 ⊕s

i=1Mni (Zp) and thus
Z (Zp[G]) 
 ⊕s

i=1Z (Mni (Zp)). From Lemma4, Z (Mn(Zp)) 
 Zp. Therefore,
Z (Zp[G]) 
 Zp ⊕ · · · ⊕ Zp

︸ ︷︷ ︸
s times

; consequently, [Z (Zp[G]) : Zp] = s.

Example 1 It is easy to see that Z35[S4] decomposes as follows:

Z35[S4] 
 Z5[S4] ⊕ Z7[S4]

Since 5 � |S4|, we get Z5[S4] 
 Z5 ⊕ Z5 ⊕ M2(Z5) ⊕ M3(Z5) ⊕ M3(Z5)Again
7 � |S4|, gives Z7[S4] 
 Z7 ⊕ Z7 ⊕ M2(Z7) ⊕ M3(Z7) ⊕ M3(Z7). This finally
gives that Z35[S4] 
 (Z5 ⊕ Z5 ⊕ M2(Z5) ⊕ M3(Z5) ⊕ M3(Z5)) ⊕ (Z7 ⊕ Z7 ⊕
M2(Z7) ⊕ M3(Z7) ⊕ M3(Z7)).

2 Proof (Theorem 1)

We first begin with the following proposition

Proposition 1 The number of central idempotents in Zn[S4] is

(i) 2, if n = 2;
(ii) 8, if n = 3.



A Note on Central Idempotents in Finite Group Rings of Symmetric Groups 281

Proof The conjugacy classes of S4 = 〈σ, τ |τ 2 = σ4 = 1,στ = τ−1σ〉 are

C1 = {1}
C2 = {τ ,σ2τσ2,σ3τσ2τ ,στσ3,σ3τσ, τσ2τσ3}
C3 = {σ2, τσ2τ ,σ2τσ2τ }
C4 = {στ , τσ, τσ3,σ2τσ3,στσ2,σ3τσ2,σ2τσ,σ3τ }
C5 = {σ,σ3,σ3τσ3,σ2τ ,στσ, τσ2}.

The corresponding class sums are

γ1 = 1

γ2 = τ + σ2τσ2 + σ3τσ2τ + στσ3 + σ3τσ + τσ2τσ3

γ3 = σ2 + τσ2τ + σ2τσ2τ

γ4 = στ + τσ + τσ3 + σ2τσ3 + στσ2 + σ3τσ2 + σ2τσ + σ3τ

γ5 = σ + σ3 + σ3τσ3 + σ2τ + στσ + τσ2.

Recall ([3], Theorem 3.6.2, p. 151) that the set of all class sums forms a basis of
the center Z (R[G]) of R[G], over a commutative ring R. Hence γi ’s form a basis
of center of Zn[S4] over Zn .

Let e be a central idempotent in Zn[S4]. Then, e can be expressed as

e = α · γ1 + β · γ2 + γ · γ3 + δ · γ4 + ω · γ5 for some α,β, γ, δ,ω ∈ Zn.

Since e is an idempotent, comparing the coefficients of class sums in the equation
e2 = e, we get the following relations:

α = α2 + 6β2 + 3γ2 + 8δ2 + 6ω2 (1)

β = 2αβ + 2βγ + 8βδ + 4γω + 8δω (2)

γ = 2β2 + 2γ2 + 8δ2 + 2ω2 + 2αγ + 8βω (3)

δ = 3β2 + 4δ2 + 3ω2 + 2αδ + 6βω + 6γδ (4)

ω = 2αω + 4βγ + 8βδ + 2γω + 8δω. (5)

The values of α,β, γ, δ,ω give all possible central idempotents in Zn[S4].
Case (i) : n = 2
The above equations are reduced to

α = α2 + γ2

β = 0

γ = 0

δ = β2 + ω2

ω = 0.
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Solving these equations in Z2, we get 2 solutions:

α = 0,β = 0, γ = 0, δ = 0,ω = 0

α = 1,β = 0, γ = 0, δ = 0,ω = 0

Hence, there are 2 central idempotents in Z2[S4].
Case (ii): n=3
Equations1–5 are reduced to

α = α2 + 2δ2 (6)

β = 2αβ + 2βγ + 2βδ + γω + 2δω (7)

γ = 2β2 + 2γ2 + 2δ2 + 2ω2 + 2αγ + 2βω (8)

δ = δ2 + 2αδ (9)

ω = 2αω + βγ + 2βδ + 2γω + 2δω. (10)

Subtracting (9) from (6), we get α − δ = (α − δ)2 which gives α − δ = 0 or 1.
That is, α = δ or α = δ + 1.

When α = δ, Eqs. (6) and (9) imply

α = 0 and δ = 0

and Eqs. (7), (8), (10) become

β = 2βγ + γω

γ = 2β2 + 2γ2 + 2ω2 + 2βω

ω = βγ + 2γω

=⇒ β + ω = 0 and γ = 2γ2 + 2βω.
Solving these equations we get the following values of β, γ,ω:

β = 0, ω = 0, γ = 0 or 2

β = 1, ω = 2, γ = 1

β = 2, ω = 1, γ = 1.

Similarly, when α = δ + 1, we get

β = 0, ω = 0, γ = 0 or 1
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β = 1, ω = 2, γ = 2

β = 2, ω = 1, γ = 2.

Combining both the cases, we get 8 solutions, and hence there are 8 central idempo-
tents in Z3[S4].
We observe that an integer a is invertible in Zp if and only if a is invertible in Zpn .
Thus the number of solutions of Eqs. 1–5 in Zp is same as the number of solutions
of Eqs. 1–5 in Zpn . Hence the number of central idempotents in Zp[S4] and Zpn [S4]
is same. Therefore, |E(Z (Z2n [S4]))| = 2 and |E(Z (Z3n [S4]))| = 8.

We are now ready to prove our main theorem case by case as follows:
Case (i): pi > 3 ∀ 1 ≤ i ≤ l

If n = p1 p2 · · · pl ,
Zn 
 Zp1 ⊕ Zp2 ⊕ · · · ⊕ Zpl .

Using Lemma2,

Zn[S4] 
 (Zp1 ⊕ Zp2 ⊕ · · · ⊕ Zpl )[S4]

 Zp1 [S4] ⊕ Zp2 [S4] ⊕ · · · ⊕ Zpl [S4].

Also since each pi � |S4|, the decomposition of Zpi [S4] can be written in the
following form:

Zpi [S4] 
 Zpi ⊕ Zpi ⊕ M2(Zpi ) ⊕ M3(Zpi ) ⊕ M3(Zpi ).

Now, for matrix ring Mn(K ),

Z (Mn(K )) = {αI : α ∈ K }

and thus Z (Mn(K )) 
 K . Therefore,

Z (Zpi [S4]) 
 Zpi ⊕ Zpi ⊕ Zpi ⊕ Zpi ⊕ Zpi .

Hence,

Z (Zn[S4]) 
 (Zp1 ⊕ Zp1 ⊕ Zp1 ⊕ Zp1 ⊕ Zp1)

⊕(Zp2 ⊕ Zp2 ⊕ Zp2 ⊕ Zp2 ⊕ Zp2)

⊕ · · · ⊕ (Zpl ⊕ Zpl ⊕ Zpl ⊕ Zpl ⊕ Zpl ).
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Since there are only 2 idempotents in each Zpi , |E(Z (Zn[S4]))| =
25 × 25 × · · · × 25
︸ ︷︷ ︸

l−t imes

.

That is, the number of central idempotents in Zn[S4] = 25l .
Case (ii): p1 = 2 and pi > 3 ∀ 2 ≤ i ≤ l

Proceeding as in case (i), we have

Zn[S4] 
 Zp1 [S4] ⊕ Zp2 [S4] ⊕ · · · ⊕ Zpl [S4]

 Zp1 [S4] ⊕ (Zp2 ⊕ Zp2 ⊕ M2(Zp2) ⊕ M3(Zp2) ⊕ M3(Zp2))

⊕ · · · ⊕ (Zpl ⊕ Zpl ⊕ M2(Zpl ) ⊕ M3(Zpl ) ⊕ M3(Zpl ))

Z (Zn[S4]) 
 Z (Zp1 [S4]) ⊕ (Zp2 ⊕ Zp2 ⊕ Zp2 ⊕ Zp2 ⊕ Zp2)

⊕ · · · ⊕ (Zpl ⊕ Zpl ⊕ Zpl ⊕ Zpl ⊕ Zpl ). (11)

Since there are only 2 idempotents in Zpi for all 2 ≤ i ≤ l and 2 central idempo-
tents in Z2[S4], |E(Z (Zn[S4]))| = 2 × 25 × · · · × 25

︸ ︷︷ ︸
(l−1)−times

.

That is, the number of central idempotents in Zn[S4] = 25l−4.
Case (iii): p1 = 3 and pi > 3 ∀ 2 ≤ i ≤ l

Since there are only 2 idempotents in Zpi for all 2 ≤ i ≤ l and 8 central idempotents
in Z3[S4], then from Eq. (11) we get |E(Z (Zn[S4]))| = 23 × 25 × · · · × 25

︸ ︷︷ ︸
(l−1)−times

.

That is, in this case, the number of central idempotents in Zn[S4] = 25l−2.
Case (iv): p1 = 2, p2 = 3 and pi > 3 ∀ 3 ≤ i ≤ l

Z (Zn[S4]) 
 Z (Zp1 [S4]) ⊕ Z (Zp2 [S4])
⊕(Zp3 ⊕ Zp3 ⊕ Zp3 ⊕ Zp3 ⊕ Zp3)

⊕ · · · ⊕ (Zpl ⊕ Zpl ⊕ Zpl ⊕ Zpl ⊕ Zpl )

Since |E(Z (Z2[S4]))| = 2, |E(Z (Z3[S4]))| = 8, and |E(Zpi )| = 2 for all 3 ≤
i ≤ l. Therefore, from Eq. (11) we get

|E(Z (Zn[S4]))| = 2 × 23 × 25 × · · · × 25
︸ ︷︷ ︸

(l−2)−times

.

That is, in this case, the number of central idempotents in Zn[S4] = 25l−6.
This proves Theorem 1.

Proof (Proof of Theorem2) As (n,m!) = 1 and n = p1 p2 · · · pl , we get pi � |Sm |
for each i . By using Lemmas3 and 5, the decomposition of Zpi [Sm] can be written
in the following form:

Zpi [Sm] 

k∑

j=1

Mm j (Zpi ), (12)
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where m2
1 + m2

2 + · · · + m2
k = |Sm | and k = number of distinct conjugacy classes in

Sm .
By fundamental theorem of finite Abelian groups, we have

Zn 
 Zp1 ⊕ Zp2 ⊕ · · · ⊕ Zpl .

Therefore,

Zn[Sm] 
 (Zp1 ⊕ Zp2 ⊕ · · · ⊕ Zpl )[Sm]

 Zp1 [Sm] ⊕ Zp2 [Sm] ⊕ · · · ⊕ Zpl [Sm].

Using Eq.12, we get

Zn[Sm] 

k∑

j=1

Mm j (Zp1) ⊕
k∑

j=1

Mm j (Zp2) ⊕ · · · ⊕
k∑

j=1

Mm j (Zpl ).

Since Z (Mn(K )) 
 K (by using Lemma 4),

Z (Zn[Sm]) 

k∑

j=1

Zp1 ⊕
k∑

j=1

Zp2 ⊕ · · · ⊕
k∑

j=1

Zpl .

As each Zpi contains only 2 idempotents, |E(Z (Zn[Sm]))| = 2k × 2k × · · · × 2k
︸ ︷︷ ︸

l−times

.

That is, the number of central idempotents in Zn[Sm] = 2kl .

Theorem 5 Let K be an algebraically closed field such that char(K ) � |Sn|. Then
the number of central idempotents in K [Sn] is 2k where k is the number of conjugacy
classes in Sn.

Proof From Corollaries2 and 3, we have that K [Sn] 
 ⊕k
i=1Mni (K ), where k is the

number of conjugacy classes of Sn andn2
1 + n2

2 + · · · + m2
k = |Sn|.Also byLemma4,

Z (Mn(K )) 
 K . Therefore,

Z (K [Sn]) 
 ⊕k
i=1K .

Since there are only 2 idempotents in K , the number of central idempotents in K ([Sn])
is 2k .

Corollary 4 Let K be an algebraically closed field such that char(K ) � |S4|. Then
the number of central idempotents in K [S4] is 25.

Acknowledgements The authors thank the reviewer for his/her valuable comments.
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Jordan Product Preserving Generalized
Skew Derivations on Lie Ideals

Giovanni Scudo

Abstract Let R be a non-commutative prime ring of characteristic different from
2, Qr be its right Martindale quotient ring and C be its extended centroid, L a non-
central Lie ideal of R and F and G non-zero generalized skew derivations of R such
that F(x)G(y) + F(y)G(x) = x ◦ y, for all x, y ∈ L . Then one of the following
holds:

1. there exists a, b ∈ Qr such that F(x) = xa and G(x) = bx , for any x ∈ R, with
ab = 1C ;

2. R satisfies s4(x1, . . . , x4) the standard polynomial identity on 4 non-commuting
variables and there exist a, b ∈ Qr such that F(x) = ax and G(x) = xb, for any
x ∈ R, with ab = 1C ;

3. R satisfies s4(x1, . . . , x4) and there exist an invertible element q ∈ Qr and 0 �=
β ∈ C such that F(x) = βqxq−1 and G(x) = β−1qxq−1, for any x ∈ R.

Keywords Generalized skew derivation · Prime ring

1 Introduction

Let R be a prime ring with center Z(R), Qr the right Martindale quotient ring of R,
C the center of Qr , which is called extended centroid of R. We recall that, since R is
prime, then Qr is a prime ring and C is a field (for more details about these objects,
we refer the reader to [2, Chap. 2]). An additive mapping d : R −→ R is said to be
a derivation of R if d(xy) = d(x)y + xd(y), for all x, y ∈ R. An additive mapping
F : R −→ R is called a generalized derivation of R if there exists a derivation d of
R such that F(xy) = F(x)y + xd(y) for all x, y ∈ R. The derivation d is uniquely
determined by F , which is called an associated derivation of F .
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The definition of generalized skew derivation is a unified notion of skew deriva-
tion and generalized derivation, which are considered as classical additive mappings
of non-commutative algebras. Let R be an associative ring and α be an automor-
phism of R, an additive mapping d : R −→ R is said to be a skew derivation of R if
d(xy) = d(x)y + α(x)d(y), for all x, y ∈ R; the automorphisms α is called an asso-
ciated automorphism of d. An additive mapping F : R −→ R is called a generalized
skew derivation of R if there exists a skew derivation d of R, with associated auto-
morphism α, such that F(xy) = F(x)y + α(x)d(y), for all x, y ∈ R. In this case,
d is called an associated skew derivation of F and α is called an associated auto-
morphism of F . It was Chang who first introduced this notion and initiated the study
of generalized skew derivations of (semi-)prime rings in [7]. Therein, he described
the identity of the form h(x) = a f (x) + g(x)b, where f, g and h are the so-called
generalized (α, β)-derivations of a prime ring R, a and b are some fixed non-central
elements of R. In this paper, we study the structure of the prime ring R and the form
of generalized (skew) derivations satisfying particular conditions. Many authors fol-
low this line of investigation studying some commutativity preserving conditions on
a subset of the ring; specifically, if S ⊆ R, the map F : R → R is called commu-
tativity preserving on S if [x, y] = 0 implies [F(x), F(y)] = 0; it is called strong
commutativity preserving on S if [F(x), F(y)] = [x, y], for all x, y ∈ S.

Many results have been obtained for prime and semiprime algebras by applying
the technique of Functional Identities developed by Beidar, Bresar, Chebotar and
Martindale (see [4] for details).

Following these ideas, in [3], Bell and Daif proved that if R is a semiprime ring
admitting a derivation d strong commutativity preserving on a right ideal I of R, then
I ⊆ Z(R), the center of R. Bresar and Miers studied the case in which any additive
map is strong commutativity preserving on a semiprime ring R; more precisely, in
[5], they showed that the map assumes the form F(x) = λx + μ(x), where λ ∈ C ,
λ2 = 1 and μ : R → C is an additive map of R into C .

Later some authors began to consider generalized derivations that are strong com-
mutativity preserving on some subsets of prime and semiprime ring. Moreover, in
some papers, the authors studied new conditions generalizing the strong commuta-
tivity preserving conditions; for example, in [25], Liu studied the case when I is a
right ideal of R, F : I → R is a map and G is a generalized derivation of R, such
that [F(x),G(y)] = [x, y] for all x, y ∈ I ; he described the form F and G also in
the case when both F and G are generalized derivations of R.

In [24], Liu and Liau studied the same condition satisfied by L , a non-central
Lie ideal, where F and G are both generalized derivations of R. They proved that
either R ⊆ M2(K ), the ring of all 2 × 2 matrices over a field K , or there exists
0 �= λ ∈ C such that G(x) = λx and F(x) = λ−1x , for all x ∈ R. Recently, the
authors, in [1], considered F and G two non-zero generalized derivations on R such
that F(x)G(y) − F(y)G(x) = [x, y], for all x, y ∈ T , where T is the set of all
evaluations of a multilinear polynomial over C; they proved that either R ⊆ M2(K ),
for a field K , or there exist 0 �= a, b ∈ R such that F(x) = xa and G(x) = bx , for
all x ∈ R, where ab = 1K .
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Rania, in [27], analyzed a similar condition involving the Jordan product of two
non-zero generalized derivations of R; in particular, he described the form of the
maps F and G when the following condition is satisfied: F(x) ◦ G(y) = x ◦ y, for
all x, y ∈ S, where S is the set of all evaluations of a non-central polynomial over
C. In light of this line of investigation, in this paper, we will study a condition,
that generalizes the Jordan product preserving condition when the additive maps are
generalized skew derivations on R.

The main goal of the present paper is to prove the following theorem:

Theorem 1 Let R be a non-commutative prime ring of characteristic different from
2, Qr be its right Martindale quotient ring and C be its extended centroid, L a non-
central Lie ideal of R and F and G non-zero generalized skew derivations of R such
that F(x)G(y) + F(y)G(x) = x ◦ y, for all x, y ∈ L. Then one of the following
holds:

1. there exist a, b ∈ Qr such that F(x) = xa and G(x) = bx, for any x ∈ R, with
ab = 1C;

2. R satisfies s4(x1, . . . , x4) the standard polynomial identity on 4 non-commuting
variables and there exist a, b ∈ Qr such that F(x) = ax and G(x) = xb, for any
x ∈ R, with ab = 1C;

3. R satisfies s4(x1, . . . , x4) and there exist an invertible element q ∈ Qr and 0 �=
β ∈ C such that F(x) = βqxq−1 and G(x) = β−1qxq−1, for any x ∈ R.

In order to proceed with our proofs, we need to recall some well-known results on
skew derivations and automorphisms involved in generalized polynomial identities
for prime rings.

Let us denote by SDer(Qr ) the set of all skew-derivations of Qr . By a skew-
derivation word we mean an additive mapping � of the form � = d1d1 . . . dm ,
where di ∈ SDer(Qr ). A skew-differential polynomial is a generalized polynomial
with coefficients in Qr of the form �(� j (xi )) involving noncommutative indeter-
minates xi on which the skew derivation words � j act as unary operations. The
skew-differential polynomial �(� j (xi )) is said to be a skew-differential identity on
a subset T of Qr if it vanishes on any assignment of values from T to its indetermi-
nates xi .

Let R be a prime ring, SDint be the C-subspace of SDer(Qr ) consisting of all
inner skew-derivations of Qr , and let d and δ be two non-zero skew-derivations of
Qr . The following results follow as special cases from results in [8–11].

Fact 2 Assume that d and δ are skew derivations on R, associated with the same
automorphism α of R. If d and δ are C−linearly independent modulo SDint and
�(� j (xi )) is a skew-differential identity on R, where� j are skew-derivations words
of the following form δ, d, then �(y ji ) is a generalized polynomial identity of R,
where y ji are distinct indeterminates.

In particular, we have

Fact 3 In [13], Chuang and Lee investigate polynomial identities with a single
skew derivation. They prove that if�(xi , D(xi )) is a generalized polynomial identity
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for R, where R is a prime ring and D is an outer skew derivation of R, then R
also satisfies the generalized polynomial identity �(xi , yi ), where xi and yi are
distinct indeterminates. Furthermore, they observe [13, Theorem 1] that in the case
�(xi , D(xi ), α(xi )) is a generalized polynomial identity for a prime ring R, D is
an outer skew derivation of R and α is an outer automorphism of R, then R also
satisfies the generalized polynomial identity �(xi , yi , zi ), where xi , yi , and zi are
distinct indeterminates.

Fact 4 If d and δ are C−linearly dependent modulo SDint, then there exist λ,μ ∈
C, a ∈ Qr and α ∈ Aut (Q) such that λd(x) + μδ(x) = ax − α(x)a, for all x ∈ R.

Fact 5 By [13] we can state the following result. If d is a non-zero skew-derivation
of R and

�

(
x1, . . . , xn, d(x1), . . . , d(xn)

)

is a skew-differential polynomial identity of R, then one of the following statements
holds:

1. either d ∈ SDint ;
2. or R satisfies the generalized polynomial identity �(x1, . . . , xn, y1, . . . , yn).

Fact 6 Let R be a prime ring and I be a two-sided ideal of R. Then I , R, and Qr

satisfy the same generalized polynomial identities with coefficients in Qr (see [8]).
Furthermore, I , R, and Qr satisfy the same generalized polynomial identities with
automorphisms (see [10, Theorem 1]).

Fact 7 Let R be a prime ring, then the following statements hold:

1. Every generalized derivation of R can be uniquely extended to Qr ([23, Theorem
3]).

2. Any automorphism of R can be uniquely extended to Qr ([9, Fact 2] ).
3. Every generalized skew derivation of R can be uniquely extended to Qr ([7,

Lemma 2]) as follows: by a (right) generalized skew derivation we mean an
additive mapping G : Qr −→ Qr such that G(xy) = G(x)y + α(x)d(y) for all
x, y ∈ Qr , where d is a skew derivation of R and α is an automorphism of R.
Moreover, there exists G(1) = a ∈ Qr such that G(x) = ax + d(x) for all x ∈ R.

Fact 8 Let L be a non-central Lie ideal of R and char(R) �= 2, then there exists a
non-zero ideal I of R such that 0 �= [I, R] ⊆ L ([19, pp. 4–5], [17, Lemma 2 and
Proposition 1], [21, Theorem 4]).

Fact 9 ([14, Lemma 1.5]) Let H be an infinite field and m ≥ 2. If A1, . . . , Ak are
not scalar matrices in Mm(H) then there exists some invertible matrix P ∈ Mm(H)

such that each matrix P A1P−1, . . . , PAk P−1 has all non-zero entries.

Fact 10 ([16, Proposition 1]) Let a, b ∈ R = Mt (H), the ring of all t × t matrices
over a field H of characteristic different from 2, where t ≥ 3. Denote a = ∑

alkelk
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and b = ∑
blkelk , where alk, blk ∈ K, and elk is the unit matrix with 1 in (l, k)-entry

and 0 elsewhere.
Assume that for any fixed integers i �= j such that ai j bi j = 0, it implies that, for

any inner automorphism ϕ of R, a′
i j b

′
i j = 0, where ϕ(a) = ∑t

r,s=1 a
′
rsers , ϕ(b) =∑t

r,s=1 b
′
rsers .

Then if ai j bi j = 0 for all i �= j , it follows either a ∈ H or b ∈ H.

Fact 11 ([12, Lemma 3]) Let R be a prime ring, C its extended centroid,
f (x1, . . . , xn) a polynomial over C (not necessarily multilinear), a ∈ R such that
a f (r1, . . . , rn) = 0, for any r1, . . . , rn ∈ R. Then either a = 0 or f (r1, . . . , rn) = 0,
for all r1, . . . , rn ∈ R. (Analogously for f (r1, . . . , rn)a = 0).

2 Inner Generalized Skew Derivations

In this section, we prove a reduced version of the Theorem 1; in particular, we
consider the case in which F and G are both inner generalized skew derivations. The
first step is the case when α is an inner automorphism of R, therefore we prove the
following Proposition:

Proposition 1 Let R be a non-commutative prime ring of characteristic different
from 2, Qr be its right Martindale quotient ring and C be its extended centroid.
Suppose that F and G are non-zero generalized skew derivations of R, respectively,
defined as

F(x) = ax + qxq−1b, G(x) = cx + qxq−1u

for all x ∈ R and fixed a, b, c, u ∈ Qr , with an invertible element q of Qr . If
F(x)G(y) + F(y)G(x) = x ◦ y, for all x, y ∈ [R, R], then one of the following
holds:

1. there exist a′, b′ ∈ Qr such that F(x) = xa′ and G(x) = b′x, for any x ∈ R, with
a′b′ = 1C;

2. R satisfies s4(x1, . . . , x4) and there exist a′, b′ ∈ Qr such that F(x) = a′x and
G(x) = xb′, for any x ∈ R, with a′b′ = 1C;

3. R satisfies s4(x1, . . . , x4) and there exists 0 �= β ∈ C such that F(x) = βqxq−1

and G(x) = β−1qxq−1, for any x ∈ R.

Then we extend the previous result to any automorphism α, proving the following
Proposition:

Proposition 2 Let R be a non-commutative prime ring of characteristic different
from 2, Qr be its right Martindale quotient ring and C be its extended centroid.
Suppose that α ∈ Aut (R) and F and G are non-zero generalized skew derivations
of R respectively defined as

F(x) = ax + α(x)b, G(x) = cx + α(x)u
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for all x ∈ R and fixed a, b, c, u ∈ Qr . If F(x)G(y) + F(y)G(x) = x ◦ y, for all
x, y ∈ [R, R], then one of the following holds:

1. there exist a′, b′ ∈ Qr such that F(x) = xa′ and G(x) = b′x, for any x ∈ R, with
a′b′ = 1C;

2. R satisfies s4(x1, . . . , x4) and there exist a′, b′ ∈ Qr such that F(x) = a′x and
G(x) = xb′, for any x ∈ R, with a′b′ = 1C;

3. R satisfies s4(x1, . . . , x4) and there exist an invertible element q ∈ Qr and 0 �=
β ∈ C such that F(x) = βqxq−1 and G(x) = β−1qxq−1, for any x ∈ R.

In order to prove the Proposition 1, assume that R satisfies the following generalized
polynomial identity

	(x1, x2, x3, x4) =
(
a[x1, x2] + q[x1, x2]q−1b

)(
c[x3, x4] + q[x3, x4]q−1u

)
+

(
a[x3, x4] + q[x3, x4]q−1b

)(
c[x1, x2] + q[x1, x2]q−1u

)
− [x1, x2][x3, x4]

−[x3, x4][x1, x2]. (1)

Lemma 1 Let R = Mt (C) be the ring of all t × t matrices over C, with char(C) �=
2 and t ≥ 2. If C is infinite, then one of the following hold:

1. q ∈ Z(R)

2. q−1u ∈ Z(R)

3. a + q−1bq ∈ Z(R)

Proof We firstly assume that q /∈ Z(R), q−1u /∈ Z(R) and a + q−1bq /∈ Z(R) and
prove that a contradiction follows. Since q, q−1u and a + q−1bq are not scalar
matrices, by Fact 9, there exists some invertible matrix P ∈ Mt (C) such that each
matrix PqP−1, Pq−1uP−1 and P(a + q−1bq)P−1 has all non-zero entries. Denote
by φ(x) = Px P−1 the inner automorphism induced by P. Put φ(q) = ∑

hl qhlehl ,
φ(q−1u) = ∑

hl vhlehl and φ(a + q−1bq) = ∑
hl shlehl , for 0 �= qhl , 0 �= vhl and

0 �= shl ∈ C . Without to loss of generality, we may replace q, q−1u and a + q−1bq
with φ(q), φ(q−1u) and φ(a + q−1bq), respectively. Let ei j be the usual matrix
unit with 1 in the (i, j)−entry and zero elsewhere. Hence, for any i �= j , [x1, x2] =
[x3, x4] = ei j in (2) and right multiplying by ei j we get

2(aei j + qei jq
−1b)qei jq

−1uei j = 0

It implies that q jiv j i s ji = 0, a contradiction.

Lemma 2 Let R = Mt (C) be the ring of all t × t matrices over C, with char(C) �=
2 and t ≥ 2. If C is infinite and q ∈ Z(R) then one of the following holds:
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1. a, u ∈ Z(R) and (a + b)(c + u) = 1C;
2. t = 2 and b, c ∈ Z(R) and (a + b)(c + u) = 1C;

Proof Since q ∈ Z(R), by (2), we get that R satisfies

(
a[x1, x2] + [x1, x2]b

)(
c[x3, x4] + [x3, x4]u

)
+

(
a[x3, x4] + [x3, x4]b

)(
c[x1, x2] + [x1, x2]u

)
− [x1, x2][x3, x4] − [x3, x4][x1, x2].

(2)
Fix, for any i �= j , [x1, x2] = [x3, x4] = ei j , in (2), then we have X = aei j cei j +
ei j bcei j + ei j bei j u = 0 Assume that a, c /∈ Z(R) and prove that a contradiction fol-
lows; they are not scalar matrices and, as above, we apply Fact 9, therefore there
exists some invertible matrix P ∈ Mt (C) such that each matrix PaP−1 and PcP−1

has all non-zero entries. Denote by φ(x) = Px P−1 the inner automorphism induced
by P. Put φ(a) = ∑

hl ahlehl and φ(c) = ∑
hl chlehl , for 0 �= ahl , 0 �= chl ∈ C . With-

out to loss of generality, wemay replace a and cwith φ(a) and φ(c), respectively. By
( j, j)−entry of X, we get a ji c ji = 0, for all i �= j , that is a contradiction. It means
that either a ∈ Z(R) or c ∈ Z(R).

Analogously, it is possible to prove that either b ∈ Z(R) or u ∈ Z(R).
Case 1.:b, c ∈ Z(R). In this case, by (2), R satisfies

(a + b)[x1, x2][x3, x4](c + u) + (a + b)[x3, x4][x1, x2](c + u) − [x1, x2][x3, x4]

−[x3, x4][x1, x2].

If t = 2, the polynomial [x1, x2][x3, x4] + [x3, x4][x1, x2] is central valued on R, so
that (a + b)(c + u) = 1C , we are done.

Assume t ≥ 3, for any i �= j �= k, [x1, x2] = ei j and [x3, x4] = e jk , then

Y = (a + b)eik(c + u) − eik = 0

By (k, i)−entry of Y, we get (a + b)ki (c + u)ki = 0, for all k �= i ; by Fact 10,
either (a + b) ∈ Z(R) or (c + u) ∈ Z(R). In both case, since [x1, x2][x3, x4] +
[x3, x4][x1, x2] is a non-zero polynomial, by Fact 11, (a + b)(c + u) = 1C .
Case 2.:b, a ∈ Z(R). In this case, by (2), R satisfies

β[x1, x2]
(
c[x3, x4] + [x3, x4]u

)
+ β[x3, x4]

(
c[x1, x2] + [x1, x2]u

)
−

[x1, x2][x3, x4] − [x3, x4][x1, x2]

where 0 �= β = a + b ∈ Z(R). For any i �= j , [x1, x2] = [x3, x4] = ei j , then
2βei j cei j = 0. Since char(R) �= 2, c ji = 0, for all i �= j , by standard calculations,
we get c ∈ Z(R) and, by Fact 11 c + u = β−1.
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Case 3.:a, u ∈ Z(R). In this case, by (2), R satisfies

[x1, x2](a + b)(c + u)[x3, x4] + [x3, x4](a + b)(c + u)[x1, x2] − [x1, x2][x3, x4]

−[x3, x4][x1, x2].
For any i �= j , [x1, x2] = [x3, x4] = ei j , then 2p ji = 0, where (a + b)(c + u) =∑

hl phlehl , for phl ∈ C . By standard arguments, we have (a + b)(c + u) ∈ Z(R),
therefore R satisfies

(a + b)(c + u)

(
[x1, x2][x3, x4] + [x3, x4][x1, x2]

)
− [x1, x2][x3, x4] − [x3, x4][x1, x2]

By Fact 11, it means (a + b)(c + u) = 1C .
Case 4.:c, u ∈ Z(R). In this case, by (2), R satisfies

β

(
a[x1, x2] + [x1, x2]b

)
[x3, x4] + β

(
a[x3, x4] + [x3, x4]b

)
[x3, x4]−

[x1, x2][x3, x4] − [x3, x4][x1, x2]

where 0 �= β = c + u ∈ Z(R). For any i �= j , [x1, x2] = [x3, x4] = ei j , then
2βei j bei j = 0. Since char(R) �= 2, b ji = 0, for all i �= j ; as above, b ∈ Z(R) and,
by Fact 11, a + b = β−1.

Lemma 3 Let R = Mt (C) be the ring of all t × t matrices over C, with char(C) �=
2 and t ≥ 2. If C is infinite and q−1u ∈ Z(R) then one of the following holds:

1. a, q ∈ Z(R) and (a + b)(c + u) = 1C;
2. t = 2 and q−1b, c + u ∈ Z(R) and (a + b)(c + u) = 1C;

Proof Since q−1u ∈ Z(R), by (2), we get that R satisfies

(
a[x1, x2] + q[x1, x2]q−1b

)
(c + u)[x3, x4] +

(
a[x3, x4] + q[x3, x4]q−1b

)
(c + u)[x1, x2]

− [x1, x2][x3, x4] − [x3, x4][x1, x2]. (3)

Assume that q−1a, c + u /∈ Z(R) and prove that a contradiction follows. They are
not scalar matrices and we apply Fact 9, therefore there exists some invertible matrix
P ∈ Mt (C) such that each matrix Pq−1aP−1 and P(c + u)P−1 has all non-zero
entries. Denote byφ(x) = Px P−1 the inner automorphism induced by P. Put q−1a =∑

hl p
′
hlehl and c + u = ∑

hl q
′
hlehl , for 0 �= p′

hl, 0 �= q ′
hl ∈ C . Without to loss of

generality, we may replace q−1a and c + u with φ(q−1a) and φ(c + u) respectively.
Fix, for any i �= j , [x1, x2] = [x3, x4] = ei j , in (3); left multiplying by ei jq−1, then
we have p′

j i q
′
j i = 0, that is a contradiction. Then we have two cases:

Case 1.:c + u ∈ Z(R). In this case, by (3), R satisfies



Jordan Product Preserving Generalized Skew Derivations on Lie Ideals 295

β

(
a[x1, x2] + q[x1, x2]q−1b

)
[x3, x4] + β

(
a[x3, x4] + q[x3, x4]q−1b

)
[x1, x2]−

[x1, x2][x3, x4] − [x3, x4][x1, x2]

where 0 �= β = c + u ∈ Z(R). Again, fix, for any i �= j , [x1, x2] = [x3, x4] = ei j ;
left multiplying by q−1, then we have t ′i j = 0, where q−1b = ∑

hl t
′
hlehl , for t

′
hl ∈ C .

As above, we get q−1b ∈ Z(R) and R satisfies, by (3),

β(a + b)

(
[x1, x2][x3, x4] + [x3, x4][x1, x2]

)
− [x1, x2][x3, x4] − [x3, x4][x1, x2]

By Fact 11, (a + b) = β−1.
Case 2.:q−1a ∈ Z(R). In this case, there exists λ ∈ C such that a = λq. By (3), R
satisfies (

λaq[x1, x2] + q[x1, x2]q−1b

)
(c + u)[x3, x4]+

(
λq[x3, x4] + q[x3, x4]q−1b

)
(c + u)[x1, x2] − [x1, x2][x3, x4] − [x3, x4][x1, x2].

(4)
Consider, for any i �= j , [x1, x2] = [x3, x4] = ei j and left multiply by q−1 in (4),
then 2r ′

j i = 0 for all i �= j , where (λ + q−1b)(c + u) = ∑
hl r

′
hlehl , for r

′
hl ∈ C .

We get that (λ + q−1b)(c + u) is a diagonal matrix; by standard calculations
(λ + q−1b)(c + u) ∈ Z(R), therefore R satisfies

βq

(
[x1, x2][x3, x4] + [x3, x4][x1, x2]

)
− [x1, x2][x3, x4] − [x3, x4][x1, x2]

where β = (λ + q−1b)(c + u). By Fact 11, q = β−1 ∈ Z(R), (a + b)(c + u) = 1C
and we are done.

Lemma 4 Let R = Mt (C) be the ring of all t × t matrices over C, with char(C) �=
2 and t ≥ 2. If C is infinite and a + q−1bq ∈ Z(R) then one of the following holds:

1. q−1b, q−1u ∈ Z(R) and (a + b)(c + u) = 1C
2. q, c, u ∈ Z(R) and (a + b)(c + u) = 1C
3. t = 2 and there exists β ∈ Z(R) such that F(x) = βqxq−1 and G(x) =

β−1qxq−1, for all x ∈ Z(R).

Proof Since a + q−1bq ∈ Z(R), there exists λ ∈ C such that q−1bq = λ − a; by
(2), we get that R satisfies

a[x1, x2]c[x3, x4] + a[x1, x2]q[x3, x4]q−1u + q[x1, x2]q−1bc[x3, x4]+

λq[x1, x2][x3, x4]q−1u − q[x1, x2]a[x3, x4]q−1u + a[x3, x4]c[x1, x2]+
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a[x3, x4]q[x1, x2]q−1u + q[x3, x4]q−1bc[x1, x2] + λq[x3, x4][x1, x2]q−1u−

q[x3, x4]a[x1, x2]q−1u − [x1, x2][x3, x4] − [x3, x4][x1, x2]. (5)

Assume that q, q−1u /∈ Z(R), otherwise we conclude thanks to Lemmas 2 and 3.
As above, by using Fact 10, assume that q and q−1u have all non-zero entries. Fix,
for any i �= j , [x1, x2] = [x3, x4] = ei j , in (5); left multiplying by e j jq−1 and right
multiplying by eii , we get 2p′

j i q ji q ′
j i = 0,where q−1a = ∑

hl p
′
hlehl , q = ∑

hl qhlehl
and q−1u = ∑

hl q
′
hlehl , for 0 �= q ′

hl, 0 �= qhl, p′
hl ∈ C . Since q and q−1u have all

non-zero entries, we get p′
j i = 0, for all i �= j ; it implies that q−1a is a diagonal

matrix and, by standard calculations, we get q−1a ∈ Z(R). Then there exists β ∈ C
such that a = βq. In this case, F(x) = λqxq−1, then, by (5), R satisfies

λq[x1, x2]q−1c[x3, x4] + λq[x1, x2][x3, x4]q−1u + λq[x3, x4]q−1c[x1, x2]+

λq[x3, x4][x1, x1]q−1u − [x1, x2][x3, x4] − [x3, x4][x1, x2]
Assume λ �= 0 and fix, for any i �= j , [x1, x2] = [x3, x4] = ei j . Left multiplying by
q−1, as above, by similar calculations, we get q−1c ∈ Z(R). Then R satisfies

λc

(
[x1, x2][x3, x4] + [x3, x4][x1, x1]

)
+ λq

(
[x1, x2][x3, x4] + [x3, x4][x1, x1]

)
q−1u−

[x1, x2][x3, x4] − [x3, x4][x1, x2].

If t = 2, we conclude c + u = λ−1 ∈ Z(R). Assume t ≥ 3, fix, for any i �= j, �= k,
[x1, x2] = ei j and [x3, x4] = e ji and left multiplying by ekkq−1, then R satisfies

ekkq
−1(eii + e j j ).

It implies q−1 ∈ Z(R), a contradiction.

Lemma 5 Let R = Mt (C) be the ring of all t × t matrices over C, with char(C) �=
2 and t ≥ 2. If C is infinite, then one of the following holds:

1. q, a, u ∈ Z(R) snd (a + b)(c + u) = 1C
2. t = 2, q, b, c ∈ Z(R) snd (a + b)(c + u) = 1C
3. t = 2 and there exists β ∈ Z(R) such that F(x) = βqxq−1 and G(x) =

β−1qxq−1, for all x ∈ Z(R).

Proof In light of Lemma 1, if R satisfies the polynomial identity (2), then one of the
following holds:

1. q ∈ Z(R)

2. q−1u ∈ Z(R)

3. a + q−1bq ∈ Z(R)
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In all cases, we conclude thanks, respectively, to Lemmas 2, 3, 4.

Lemma 6 Let R = Mt (C) be the ring of all t × t matrices over C, with char(C) �=
2 and t ≥ 2. Then one of the following holds:

1. q, a, u ∈ Z(R) snd (a + b)(c + u) = 1C
2. t = 2, q, b, c ∈ Z(R) snd (a + b)(c + u) = 1C
3. t = 2 and there exists β ∈ Z(R) such that F(x) = βqxq−1 and G(x) =

β−1qxq−1, for all x ∈ Z(R).

Proof If C is infinite, the conclusion follows from Lemma 5. Now let E be an infinite
fieldwhich is an extension of the fieldC and let R = Mt (E) ∼= R ⊗C E . Consider the
generalized polynomial 	(x1, x2, x3, x4), which is a generalized identity for R, and
its complete linearization θ(x1, x2, . . . , x8); it is amultilinear generalized polynomial
and θ(x1, x2, x3, x4, x1, x2, x3, x4) = 24	(x1, x2, x3, x4). Obviously, the multilinear
polynomial θ(x1, x2, . . . , x8) is a generalized polynomial identity for R and R too.
Since char(R) �= 2, we obtain 	(r1, r2, r3, r4) = 0, for all r1, r2, r3, r4 ∈ R and the
conclusion follows from Lemma 5.

Lemma 7 Either 	(x1, x2, x3, x4) is a non-trivial generalized polynomial identity
for R or Proposition 1 holds.

Proof Assume that 	(x1, x2, x3, x4) is a trivial generalized polynomial identity
for R. Let T = Qr∗CC{X} be the free product over C of the C−algebra Qr and
the free C−algebra C{X} with X the set consisting of non-commuting indetermi-
nates x1, x2, x3, x4. For brevity, we write X , Y , 	(X,Y ) instead of [x1, x2], [x3, x4],
	(x1, x2, x3, x4).

Consider the generalized polynomial 	(X,Y ) ∈ T . By hypothesis,

	(X, Y ) =
(
aX + qXq−1b

)(
cY + qYq−1u

)
+

(
aY + qYq−1b

)(
cX + qXq−1u

)

−XY − Y X = 0 ∈ T .

Assume first that {1, a, q} are linearlyC−independent. Since	(X,Y ) = 0 ∈ T , we
have XY + Y X = 0 ∈ T , a contradiction. Therefore there exist λ, β ∈ C , such that
a = λq + β, that is

	(X, Y ) =
(

λqX + βX + qXq−1b

)(
cY + qYq−1u

)
+

(
λqY + βY + qYq−1b

)(
cX + qXq−1u

)
− XY − Y X = 0 ∈ T .

If q ∈ C , we have

	(X, Y ) = X

(
λq + β + b

)(
cY + Yu

)
+ Y

(
λq + β + b

)(
cX + Xu

)
− XY − Y X = 0
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∈ T . Since it is a trivial generalized polynomial identity, we have u ∈ C and (λq +
β + b)(c + u) = 1C , that is F(x) = a′x and G(x) = c′x , for all x ∈ R, where a′ =
a + b, c′ = c + u and a′c′ = 1C ; we are done.

Assume that {1, q} are linearly C−independent, then, since 	(X,Y ) = 0 ∈ T ,
we have

(
λqX + qXq−1b

)(
cY + qYq−1u

)
+

(
λqY + qYq−1b

)(
cX + qXq−1u

)
= 0 ∈ T . (6)

and

βX

(
cY + qYq−1u

)
+ βY

(
cX + qXq−1u

)
− XY − Y X = 0 ∈ T . (7)

Consider the case when {1, q−1u} are linearly C−independent, then by (7)

βXcY + βYcX − XY − Y X = 0 ∈ T . (8)

and
βXqYq−1u + βYqXq−1u = 0 ∈ T . (9)

By (8), we get c = β−1 and, by (9), we get β = 0, a contradiction. Then q−1u ∈ C
and (6) and (7) become

(
λqX + qXq−1b

)(
c′Y

)
+

(
λqY + qYq−1b

)(
c′X

)
= 0 ∈ T .

and

βX

(
c′Y

)
+ βY

(
c′X

)
− XY − Y X = 0 ∈ T

where c′ = c + u. Comparing both trivial generalized polynomial identities, we
obtain c′ = β−1 ∈ C , q−1b ∈ C and λq + b = 0. It means that F(x) = βx and
G(x) = β−1x , for all x ∈ R.

Proof of Proposition 1

In light of Lemma 7, we may assume that the generalized polynomial
	(x1, x2, x3, x4) is a non-trivial generalized polynomial identity for R. By [8], it
follows that	(x1, x2, x3, x4) is a non-trivial generalized polynomial identity for Qr .
In view of [18, Theorems 2.5 and 3.5], we know that both Qr and Qr ⊗C C are
centrally closed, where C is the algebraic closure of C. We may replace Qr by itself
or Qr ⊗C C according as C is finite or infinite. Therefore, we may assume that Qr

is centrally closed over C, which is either finite or algebraically closed. By Martin-
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dale’s theorem [26], Qr is a primitive ring having a non-zero socle H, with C as the
associated division ring. In light of Jacobson’s theorem [20, p. 75], Qr is isomorphic
to a dense ring of linear transformations on some vector space V over C.

Assume first that dimCV = t ≥ 2 is a finite positive integer. Then Q ∼= Mt (C)

and the conclusion follows from Lemma 6.
Let now dimCV = ∞. As in [28, Lemma 2], the set [Qr , Qr ] is dense on R.

Since	(x1, x2, x3, x4) = 0 is a generalized polynomial identity of R, we obtain that
Qr satisfies

(ax + qxq−1b)(cy + qyq−1u) + (ay + qyq−1b)(cx + qxq−1u) − xy − yx (10)

Suppose there exists v ∈ V such that {v, q−1uv} are linearly C−independent. By
the density of Qr , there exist r1, r2 ∈ Qr such that

r1v = r2v = v r1q
−1uv = r2q

−1uv = −q−1cv.

Right multiplying by v in (10), we get 2v = 0; since char(R) �= 2, we get v = 0,
a contradiction. Then, for any v ∈ V , {v, q−1uv} are linearly C−dependent, that is
q−1u ∈ C . Now, by (10), Qr satisfies

(ax + qxq−1b)(c + u)y + (ay + qyq−1b)(c + u)x − xy − yx . (11)

Fix x = y = 1C in (11), then we get (a + b)(c + u) = 1C . Again, fix x = 1C in (11),
then, for all y ∈ Qr

(ay + qyq−1b)(c + u) − y = 0

Right multiplying by (a + b), we get

ay + qyq−1b = y(a + b).

It means that F(x) is a generalized derivation of R, therefore either q, a ∈ C or
q−1b, a + b ∈ C . In both cases we are done.

As a reduced case, we have the following easy consequence of Proposition 1:

Corollary 1 Let R be a non-commutative prime ring of characteristic different from
2, Qr be its right Martindale quotient ring and C be its extended centroid. Suppose
that F and G are non-zero generalized derivations of R respectively defined as

F(x) = ax + xb, G(x) = cx + xu

for all x ∈ R and fixed a, b, c, u ∈ Qr . If F(x)G(y) + F(y)G(x) = x ◦ y, for all
x, y ∈ [R, R], then one of the following holds:

1. a, u ∈ C and (a + b)(c + u) = 1C;
2. R satisfies s4(x1, . . . , x4), b, c ∈ C and (a + b)(c + u) = 1C .
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Lemma 8 ([6], Reduced version of theMain Theorem) Let R be a non-commutative
prime ring of characteristic different from 2. If there exist a, b ∈ R such that
[x1, x2]a[x1, x2]b = 0 for all x1, x2 ∈ R, then either a = 0 or b = 0.

2.1 Proof of Proposition 2

By our assumption, R satisfies

(
a[x1, x2] + α([x1, x2])b

)(
c[x3, x4] + α([x3, x4])u

)
+

(
a[x3, x4] + α([x3, x4])b

)(
c[x1, x2] + α([x1, x2])u

)
− [x1, x2][x3, x4] − [x3, x4][x1, x2]. (12)

If α is the identity map on R, then we conclude by Corollary 1. Moreover, in the case
that there exists an invertible element q ∈ Qr , with q /∈ C , such that α(x) = qxq−1,
for all x ∈ R, the conclusion follows from Proposition 1. Thus, in all that follows we
assume that α in not inner, then, by Fact 3 and relation (12), R satisfies

(
a[x1, x2] + [y1, y2]b

)(
c[x3, x4] + [y3, y4]u

)
+

(
a[x3, x4] + [y3, y4]b

)(
c[x1, x2] + [y1, y2]u

)
− [x1, x2][x3, x4] − [x3, x4][x1, x2].

(13)
For yi = 0, for all i = 1, . . . , 4, by (13), R satisfies

a[x1, x2]c[x3, x4] + a[x3, x4]c[x1, x2] − [x1, x2][x3, x4] − [x3, x4][x1, x2] (14)

Thanks to Corollary 1, we get a, c ∈ C and ac = 1C . Then there exists 0 �= β ∈ C
such that a = β, c = β−1 and R satisfies

(
β[x1, x2] + [y1, y2]b

)(
β−1[x3, x4] + [y3, y4]u

)
+

(
β[x3, x4] + [y3, y4]b

)(
β−1[x1, x2] + [y1, y2]u

)
− [x1, x2][x3, x4] − [x3, x4][x1, x2].

(15)
Consider x1 = x3 = 0, y1 = y3 and y2 = y4, then

2[y1, y2]b[y1, y2]u = 0

for all y1, y2 ∈ R. By Lemma 8 either b = 0 or u = 0.
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Assume b = 0, then by (15), R satisfies

(
[x1, x2][y3, y4] + [x3, x4][y1, y2]

)
u

By Fact 11, u = 0. (Analogously if one assume u = 0, it implies b = 0).

3 The Proof of Theorem 1

We are now ready to prove the main Theorem of the paper. As remarked in Fact 7,
we assume that there exist a, c ∈ Qr such that F(x) = ax + d(x) and G(x) = cx +
δ(x), for all x ∈ R, where d, δ are skew derivations on R and α the automorphism
associated with d and δ; it means that d(xy) = d(x)y + α(x)d(y) and δ(xy) =
δ(x)y + α(x)δ(y), for all x, y ∈ R.

By Fact 8, since L is a non-central Lie ideal andChar(R) �= 2, there exists a non-
zero ideal I of R such that F(x)G(y) + F(y)G(x) = x ◦ y, for all x, y ∈ [I, I ].
Since R and I satisfy the same generalized differential indentities with automor-
phisms, we assume that F(x)G(y) + F(y)G(x) = x ◦ y, for all x, y ∈ [R, R].

3.1 Proof of Theorem 1

In light of Propositions 1 and 2, we get the required conclusion if one of the following
occurs:

1. d = δ = 0;
2. α is an identity map on R;
3. d and δ are inner skew derivations and α is an inner automorphism of R.

Then, in all that follows we assume that

1. either d = 0 or δ = 0;
2. α is not the identity map;
3. if d and δ are inner skew derivations, then α is not an inner automorphism of R.

We prove that a number of contradictions occur.
Since R, as well as Qr , satisfies

(
a[x1, x2] + d([x1, x2])

)(
c[x3, x4] + δ([x3, x4])

)
+

(
a[x3, x4] + d([x3, x4])

)(
c[x1, x2] + δ([x1, x2])

)
− [x1, x2][x3, x4] − [x3, x4][x1, x2]. (16)
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then Qr satisfies

(
a[x1, x2] + d(x1)x2 + α(x1)d(x2) − d(x2)x1 − α(x2)d(x1)

)(
c[x3, x4]+

δ(x3)x4 + α(x3)δ(x4) − δ(x4)x3 − α(x4)δ(x3)

)
+

(
a[x3, x4] + d(x3)x4 + α(x3)d(x4) − d(x4)x3 − α(x4)d(x3)

)(
c[x1, x2]+

δ(x1)x2 + α(x1)δ(x2) − δ(x2)x1 − α(x2)δ(x1)

)
− [x1, x2][x3, x4] − [x3, x4][x1, x2].

(17)
Now we divide the proof into five parts.
• Let d = 0 and δ �= 0.
By (17) Qr satisfies

a[x1, x2]
(
c[x3, x4] + δ(x3)x4 + α(x3)δ(x4) − δ(x4)x3 − α(x4)δ(x3)

)
+

a[x3, x4]
(
c[x1, x2] + δ(x1)x2 + α(x1)δ(x2) − δ(x2)x1 − α(x2)δ(x1)

)
− [x1, x2][x3, x4]−

[x3, x4][x1, x2]. (18)

Of course, we may assume that δ is not inner, otherwise we are done by Proposition
1. In this case Qr satisfies

a[x1, x2]
(
c[x3, x4] + z3x4 + α(x3)z4 − z4x3 − α(x4)z3

)
+

a[x3, x4]
(
c[x1, x2] + z1x2 + α(x1)z2 − z2x1 − α(x2)z1

)
− [x1, x2][x3, x4]−

[x3, x4][x1, x2]. (19)

Fix zi = 0, for all i = 1, . . . , 4, then Qr satisfies,

a[x1, x2]c[x3, x4] + a[x3, x4]c[x1, x2] − [x1, x2][x3, x4] − [x3, x4][x1, x2].

By Proposition 1, we get that there exists 0 �= λ ∈ C , such that a = λ and c = λ−1.
Now, for z1 = 0, the blended component of (19) is the following
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[x3, x4]
(
z1x2 − α(x2)z1

)
= 0 (20)

for all x2, x3, x4, z1 ∈ Qr . Replacing x4 with x4t , we know that Qr satisfies

[x3, x4]t
(
z1x2 − α(x2)z1

)

Since R is a non-commutative prime ring, we get

z1x2 − α(x2)z1 = 0 (21)

for all z1, x2 ∈ Qr . If α, is outer, by Fact 3, we get [Qr , Qr ] = 0, a contradiction; if
α is an inner automorphism, then there exists an invertible element q ∈ Qr , where
q /∈ C , such that α(x) = qxq−1, for all x ∈ R and, by (21), z1x2 − qx2q−1z1 = 0,
for all x2, z1 ∈ Qr . Left multiplying by q−1 and replacing z1 with qz1, we get
[Qr , Qr ] = 0, a contradiction.
• Let d �= 0 and δ = 0.
By using a similar argument, as in the previous case, we have a number of contra-
dictions. We omit the proof for brevity.
• Let d �= 0 and δ �= 0 be C− linearly independent modulo SDint .
By (17) and Fact 2, Qr satisfies

(
a[x1, x2] + z1x2 + α(x1)z2 − z2x1 − α(x2)z1

)(
c[x3, x4]+

z7x4 + α(x3)z8 − z8x3 − α(x4)z7

)
+

(
a[x3, x4] + z3x4 + α(x3)z4 − z4x3 − α(x4)z3

)(
c[x1, x2]+

z5x2 + α(x1)z6 − z6x1 − α(x2)z5

)
− [x1, x2][x3, x4] − [x3, x4][x1, x2]. (22)

Fix zi = 0, for all i = 1, . . . , 8, then Qr satisfies,

a[x1, x2]c[x3, x4] + a[x3, x4]c[x1, x2] − [x1, x2][x3, x4] − [x3, x4][x1, x2].

By Proposition 1, we get that there exists 0 �= β ∈ C , such that a = β and c = β−1.
Now, for z5 = 0, the blended component of (22), is the following

(
β[x3, x4] + z3x4 + α(x3)z4 − z4x3 − α(x4)z3

)(
z5x2 − α(x2)z5

)
= 0
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for all z3, z4, z5, x2, x3, x4 ∈ Qr . For z3 = z4 = 0, R satisfies

[x3, x4]
(
z5x2 − α(x2)z5

)
.

We conclude as in the case in which R satisfies (20).
• Let d and δ be C− linearly dependent modulo SDint .
We firstly assume that there exist 0 �= λ ∈ C, 0 �= μ ∈ C, b ∈ Qr and γ ∈ Aut (R)

such that λd(x) + μδ(x) = bx − γ (x)b, for all x ∈ R. If we define η = −μ−1λ and
p = μ−1b, then δ(x) = ηd(x) + px − γ (x)p, for all x ∈ R. Therefore, by (16), Qr

satisfies
(
a[x1, x2] + d([x1, x2])

)(
c[x3, x4] + ηd([x3, x4]) + p[x3, x4] − γ ([x3, x4])p

)
+

(
a[x3, x4] + d([x3, x4])

)(
c[x1, x2] + ηd([x1, x2]) + p[x1, x2] − γ ([x1, x2])p

)
−

(23)
[x1, x2][x3, x4] − [x3, x4][x1, x2].

Notice that, if d is an inner skew derivation of R , then there exists a′ ∈ Qr such that
d(x) = a′x − α(x)a′ and δ(x) = (ηa′)x − α(x)(ηa′) + px − γ (x)p, for all x ∈ R.
Hence, by [15, Lemma 3.2], δ is an inner skew derivation and we are done by
Proposition 1. Therefore, in all that follows, we assume that d is outer. By (23), Qr

satisfies
(
a[x1, x2] + z1x2 + α(x1)z2 − z2x1 − α(x2)z1

)(
c[x3, x4]+

(ηz3 + px3 − γ (x3)p)x4 + α(x3)(ηz4 + px4 − γ (x4)p) − (ηz4 + px4 − γ (x4)p)x3−

α(x4)(ηz3 + px3 − γ (x3)p)

)
+

(
a[x3, x4] + z3x4 + α(x3)z4 − z4x3 − α(x4)z3

)(
c[x1, x2]+

(ηz1 + px1 − γ (x1)p)x2 + α(x1)(ηz2 + px2 − γ (x2)p) − (ηz2 + px2 − γ (x2)p)x1−

α(x2)(ηz1 + px1 − γ (x1)p)

)
− [x1, x2][x3, x4] − [x3, x4][x1, x2]. (24)

Fix zi = 0, for all i = 1, . . . , 4, then Qr satisfies
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a[x1, x2]
(

(c + p)[x3, x4] − γ ([x3, x4])p
)

+

a[x3, x4]
(

(c + p)[x1, x2] − γ ([x1, x2])p
)

− [x1, x2][x3, x4] − [x3, x4][x1, x2].
(25)

If γ is outer, by Proposition 2, p = 0, a, c ∈ C and there exists 0 �= β ∈ C such that
a = β and c = β−1. Now, by (24), Qr satisfies

(
β[x1, x2] + z1x2 + α(x1)z2 − z2x1 − α(x2)z1

)(
β−1[x3, x4]+

ηz3x4 + ηα(x3)z4 − ηz4x3 − ηα(x4)z3

)
+

(
β[x3, x4] + z3x4 + α(x3)z4 − z4x3 − α(x4)z3

)(
β−1[x1, x2] + ηz1x2+

ηα(x1)z2 − ηz2x1 − ηα(x2)z1

)
− [x1, x2][x3, x4] − [x3, x4][x1, x2]. (26)

If α is outer, for x1 = x3 = 0, Qr satisfies the following polynomial identity

(
z1x2 − y1z1

)(
z3x4 − y2z3

)
+

(
z3x4 − y2z3

)(
z1x2 − y1z1

)
. (27)

It is a polynomial identity for Qr , then we may assume that there exists k ≥ 2, such
that Qr ⊆ Mk(C).

For y1 = y2 = 0, x2 = z3 = e21, z1 = e12, x4 = e11 in (27), we get the contradic-
tion e21 = 0. If α is an inner automorphism of R, there exists an invertible element
q ∈ Qr , with q /∈ C , such that α(x) = qxq−1, for all x ∈ R. In this case, by (26),
again for x1 = x3 = 0, Qr satisfies

(
z1x2 − qx2q

−1z1

)(
z3x4 − qx4q

−1z3

)
+

(
z3x4 − qx4q

−1z3

)(
z1x2 − qx2q

−1z1

)
.

(28)
Since q /∈ C , (28) is a non-trivial generalized polynomial identity for R as well as
Qr . Moreover R is a primitive ring with C as the associated division ring and then,
by Jacobson’s Theorem, R is isomorphic to a dense subring of the ring of linear
transformations of a vector space V over a C. Since R is not commutative, assume
dimCV ≥ 2 and let v ∈ V be such that {q−1v, v} are linearly C-independent. By the
density of R, there exists r1, r2, r3, r4 ∈ R such that

r3q
−1v = r4q

−1v = 0 r1v = r2v = r3v = r4v = v.
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Right multiplying by v in (28), we get the contradiction 2v = 0. It means that, for
all v ∈ V , {q−1v, v} are linearly C-dependent; by a standard argument, q−1 ∈ C , a
contradiction.

If γ is an inner automorphism, there exists an invertible element q ′ ∈ Qr , with
q ′ /∈ C , such that γ (x) = q ′xq ′−1, for all x ∈ R and, by (25), Qr satisfies

a[x1, x2]
(

(c + p)[x3, x4] − q ′[x3, x4]q ′−1 p

)
+ a[x3, x4]

(
(c + p)[x1, x2]−

q ′[x1, x2]q ′−1 p

)
− [x1, x2][x3, x4] − [x3, x4][x1, x2]. (29)

By Proposition 1, since q ′ /∈ C , a, c, q−1 p,∈ C and ac = 1C ; therefore there exists
0 �= β ∈ C such that a = β, c = β−1 and, by (24), Qr satisfies

(
β[x1, x2] + z1x2 + α(x1)z2 − z2x1 − α(x2)z1

)(
β−1[x3, x4]+

ηz3x4 + ηα(x3)z4 − ηz4x3 − ηα(x4)z3

)
+

(
β[x3, x4] + z3x4 + α(x3)z4 − z4x3 − α(x4)z3

)(
β−1[x1, x2] + ηz1x2+

ηα(x1)z2 − ηz2x1 − ηα(x2)z1

)
− [x1, x2][x3, x4] − [x3, x4][x1, x2]. (30)

We conclude with the same argument used for relation (26).
• The final case.
Assume again d and δ are C−linearly dependent modulo SDint . That is λd(x) +
μδ(x) = bx − γ (x)b, for all x ∈ R. In light of the previous case, suppose either
λ = 0 or μ = 0. We analyze the case in which λ = 0 (we omit the symmetrical
case μ = 0). Under this assumption we have δ(x) = px − γ (x)p, for all x ∈ R,
where p = μ−1b. Moreover, assume that d is outer, otherwise we conclude thanks
to Proposition 2. Therefore Qr satisfies

(
a[x1, x2] + d([x1, x2])

)(
c[x3, x4] + p[x3, x4] − γ ([x3, x4])p

)
+

(
a[x3, x4] + d([x3, x4])

)(
c[x1, x2] + p[x1, x2] − γ ([x1, x2])p

)
− [x1, x2][x3, x4]

−[x3, x4][x1, x2]. (31)
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Then
(
a[x1, x2] + z1x2 + α(x1)z2 − z2x1 − α(x2)z1

)(
c[x3, x4]+

(px3 − γ (x3)p)x4 + α(x3)(px4 − γ (x4)p) − (px4 − γ (x4)p)x3−

α(x4)(px3 − γ (x3)p)

)
+

(
a[x3, x4] + z3x4 + α(x3)z4 − z4x3 − α(x4)z3

)(
c[x1, x2]+

(px1 − γ (x1)p)x2 + α(x1)(px2 − γ (x2)p) − (px2 − γ (x2)p)x1−

α(x2)(px1 − γ (x1)p)

)
− [x1, x2][x3, x4] − [x3, x4][x1, x2]. (32)

Fix zi = 0, for all i = 1, . . . , 4, then Qr satisfies

a[x1, x2]
(

(c + p)[x3, x4] − γ ([x3, x4])p
)

+

a[x3, x4]
(

(c + p)[x1, x2] − γ ([x1, x2])p
)

− [x1, x2][x3, x4] − [x3, x4][x1, x2].
(33)

If γ is outer, by Proposition 2, p = 0, a, c ∈ C and there exists 0 �= β ∈ C such that
a = β and c = β−1. Now, by (32), Qr satisfies(

β[x1, x2] + z1x2 + α(x1)z2 − z2x1 − α(x2)z1

)
β−1[x3, x4]+

(
β[x3, x4] + z3x4 + α(x3)z4 − z4x3 − α(x4)z3

)
β−1[x1, x2] − [x1, x2][x3, x4]

−[x3, x4][x1, x2]. (34)

For x1 = 0, (z1x2 − α(x2)z1)[x3, x4] = 0, for all x1, x2, x3, x4 ∈ Qr . By using sim-
ilar calculations, as in the relation (20), we get a contradiction.

If γ is an inner automorphism, there exists an invertible element q ′ ∈ Qr , with
q ′ /∈ C , such that γ (x) = q ′xq ′−1, for all x ∈ R and, by (33), Qr satisfies

a[x1, x2]
(

(c + p)[x3, x4] − q ′[x3, x4]q ′−1 p

)
+ a[x3, x4]

(
(c + p)[x1, x2]−

q ′[x1, x2]q ′−1 p

)
− [x1, x2][x3, x4] − [x3, x4][x1, x2]. (35)
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By Proposition 1, since q ′ /∈ C , a, c, q−1 p,∈ C and ac = 1C ; therefore there exists
0 �= β ∈ C such that a = β, c = β−1 and, by (32), Qr satisfies

(
β[x1, x2] + z1x2 + α(x1)z2 − z2x1 − α(x2)z1

)
β−1[x3, x4]+

(
β[x3, x4] + z3x4 + α(x3)z4 − z4x3 − α(x4)z3

)
β−1[x1, x2] − [x1, x2][x3, x4]

−[x3, x4][x1, x2].

We get a contradiction with the same argument used in (34).

Corollary 2 Let R be a non-commutative prime ring of characteristic different from
2, Qr be its right Martindale quotient ring and C be its extended centroid, L a non-
central Lie ideal of R and F a non-zero generalized skew derivation of R. If F
preserves the Jordan Product on L, then one of the following holds:

1. there exists 0 �= β ∈ C such that F(x) = βx, for any x ∈ R, with β2 = 1C;
2. R satisfies s4(x1, . . . , x4) and there exist an invertible element q ∈ Qr and 0 �=

β ∈ C such that F(x) = βqxq−1, for any x ∈ R, with β2 = 1C;

Proof The result follows directly from the Theorem 1, for F = G.
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Prime Rings with Generalized
Derivations and Power Values on Lie
Ideals

Mohammad Aslam Siddeeque, Ali Ahmed Abdullah, and Nazim Khan

Abstract SupposeR is a prime ring that is non-commutative in structure and char-
acteristic of R is a positive integer apart from 2 and M = (−2)k−1 − 1, where k
is any odd positive integers greater than one. Let the Utumi ring of quotients be
denoted by Q, the extended centroid of R by C . Consider L to be Lie ideal
of R non-central in nature and T be a non-zero generalized derivation of R. If
[T (us), ut ]m = [T (u), u], for every u ∈ L , where m, s and t be the fixed positive
integers such that m > 1, s ≥ 1 and t ≥ 1, then one of the following situations
prevails:

(i) The standard identity s4(x1, . . . , x4) is satisfied by R and there exists a ∈ Q
and β ∈ C such that T (x) = βx + ax + xa, for every x ∈ R.

(i i) there exists certain θ ∈ C such that T (x) = θx , for every x ∈ R.

Keywords Prime rings · Generalized derivation · Maximal right ring of
quotients · Generalized polynomial identity (GPI) · Polynomial identity (PI)

1 Introduction

In the entire article put forth, R always depicts prime ring that is non-commutative
and associative in nature and its center is given byZ (R). Further, Q is theMartindale
ring of quotients andQ denotes the Utumi ring of quotients with C = Z (Q) as the
center of Q called as the extended centroid of R and ρ the dense ideal of R. Also,
the well-known theory from [1] establishes that Q and Q share the same center.

A right ideal ρ is a right dense ideal if whenever x1, x2 ∈ ρ with x1 �= 0, there
exists r ∈ R with the condition that x1r �= 0 and x2r ∈ ρ. A left dense ideal is
defined likewise. An ideal ρ is called a dense ideal if it is both a left as well as a
right dense ideal. Throughout the paper, by a left faithful ring we mean a ring whose
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left annihilator is zero. Similarly, right faithful ring is also defined and thus, a ring
is faithful if it is both left and a right faithful. We observe that sinceR is prime, the
Utumi ring of quotients Q is also a prime ring. With respect to a dense right ideal,
the right Utumi ring of quotients of R can be characterized as the ring Q(R). We
state some properties of Q(R) as follows:

(i) R ⊆ Q(R);
(i i) For every q ∈ Q(R), there exists a right dense ideal H of R such that

qH ⊆ R;
(i i i) If q ∈ Q(R) and for certain non-zero right dense idealH ofR withqH = 0,

then q = 0;
(iv) IfH is right dense ideal ofR andF : H −→ R is a rightR-module map,

then there exists certain q ∈ Q(R) such that F (x) = qx , for every x ∈ H .

These are the characterizing properties of Q(R). See [2] and [1] for the salient
features of special rings likeQ, Q and C .

For a prime ring R , the extended centroid C of R is notably a field also called
as the field of quotients of Z (R). Let Y = {y1, y2, . . .}, be the set consisting of the
non-commuting indeterminates say y1, y2, . . . which are countable. Let C {Y } be the
free C algebra of the set Y . ConsiderQ{Y } = Q ∗C C {Y }, the free C -product ofQ
and C {Y }. The elements of Q{Y } are called the GP (the generalized polynomials).
By a non-trivial GP, we mean a non-zero element of Q{Y }. Every element w ∈
Q{Y } is of the peculiar form w = jot1 j1t2 j2 . . . tn jn , where { jo, . . . , jn} ⊆ Q and
{t1, . . . , tn} ⊆ Y , is called a monomial where jo, . . . , jn are called the coefficients of
w. Each g ∈ Q{Y } constitutes of suchmonomials as a finite sum. Such representation
is easily seen to be not unique. For a detailed study see [4].

For a lucid explanation of the notion of a non-triviality of a GPI, let us look at the
following simple example.

Exam: LetW be the ring of real quaternions andZ (W ) = R be its center, that is the
ring of real numbers. Then, for every w ∈ W, where w = wo + w1i + w2 j + w3k
and wi ∈ R, for every i ∈ {0, 1, 2, 3}, the following relation holds w2 = 2wow −
ww. Follow-up of the above relation, results in the identity below,

w2iwi − wiw2i + iw2iw − iwiw2 = 0, for every w ∈ W,

called the non-trivial GPI satisfied by W where we can see i �= 0.
The following definitions concerning commutators and prime rings shall be uti-

lized in the present paper without emphasizing specifically each time. The commu-
tator for every x, y ∈ R is given as [x, y] =: xy − yx and anticommutators is given
by xoy =: xy + yx and the definition of a prime ring R viz. if aRb = (0), where
a, b ∈ R then a = 0 or b = 0. Similarly, a ring R in which aRa = (0), then it
implies that a equates to zero, is termed as semiprime ring.

An additive map F : R → R is called as derivation if F (xy) = xF (y) +
F (x)y stands true for every x, y ∈ R. By saying derivation is inner derivation
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induced by an element q ∈ R, we mean an additive map G : R → R such that
G (x) = [q, x] for every x ∈ R. Furthermore, many researchers authored papers in
the scenario of generalized derivations satisfying special identities in the presence
of prime rings. An additive map S on R defined by S (w) = aw + wb, for every
w ∈ R and for some fixed a, b ∈ R is called the generalized inner derivation on the
ringR. Such maps prompt the definition of generalized derivation sayT : R → R
which is expressed as the following,

T (xy) = x[y, b] + T (x)y = x Ib(y) + T (x)y, for every x, y ∈ R

where Ib is an inner derivation induced by b. Further, we pen down the defini-
tion of a generalized derivation say T related to a derivation μ of R as following
T (xy) = xμ(y) + T (x)y, for every x, y ∈ R. It is obvious that every inner gen-
eralized derivation is a generalized derivation and if μ = T in the above definition
of a generalized derivation then, T is an ordinary derivation.

We remark that Lee in [15] discussed the extension of a generalized derivation
on any right dense ideal ρ to Q, the Utumi ring of quotients. That is, if we have
T : ρ → Q, then due to Lee T is uniquely extended as T : Q → Q and has
the form T (x) = μ(x) + ax , for every x ∈ Q, where a ∈ Q. This definition of a
generalized derivation shall be used in the entire paper without any special reference.

Throughout the paper, wewill study the situationwhen the generalized derivations
are acted upon the Lie ideals. By a Lie idealL , we mean an additive groupL where
the commutator [L ,R] is contained in L . Obviously [L ,L ] is a Lie ideal. We
will consider only a non-central Lie idealL . A Lie ideal is called non-central if the
commutator [L ,L ] is not zero.

The prolific work in this direction clearly dictates that the global structure of the
ring R is intimately related to the action of additive maps defined on the ring R.
For instance, derivation equipped with some properties intrigued many authors to
investigate the structure of ring-like commutativity and even characterization of such
additive maps. Some of the important works in this direction include [6] and [7].

In [13], the work of Lanski gives that, if for a derivation d ofR such that d(x) is
n-nilpotent for some n a positive integer that is d(x)n = 0 for every x fromL a non-
central Lie ideal, then d is vanishing on R. An analogue fair result was developed
by Lee in [15] for the more complex case of generalized derivations. More precisely,
he contributed that if G is a generalized derivation on the prime ringR andL a Lie
ideal which is non-central. If G(x)n = 0 for every x ∈ L , for n a certain positive
integer, then R is bound to be commutative.

De Filippis and Carini in [3] studied a non-zero derivation d of R such that n-
power of commutator [d(x), x] is vanishing viz., [d(x), x]n = 0, for every x in a
Lie idealL ofR which is non-central, for certain positive integer n. They made the
conclusion that if char(R) �= 2, then R is forced to be commutative.

De Filippis later on in [5] improved this result by taking a generalized derivation
G in the attempt to give a more general result instead of d. He concluded that either
R satisfies the standard identity in four non-commuting variables s4, and there exist
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a ∈ Q, α ∈ C such that G(x) = ax + xa + αx, for every x ∈ R or for particular
γ ∈ C , G(x) = γx, for every x fromR.

Recently, Scudo and Ansari [18] took the task of investigating the set A =
{[G(u), u] : u ∈ L}. They proved that if A �= {0}, then it is void of any non-trivial
idempotent element of R. In this investigation, they focused the study of a general-
ized derivation on prime rings and provided the following result:

Theorem 1 ([18, Theorem]) Let R be a prime ring that is non-commutative and
char(R) �= 2. Suppose associated with R, the Utumi ring of quotients and the
extended centroid of R is denoted by Q and C , respectively. Then for L the non-
central Lie ideal of R and T the non-zero generalized derivation ofR,

if [T (u), u]m = [T (u), u], for every u ∈ L , where m is a fixed positive integer
such that m > 1, then one of the following conditions stands true:

(i) The standard identity s4(x1, . . . , x4) is satisfied by R and there exists certain
a ∈ Q and β ∈ C such that T (x) = βx + ax + xa, for every x ∈ R.

(i i) There exists θ ∈ C such that T (x) = θx, for every x ∈ R.

In view of the results above, it is reasonable to raise the following question.

Question:What can we say about the ringR admitting the generalized derivation
T of R and [T (us), ut ]m = [T (u), u], for every u ∈ L , where m, s and t are the
fixed positive integers such that m > 1, s ≥ 1 and t ≥ 1, where L is a Lie ideal
which is not central?

Here, in non-commutative prime ring, characteristic of R different from two, if
we choose s = t = 1, then we have the same as case of [18, Theorem]. Our goal is
to answer the above question in two cases.

Firstly, the case of inner generalized derivation, which we deal in Sect. 3 and then
the study of general case, that is, the case of any generalized derivation, which we
will discuss in the last section of this paper (Sect. 4).

2 Preliminary Results

Recall that Der(Q) is the set of all derivations on Utumi quotient ringQ. The deriva-
tion word is an additive map δ given by δ = d1d2 . . . dm, with each di ∈ Der(Q).
Every differential polynomial is a GP taking coefficients out of Q, of peculiar type
ψ(δ j xi ) utilizing non-commuting indeterminates xi on which the δ j words acts as
the unary operator. The polynomial ψ(δ j xi ) is termed as a DI (differential identity)
over a subset T of Q if whenever a value is assigned from T to xi , ψ(δ j xi ) van-
ishes to zero. We refer the reader to [1, Chaps. 6–7] for the in depth and presentable
description of GPI-Theory involving derivations. The C -subspace of Der(Q) that is
Dint comprises of all inner derivations on Q. For d a nonzero derivation d on R.
By [12, Theorem 2], we pen down the non-trivial Kharchenkos effect. See also [14,
Theorem 1].
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If ψ(x1, . . . xn, d(x1), . . . , d(xn)) is a DI onR, then one of the result listed below
stands true:

1. The derivation d is inner i.e. d ∈ Dint ;
2. The following GPI is satisfied by R, ψ(x1, . . . , xn, y1, . . . , yn).

Before we commence to establish our results, we pen down some well-known
facts. Precisely we shall use the following facts incessantly wherever applicable.

Fact 2 Every generalized derivation ofR can be uniquely extended to a generalized
derivation ofQ and assumes the form thatT (x) = μ(x) + ax, for some a ∈ Q and
a derivation μ ofQ. That is, every generalized derivation ofR can be defined onQ
explicitly. See [15].

Fact 3 Let A be an ideal ofR. Then A,R andQ satisfy the same GPI with coeffi-
cients in Q. See [4].

Fact 4 Let A be an ideal ofR. Then A,R andQ satisfy the sameDIwith coefficients
inQ. See [14].

Fact 5 LetL be a non-central Lie ideal ofR. If char(R) �= 2 orR does not satisfy
s4, then there exists a non-zero ideal H of R such that 0 �= [H ,R] ⊆ L . For a
simple ringR, [R,R] ⊆ L drawing arguments from [10, pp. 4–5] and also see [8,
Lemma 2, Proposition 1].

Fact 6 For a prime ringR having C as the extended centroid, the following equiv-
alent conditions shall hold:

(a) The linear space RC over C has atmost four dimension;
(b) The standard identity s4(x1, . . . , x4) is satisfied by R;
(c) For a certain field F ,R embeds in M2(F ) or R is commutative;
(d) Degree of algebraicness of R over C is two;
(e) R satisfies the PI [[x2, y], [x, y]] = 0.

3 When T Is Generalized Inner Derivations

We consider in this segment of the proof that, every generalized inner derivation
induced by the elements a, b ∈ Q takes the form as T (x) = ax + xb, for every
x ∈ R. Henceforth, it is supposed that the following GPI is satisfied by R

�(w1, w2) = {[a[w1, w2]s + [w1, w2]sb, [w1, w2]t ]}m − [a[w1, w2] + [w1, w2]b, [w1, w2]].

In an attempt to establish the main result of the article, we shall need the support of
the following crucial fact.
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Fact 7 By the pivotal assumption of the article, the following relation

{[a[w1, w2]s + [w1, w2]sb, [w1, w2]t ]}m − [a[w1, w2] + [w1, w2]b, [w1, w2]] = 0,

holds for everyw1, w2 ∈ R. Further, for every automorphism ψ ofR which is inner,
we have

[ψ(a)[w1, w2]s + [w1, w2]sψ(b), [w1, w2]t ]m − [ψ(a)[w1, w2] + [w1, w2]ψ(b), [w1, w2]] = 0,

holds for every w1, w2 ∈ R. Clearly, a + b, a − b, a, b are the central elements of
the ringR if and only if ψ(a + b), ψ(a − b), ψ(a), ψ(b) are the central elements
of the ringR. Thus, whenever it is demanded, we can use ψ(a) and ψ(b) instead of
a and b, respectively.

Proposition 1 Suppose R is a prime ring that is non-commutative in structure. If
char(R) is a positive integer apart from 2 and M = (−2)k−1 − 1where k(> 1) is any
odd positive integers. Let the Utumi ring of quotients be denoted byQ, the extended
centroid of R by C . Consider L to be Lie ideal of R non-central in nature and T
be a non-zero inner generalized derivation of R induced by elements a, b ∈ Q. If
[T (us), ut ]m = [T (u), u], for every u ∈ L , where m, s and t be the fixed positive
integers such that m > 1, s ≥ 1 and t ≥ 1, then one of the following situations
prevails:

(i) The standard identity s4(x1, . . . , x4) is satisfied by R and there exists a ∈ Q
and β ∈ C such that T (x) = βx + ax + xa, for every x ∈ R.

(i i) there exists certain θ ∈ C such that T (x) = θx, for every x ∈ R.

Proof The following GPI is satisfied by R

�(w1, w2) = {[a[w1, w2]s + [w1, w2]sb, [w1, w2]t ]}m − [a[w1, w2] + [w1, w2]b, [w1, w2]],

for everyw1, w2 ∈ R. Owing to Beidar [2, Theorem 2] and also by Fact 3, this GPI is
satisfied byQ also.WhenC is infinite, then�(r1, r2) = 0, for every r1, r2 ∈ Q ⊗ C ,
where C is the algebraic closure of C . We note that since both Q ⊗ C and Q are
centrally closed (see [9, Theorems 2.5 and 3.5]), we may replaceR byQ ⊗ C orQ,
in accordance with the situation whether C is infinite or finite. Thus we may assume
that R is centrally closed over C which is either algebraically closed or finite.
Case I: If a, b ∈ C , then for certain θ ∈ C , T (x) = θx for every x ∈ [R,R].
Case II: If either a /∈ C or b /∈ C , in this situation by [4], �(w1, w2) is a non-trivial
GPI satisfied by R. Hence, by Martindale’s strong result known as Martindale’s
Theorem [16],R is bound to be primitive ring with non-zero socleS with C as the
division ring. Under the awe of Jacobson’s Theorem [11, p. 75],R is isomorphic to
a dense ring of linear transformation on certain linear space V over C .

If dimC (V ) = 2, thenR ∼= M2(C), the ring of all 2 × 2 matrices over C . Thus,
we may observe from the Fact 6 that, s4(x1, . . . , x4) is satisfied by R. Now take
b − a = ∑

i j γi j ei j , where γi j ∈ C and ei j are the unit standard matrices.
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Let [w1, w2] = [eii , ei j ] = ei j , for any i different from j , from our assumption
and suppose χ denote the following

χ = [a(ei j )
s + (ei j )

sb, (ei j )
t ]m − [aei j + ei j b, ei j ].

When s = t = 1. Then χ = {ei j (b − a)ei j }m − {ei j (b − a)ei j } = 0. Consequently,
we have that

ei j (b − a)ei j = 0, since m > 1. (1)

This gives that γ j i = 0, for every i different from j . That is, off-diagonal entries of
b − a vanishes to zero. Hence, b − a is diagonal matrix. Also, when s > 1, t = 1
we get the same conclusion that b − a is a diagonal matrix. Indeed, we can easily
see that χ gives the following relation

[aei j + ei j b, ei j ] = 0.

This implies that

ei j (b − a)ei j = 0, which is Eq. (1) thus it gives the same conclusion.

Lastly, for every s and t > 1, there still holds the same conclusion by similar tactic
as above.

Thus in all, let ψ(x) = (1 + ei j )x(1 − ei j ), for every x ∈ R, be an inner auto-
morphism induced by matrix (1 + ei j )where i different from j . By Fact 7, ψ(b − a)

is also a diagonal matrix. Therefore, the (i, j) entry of ψ(b − a) is indeed zero.

0 = [ψ(b − a)]i j = γ j j − γi i , that is γ j j = γi i .

The above calculation establishes that b − a ∈ C . Thus, we take opportunity to write
the generalized derivationT (x) = ax + xb as,T (x) = ax + βx + xa,where β =
b − a ∈ C .

Now we assume that dimC (V ) ≥ 3. The following relation holds for every u ∈
[R,R]

{aus+t + usbut − utaus − us+t b}m − {au2 + ubu − uau − u2b} = 0. (2)

Further, we claim that for every v ∈ V , the set {v, bv} is linearly C -dependent. For
that we suppose on contrary that there exits non-zero vo ∈ V such that {vo, bvo} are
linearly C -independent. Since dimC (V ) ≥ 3, there exists non-zero wo ∈ V such
that {v0, bvo, wo} are linearly C -independent. With the gratitude towards Jacobson’s
Theorem, we see that there exists u1, u2 ∈ R so that the following relations hold

u1vo = 0, u2vo = vo, u1bvo = wo;
u2bvo = bvo, u1wo = −2vo and u2wo = 0.

Hence, for some u ∈ [R,R] say u = [u1, u2], we have that
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uvo = 0, ubvo = wo, uwo = 2vo.
Now right multiplying by vo in relation (2), we obtain that

{aus+t + usbut − utaus − us+t b}mvo − {au2 + ubu − uau − u2b}vo = 0.

If either s > 1 and t ≥ 1 or s = 1 and t > 1, we face the same contradiction that
2vo = 0. Now, for s = t = 1, we have

{au2 + ubu − uau − u2b}mvo − {au2 + ubu − uau − u2b}vo = 0.

Making proper use ofDensity theorem, one can see there exists certain u1 and u2 ∈ R
due to which

u1vo = 0, u2vo = vo, u1bvo = wo;
u2bvo = bvo, u1wo = −αvo, where 0 �= α ∈ C and u2wo = 0.

Hence, for some u ∈ [R,R] say u = [u1, u2], we have that
uvo = 0, ubvo = wo, uwo = αvo.

Now right multiplying by vo in above relation, we obtain

{au2 + ubu − uau − u2b}m−1{au2 + ubu − uau − u2b}vo − {au2 + ubu − uau − u2b}vo = 0.

This implies that

{au2 + ubu − uau − u2b}m−1(−αvo) + αvo = 0.

Applying this linear transformationm − 1 times on vo, we have the following simple
consequence

((−α)m + α)vo = 0.

Since α ∈ C , for α = 1 we get ((−1)m + 1)vo = 0, which gives contradiction for
every even positive integers as char(R) �= 2. For α = 1 + 1 (say 2), ((−2)m−1 −
1)vo = 0, wherein a contradiction is prompted as char(R) �= M.Therefore, for every
v ∈ V , the set of vectors {bv, v} is linearlyC -dependent and for every v ∈ V , bv =
βvv, for certain βv ∈ C . It is easy consequence that βv does not depends on the vector
v ∈ V and thus we consider bv = βv, for every v ∈ V and for some fixed β ∈ C .
Further, assume that for every u ∈ R and for any v ∈ V , we have

[u, b]v = u(bv) − b(uv) = u(βv) − βuv = 0.

Hence, we have [u, b]V = 0, as [u, b] is a linear transformation that acts faithfully on
the linear space V . Therefore, [u, b] = 0, for every u ∈ R. Thus, b ∈ Z (R) ⊆ C .
Therefore, relation (2) reduces to the following relation

{aus+t − utaus}m − {au2 − uau} = 0, for every u ∈ [R,R]. (3)
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Let us now try to prove that {av, v} are linearly C -dependent. In that attempt,
we suppose on contrary that for some non-zero v′ ∈ V , {av′, v′} are linearly C -
independent. Since dimC (V ) ≥ 3, there exists w′ ∈ V such that {av′, v′, w′} are
linearly C -independent. Owing to Jacobson’s Theorem, there exists u′

1, u
′
2 ∈ R so

that following relations hold
u′
1v

′ = v′, u′
2v

′ = v′, u′
1av′ = −2v′;

u′
2av′ = 2v′, u′

1w
′ = −v′ and u′

2w
′ = v′.

Hence, for some u ∈ [R,R], say u = [u′
1, u

′
2], we have uv′ = [u′

1, u
′
2]v′ =

0, uav′ = [u′
1, u

′
2]av′ = 4v′, uw′ = [u′

1, u
′
2]w′ = 2v′. Now right multiplying by

w′ in relation (3), we obtain that

{aus+t − utaus}mw′ − {au2 − uau}w′ = 0, for every u ∈ [R,R]. (4)

When s = t = 1. Then we obtain from the above relation that, 8v′ = 0, which is
a contradiction. Now if either s > 1, t ≥ 1 or s ≥ 1, t > 1, we arrive at the same
contradiction. Thus, for every vector v ∈ V , the set of vectors {av, v} is linearly
C -dependent and by same technique utilized to show b ∈ C , we get a ∈ C . Thus in
all, for dimC (V ) ≥ 3, we get a contradiction that both a and b are in C .

Finally, we conclude that if dimC (V ) = 2, then s4(x1, . . . , x4) is satisfied by R
and T (x) = βx + ax + xa, for every x ∈ R, where β = b − a ∈ C .

4 The Study of General Case

In this segment of the proof, we begin by considering thatT is a generalized deriva-
tion. In an attempt to prove the main result, we consider for certain a ∈ Q and μ a
derivation of R, we have T (x) = μ(x) + ax by using Lee [15].

Theorem 8 Suppose R is a prime ring that is non-commutative in structure and
characteristic of R is a positive integer apart from 2 and M = (−2)k−1 − 1 where
k is any odd positive integers greater than one. Let the Utumi ring of quotients
be denoted by Q, the extended centroid of R by C . Consider L to be Lie ideal
of R non-central in nature and T be a non-zero generalized derivation of R. If
[T (us), ut ]m = [T (u), u], for every u ∈ L , where m, s and t be the fixed positive
integers such that m > 1, s ≥ 1 and t ≥ 1, then one of the following situations
prevails:

(i) The standard identity s4(x1, . . . , x4) is satisfied by R and there exists a ∈ Q
and β ∈ C such that T (x) = βx + ax + xa, for every x ∈ R.

(i i) there exists certain θ ∈ C such that T (x) = θx, for every x ∈ R.

Proof We find that for certain a ∈ Q and μ a derivation ofR related to T a gener-
alized derivation where T (x) = μ(x) + ax , for every x ∈ R. Owing to the Fact 2,
we may extend the definition of a generalized derivation on R to that on the Utumi
ring of quotients Q. Further, by the Fact 5, there exists a non-zero ideal H of R
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such that 0 �= [H ,R] ⊆ L . Also by Fact 4,H andQ satisfy the same differential
identity, hence for every w1, w2 ∈ Q,

[a[w1, w2]s + μ([w1, w2]s ), [w1, w2]t ]m = [a[w1, w2] + μ([w1, w2]), [w1, w2]]. (5)

Under the effect of Kharchenko theory (See [12]), we bifurcate our situation as
follows.

(1) When μ is an inner derivation.
Then there exists c from Q such that μ can be expressed as μ(w) = [c, w] for
every w ∈ R. Hence T (w) = (a + c)w − wc, for every w ∈ R. Therefore,
from differential identity (5), we have
[(a + c)[w1, w2]s − [w1, w2]sc, [w1, w2]t ]m = [(a + c)[w1, w2] −
[w1, w2]c, [w1, w2]]. Hence, on using Proposition 1 for (a + c) and c, we
are done.

(2) When μ is an outer derivation.
We observe that

μ([w1, w2]s) =
s−1∑

i=0

[w1, w2]i {[μ(w1), w2] + [w1,μ(w2)]}[w1, w2]s−i−1. (6)

Using relation (6) in differential identity (5), we have

[(a[w1, w2]s +
s−1∑

i=0
[w1, w2]i {[μ(w1), w2] + [w1, μ(w2)]}[w1, w2]s−i−1, [w1, w2]t ]m

= [a[w1, w2] + [μ(w1), w2] + [w1, μ(w2)], [w1, w2]].

The following GPI is satisfied by Q

[(a[w1, w2]s +
s−1∑

i=0

[w1, w2]i {[y1, w2] + [w1, y2]}[w1, w2]s−i−1, [w1, w2]t ]m (7)

= [a[w1, w2] + [y1, w2] + [w1, y2], [w1, w2]].

Assume y1 = y2 = 0, thus, using Proposition 1, we recollect that a is central.
Under this privilege, we rewrite relation (7) as the following

[
s−1∑

i=0

[w1, w2]i {[y1, w2] + [w1, y2]}[w1, w2]s−i−1, [w1, w2]t
]m

(8)

= [[y1, w2] + [w1, y2], [w1, w2]].

The above relation (8), is a PI forR, then by a well-known Posner’s result [17],
we observe that there exists certain field F and an integer l ≥ 1 such that Q
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and Ml(F ) satisfy the same PI (polynomial identities). It is evident that l ≥ 2
as R is non-commutative. From now onwards, we will consider the following
matrices

w1 = epp, w2 = eqp, y1 = 0, y2 = γepq , where p �= q and 0 �= γ ∈ F .

Therefore,

[w1, w2] = [epp, eqp] = −eqp and [w1, y2] = [epp, γepq ] = γepq .

Thus relation (8) reduces to the following

[
s−1∑

i=0

(−eqp)
i {γepq}(−eqp)

s−i−1, (−eqp)
t ]m = [γepq ,−eqp].

In above equation, put s = t = 1, we have

[γepq ,−eqp]m = [γepq ,−eqp].

Now, after a simple calculation, we obtain that {−γ(epp − eqq)}m = −γ(epp −
eqq), right multiplying above equation by epp we are in the receipt of the follow-
ing relation ((−γ)m + γ)epp = 0. When γ is chosen as 1, we get a contradiction
for every even positive integers as char(R) �= 2. When γ = 1 + 1 (say 2) we
again face a contradiction ((−2)m + 2)epp = 0 as char(R) �= M . In the same
way, put s = 2 and t = 1 in above, we get

[{γepq}(−eqp) + (−eqp){γepq}, (−eqp)]m = [γepq ,−eqp].

This implies that
0 = −γ(epp − eqq).

That is, epp = eqq if and only if p = q, which is a contradiction to our assump-
tion. Similarly, for s ≥ 3 and t = 1 gives contradiction that can be easily verified.
At last, it can be easily seen that when t > 1, 0 = [γepq ,−eqp] which still gives
a contradiction.
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On the Purity of Resolutions of
Stanley-Reisner Rings Associated to
Reed-Muller Codes

Sudhir R. Ghorpade and Rati Ludhani

Abstract Following Johnsen andVerdure (2013),we can associate to any linear code
C an abstract simplicial complex and in turn, a Stanley-Reisner ring RC . The ring RC

is a standard graded algebra over a field and its projective dimension is precisely the
dimension of C . Thus RC admits a graded minimal free resolution and the resulting
graded Betti numbers are known to determine the generalized Hamming weights
of C . The question of purity of the minimal free resolution of RC was considered
by Ghorpade and Singh (2020) when C is the generalized Reed-Muller code. They
showed that the resolution is pure in some cases and it is not pure in many other
cases. Here we give a complete characterization of the purity of graded minimal free
resolutions of Stanley-Reisner rings associated with generalized Reed-Muller codes
of an arbitrary order.

Keywords Ring theory · Coding theory

1 Introduction

This article concerns a topic that is at the interface of homological aspects of commu-
tative algebra and the theory of linear error-correcting codes. Our motivation comes
from the work of Johnsen and Verdure [11] and the more recent work [8]. In [11],
the notion of Betti numbers of a linear code is introduced. The Betti numbers of
a linear code C of length n are, in fact, the graded Betti numbers of the Stanley-
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Reisner ring RC of the simplicial complex �C on [n] := {1, . . . , n} whose faces
are precisely the subsets {i1, . . . , it } of [n] for which the columns Hi1 , . . . , Hit of a
parity check matrix H of C are linearly independent. In [11], it was shown that the
Betti numbers of a linear code determine its generalized Hamming weights. Further,
Johnsen, Roksvold and Verdure [13] showed that the Betti numbers of a linear code
(and its elongations) determine its generalized weight polynomials and hence the
extended weight enumerators. On the other hand, the work of Jurrius and Pellikaan
[14] shows that the extended weight enumerators of a linear code determine its gen-
eralized weight enumerator. So it is clear that the Betti numbers of a linear code
(and its elongations) are also closely related to several classical parameters of that
code. Thus it is useful to know them explicitly. Computation of these Betti numbers
is in general, a difficult problem, but it becomes easy, by a formula of Herzog and
Kühl [10], when the corresponding minimal free resolutions are pure. An intrinsic
characterization of purity of the graded minimal free resolutions of Stanley-Reisner
rings associated with arbitrary linear codes was obtained in [8]. As a consequence,
known results about the Betti numbers of MDS codes (cf. [11]) and constant weight
codes (cf. [12]) were easily deduced.

One of the most important and widely studied classes of linear codes is that of
Reed-Muller codes. These codes were introduced by Reed [18] in the binary case
and several of their properties were established by Muller [17]; see also [4, pp.
20–38]. We shall consider Reed-Muller codes in the most general sense, as given
by Kasami, Lin and Peterson [15] and by Delsarte, Goethals and MacWilliams [6].
Generalized Hamming weights of (generalized) Reed-Muller codes are explicitly
known, thanks to the work of Heijnen and Pellikaan [9] (see also [2] and [3]). It is,
therefore, natural to ask for an explicit determination of the Betti numbers of Reed-
Muller codes. The problem would be tractable if we know when the graded minimal
free resolutions of Stanley-Reisner rings of simplicial complexes corresponding to
Reed-Muller codes are pure. This question about purity was considered in [8] and
an answer was provided in many, but not all, cases. In this article we build upon the
work in [8] and complete it to give a characterization of purity of gradedminimal free
resolutions of Stanley-Reisner rings associated with arbitrary Reed-Muller codes.

This paper is organized as follows. In Sect. 2, we review (generalized) Reed-
Muller codes and discuss their properties that are relevant to us. Next, in Sect. 3,
the notion of purity of a minimal free resolution is recalled and some key results
in [8], such as the intrinsic characterization mentioned above and results about the
purity or nonpurity of resolutions corresponding to Reed-Muller codes, are stated.
Our main result on a characterization of purity of free resolutions of Stanley-Reisner
rings associated with Reed-Muller codes is also proved here. As a corollary, we give
a characterization of Reed-Muller codes that are MDS codes.
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2 Reed-Muller Codes

Standard references for (generalized) Reed-Muller codes are the book of Assmus
and Key [1] (especially Chap.5) and the seminal paper of Delsarte, Goethals and
MacWilliams [6]. Let us begin by setting some basic notation and terminology.

Fix throughout this paper a prime power q and a finite field Fq with q elements.
Let n, k be integers with 1 ≤ k ≤ n. We write [n, k]q -code to mean a q-ary linear
code of length n and dimension k, i.e., a k-dimensional Fq -linear subspace of Fn

q .
Recall that the Hamming weight of an element c = (c1, . . . , cn) ∈ Fn

q is defined by

wt(c) := |{i ∈ {1, . . . , n} : ci �= 0}|.

The minimum distance of an [n, k]q -code C can be defined by

d(C) := min{wt(c) : c ∈ C}

and if d(C) = d, then C may be referred to as an [n, k, d]q -code. In this case, the
elements of C of Hamming weight d will be referred to as the minimum weight
codewords of C . An [n, k]q -code is said to be nondegenerate if it is not contained in
a coordinate hyperplane of Fn

q . We denote by N the set of nonnegative integers.
Let m, r be integers such that m ≥ 1 and 0 ≤ r ≤ m(q − 1). Define

Vq (r,m) := { f ∈ Fq [X1, . . . , Xm ] : deg( f ) ≤ r and degXi
( f ) < q for i = 1, . . . ,m}.

Note that Vq(r,m) is a Fq -linear subspace of the polynomial ring Fq [X1, . . . , Xm].
Fix an ordering P1, . . . ,Pqm of the elements of Fm

q and consider the evaluation map

Ev : Vq(r,m) → Fqm

q defined by f �→ c f := ( f (P1), . . . , f (Pqm )). (1)

Clearly, Ev is a linear map and its image is a nondegenerate linear code of length qm ;
this code is called the (generalized) Reed-Muller code of order r , and it is denoted
by RMq(r,m). The dimension of RMq(r,m) is given by the following formula that
can be found in Assmus and Key [1, Theorem 5.4.1]:

dim RMq(r,m) =
r∑

s=0

m∑

i=0

(−1)i
(
m

i

)(
s − iq + m − 1

s − iq

)
. (2)

In [8, Eq. (13)], a somewhat simpler formula for the dimension is stated (without
proof). It is not difficult to derive it from (2). However, we give an independent and
direct proof of the simpler formula below.

Lemma 1 Let m, r be integers such that m ≥ 1 and 0 ≤ r ≤ m(q − 1). Then

http://dx.doi.org/10.1007/978-981-19-3898-6_5


328 S. R. Ghorpade and R. Ludhani

dimRMq(r,m) =
m∑

i=0

(−1)i
(
m

i

)(
m + r − iq

m

)
. (3)

Proof It is well known that the map Ev given by (1) is injective. This follows, for
instance, from [7, Lemma 2.1]. Also, if E := {(v1, . . . , vm) ∈ Nm : v1 + · · · + vm ≤
r}, then it is easily seen that a basis of Vq(r,m) is given by

B := {Xv1
1 · · · Xvm

m : (v1, . . . , vm) ∈ E and 0 ≤ v j < q for 1 ≤ j ≤ m}.

Let E j := {(v1, . . . , vm) ∈ E : v j ≥ q} for 1 ≤ j ≤ m. The set B is clearly in bijec-
tion with E \ (E1 ∪ · · · ∪ Em). It is elementary and well known that |E | = (m+r

m

)
.

By changing v j to v′
j = v j − q, we also see that |E j | = (m+r−q

m

)
for 1 ≤ j ≤ m, and

more generally, |E j1 ∩ · · · ∩ E ji | = (m+r−iq
m

)
for 1 ≤ j1 < · · · < ji ≤ m. It follows

that dim RMq(r,m) = dim Vq(r,m) = |B|, and this is equal to

|E | − |E1 ∪ · · · ∪ Em | =
(
m + r

m

)
−

m∑

i=1

(−1)i−1
∑

1≤ j1<···< ji≤m

|E j1 ∩ · · · ∩ E ji |

=
(
m + r

m

)
−

m∑

i=1

(−1)i−1

(
m

i

)(
m + r − iq

m

)
.

The last expression is clearly equal to the desired formula in (3).

Remark 1 In case 0 ≤ r < q, formula (3) simplifies to dimRMq(r,m) = (m+r
m

)
.

This can also be seen by noting that the set E j in the proof above is empty for each
j = 1, . . . ,m when r < q. On the other hand, if r = m(q − 1), then the map Ev
given by (1) is also surjective. To see this, write Pν = (aν1, . . . , aνm) and consider

Fν(X1, . . . , Xm) :=
m∏

j=1

(
1 − (X j − aν j )

q−1
)

for ν = 1, . . . , qm . (4)

Note that for any ν ∈ {1, . . . , qm}, the polynomial Fν is in Vq(m(q − 1),m) and
it has the property that Fν(Pν) = 1 and Fν(Pμ) = 0 for any μ ∈ {1, . . . , qm} with
μ �= ν. Hence any λ = (λ1, . . . ,λqm ) ∈ Fqm

q can be written as λ = Ev(F), where
F = λ1F1 + · · · + λqm Fqm . It follows that RMq(m(q − 1),m) = Fqm

q . In particular,
Lemma 1 yields the following curious identity:

m∑

i=0

(−1)i
(
m

i

)(
(m − i)q

m

)
= qm or equivalently,

m∑

i=0

(−1)i
(
m

i

)(
iq

m

)
= (−q)m .

It may be interesting to obtain a direct proof of the above identity.

We now recall the following important result about the minimum distance and the
minimum weight codewords of Reed-Muller codes.
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Proposition 1 Let m, r be integers such that m ≥ 1 and 0 ≤ r ≤ m(q − 1). Then
there are unique t, s ∈ N such that

r = t (q − 1) + s and 0 ≤ s ≤ q − 2. (5)

With t, s as above, the minimum distance of RMq(r,m) is given by

d = (q − s)qm−t−1. (6)

Further, if f ∈ Vq(r,m) is given by

f (X1, . . . , Xm) = ω0

t∏

i=1

(
1 − (Xi − ωi )

q−1
) s∏

j=1

(Xt+1 − ω′
j ) (7)

where ω0,ω1, . . . ,ωt ∈ Fq with ω0 �= 0 and ω′
1, . . . ,ω

′
s are any distinct elements

of Fq , then Ev( f ) is a minimum weight codeword of RMq(r,m). Moreover, every
minimum weight codeword of RMq(r,m) is of the form Ev(g), where g is obtained
from a polynomial of the form (7) by substituting for X1, . . . , Xt+1 any (t + 1)
linearly independent linear forms in Fq [X1, . . . , Xm].
Proof The formula in (6) follows from [6, Theorem 2.6.1] and [15, Theorem 5]. The
assertion about the minimum weight codewords is proved in [6, Theorem 2.6.3] (see
also [16, Theorem 1]).

We end this section by observing that the Reed-Muller code RMq(r,m) is a
particularly nice code when m is small or when r is either very small or very large.

Lemma 2 Let m, r be integers such that m ≥ 1 and 0 ≤ r ≤ m(q − 1). Then
RMq(r,m) is an MDS code in each of the following cases: (i) m = 1, (ii) r = 0,
(iii) r = m(q − 1), and (iv) r = m(q − 1) − 1.

Proof (i) If 0 ≤ r < q, then in view of Remark 1 and Proposition 1, we see that
RMq(r, 1) is a [q, r + 1, q − r ]q -code, and hence it is an MDS code.

(ii) Clearly, RMq(0,m) is the one-dimensional code of length qm spanned by the
all-1 vector, and this is evidently an MDS code.

(iii) FromRemark1,RMq(m(q − 1),m) = Fqm

q ,which is obviously anMDScode.
(iv) Suppose r = m(q − 1) − 1. We will show that

RMq(r,m) = �, where � := {
(λ1, . . . ,λqm ) ∈ Fqm

q : λ1 + · · · + λqm = 0
}
. (8)

This would imply that RMq(r,m) is a [qm, qm − 1, 2]q -code, and hence an MDS
code. To prove (8), first note that themonomial Xq−1

1 · · · Xq−1
m is in Vq(m(q − 1),m),

but not in the subspace Vq(r,m). Since we have seen in Remark 1 that Ev gives an
isomorphism of Vq(m(q − 1),m) ontoFqm

q , it follows that dimFq Vq(r,m) ≤ qm − 1.
Hence it suffices to show that � ⊆ RMq(r,m). To this end, we assume without loss
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of generality that the ordering P1, . . . ,Pqm of points of Fm
q is such that P1 is the

origin. For 1 ≤ ν ≤ qm , consider the polynomial Fν given by (4), and write

Fν = F1 + Gν, where F1 =
m∏

j=1

(
1 − Xq−1

j

)
and Gν := Fν − F1.

Note that Gν ∈ Vq(r,m) for each ν = 1, . . . , qm . Also, F1(P1) = 1 and F1(Pμ) = 0
for 2 ≤ μ ≤ qm . So in view of the properties of Fν noted in Remark 1, we see that
G1(P1) = 0 while Gν(P1) = −1 and Gν(Pν) = 1 for 2 ≤ ν ≤ qm , and moreover,
Gν(Pμ) = 0 for 2 ≤ ν,μ ≤ qm with ν �= μ. Thus given anyλ = (λ1, . . . ,λqm ) ∈ �,
the polynomial G := ∑qm

ν=1 λνGν ∈ Vq(r,m) and Ev(G) = λ. This proves (8).

Remark 2 In [8, pp. 8–9], the results in Lemma 2, especially (iv), were deduced
by appealing to the structure of duals of Reed-Muller codes. Here we have chosen
to give a more direct and elementary proof. We remark also that the converse of the
result in Lemma 2 is true. An indirect proof of this is given later; see Corollary 1.

3 Characterizations of Purity

Let n, k ∈ N with 1 ≤ k ≤ n and let C be an [n, k]q -code. We have explained in the
introduction how one can associate an abstract simplicial complex �C to C . Note
that this complex is independent of the choice of a parity check matrix of C . Let
R := Fq [x1, . . . , xn] denote the polynomial ring in n variables over Fq and let IC
denote the ideal of R generated by the monomials xi1 · · · xit where {i1, . . . , it } vary
over nonfaces, i.e., over subsets of [n] := {1, . . . , n} that are not in�C . The Stanley-
Reisner ring RC corresponding to �C (with the base field1 Fq ) is, by definition, the
quotient R/IC . We call RC the Stanley-Reisner ring associated to C . Clearly, RC is
a finitely generated standard graded Fq -algebra and as noted in [8, Sect. 1], RC is
Cohen-Macaulay and it admits an N-graded minimal free resolution of the form

Fk −→ Fk−1 −→ · · · −→ F1 −→ F0 −→ R� −→ 0 (9)

where F0 = R and each Fi is a graded free R-module of the form

Fi =
⊕

j∈Z
R(− j)βi, j for i = 0, 1, . . . , k. (10)

1 It is only for the sake of definitiveness that we take the base field to be Fq . We could in fact
replace Fq by an arbitrary field. Indeed, it is known that for Stanely-Reisner rings associated with
linear codes, and more generally, matroids, the Betti numbers are independent of the choice of a
base field; see, e.g., [11, Remark 1]. On the other hand, there are examples of simplicial complexes
for which the Betti numbers of their Stanely-Reisner rings do depend on the choice of the base
field even when the complex is shellable (see, e.g., [19, Examples 3.3, 3.4]) or stronger still, vertex
decomposable (see, e.g., [5, p. 567]).
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The nonnegative integers βi, j thus obtained are called the Betti numbers of C . The
resolution (9) is said to be pure of type (d0, d1, . . . , dk) if for each i = 0, 1, . . . , k,
the Betti number βi, j is nonzero if and only if j = di . If, in addition, d1, . . . , dk are
consecutive, then the resolution is said to be linear. We remark that the Betti numbers
βi, j as well as the properties of purity and linearity depend only on C and they are
independent of the choice of a minimal free resolution of RC .

The result below is due to Johnsen and Verdure [11]; see also [8, Corollary 3.9].

Proposition 2 Let C be an [n, k]q -code. Then C is an MDS code if and only if C is
nondegenerate and every N-graded minimal free resolution of RC is linear.

Wewill now recall the intrinsic characterization of purity given in [8] and alluded
to in the Introduction. But first, we review some relevant terminology about codes.

Let n, k and C be as above. By a subcode of C we mean a Fq -linear subspace of
C . Given a subcode D of C , the support of D and the weight of D are defined by

Supp(D) := {i ∈ [n] : ∃(c1, . . . , cn) ∈ D with ci �= 0} and wt(D) := |Supp(D)|.

Given any c ∈ C , we often denote by Supp(c) and wt(c) the support of 〈c〉 and the
weight of 〈c〉, respectively, where 〈c〉 denotes the subcode of C spanned by c. For
1 ≤ i ≤ k, the i th generalized Hamming weight of C is defined by

di (C) := min{wt(D) : D a subcode of C with dim D = i}.

It is obvious that d1(C) = d(C) and it is well known that di (C) < di+1(C) for 1 ≤
i ≤ k − 1; see, e.g., [20, Theorem 1]. Note that C is nondegenerate if and only if
dk(C) = n. An i-dimensional subcode D of C is said to be i -minimal if its support
is minimal among the supports of all i-dimensional subcodes of C , i.e., Supp(D′) �
Supp(D) for any i-dimensional subcode D′ of C , with D′ �= D.

We are now ready to state (an equivalent version of) the intrinsic characterization
of purity given in [8, Theorem 3.6].

Proposition 3 Let C be an [n, k]q -code and let d1 < · · · < dk be its generalized
Hamming weights. Also, let RC be the Stanley-Reisner ring associated to C. Then
every N-graded minimal free resolution of RC is not pure if and only if for some
i ∈ {1, . . . , k}, there exists an i-minimal subcode Di of C such that wt(Di ) > di .

We summarize below the results in [8] about the purity and nonpurity of graded
minimal free resolutions of Stanley-Reisner rings associated to Reed-Muller codes.

Proposition 4 Let m, r be integers such that m ≥ 1 and 0 ≤ r ≤ m(q − 1). Also,
let t, s be unique nonnegative integers satisfying (5). Then every N-graded minimal
free resolution of the Stanley-Reisner ring associated to RMq(r,m) is

(i) pure if r = 1,
(ii) not pure if q = 2, m ≥ 4, and 1 < r ≤ m − 2, and
(iii) not pure if m ≥ 2, 1 < r < m(q − 1) − 1, and s �= 1.
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Proof The assertion in (i) is proved in [8, Theorem 4.1], while the assertions in (ii)
and (iii) are proved in [8, Proposition 4.4] and [8, Theorem 4.11], respectively.

The values of q,m, r not covered by (i)–(iv) in Lemma 2 and (i)–(iii) in Propo-
sition 4 are precisely q ≥ 3, m ≥ 2, and r = q, 2q − 1, . . . , (m − 1)q − (m − 2),
except that (m − 1)q − (m − 2) is excluded if q = 3. This is taken care of by the
following.

Lemma 3 Let m, r be integers such that m ≥ 2 and 1 < r < m(q − 1) − 1. Also
let t, s be unique integers satisfying (5). Assume that q ≥ 3 and also that s = 1. Then
every N-graded minimal free resolution of the Stanley-Reisner ring associated to the
Reed-Muller code RMq(r,m) is not pure.

Proof The conditions on m, r and our assumptions imply that 1 ≤ t ≤ m − 1 and
moreover if q = 3, then 1 ≤ t ≤ m − 2. Also note that by Proposition 1, the mini-
mum distance ofRMq(r,m) is given by d = (q − 1)qm−t−1.Wewill divide the proof
into two cases according to q > 3 and q = 3.

Case 1. q > 3.
Write Fq = {ω1, . . . ,ωq}, and let ω′

1,ω
′
2 be two distinct elements of Fq . Define

Q(X1, . . . , Xm) :=
(

t−1∏

i=1

(Xq−1
i − 1)

) ⎛

⎝
q∏

j=3

(Xt − ω j )

⎞

⎠
(

2∏

k=1

(Xt+1 − ω′
k)

)
.

Then deg(Q) = (t − 1)(q − 1) + (q − 2) + 2 = (t − 1)(q − 1) + q = t (q − 1) +
1 = r , and thus Q ∈ Vq(r,m). For i = 1, 2, let

Ai :=
{
a = (a1, . . . , am) ∈ Fm

q : a1 = · · · = at−1 = 0, at = ωi and at+1 /∈ {ω′
1, ω

′
2}

}
.

Then Supp(cQ) = A1 ∪ A2. Observe that A1 and A2 are disjoint. Consequently,

wt(cQ) = 2(q − 2)qm−t−1 and therefore wt(cQ) > d = (q − 1)qm−t−1,

where the last inequality follows since q > 3. Thus cQ is not aminimumweight code-
word. If the one-dimensional subcode 〈cQ〉 is 1-minimal, then Proposition 3 would
imply the desired result. Suppose 〈cQ〉 is not 1-minimal. Then there is F ∈ Vq(r,m)

such that Supp(cF ) � Supp(cQ) and 〈cF 〉 is 1-minimal. If cF is not a minimum
weight codeword of RMq(d,m), then again Proposition 3 implies the desired result.
Thus, suppose cF is a minimum weight codeword of RMq(d,m). By Proposition 1,
F must be of the form

F(X1, . . . , Xm) = ω0

(
t∏

i=1

(1 − Lq−1
i )

)
(Lt+1 − ω) (11)

for some ω0,ω ∈ Fq with ω0 �= 0 and some linearly independent linear polynomials
L1, . . . , Lt+1 in Fq [X1, . . . , Xm], with Lt+1 homogeneous (while L1, . . . , Lt are not
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necessarily homogeneous). Note that Supp(cF ) = A′, where

A′ := {
a = (a1, . . . , am) ∈ Fm

q : Li (a) = 0 for 1 ≤ i ≤ t and Lt+1(a) �= ω
}
.

(12)
Since Supp(cF ) ⊂ Supp(cQ), we obtain A′ ⊂ A1 ∪ A2. We now assert that A′ is
disjoint from one of the Ai . Indeed, if the assertion is not true, then we can choose
Pi ∈ A′ ∩ Ai for i = 1, 2. Write bi := Lt+1(Pi ) for i = 1, 2. Since Pi ∈ A′, we see
that bi �= ω for i = 1, 2. Now pickλ ∈ Fq such thatλ �= 0, 1 and (1 − λ)b1 + λb2 �=
ω, which is possible because q ≥ 4.2 Define Pλ := (1 − λ)P1 + λP2. Then Pλ ∈ A′,
and this contradicts the inclusion A′ ⊂ A1 ∪ A2 because the t th coordinate of Pλ is
neither ω1 nor ω2. This proves the above assertion. Thus Supp(cF ) = A′ ⊆ Ai for
some i . But then (q − 1)qm−t−1 ≤ (q − 2)qm−t−1, which is a contradiction. This
proves the claim and hence the desired result when q > 3.

Case 2. q = 3.
In this case 1 ≤ t ≤ m − 2, as noted earlier. Write Fq = {ω1,ω2,ω3}. Define

Q(X1, . . . , Xm) :=
( t−1∏

i=1

(Xq−1
i − 1)

)
(Xt − ω3)(Xt+1 − ω3)(Xt+2 − ω3).

Then deg(Q) = (t − 1)(q − 1) + 3 = t (q − 1) + 1 = r , since q = 3, and so Q ∈
Vq(r,m). Let E := {

a = (a1, . . . , am) ∈ Fm
q : a1 = · · · = at−1 = 0

}
, and for i =

1, 2, let

Ai := {a = (a1, . . . , am) ∈ E : at = ωi and at+1, at+2 ∈ {ω1,ω2}} ,

A′
i := {a = (a1, . . . , am) ∈ E : at+1 = ωi and at , at+2 ∈ {ω1,ω2}} , and

A′′
i := {a = (a1, . . . , am) ∈ E : at+2 = ωi and at , at+1 ∈ {ω1,ω2}} .

Then Supp(cQ) = A1 ∪ A2 = A′
1 ∪ A′

2 = A′′
1 ∪ A′′

2 and wt(cQ) = 23qm−t−2. Note
that wt(cQ) > (q − 1)qm−t−1, since q = 3. Thus, as in Case 1, it suffices to show
that there does not exist any F ∈ Vq(r,m) such that cF is aminimumweight codeword
and Supp(cF ) � Supp(cQ). Suppose, if possible, there is such F . Then it must be of
the form (11), and its support is given by the set A′ in (12). Now write Fq \ {ω} =
{u1, u2}, and for i = 1, 2, let

Bi := {
a = (a1, . . . , am) ∈ Fm

q : Li (a) = 0 for 1 ≤ i ≤ t and Lt+1(a) = ui
}
.

Note that each Bi is an affine space (i.e., a translate of a linear subspace) in Fm
q

and Supp(cF ) = B1 ∪ B2. Thus B1 ∪ B2 ⊂ A1 ∪ A2. We claim that B1 ⊆ Ai for
some i ∈ {1, 2}. Indeed, if this is not true, then we can find Pi ∈ B1 ∩ Ai for each
i = 1, 2. Since q = 3, we can choose λ ∈ Fq such that λ �= 0, 1. Consider Pλ :=
(1 − λ)P1 + λP2. Since B1 is an affine space, Pλ ∈ B1. On the other hand, the t th

2 If b1 = b2, then the only condition on λ is that λ �= 0, 1, whereas if b1 �= b2, then it suffices to
choose λ ∈ Fq such that λ �= 0, 1 and λ �= (ω − b1)/(b2 − b1).
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coordinate of Pλ is neither ω1 nor ω2, and hence Pλ /∈ A1 ∪ A2. This contradicts the
inclusion B1 ⊂ A1 ∪ A2, and so the claim is proved. In a similar manner, we see that
B1 ⊆ A′

j and B1 ⊆ A′′
k for some j, k ∈ {1, 2}. It follows that B1 ⊆ Ai ∩ A′

j ∩ A′′
k .

But clearly, |B1| = qm−t−1 and |Ai ∩ A′
j ∩ A′′

k | = qm−t−2. So we obtain qm−t−1 ≤
qm−t−2, which is a contradiction. This completes the proof.

We are now ready to prove the main result of this article.

Theorem 1 Let m, r ∈ N be such that m ≥ 1 and 0 ≤ r ≤ m(q − 1). Then every
N-graded minimal free resolution of the Stanley-Reisner ring associated to the Reed-
Muller code RMq(r,m) is pure if and only if m = 1 or r ≤ 1 or r ≥ m(q − 1) − 1.

Proof Follows from Lemma 2, Propositions 2, 4, and Lemma 3.

As an application, we show that the converse of the result in Lemma 2 is true.

Corollary 1 Let m, r ∈ N be such that m ≥ 1 and 0 ≤ r ≤ m(q − 1). Then the
Reed-Muller code RMq(r,m) is an MDS code if and only if m = 1 or r = 0 or
r ≥ m(q − 1) − 1.

Proof If m = 1 or r = 0 or r ≥ m(q − 1) − 1, then by Lemma 2, RMq(r,m) is an
MDS code. Conversely, supposeRMq(r,m) is anMDS code. Then by Proposition 2,
every N-graded minimal free resolution of its Stanley-Reisner ring is pure. So by
Theorem 1, we must have m = 1 or r ≤ 1 or r ≥ m(q − 1) − 1. If m ≥ 2, then
the case r = 1 is ruled out because by [8, Theorem 4.1], the generalized Hamming
weights (which coincide with the “shifts” in the resolution) of RMq(1,m) are given
by di = qm − �qm−i� for 1 ≤ i ≤ m + 1, and these are clearly nonconsecutive if
m ≥ 2, and so by Proposition 2, RMq(1,m) cannot be an MDS code if m ≥ 2. Thus
we must have m = 1 or r = 0 or r ≥ m(q − 1) − 1.
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Skew Constacyclic Codes over Fq + vFq

Ghulam Mohammad, Naim Khan, and Almas Khan

Abstract In this paper, we study v-skew constacyclic codes over the ring Fq + vFq ,
wherev2 = 1, q = pm and p is an oddprime.Weobtain the structural properties ofv-
skew constacyclic codes over Fq + vFq using decomposition method. The generator
polynomials of v-skew constacyclic codes and their dual codes over R are obtained.
Moreover, some examples of v-skew constacyclic codes over Fq + vFq have also
been constructed.

Keywords Gray map · Skew polynomial rings · Skew constacyclic codes

1 Introduction

It has been given the attention to the study of linear and cyclic codes over finite rings
because of their new role in algebraic coding theory and their successful applications
in information theory, communication, electrical engineering and computer science.
The class of cyclic codes is a very important class of linear codes fromboth theoretical
and practical point of view which are easier to implement due to their rich algebraic
structure. Cyclic codes have been studied for the past six decades. Based on these
facts, cyclic codes have become one of the most important class in coding theory.
Hammons et al. in a landmark paper [12] showed that some good nonlinear codes
over Z2 can be obtained as binary images under the Gray map of linear cyclic codes
over Z4. But all this work is restricted to codes that are defined in a commutative
ring.

Boucher et al. [7] gave the study of skew cyclic codes and their structural prop-
erties over a noncommutative ring F[x, θ], called skew polynomial ring, where F is
a finite field and θ is a field automorphism of F . They gave the generalization of the
class of linear and cyclic codes to the class of skew cyclic codes by using the ring
F[x, θ], where the generator polynomials of skew cyclic codes come from the ring
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F[x, θ]. They also provided some examples of skew cyclic codes with Hamming
distances larger than the best-known linear codes with the same parameters. After
that, Bhaintwal [6] studied skew quasi-cyclic codes over Galois rings. Since polyno-
mials in skew polynomial rings have many factorizations and hence there are many
ideals in skew polynomial ring than in the commutative ring, this was the main aim
of studying codes in this setting. But all this work has a restriction to the condition
that the order of the automorphism must be a factor of the length n of the code. Siap
et al. in [14] removed this restriction and studied the structural properties of these
classes of codes of arbitrary length over finite fields. A lot of work has been done in
this direction (see Refs. [1, 3, 10]).

Jitman et al. [13] studied skew constacyclic codes by defining the skewpolynomial
ring with coefficients from finite chain rings, especially the ring Fpm + uFpm , where
u2 = 0. Further, Gursoy et al. [11] derived the constructional properties of skew
cyclic codes by using the decomposition method over Fq + vFq , where v2 = v and
q = pm . Later on, the authors in [3] obtain the constructional properties of skew
cyclic codes over the ring F3 + vF3 with v2 = 1 by taking the automorphism as
θ : v �→ −v. They showed that skew cyclic codes over F3 + vF3 are equivalent
to either cyclic codes or quasi-cyclic codes. Further, they studied skew cyclic codes
over the ring Fq + vFq with v2 = 1 in [5] by using decomposition method. Very
recently, Al-Ashker and Abu-Jafar [2] investigated the structural properties of skew
constacyclic codes over the ring Fp + vFp with v2 = v. Motivated by the study of
Al-Ashker and Abu-Jafar [2], in the present paper, for the first time, we study v-skew
constacyclic codes over the ring Fq + vFq , where v2 = 1, q = pm and p is an odd
prime.

2 Preliminaries

Let R = Fq + vFq where q = pm and p is an odd prime. Then R is a commutative
and nonchain ring with characteristic p which contains q2 elements. The ring is
endowed with the natural addition and multiplication with the property v2 = 1 and it
can be viewed as the quotient ring Fq [v]/〈v2 − 1〉. The elements of R can be uniquely
written as a + vb, where a, b ∈ Fq . It is a semi-local ring having twomaximal ideals
〈1 − v〉 and 〈1 + v〉.

Let θ : Fq −→ Fq be the Frobenius automorphism defined as θ(a) = a p. Define
a mapping θt : Fq −→ Fq such that θt (a) = a pt for all a ∈ Fq . One can verify that
θt is an automorphism on Fq and θt = θt . It can be observed that the order of θt is
|〈θt 〉| = m/t and the subring Fpt of Fq is invariant under θt .

Definition 1 Let α be the given automorphism of R defined by α(a + vb) = apt +
vbpt for all a, b ∈ Fq . The set R[x,α] = {a0 + a1x + a2x2 + · · · + anxn| ai ∈
R, n ≥ 0} of formal polynomials under usual addition of polynomials and multipli-
cation defined by the rule (axi )(bx j ) = aαi (b)xi+ j forms a ring. The ring R[x,α]
is called skew polynomial ring over R.
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It may be observed that R[x,α] is noncommutative ring unless α is the identity
automorphism on R. Therefore, when an ideal of R[x,α] is taken, one should clarify
whether it is a left ideal or a right ideal. The skew polynomial ring R[x,α] is not
left or right Euclidean. However, the division algorithm holds for some polynomials
whose leading coefficients are invertible (for detail see Refs. [8] and [13]).

3 Gray Map and Linear Codes over R

Cengellenmis [9] initiated the study of cyclic codes over the ring F3 + vF3 where
v2 = 1. Later on, the authors [4] generalized this study to constacyclic codes over the
ring Fp + vFp, where v2 = 1 and p is an odd prime. Let Rn be the set of all n-tuples
over the ring R. Then any nonempty subset C of Rn is called a code of length n over
R. C is called linear code of length n over R if it is an R-submodule of Rn . Elements
of C are called codewords and therefore each codeword c in such a code C is just an
n-tuple of the form c = (c0, c1, . . . , cn−1) ∈ Rn.

Let C be a linear code of length n over R. Then C is said to be cyclic if
for every (c0, c1, . . . , cn−1) ∈ C implies that (cn−1, c0, . . . , cn−2) ∈ C , negacyclic
if (c0, c1, . . . , cn−1) ∈ C implies that (−cn−1, c0, . . . , cn−2) ∈ C and v-constacyclic
if (c0, c1, . . . , cn−1) ∈ C implies that (vcn−1, c0, . . . , cn−2) ∈ C .

TheHammingweightwH (r)of a codeword r = (r0, r1, . . . , rn−1) is the number of
nonzero components. TheminimumweightwH (C) of a codeC is the smallest weight
among all its nonzero codewords. For r = (r0, r1, . . . , rn−1), s = (s0, s1, . . . , sn−1),
dH (r, s) = |{i | ri �= si }| is called the Hamming distance between r and s and is
denoted by dH (r, s) = wH (r − s).

The minimum Hamming distance between distinct pairs of codewords of a code
C is called the minimum distance of C and is denoted by dH (C) or shortly dH .

Now, we define the Lee weight of an element r = a + vb ∈ R as follows:

wL(r) = wH (a, b),

where wH denotes the usual Hamming weight on Fq . Let r = (r0, r1, . . . , rn−1) be
a vector in Rn. Then the Lee weight of r is the rational sum of Lee weights of its

components, that is, wL(r) =
n−1∑

i=0
wL(ri ). For any two elements r, s ∈ Rn, the Lee

distance is given by dL(r, s) = wL(r − s). The minimum Lee distance of a code C
is the smallest nonzero Lee distance between all pairs of distinct codewords. The
minimum Lee weight of C is the smallest nonzero Lee weight among all codewords.
IfC is linear, then theminimumLee distance is the same as theminimumLeeweight.

The Gray map φ from R to F2
q is defined as φ(a + vb) = (a, b). It can be easily

seen thatφ is linear. TheGraymapφ can be extended to Rn in a naturalway, that is,φ :
Rn −→ F2n

q such that φ(r0, r1, . . . , rn−1) = (a0, a1, . . . , an−1, b0, b1, . . . , bn−1),
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where ri = ai + vbi for i = 0, 1, . . . , n − 1. The map φ is a distance-preserving
map from (Rn , Lee distance) to (F2n

q , Hamming distance) and it is also Fq -linear.
For a code C over R, let

C1−v = {a ∈ Fn
q | (1 + v)a + (1 − v)b ∈ C, for some b ∈ Fn

q },

C1+v = {b ∈ Fn
q | (1 + v)a + (1 − v)b ∈ C, for some a ∈ Fn

q }

be two q-ary codes such that (1 + v)C1−v is equal toC mod (1 − v) and (1 − v)C1+v

is equal toC mod (1 + v), respectively. Therefore, any codeC over R can be written
as C = (1 + v)C1−v ⊕ (1 − v)C1+v . According to the generator matrix G, the code
C1−v is permutation equivalent to a code with generator matrix of the form

⎛

⎝
Ik1 0 2A1 2A2 2A3

0 2Ik2 0 2A4 0

⎞

⎠

and the code C1+v is permutation equivalent to a code with generator matrix of the
form ⎛

⎝
Ik1 2B1 0 2B2 2B3

0 0 2Ik3 0 2B4

⎞

⎠ ,

where Ai , Bj are q-ary matrices with 1 ≤ i, j ≤ 4. It is easy to see that
|C1−v||C1+v| = qk1qk2qk1qk3 = q2k1+k2+k3 = |C | (for details see[15]).

Let r = (r0, r1, . . . , rn−1) and s = (s0, s1, . . . , sn−1) be two elements of Rn . Then
the Euclidean inner product of r and s in Rn is defined as

r · s = r0s0 + r1s1 + · · · + rn−1sn−1.

The dual code C⊥ of C is defined as

C⊥ = {r ∈ Rn| r · c = 0, for all c ∈ C}.

A code C is called self-orthogonal if C ⊆ C⊥ and self dual if C = C⊥.

Theorem 1 ([4, Theorem 8]) Let C = (1 + v)C1−v ⊕ (1 − v)C1+v be a code of
length n over R. Then C is a v-constacyclic code if and only if C⊥ is also a v-
constacyclic code and C⊥ = (1 + v)C⊥

1−v ⊕ (1 − v)C⊥
1+v .
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4 v-Skew Constacyclic Codes over R

Skew cyclic codes over the ring R were studied by the authors [5]. In
the present section, we generalize this study to v-skew constacyclic codes
over R. Let α be an automorphism on R given by α(a + vb) = a pt + vbpt .
Then a linear code C of length n over R is called a skew cyclic code
or α-cyclic code if for each c = (c0, c1, . . . , cn−1) ∈ C implies that σ(c) =
(α(cn−1),α(c0), . . . ,α(cn−2)) ∈ C , where σ(c) denotes the skew cyclic shift
of c, C is called skew negacyclic code if for each c = (c0, c1, . . . , cn−1) ∈
C implies that ν(c) = (−α(cn−1),α(c0), . . . ,α(cn−2)) ∈ C , where ν(c) denotes the
skew negacyclic shift of c and C is called v-skew constacyclic code if for each
c = (c0, c1, . . . , cn−1) ∈ C implies that τ (c) = (vα(cn−1),α(c0), . . . ,α(cn−2)) ∈
C , where τ (c) denotes the skew constacyclic shift of c.

Now, consider R[x,α]/〈xn − v〉. It can be easily seen that R[x,α]/〈xn − v〉 is a
left R[x,α] module under the following operations:

( f (x) + 〈xn − v〉) + (g(x) + 〈xn − v〉) = ( f (x) + g(x)) + 〈xn − v〉,

r(x)( f (x) + 〈xn − v〉) = r(x) f (x) + 〈xn − v〉

for any r(x) ∈ R[x,α]. By the definition of R[x,α]/〈xn − v〉, we can identify each
codeword c = (c0, c1, . . . , cn−1) of the v-skew constacyclic code C by a polynomial
c(x) = c0 + c1x + c2x2 + · · · + cn−1xn−1.

In the following lemma, we give a module structure of v-skew constacyclic codes
of arbitrary length.

Lemma 1 A code C of length n over R is a v-skew constacyclic code if and only if
C is a left R[x,α]-submodule of R[x,α]/〈xn − v〉.
Now, we give the characterization of v-skew constacyclic codes over R as follows:

Theorem 2 If C = (1 + v)C1−v ⊕ (1 − v)C1+v is a linear code of length n over R,
then C is a v-skew constacyclic code over R with respect to automorphism α if and
only if C1−v is a skew cyclic code and C1+v is a skew negacyclic codes of length n
over Fq , respectively, with respect to the automorphism θt .

Proof Take r = (r0, r1, . . . , rn−1) ∈ C , andwe canwrite its coordinates as ri = (1 +
v)ai + (1 − v)bi , where ai , bi ∈ Fq , 0 ≤ i ≤ n − 1. Let a = (a0, a1, . . . , an−1) and
b = (b0, b1, . . . , bn−1). Then a ∈ C1−v and b ∈ C1+v . Now, suppose C1−v is a skew
cyclic code and C1+v is a skew negacyclic codes over Fq , respectively, with respect
to the automorphism θt . This means that

σ(a) = (θt (an−1), θt (a0), . . . , θt (an−2))

= (a pt

n−1, a
pt

0 , . . . , a pt

n−2) ∈ C1−v,
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ν(b) = (−θt (bn−1), θt (b0), . . . , θt (bn−2))

= (−bpt

n−1, b
pt

0 , . . . , bpt

n−2) ∈ C1+v.

Thus (1 + v)σ(a) + (1 − v)ν(b) ∈ C . It is easy to be seen that

(1 + v)σ(a) + (1 − v)ν(b) = τ (r).

Hence τ (r) ∈ C , which means that C is a v-skew constacyclic code over R with
respect to the automorphism α.

Conversely, suppose thatC is av-skewconstacyclic codeover Rwith respect to the
automorphism α. Let ri = (1 + v)ai + (1 − v)bi , for any a = (a0, a1, . . . , an−1) ∈
C1−v, b = (b0, b1, . . . , bn−1) ∈ C1+v . Then r = (r0, r1, ..., rn−1) ∈ C . By hypothe-
sis τ (r) ∈ C . Since (1 + v)σ(a) + (1 − v)ν(b) = τ (r), we get (1 + v)σ(a) + (1 −
v)ν(b) ∈ C . Thus σ(a) ∈ C1−v, ν(b) ∈ C1+v , which implies that C1−v is a skew
cyclic code and C1+v is a skew negacyclic codes of length n over Fq with respect to
the automorphism θt .

Corollary 1 If C is a v-skew constacyclic code of length n over R, then the dual
code C⊥ is also a v-skew constacyclic code of length n over R.

Proof Using Theorem1, we haveC⊥ = (1 + v)C⊥
1−v ⊕ (1 − v)C⊥

1+v . Since the dual
code of every skew cyclic and skew negacyclic code over Fq is also a skew cyclic
and skew negacyclic code ([8]), by Theorem 2, C⊥ is a v-skew constacyclic code.

Lemma 2 Let τ be the v-skew constacyclic shift of Rn and σ be the skew cyclic shift
of F2n

q . If φ is the Gray map of Rn into F2n
q , then φτ = σφ.

Proof Let r = (r0, r1, . . . , rn−1) ∈ Rn , where ri = ai + vbi with ai , bi ∈ Fq for
0 ≤ i ≤ n − 1. Taking v-skew constacyclic shift of r , we have

τ (r) = (vθt (rn−1), θt (r0), . . . , θt (rn−2))

= (v(a pt

n−1 + vbpt

n−1), a
pt

0 + vbpt

0 , . . . , a pt

n−2 + vbpt

n−2)

= (bpt

n−1 + va pt

n−1, a
pt

0 + vbpt

0 , . . . , a pt

n−2 + vbpt

n−2).

Now, using the definition of Gray map φ, we can deduce that

φ(τ (r)) = (bpt

n−1, a
pt

0 , . . . , a pt

n−2, a
pt

n−1, b
pt

0 , . . . , bpt

n−2).

On the other hand, φ(r) = (a0, a1, . . . , an−1, b0, b1, . . . , bn−1). Hence,
σ(φ(r)) = (bpt

n−1, a
pt

0 , . . . , a pt

n−2, a
pt

n−1, b
pt

0 , . . . , bpt

n−2). Therefore, φτ = σφ.

As a consequence of Lemma 2, we get the following main result:

Theorem 3 Let C be a code of length n over R. Then C is v-skew constacyclic code
if and only if φ(C) is a skew cyclic code of length 2n over Fq.
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The following theorem gives the generators polynomials of v-skew constacyclic
codes over R:

Theorem 4 If C = (1 + v)C1−v ⊕ (1 − v)C1+v is a v-skew constacyclic code
of length n over R, then C = 〈(1 + v)g1(x), (1 − v)g2(x)〉 and |C | =
q2n−deg(g1(x))−deg(g2(x)), where g1(x), g2(x) are the generator polynomials of
C1−v, C1+v , respectively.

Proof Since C1−v = 〈g1(x)〉 ⊆ Fq [x, θt ]/〈xn − 1〉, C1+v = 〈g2(x)〉 ⊆
Fq [x, θt ]/〈xn + 1〉 and C = (1 + v)C1−v ⊕ (1 − v)C1+v , we find that
C = {c(x) | c(x) = (1 + v) f1(x) + (1 − v) f2(x), f1(x) ∈ C1−v, f2(x) ∈ C1+v}.
Therefore,

C ⊆ 〈(1 + v)g1(x), (1 − v)g2(x)〉 ⊆ R[x,α]/〈xn − v〉.
For any

(1 + v)k1(x)g1(x) + (1 − v)k2(x)g2(x) ∈ 〈(1 + v)g1(x), (1 − v)g2(x)〉 ⊆ R[x,α]/〈xn − v〉,

where k1(x) ∈ R[x,α]/〈xn − 1〉, k2(x) ∈ R[x,α]/〈xn + 1〉, there are
r1(x), r2(x) ∈ Fq [x, θt ] such that

(1 + v)k1(x) = (1 + v)r1(x), (1 − v)k2(x) = (1 − v)r2(x).

This means that 〈(1 + v)g1(x), (1 − v)g2(x)〉 ⊆ C . Hence 〈(1 + v)g1(x), (1 −
v)g2(x)〉 = C . Since |C | = |C1||C2|, |C | = q2n−deg(g1(x))−deg(g2(x)).

Theorem 5 Let C1−v be a skew cyclic code over Fq and C2 be a skew negacyclic
codes over Fq with monic generator polynomials g1(x) and g2(x), respectively. If
C = (1 + v)C1−v ⊕ (1 − v)C1+v is a v-skew constacyclic code of length n over R,
then there is a unique polynomial g(x) ∈ R[x,α] such that C = 〈g(x)〉 and g(x) is
a right divisor of xn − v, where g(x) = (1 + v)g1(x) + (1 − v)g2(x).

Proof By Theorem 4, we may assume that

C = 〈(1 + v)g1(x), (1 − v)g2(x)〉,

where g1(x) and g2(x) are the monic generator polynomials of C1−v and C1+v ,
respectively. Let g(x) = (1 + v)g1(x) + (1 − v)g2(x). Clearly, 〈g(x)〉 ⊆ C . Note
that

(1 + v)g1(x) = (1 + v)g(x),

and
(1 − v)g2(x) = (1 − v)g(x),

and hence C ⊆ 〈g(x)〉, that is C = 〈g(x)〉. Since g1(x) is a monic right divisor of
xn − 1 and g2(x) is amonic right divisor of xn + 1, there are r1(x) ∈ Fq [x, θt ]/〈xn −
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1〉 and r2(x) ∈ Fq [x, θt ]/〈xn + 1〉 such that

xn − 1 = r1(x)g1(x), xn + 1 = r2(x)g2(x).

This implies that

xn − v = [(1 + v)r1(x) + (1 − v)r2(x)]g(x).

Hence, g(x)|xn − v. The uniqueness of g(x) can be followed from that of g1(x) and
g2(x).

In order to study the generator polynomials of the dual codes of v-skew constacyclic
codes over R, we give the following definition:

Definition 2 Let g(x) = g0 + g1x + · · · + gr xr and h(x) = h0 + h1x + · · · +
hn−r xn−r be polynomials in R[x,α] such that xn − v = h(x)g(x) and C ′ be a
v-skew constacyclic code generated by g(x) in R[x,α]/〈xn − v〉. Then the dual
code of C ′ is a v-skew constacyclic code generated by the polynomial h̄(x) =
hn−r + α(hn−r−1)x + · · · + θn−r

t (h0)xn−r .

In view of Theorems1 and 2, we have the following corollary:

Corollary 2 Let C1−v be a skew cyclic code over Fq and C1+v be a skew negacyclic
codes over Fq and g1(x) and g2(x) be their generator polynomials such that

xn − 1 = h1(x)g1(x), xn + 1 = h2(x)g2(x) ∈ Fq [x, θt ].

If C = (1 + v)C1−v ⊕ (1 − v)C1+v , then

C⊥ = 〈(1 + v)h̄1(x) + (1 − v)h̄2(x)〉

and |C⊥| = qdeg(g1(x))+deg(g2(x)).

Now, we give the following examples in support of our results:

Example 4.1 Let R = F9 + vF9 be the ring with v2 = 1 and θ be the Frobenius
automorphism over F9, that is, θ(r) = r3 for any r ∈ F9, where F9 = F3[ω], ω2 +
1 = 0. Then

x4 − 1 = (x2 − 1)(x + ω)(x + 2ω) ∈ F9[x, θ],

x4 + 1 = (2 + x + x2)(2 + 2x + x2) ∈ F9[x, θ].

If g1(x) = x2 − 1, g2(x) = (2 + x + x2), thenC1−v = 〈g1(x)〉 is a skew cyclic code
over F9 with parameters [4, 2, 2] and C1+v = 〈g2(x)〉 is a skew negacyclic code over
F9 of parameters [4, 2, 2]. Therefore, the code C = 〈(1 + v)g1(x) + (1 − v)g2(x)〉
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is a v-skew constacyclic code of length 4 over R. Further, the Gray image φ(C) of
C is a skew cyclic code over F9 of length 8.

Example 4.2 Let R = F9 + vF9 be the ring with v2 = 1 and θ be the Frobenius
automorphism over F9, that is, θ(r) = r3 for any r ∈ F9, where F9 = F3[ω], ω2 +
ω + 2 = 0. Then

x6 − 1 = (2 + (2 + ω)x + (1 + 2ω)x3 + x4)(1 + (2 + ω)x + x2)

= (2 + x + (2 + 2ω)x2 + x3)(1 + x + 2ωx2 + x3),

x6 + 1 = (1 + x2)3 ∈ F9[x, θ].

If g1(x) = 2 + (2 + ω)x + (1 + 2ω)x3 + x4 and g2(x) = (1 + x2)3, then C1−v =
〈g1(x)〉 is a skew cyclic code of length 6 over F9,C1+v = 〈g2(x)〉 is a skew negacyclic
code of length 6 over F9. Thus the code

C = 〈(1 + v)g1(x) + (1 − v)g2(x)〉

is a v-skew constacyclic code of length 6 over R. Also, the Gray image φ(C) of C
is a skew cyclic code over F9 of length 12.

Example 4.3 Let R = F9 + vF9 be the ring with v2 = 1 and θ be the Frobenius
automorphism over F9, that is, θ(r) = r3 for any r ∈ F9, where F9 = F3[ω], ω2 +
1 = 0. Then

x9 − 1 = (x + 2)9, x9 + 1 = (x + 1)9 ∈ F9[x, θ].

Let g1(x) = x + 2, g2(x) = x + 1. Then C1−v = 〈g1(x)〉 is a skew cyclic code of
length 9 over F9 and C1+v = 〈g2(x)〉 is a skew negacyclic code of length 9 over F9.
Therefore, the code C = 〈(1 + v)g1(x) + (1 − v)g2(x)〉 is a v-skew constacyclic
code of length 9 over R. Also, the Gray image φ(C) of C is a skew cyclic code of
length 18 over F9.

Example 4.4 Let R = F25 + vF25 be the ring with v2 = 1 and θ be the Frobenius
automorphism over F25, that is, θ(r) = r5 for any r ∈ F25, where F25 = F5[ω], ω2 +
ω + 1 = 0. Then

x4 − 1 = (x + 2)(x + 3)(x + ω)(x + ω + 1), x4 + 1 = (x2 − 2)(x2 + 2) ∈ F25[x, θ].

Let g1(x) = x + 2, g2(x) = x2 + 2. Then C1−v = 〈g1(x)〉 is a skew cyclic code of
parameters [4, 3, 2] over F25 andC1+v = 〈g2(x)〉 is a skew negacyclic code of param-
eters [4, 2, 2] over F25. Therefore, the code C = 〈(1 + v)g1(x) + (1 − v)g2(x)〉 is a
v-skew constacyclic code of length 4 over R. Also, the Gray image φ(C) of C is a
skew cyclic code of parameters [8, 5, 2] over F25.
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5 Applications

In this section, we give a example of skew cyclic codes and their Gray images over
GF(49) using Plotkin Sum. Before giving a example, we first give the definition of
Plotkin Sum. Let C ⊕P D denote the Plotkin Sum of two linear codes C and D,
also called (u|u + v) construction, where u ∈ C, v ∈ D. Let C = (1 + v)C1−v ⊕
(1 − v)C1+v be a linear code of length n over R, then its Gray image φ(C) is none
other than (C1−v ⊕P C1+v). We construct skew cyclic codes over GF(49) with some
conditions. If C1−v is a [20, 19, 2] code, C1+v is a [20, 18, 3] code, then the Gray
image of C has parameters [40, 37, 2] over GF(49).

The following table contains some v-skew constacyclic codes over the ring R =
F25 + vF25, where v2 = 1. First column of the table denotes the length of cyclic
codes over R, second and third columns denote the parameters of C1−v and C1+v

over F25, respectively, and column four denotes the parameters of the Gray images
of v-skew constacyclic codes over R.

n C1−v C1+v φ(C)

10 [10, 9, 2] [10, 9, 2] [20, 18, 2]
12 [12, 10, 3] [12, 10, 2] [24, 20, 2]
15 [15, 13, 3] [15, 13, 3] [30, 26, 3]
22 [22, 20, 2] [22, 20, 2] [44, 40, 2]
24 [24, 22, 3] [24, 20, 3] [48, 42, 3]
25 [25, 24, 2] [25, 24, 2] [50, 48, 2]

6 Conclusion

In this paper, we have studied the structural properties of v-skew constacyclic codes
over the ring Fq + vFq where v2 = 1, q = pm and p is an odd prime by taking the
automorphism θt : a + vb �→ a pt + vbpt . We have proved that the Gray image of a
v-skew constacyclic code of length n over Fq + vFq is a skew cyclic code of length
2n over Fq . Further, we have obtained some examples of v-skew constacyclic codes
over Fq + vFq . For the future work, it may be interesting to study the other classes
of skew constacyclic codes over this ring.
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Cyclic and LCD Codes over a Finite
Commutative Semi-local Ring

Om Prakash, Habibul Islam, and Arindam Ghosh

Abstract For an odd prime p, we obtain algebraic structure of cyclic codes of
length n over a finite commutative non-chain semi-local ringR = Fp[u, v, w]/〈u2 −
u, v2 − 1, w2 − 1, uv − vu, vw − wv,wu − uw〉. These codes of length n can be
viewed as principal ideals of the quotient ring R[x]/〈xn − 1〉. Here, a Gray map is
defined to obtain p-ary quasi-cyclic codes of length 8n with index 8 as Fp-images of
cyclic codes of length n overR. Also, we present necessary and sufficient conditions
for a cyclic code to be an LCD (linear complementary dual) code overR. Moreover,
it is shown that the Gray image of an LCD code of length n over R is an LCD code
of length 8n over Fp. Finally, a few non-trivial examples are given in support of our
derived results.

Keywords Cyclic code · Non-chain ring · Semi-local ring · Gray map · LCD code

1 Introduction

Cyclic codes over finite rings have been received great attention due to a seminal
work of Hammons et al. [12] in 1994. As cyclic codes contain some classes of good
error-correcting codes, they have been well investigated over finite rings for the last
three decades. In 1997, Kanwar and Lopez-Permouth [23] introduced cyclic codes
over Zpm and proved that a cyclic code of length n with gcd(n, p) = 1 is princi-
pally generated. They have also determined the structure of self-dual cyclic codes.
In 1999, cyclic and self-dual codes over F2 + uF2 are studied [2]. Later, Dinh and
Lopez-Permouth [5] obtained algebraic properties of cyclic and negacyclic codes
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over finite chain rings. Meanwhile, Abualrub and Siap [1] explicitly determined the
generator polynomials and minimum spanning sets for the cyclic codes of length n
over Z2 + uZ2 and Z2 + uZ2 + u2Z2, respectively. In 2010, Zhu et al. [36] revis-
ited and discussed some results for cyclic codes over F2 + uF2. They have obtained
generators, idempotent generator polynomials for cyclic codes and prove that these
codes are principally generated. In [35], Yildiz and Karadeniz discussed the struc-
tural properties of cyclic codes of odd length and obtained some good binary linear
codes from the Gray images of these codes over the finite commutative non-chain
ring F2 + uF2 + vF2 + uvF2. Also, Dougherty et al. [7] studied cyclic codes over
the local Frobenius ring F2[u1, u2, . . . , uk]/〈u2i = 0, uiu j = u jui 〉. They explored
binary quasi-cyclic codes with index 2k from cyclic codes under a Gray map. In fact,
there are plenty of related works that we refer to [6, 14, 16, 18, 19, 31].

Linear complementary dual (shortly, LCD) codes were introduced byMassey [28]
in 1992 and the existence of asymptotically good LCD codes was shown . Later, in
1994, Yang and Massey [34] derived necessary and sufficient conditions for cyclic
codes to be LCD codes over GF(q). Also, to address a question raised by Massey
[28], Sendrier [30] proved that LCD codes over GF(q) meet the Gilbert-Varshavov
bound. In 2009, Esmaeili and Yari [8] studied LCD quasi-cyclic codes and derived
necessary and sufficient conditions for maximal one-generator quasi-cyclic codes to
be LCD codes over Fq . Interested reader can see some recent studies on LCD codes
in [3, 4, 11, 25, 26, 32, 33].

Here, for a prime p > 2, we study cyclic codes of length n over a finite
commutative semi-local ring Fp[u, v, w]/〈u2 − u, v2 − 1, w2 − 1, uv − vu, vw −
wv,wu − uw〉. Also, we construct LCD codes from cyclic codes under certain con-
ditions. Moreover, under a Gray map, Fp-images of cyclic and LCD codes are dis-
cussed. The main motivation behind this paper is to determine some good relations
between cyclic and LCD codes over the underlying ring.

The arrangement of the paper is as follows: In Sect. 2, we recall basic facts and
define a Gray map, whereas in Sect. 3, we discuss the linear codes. We derive the
structural properties of cyclic codes in Sect. 4 and LCD codes in Sect. 5, respectively.
Section6 concludes the paper.

2 Basic Facts and Gray Map

Let p be an odd prime and Fp a finite field, and R := Fp[u, v, w]/〈u2 − u, v2 −
1, w2 − 1, uv − vu, vw − wv,wu − uw〉. Thus R is a finite commutative semi-
local non-chain ring (with unity) of p8 elements which is the extension of both rings
Fp[u]/〈u2 − u〉 in [9, 10] and Fp[v,w]/〈v2 − 1, w2 − 1, vw − wv〉 in [14, 15]. Let
C ⊆ Rn . Then C is called a linear code of length n over R if C is an R-submodule
of Rn . Also, the elements of C are called codewords. The dual of C is denoted
by C⊥ and defined as C⊥ = {a ∈ Rn | a · b = 0, ∀ b ∈ C}, where the (Euclidean)
inner product of two codewords a = (a0, a1, . . . , an−1), b = (b0, b1, . . . , bn−1) ∈ C
is a · b = ∑n−1

i=0 aibi . IfC ⊆ C⊥, thenC is called self-orthogonal, and ifC = C⊥, then
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it is self-dual. For any polynomial f (x) ∈ R[x], its reciprocal polynomial is defined
by f ∗(x) = xdeg( f (x)) f ( 1x ). Note that deg( f (x)) = deg( f ∗(x)) if f (0) 	= 0. The
polynomial f (x) is said to be self-reciprocal if f (x) = f ∗(x).

Also,R canbe considered asFp + uFp + vFp + wFp + uvFp + vwFp + wuFp +
uvwFp where u2 = u, v2 = 1, w2 = 1, uv = vu, vw = wv,wu = uw, and hence
every element r ∈ R can be written uniquely as r = a1 + ua2 + va3 + wa4 +
uva5 + vwa6 + wua7 + uvwa8 where ai ∈ Fp for 1 ≤ i ≤ 8. Let κ1 = u(1−v)(1−w)

4 ,

κ2 = u(1−v)(1+w)

4 ,κ3 = u(1+v)(1−w)

4 , κ4 = u(1+v)(1+w)

4 ,κ5 = (1−u)(1−v)(1−w)

4 ,

κ6 = (1−u)(1−v)(1+w)

4 ,κ7 = (1−u)(1+v)(1−w)

4 , and κ8 = (1−u)(1+v)(1+w)

4 . Then

1.
∑8

i=1 κi = 1;
2. κiκ j =

{
κi , if i = j

0, if i 	= j
.

Therefore, by the Chinese Remainder Theorem,R = ⊕8
i=1κiR ∼= ⊕8

i=1κiFp. Thus,
every element r ∈ R can be uniquely written as r = ∑8

i=1 eiκi , for ei ∈ Fp, 1 ≤ i ≤
8. In that case, we define a map

ψ : R −→ F
8
p

by

ψ(r) = (e1, e2, . . . , e8). (1)

The map ψ can be extended to Rn componentwise. Recall that for a codeword
a = (a0, a1, . . . , an−1) ∈ C the Hamming weight

wH (a) = |i : ai 	= 0 ∀ i |

and the distance between a, b ∈ C is dH (a, b) = wH (a − b). The Hamming dis-
tance for a code C is defined by dH (C) = min{dH (a, b) | a 	= b,∀ a, b ∈ C}. We
define Gray weight of r ∈ R by wG(r) = wH (ψ(r)) and Gray weight of r =
(r0, r1, . . . , rn−1) ∈ Rn bywG(r) = ∑n−1

i=0 wG(ri ). TheGraydistance betweena, b ∈
C is defined by dG(a, b) = wG(a − b) and Gray distance for the code C is dG(C) =
min{dG(a, b) | a 	= b, a, b ∈ C}.

3 Linear Codes overR

In this section, we review some important results of linear codes over R which are
analogous to the results in [10, 14, 15]. These results are useful to obtain the structure
of cyclic codes in the subsequent section.
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Theorem 1 The map ψ from (Rn, dG) to (F8n
p , dH ) defined in Eq. (1) is linear and

distance preserving.

Proof Let a, b ∈ Rn and α ∈ Fp. It is checked that ψ(a + αb) = ψ(a) + αψ(b).
Hence, ψ is linear. Further, dG(a, b) = wG(a − b) = wH (ψ(a − b)) = wH (ψ(a) −
ψ(b)) = dH (ψ(a),ψ(b)) for all a, b ∈ Rn . Thus, ψ preserves the distance.

Theorem 2 Let C be an [n, k, dG] linear code over R. Then

1. ψ(C) is an [8n, k, dH ] linear code over Fp where dH = dG.
2. ψ(C⊥) = (ψ(C))⊥.
3. C is self-dual if and only if ψ(C) is self-dual.

Proof 1. ψ being linear, ψ(C) is a linear code of length 8n over Fp. Further, ψ
is bijective and isometric, so ψ(C) is a linear code over Fp with parameters
[8n, k, dH ] and dH = dG .

2. Let a = (a0, a1, . . . , an−1) ∈ C, b = (b0, b1, . . . , bn−1) ∈ C⊥ with a j = ∑8
i=1

κi t ij , b j = ∑8
i=1 κimi

j , where t
i
j ,m

i
j ∈ Fp, for 1 ≤ i ≤ 8, 0 ≤ j ≤ n − 1. Since,

a · b = 0, we have
∑n−1

j=0

∑8
i=1 t

i
jm

i
j = 0. On the other side, ψ(a) · ψ(b) = 8

∑n−1
j=0

∑8
i=1 t

i
jm

i
j = 0. Therefore, ψ(C⊥) ⊆ (ψ(C))⊥. As ψ is bijective,

|ψ(C⊥)| = |(ψ(C))⊥|. Hence, ψ(C⊥) = (ψ(C))⊥.
3. Let C be self-dual. Then C⊥ = C, which implies that ψ(C⊥) = ψ(C) and

(ψ(C))⊥ = ψ(C). Therefore,ψ(C) is self-dual. Conversely, letψ(C) be self-dual.
Then (ψ(C))⊥ = ψ(C), and hence ψ(C⊥) = ψ(C). As ψ is bijective, C⊥ = C.
Thus, C is self-dual.

Let Ai be a non-empty set for i = 1, 2, . . . , 8. We denote
⊕8

i=1 Ai = {a1 + a2 +
· · · + a8 | ai ∈ Ai ∀ i} and ⊗8

i=1 Ai = {(a1, a2, . . . , a4) | ai ∈ Ai ∀ i}. For a linear
code C of length n over R, we define Ci = {ei ∈ F

n
p | there exist e1, . . . , ei−1, ei+1,

. . . , e8 such that
∑8

i=1 κi ei ∈ C}. It is easy to verify that Ci (1 ≤ i ≤ 8) are linear
codes of length n over Fp.

Theorem 3 If C is a linear code of length n over R, then ψ(C) = ⊗8
i=1 Ci and

|C| = ∏8
i=1 |Ci |.

Proof Leta = (a10, a
1
1, . . . , a

1
n−1, a

2
0, a

2
1, . . . , a

2
n−1, . . . , a

8
0, a

8
1, . . . , a

8
n−1) ∈ ψ(C) and

r j = ∑8
i=1 κia

i
j for 0 ≤ j ≤ n − 1. As ψ is bijective, r = (r0, r1, . . . , rn−1) ∈ C.

Therefore, (ai0, a
i
1, . . . , a

i
n−1) ∈ Ci for 1 ≤ i ≤ 8, and this implies that a ∈ ⊗8

i=1 Ci .
Hence, ψ(C) ⊆ ⊗8

i=1 Ci .
Conversely, let a = (a10, a

1
1, . . . , a

1
n−1, a

2
0, a

2
1, . . . , a

2
n−1, . . . , a

8
0, a

8
1, . . . , a

8
n−1) ∈

⊗8
i=1 Ci . Then ai = (ai0, a

i
1, . . . , a

i
n−1) ∈ Ci for 1 ≤ i ≤ 8. In order to prove a ∈

ψ(C), we need to show ψ(b) = a for some b = ∑8
i=1 siκi ∈ C. We choose si =

∑8
j=1 κ j ti j , where ti j ∈ F

n
p, for 1 ≤ i, j ≤ 8 and tii = ai . Then b = ∑8

i=1 a
iκi and

ψ(b) = a. Thus,
⊗8

i=1 Ci ⊆ ψ(C). Therefore, ψ(C) = ⊗8
i=1 Ci . Further, ψ is bijec-

tive, we have |C| = |ψ(C)|. Thus, ∏8
i=1 |Ci |.
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Corollary 1 For a linear code C, the generator matrix is M =

⎛

⎜
⎜
⎜
⎝

κ1M1

κ2M2
...

κ8M8,

⎞

⎟
⎟
⎟
⎠
where Mi

is a generator matrix of Ci , 1 ≤ i ≤ 8.

Corollary 2 If ψ(C) = ⊗8
i=1 Ci , then C = ⊕8

i=1 κiCi .

Corollary 3 Let C = ⊕8
i=1 κiCi be a linear code over R and [n, ki , dH (Ci )] be

the parameters of Ci for 1 ≤ i ≤ 8. Then ψ(C) is an [8n,∑8
i=1 ki , dH (ψ(C))] linear

code over Fp where dH (ψ(C)) = min{dH (Ci ), 1 ≤ i ≤ 8}.
Theorem 4 Let C = ⊕8

i=1 κiCi be a linear code of length n over R. Then C⊥ =
⊕8

i=1 κiC
⊥
i . Moreover, C is self-dual if and only if Ci is self-dual for 1 ≤ i ≤ 8.

Proof Consider Si = {ei ∈ F
n
p | there exist e1, . . . , ei−1, ei+1, . . . , e8 such that

∑8
i=1 eiκi ∈ C⊥}.ThenC⊥ = ⊕8

i=1 κiSi is unique. It is easy to see thatS1 ⊆ C⊥
1 . On

the other side, let r ∈ C⊥
1 . Then r · a1 = 0 for all a1 ∈ C1. Let z = ∑8

i=1 κi ai ∈ C.
Now, κ1r · z = κ1a1 · r = 0, and which gives that κ1r ∈ C⊥. From the uniqueness
of C⊥, we have r ∈ S1. Therefore, C⊥

1 ⊆ S1. Hence, S1 = C⊥
1 . Similarly, we have

C⊥
i = Si for i = 2, . . . , 8. Thus, C⊥ = ⊕8

i=1 κiC
⊥
i .

Further, letCbe self-dual, i.e.,C⊥ = C,which implies that
⊕8

i=1 κiCi = ⊕8
i=1 κiC

⊥
i ,

and C⊥
i = Ci for i = 1, 2, . . . , 8. Hence Ci is self-dual for 1 ≤ i ≤ 8. Conversely, let

Ci be self-dual for 1 ≤ i ≤ 8. Then C = ⊕8
i=1 κiCi = ⊕8

i=1 κiC
⊥
i = C⊥. Therefore,

C is self-dual.

4 Cyclic Codes overR

This section characterizes cyclic codes over R and proves that they are principally
generated. In the next section, we impose few restrictions on these cyclic codes to
be LCD codes.

Definition 1 Let C be a linear code of length n overR. Then it is called cyclic if for
any a = (a0, a1, . . . , an−1) ∈ C, its cyclic shift σ(a) = (an−1, a0, . . . , an−2) ∈ C.

For a cyclic code C of length n overR, we identify each codeword a = (a0, a1, . . . ,
an−1) ∈ C by a polynomial a(x) ∈ R[x]/〈xn − 1〉 under the correspondence a =
(a0, a1, . . . , an−1) �−→ a(x) = (a0 + a1x + · · · + an−1xn−1) mod (xn − 1). Under
this polynomial representation of C, we get the next result.

Theorem 5 A linear code C of length n over R is cyclic if and only if it is an ideal
of R[x]/〈xn − 1〉.
Proof Straightforward.
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Theorem 6 A linear code C = ⊕8
i=1 κiCi of length n overR is cyclic if and only if

Ci is cyclic for 1 ≤ i ≤ 8.

Proof Let C be a cyclic code of length n over R. Let ai = (ai0, a
i
1, . . . , a

i
n−1) ∈ Ci ,

for 1 ≤ i ≤ 8. Now, consider r j = ∑8
i=1 κia

i
j , for 0 ≤ j ≤ n − 1. Thus, by defini-

tion r = (r0, r1, . . . , rn−1) ∈ C, and σ(r) = (rn−1, r0, . . . , rn−2) ∈ C. Again, σ(r) =∑8
i=1 κiσ(a

i ) ∈ C = ⊕8
i=1 κiCi . Then σ(ai ) ∈ Ci , for 1 ≤ i ≤ 8. Hence,Ci is cyclic

for 1 ≤ i ≤ 8.
Conversely, let Ci be a cyclic code of length n over Fp, for 1 ≤ i ≤ 8. Let r =

(r0, r1, . . . , rn−1) ∈ C, where r j = ∑8
i=1 κia

i
j for some aij ∈ Fp, 1 ≤ i ≤ 8 and 0 ≤

j ≤ n − 1. Then ai = (ai0, a
i
1, . . . , a

i
n−1) ∈ Ci , for 1 ≤ i ≤ 8. Therefore, σ(ai ) ∈ Ci ,

for 1 ≤ i ≤ 8. Also, σ(r) = ∑8
i=1 κiσ(a

i ) ∈ ⊕8
i=1 κiCi = C. Hence, C is a cyclic

code of length n over R.

Theorem 7 Let C be a cyclic code given by Theorem 6. Then there exists a polyno-
mial f (x) ∈ R[x] such that C = 〈 f (x)〉 and f (x) | xn − 1.

Proof By Theorem 6, Ci is a cyclic code of length n over Fp, for i = 1, 2, . . . , 8.
Let fi (x) ∈ Fp[x] such that Ci = 〈 fi (x)〉 and fi (x) | xn − 1, for 1 ≤ i ≤ 8. Clearly,
κ1 f1(x),κ2 f2(x), . . . ,κ8 f8(x)generate the codeC.We take f (x) = ∑8

i=1 κi fi (x) ∈
R[x], then 〈 f (x)〉 ⊆ C. On the other side, κi f (x) = κi fi (x) ∈ 〈 f (x)〉, for 1 ≤ i ≤
8. Therefore, C ⊆ 〈 f (x)〉. Hence, C = 〈 f (x)〉.

Further, xn − 1 = hi (x) fi (x) inFp[x], for 1 ≤ i ≤ 8. Since f (x)
∑8

i=1 κi hi (x) =
∑8

i=1 κi hi (x) fi (x) = xn − 1. Thus, f (x) | xn − 1.

Corollary 4 Let C be a cyclic code given by Theorem 6. Then

|C| = p8n−∑8
i=1 deg( fi (x)),

where fi (x) is the generator of Ci , for i = 1, 2, . . . , 8.

Corollary 5 The ring R[x]/〈xn − 1〉 is principally generated.
Corollary 6 Let C be a cyclic code given by Theorem 6 and Ci = 〈 fi (x)〉 such that
xn − 1 = hi (x) fi (x) for 1 ≤ i ≤ 8. Then

1. C⊥ = ⊕8
i=1 κiC

⊥
i is a cyclic code and C⊥ = 〈∑8

i=1 κi h∗
i (x)〉.

2. |C⊥| = p
∑8

i=1 deg( fi (x)).

Definition 2 Let C be a linear code of length n = ml over R, for some positive
integersm, l. ThenC is called a quasi-cyclic code of length n and index l ifπl(C) = C,
where πl : Rn −→ Rn is a map defined by

πl(c
1 | c2 | · · · | cl) = (σ(c1) | σ(c2) | · · · | σ(cl)), (2)

for ci ∈ Rm , i = 1, 2, . . . , l and σ is the cyclic shift operator.
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Lemma 1 Let the maps ψ be defined in Eq. (1) and π8 be defined in Eq. (2). Then
ψσ = π8ψ.

Proof It is verified by the definition of the maps ψ and π8.

Theorem 8 A linear code C of length n overR is cyclic if and only if its Gray image
ψ(C) is a quasi-cyclic code of length 8n and index 8 over Fp.

Proof LetC be cyclic overR. Then σ(C) = C, and by Lemma 1,ψ(σ(C)) = ψ(C) =
π8(ψ(C)). This yields that ψ(C) is a quasi-cyclic code of length 8n and index 8 over
Fp.

Conversely, let ψ(C) be a quasi-cyclic code of length 8n and index 8 over Fp.
Thus π8(ψ(C)) = ψ(C), and by Lemma 1, we have ψ(σ(C)) = ψ(C). Again, ψ is
injective, so σ(C) = C. Hence, C is a cyclic code of length n over R.

In order to validate the technique here we give an example of cyclic code.

Example 1 LetC be a cyclic code of length 13 overR = F3[u, v, w]/〈u2 − u, v2 −
1, w2 − 1, uv − vu, vw − wv,wu − uw〉. Now, in F3[x], we have

x13 − 1 =(x + 2)(x3 + 2x + 2)(x3 + x2 + 2)(x3 + x2 + x + 2)(x3 + 2x2 + 2x + 2).

Let fi (x) = x3 + 2x + 2 for i = 1, 2, 3, 4and f5(x) = x3 + x2 + 2 for i = 5, 6, 7, 8.
In this way, Ci = 〈 fi (x)〉 is a cyclic code of length 13 over F3, for i = 1, 2, . . . , 8.
Thus, C = 〈∑8

i=1 κi fi (x)〉 is a cyclic code of length 13 over R. Moreover, ψ(C) is
a linear code over F3 with parameters [104, 80, 3].

5 LCD Codes over R

In the present section, we obtain the structure of LCD codes via cyclic codes overR.
These codes can be used in cryptography to prevent popular attacks, like side-channel
attacks(SCA) and fault injection attacks(FIA), see [3].

Definition 3 A linear code C is called a linear complementary dual (or LCD) code
if it meets trivially with its dual, i.e., C ∩ C⊥ = {0}.
Theorem 9 [34] Let n = pt s with gcd(s, p) = 1 and C = 〈 f (x)〉 be a cyclic code
of length n over Fp. Then C is an LCD code if and only if f (x) is self-reciprocal and
all the monic irreducible factors of f (x) have the same multiplicity in f (x) and in
xn − 1.

Theorem 10 Let C = ⊕8
i=1 κiCi be a cyclic code of length n over R. Then C is

LCD if and only if Ci is LCD over Fp for 1 ≤ i ≤ 8.

Proof It can be proved based on the fact that C ∩ C⊥ = {0} if and only if Ci ∩ C⊥
i =

{0} for 1 ≤ i ≤ 8.
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Corollary 7 Let n = pt s and gcd(s, p) = 1. Let C = ⊕8
i=1 κiCi with Ci = 〈 fi (x)〉

such that fi (x) ∈ Fp[x] and fi (x) | xn − 1 for 1 ≤ i ≤ 8, be a cyclic code of length
n over R. Then C is LCD if and only if fi (x) is self-reciprocal and each monic
irreducible factor of fi (x) has the same multiplicity in fi (x) and in xn − 1, for
1 ≤ i ≤ 8.

Proof It is verified by using Theorems9 and 10.

Lemma 2 [34] Let C satisfying gcd(n, p) = 1, be a cyclic code of length n over Fp.
Then C is an LCD code if and only if C is a reversible code.

Theorem 11 LetC = ⊕8
i=1 κiCi satisfying gcd(n, p) = 1 be a cyclic code of length

n over R. Then C is an LCD code if and only if Ci is a reversible code of length n
over Fp for 1 ≤ i ≤ 8.

Proof Combining Theorem 10 and Lemma 2, it is verified.

Corollary 8 LetC = ⊕8
i=1 κiCi satisfying gcd(n, p) = 1, be a cyclic code of length

n overRwhereCi = 〈 fi (x)〉 is a cyclic code of length n overFp for1 ≤ i ≤ 8. ThenC
is an LCD code if and only if fi (x) is self-reciprocal polynomial in Fp, for 1 ≤ i ≤ 8.

Proof Note that a cyclic code Ci = 〈 fi (x)〉 with fi (x) | xn − 1 is reversible if and
only if fi (x) is self-reciprocal in Fp for 1 ≤ i ≤ 8. The rest parts follow from
Theorem 11.

Lemma 3 For a linear code C of length n overR and the map ψ defined in Eq. (1),
ψ(C ∩ C⊥) = ψ(C) ∩ ψ(C)⊥.

Proof Let r ∈ ψ(C) ∩ ψ(C⊥). Then there exists a ∈ C and b ∈ C⊥ such thatψ(a) = r
and ψ(b) = r. As ψ is injective and ψ(a) = ψ(b) = r, we have a = b ∈ C ∩ C⊥.
Therefore, r = ψ(a) ∈ ψ(C ∩ C⊥). Hence, ψ(C) ∩ ψ(C⊥) ⊆ ψ(C ∩ C⊥).

On the other side, let r ∈ ψ(C ∩ C⊥). Then there exist a ∈ C ∩ C⊥ such that
ψ(a) = r. Also, a ∈ C ∩ C⊥ implies that a ∈ C and a ∈ C⊥. Therefore, ψ(a) ∈
ψ(C) and ψ(a) ∈ ψ(C⊥). Hence, r = ψ(a) ∈ ψ(C) ∩ ψ(C⊥). Thus, ψ(C ∩ C⊥) ⊆
ψ(C) ∩ ψ(C⊥). Now, from the above calculation, we can conclude that ψ(C) ∩
ψ(C⊥) = ψ(C ∩ C⊥). Again, from Theorem 2, we know ψ(C⊥) = ψ(C)⊥. Hence,
ψ(C) ∩ ψ(C)⊥ = ψ(C ∩ C⊥).

Theorem 12 Let C be a linear code of length n over R. Then C is an LCD code if
and only if ψ(C) is an LCD code of length 8n over Fp.

Proof Let C be LCD. Then C ∩ C⊥ = {0}. Now, by Lemma 3, ψ(C) ∩ ψ(C)⊥ =
ψ(C ∩ C⊥) = ψ({0}) = {0}. This implies that ψ(C) is an LCD code of length 8n
over Fp.

Conversely, suppose ψ(C) is an LCD code of length 8n over Fp i.e., ψ(C) ∩
ψ(C)⊥ = {0}. By Lemma 3, we have ψ(C ∩ C⊥) = ψ(C) ∩ ψ(C)⊥ = {0}. Again, ψ
is injective, so C ∩ C⊥ = {0}. Hence, C is an LCD code of length n over R.
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Now, we present two examples of LCD codes to support our obtained results.

Example 2 LetC be a cyclic code of length 15 overR = F3[u, v, w]/〈u2 − u, v2 −
1, w2 − 1, uv − vu, vw − wv,wu − uw〉. Now, in F3[x], we have

x15 − 1 = (x + 2)3(x4 + x3 + x2 + x + 1)3.

Let fi (x) = (x4 + x3 + x2 + x + 1)3, for 1 ≤ i ≤ 8. Then Ci = 〈 fi (x)〉 is an LCD
code of length 15 over F3, for i ≤ i ≤ 8. By Theorem 10, C = 〈∑8

i=1 κi fi (x)〉 =
〈(x4 + x3 + x2 + x + 1)3〉 is an LCD code of length 15 overR. Moreover, ψ(C) is
an LCD code over F3 with parameters [120, 24, 5].
Example 3 Let C be a cyclic code of length 9 overR = F5[u, v, w]/〈u2 − u, v2 −
1, w2 − 1, uv − vu, vw − wv,wu − uw〉. Now, in F5[x], we have

x9 − 1 = (x + 4)(x2 + x + 1)(x6 + x3 + 1).

Let fi (x) = x6 + x3 + 1 for 1 ≤ i ≤ 8. Since fi (x) is self-reciprocal, Ci = 〈 fi (x)〉
is a reversible cyclic code of length 9 over F5 for 1 ≤ i ≤ 8. Now, by Theorem 11,
C = 〈∑8

i=1 κi fi (x)〉 = 〈x6 + x3 + 1〉 is an LCD code of length 9 over R. Hence,
ψ(C) is an LCD code over F5 with parameters [72, 24, 3].

6 Conclusion

In this paper, we determined the complete structure of cyclic codes of length n over
R and obtained LCD codes of length pt s where gcd(s, p) = 1, over R. Also, we
constructed LCD codes of length 8n over Fp as the Gray image of LCD codes of
length n overR. Similar to [13, 15, 20, 21], one can attempt to investigate quantum
codes over Fp via cyclic codes over R along with the map ψ in the future.
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of Finite-Dimensional Vector Spaces
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Abstract Let V be a finite-dimensional vector space. In this survey, we present the
results concerning the fundamental properties of the graphs associated with finite-
dimensional vector spaces.

Keywords Graph · Diameter · Connected graph · Clique · Subspace

1 Definitions and Preliminaries

LetG = (V (G), E(G)) be aGraph,where V (G) is the set of vertices and E(G) is the
set of edges ofG.Wesay thatG is connected if there exists a path between any twodis-
tinct vertices ofG. For vertices a and b ofG, d(a, b) denotes the length of the shortest
path from a to b. In particular, d(a, a) = 0 and d(a, b) = ∞ if there is no such path.
The diameter of G is denoted by diam(G) = sup{d(a, b) | a, b ∈ V (G)}. A cycle
in a graph G is a path that begins and ends at the same vertex. A cycle of length
n is denoted by Cn. A graph is said to be Eulerian if it contains a cycle con-
taining all the edges in G exactly once. The girth of G, denoted by gr(G), is
the length of a shortest cycle in G, (gr(G) = ∞ if G contains no cycle). Two
graphs G1 = (V (G1), E(G1)) and G2 = (V (G2), E(G2)) are said to be isomor-
phic if there exists a bijection φ : V (G1) → V (G2)) such that (u, v) ∈ E(G1) if
and only if (φ(u), φ(v)) ∈ E(G2). A complete graph G is a graph where all dis-
tinct vertices are adjacent. The complete graph with |V (G)| = n is denoted by Kn.

A graph H = (V (H), E(H)) is said to be a subgraph of G, if V (H) ⊆ V (G)

and E(H) ⊆ E(G). Moreover, H is said to be an induced subgraph of G if
V (H) ⊆ V (G) and E(H) = {(u, v) ∈ E(G) | u, v ∈ V (H)} and is denoted by
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G[V (H)].Also,G is called a null graph if E(G) = ∅. For a graphG, a complete sub-
graph of G is called a clique. The clique number, ω(G), is the greatest integer n � 1
such that Kn ⊆ G, and ω(G) = ∞ if Kn ⊆ G for all n � 1. The chromatic number
χ(G) of a graph G is the minimum number of colours needed to colour all the ver-
tices ofG such that every two adjacent vertices get different colours. For a connected
graph G, δ = min{deg(x) | x ∈ V (G)} and� = max{deg(x) | x ∈ V (G)}.A graph
G is per f ect if for every induced subgraph H of G, χ(H) = ω(H). A subset of
V (G) is called independent if any two distinct vertices are pair-wise non-adjacent in
that subset. An independent set which is maximal with respect to inclusion is called
as a maximal independent set . A subset D of V (G) is said to be a dominating set
if each vertex in V (G) \ D is adjacent to at least one vertex in D. The dominating
number γ (G) are the minimum size of a dominating set in G. Let Sk denote the
sphere with k handles, where k is a nonnegative integer, that is, k is an oriented
surface with k handles. The genus of a graph G, denoted by g(G), is the minimal
integer n such that the graph can be embedded in Sn . Intuitively, G is embedded in
a surface if it can be drawn in the surface so that its edges intersect only at their
common vertices. Note that a graph G is a planar iff g(G) = 0 and G is toroidal
iff g(G) = 1. Graph-theoretic terms are presented as they appeared in West [25].
Note that if x is a real number, then [x] is the least integer that is greater than or
equal to x. Throughout this paper, V denotes a finite-dimensional vector space over
a field F and Fq is a finite field of order q. Let B = {v1, v2, . . . , vn} be a basis
of an n-dimensional vector space V over a field F. Then any vector v ∈ V can be

expressed as a linear combination of the form v =
n∑

i=1
αivi . We define skeleton of

v with respect to B as SB(v) = {vi | αi �= 0} and VB = {v ∈ V | 0 < |SB(v)| < n},
Sk = {v ∈ V | k ≤ |SB(v)| ≤ n − 1}, [Sk

v ] = {u ∈ V | |SB(u)| = k and v ∈ SB(u)},
[Sk] = {u ∈ V | |SB(u)| = k}, V

∗ = V \ {0}.

2 Introduction

The study of the interrelation between the graphs and algebraic structures had been
an interesting area of research. In recent years, the study of graphs associated with
rings and vector spaces has gained remarkable attention from many researchers. In
the graphs, which are associated with algebraic structures, much attention has been
paid to studying the combinatorial properties of algebraic structures, like clique
number, chromatic number, domination number, independence number, etc. During
the past seven decades, there has been ongoing interest concerning the relationship
between algebraic structures, namely rings and graphs connected with algebraic
structures, namely zero divisor graph, total graph, ideal inclusion graph, etc.; for
recent survey articles, see [4] and [3]. For the study of graphs associated with a
commutative ring, see [10] and [9]. The present survey entitled “Some recent results
on the graphs of finite-dimensional vector spaces” is a part of research work carried
out by authors [11, 13, 15, 18] and the main purpose of this survey article is to
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collect some properties of graphs associated with finite-dimensional vector spaces
and investigate fundamental properties (chromatic and clique number, domination
number, independence number, genus, etc.) of these graphs. Section 3 initiates with
the investigation of the fundamental properties of the non-zero component graph.
Recently, Das [13, 18] introduced and analysed the non-zero component graph on
finite-dimensional vector spaces. The non-zero component graph is an undirected
graph with all non-trivial vectors of V

∗ as the set of vertices, and any two distinct
vectors u and v in G are adjacent if and only if u and v share at least one αi with
non-zero coefficient in their basic representation, i.e., there exists at least one αi

along which both u and v have non-zero components. Later on, Nikandish et al.
[22] investigated the colouring of Γ (Vα). Further Chelvam et al. [11] investigate
the genus and various properties of Γ (Vα). Section 4 deals with the study of non-
zero component union graphs associated with the vectors of a finite-dimensional
vector space. Recently, Das [15] introduced and studied non-zero component union
graph Γ (B) on a finite-dimensional vector space, where the graph Γ (B) is an
undirected graph with vertices as elements of V

∗ and any two distinct vectors u and
v in V

∗ are adjacent if and only if SB (u) ∪ SB (v) = B. Very recently, Ashraf et
al. introduced and studied distinct component graphs on finite-dimensional vector
spaces. The graphs I∗

B(V) are simple undirected graphs with V
∗ as a set of vertices

and any two distinct vertices u, v in I∗
B(V) are adjacent if and only if SB(u) ∩

SB(v) = ∅. In Sect. 5, we look into the properties of a distinct component graph
on vector spaces which was introduced by the authors together with Parveen in
[23]. Section 6 goes through the article Component intersection graphs on finite-
dimensional vector spaces in which the authors defined the notion of Component
intersection graphs on finite-dimensional vector spaces as well as studied several
important properties of this graph. Section 7 opens with the literature of subspace
inclusion graphs introduced byDas [16] and further studied by various authors which
can be seen in [6]. Finally in Sect. 8, we introduce a notion of a new type of graph
viz., Dimension graph on finite-dimensional vector space and find out the several
basic properties of this new graph.

3 Non-zero Component Graphs on Finite-Dimensional
Vector Spaces

In this section, we give several specific results of non-zero component graphs that
have appeared in the literature. This illustrates the power of this unifying concept and
explains why these non-zero component graphs all share common properties related
to diameter and girth. We start with some basic properties of Γ (Vβ) essentially
obtained for Γ (Vβ) in [13].

Example 1 Let F2 × F2 and F2 × F2 × F2 be the vector spaces over F2 and
B1 = {u1, u2}, B2 = {v1, v2, v3} be a basis of F2 × F2 and F2 × F2 × F2, respec-
tively. Clearly, V (Γ (VB1) = {u1, u2, u1 + u2, 2u1, 2u2, u1 + 2u2, 2u1 + u2} and
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V (Γ (VB2) = {v1, v2, v3, v1 + v2, v2 +v3, v1 + v3, v1 + v2 + v3} and Non-zero
Component graphs Γ (VB1) and Γ (VB2) are given by the following Figs. 3.1
and 3.2:

u1+u2 2u1+2u2

2u1+u2

u1+2u2

u1 u2

2u1 2u2

(VB1)
F= F2

Figure 3.1

v3 v1+ v3

v2+ v3 v1+ v2+ v3

v2 v1

v2+ v1

(VB2)
F= F2

Figure 3.2

Theorem 1 ([13]) Let V be a vector space over a field F. Then the following state-
ments hold:
(1) IfΓ (Vα)andΓ (Vβ)are the graphswith respect to twobases {α1, α2, . . . , αn}and
{β1, β2, . . . , βn}, then Γ (Vα) and Γ (Vβ) are graph isomorphic.
(2) Γ (Vα) is connected and diam(Γ (Vα) = 2.
(3) The domination number of Γ (Vα) is 1.
(4) Γ (Vα) is complete if and only if V is one-dimensional.

Note that the set {α1, α2, . . . , αn} is a minimal dominating set of Γ (Vα). Now, the
question arises: what is the maximum possible number of vertices in a minimal
dominating set? The answer is given as n in view of the following results.

Theorem 2 ([13]) If D = {β1, β2, . . . , β�} is a minimal dominating set of Γ (Vα),
then � ≤ n, i.e., the maximum cardinality of a minimal dominating set is n. The
independence number of Γ (Vα) is dim(V).

Theorem 3 ([13]) Let I be an independent set in Γ (Vα), then I is a linearly inde-
pendent subset of V.

The converse of Theorem 3 is not true, in general. Consider a vector spaceV, its basis
{α1, α2, . . . , αn}, and the set L = {α1 + α2, α2, . . . , αn}. Clearly, L is linearly inde-
pendent in V, but it is not an independent set in Γ (Vα) as α1 + α2 ∼ α2.

Theorem 4 ([13]) Let V and W be two finite-dimensional vector spaces over a field
F. Then the following statements hold:
(1) If Γ (Vα) and Γ (Vβ) are isomorphic as graphs with respect to some basis
{α1, α2, . . . , αn} and {β1, β2, . . . , βn} of V and W, respectively, then dim(V) =
dim(W), i.e., n = k.
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(2) If V and W are isomorphic as vector spaces, then for any basis {α1, α2, . . . , αn}
and {β1, β2, . . . , βn} of V and W, respectively, Γ (Vα) and Γ (Vβ) are isomorphic
as graphs.
(3) If for any basis {α1, α2, . . . , αn} and {β1, β2, . . . , βn} of V and W, respectively,
Γ (Vα) andΓ (Vβ) are isomorphic as graphs, thenV andW are isomorphic as vector
spaces.

Example 2 Consider a one-dimensional vector space V over Z5 generated by α

(say). Then Γ (Vα) is a complete graph of 4 vertices with V = α, 2α, 3α, 4α. Con-
sider the map T : Γ (Vα) → Γ (Vα) given by T (α) = 2α, T (2α) = α, T (3α) =
4α, T (4α) = 3α. Clearly, T is a graph isomorphism, but as T (2α) = α6 = 4α =
2(2α) = 2T (α), T is not linear.

Theorem 5 ([13]) Let φ : Γ (Vα) → Γ (Vα) be a graph automorphism. Then, φ

maps
{α1, α2, . . . , αn} to another basis {β1, β2, . . . , βn} such that there exists σ ∈ Sn,
where each βi is of the form ciασ(i) and each ci ′s is non-zero.

It can be easily noted that φ maps the basis {α1, α2, . . . , αn} to another basis
{β1, β2, . . . , βn} it may not be a vector space isomorphism. It is because linear-
ity of φ is not guaranteed as shown in Example 2. However, the following result is
true.

Theorem 6 ([13]) Let φ be a graph automorphism, which maps αi �→ ci ji ασ(i) for
some σ ∈ Sn. Then, if c �= 0, φ(cαi ) = dασ(i) for some non-zero d, more generally
for all k ∈ 1, 2, . . . , n if c1.c2 . . . ck �= 0, then

φ(c1αi1 + c2αi2 + . . . + ckαik ) = d1α(i1) + d2α(i2) + . . . + dkα(ik)

for some di ′s with d1.d2 . . . dk �= 0.

Corollary 1 Γ (Vα) is not vertex transitive if dim(V) > 1.

The set of vertices adjacent to αi1 + αi2 + . . . + αik is the same as the set of vertices
adjacent to c1αi1 + c2αi2 + . . . + ckαik , i.e., N (αi1 + αi2 + . . . + αik ) = c1αi1 +
c2αi2 + . . . + ckαik ) for c1c2 . . . ck �= 0.

Theorem 7 ([13]) Let V be a vector space over a finite field F with q elements and
Γ be its associated graph with respect to a basis α1, α2, . . . , αn. Then, the degree of
the vertex αi1 + αi2 + . . . + αik , where c1c2 . . . ck �= 0, is (qk − 1)qn−k − 1.

In view of the following theorems, the authors in [18] studiedminimum degree, edge,
connectivity, order and size of Γ (Vα).

Theorem 8 ([18]) Let V be a vector space over a finite field F with q elements.
(1) Γ (Vα) is not Eulerian.
(2) Then the minimum degree δ of Γ (Vα) is qn−1(q − 1) − 1.
(3) Edge connectivity of Γ (Vα) is qn−1(q − 1) − 1.
(4) The order and size of Γ (Vα) is qn − 1 and q2n−qn+1−(2q−1)n

2 .
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Das in [18] studied the structure of maximal cliques in Γ (Vα) and its clique num-
ber. In this process, he proved that Γ (Vα) possess two different classes of maxi-
mal cliques. Let M be a maximal clique in Γ (Vα) and S(M) = {SB(β) : β ∈ M}
and S[M] = {|SB(β)| : SB(β) ∈ S(M)}. Since M is a clique, SB(u) ∩ SB(v) �=
∅,∀u, v ∈ M. By maximality of M , if u ∈ M and SB(u) ⊂ SB(v) for some v ∈
Γ (Vα), then v ∈ M. As ∅ �= S[M] ⊂ N , by well-ordering principle, it has a
least element, say k. Then there exists some v∗ ∈ M with |SB(u∗)| = k, where
v∗ = c1αi1 + c2αi2 + . . . + ckαik .

Theorem 9 ([18]) Let M be a maximal clique in Γ (Vα). If k is the least element
of S[M] and k ≤ n

2 , then M belongs to a family of maximal cliques {Mk,i : 1 ≤ k ≤
n
2 ; i ∈ {1, 2, . . . , n}} ofΓ (Vα)where Mk,i = {v ∈ Γ (Vα) : αiSB(v)} and |SB(v)| ≥
k} and

|M | = (q − 1)
n−1∑

r=k−1

(
n − 1

r

)

(q − 1)r .

It is to be noted that for same value of k and by fixing different αi , we get different
maximal cliques. Since these maximal cliques depend both on k and αi , we get a
family of maximal cliques Mk,i where 1 ≤ k ≤ n

2 and i ∈ {1, 2, . . . , n} and M ∈
Mk,i .

Theorem 10 ([18]) Let M be a maximal clique in Γ (Vα). If k is the least element
of S[M] and k > n

2 , then k = � n
2 � + 1 and M = {v ∈ Γ (Vα : |SB(v)| ≥ � n

2 � + 1}
and

|M | =
n∑

r=k

(
n

r

)

(q − 1)r .

It is obvious from Theorem 9 that |Mk,i | is maximum when k = 1, i.e., M1,i =
{c1α1 + c2α2 + . . . + cnαn : ci = 0} and |M1,i | = (q − 1)qn−1. Thus, the clique
number of Γ (Vα) is

ω(Γ (Vα)) = max{(q − 1)qn−1,

n∑

r=� n
2 �+1

(
n − 1

r

)

(q − 1)r }

and it depends on the value of q and n.Amaximal clique M contains at most one αi ,

because if M contain αi and α j , then αi ∼ α j which contradicts that M is a clique.
Moreover, if M is a maximal clique containing αi , then M = M1,i . It follows since
every v ∈ M is adjacent to αi , i.e., every v has a non-zero component along αi and
hence M1,i ⊂ M. Now, by maximality of M1,i , it follows that M = M1,i .

Corollary 2 ([18]) Let V be a vector space over a finite field F with q elements.
(1) If q = 2, then ω(Γ (Vα)) = 2n−1.

(2) If q > 2 and n is odd, then ω(Γ (Vα)) = ∑n
r=� n

2 �+1

(n−1
r

)
(q − 1)r .

(3) If q = 2, then Γ (Vα), then 2n−1 ≤ χ(Γ (Vα)) ≥ 2n−1 + 2n−2 − n
2 .

(4) If q > 2, then Γ (Vα) is Hamiltonian.
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(5) If q = 2 and n ≥ 3, then Γ (Vα) is 2-connected.
(6) If q = 2 and n ≥ 3, then δ ≥ max{(|Γ (Vα)| + 2)/3, α(Γ (Vα))}.
(7) If q = 2 and n ≥ 3, then Γ (Vα) is Hamiltonian.

While Das in [13] was mainly interested in the study of interrelationship between
vector space isomorphisms and graph isomorphisms, also, the automorphism group
of the non-zero component graph was studied. In the conclusion part of the above-
mentioned paper, the author proposed the colouring of a non-zero component graph
as a topic of further research. After that in [18], he studied the clique number and
chromatic number for some particular cases and in [18] is a natural continuation of
the study in this direction. The main aim of this paper is to show that Γ (Vα) is a
weakly perfect graph. Also, it is proved that χ

′
(Γ (Vα)) = �(Γ (Vα)). In view of

the following results in [18], he proved that χ(Γ (Vα)) = ω(Γ (Vα)). Also, he gave
an explicit formula for χ(Γ (Vα)).

Theorem 11 ([22]) Let V be an n-dimensional vector space over the field Fq . Then
Γ (Vα) is weakly perfect.

LetV be a finite-dimensional vector space over a fieldF. IfF is an infinite field. Then,
it is not hard to see that the set {aα1}, where a runs over all non-zero elements of F,

is an infinite clique of Γ (Vα). Thus, we may assume that F is a finite field of order q,

where q is a power of a prime number. Let a = a1αi1 + . . . + akαik and b = b1α j1 +
. . . + blα jl be twodistinct vertices ofΓ (Vα) (a1, . . . , ak, b1, . . . , blare all non-zero).
Define the relation ∼ on V (Γ (Vα)) as follows: a ∼ b if and only if Sa = Sb,where
for every β ∈ V (Γ (Vα)) the set Sβ (skeleton of β) is the set of αi ′s with non-zero
coefficients in the basic representation of β with respect to {α1, α2, . . . , αn}. Indeed,
a ∼ b if and only if {αi1 , . . . , αik } = {α j1 , . . . , α jl }. It is easily seen that ∼ is an
equivalence relation on V (Γ (Vα)). By [a], we mean the equivalence class of a.

Theorem 12 ([22]) Let V be an n-dimensional vector space over the field Fq . Then
Γ (Vα) is weakly perfect.

The following corollaries directly follow from the above theorem.

Corollary 3 Let V be an n-dimensional vector space over the field Fq .

(1) If n is odd, then

ω(Γ (Vα)) = χ(Γ (Vα)) =
� n
2 �∑

i=0

(
n

i

)

(q − 1)n−i .

(2) If n is even, then

ω(Γ (Vα)) = χ(Γ (Vα)) =
n
2 −1∑

i=0

(
n

i

)

(q − 1)n−i +
(n

n
2

)
(q − 1)

n
2

2
.
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In the following theorem, Nikandish et al. [22] studied the edge chromatic number
of Γ (Vα) and proved that, for every positive integer n, χ

′
(Γ (Vα)) = �(Γ (Vα)).

Theorem 13 ([22]) Let V be an n-dimensional vector space over a field Fq . Then
the following statements hold:
(1) �(Γ (Vα)) = qn − 2.
(2) δ(Γ (Vα)) = qn − qn−1 − 1.
(3) The number of vertices with maximum degree in Γ (Vα) is (q − 1)n.
(4) The number of vertices with minimum degree in Γ (Vα) is n(q − 1).
(5) χ

′
(Γ (Vα)) = δ(Γ (Vα)).

The vertex connectivity and the girth of Γ (Vα) had been studied in [11]. If V is a
one-dimensional vector space over a field Fq with q ≥ 2) elements, then by Theorem
1 (5), Γ (Vα) is complete and Γ (Vα)∼= Kq−1. Hence, the vertex connectivity of the
non-zero component graph associated with a one-dimensional vector space over
a finite field of q elements is q − 2. In [11], Chelvam et al. were interested in the
vertex connectivity ofΓ (Vα) corresponding to k ≥ 2-dimensional vector spaces over
a finite field.

Theorem 14 ([11]) Let V be a k-dimensional vector space over a field Fq such that
k ≥ 2 and q ≥ 2. Then the following statements hold:
(1) The vertex connectivity of Γ (Vα) is qk−1(q − 1) − (q − 1).
(2) Γ (Vα) is planar if and only if either k = 1 and q ≤ 5 (or) k = 2 and q = 2 (or)
k = 3 and q = 2.
(3) Γ (Vα) is planar if and only if k = 1 and q ≤ 5 (or) k = 2 and q = 2 (or) k = 3,
q = 2.
(4) Γ (Vα) is toroidal if and only if k = 1 and q = 7, 8.
(5) g(Γ (Vα)) = 2 if and only if either k = 1 and q = 9 or k = 2 and q = 3.

In view of the following theorem, the authors in [2] analysed removability of Γ (Vα).

Theorem 15 [2] Let V be an n-dimensional vector space over a field Fq . Then the
following statements hold:
(1) If q = 2 and n = 2, then dimΓ (Vα) = 1.
(2) If q = 2 and n ≥ 3, then dimΓ (Vα) = n.

(3) If q ≥ 3, then dimΓ (Vα) = ∑n
k=1

(n
k

)
((q − 1)k − 1).

(4) If q ≥ 2 and n ≥ 3, then pdΓ (Vα) = n + (q − 1)n.

4 Non-zero Component Union Graph of a
Finite-Dimensional Vector Space

In this section, we assemble the results of non-zero component union graph studied
by the authors in [15].
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Definition 1 Let B be a basis of finite-dimensional vector space V over a field F.

Then any twodistinct vectorsu and v of non-zero component graphΓ (B) are adjacent
if and only if SB(u) ∪ SB(v) = B.

Example 3 Let F2 × F2 and F2 × F2 × F2 be the vector spaces over F2 and B1 =
{u1, u2}, B2 = {v1, v2, v3} be a basis of F2 × F2 and F2 × F2 × F2, respectively.
Clearly, V (Γ (B1) = {u1, u2, u1 + u2, 2u1, 2u2, u1 + 2u2, 2u1 + u2} and V (Γ (B2)

= {v1, v2, v3, v1 + v2, v2 +v3, v1 + v3, v1 + v2 + v3} and Non-zero Component
union graphs Γ (B1) and Γ (B2) are given by the following Figs. 4.1 and 4.2:

u1+u2 2u1+2u2

2u1+u2

u1+2u2

u1 u2

2u1 2u2

(B1)
F= F2

Figure 4.1

v3 v1+ v3

v2+ v3 v1+ v2+ v3

v2 v1

v2+ v1

(B2)
F= F2

Figure 4.2

Theorem 16 ([15]) Let V be a vector space over a field F. Let Γ (B1) and Γ (B2)

be the graphs associated with V w.r.t. two bases B1 and B2 of V. Then Γ (B1) and
Γ (B2) are graph isomorphic.

The above theorem shows that the graph properties associated with G do not depend
on the choice of the basis B. However, two vertices may be adjacent with respect to
one basis but non-adjacent to some other basis as shown in the following example.
LetV = R

2,F = Rwith two basesB1 = {α1 = (1, 0), α2 = (0, 1)} andB2 = {β1 =
(1, 1), β2 = (−1, 1)}. Consider a = (1, 1) and b = (2, 2). Clearly, a ∼ b in Γ (B1),
but a � b in Γ (B2).

Theorem 17 ([15]) Γ (B) is connected and diamΓ (B) = 2. The domination num-
ber of Γ (B) is one. Γ (B) is complete if and only if V is one-dimensional or V is
two-dimensional and |F| = 2. Girth of Γ (B) = 3 except when V is one-dimensional
with |F | = 2 or 3. Moreover, every vertex in Γ (B) belongs to some triangle in Γ (B).

Let Vn = {α ∈ V : |SB(u)| = n} where n is the dimension of the vector space V.

Clearly, Vn is a clique in Γ (B). It is to be noted that Vn is not a maximal clique as
Vn ∪ {α} is also a clique for any non-zero α ∈ V . Moreover, as vertices in Vn are
adjacent to all vertices in Γ (B), Vn is contained in any maximal clique of Γ (B).
In view of the following theorem, Das [15] studied maximal cliques in Γ (B) and a
proper colouring of Γ (B). Moreover, he proved that two non-zero component union
graphs are isomorphic if and only if the base vector spaces over the same field are
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isomorphic. Let n > 1 and M be a clique in Γ (B) and α ∈ M with |SB(α)| < n.

If β ∈ V be such that SB(β) ⊆ SB(α), then β � α. SB(α) ⊆ SB(β). In particular,
among all vectors α ∈ V \ Vn having the same skeleton SB(α), at most one of them
can be in a clique. Define ξi = �n

j=1α j − αi , for i = 1, 2, . . . , n and let Un−1 =
ξ1, ξ2, . . . , ξn. Observe that Un−1 is also a clique in Γ (B).

Theorem 18 ([15])M = Vn ∪Un−1 is a maximal clique in Γ (B).

The following theorem shows that the graph theoretical properties of Γ (B) depend
on the vector space.

Theorem 19 ([15]) Let V and W be two finite-dimensional vector spaces over the
same field F having bases B and B′. Then V and W are isomorphic as vector spaces
if and only if Γ (B) and Γ (B′) are isomorphic as graphs.

Theorem 20 ([15]) Let V be a vector space over a finite field F with q elements and
Γ (B) be its associated graph with respect to a basis B = {α1, α2, . . . , αn}. Then,
the degree of the vertex α = c1αi1 + c2αi2 + · · · + ckαik , where c1c2 . . . ck �= 0, is
(q − 1)n−kqk, if 1 < k < n qn − 2, if k = n.

Corollary 4 ([15]) The maximum and minimum degree of Γ (B) where F is a finite
field with q elements is� = qn − 2 and δ = q(q − 1)n − 1. Γ (B) is Eulerian if and
only if q is even.

Note that the order of base field q is odd, and the only odd degree vertices are the
vertices with maximum degree. The other vertices are of even degree. In view of
the following theorems, the author in ([15]) studied order, size, clique and chromatic
numbers of Γ (B):

Theorem 21 ([15]) IfV is an n-dimensional vector space over a finite field F with q
elements, then the order of Γ (B) is qn − 1 and the size m of Γ (B) is (q−1)n [(q+1)n−3]

2 .

Theorem 22 ([15]) LetV be an n-dimensional vector space over a finite field Fwith
q elements. Then the clique number and chromatic number of Γ (B) are both equal
to n + (q − 1)n, i.e., Γ (B) is weakly perfect.

In viewof the following theorems, the author in [15] studied themaximal independent
sets in Γ (B) and provide a lower bound on the independence number of Γ (B).

Theorem 23 ([15]) I = {α ∈ Γ (VB) : S(α) ⊆ {α1, α2, . . . , αn−1}} is a maximal
independent set in Γ (VB). Moreover, if F is a finite field with q elements, |I | =
qn−1 − 1.

Theorem 24 ([15]) Let I be a maximal independent set in Γ (VB) and S[I ] =
{|S(α)| : α ∈ I }. If k is themaximumelement of S[I ]with k < n/2, then k = � n

2 � − 1
and I = {α ∈ Γ (VB) : |S(α)| < n

2 }. Moreover, if F is a finite field with q elements,

|I | =
� n
2 �−1∑

r=1

(
n

r

)

(q − 1)r .

Corollary 5 Independence number of Γ (VB) is greater than or equal to qn−1 − 1.
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5 Distinct Component Graph on Finite-Dimensional Vector
Space

The authors in [23] introduced component inclusion graph I∗
B(V) and studied various

fundamental properties of I∗
B(V). In this section, we give all fundamental results of

I∗
B(V) studied by the authors [23].

Definition 2 LetV be an n-dimensional vector space over a fieldF.Then component
inclusion graph I∗

B(V) is a simple(undirected) graph with the set of vertices V
∗, and

any two distinct vertices u and v of IB(V) are adjacent if and only if SB(u) �= SB(v).

The following example illustrates the graphical representation ofF2
3 andF

3
2 by distinct

component graphs I∗
B1

(F2
3) and I∗

B2
(F3

2), respectively.

Example 4 Let F3 × F3 and F2 × F2 × F2 be the vector spaces over F3 and F2,
respectively, and B1 = {u1, u2}, B2 = {v1, v2, v3} be a basis of F3 × F3 and F2 ×
F2 × F2, respectively. Clearly, V (I∗

B1
(F3 × F3)) = {u1, u2, u1 + u2, 2u1, 2u2, u1 +

2u2, 2u1 + u2} and V (I∗
B2

(F2 × F2 × F2)) = {v1, v2, v3, v1 + v2, v2 +v3, v1 + v3,

v1 + v2 + v3} and distinct component graphs I∗
B1

(F3 × F3) and I∗
B2

(F2 × F2 × F2)

are given by the following Figs. 5.1 and 5.2:

u1+u2 2u1+2u2

2u1+u2

u1+2u2

u1 u2

2u1 2u2

I ∗
B1

(F3 ×F3)

F= F3

Figure 5.1

v3 v1+ v3

v2+ v3 v1+ v2+ v3

v2 v1

v2+ v1

I ∗
B2

(F2 ×F2 ×F2)

F= F2

Figure 5.2

Theorem 25 ([23]) Let V be an n-dimensional vector space over the field F. Then
the following statements hold:
(1) I∗

B(V) is an edgeless graph if and only if n=1.
(2) I∗

B(V) is connected and diam(I∗
B(V)) ≤ 2.

(3) I∗
B(V) is triangulated and hence gr(I∗

B(V)) = 3.

Theorem 26 ([23]) LetV be a finite-dimensional vector space over the field F. Then
I∗
B(V) = K2n−1 if and only if V is n-dimensional with |F| = 2.

The following corollary gives a characterization on the diameter of I∗
B(V).
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Corollary 6 ([23]) Let V be n-dimensional vector spaces over F such that n ≥ 2.
Then

diam(I∗
B(V)) =

{
1, if |F| = 2
2, if |F| �= 2.

Theorem 27 ([23]) Let V be n-dimensional vector spaces over F such that n ≥ 2.
Then

γ (I∗
B(V)) =

{
1, if |F| = 2
2, if |F| �= 2.

By the above theorem, the author in [23] characterized the domination number of
I∗
B(V). Moreover, in view of the following theorem, they also studied clique and

chromatic numbers of I∗
B(V).

Theorem 28 ([23]) Let V be a finite-dimensional vector space. Then the following
statements hold:
(1) ω(I∗

B(V)) = 2n − 1 if and only if V is n-dimensional.
(2) If V is an n-dimensional, then χ(I∗

B(V)) = 2n − 1.

The following theorem shows that the graph theoretical properties do not depend on
the choice of the basis.

Theorem 29 ([23]) Let V be a finite-dimensional vector space and I∗
B1

(V), I∗
B2

(V)

be the graphs associated with respect to the basisB1 andB2. Then the graphs I∗
B1

(V)

and I∗
B2

(V) are isomorphic.

Corollary 7 ([23]) Let V1 and V2 be two finite-dimensional vector spaces over the
same fieldFwith basesB1 andB2. ThenV1 andV2 are isomorphic (as vector spaces)
if and only if I∗

B1
(V1) and I∗

B2
(V2) are isomorphic (as graphs).

Corollary 8 ([23]) Let V be a vector space over a field F and I∗
B1

(V), I∗
B2

(V) be
the graphs associated with V with respect to the bases B1 = {u1, u2, · · · , un} and
B2 = {v1, v2, · · · , vn} of V, respectively. Then the graphs I∗

B1
(V) and I∗

B2
(V) are

isomorphic.

Let V be a one-dimensional vector space over Z5 generated by B = {u} (say).
Then I∗

B(V) is an edgeless graph of 4 vertices with V (I∗
B(V)) = {u, 2u, 3u, 4u}.

Consider the map T : I∗
B(V) → I∗

B(V) given by T(u) = 2u, T(2u) = u, T(3u) =
4u, T(4u) = 3u. Clearly, T is a graph isomorphism, but as T(2u) = u �= 4u =
2(2u) = 2T(u) and T is not linear.
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Theorem 30 ([23]) Let V be a vector space over a finite field F with q elements and
I∗
B(V) be its associated graph with respect to a basis B = {v1, v2, . . . , vn}. Then the

following statements hold:
(1) n(I∗

B(V)) = qn − 1.
(2) If v ∈ V (I∗

B(V)) such that |SB(v)| = k, then deg(v) = qn − 1 − (q − 1)k .
(3) δ(I∗

B(V)) = qn − 1 − (q − 1)n and �(I∗
B(V)) = qn − q.

(4) I∗
B(V)) is Eulerian.

(5) m(I∗
B(V)) = 1

2 (
n∑

i=1

(n
i

)
(qn − 1)(q − 1)i − (q − 1)2i ).

6 Component Intersection Graphs on Finite-Dimensional
Vector Spaces

In this section, we study the component intersection graphs IB(V) proposed by the
authors in [8]. Let B be a basis of an n-dimensional vector spaceV. Then the compo-
nent intersection graph IB(V) is a simple (undirected) graph with the set of vertices
V \ {u ∈ V : |SB(u)| = n}, and any two distinct vertices u and v of IB(V) are adja-
cent if and only if SB(u) ∩ SB(v) = ∅. We collect some basic results concerning
connectedness, diameter, completeness, clique number and chromatic number of
IB(V).

Example 5 Let F2 × F2 and F2 × F2 × F2 be the vector spaces over F2 and B1 =
{α1, α2}, B2 = {β1, β2, β3} be the bases of F2 × F2 and F2 × F2 × F2, respectively.
Clearly, V (IB1(F2 × F2)) = {α1, α2} and V (IB2(F2 × F2 × F2)) = {β1, β2, β3,

β1 + β2, β2 +β3, β1 + β3}, respectively. The component intersection graphs
IB1(F2 × F2) and IB2(F2 × F2 × F2) are given by the following Figs. 6.1
and 6.2:

IB2(F2 ×F2 ×F2)IB1(F2 ×F2)

Figure 6.2Figure 6.1

In view of above example, it may be noticed that the vertex set of our proposed graph
IB1(F2 × F2) is different from the vertex set of Γ ((F2 × F2)α) and Γ (F2 × F2)B1

introduced by Das [13, 15]. Also, the vertex set of IB2(F2 × F2 × F2) is different
from the vertex set of Γ ((F2 × F2 × F2)α) and Γ (F2 × F2 × F2)B2 . The vertices
α1 and α2 are not adjacent in Γ (Vα), but are adjacent in IB1(F2 × F2). Moreover,
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β1 and β2 are not adjacent in Γ (F2 × F2 × F2)B2 and Γ ((F2 × F2 × F2)β), but are
adjacent in IB2(F2 × F2 × F2). Let B = {γ1, γ2, . . . , γn} be the basis of a vector
space V such that n ≥ 3. The vertex set of IB(V) is different from the vertex set of
Γ (V)B and Γ (Vγ ). Also, γ1 and γ2 are not adjacent in Γ (Vγ ) and Γ (V)B, but are
adjacent in IB(V).

Theorem 31 ([8]) Let V be a vector space over a finite field F with q elements and
IB(V) be its associated graph with respect to a basis B = {v1, v2, . . . , vn}. Then the
following statements hold:
(1) IB(V) is a complete bipartite graph if and only if n = 2.
(2) IB(V) is complete if and only if dim(V) = 2 and F = F2.

The following theorems characterized diameter and girth of IB(V).

Theorem 32 ([8]) Let V be an n-dimensional vector space over the field F. Then

diam(IB(V)) =
⎧
⎨

⎩

1, if n = 2 and F = F2

2, if n = 2 and F �= F2

3, if n ≥ 3.

Theorem 33 ([8]) Let V be an n-dimensional vector space over F. Then

gr(IB(V)) =
⎧
⎨

⎩

∞, if n = 2 and F = F2

4, if n = 2 and F �= F2

3, if n ≥ 3.

Theorem 34 ([8]) LetV be an n-dimensional vector space over the field F such that
n ≥ 4. Then IB(V) is triangulated.

In view of the following theorem, the authors in [8] studied clique, chromatic and
domination number of IB(V).

Theorem 35 ([8]) Let V be a finite-dimensional vector space over the field F. Then
the following statements hold:
(1)([8]) V is n-dimensional if and only if ω(IB(V)) = n.

(2)([8]) if V is n-dimensional, then χ(IB(V)) = n.
(3)([8]) V is n-dimensional, then γ (IB(V)) = n.

Corollary 9 ([8]) Let V1 and V2 be two finite-dimensional vector spaces over the
field F. Then V1 and V2 are isomorphic (as vector spaces) if and only if IB1(V1)

and IB2(V2) are isomorphic (as graphs).

Corollary 10 ([8]) Let V be a vector space over a field F and IB1(V), IB2(V)

be the graphs associated with V with respect to the bases B1 = {u1, u2, · · · , un}
and B2 = {v1, v2, · · · , vn} of V, respectively. Then IB1(V) and IB2(V) are graph
isomorphic.

The above corollary shows that the graph theoretic properties ofIB(V) do not depend
on the choice of the basis B.
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Theorem 36 ([8]) Let V be an n-dimensional vector space. Then the following
statements hold:
(1) There exists a graph homomorphism from IB(V) to IB(V)[B].
(2) If n = 2k + 1, i.e., n is odd, then Sk+1 is a maximal independent set in IB(V).

(3) If n = 2k, i.e., n is even, thenSk+1 ∪ [Sk
vi
] is amaximal independent set inIB(V).

Corollary 11 ([8]) Let V be an n-dimensional vector space over a field Fq . Then
the following statements hold:
(1) If v is a vertex in IB(V) such that |SB(v)| = k, then deg(v) = qn−k − 1.
(2) The order of IB(V) is qn − (q − 1)n − 1.
(3) δ = q − 1 and � = qn−1 − 1.
(4) IB(V) is Eulerian if and only if q is even.

7 Subspace Inclusion Graph In(V)

In this section, we collect the fundamental results of subspace inclusion graph [16,
17]. We start our discussion with the following theorems.

Theorem 37 ([16]) Let V be an n-dimensional vector space. Then the following
statements hold:
(1) If W is a subspace of V with dimension greater than 1, then In(W) is a subgraph
of In(V).
(2) If n ≥ 3, then diam(In(V)) = 3.
(3) If n ≥ 3, then In(V) is not planar.

Theorem 38 ([16]) Let V be a finite-dimensional vector space over a field F. V is
an n-dimensional vector space if and only if ω(In(V)) = χ(In(V)) = n − 1.

In view of the following theorem, the author in [16] studied clique and chromatic
number of In(V).

Remark 1 Theorem 38 shows that In(V) is weakly perfect. In [17], the author
proved that the graphIn(V) is perfect, i.e.,ω(H) = χ(H) for every induced subgraph
H of In(V).

Theorem 39 ([17]) Let V be a finite-dimensional vector space. Then In(V) is per-
fect.

The following theorem shows that graph theoretic properties depend on the choice
of the vector spaces.

Theorem 40 ([16]) Let V1 and V2 be two finite-dimensional vector spaces over the
same field F. Then V1 and V2 are isomorphic (as vector spaces) if and only if In(V1)

and In(V2) are isomorphic (as graphs).
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Theorem 41 Let V be an n-dimensional vector space over a field Fq . Then the
following holds:
(1) ([16]) If W is a k-dimensional non-trivial proper subspace of V, then

deg(W) =
k−1∑

i=1

(
k

i

)

q

+
n−k−1∑

j=1

(
n − k

j

)

q

.

(2) ([16]) If W1 and W2 be k and (n − k)-dimensional (respectively) non-trivial
proper subspace of V, then deg(W1) = deg(W2).
(3) ([17]) If q is odd, then In(V) is Eulerian.
(4) ([17]) If q is even, then In(V) Eulerian if and only if n is even.

In case of three-dimensional vector space V, the following theorem gives some
important properties of In(V).

Theorem 42 ([16, 17]) Let V be an n-dimensional vector space over a field Fq .

Then the following holds:
(1) In(V) is bipartite if and only if n = 3.
(2) In(V) is regular if and only if n = 3.
(3) In(V) is edge-transitive.
(4) In(V) is vertex-transitive, vertex connectivity of In(V) is q + 1 and edge con-
nectivity of

In(V) is q + 1.
(5) In(V) is a retract of a Cayley graph.
(6) The independence number of In(V) is q2 + q + 1.
(7) If q = 2, 3, 5, 8 or 17, then In(V) is Hamiltonian.

In case of a three-dimensional vector space, the following conjecture is posed by
Das in [17].

Theorem 43 ([17, Conjecture 6.1]) Let V be a three-dimensional vector space over
a field Fq . Then the following holds:
(1) In(V) is a Cayley graph.
(2) In(V) is distance regular.
(3) In(V) is distance regular.
(4) In(V) is a Hamiltonian.

Ma et al. [19] studied the independence number of In(V) in view of the following
theorem.

Theorem 44 ([19]) LetV be an n-dimensional vector space over Fq , where n = 2m
or n = 2m + 1. Then α(In(V)) = (n

m

)
q
.

The authors together with Mohammad [6] generalized In(V) as a subspace-based
subspace inclusion graph IWn (V), where the vertex set V (IWn (V)) is the collection
of all subspaces U of V such that U + W �= V and U � W, i.e., V (IWn (V)) =
{U ⊆ V | U + W �= V,U � W} and any two distinct vertices U1 and U1 of IWn (V)
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are adjacent if and only if either U1 + W ⊂ U2 + W or U2 + W ⊂ U1 + W. They
proved the following interesting results.

Theorem 45 ([6]) Let W be a k-dimensional subspace of an n-dimensional vector
space V over a field F. Then the following statements hold:
(1) If k = 0, then IWn (V ) = In(V).

(2) IfW1, W2 are two vertices of IWn (V) such that dim(W1 + W) = dim(W2 + W),

then W1 is not adjacent to W2, i.e., W1 � W2 in IWn (V).

(3) If n − k = 1, then IWn (V) is an empty graph.
(4) If n − k ≥ 4, then IWn (V) is triangulated.
(5) IWn (V) is never complete.

In view of the following theorem, the authors in [6] studied diameter, clique and
chromatic number of IWn (V).

Theorem 46 ([6]) Let W be a k-dimensional subspace of an n-dimensional vector
space V over a field F. Then the following statements hold:
(1) If n − k ≥ 3, then diam(IWn (V)) = 3.
(2) χ(IWn (V)) = n − k − 1.

Theorem 47 ([6]) Let W be a subspace of a finite-dimensional vector spaceV. Then
dim(V) − (dim(W) + 1) = m if and only ifω(IWn (V)) = m,wherem = dim(V) −
(dim(W) + 1).

Theorem 48 ([6]) Let W1 and W2 be two subspaces of a finite-dimensional vector
space V. Then In(W1) � In(W2) if and only if dim(W1) = dim(W2).

The above theorem shows that the graph theoretic properties also depend on the
choice of subspaces.

Theorem 49 ([6]) Let W be a k-dimensional subspace of an n-dimensional vector
space of V over a finite field F with q elements. Then the set containing those
subspacesU ofV such thatU + W = V, i.e., {U ⊆ V | U + W = V} has (

∑k−1
r=0 nr +

1) elements, where

nr = (qk − 1)(qk − q) · · · (qk − qr−1)(qn − qk)(qn − qk+1) · · · (qn − qn−1)

(qn−k+r − 1)(qn−k+r − q) · · · (qn−k+r − qn−k+r−1)
.

Theorem 50 ([6]) Let W be a k-dimensional subspace of an n-dimensional vector
space of V over a finite field F of order q. Then IWn (V) is a graph of order G(n, q) −
(G(k, q) + ∑k−1

r=0 nr + 1), where

nr = (qk − 1)(qk − q) · · · (qk − qr−1)(qn − qk)(qn − qk+1) · · · (qn − qn−1)

(qn−k+r − 1)(qn−k+r − q) · · · (qn−k+r − qn−k+r−1)

and G(n, q) is the Galois number. Particularly, when W = (0), order of IWn (V) is
G(n, q) − 2.
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Theorem 51 ([6]) Let W be a k-dimensional subspace of an n-dimensional vector
space of V over a finite field F of order q and U ∈ V (IWn (V)) such that dim(U +
W) = l. Then deg(U) = ∑l−k−1

r=1 [l−k
r ]q(∑k−1

i=0 ni + 1) + ∑n−l−1
s=1 [n−l

s ]q(∑k−1
i=0 pi +

1), where

ni = (qk − 1)(qk − q) · · · (qk − qi−1)(qk+r − qk)(qk+r − qk+1) · · · (qk+r − qk+r−1)

(qr+i − 1)(qr+i − q) · · · (qr+i − qr+i−1)

and

pi = (qk − 1)(qk − q) · · · (qk − qi−1)(ql+s − qk)(ql+s − qk+1) · · · (ql+s − ql+s−1)

(ql+s−k+i − 1)(ql+s−k+i − q) · · · (ql+s−k+i − ql+s−k+i−1)
.

Theorem 52 ([6]) Let W be a k-dimensional subspace of an n-dimensional vector
space V over Fq . Then the following statements hold.
(1) If q is odd, then IWn (V) is Eulerian.
(2) If q is even, then IWn (V) is Eulerian if and only if n − k is even.

Acknowledgements The authors are indebted to the referee for his/her useful suggestions and
critical comments.

References

1. Abawajy, J.H., Kelarev, A.V., Chowdhury, M.: Power graphs: a survey. Electron. J. Graph
Theory Appl. 1(2), 125–147 (2013)

2. Ali, U., Bokhary, S.A., Wahid, K., Abbas, G.: On resolvability of a graph associated to a finite
vector space. J. Algebra Appl. (2019). https://doi.org/10.1142/S0219498819500294

3. Anderson, D.F., Badawi, A.: On the zero-divisor graph of a commutative ring. Commun.
Algebra 36, 3073–3092 (2008)

4. Anderson, D.F., Livingston, P.S.: The zero-divisor graph of a commutative ring. J. Algebra
217, 434–447 (1999)

5. Afkhami, M., Khashyarmanesh, K., Sakhdari, S.M.: The annihilator graph of a commutative
semigroup. J. Algebra Appl. 2(14), 1550015 (2015)

6. Ashraf, M., Kumar, M., Mohammad, G.: A subspace based subspace inclusion graph. Contrib.
Discret. Math. 15(2), 73–83 (2020)

7. Ashraf, M., Kumar, M., Mohammad, G.: Regular graph on vector spaces. Aligarh Bull. Math.
38(1–2), 83–95 (2019)

8. Ashraf, M., Kumar, M.: Component intersection graphs on finite-dimensional vector spaces.
Ars Combin. (To Appear)

9. Badawi, A.: On the annihilator graph of a commutative ring. Commun.Algebra 42, 1–14 (2014)
10. Beck, I.: Colouring of commutative rings. J. Algebra 116, 208–226 (1988)
11. Chelvam, T.T., Ananthi, K.P.: On the genus of graphs associated with vector spaces. J. Algebra

Appl. https://doi.org/10.1142/S0219498820500863
12. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem.

Ann. Math. 164, 51–229 (2006)
13. Das, A.: Non-zero component graph of a finite dimensional vector space. Commun. Algebra

44, 3918–3926 (2016)

https://doi.org/10.1142/S0219498819500294
https://doi.org/10.1142/S0219498820500863


Some Recent Results on the Graphs of Finite-Dimensional Vector Spaces 381

14. Das, A.: On non-zero component graph of vector spaces over finite fields. J. Algebra Appl. 16,
1750007 (2017). https://doi.org/10.1142/S0219498817500074

15. Das, A.: Non-zero component union graph of a finite dimensional vector space. Linear Multi-
linear Algebra 6, 1276–12875 (2016)

16. Das, A.: Subspace inclusion graph of a vector space. Commun. Algebra 44, 4724–4731 (2016)
17. Das, A.: On subspace inclusion graph of a vector space. Linear Multilinear Algebra 66(3),

554–564 (2016)
18. Das, A.: On non-zero component graph of a vector space over finite fields. Commun. Algebra

44, 4724–4731 (2016)
19. Ma, X., Wang, D.: Independence number of subspace inclusion graph and subspace sum graph

of a vector space. Linear Multilnear Algebra 66(12), 2430–2437 (2018)
20. Plesnik, J.: Critical graphs of given diameter. Acta Fac. Rerum Natur. Univ. Comenian. Math.

30(12), 71–93 (1975)
21. Goldman, J., Rota, G.C.: The number of Subspaces of a vector space. In: Recent Progress in

Combinatorics Proceedings of Third Waterloo Conference on Combinatorics 1968, pp.75–83.
Academic, New York (1969)

22. Nikandish, R., Maimani, H.R., Khaksari, A.: Coloring of a non-zero component graph associ-
ated with a finite dimensional vector space. J. Algebra Appl. 18(8), 1750173 (2017). https://
doi.org/10.1142/S0219498817501730

23. Parveen, N., Ashraf,M., Kumar, M.: Distinct component graph on a finite dimensional vector
spaces. Open Math., (To Appear)

24. Syvester, J.: Proof of the Hitherto Undemonstrated Fundamental Theorem of Invariants, pp.
117–126. Chelsea, New York (NY) (1973)

25. West, D.W.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Upper Saddle River (2001)
26. White, A.T.: Graphs, Groups and Surfaces. North Holland, Amsterdam (1973)

https://doi.org/10.1142/S0219498817500074
https://doi.org/10.1142/S0219498817501730
https://doi.org/10.1142/S0219498817501730


Two Value Graph Magma Algebras and
Amenability

Pınar Aydoğdu, Joaquín Díaz Boils, Sergio R. López-Permouth,
and Rebin A. Muhammad

Abstract Weintroduce two value graphmagmaalgebras and examine the amenabil-
ity of their bases for the commutative case. We use these algebras to construct a
commutative algebra which has a unique simple basis up to mutual congeniality and
no projective bases.

Keywords Amenable bases · Congeniality of bases · Proper congeniality ·
Simple Bases · Infinite-dimensional algebras

1 Introduction

Let A be an infinite-dimensional algebra over a field F and B be a basis for A. Let
P be the F-vector space consisting of the direct product, indexed by B, of copies
of the field F . P may alternately be denoted by B P ,

∏
b∈B Fb or = FB . In [2],

the feasibility of a (left) A-module structure on P that is natural in the sense that
it extends the module structure A A is discussed. To that avail, the notion of a (left)
amenable basis B is defined by a condition that guarantees that B P has such a (left)
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A-module structure. When that is the case, one writes P = BM and says that BM
is the basic submodule induced by the amenable basis B.

Thequestionofwhether amenable bases yield isomorphicmodule structures arises
naturally and the notion of congeniality of bases is introduced in the same work in
order to investigate it. Since its inception, the study of these and other related notions
has seen significant activity (e.g. [3, 9] and [8]). The notions of amenability and
congeniality have even been extended to infinite-dimensional modules over arbitrary
algebras in [9] and [8].

Both amenability of bases and congeniality among them boil down to a require-
ment that certain linear transformations have representations which are row- and
column-finite. Row- and column-finite have historically been the subject of much
interest in the mathematical community; the survey paper [1] is a good introduction
to some of the problems pertaining to the subject.

The remarkable result that any countable family of infinite matrices can be con-
jugated simultaneously to make each one of its members row- and column-finite
(see [12]) was instrumental to prove in [2] that every countable-dimensional algebra
has at least one (left) amenable basis. That result raised the question of whether it
is possible to have an algebra where all bases are amenable. In [3], it is shown that
there is no algebra such that every basis is amenable; in fact, it is proved that for
any left amenable basis B, there exist infinitely many non-amenable bases which
are discordant toB and one another.

Also in [3], certain contracted semigroup algebras are considered where the semi-
group is induced by a graph. The construction from [6] and [14] required some adap-
tations because the structures considered earlier involved exclusively finite graphs
while, in our context, we are only interested in graphs over infinite sets of vertices.
A more detailed account of this construction opens Sect. 3.

Graph algebras have been instrumental to answer open questions regarding the
amenability of bases. Non-commutative infinite-dimensional graph algebras are con-
structed in [3], where the notions of amenability and simplicity are not left-right sym-
metric. Other examples of one-sided amenable bases for algebras of infinite matrices
may be found in [3]. Another question raised in [2] is whether all algebras have sim-
ple or projective bases; non-commutative graph algebras which have neither simple
nor projective bases were constructed in [3].

In [2], it is shown that the algebra F[x] has at least as many pairwise discordant
simple bases as there are elements in F∗ for a field F . It is asked if all algebras have
simple bases and, if so, how many pairwise discordant simple bases can you have?
Note that the same questions can be asked for projective bases as well; the situation
with projective bases is a little more intriguing since we do not have any examples
of an algebra with a projective basis. As mentioned above, a negative answer is
given to the existence question in [3] and an example of a non-commutative algebra
with a unique simple basis is given. In this work, inspired by the work in [3], we
introduce a family of algebras which we call two value graph algebras and examine
the amenability of their bases in the commutative case; we use two value graph
algebras to construct a commutative algebra which has a unique simple basis up to
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mutual congeniality and has no projective bases (see Sect. 5). Two value magmas
are also studied in [7] for different purposes.

In Sect. 2, we recall the basic notions for the convenience of the reader. In Sect. 3,
we construct two value graph algebras induced by two value graph magmas. Since
we are working on associative algebras, we characterize when a two value graph
magma is associative. The structure of commutative two value graph algebras is
investigated in Sect. 4; we determine and classify graphs that induce commutative
two value magmas.

In Sect. 5, we give some necessary and sufficient conditions for bases to be
amenable for those commutative two value graph magma algebras which are con-
structed on graphs that cannot be decomposed into two infinite graphs. Moreover, we
show algebras which do not have projective bases and have unique simple bases up
to mutual congeniality. Section 6 deals with the amenability of bases for the algebras
that are constructed on the graphs which can be written as a direct sum of infinite
graphs.

2 Preliminaries

We begin this section with some general notational conventions. Given two basesB
and C of a vector space V , and a linear transformation T : V → V , for an element
v ∈ V , the notation [v]B refers to the coordinates of v with respect to the basis B,
and the matrix [T ]CB to the representation of T with respect to the bases B and C .
In other words, [T ]CB has rows indexed by the elements of C and columns indexed
by those of B in such a way that the bth column of [T ]CB is [T (b)]C . For all T ,
the matrix [T ]CB is column-finite. The identity [T ]CB [v]B = [T (v)]C holds for all
v ∈ V . For any two basesB and C , the matrix Q = [I ]CB , representing the identity
map I with respect to B and C serves as a change of basis matrix, in the sense
that, as Q−1 = [I ]BC , the identity [T ]CC = Q[T ]BBQ−1 holds for any endomorphism
T : V → V . Note that Q is an invertible column-finite matrix having a column-finite
inverse. A matrix Q is change of basis matrix if and only if it is an invertible column-
finite matrix with column-finite inverse. Not all invertible column-finite matrices
have a column-finite inverse. We use the simplified notation [T ]B instead of [T ]BB .

Let M= BM denote the left A-module structure on B P which extends A A.
Notice thatMmay be viewed as {φ : B → F}. Therefore, an element φ ∈ Mmay
be denoted by φ = (φ(b))b∈B or wemay also write φ = ∑

b∈B φbb, with φb = φ(b)
whenever b ∈ B. Define a product of elements of A with elements from M. It
suffices to define bφ for any b ∈ B and φ ∈ M. If all sums involved were finite, one
would necessarily have that, for any c ∈ B, [bφ(c)] = ∑

d∈bB c
(bd)cφ(d), where

bBc = {d ∈ B|(bd)c �= 0}. This need for the requirement that the sums be finite
inspires the definition of amenability given in [2].

Let S be a non-empty set. A multiset M with underlying set S is a set of ordered
pairs

M = {(si , ni )|si ∈ S, ni ∈ Z
+, si �= s j fori �= j}.
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The number ni is referred to as themultiplicity of the elements si inM . If the underly-
ing set is finite, then the multiset is said to be finite. One often writes out the elements
of a multiset according to the multiplicities, as in M = {x1, x1, x2, x2, x2, x3, . . .}
(see, for instance, [13]). We recall some basic notions from the work [2].

Definition 1 A basisB for an infinite-dimensional F-algebra A is left amenable if
for all r ∈ A, the column-finite matrix [lr ]B , where lr : A → A is the left multipli-
cation by r , is also row-finite. A right amenable basis is defined similarly.

Definition 2 A basis B is said to be congenial to a basis C if for every element
c ∈ C there exists only finitelymany elements b ∈ B such that,when b is represented
in terms of elements of C , the representation uses a non-zero coefficient for c.
Equivalently, B is congenial to C if the transition matrix [I ]CB is row-finite. If, in
addition, the inverse [I ]BC is also row-finite, then we say that the bases B and C
are mutually congenial. WhenB is congenial to C , left multiplication by [I ]CB is an
F-linear map from B P to C P which we call a congeniality map. When B and B
are both amenable, and B is congenial to C , the congeniality map is a A-module
homomorphism.

While congeniality is not necessarily symmetric (see [2, Examples 3.2]), mutual
congeniality is an equivalence relation. These observations give rise to the following
definitions.

Definition 3 If B is congenial to C but C is not congenial to B, then we say that
B is properly congenial to C . If neither B is congenial to C nor C is congenial to
B, then we say that B and C are discordant.

Relations between congeniality and amenability are established in [2, Theorem
3.5]. It is an interesting fact that congeniality maps are onto [2, Sect. 4], which yields
the impression that whenB is congenial to C , B P is larger than (or isomorphic to)
C P . This motivates the following definitions.

Definition 4 A left amenable basisB is called left simple if it is not properly conge-
nial to any other amenable basis, and it is called left projective if there does not exist
any left amenable basis which is properly congenial to B. Likewise, right simple
and right projective bases are defined.

[[2, Sect. 5] provides examples of abundant mutually discordant simple bases in
the algebra of polynomials with a single variable. It must be noted that the existence
of projective bases is still largely hypothetical for not a single example has yet been
given. We show below algebras where no simple bases can be found as well as
somewhere projective bases can be proven not to exist. Recently, it has been shown
that no graph magma algebra has a projective basis (see [9]). In [[2], Theorem 5.2],
it is shown that the standard basis {xi : i ∈ N} for the polynomial algebra F[x] over
a field F is simple. It is tempting to think that the standard basis B = {xi : i ∈ Z}
for the algebra of Laurent polynomials F[x, x−1] over a field F is simple. However,
whileB is indeed amenable, it is not simple; that is the subject of our next proposition.
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Proposition 1 The standard basisB = {xi : i ∈ Z} for the algebra of Laurent poly-
nomials F[x, x−1] over a field F is not simple.

Proof Consider the basis C = {1} ∪ {1 + x−1, 1 + x−1 + x, 1 + x−1 + x + x−2,

1 + x−1 + x + x−2 + x2, · · · } for F[x, x−1]. It is easy to see that B is properly
congenial to C . We prove that C is amenable. Denote

cm =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 +
p∑

i=1

xi +
p∑

j=1

x− j if m = 2p,

1 +
p−1∑

i=1

xi +
p∑

j=1

x− j if m = 2p − 1

with c2p − c2p−1 = x p and c2p+1 − c2p = x−(p+1).
In order to show that C is amenable, it suffices to show that [Lx ]C and [Lx−1]C

will have finite non-zero rows and columns. That is indeed the case, as shown by the
following two equations:

xcm =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

m+1∑

i=m−1

(−1)i ci if m = 2p − 1,

m+2∑

i=m−2

(−1)i ci if m = 2p

(1)

x−1ċm =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

m+2∑

i=m−2

(−1)i ci if m = 2p − 1,

m+1∑

i=m−1

(−1)i ci if m = 2p.

(2)

�
Note, however, that, while we have shown that standard basis for the Laurent

polynomial algebra F[x, x−1] is not simple, the question of whether F[x, x−1] has
a simple basis is still open.

3 Two Value Graph Magma Algebras

Graph magma algebras are introduced in [3] and have proven to be a fertile setting
for answering many questions about amenability-related questions. For the sake of
comparison, we begin by reviewing here some of the basic facts about those algebras.

It is important to point out that in [6] and [14] (and all other literature that we
are aware of), the authors use the expression graph algebras for the magmas under
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consideration, even in the general case when the operations are not even expected
to be associative. We, on the other hand, call a graph magma what [6] and [14]
call a graph algebra, and reserve the expression graph algebra for the contracted
semigroup algebra over an associative graph magma. This terminology is introduced
explicitly in [3] to avoid confusion and is influenced by the common trend in the
literature to use the expression magma for binary operations considered without any
further assumptions. References for contracted semigroup algebras include [5, 11]
and [10].

Definition 5 1. A graph Magma Algebra is a modified version of a semigroup
algebra; something that in the literature is known as a contracted semigroup
algebra ([5, 10, 11], etc.). For a field F and a monoid S with an annihilator
element 0 ∈ S (an element such that 0x = x0 = 0, for all x ∈ S). The contracted
semigroup algebra one gets from F and S is the quotient of the semigroup algebra
with 0 ∈ S identified with 0 ∈ F .

2. The semigroup that we use for Graph Magma Algebras is easily described in
graph theoretic terms; consider a simple directed graphG = (V, E), with infinite
vertex set V and set of edges E . For our purposes, it suffices to consider the case
when V = {vi }∞i=1 is countable.
Let S = {0} ∪ {vi }i∈N where v0 = 1 (in other words, S = V ∪ {0, 1}). Then,
(for all i) define 0 ∗ vi = 0 = vi ∗ 0, 1 ∗ vi = vi = vi ∗ 1 and, for i, j > 0,

vi ∗ v j =
{

vi (vi , v j ) ∈ E

0 otherwise.

An additional condition is required to guarantee that this operation makes S into a
semigroup; as shown in [3], for example, that condition is as follows:

Theorem 1 The operation ∗ : S × S → S defined above is associative exactly
when, for all u, v, w ∈ V , if (u, v) ∈ E then (u, w) ∈ E if and only if (v.w) ∈ E.

Two value graph magma algebras are monoid algebras; this is in direct contrast
with (one value) magma algebras; there is no need for contraction here since we are
not dealing with a monoid and not with a semigroup with an annihilator element 0.
There are formal similarities, nonetheless; outside of that technical observation, the
constructions are indeed very similar.

Definition 6 Consider a directed graphG = (V, E), with a countably infinite vertex
set V = {xi }∞i=1 and a set of edges E . We identify the set of edges with a subset of
V × V . The two value graphmagma ofG is defined to be a set with universe V ∪ {1},
where the binary operation on V is defined as follows:

xi · x j =
{
xi if (xi , x j ) ∈ E,

x j otherwise.
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We let V ∪ {1} be a spanning set. We call an algebra two value graph magma
algebra (2V graph magma algebra, for short) if it is generated by an associative two
value graph magma. Such an algebra will be denoted by A(G). For convenience, the
unit 1 of 2V graph magma algebra will be denoted by x0. Note that V ∪ {x0} is a
basis for the 2V graph magma algebra A(G) which we call the standard basis.

We will give the characterization of the associativity of two value graph magmas
below. Before we mention this characterization, let us recall some notations used in
[6] for readers’ sake.

By a graph, we mean a directed graph without multiple edges but possibly with
loops. The sum G1 + G2 of graphs G1 = (V1, E1) and G2 = (V2, E2) is the graph
with vertex set V1 ∪ V2 and edge set E1 ∪ E2 ∪ E1,2, where

E1,2 = {(x, y)|x ∈ V1, y ∈ V2}.

If G1 and G2 have no common vertices, then we say that the sum is direct, and we
denote it by G1 ⊕ G2.

Let G = (V, E) be a graph. The source of the graph G, source(G), consists of
those x ∈ V such that (x, y) ∈ E for some y ∈ V . The target of G, target (G), is
the set of elements y ∈ V satisfying (x, y) ∈ E for some x ∈ V . For an element
x ∈ V , outset (x) = {y ∈ V |(x, y) ∈ E} and inset (x) = {z ∈ V |(z, x) ∈ E}. For
further information related to graph theory, we refer the reader to [4].

Nowwe investigatewhen a twovalue graphmagma is associative. LetG = (V, E)

be a graph. The inverse graph G−1 is a graph with vertex set V and the edge set
E−1 = {(x, y)| (y, x) ∈ E}. The complement graph Gc is a graph with vertex set V
and the edge set Ec = {(x, y)| (x, y) /∈ E}.We use the notation x → y if (x, y) ∈ E .
The associativity of two value magmas is also discussed in [7].

Proposition 2 Let G = (V, E) be a (directed) graph. Then the following statements
are equivalent:

(1) The two value graph magma of G is associative.
(2) G is transitive and a → b implies that a → c or c → b for all a, b, c ∈ V .
(3) The two value graph magma of Gc is associative.
(4) The two value graph magma of G−1 is associative.

Proof (1) ⇒ (2) Suppose that the two value graph magma of G is associative.
Pick a, b, c ∈ V such that a → b, but a � c and c � b. Then (ac)b = cb = c and
a(cb) = ab = a. But this is a contradiction because of the associativity of the two
value graph magma of G. Now suppose that a → b → c. We will show a → c.
Assume on the contrary that a � c. It follows that a(bc) = ab = a and (ab)c =
ac = c, a contradiction.

(2) ⇒ (1) We will show that (ab)c = a(bc) for all a, b, c ∈ V . Assume that
a → b. If a → c, then (ab)c = ac = a. Since a → b and a → c, we also have
a(bc) = a. If a � c, then c → b by assumption. If b → c, then we would have
a → c by transitivity. Hence, b � c. Then we obtain a(bc) = ac = c and (ab)c =
ac = c.
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Now assume that a � b. If b → c, then a(bc) = (ab)c. Let b � c. Then a � c.
We conclude that a � c, because otherwise either a → b or b → c. It follows that
a(bc) = ac = c and (ab)c = bc = c.

(2) ⇒ (3) Assume that we have a → b and a � c in Gc for some a, b, c ∈ V .
Then a � b and a → c in G. We will prove that c → b in Gc. Assume contrarily
that c � b in Gc so that c → b in G. Transitivity of G implies that a → b which
is a contradiction. Hence, c → b in G. To show the transitivity of Gc, assume that
a → b → c in Gc. Then we obtain a � b � c in G. If a → c then either a → b
or b → c because G is associative. But this is impossible. Thus, a � c in G which
means that a → c in Gc.

(2) ⇒ (4) Assume that a → b in G−1. Then b → a in G. It follows that either
b → c or c → a inG whichmeans that either c → b or a → c inG−1. If a → b → c
inG−1, thenwewill have c → b → a inG. By transitivity ofG, we obtain that c → a
and so a → c in G−1.

(3) ⇒ (2) and (4) ⇒ (2) are obvious. �

4 Commutative Two Value Graph Magmas

This section is devoted to understanding the structure of commutative two value
graph magmas. But we will begin with a brief discussion of commutative graph
magmas, for the sake of comparison, before we proceed with our consideration of
commutative two value graph magmas.

For a graph magma of G = (V, E), the binary operation on V is defined as

xi · x j =
{
xi if (xi , x j ) ∈ E,

x j otherwise.

Anull graph is a graphwithout edges. The null graph of orderm is denoted by Nm .
We assume that complete graphs contain all edges including loops. The complete
graph of order n is denoted by Kn .

The following result characterizes the commutativity of a graph magma algebra.

Proposition 3 Let G = (V, E) be a directed graph. Then the graph magma of G is
commutative if and only if the connected components of G are either a null graph
or K1.

We know from [6, Proposition 4] that the graph magma of G is associative if and
only if connected components of G are either null, complete or direct sum of a null
and a complete. Therefore, we obtain the following result:

Proposition 4 Let G = (V, E) be a directed graph. If the graph magma of G is
commutative, then it is associative.
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By [6, Corollary 5], if a graph magma of a directed graph G is associative, then
the directed graph G = (V, E) is transitive. Hence, we obtain the following diagram
for the graph magma M(G) of a directed graph G:

M(G) is commutative =⇒ M(G) is associative =⇒ G is transitive

Unlike commutative graph magmas, a commutative 2V graph magma need not be
associative. We give an example of a commutative non-associative 2V graph magma
constructed on a tournament below. A tournament is a directed graph in which every
pair of distinct vertices is connected by a directed edge with any one of two possible
orientations. Notice that a tournament is not transitive, but it gives a commutative
2V graph magma.

Example 1 Let G = (V, E) be a directed graph with the edge set

E = {(x1, x2), (x2, x3), (x3, x4), (x4, x1), (x4, x2), (x3, x1)}.

Then the 2V graph magma M(G) is commutative but G is not transitive, and
hence M(G) is not associative.

Example 2 Anull graph of infinite order is transitive but the two value graphmagma
of such a null graph is neither associative nor commutative. A complete graph of
infinite order is also transitive. The graph magma of infinite order complete graph is
associative, but it is not commutative.

Now we turn our attention to commutative 2V graph magmas which is our main
concern in this paper. Since we are dealing with associative graph magma algebras,
we will consider a transitive directed graph. We start with a useful lemma which
states that the set of vertices V of a commutative two value graph magma can have
at most one elementm1 such that outset (m1) = V and at most one elementm2 such
that inset (m2) = V .

Lemma 1 Let G = (V, E) be a graph. Suppose that the two value graph magma
of G is commutative. If S1 = {m ∈ V : m → n for each n ∈ V } and S2 = {m ∈ V :
m ← n for each n ∈ V }, then |S1| ≤ 1 and |S2| ≤ 1.

Proof Suppose that S1 has at least two elements, saym1 andm2. Thenm1 → m2 and
m2 → m1. But since A(G) is commutative, this is impossible. Similarly, |S2| ≤ 1.

Remark 1 Notice that the two value graph magma of a graph G = (V, E) is com-
mutative if and only if for any two distinct elements a and b in V we have either
(a, b) ∈ E or (b, a) ∈ E .

The next theorem describes the structure of a commutative two value graph
magma. We note that x∞, x−∞ ∈ V indicate elements with inset (x∞) = V and
outset (x−∞) = V , respectively.
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Theorem 2 Let G = (V, E) be a transitive directed graph. If the two value graph
magma of G is commutative, then G must be in one of the following form or a direct
sum of these forms:

(1) V does not have any element x with inset (x) = V or outset (x) = V , and the
graph is denoted by (G).

(2) V has an element x such that outset (x) = V , but does not have any element y
such that inset (y) = V , and the graph is denoted by [G).

(3) V has an element x such that inset (x) = V , but does not have any element y
such that outset (y) = V , and the graph is denoted by (G].

(4) G = (G1) ⊕ {x∞} for some graph G1 with VG1 = V − {x∞}.
(5) G = {x−∞} ⊕ (G1) for some graph G1 with VG1 = V − {x−∞}.
(6) G = [G1) ⊕ {x∞} for some graph G1 with VG1 = V − {x∞}.
(7) G = {x−∞} ⊕ (G1] for some graph G1 with VG1 = V − {x−∞}.
(8) G = {x−∞} ⊕ (G1) ⊕ {x∞} for some graph G1 with VG1 = V − {x∞, x−∞}.
Proof Let S1 and S2 be as in Lemma 1.

Case 1 : Suppose that |S1| = |S2| = 0. Then x1 /∈ S1 ∪ S2 for x1 ∈ V . Since A(G)

is commutative, outset (x1) �= ∅ and inset (x1) �= ∅. Then there exist x2, x3 ∈ V such
that x3 → x1 → x2. By the same reason, outset (x2) �= ∅ and inset (x3) �= ∅. There-
fore, we must have x5 → x3 → x1 → x2 → x4 for some x4, x5 ∈ V . Continuing in
this way, we obtain the graph (G):

x1 x2

Case 2 : Let |S1| = 1 and |S2| = 0. Without loss of generality, assume that x1 ∈ S1.
Then x1 → x2. Since x2 /∈ S2, there exist elements x3 ∈ outset (x2). Therefore, we
have x1 → x2 → x3. Now consider the graph

x1 x2 xn

for n elements of V . Pick xn+1 ∈ V . Let A = { j |xn+1 → x j ; j = 1, 2, · · · n}. If
A = ∅, then we obtain

x1 x2 xn xn+1

Now suppose thatA �= ∅ and letm = min(A ). Let xm be the first element satisfying
xn+1 → xm then we get

x1 xm−1 xn+1 xm xm+1 xn

On the other hand, outset (x j ) �= ∅ for any x j ∈ V , because S2 = ∅. Continuing in
this way, if |inset (x2)| < ∞ we obtain the graph [G):

x1 x2 x3
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In case |inset (x2)| = ∞, we will get {x−∞} ⊕ (G).
Case 3 : If |S1| = 0 and S2 = 1, then using a similar argument in Case 2, we get

either (G] when |outset (x2)| < ∞ or (G) ⊕ {x∞} when |outset (x2)| = ∞.
Case 4 :Let |S1| = |S2| = 1. Let’s say x1 ∈ S1 and x2 ∈ S2. Since x1 /∈ S2, outset

(x1) �= ∅. If x3 ∈ outset (x1), then we will have x1 → x3 → x2. Suppose that
|inset (x3)| < ∞. Then |outset (x3)| must be infinite. Arguing like in Case 2, we
obtain the graph [G) ⊕ {x∞}. If |outset (x3)| < ∞, then |inset (x3)|must be infinite.
By a similar argument in Case 3, we get the graph {x−∞} ⊕ (G]. If both |outset (x3)|
and |inset (x3)| are infinite, then we get {x−∞} ⊕ (G) ⊕ {x∞}. �

5 Amenable Bases for Commutative Two Value Graph
Magma Algebras

A graph G = (V, E) is said to be basic if its direct sum decomposition does not
contain more than one infinite subgraph; that is to say, if G = G1 ⊕ G2 for some
graphs G1 = (V1, E1) and G2 = (V2, E2), then either |V1| is finite or |V2| is finite.
The graphs [G), (G], [G) ⊕ {x∞} and {x−∞} ⊕ (G] are basic, whereas the remaining
graphs in Theorem 2 are not basic since we can decompose (G) = (G1] ⊕ [G2) for
some infinite subgraphsG1 andG2. In this section, we will investigate the conditions
under which the bases for those commutative 2V graph magma algebras that are
constructed on basic graphs are amenable.

Let G = (V, E) be a directed graph with the countably infinite vertex set V =
{xi }∞i=1 and a set of edges E. Throughout this section, suppose that G is transitive and
the twovalue graphmagmaofG is commutative. IfC is a basis for a 2V graphmagma
algebra, then we define the set Cxi = {c ∈ C |(c)xi �= 0}, where xi ∈ V ∪ {x0}.
Theorem 3 A basis C for the commutative 2V graph magma algebra A([G)) is
amenable if and only if |Cx j | < ∞ for all x j ∈ V and

∑n j

i=0 αi j �= 0 for finitely many
j , where c j = ∑n j

i=0 αi j xi j ∈ C .

Proof Let S = { j | ∑
αi j �= 0, c j = ∑

αi j xi j }. Assume that |S| = ∞ and that C is
amenable. Consider the set D = {c1, c2, . . .}, where c j = ∑

αi j xi j and
∑

αi j �= 0.
For ck ∈ D , we have that x1ck = ∑

αik x1 = (
∑

αik )x1.
Since

∑
αik �= 0 for each ck ∈ D , [lx1]C is not row-finite. It follows from this

contradiction that S must be finite.
Now assume that there exists x j ∈ V such that |Cx j | = ∞. Assume further that

x j is the first element of the ordered standard basis satisfying this condition. Let
Cx j = {c1, c2, . . .}. Consider the set C ∗

x j
= Cx j \ ∪ j−1

i=1 Cxi . The set ∪ j−1
i=1Cxi is finite.

For any ck ∈ C ∗
x j
, we may write ck = αk x0 + ∑nk

s=0 βs xs+ j for some scalars αk, βs

and nk ∈ N. It follows that

x j+1ck = αk x j+1 + β0x j +
nk∑

s=1

βs x j+1 = β0x j +
(

αk +
nk∑

s=1

βs

)

x j+1.
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Since ck ∈ C ∗
x j
, β0 �= 0 which implies that x j+1ck �= 0. Therefore, the multiset

x j+1C ∗
x j

has infinitely many non-zero elements. If at least one of the elements of
x j+1C ∗

x j
has infinite multiplicity up to scalar multiplication, then we get that the

matrix [lx j+1]C is not row-finite, which contradicts the amenability of the basis C . It
follows that every element of x j+1C ∗

x j
has finite multiplicity up to scalar multiplica-

tion. Hence, the multiset x j+1C ∗
x j
has infinitely many different non-zero elements.

Now let C ∗ = {c∗
1, c

∗
2, · · · } be the set which consists of different non-zero ele-

ments of x j+1C ∗
x j
. Since each c∗

i can be expressed as a linear combination of x j and
x j+1, the set C ∗ spans a two-dimensional vector space. Then C ∗ must be linearly
dependent.

On the other hand, x j and x j+1 can be written as a linear combination of the
elements of the basis C . Suppose that {d1, d2, . . . , dm} be the elements of C used in
the expressions of x j and x j+1. ThenweobtainC ∗ = {β11d1 + · · · + βm1dm, β12d1 +
· · · + βm2dm, β13d1 + · · · + βm3dm, . . .} for some scalars βi j , where 1 ≤ i ≤ m, j ≥
1. If there were finitely many linearly dependent elements in C ∗, then we would
get an infinite-dimensional subspace of a finite-dimensional vector space, which is
impossible. Hence,C ∗ has infinitelymany linearly dependent elements whichmeans
that at least one of the elements in {d1, . . . , dm} must appear infinitely many times
in the expression of the elements in C ∗. Consequently, the matrix [lx j+1]C is not
row-finite. This contradiction implies that |Cx j | must be finite.

To prove the necessity, pick xk ∈ V . Consider the set Sk = C \ ∪k−1
j=1 Cx j . By

assumption, ∪k−1
j=1Cx j is finite. Then Sk is infinite. Since xkcl = ∑nl

i=0 αi xk for each
cl ∈ Sk and

∑nl
i=0 αi �= 0, for finitely many l, the matrix [lxk ]C is row-finite. �

Lemma 2 Let A bean infinite-dimensional algebra over a field K ,B be the standard
basis andC beanamenable basis for A. Then |lCa| < ∞, where lCa = {c ∈ C |xlc =
c + ka for some 0 �= k ∈ K } for a ∈ A and xl ∈ B.

Proof Write a = α1c1 + · · · + αkck for some k ∈ N. Consider the set S = {c1, . . . ,
ck}. If |lCa| is infinite, then |lCa\S| will be infinite, too. But then the matrix [lxl ]C
cannot be row-finite. Hence, |lCa| must be finite. �

Theorem 4 A basis C for the commutative 2V graph magma algebra A((G]) is
amenable if and only if |Cxi | < ∞ for all xi ∈ V ∪ {x0}.
Proof Assume that C is an amenable basis for A((G]) and that |Cx0 | = ∞. One can
observe that there exists a non-zero scalar α j such that x1c j = c j + α j (x1 − x0) for
each c j ∈ Cx0 . It follows from Lemma 2 that |Cx0 | must be finite.

Now assume that |Cxk | = ∞ for some xk ∈ V and that |Cx j | < ∞ for all j =
1, . . . , k − 1. Let S = ∪k−1

j=0Cx j . Then S is a finite set. Therefore, Cxk\S is an infinite
set. If ci ∈ Cxk\S, then we obtain ci xk+1 = ci + α(xk+1 − xk) for some non-zero
scalar α. Again by Lemma 2, |Cxk | < ∞, too.

For the necessity part, suppose that |Cx j | < ∞ for all x j ∈ V ∪ {x0}. Pick xk ∈
V ∪ {x0}. Then x j xk = xk for all j ≤ k and x j xk = x j for all j > k (xi x j = xmax(i, j)).
Consider the set Sk = ∪k

j=0Cx j . By assumption, Sk is a finite set. For any c j ∈ C \Sk ,
we have that xkc j = c j . Consequently, we get the following row-finite matrix:
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[lxk ]C =

xk Sk xk(C \Sk)
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Sk ∗ 0

0 I dN×N

(C \Sk)

�

In [2, Corollary 5.3], it is shown that the algebra F[x] has at least asmany pairwise
discordant simple bases as there are elements in F∗, where F is a field. Also, it is
known from [3] that there are examples of graph magma algebras which do not have
any simple or projective bases. Moreover, in [9], the authors are able to show that
no graph magma algebras have a projective basis. Inspired by the characterization of
amenable bases for the 2V graph magma algebra A((G]) in Theorem 4, we are able
to observe the following remarkable result which indicates that there are algebras
whose simple bases do exist and they are mutually congenial but they do not have
any projective bases.

Theorem 5 Let A be an infinite-dimensional algebra over a field and let B =
{b1, b2, . . .} be a basis of A such that for any basis C of A, C is amenable if and
only if |Cb| < ∞ for each b ∈ B. Then A has a unique simple basis (up to mutual
congeniality) and has no projective basis.

Proof We claim that B is a simple basis of A. First note that by assumption B is
amenable. Suppose B is congenial to C , where C is an amenable basis of A. It
follows that |Cb| < ∞ for each b ∈ B. But this implies that C is congenial to B.
Hence,B andC aremutually congenial. It also follows thatB is unique up tomutual
congeniality. Since proper congeniality matrices always exist, it is easy to observe
that A does not have a projective basis. �

Theorem 5 together with Theorem 4 gives the following immediate consequence:

Corollary 1 The commutative 2V graph magma algebra A((G]) has a unique sim-
ple basis (up to mutual congeniality) and does not have any projective bases.

Theorem 6 A basis C for the commutative 2V graph magma algebra A({x−∞} ⊕
(G]) is amenable if and only if |Cx j | < ∞ for all x j ∈ (V ∪ {x0})\{x−∞} and∑

αi j �= 0 for finitely many j , where c j = ∑
αi j xi j ∈ C .

Proof =⇒: Let C = {c0, c1, . . .} be an amenable basis for the given graph algebra.
Then the set x−∞C consists of those elements

∑
αi j x−∞ such that c j = ∑

αi j xi j for
j = 0, 1, . . .. Since C is amenable,

∑
αi j �= 0 for finitely many j . Now assume that

|Cx0 | = ∞. By a proof similar to that of Theorem 4, one can see that Cx0 must be a
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finite set. Let S = Cx1\Cx0 . Then for any di ∈ S, we obtain that x2di = di + α1i (x2 −
x1) + αi (x2 − x−∞) for some scalars α1i and αi . We ensure that α1i is non-zero for
each i , because it is the coefficient of x1 in the expression of di ∈ S for each i . Hence,
by Lemma 2, we must have that |Cx1 | is finite. By induction, one can obtain that Cxi
is a finite set for each xi �= x−∞.

⇐=: Write x = x−∞ and C = Cx ∪ C c
x . Pick xk ∈ V . Then xkCx contains ele-

ments of the form
∑

αi j x , where c j = ∑
αi j xi j ∈ Cx . But since

∑
αi j �= 0 for

finitely many j , the multiset xkCx has finitely many non-zero elements. Consider the
set C c

x = (∪k−1
i=1Cxi ) ∪ S, where S = C c

x∞\ ∪k−1
i=1 Cxi . By the assumption, ∪k−1

i=1Cxi is
finite. Moreover, xk S = S. This gives that the matrix [lxk ] is row-finite. �

The next example shows that finiteness of |Cx−∞| is not a necessary condition for
a basis C for A({x−∞} ⊕ (G]) to be amenable.

Example 3 Let x = x−∞. Consider the basis C = {x, x0, x − x1, x − x2, x −
x3, · · · } for the commutative 2V graph magma algebra A({x−∞} ⊕ (G]). Then
|Cx | = ∞. But C is amenable since xC = {x, x, 0, 0, . . .} and xiC = {x, xi , x −
xi , . . . , x − xi , x − xi+1, x − xi+2, x − xi+3, . . .} for all i .
Theorem 7 A basis C for the commutative 2V graph magma algebra A([G) ⊕
{x∞}) is amenable if and only if |Cx j | < ∞ for all x j ∈ (V ∪ {x0})\{x∞} and∑

αi j �= 0 for finitely many j , where c j = ∑
αi j xi j ∈ C .

Proof ⇐=: First consider the element x = x∞ ∈ V . Reorder C = Cx0 ∪ C c
x0 . Then

xC = xCx0 ∪ xC c
x0 . By assumption, xCx0 is finite. On the other hand, xC c

x0 = C c
x0 .

Hence, the matrix [lx ]C is row-finite.
Now pick any xi ∈ V , where xi �= x∞ and xi �= x0. Again by assumption, xiCx0

is finite. Let S = (∪i
j=1Cx j ) ∩ C c

x0 . S is a finite set and we may reorder C c
x0 = S ∪

(C c
x0\S). It follows that xiC c

x0 = xi S ∪ xi (C c
x0\S). By the hypothesis, xi S is finite.

On the other hand, since
∑

αi j �= 0 for finitely many j , where c j = ∑
αi j xi j ∈ C ,

we obtain that xi (C c
x0\S) is infinite with all but finitely many non-zero elements. This

implies that the matrix [lxi ]C is row-finite.
=⇒: Consider the set S = {c ∈ C |c = ∑

αi j xi j and
∑

ai j �= 0}. Suppose that
|S| = ∞. Since x1c j = x1(

∑
αi j ) for any c j ∈ S, the multiset x1S contains infinitely

many x1 with non-zero coefficients. This gives that [lx1]C is not row-finite. But this
leads to a contradiction since C is amenable.

Now assume that |Cx1 | = ∞. Let Cx1 = {c1, c2, . . .}. Write ci = αi0x0 + αi1x1 +∑ni
j=2 αi j x j . Then we have that

x2ci = αi0x2 + αi1x1 +
ni∑

j=2

αi j x2 = αi1x1 +
⎛

⎝αi0 +
ni∑

j=2

αi j

⎞

⎠ x2,

where αi1 �= 0 for each i . It follows that the matrix [lx2 ]C is not row-finite, a contra-
diction. Hence, |Cx1 | < ∞. In a similar way, one can show that |Cxi | < ∞ for any
xi ∈ V such that xi �= x∞.
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Further assume that |Cx0 | = ∞ and let Cx0 = {d1, d2, . . .}. If we write di =∑ni
j=0 αi j x j for each i , then we will have

x∞di = αi0x∞ +
ni∑

j=1

αi j x j = di − αi0x0 + αi0x∞ = di + αi0(x∞ − x0)

for each i . Since αi0 �= 0 for each i , the matrix [lx∞]C is not row-finite. This contra-
diction gives that |Cx0 | must be finite. �

6 Further Results on Commutative Two Value Graph
Magma Algebras

In this section, wewill deal with some commutative 2V graphmagma algebras which
are constructed on the direct sum of basic graphs.

Let C be a set. Denote by C<x j> the set of elements ci ∈ C such that ci =
αl xl + αk xk + S for some l < j < k, where αl �= 0, αk �= 0 and S =

∑

i �= j,k,l

αi xi . The

following result holds for any infinite-dimensional algebra.

Lemma 3 Let C be a basis for an infinite-dimensional algebra A. If there exists a
j such that |C<x j>| < ∞, and |Cxi | < ∞ for all xi ∈ V , then |C<xi>| < ∞ for all
xi ∈ V .

Proof By hypothesis, we can assume that l is the smallest integer satisfying
|C<xl>| < ∞. Then consider the set T = ∪l

i=1Cxi which is finite by assumption.
Pick an integer j < l. Let T ∗ = T ∩ C<x j>. We can write C<x j> = T ∗ ∪ (C<x j>

\T ∗). It follows that |C<x j>| = ∞. Then we must have that |C<x j>\T ∗| = ∞. But
we also have C<x j>\T ∗ ⊆ C<xl> which gives a contradiction since |C<x j>| < ∞.
Hence, |C<x j>| < ∞. A similar contradiction will be obtained if we pick j > l.
Thus, |C<x j>| < ∞ for all x j ∈ V . �

Proposition 5 Suppose that the two value graph magma of a transitive directed
graph G is commutative. Let C be a basis for the commutative 2V graph magma
algebra A((G)). Assume that |Cx | < ∞ for all x ∈ V ∪ {x0} and there exists x j ∈ V
such that |C<x j>| < ∞ and

∑
αi j �= 0 for finitelymany j , where c j = ∑

αi j xi j ∈ C .
Then C is amenable.

Proof ReorderC=Cx j ∪ C c
x j
. Let S = Cx0 ∩ C c

x j
. ThenwewriteC c

x j
= S ∪ (C c

x j
\S).

S is a finite set by assumption.We also haveC c
x j

\S = Cx<x j ∪ Cx>x j ∪ C<x j>, where
Cx<x j ={c=∑

αk xk ∈ C | xk ∈ inset (x j )} andCx>x j ={c= ∑
αk xk ∈ C | xk ∈ outset (x j )}.

Then x jCx<x j = Cx<x j and x jCx>x j = {∑αi j x j ∈ C | αi j ∈ F}. Hence, [lx j ]C is
row-finite. By Lemma 3, we conclude that [lxi ]C is row-finite for all xi ∈ V . Thus,
C is an amenable basis for A((G)). �
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Proposition 6 Suppose that the two value graph magmas of transitive directed
graphs Gi are commutative for each i = 1, . . . , n. Let G = ⊕n

i=1[Gi ), V = ⊔n
i Vi

andC = (

n⊔

i=1

Ci )
⊔

Cπ where Vi is the set of vertices of Gi ,Ci is an amenable basis

for the commutative 2V graph magma algebra A([Gi )) and Cπ is a set of multino-
mial in which the terms come from different vertex sets Vi . If |Cπ | < ∞, |Cx0 | < ∞
and

∑
αi j �= 0 for finitely many j , where c j = ∑

αi j xi j ∈ C and xi j ∈ V ∪ {x0},
then C is an amenable basis for A(G).

Proof Let x j ∈ V .WriteC = Cx0 ∪ C c
x0 . Since |Cx0 | < ∞, x jCx0 is finite, too. Also,

we may write C c
x0 = T

⋃
(C c

x0\T ), where T = C c
x0

⋂
Cπ . By assumption, x j T is

finite. On the other hand, we have that C c
x0\T = ⊔n

i=1 Si such that Si ⊆ Vi for each
i = 1, · · · , n. It follows that x j Si = Si for each i < j . Since

∑
αi j �= 0 for finitely

many c j = ∑
αi j xi j ∈ C , x j Si has finitely many non-zero elements for each i ≥ j .

Hence, the matrix [lx j ]C is row-finite. �
The next example shows that Proposition 6 is not true if G = ⊕i∈N[Gi ).

Example 4 Suppose that the 2V graph magmas of transitive directed graphs Gi

are commutative for each i ∈ N. Let G = ⊕i∈N[Gi ) and V1 = V − ⊔
p∈P Vp, where

P is the set of prime numbers and Vp = {xp, xp2 , xp3 , . . .}. Consider the set C1 =
{x0, x0 − x1, x1 − x6, x6 − x10, . . .}, where i and j cannot be written as a power
of a prime in the expressions xi − x j and they are consecutive numbers of this
type. Define the sets Cp = {xp, xp − xp2 , xp2 − xp3 , . . .} for p ∈ P. Cp ∪ {x0} is an
amenable basis for A([Gp)). Also, C = C1

⊔
p∈P Cp is a basis for A(G). Observe

that |Cx0 | is finite and |Cπ | = 0. But since the multiset x1C contains infinitely many
x1, C is not amenable for A(G).

Theorem 8 Suppose that the two value graph magmas of transitive directed graphs
Gi are commutative for each i ∈ N. Let G∞ = ⊕i∈N[Gi ) and consider the algebra
A(G∞). Suppose thatB = ⋃

i∈N Bi is a basis for A(G∞) and thatBi is a basis for
the commutative 2V graph magma algebra A([Gi ) for each i . ThenB is amenable
if and only if |Bxi | is finite for each i and

∑
αi j �= 0 for finitely many j , where

b j = ∑
αi j xi j ∈ B and xi j ∈ V ∪ {x0}.

Proof The necessity follows from Theorem 3. For the sufficiency suppose that the
set S = {b ∈ B|∑ αi �= 0, where b = ∑

αi xi } is infinite and contains elements
from Bi for different indices i . For such an i , there exists bi = ∑

αi x ji ∈ Bi such
that

∑
αi �= 0. It follows from Theorem 3 that Bi is an amenable basis for the

commutative 2V graph magma algebra A([Gi )). On the other hand, x1B contains
infinitely many non-zero elements which contradicts the amenability of B. �
Theorem 9 Let G−∞ = ⊕i∈N(Gi ], where each Gi is a transitive directed graph.
Assume that the graph magmas of the graphs Gi are commutative. Consider the
algebra A(G−∞). Suppose that B = ⋃

i∈N Bi is a basis for A(G−∞) and that Bi

is a basis for the commutative 2V graph magma algebra A([Gi ) for each i . Then
B is amenable if and only if Bxi and Si are finite sets for each i ∈ N, where Si =
{∑αi xi ∈ Bi | ∑αi �= 0}.



Two Value Graph Magma Algebras and Amenability 399

Proof The necessity follows from Theorem 4. To prove the sufficiency, assume that
B is amenable and there exists an i ∈ N such that Si is infinite. Take x ∈ Vi+1. Note
that xy = x for every x ∈ Vi+1 and y ∈ Vi . Then the multiset xSi contains infinitely
many non-zero elements which are all multiples of x . This contradicts the fact that
B is amenable. The rest of the proof is similar to that of Theorem 4. �

Corollary 2 If a basis B = ⋃
i∈N Bi is amenable in A(G∞), then it is also

amenable in A(G−∞).

We end the section with Example 5 which indicates that the converse of Proposi-
tion 2 need not be true.

Example 5 Consider the commutative 2V graph magma algebras A([Gi )), where
graph magmas of transitive directed graphsGi are commutative, and the correspond-
ing basis Bi = {x0, x1i , x1i − x2i , x2i − x3i , . . .} for each i ∈ N. Then Si is a finite
set for each i ∈ N, where Si = {∑αi xi ∈ Bi | ∑ αi �= 0}. Also, |Bxi | ≤ 2 for each
i ∈ N. ButB = ⋃

i∈N Bi is not an amenable basis for the commutative 2V magma
algebra A(G∞), where G∞ = ⊕i∈N[Gi ), because each Bi contains x1i .
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Graph of Linear Transformations Over R

Ayman Badawi and Yasmine El-Ashi

Abstract In this paper, we study a connection between graph theory and linear trans-
formations of finite dimensional vector spaces over R (the set of all real numbers).
Let Rm, Rn be finite vector spaces over R, and let L be the set of all non-trivial linear
transformations from Rm into Rn . An equivalence relation∼ is defined on L such that
two elements f, k ∈ L are equivalent, f ∼ k, if and only if ker ( f ) = ker (k). Let
m, n ≥ 1 be positive integers and Vm,n be the set of all equivalence classes of ∼. We
define a newgraph,Gm,n , to be the undirected graphwith vertex set equal toVm,n , such
that two vertices, [x] , [y] ∈ Vm,n are adjacent if and only if ker (x) ∩ ker (y) �= 0.
The relationship between the connectivity of the graph Gm,n and the values of m
and n has been investigated. We determine the values of m and n so that Gm,n is a
complete graph. Also, we determine the diameter and the girth of Gm,n .

Keywords Zero-divisor graph · Total graph · Unitary graph · Dot product graph ·
Annihilator graph · Linear transformations graph

1 Introduction

Let R be a commutative ring with 1 �= 0. Recently, there has been considerable
attention in the literature to associating graphs with commutative rings (and other
algebraic structures), as well as studying the interplay between ring-theoretic and
graph-theoretic properties; see the survey articles [10, 11, 19, 39, 46]. In particular,
as in [17], the zero-divisor graph of R is the (simple) graph Γ (R) with vertices
Z(R) \ {0}, and distinct vertices x and y are adjacent if and only if xy = 0. This
concept is due to Beck [29], who let all the elements of R be vertices and was mainly
interested in coloring. The zero-divisor graph of a ring R has been studied extensively
by many authors, for example, see [2–9, 12, 22, 23, 38–44, 47–54, 58]. David. F.
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Anderson and the first-named author [13] introduced the total graph of R, denoted
by T (Γ (R)). We recall from [13] that the total graph of a commutative ring R is the
(simple) graph Γ (R) with vertices R, and distinct vertices x and y are adjacent if
and only if x + y ∈ Z(R). The total graph (as in [13]) has been investigated in [5–8,
35, 46, 48, 52, 56], and several variants of the total graph have been studied in [4,
14–16, 21, 28, 31–34, 36, 37, 45].

Let a ∈ Z(R) and let annR(a) = {r ∈ R | ra = 0}. In 2014, A. Badawi [27]
introduced the annihilator graph of R. We recall from [27] that the annihilator graph
of R is the (undirected) graph AG(R) with vertices Z(R)∗ = Z(R) \ {0}, and two
distinct vertices x and y are adjacent if and only if annR(xy) �= annR(x) ∪ annR(y).
See the survey article [24]. It follows that each edge (path) of the classical zero-
divisor of R is an edge (path) of AG(R). For further investigations of AG(R), see
[20, 51, 57]. In 2015, A. Badawi investigated the total dot product graph of R [26].
In this case, R = A × A × · · · × A (n times), where A is a commutative ring with
non-zero identity, and 1 ≤ n < ∞ is an integer. The total dot product graph of R
is the (undirected) graph denoted by T D (R), with vertices R∗ = R\ {(0, 0, . . . 0)}.
Two distinct vertices are adjacent if and only if x · y = 0 ∈ A, where x · y denote
the normal dot product of x and y. The zero-divisor dot product graph of R is the
induced subgraph ZD(R) of T D(R)with vertices Z(R)∗ = Z(R) \ {(0, 0, . . . , 0)}.
It follows that each edge (path) of the classical zero-divisor graph Γ (R) is an edge
(path) of ZD(R). In [26], both graphs T D(R) and ZD(R) are studied. The total dot
product graph was recently further investigated in [1]. Other types of graphs attached
to groups and rings were studied (for example) in [6, 8, 28, 38, 40, 44, 45].

Let G be a graph. Two vertices v1, v2 of G are said to be adjacent inG if v1, v2 are
connected by an edge ofG and we write v1 − v2. For vertices x and y ofG, we define
d(x, y) to be the length of a shortest path from x to y (d(x, x) = 0 and d(x, y) = ∞
if there is no path). Then the diameter of G is diam(G) = sup{ d(x, y) | x and y are
vertices of G}. The girth of G, denoted by gr(G), is the length of a shortest cycle in
G (gr(G) = ∞ if G contains no cycles).

We say G is connected if there is a path in G from u to v for every u, v ∈ V .
Therefore, a graph is said to be disconnected, if there exist at least two vertices
u, v ∈ V that are not joined by a path. We say that G is totally disconnected if no
two vertices of G are adjacent. We denote the complete graph on n vertices by Kn ,
and recall that a graph G is called complete if every two vertices of G are adjacent.

In this paper, we introduce a connection between graph theory and linear trans-
formations of finite dimensional vector spaces over R (the ring of all real numbers).
LetU andW be finite dimensional vector spaces overR, such thatm = dim(U ) and
n = dim(W ). Since every finite dimensional vector space over R with dimension k
is isomorphic toRk , we conclude thatU is isomorphic toRm andW is isomorphic to
R

n . Letm, n ≥ 1 be positive integers and L = {t : Rm → R
n | t is a non-trivial linear

transformation fromR
m intoRn}. If s, t ∈ L , then we say that s is equivalent to t , and

we write s ∼ t if and only if Ker(s) = Ker(t). Clearly,∼ is an equivalence relation
on L . For each t ∈ L , the set [t] = {s ∈ L|s ∼ t} is called the equivalence class of t .
Let Vm,n be the set of all equivalence classes of ∼. For positive integersm, n ≥ 1, let
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Gm,n be a simple undirected graph with vertex set Vm,n such that two distinct vertices
[ f ], [k] ∈ Vm,n are adjacent if and only if Ker( f ) ∩ Ker(k) �= {(0, . . . , 0)} ⊂ R

m .

2 Results

Remark 1 If a graph G has one vertex, then we say that G is totally disconnected.
Note that some authors state that such a graph is connected.

We have the following result.

Theorem 1 The undirected graph Gm,1 is totally disconnected if and only if m = 1
or m = 2. Furthermore, if m = 1, then V1,1 = {[t]} for some t ∈ L.

Proof Assume m = 1. Let [t] ∈ V1,1. Since t ∈ L (i.e., t is a non-trivial lin-
ear transformation from R into R), we conclude that dim(Range(t)) = 1. Since
dim(Ker(t)) + dim(Range(t)) = m = 1 and dim(Range(t)) = 1, we conclude
that Ker(t) = {0}. Thus, f ∈ [t] for every f ∈ L . Hence, V1,1 = {[t]} for some
t ∈ L . Thus, G1,1 is totally disconnected by Remark 1.

Assume m = 2. Let [t], [ f ] ∈ V2,1 be two distinct vertices. Since t, f ∈ L (i.e.,
t, f are non-trivial linear transformations from R

2 into R), we conclude that
dim(Range(t)) = dim(Range(t)) = 1. Since dim(Ker(t)) + dim(Range(t)) =
m = 2 and dim(Range(t)) = 1, we conclude that dim(Ker(t)) = 1. Similarly,
dim(Ker( f )) = 1. Since t, f ∈ L , and dim(Ker(t)) = dim(Ker( f )) = 1, we
conclude that Ker(t) and Ker( f ) are distinct lines passing through the origin (0, 0).
Thus Ker(t) ∩ Ker( f ) = {(0, 0)}. Hence [t], [ f ] are nonadjacent. Thus G2,1 is
totally disconnected.

Now assumem > 2. We show that Gm,1 is connected. Let, [t] , [w] ∈ Vm,1 be two
distinct vertices.We show that ker ( f ) ∩ ker (k) �= {(0, . . . , 0)} for some f ∈ [t] and
k ∈ [w]. LetM f be the standard 1 × mmatrix representation of f for some f ∈ [t] ∈
Vm,1 and Mk be the standard 1 × m matrix representation of k for some k ∈ [w] ∈
Vm,1. By hypothesis,M f is not row-equivalent toMk . Say,M f = [

f11 f12 · · · f1m
]

and Mk = [
k11 k12 · · · k1m

]
.

Let M f k =
[
M f

Mk

]
and consider the system, M f kx = 0, that is,

[
f11 f12 · · · f1m
k11 k12 · · · k1m

]
⎡

⎢
⎢⎢
⎣

x1
x2
...

xm

⎤

⎥
⎥⎥
⎦

=

⎡

⎢
⎢⎢
⎣

0
0
...

0

⎤

⎥
⎥⎥
⎦

.

Since m > 2, the number of equations < the number of unknown variables. Hence,
the system M f kx = 0 has infinitely many solutions. Therefore, ker ( f ) ∩ ker (k) �=
0, that is, the vertices [t] and [w] are adjacent. Further, since [t], [w] were chosen
randomly, we conclude that the graph Gm,1 is complete for m > 2.
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Theorem 2 For m = 1 or m = 2, the undirected graph G2,n is totally disconnected
for every positive integer n ≥ 1.

Proof Assume m = 1 and n ≥ 1 be a positive integer. Then by the proof of
Theorem 1, we conclude that V1,n = {[t]} for some t ∈ L . Hence, V1,n is totally
disconnected by Remark 1.

Assume m = 2, and let [t] , [w] ∈ V be two distinct vertices. We want to show
ker ( f ) ∩ ker (k) = 0 for some f ∈ [t] and k ∈ [w]. We may assume that neither
Ker( f ) = 0 nor Ker(k) = 0. Hence, dim(Ker( f )) = dim(Ker(k)) = 1. Thus,
Ker( f ) ∩ Ker(k) = {(0, 0)}. Since [ f ], [k] were chosen randomly, we conclude
that the graph G2,n is totally disconnected for m = 2.

Theorem 3 The graph Gm,n is complete if and only if m ≥ 2n + 1.

Proof Let [t] , [w] ∈ V such that Ker( f ) �= 0 and Ker(k) �= 0 for some f ∈ [t]
and k ∈ [w]. LetM f be the standard n × m matrix representation of [ f ],Mk be the

standard n × m matrix representation of [k], and letM f k =
[
M f

Mk

]
.

Assume, (x1, x2, . . . , xm) ∈ Rm is a solution toM f kx = 0, that is,

[
M f

Mk

]

2n×m

⎡

⎢⎢⎢
⎣

x1
x2
...

xm

⎤

⎥⎥⎥
⎦

m×1

=

⎡

⎢⎢⎢
⎣

0
0
...

0

⎤

⎥⎥⎥
⎦

2n×1

.

Let r = rank
(
M f k

)
.

Assume m ≥ 2n + 1. We show ker ( f ) ∩ ker (k) �= 0. Since r ≤ 2n and m ≥
2n + 1, we have number of equations < number of unknown variables. Hence,
the system M f kx = 0 has infinitely many solutions, or null

(
M f k

) �= 0. Therefore,
ker ( f ) ∩ ker (k) �= 0, that is, the vertices [t] and [w] are adjacent. Since [t] and [w]
are chosen randomly, we conclude that the graph Gm,n is complete for m ≥ 2n + 1.

Conversaly, assume that Gm,n is complete. We show that m ≥ 2n + 1. Suppose
that m < 2n + 1. We show that Gm,n is not complete. Let [t] , [w] ∈ V such that
Ker( f ) �= 0 and Ker(k) �= 0 for some f ∈ [t] and k ∈ [w].

Case I: Suppose r = m.
We conclude that M f k has m independent rows, say R1, R2, . . . , Rm .
Consider the system, ⎡

⎢
⎢⎢
⎣

R1

R2
...

Rm

⎤

⎥
⎥⎥
⎦

⎡

⎢
⎢⎢
⎣

x1
x2
...

xm

⎤

⎥
⎥⎥
⎦

=

⎡

⎢
⎢⎢
⎣

0
0
...

0

⎤

⎥
⎥⎥
⎦

.
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Since
[
R1 R2 · · · Rm

]T
is an invertible m × m matrix, we have

null
([

R1 R2 · · · Rm
])T = (0, 0, . . . , 0). Thus, ker (t) ∩ ker (w) = 0. Hence,

the vertices [t] and [w] are nonadjacent
Case II: Suppose r < m. Thus, we have the following system:

⎡

⎢⎢⎢
⎣

R1

R2
...

Rr

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

x1
x2
...

xm

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

0
0
...

0

⎤

⎥⎥⎥
⎦

.

Since number of equations < number of unknown variables, we conclude that

null
([

R1 R2 · · · Rr
]T)

�= (0, 0, . . . , 0). This implies ker ( f ) ∩ ker (k) �= 0.

Hence, the vertices [t] and [w] are adjacent.
Since the vertices [t] and [w] can either be adjacent or nonadjacent, we conclude

that the graph Gm,n is not complete for every 1 ≤ m < 2n + 1.

Theorem 4 Consider the undirected graph Gm,n. Assume m ≤ n and m �= 1 or
m �= 2. Then Gm,n is connected and diam(Gm,n) = 2.

Proof Let [t], [w] ∈ V such that [t] and [w] are nonadjacent. Choose f ∈ [t] and k ∈
[w]. Then rank

(
M f

) �= m and rank (Mk) �= m, where M f and Mk are the standard
matrix representations of f and k, with size n × m.

Assume rank
(
M f

) = m − i , where i ∈ N, i �= 1, and rank (Mk) = m − j , where
j ∈ N, j �= 1. Then choose any non-zero row from M f or Mk , say Y , to form the
n × m matrix Md , where

Md =

⎡

⎢⎢
⎢
⎣

Y
0
...

0

⎤

⎥⎥
⎥
⎦

is the standard matrix representation of some d ∈ [h] ∈ Vm,n , such that
[t] − [h] − [w].

Assume that rank
(
M f

) = m − 1 and rank (Mk) = m − 1. Then M f has m − 1
independent rows, R1, R2, . . . , Rm−1. Since [t] and [w] are nonadjacent, Mk has
one row say R such that {R1, R2, . . . , Rm−1, R} is an independent set which forms
a basis for Rm . Let K �= R be a non-zero row in Mk . Hence, K ∈ rowspace (Mk).
Since K ∈ Rm , we have

K = c1R1 + c2R2 + · · · + cm−1Rm−1 + cm R.
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Let Y = K − cm R. Thus, Y ∈ rowspace (Mk) (since both K and cm R are ∈

rowspace (Mk)) and Y ∈ rowspace
(
M f

)
. Let Md =

⎡

⎢⎢⎢
⎣

Y
0
...

0

⎤

⎥⎥⎥
⎦

n×m

be the standard

matrix representation of some d ∈ [h] ∈ Vm,n . Since Y ∈ rowspace
(
M f

)
, Y

becomes a zero row through row operations using the rows in M f . Thus,
null

(
M f d

) �= 0, since rank
(
M f d

) = m − 1. Hence, ker ( f ) ∩ ker (d) �= 0. Hence,
[t], [h] are connected by an edge. Similarly, since Y ∈ rowspace (Mk), Y becomes a
zero row through row operations using the rows in Mk . Thus, null (Mkd) �= 0, since
rank (Mkd) = m − 1. Hence, ker (d) ∩ ker (k) �= 0. Thus, [h] and [w] are adjacent.
Therefore, we have [t] − [h] − [w].

Example 1 Suppose m = 3 and n = 4. So we are considering the graph
G

(
[t] : R3 → R4

)
, where m ≤ n, and m �= 1 or m �= 2, as given in Theorem 4. Let

[T ] , [L] ∈ V , such that [T ] and [L] are not adjacent (ker (T ) ∩ ker (L) = 0m=3),
and [T ] �= 0, [L] �= 0. Let f ∈ [T ] and k ∈ [L]. Since [T ] and [L] are non-trivial
vertices, then rank

(
M f

) �= m and rank (Mk) �= m, where M f and Mk are the stan-
dard matrix representations of f and k.
Suppose

M f =

⎡

⎢⎢
⎣

1 0 0
0 1 1
0 0 0
0 0 0

⎤

⎥⎥
⎦

4×3

, Mk =

⎡

⎢⎢
⎣

0 0 0
0 0 1
1 1 0
0 0 0

⎤

⎥⎥
⎦

4×3

.

Let M f k =
[
M f

Mk

]

8×3

.

It can be easily seen that rank
(
M f k

) = 3, which implies that null
(
M f k

) = 0. There-
fore, ker ( f ) ∩ ker (k) = 0, that is, the vertices [T ] and [L] are not adjacent.We have
rank

(
M f

) = 2 = 3 − 1 = m − 1, and rank (Mk) = 2 = 3 − 1 = m − 1.
Then M f has two independent rows R1 and R2, such that R1 = [

1 0 0
]
and

R2 = [
0 1 1

]
. The vertices [T ] and [L] are not adjacent, thus Mk has one row R,

such that {R1, R2, R} are independent and form a basis for Rm , where m = 3. In
this example, R = [

0 0 1
]
. Let K �= R be a non-zero row in Mk , K = [

1 1 0
]
.

K ∈ rowspace (Mk) and since K ∈ R3, it can be written as a linear combination of
{R1, R2, R} as follows:

K = 1.R1 + 1.R2 − R = [
1 0 0

] + [
0 1 1

] − [
0 0 1

] = [
1 1 0

]
.

Let Y = K − (−1) .R = K + R = [
1 1 0

] + [
0 0 1

] = [
1 1 1

]
.
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This implies Y ∈ rowspace (Mk) and Y ∈ rowspace
(
M f

)
. Let Md =

⎡

⎢⎢
⎣

Y
0
0
0

⎤

⎥⎥
⎦

4×3

=

⎡

⎢
⎢
⎣

1 1 1
0 0 0
0 0 0
0 0 0

⎤

⎥
⎥
⎦

4×3

be the standard matrix representation of some d ∈ [W ].

Since Y ∈ rowspace
(
M f

)
, Y becomes a zero row through row operations using

the rows in M f . Thus, null
(
M f d

) �= 0 since rank
(
M f d

) = 2. Hence, ker (T ) ∩
ker (W ) �= 0. Hence, [T ] , [W ] are adjacent. Similarly, since Y ∈ rowspace (Mk),
Y becomes a zero row through row operations using the rows in Mk . Hence,
null (Mkd) �= 0 since rank (Mkd) = 2. Thus, ker (L) ∩ ker (W ) �= 0. Thus, [W ] , [L]
are adjacent. Therefore, we have [T ] − [W ] − [L].

Theorem 5 Consider the undirected graph Gm,n. Assume that n < m ≤ 2n and
m �= 1 or m �= 2. Then Gm,n is connected and diam(Gm,n) = 2.

Proof Let [T ], [L] ∈ V , such that [T ] and [L] are not adjacent (ker (T ) ∩ ker (L) =
0m), and [T ] �= 0, [L] �= 0. Let f ∈ [T ] and k ∈ [L], then rank

(
M f

)
< m and

rank (Mk) < m, where M f and Mk are the standard matrix representations of f
and k, with size n × m.

Assume that n + 1 < m ≤ 2n. Then rank
(
M f

) = n − i , where i = 0, 1, 2, . . .,
and rank (Mk) = n − j , where j = 0, 1, 2, . . .. Thus, we can choose any non-zero
row from M f or Mk , say Y , to form the n × m matrix Md , where

Md =

⎡

⎢
⎢⎢
⎣

Y
0
...

0

⎤

⎥
⎥⎥
⎦

is the standard matrix representation of some d ∈ [W ], such that [T ] − [W ] − [L].
Assume that m = n + 1. Then we have three cases. Case I. Assume that

rank
(
M f

) = n = m − 1, and rank (Mk) = n − j , where j = 1, 2, . . .. Then we can
choose any non-zero row, say Y from M f (Note that M f is the matrix with the higher
rank) to form the n × m matrix Md , where

Md =

⎡

⎢⎢⎢
⎣

Y
0
...

0

⎤

⎥⎥⎥
⎦

is the standard matrix representation of some d ∈ [W ], such that [T ] − [W ] − [L].
Case II. Assume that rank

(
M f

) = n − i , where i = 1, 2, . . . and rank (Mk) = n −
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j , where j = 1, 2, . . .. In this case, any non-zero row Y can be chosen either from
M f or Mk , to form Md , where

Md =

⎡

⎢⎢⎢
⎣

Y
0
...

0

⎤

⎥⎥⎥
⎦

is the standard matrix representation of some d ∈ [W ], such that [T ] − [W ] − [L].
Case III. Assume that rank

(
M f

) = n and rank (Mk) = n. Then M f has n inde-
pendent rows R1, R2, . . . , Rn . Since [T ] and [L] are not adjacent, Mk has one row
say R such that {R1, R2, . . . , Rm−1, R} is an independent set which forms a basis
for Rm = Rn+1. Let K �= R be a non-zero row in Mk . Hence, K ∈ rowspace (Mk).
Since K ∈ Rn+1, we have

K = c1R1 + c2R2 + · · · + cn Rn + cn+1R.

Let Y = K − cn+1R. Hence, Y ∈ rowspace (Mk) (since both K , cn+1R ∈

rowspace (Mk)) and Y ∈ rowspace
(
M f

)
. Let Md =

⎡

⎢⎢
⎢
⎣

Y
0
...

0

⎤

⎥⎥
⎥
⎦

n×m

be the standard

matrix representation of some d ∈ [W ].
Since Y ∈ rowspace

(
M f

)
, Y becomes a zero row through row operations using

the rows inM f , null
(
M f d

) �= 0 since rank
(
M f d

) = n. Hence, ker (T ) ∩ ker (W ) �=
0. Thus, [T ] , [W ] are adjacent. Similarly, since Y ∈ rowspace (Mk), Y becomes
a zero row through row operations using the rows in Mk . Hence, null (Mkd) �= 0
since rank (Mkd) = n. Thus, ker (L) ∩ ker (W ) �= 0. Thus, [W ] , [L] are adjacent.
Therefore, we have [T ] − [W ] − [L].

Example 2 Suppose m = 4 and n = 3 and consider the graph G4,3. Note that n <

m ≤ 2n, m �= 1, 2 and and m = n + 1. Thus m, n satisfy the given hypothesis in
Theorem 5. Let [T ] , [L] ∈ V , such that [T ] and [L] are not adjacent. Let f ∈ [T ],
and k ∈ [L]. Then rank

(
M f

)
< m and rank (Mk) < m, where M f and Mk are the

standard matrix representations of f and k, with size n × m = 3 × 4. Suppose,

M f =
⎡

⎣
1 0 0 0
0 1 0 1
0 0 1 0

⎤

⎦

3×4

, Mk =
⎡

⎣
1 0 0 0
0 1 0 0
0 0 0 1

⎤

⎦

3×4

.

Let M f k =
[
M f

Mk

]

6×4

. It can be easily seen that rank
(
M f k

) = 4, which implies that

null
(
M f k

) = 0. Therefore, ker ( f ) ∩ ker (k) = 0, that is, the vertices [T ] and [L]
are not adjacent. Hence, rank

(
M f

) = 3 = n, and rank (Mk) = 3 = n. Then M f has
three independent rows R1, R2, and R3, such that R1 = [

1 0 0 0
]
, R2 = [

0 1 0 1
]
,
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and R3 = [
0 0 1 0

]
. The vertices [T ] and [L] are not adjacent, thus Mk has one

row, R = [
0 0 0 1

]
, such that {R1, R2, R3, R} is an independent set which forms

a basis for R4. Let K �= R be a non-zero row in Mk , K = [
0 1 0 0

]
. Since

K ∈ rowspace (Mk) and K ∈ R4, it can be written as a linear combination of
{R1, R2, R3, R} as follows:

K = 0.R1 + 1.R2 + 0.R3 + (−1) .R = [
0 1 0 1

] − [
0 0 0 1

] = [
0 1 0 0

]
.

Let Y = K − (−1) .R = K + R = [
0 1 0 0

] + [
0 0 0 1

] = [
0 1 0 1

]
.

This implies Y ∈ rowspace (Mk) and Y ∈ rowspace
(
M f

)
. Let Md =

⎡

⎣
Y
0
0

⎤

⎦

3×4

=
⎡

⎣
0 1 0 1
0 0 0 0
0 0 0 0

⎤

⎦

3×4

be the standard matrix representation of some d ∈ [W ].

Since Y ∈ rowspace
(
M f

)
, Y becomes a zero row through row operations using

the rows in M f . Thus, null
(
M f d

) �= 0, since rank
(
M f d

) = 3. Hence, ker (T ) ∩
ker (W ) �= 0. Thus, [T ] , [W ] are adjacent. Similarly, since Y ∈ rowspace (Mk), Y
becomes a zero row through rowoperations using the rows inMk . Thus, null (Mkd) �=
0 since rank (Mkd) = 3. Hence, ker (L) ∩ ker (W ) �= 0. Thus, [W ] , [L] are adjacent.
Therefore, we have [T ] − [W ] − [L].

Theorem 6 Assume that Gm,n is connected. Then gr(Gm,n)) = 3.

Proof [T ] , [L] ∈ V , such that [T ] and [L] are adjacent, ker (T ) ∩ ker (L) �= 0 and
[T ] �= 0, [L] �= 0. Let f ∈ [T ] and k ∈ [L], then M f and Mk are the standard matrix
representations of f and k with size n × m. Suppose that each matrix M f and Mk

is composed of only one row, R f and Rk that are independent of each other since f
and k are in different equivalence classes [T ] and [L]. M f and Mk can be written as
follows:

M f =

⎡

⎢⎢⎢
⎣

R f

0
...

0

⎤

⎥⎥⎥
⎦

n×m

, Mk =

⎡

⎢⎢⎢
⎣

Rk

0
...

0

⎤

⎥⎥⎥
⎦

n×m

.

Let Y = R f + Rk . Since Y is a linear combination of two linearly independent rows,
then the set {Y, R f , Rk} is also linearly independent.

Let Md =

⎡

⎢
⎢⎢
⎣

Y
0
...

0

⎤

⎥
⎥⎥
⎦

n×m

be the standard matrix representation of some non-trivial linear

transformation d. SinceY is independent of both R f and Rk ,Md is not row-equivalent
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to either M f or Mk , hence d is in a different equivalence class from both f and k,
say d ∈ [W ]. Since ker (T ) ∩ ker (L) �= 0, we have null

(
M f k

) �= 0, which implies
null

(
M f d

) �= 0 and null (Mkd) �= 0. Therefore, we have [T ] − [L] − [W ] − [T ].
This forms the shortest possible cycle. Hence, gr(Gm,n)) = 3.
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On Distance Laplacian (Signless)
Eigenvalues of Commuting Graphs
of Dihedral and Dicyclic Groups

S. Pirzada, Bilal A. Rather, Rezwan ul Shaban, and Imran Bhat

Abstract For a finite group G with identity e, let X be a nonempty subset of G.
The commuting graph G = C(G, X) is a simple connected graph with vertex set X ,
where two vertices x, y ∈ X are adjacent if and only if x and y commute in X . In this
article, we find the distance Laplacian and distance signless Laplacian eigenvalues of
the commuting graph associated to dihedral group, semi-dihedral group and dicyclic
group. We show that the commuting graphs of the dihedral group, semi-dihedral
group and dicyclic group are distance Laplacian integral.

Keywords Distance Laplacian matrix · Distance signless Laplacian matrix ·
Commuting graph · Dihedral group · Semi-dihedral group · Dicyclic group

1 Introduction

All graphs considered in this article are connected, undirected, simple and finite. A
graph is denoted by G(V (G), E(G)) (or simply by G), where V (G) is the vertex
set and E(G) is the edge set of G. The order and the size of G are the cardinalities
of V (G) and E(G), respectively. The degree of a vertex v in G is the number of
edges incident with v and is denoted by dG(v) (or simply by dv). The neighborhood
of a vertex v, denoted by N (v), is the set of vertices of G adjacent to v, so that
dv = |N (V )|. A graph G is called r-regular if degree of each vertex is r .

The adjacency matrix A(G) = (ai j ) of G is a (0, 1)-square matrix of order n
whose (i, j)-entry is equal to 1 if vi is adjacent to v j and equal to 0, otherwise. Since
A(G) is real symmetric, so we take adjacency spectrum as λn ≤ λn−1 ≤ · · · ≤ λ1.
Let Deg(G) = diag(d1, d2, . . . , dn) be the diagonal matrix of vertex degrees di =
dG(vi ), i = 1, 2, . . . , n associated toG. The matrices L(G) = Deg(G) − A(G) and
Q(G) = Deg(G) + A(G) are, respectively, the Laplacian and the signless Laplacian
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matrices, and their spectrum are, respectively, the Laplacian spectrum and signless
Laplacian spectrum of the graph G. These matrices are real symmetric and positive
semi-definite. We take 0 = μn ≤ μn−1 ≤ · · · ≤ μ1 to be the Laplacian eigenvalues
of the graph G. More literature about these matrices can be found in the book [7].

In G, the distance between two vertices u, v ∈ V (G), denoted by d(u, v), is
defined as the length of the shortest path between u and v. The distance matrix of
G is denoted by D(G) and is defined as D(G) = (duv), where duv = d(u, v), if u is
adjacent to v and zero otherwise. For more about D(G), we refer the reader to [5].
The transmission TrG(v) of a vertex v is defined to be the sum of the distances from v

to all other vertices inG, that is, TrG(v) = ∑

u∈V (G)

d(u, v). For any vertex vi ∈ V (G),

the transmission TrG(vi ) is called the transmission degree, shortly denoted by Tri
and the sequence {Tr1, Tr2, . . . , Trn} is called the transmission degree sequence of
G.

Let Tr(G) = diag(Tr1, Tr2, . . . , Trn) be the diagonalmatrix of vertex transmis-
sions of G. Aouchiche and Hansen [6] introduced the distance Laplacian DL(G) =
Tr(G) − D(G) and the distance signless Laplacian DQ(G) = Tr(G) + D(G) for
the distance matrix of a connected graph G. Since the matrices DL(G) and DQ(G)

are real symmetric positive semi-definite (definite in case ofDQ(G)), we denote their
eigenvalues by 0 = ρL

n ≤ ρL
n−1 ≤ · · · ≤ ρL

1 and ρQ
n ≤ ρQ

n−1 ≤ · · · ≤ ρQ
1 , respectively.

The eigenvalues ρL
1 and ρL

n−1 are called the distance Laplacian spectral radius and

second smallest distance Laplacian eigenvalue of graphG. Similarly, ρQ
1 is known as

distance signless Laplacian spectral radius of G.More about distance Laplacian and
distance signless Laplacian matrices can be found in [6, 11, 17] and the references
therein.

Let G be a finite group and X be a non empty subset of G. The commuting graph,
denoted by C(G, X), is defined with X as vertex set and two vertices x and y are
adjacent if and only if x and y commute in X. Commuting graphs of matrix rings
and semirings over finite fields were studied in [1, 8]. Metric dimension, resolving
polynomial, clique number and chromatic number of commuting graphs on dihedral
groups were discussed in [3, 23]. Recent results on the commuting graph of general-
ized dihedral groups can be found in [14] and the references therein. The connectivity
and spectral radius of adjacencymatrix of commuting graphs were studied in [4], and
Laplacian and signless Laplacian spectra of commuting graphs on dihedral group
were investigated in [2]. For other spectral and energies of commuting graphs, we
refer to [9, 12] and the references therein. Also, the investigation of spectra in zero
divisor graphs can be seen in [18–22].
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2 Distance Laplacian Spectra of the Commuting Graphs
of D2n and Q4n

Consider an n × n matrix

M =

⎛

⎜
⎜
⎜
⎝

A1,1 A1,2 · · · A1,s

A2,1 A2,2 · · · A2,s
...

...
. . .

...

As,1 As,2 · · · As,s

⎞

⎟
⎟
⎟
⎠
,

whose rows and columns are partitioned according to a partition P =
{P1, P2, . . . , Pm} of the set X = {1, 2, . . . , n}. The quotient matrix Q (see [7]) is
an s × s matrix whose entries are the average row sums of the blocks Ai, j of M .
The partition P is said to be equitable if each block Ai, j of M has constant row (and
column) sum, and in this case, the matrix Q is called as equitable quotient matrix.
In general, the eigenvalues of M interlace the eigenvalues ofQ. In case the partition
is equitable, we have the following lemma.

Lemma 1 [7] If the partition P of X of matrix M is equitable, then each eigenvalue
of Q is an eigenvalue of M.

Assume that a graph G has a kind of symmetry so that its associated matrix is
written in the form

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

X β · · · β β
βT B · · · C C
...

...
. . .

...
...

βT C · · · B C
βT C · · · C B

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (1)

where X ∈ Rt×t , β ∈ Rt×s and B,C ∈ Rs×s , such that n = t + cs, where c is the
number of copies of B. Then the spectrum of this matrix can be obtained as the union
of the spectrum of smaller matrices using the following technique given in [10].

Lemma 2 Let M be a matrix of the form given in (1), with c ≥ 1 copies of the block
B. Then

(i) σ(B − C) ⊆ σ(M) with multiplicity c − 1;
(ii) σ(M) \ σ(c−1)(B − C) = σ(M ′) is the set of the remaining t + s eigenvalues of

M,where M ′ =
(

X
√
c.β√

c.βT B + (c − 1)C

)

,whereσ(k)(Y ) indicates themulti-set

formed by k copies of the spectrum of Y , denoted by σ(Y ).

The following lemma gives the equivalent method of finding the determinant (det)
of a matrix.
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Lemma 3 [13] Let M1, M2,M3 and M4 be, respectively, p × p, p × q, q × p
and q × q matrices with M1 and M4 invertible. Then

det

(
M1 M2

M3 M4

)

= det (M1)det (M4 − M3M
−1
1 M2)

= det (M4)det (M1 − M2M
−1
4 M3),

where M4 − M3M
−1
1 M2 and M1 − M2M

−1
4 M3 are called the Schur complement of

M1 and M4, respectively.

Let G(V, E) be a graph of order n and Gi (Vi , Ei ) be graphs of order ni , where
i = 1, . . . , n. The joined union G[G1, . . . ,Gn] is the graph H(W, F) with

W =
n⋃

i=1

Vi and F =
n⋃

i=1

Ei ∪
⋃

{vi ,v j }∈E
Vi × Vj .

In other words, the joined union is the union of graphs G1, . . . ,Gn together with the
edges vikv jl , vik ∈ Gi and v jl ∈ G j , whenever viv j is an edge in G.

The following theorem gives the distance Laplacian spectrum of the joined
union of graphs G1,G2, . . . ,Gn , in terms of Laplacian spectrum of the graphs
G1,G2, . . . ,Gn .

Theorem 1 Let[11] G be a graph of order n having vertex set V (G) = {v1, . . . , vn}.
Let Gi be a graph of order mi and Laplacian eigenvalues μi1 ≥ μi2 ≥ . . . ≥
μimi , where i = 1, 2, . . . , n. The distance Laplacian spectrum of the joined union
G[G1, . . . ,Gn] consists of the eigenvalues 2mi − μik + αi for i = 1, . . . , n and

k = 1, 2, 3, . . . ,mi − 1, where αi =
n∑

k=1,k 	=i
mkdG(vi , vk). The remaining n eigen-

values are given by the matrix

M =

⎛

⎜
⎜
⎜
⎝

α1 −m2dG(v1, v2) . . . −mndG(v1, vn)
−m1dG(v2, v1) α2 . . . −mndG(v2, vn)

...
...

. . .
...

−m1dG(vn, v1) −m2dG(vn, v2) . . . αn

⎞

⎟
⎟
⎟
⎠
.

We assume all our groups are finite with identity element denoted by e. For
notations and definitions, we follow [15]. The presentation of dihedral group D2n ,
n > 2, is given by

D2n = 〈a, b : an = e = b2, aba = b〉.

Clearly, the last condition is equivalent to ab = ba−1 = ban−1. Similarly, the pre-
sentation of semi-dihedral SD8n of order 8n and dicyclic group Q4n of order 4n are
given by

SD8n = 〈a, b : a4n = e = b2, ab = ba2n−2〉,
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and
Q4n = 〈a, b : a2n = e = b4, b2 = an, ab = ba−1〉,

respectively. The center of G, denoted by Z(G), is defined by

Z(G) = {z ∈ G : za = az, for each a ∈ G.}

We suppose that any finite cyclic group G of order n is isomorphic to integers modulo
group Zn . Clearly, the commuting graph G = C(Zn,Zn) is the complete graph Kn ,
as every element of Zn commutes with every other element. The distance Laplacian
spectrum of C(Zn,Zn) is {0, n[n−1]}, where [n − 1] represents the algebraic multi-
plicity (or multiplicity) of the eigenvalue n. It easily follows that Z(D2n) = {e}, for
odd n and Z(D2n) = {

e, a
n
2
}
, for even n. Also, Z(Q4n) = {e, an} is the center of

dicyclic group. For the commuting graph G = C(D2n, Z(D2n)) (see [3]), G is K1,
for odd n andG is K2, for even n. So, the commuting graphs C(G, Z(G)) have simple
structures and their spectral properties follow easily, so are omitted here.

The next result can be found in [3], which gives the structure of D2n , where X is
D2n itself.

Lemma 4 For the commuting graph G = C(D2n, D2n) of dihedral group D2n, we
have

G =
{
K1�

(
Kn−1 ∪ Kn

)
, if n is odd,

K2�
(
Kn−2 ∪ n

2 K2
)
, if n is even.

The following result can be found in [24].

Lemma 5 For the commuting graph G = C(SD8n, D8n) of dihedral group D2n, we
have

G =
{
K4�

(
K4n−4 ∪ nK4

)
, if n is odd,

K2�
(
K4n−2 ∪ 2nK2

)
, if n is even.

In the following result, we find the distance Laplacian eigenvalues of dihedral
group.

Theorem 2 For the commuting graph C(D2n, D2n) of dihedral group D2n, the fol-
lowing hold.

(i) If n is odd, then the distance Laplacian spectrum of C(D2n, D2n) is

{
0, 2n, (3n)[n−2], (4n − 1)[n]

}
.

(ii) If n is even, then the distance Laplacian spectrum of C(D2n, D2n) is

{
0, (2n)[2], (4n − 2)[n/2], (4n − 4)[n/2], (3n)[n−3]

}
.
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Fig. 1 Graph S and the
commuting graph
C(D2n, D2n) with even n

2
1

3

4

...

n
2 + 2

K2Kn−2

K2

K2

...

K2

Proof (i). By Lemma 4, the commuting graph of D2n is

C(D2n, D2n) = K1�
(
Kn−1 ∪ Kn

) = P3[Kn, K1, Kn−1],

that is, C(D2n, D2n) is the pineapple graph (a graph obtained by appending pendent
edges to a vertex of complete graph). By using Theorem 1, the αi ’s are

α1 = 1 + 2(n − 1) = 2n − 1,α2 = n + n − 1 = 2n − 1 and α3 = 2n + 1.

Again, by Theorem 1, the distance Laplacian eigenvalues of C(D2n, D2n) are the
eigenvalue 2m1 − λ1k + α1 = 2n + 2n − 1 = 4n − 1 with multiplicity n − 1, the
eigenvalue 3n with multiplicity n − 2, and the remaining three eigenvalues are the
eigenvalues of following quotient matrix
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M =
⎛

⎝
2n − 1 −1 −2(n − 1)

−n 2n − 1 −(n − 1)
−2n −1 2n + 1

⎞

⎠ .

Since each row sum of M is zero, so 0 is the simple eigenvalue and the remaining
two eigenvalues are 2n and 4n − 1.
(ii). Let n be even. Then by Lemma 4, the commuting graph C(D2n, D2n) of D2n is

C(D2n, D2n) = K2�
(
Kn−2 ∪ n

2
K2

)
= S[K2, Kn−2, K2, K2, . . . , K2︸ ︷︷ ︸

n
2

],

where S is shown in Fig. 1. The value of αi ’s are

α1 = n − 2 + 2
n

2
= 2n − 2,α2 = 2n + 2,α3 = · · · = α n

2 +2 = 4n − 6.

ByTheorem1, the distance Laplacian spectrumof C(D2n, D2n) consists of the simple
eigenvalue 2m1 − λ1k + α1 = 4 + 2n − 2 − 2 = 2n, the eigenvalue 3n with multi-
plicity n − 3, the eigenvalue 4n − 4 with multiplicity n

2 and the eigenvalues of the
matrix

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2n − 2 −n + 2 −2 −2 . . . −2
−2 2n + 2 −4 −4 . . . −4
−2 −2n + 4 4n − 6 −4 . . . −4
−2 −2n + 4 −4 4n − 6 . . . −4
...

...
...

...
. . .

...

−2 −2n + 4 −4 −4 . . . 4n − 6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
(
A2×2 B2× n

2

C n
2 ×2 Dn

2 × n
2

)

.

Clearly, D is invertible; therefore, by Lemma 3, we have

det (M − x I ) = det (D − x I )det ((A − x I ) − C(D − x I )−1B),

where

D − x I =

⎛

⎜
⎜
⎜
⎝

4n − 6 − x −4 . . . −4
−4 4n − 6 − x . . . −4
...

...
. . .

...

−4 −4 . . . 4n − 6 − x

⎞

⎟
⎟
⎟
⎠
.

Now, applying Lemma 2 to the matrix D − x I , with X = [0], β = [0], B = [4n −
6 − x] and C = [−4], we see that 4n − 2 is the distance Laplacian eigenvalue of

C(D2n, D2n) with multiplicity
n

2
. Since 0 is the simple eigenvalue of the matrix M ,

thus
μ1 + n

2
2(2n − 1) = 2n − 2 + 2n + 2 + n

2
2(2n − 3)
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implies that μ1 = 2n is the distance Laplacian eigenvalue of M . This proves the
result in this case. �

In the following result,wefind thedistanceLaplacian eigenvalues of semi-dihedral
group.

Theorem 3 For the commuting graph C(SD8n, SD8n) of dihedral group SD8n, the
following hold.

(i) If n is odd, then the distance Laplacian spectrum of C(SD8n, SD8n) is

{
0, (8n)[4], (12n)[4n−5], (16n − 8)[3n], (16n − 4)[n]

}
.

(ii) If n is even, then the distance Laplacian spectrum of C(SD8n, SD8n) is

{
0, (8n)[2], (16n − 4)[2n](12n)[4n−3], (16n − 2)[2n]

}
.

Proof By using Lemma 5, the proof of this result is similar to Theorem 2. �

In the next result, we will find the distance Laplacian eigenvalues of dicyclic group
Q4n.

Theorem 4 The Laplacian spectrum of the commuting graph C(Q4n, Q4n) of
dicyclic group Q4n of order 4n is

{
0, (4n)[2], (6n)[2n−3], (8n − 2)[n], (8n − 2)

}
.

Proof The commuting graph C(Q4n, Q4n) of Q4n [4] is given below

C(Q4n, Q4n) = K2�
(
K2n−2 ∪ nK2

) = H [K2, K2n−2, K2, K2, . . . , K2︸ ︷︷ ︸
n

],

where underlying graph H is the star graph on n + 2 vertices. Using Theorem 1, the
value of αi ’s are

α1 = 2n − 2 + 2n = 4n − 2,α2 = 4n + 2,α3 = · · · = αn+2 = 8n − 4.

Again, using Theorem 1, the distance Laplacian spectrum of C(Q4n, Q4n) consists of
the simple eigenvalue 2m1 − λ1k + α1 = 4 + 4n − 2 − 2 = 4n, the eigenvalue 6n
with multiplicity 2n − 3, the eigenvalue 8n − 2 with multiplicity n and the eigen-
values of following matrix
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M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

4n − 2 −2n + 2 −2 −2 . . . −2
−2 4n + 2 −4 −4 . . . −4
−2 −4n + 4 8n − 6 −4 . . . −4
−2 −4n + 4 −4 8n − 6 . . . −4
...

...
...

...
. . .

...

−2 −4n + 4 −4 −4 . . . 8n − 6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
(
A2×2 B2×n

Cn×2 Dn×n

)

.

Since D is invertible, so by Lemma 3, we have

det (M − x I ) = det (D − x I )det ((A − x I ) − C(D − x I )−1B),

where

D − x I =

⎛

⎜
⎜
⎜
⎝

8n − 6 − x −4 . . . −4
−4 8n − 6 − x . . . −4
...

...
. . .

...

−4 −4 . . . 8n − 6 − x

⎞

⎟
⎟
⎟
⎠
.

Now, applying Lemma 2 to the matrix D − x I , with X = [0], β = [0], B = [8n −
6 − x] and C = [−4], we see that 8n − 2 is the distance Laplacian eigenvalue of
C(Q4n, Q4n) with multiplicity n. It is well known that 0 is the simple eigenvalue of
the distance Laplacian matrix, so

μ1 + 8n2 = 8n + 8n2 − 4n.

Thus, μ1 = 4 is the remaining distance Laplacian eigenvalue of M . �

A matrix M ∈ Mn(F) over field F is called integral if its spectrum consists of
only integers. Similarly, the distance Laplacian matrix DL(G) of G is integral if all
eigenvalues of DL(G) are integers.

From Theorems 2, 3 and 4, we have the following consequence.

Proposition 1 The commuting graphs of dihedral group D2n, semi-dihedral group
SD8n and dicyclic graphs Q4n are distance Laplacian integral.

3 Distance Signless Laplacian Spectra of the Commuting
Graphs of D2n and Q4n

In this section, we obtain the distance signless Laplacian spectra of the commuting
graphs of dihedral, semi-dihedral and the dicyclic groups.

The following result gives the distance signless Laplacian spectra of the joined
union of graphs G1,G2, . . . ,Gn in terms of the adjacency spectrum of the graphs
G1,G2, . . . ,Gn and the eigenvalues of quotient matrix.
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Theorem 5 Let[17] G be a graph of order n having vertex set V (G) = {v1, . . . , vn}.
Let Gi be ri -regular graphs of order mi having adjacency eigenvalues λi1 =
ri ≥ λi2 ≥ . . . ≥ λini , where i = 1, 2, . . . , n. The distance signless Laplacian spec-

trum of the joined union graph G[G1, . . . ,Gn] of order
n∑

i=1
ni consists of the

eigenvalues 2mi + αi − ri − λik − 4 for i = 1, . . . , n and k = 2, 3, . . . , ni , where

αi =
n∑

k=1,k 	=i
nkdG(vi , vk). The remaining n eigenvalues are given by the equitable

quotient matrix

Q =

⎛

⎜
⎜
⎜
⎝

4m1 + α1 − 2r1 − 4 m2dG(v1, v2) . . . mndG(v1, vn)
m1dG(v2, v1) 4m2 + α2 − 2r2 − 4 . . . mndG(v2, vn)

...
...

. . .
...

m1dG(vn, v1) m2dG(vn, v2) . . . 4mn + αn − 2rn − 4

⎞

⎟
⎟
⎟
⎠
.

In the following result, we find the distance signless Laplacian eigenvalues of
commuting graph of dihedral group.

Theorem 6 For the commuting graph C(D2n, D2n) of dihedral group D2n, the fol-
lowing hold.

(i) If n is odd, then the distance signless Laplacian spectrumof C(D2n, D2n) consists
of the eigenvalue 3n − 2 with multiplicity n − 2, the eigenvalue 4n − 5 with
multiplicity n − 1 and the eigenvalues of following cubic polynomial

x3 − (12n − 9)x2 + (
40n2 − 62n + 24

)
x − 40n3 + 94n2 − 74n + 20.

(ii) If n is even, then the distance signless Laplacian spectrum of C(D2n, D2n) is

{
2n − 2, (3n − 2)[n−3], (4n − 6)

[
n
2

]

, (4n − 8)
[

n
2

]}
,

together with the eigenvalues of (2)

Proof (i). By Theorem 5, the αi ’s are

α1 = 1 + 2(n − 1) = 2n − 1,α2 = n + n − 1 = 2n − 1 and α3 = 2n + 1.

So, the distance signless Laplacian eigenvalues of C(D2n, D2n) are the eigenvalues
2m1 + α1 − r1 − λ1k − 4 = 2n + 2n − 1 − 0 − 0 − 4 = 4n − 5 with multiplicity
n − 1, the eigenvalue 3n − 2 with multiplicity n − 2 and the remaining three eigen-
values are the eigenvalues of the following quotient matrix

M =
⎛

⎝
6n − 5 1 2(n − 1)

n 2n − 1 n − 1
2n 1 4n − 3

⎞

⎠ .
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(ii). By using Theorem 5, the distance signless Laplacian spectrum of C(D2n, D2n)

consists of the simple eigenvalue 2m1 + α1 − r1 − λ1k − 4 = 4 + 2n − 2 − 1 +
2 − 4 = 2n − 2, the eigenvalue 3n − 2 with multiplicity n − 3, the eigenvalue
4n − 6 with multiplicity n

2 and the eigenvalues of matrix

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2n n − 2 2 2 . . . 2
2 4n − 4 4 4 . . . 4
2 2n − 4 4n − 4 4 . . . 4
2 2n − 4 4 4n − 4 . . . 4
...

...
...

...
. . .

...

2 2n − 4 4 4 . . . 4n − 4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
(
A2×2 B2× n

2

C n
2 ×2 Dn

2 × n
2

)

.

Clearly, D is invertible, thus by Lemma 3, we have

det (M − x I ) = det (D − x I )det ((A − x I ) − C(D − x I )−1B),

where

D − x I =

⎛

⎜
⎜
⎜
⎝

4n − 4 − x 4 . . . 4
4 4n − 4 − x . . . 4
...

...
. . .

...

4 4 . . . 4n − 4 − x

⎞

⎟
⎟
⎟
⎠
.

Now, applying Lemma 2 to the matrix D − x I , with X = [0], β = [0], B = [4n −
4 − x] and C = [4], we see that 4n − 8 is the distance Laplacian eigenvalue of

C(D2n, D2n)with multiplicity
n

2
. The remaining two eigenvalues of C(D2n, D2n) are

the zeros of the polynomial

det ((A − x I ) − C(D − x I )−1B). (2)

�

In the following results, we find the distance Laplacian spectra of the commuting
graphs of semi-dihedral SD8n and dicyclic group Q4n. The proof is similar to that
of Theorem 6.

Theorem 7 For the commuting graph C(SD8n, SD8n) of semidihedral group SD8n,
the following hold.

(i) If n is odd, then the distance signless Laplacian spectrum of C(SD8n, SD8n)
consists of the eigenvalue 8n − 2withmultiplicity 3, the eigenvalue 12n − 2with
multiplicity 4n − 5, the eigenvalue 16n − 10with multiplicity 3n, the eigenvalue
16n − 14 with multiplicity n − 1 and the remaining three eigenvalues are the
zeros of following polynomial det ((A − x I ) − C(D − x I )−1B), where
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A =
(
8n − 6 4n − 4

4 16n − 10

)

, B =
(
4 4 . . . 4
8 8 . . . 8

)

,C =
(

4 4 . . . 4
8n − 8 8n − 8 . . . 8n − 8

)T

and D =

⎛

⎜
⎜
⎜
⎝

16n − 6 8 . . . 8
8 16n − 6 . . . 8
.
.
.

.

.

.
. . .

.

.

.

8 8 . . . 16n − 6

⎞

⎟
⎟
⎟
⎠
.

(ii) If n is even, then the distance signless Laplacian spectrum of C(SD8n, SD8n)

consists of the simple eigenvalue8n − 2, the eigenvalue12n − 2withmultiplicity
4n − 3, the eigenvalue 16n − 6withmultiplicity 2n, the eigenvalue 16n − 8with
multiplicity2n − 1and the remaining three eigenvalues are the zeros of following
polynomial
det ((A − x I ) − C(D − x I )−1B), where

A =
(
8n 4n − 2
2 16n − 4

)

, B =
(
2 2 . . . 2
4 4 . . . 4

)

,C =
(

2 2 . . . 2
8n − 4 8n − 4 . . . 8n − 4

)T

and D =

⎛

⎜
⎜
⎜
⎝

16n − 4 4 . . . 4
4 16n − 4 . . . 4
...

...
. . .

...

4 4 . . . 16n − 4

⎞

⎟
⎟
⎟
⎠
.

Theorem 8 The signless Laplacian spectrum of the commuting graph C(Q4n, Q4n)

of dicyclic group Q4n of order 4n consists of the simple eigenvalue 4n − 2, the
eigenvalue 6n − 2withmultiplicity 2n − 3, the eigenvalue 8n withmultiplicity n − 1,
the eigenvalue 8n − 6 with multiplicity n and the remaining three eigenvalues are
the zeros of following polynomial

det ((A − x I ) − C(D − x I )−1B),

where

A =
(
4n 2n − 2
2 8n − 6

)

, B =
(
2 2 . . . 2
4 4 . . . 4

)

,C =
(

2 2 . . . 2
4n − 4 4n − 4 . . . 4n − 4

)T

and D =

⎛

⎜
⎜
⎜
⎝

8n − 2 4 . . . 4
4 8n − 2 . . . 4
...

...
. . .

...

4 4 . . . 8n − 2

⎞

⎟
⎟
⎟
⎠
.
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Spectrum of Graphs over Rings:
A Survey

V. Rabikka, T. Asir, and M. Evangeline Prathibha

Abstract This article is a survey of results concerning the eigenvalues of graphs con-
structed from commutative rings. Specifically, we consider the zero-divisor graphs,
unitary Cayley graphs, unit graphs, and total graphs.

Keywords Eigenvalue · Spectrum · Unitary cayley graph · Unit graph · Total
graph

1 Introduction

Spectral graph theory is the study and exploration of graphs through the eigenvalues
and eigenvectors of matrices naturally associated with those graphs. The study on
adjacency matrix of a graph and its eigenvalues has a long history. Historically, the
first relation between the spectrum and the structure of a graph was discovered in
1876 by Kirchhoff when he proved his famous matrix-tree theorem. The eigenvalues
of a graph have been used in several areas of mathematical research and are playing a
significant role in the development of various physical and chemical theories. There
are several existing books concerning graph eigenvalues, for example [15, 19, 20].

In recent decades, the graphs constructed from algebraic structures have been
extensively studied by many authors and have become a major field of research. The
idea of constructing a graph from an algebraic structure was originated by Arthur
Cayley in 1878. In recent years, assigning graphs to rings is playing an important
role in the study of the structure of rings. The benefit of studying these graphs is
that one may find some results about the algebraic structures and vice versa. In the
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literature, there are many papers on assigning a graph to a commutative ring. Some
of the graphs to be mentioned are zero-divisor graphs, unitary Cayley graphs, unit
graphs, and total graphs.

This article will consist of results on eigenvalues and energy of graphs over com-
mutative rings. In particular, eigenvalues of graphs constructed from commutative
rings have gained attention due to their prominent roles in algebraic graph theory as
well as in some other areas like quantum computing. The second section deals with
eigenvalues of graphs from rings whereas the third section deals with the Laplacian
eigenvalues of graphs from rings.

Throughout the article, R will be a commutative ring with identity 1 �= 0. We
denote Z(R), U (R), and Nil(R) by the set of zero-divisors of R, the set of units of
R, and the nilradical of a ring R, respectively. Also, we denote the ring of integers
modulo n by Zn . Further Kn , Km,n, Pn , and Cn denote respectively the complete
graph on n vertices, complete bipartite graph with a bipartition into vertex sets of
cardinality m and n, path on n vertices and cycle with n vertices. Moreover, the
neighborhood set of a vertex v in G is NG(u) = {v ∈ V (G) : v is adjacent to u in
G }. All the definitions related to algebra are from Dummit and Foote [23], and the
definitions related to graph theory are from Chartrand and Zhang [17].

2 Spectrum of Graphs Associated to Rings

For a undirected graph G of order n, the adjacency matrix A(G) is an n × n matrix
with both rows and columns as indexed as vertices such that (i, j)−entry is the
number of edges joining i and j with each loop being counted as two edges. Also, the
eigenvalues of A(G) are called the eigenvalues of G. Note that the adjacency matrix
A(G) of a undirected graph G is a real symmetric matrix and its eigenvalues are
only real numbers. The multiplicity (in fact, algebraic multiplicity) is the number of
times an eigenvalue appears in a characteristic polynomial of A(G). The eigenvalues
of G with its multiplicity are called as spectrum of a graph G. If λ1, . . . ,λk are
the eigenvalues of G with corresponding multiplicities m1, . . . , mk , then we denote
spectrum of G either by

Spec(G) =
(

λ1 . . . λk

m1 . . . mk

)
,

or simply by λ[m1]
1 , . . . ,λ[mk ]

k with mi omitted if it is equal to 1.
The graph energy is a graph-spectrum-based quantity, introduced in the 1970s.

The first paper in which graph the energy was defined as the sum of absolute values
of the eigenvalues of the adjacency matrix, namely as

∑n
i=1 |λi |, where λ1, . . . ,λn

are the eigenvalues of G, appeared in 1978 [60].

Example 1 Let us consider the following graph, cycle on 4 vertices (Fig. 1):
Then the adjacency matrix
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Fig. 1 The graph C4 v1 v2

v3v4

A(C4) =

⎡
⎢⎢⎣
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎤
⎥⎥⎦ .

The characteristic equation of A(C4) is λ4 − 4λ2 = 0. So that the eigenvalues of
graph C4 is 0[2],±2.

Some of the results of the eigenvalues for standard graphs are listed below.

Remark 1 [16] Let n, m ∈ Z
+. Then

(i). The spectrum of Pn is 2cos
(

π j
n+1

)
for j = 1, 2, . . . , n.

(ii). The spectrum of Cn is 2cos
(
2π j

n

)
for j = 0, 1, . . . , n − 1.

(iii). The spectrum of Kn is (n − 1)[1], (−1)[n−1].
(vi). The spectrum of Km,n is 0[m+n−2],±√

mn.

2.1 Zero-Divisor Graphs

The idea of a graph associated with the zero-divisors of a commutative ring R was
introduced by Beck [12] in 1988. The present definition, along with the name for the
zero-divisor graph, was introduced by Anderson and Livingston [7] in 1999, after
modifying Beck’s definition. Note that Beck [12] took all elements of the commuta-
tive ring R as vertices of the graph Γ0(R). The modified definition of the zero-divisor
graph is as follows.

Definition 1 ([7]) Let R be a commutative ring with identity and Z(R) be its set of
zero-divisors. The zero-divisor graph of R, denoted by Γ (R), is the simple graph
with vertex set Z(R)∗ = Z(R) \ {0}, and two distinct vertices x and y are adjacent
if xy = 0.
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Example 2 In the Figure below, zero-divisor graphs for several rings are given.

Γ (Z2 × F4) Γ (Z3 × Z3) Γ (Z25) or Γ ( Z5(x)
<x2> )

(a) The adjacency matrix for Γ (Z2 × F4) is

A(G) =

⎡
⎢⎢⎣
0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

⎤
⎥⎥⎦ .

The characteristic polynomial of Γ (Z2 × F4) is λ2(λ2 − 3) = 0. Hence the eigen-

values are 0[2],
√
3

[2]
.

(b) By Example 1, we get the eigenvalues of Γ (Z3 × Z3) is 0(2),±2.
(c) The adjacency matrix for Γ (Z25) or Γ (Z5(x)/〈x2〉) is

⎡
⎢⎢⎣
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎤
⎥⎥⎦ .

Here the characteristic polynomial is λ4 − 6λ2 − 8λ − 3 = 0 and so the eigenvalues
are −3, 1, 1, 1.

The concept of the energy of zero-divisor graph was initiated by Ahmadi et al.
in [3]. In particular, they considered the zero-divisor graph of Zn for n = p2 or pq
where p and q are primes.

Theorem 1 ([3] Theorem 1) If p is a prime number, then the energy of Γ (Zp2) is
2p − 4.

Theorem 2 ([3] Theorem 2) If p and q are two prime numbers, then the non-
zero eigenvalues of Γ (Zpq) are ±√

(p − 1)(q − 1). In particular, E(Γ (Zpq)) =
2
√

(p − 1)(q − 1).

Motivated by the above work, Surendranath Reddy et al. [50] extended the study of
energy of the zero-divisor graph of Zn .

Theorem 3 ([50]Theorem4.1) If p is a prime number, then the non-zero eigenvalues
of the zero-divisor graph Γ (Zp3) are (p−1)(1±√

1+4p)

2 .
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Theorem 4 ([50] Theorem 4.3) Let n = p2q with p and q primes. If λ �= 0 is a non-
zero eigenvalues of the zero-divisor graph Γ (Zn), then λ4 − (p − 1)λ3 − 2p(p −
1)(q − 1)2λ2 + p(p − 1)2(q − 1)λ + p(p − 1)3(q − 1)2 = 0.

Further results were found by Young [59] in 2015.

Theorem 5 ([59] Corollary 2.9) Let n = ∏s
i=1 pti

i where pi ’s are primes. Then the
multiplicity of the eigenvalue 0 of A(Γ (Zn)) is

n − φ(n) −
s∏

i=1

(ti + 1) + 2.

Theorem 6 ([59] Proposition 3.3) Let λ1 be the largest eigenvalue of A(Γ (Zn)):

(i). If n is a product containing two or more distinct primes, then λ1 ≥ √
φ(n).

(ii). If n = pt , then λ1 ≥ p	t/2
 − 1.

Theorem 7 ([59] Theorem 3.4) For any positive integer k, there exists only a finite
number of integers n such that all the eigenvalues of A(Γ (Zn)) are less or equal
than k.

Theorem 8 ([59] Theorem 3.7) Suppose the rank of A(Γ (Zn)) is r . Then A(Γ (Zn))

has 	r/2
 positive eigenvalues and �r/2� negative eigenvalues.

Further Sharma et al. [61] made some observations on the adjacency matrices and
eigenvalues of the graphs Γ (Zp × Zp) and Γ (Zp[i] × Zp[i]).

In 2019,KatjaMönius [45] precisely determined the spectra ofΓ (Zp × Zp × Zp)

and Γ (Zp × Zp × Zp × Zp) in terms of the prime number p. They also provided
the characteristic polynomials of Γ (Zp2 × Zp) and Γ (Zp × Zp × Zq) for primes
q �= p. In what follows, by the nullity η(G) of a graph G we mean the multiplicity
of the eigenvalue 0 of G. Obviously, we have that η(G) = dim A(G) − rank A(G).

Theorem 9 ([45] Theorem 4.2) Let R ∼= Zp
t1
1

× . . . × Zptr
r

for prime numbers p j

and r, t j ∈ N. Then the zero-divisor graph Γ (R) has
∏r

i=1(ti + 1) − 2 non-zero
eigenvalues, and the nulity of Γ (R) equals

η(Γ (R)) =
r∏

i=1

pti −1
i

(
r∏

i=1

pi −
r∏

i=1

(pi − 1)

)
−

r∏
i=1

(ti + 1) + 1

Let us see some examples.

Example 3 ([45] Example 4.3) Let p be a prime number and R ∼= Zp × Zp × Zp.
Then the multiplicity of the eigenvalue 0 is 3(p + 1)(p − 2) and eigenvalues are
λ1,2 = 1

2 (1 − p ± (p − 1)
√
4p − 3) and λ3,4 = p − 1 ± √

p − 2p2 + p3. There-

fore the Spec(Γ (R)) = {λ[2]
1 ,λ[2]

2 ,λ[1]
3 ,λ[1]

4 , 0[3(p+1)(p−2)]}.
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Example 4 (Example 4.4 [45]) Let p be a prime number and R ∼= Zp × Zp × Zp ×
Zp. Then the multiplicity of the eigenvalue 0 is p4 − (p − 1)4 − 24 − 1 and eigen-
values areλ1 = (p − 1)2,λ2 = −p2 + p − 1,λ3,4 = 1

2 (−2p2 + 3p − 1 ± (p − 1)√
4p − 3) and λ5,6 = 1

2 (2p2 − p − 1 ± √
3
√
4p3 − 9p2 + 6p − 1). Thus the

Spec(Γ (R)) = {λ[5]
1 ,λ[1]

2 ,λ[3]
3 ,λ[3]

4 ,λ[1]
5 ,λ[1]

6 , 0[p4−(p−1)4−24−1]}.

3 Laplacian Spectrum of Graphs Associated to Rings

In this section, we concentrate on the Laplacian eigenvalues of zero-divisor graph of
a ring. The Laplacianmatrix of a simple graph is the difference of the diagonal matrix
of vertex degree and the adjacencymatrix. In the past decades, theLaplacian spectrum
has received much more attention, since it has been applied to several fields, such as
randomized algorithms, combinatorial optimization problems, andmachine learning.
The Laplacian matrix has a long history. The first celebrated result is attributable to
Kirchhoff [32] in 1847 paper concerned with electrical networks. However, it didn’t
receive much attention until the work of Fiedler, which appeared in 1973 [24] and
1975 [25]. Mohar in his survey [43] argued that, because of its importance in various
physical and chemical theories, the spectrum of the Laplacian matrix is more natural
and important than the more widely studied adjacency spectrum. In [5], Alon used
the smallest positive eigenvalue of the Laplacian matrix to estimate the expander and
magnifying coefficients of graphs. For more background and motivation on research
of the Laplacian matrix, the reader may refer to the above book and [28, 41–44].

The eigenvalues of Laplacian and signless Laplacian matrix are called Laplacian
eigenvalue and signless Laplacian eigenvalue. Let D(G) be the n × n diagonalmatrix
with the diagonal entires as the degrees of the vertex. Then, the matrices L(G) =
D(G) − A(G) and Q(G) = D(G) + A(G) are Laplacian and signless Laplacian
matrices of a graph G respectively. The elements of L(G) are given by

Li, j =

⎧⎪⎨
⎪⎩

deg(vi ) if i = j,

−1 if i �= j and vi is adjacent to v j ,

0 otherwise

where deg(vi ) is degree of the vertex vi .
The normalized Laplacian matrix is denoted by L(G) and defined as

Li, j =

⎧⎪⎪⎨
⎪⎪⎩
1 if i = j and deg(vi ) �= 0,

− 1√
deg(vi )deg(v j )

if i �= j and vi is adjacent to v j ,

0 otherwise.

If μ1, . . . ,μt are the distinct Laplacian eigenvalues of L(G) with respective mul-
tiplicities m1, . . . , mt , then we shall denote the Laplacian spectrum of L(G) by
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σL(G) =
{

μ1 μ2 . . . μt

m1 m2 . . . mt

}

or simply by μ[m1]
1 , . . . ,μ[mt ]

t . Similarly, the spectrum of Q(G), is called the signless
Laplacian spectrum and it is denoted by σQ(G) and the spectrum of L(G) is called
the normalized Laplacian spectrum of G and it is denoted by σL(G).

Since L(G) is a real, symmetric, and positive semidefinite matrix, all its eigen-
values are real and nonnegative. Since the sum of the entries in each row of L(G) is
zero, the smallest eigenvalue of L(G) is 0. The second smallest eigenvalue of L(G),
denoted by μ(G), is called the algebraic connectivity of G. The largest eigenvalue
of L(G), denoted by λ(G), is called the Laplacian spectral radius of G.

Some of the results of Laplacian spectrum for standard graphs are listed below.

Remark 2 [16] Let n, m ∈ Z
+. Then

(i). The Laplacian spectrum of Pn is 2 − 2cos
(

π j
n

)
for j = 0, 1, . . . , n − 1.

(ii). The Laplacian spectrum of Cn is 2 − 2cos
(
2π j

n

)
for j = 0, 1, . . . , n − 1.

(iii). The Laplacian spectrum of Kn is 0[1], n[n−1].
(iv). The Laplacian spectrum of Km,n is 0[1], m[n−1], n[m−1], (m + n)[1].

Remark 3 [1] The signless Laplacian spectrum and normalized Laplacian spectrum
of the complete graph Kn are known. Indeed,

σQ(Kn) =
{
2n − 2 n − 2

1 n − 1

}
and σL(Kn) =

{
0 n

n−1
1 n − 1

}
.

Recently, Chattopadhyay et al. [18] studied the Laplacian eigenvalues of the zero-
divisor graph ofZn . As a first step, the authors of [18] explored the structure ofΓ (Zn)

by using the proper divisors of n. In particular, they defined a graph Υn , which made
the work to determine the Laplacian eigenvalues of Γ (Zn) easier. The following
remark describes the graph Υn .

Remark 4 [18]

(i). The simple graphdenotedbyΥn is a graphwith theproper divisorsd1, d2, . . . , dk

of n as vertices in which two distinct vertices di and d j are adjacent if and only
if n divides di d j .

(ii). Let d1, d2, . . . , dk be the proper divisors of n. For 1 ≤ i ≤ k, we assign the
weight φ( n

di
) = |Adi | to the vertex di of the graph Υn where Adi = {x ∈ Zn :

(x, n) = di }. Define Md j = ∑
di ∈NΥn (d j )

φ( n
di

) for 1 ≤ j ≤ k. The k × k vertex

weighted Laplacian matrix L(Υn) of Υn is given by

L(Υn) =

⎡
⎢⎢⎣

Md1 −t1,2 . . . −t1,k
−t2,1 Md2 . . . −t2,k
. . . . . . . . . . . .

−tk,1 −tk,2 . . . Mdk

⎤
⎥⎥⎦
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where, for 1 ≤ i �= j ≤ k,

ti, j =
{

φ( n
d j

) if di is adjacent to d j in Υn

0 otherwise.

The following Lemma is useful for further discussion.

Lemma 1 ([18] Lemma 2.7) Let Γ (Adi ) be the induced subgraph of Γ (Zn) on the
vertex set Adi for 1 ≤ i ≤ k. Then Γ (Zn) = Υn[Γ (Ad1), Γ (Ad2), . . . , Γ (Adk )].

The notation in the above lemma is explained in the following example.

Example 5 ([1] Example 2.4) Consider the ring Z12. We have d1 = 2, d2 = 3, d3 =
4 and d4 = 6. Then G12 is the graph 2 − 6 − 4 − 3, which is isomorphic to P4. Now
by lemma 1,

Γ (Z12) = Υ12[Γ (A2), Γ (A3), Γ (A4), Γ (A6)],

where Γ (A2) = K2, Γ (A3) = K2, Γ (A4) = K2 and Γ (A6) = K1

The following theorem describes the Laplacian spectrum of the zero-divisor graph
of Zn .

Theorem 10 ([18] Theorem 3.3) If d1, d2, . . . , dk are the proper divisors of n, then
the Laplacian spectrum of Γ (Zn) is given by

σL(Γ (Zn)) =
k⋃

j=1

(Md j + (σL(Γ (Ad j )) \ {0}))
⋃

σ(L(Υn))

where σ(L(Υn)) denotes the spectrum of L(Υn) and Md j + (σL(Γ (Ad j )) \ {0})
means that Md j is added to each element of the multiset σL(Γ (Ad j )) \ {0}.

For instance, consider the following example.

Example 6 ([18] Example 3.4) The Laplacian spectrum of Γ (Zn) for n = pq or
p2q where p and q are distinct primes are as follows,

σL(Γ (Zpq)) =
{

p − 1 q − 1 0 p + q − 2
q − 2 p − 2 1 1

}

and

σL(Γ (Zp2q)) =
{

p − 1 pq − 1 p2 − 1 q − 1
φ(pq) − 1 φ(p) − 1 φ(q) − 1 φ(p2) − 1

} ⋃
σ(L(Υp2q)).

Observe that, by Theorem 10, out of the n − φ(n) − 1 number of Laplacian eigen-
values of Γ (Zn), n − φ(n) − 1 − k of them are known to be nonzero integer values.
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The remaining k Laplacian eigenvalues of Γ (Zn) will come from the spectrum of
L(Υn). So the following result is an immediate consequence of Theorem 10. Before
proceeding to the theorem recall that a graph G is called Laplacian integral if all the
Laplacian eigenvalues of G are integers.

Theorem 11 ([18] Theorem 4.1) The zero-divisor graph Γ (Zn) is Laplacian inte-
gral if and only if all the eigenvalues of L(Υn) are integers.

Theorem 12 ([18] Theorem 4.3) Let n = pt where p is a prime and t ≥ 2 is a
positive integer. Then the following hold:

(i). If t = 2, then the Laplacian spectrum of Γ (Zn) is given by

{
0
1

}
or

{
p − 1 0
p − 2 1

}

according to p = 2 or p ≥ 3.
(ii). If t = 2m for some integer m ≥ 2, then the Laplacian spectrum of Γ (Zn) is

given by

{
p2m−1 − 1 p2m−2 − 1 . . . pm+1 − 1 pm − 1 pm−1 − 1 . . . p − 1 0

φ(p) φ(p2) . . . φ(pm−1) φ(pm) − 1 φ(pm+1) . . . φ(p2m−1) 1

}

(iii). If t = 2m + 1 for some integer m ≥ 1, then the Laplacian spectrum of Γ (Zn)

is given by

{
p2m − 1 p2m−1 − 1 . . . pm+1 − 1 pm − 1 pm−1 − 1 . . . p − 1 0
φ(p) φ(p2) . . . φ(pm) φ(pm+1) − 1 φ(pm+2) . . . φ(p2m) 1

}

As a consequence of Theorems 11 and 12, one can have the following results.

Corollary 1 ([18] Corollary 4.4) If p is a prime and t ≥ 2, then Γ (Zpt ) is Laplacian
integral and so all the eigenvalues of L(Υpt ) are integers.

Corollary 2 ([18] Corollary 4.5) Let n = pt for some prime p and positive integer
t with n �= 4. Then λ(Γ (Zpt )) =| Γ (Zpt ) |.

Note that for any simple graph, λ(G) ≤ |V (G)|. Now, the following theorem
characterizes the values of n for which equality holds when G = Γ (Zn).

Proposition 1 ([18] Proposition 5.4) λ(Γ (Zn)) = |Γ (Zn)| if and only if n is a prod-
uct of two distinct primes or n is a prime power with n �= 4.

Theorem 13 ([18] Theorem 5.8) The following hold:
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(i). If n is not a prime power nor a product of two distinct primes, then μ(Γ (Zn))

is the second smallest eigenvalue of L(Υn).
(ii). If n is not a prime power, then λ(Γ (Zn)) is the largest eigenvalue of L(Υn).

Further, the authors of [1] determined the bounds for the smallest Laplacian eigen-
valueμ(Γ (Zn)) and the largest Laplacian eigenvalueλ(Γ (Zn)) in terms of δ(Γ (Zn))

and �(Γ (Zn)), respectively.

Theorem 14 ([1] Theorem 4.5) Let n = pt1
1 pt2

2 · · · ptk
k where p1 < p2 < . . . < pk

are prime numbers. Then the following statements hold:

(i). If k ≥ 2or k = 1with t1 > 2, thenμ(Γ (Zn)) < p − 1. Otherwise,μ(Γ (Zn)) <

p − 2
(ii). μ(Γ (Zn)) = 0 if and only if n ∈ {4, 8, 9, 4q, pq}, where p and q are distinct

prime numbers.

Theorem 15 ([1] Theorem 4.8)

(i). Let n = pk1
1 pk2

2 · · · pks
s , where s > 1, p1 < p2 < . . . < ps are distinct prime

numbers and ki ≥ 1. Then the largest eigenvalue λ(Γ (Zn)) ≤ 2n
p1

− 2 if k1 = 1,

and λ(Γ (Zn)) ≤ 2n
p1

− 4 if k1 > 1.

(ii). If n = pk, where p is a prime number and k ≥ 2, then λ(Γ (Zn)) ≤ 2n
p − 4.

In 2020, Afkhami et al. [1] described the signless Laplacian and normalized
Laplacian spectrum of the zero-divisor graph Γ (Zn).

Notice that, by Lemma 1, Γ (Zn) = Υn[Γ (Ad1), Γ (Ad2), . . . , Γ (Adk )] where
Γ (Adi ) is either the complete graph Kφ( n

di
) or its complement graph K φ( n

di
). So

Γ (Adi ) is either (φ( n
di

) − 1)−regular or 0−regular. Now one can easily see that
Q(Υn) reads as follows:

Q(Υn) =

⎡
⎢⎢⎣
2r1 + Md1 t1,2 . . . t1,k

t2,1 2r2 + Md2 . . . t2,k
. . . . . . . . . . . .

tk,1 tk,2 . . . 2rk + Mdk

⎤
⎥⎥⎦

where r j is equal to φ( n
d j

) − 1 or 0, and Md j = ∑
di ∈NΥn (d j )

φ( n
di

), for 1 ≤ j ≤ k,

and also

ti, j =
{√

φ( n
di

)φ( n
d j

) if di is adjacent to d j in Υn

0 otherwise

for 1 ≤ i �= j ≤ k.

The next result, determined the signless Laplacian spectrum of Γ (Zn) in terms
of the spectrum of Q(Υn).

Theorem 16 ([1] Theorem 3.2) Let d1, d2, . . . , dk be the proper divisors of n. Then
the signless Laplacian spectrum of Γ (Zn) is given by



Spectrum of Graphs over Rings: A Survey 437

σQ(Γ (Zn)) =
⎛
⎝ k⋃

j=1

(Md j + (σQ(Γ (Ad j )) \ {2r j }))
⎞
⎠ ⋃

σ(Q(Υn)),

where r j is equal to φ( n
d j

) − 1 or 0, and Md j + (σQ(Γ (Ad j )) \ {2r j }) means that
Md j is added to each element of the multiset σQ(Γ (Ad j )) \ {2r j }.

The illustration for the signless Laplacian spectrum of Γ (Zn) for some special
cases of n is given in the following example.

Example 7 (Example 3.3 [1]) Let p and q be distinct prime numbers. Then the
signless Laplacian spectrum of Γ (Zn) for n = pq and n = p2q are

σQ(Γ (Zpq)) =
(
0 p − 1 q − 1 p + q − 2
1 q − 2 p − 2 1

)

and

σQ(Γ (Zp2q)) =
(

p − 1 pq − 3 p2 − 1 q − 1
pq − p − q p − 2 q − 2 p2 − p − 1

) ⋃
σ(Q(Υp2q))

where the characteristic polynomial of Q(Υp2q)) is

(
(x − p2 + 1)(x − q + 1) − φ(q)φ(p2)

)
((x − p − pq + 4)(x − p + 1) − φ(pq)φ(p))

− ((x − φ(q))(x − φ(p))φ(p)φ(q)) .

Next, we move on to the normalized Laplacian spectrum of the zero-divisor graph
of Zn .

From Lemma 1, Γ (Zn) = Υn[Γ (Ad1), Γ (Ad2), . . . , Γ (Adk )] where Γ (Adi ) is
either (φ( n

di
) − 1)−regular or 0−regular. Therefore it is clear that

L(Υn) =

⎡
⎢⎢⎢⎢⎣

Md1
r1+Md1

t1,2 . . . t1,k

t2,1
Md2

r2+Md2
. . . t2,k

. . . . . . . . . . . .

tk,1 tk,2 . . .
Mdk

rk+Mdk

⎤
⎥⎥⎥⎥⎦

where r j is equal to φ( n
d j

) − 1 or 0, and Md j = ∑
di ∈NΥn (d j )

φ( n
di

), for 1 ≤ j ≤ k,

and also

ti, j =
⎧⎨
⎩

−
√

φ( n
di

)φ( n
d j

)

(ri +Mdi )(r j +Md j )
if di is adjacent to d j in Υn

0 otherwise

for 1 ≤ i �= j ≤ k.
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The next result determined the normalized Laplacian spectrum of Γ (Zn) in terms
of the spectrum of L(Υn).

Theorem 17 ([1] Theorem 5.2) Let d1, d2, . . . , dk be the proper divisors of n. Then
the normalized Laplacian spectrum of Γ (Zn) is given by

σL(Γ (Zn)) =
⎛
⎝ k⋃

j=1

(
Md j

r j + Md j

+ r j

r j + Md j

+ (σL(Γ (Ad j )) \ {0}))
⎞
⎠⋃

σ(L(Υn)),

where r j is equal to φ( n
d j

) − 1 or 0.

The exact value of σL(Γ (Zpq)) for primes p �= q is calculated in the following
example.

Example 8 ([1] Example 5.3) Let p and q be distinct prime numbers. Then the
normalized Laplacian spectrum of Γ (Zn) for n = pq and n = p2q are

σL(Γ (Zpq)) =
(
0 1 2
1 p + q − 4 1

)

and

σL(Γ (Zp2q)) =
(

1 p2q−3p+2
pq−2

pq − 4 p − 2

) ⋃
σ(L(Υp2q))

where the characteristic polynomial of L(Υp2q)) is

(
(p + 1)(x − 1)2 − p

)
((x − 1)(x(pq − 2) − pq + p) − φ(pq)) − (q − 1)(x − 1)2

(pq − 2)(p + 1)
.

The following result is about the second largest eigenvalue of L(Γ (Zn)).

Theorem 18 ([1] Theorem 5.5)Assume that λn−1 is the second largest eigenvalue of
L(Γ (Zn)). Then λn−1 ≥ 1. Moreover λn−1 = 1 if and only if n ∈ {8, 9, pq}, where
p and q are distinct prime numbers.

We close the section by mentioning some results on the energy of line graph of
zero-divisor graph of Zn . One can associate a given graph G with its line graph,
denoted by L(G), such that each vertex of L(G) represents an edge of G, and any
two vertices of L(G) are adjacent if and only if their corresponding edges in G
share a common vertex. One important theorem, in [56], due to Whitney about line
graphs is that with one exceptional case, L(G) = K3, the structure of any connected
graph can be recovered from its line graph, i.e., there is a one-to-one correspondence
between the class of connected graphs and the class of connected line graphs. With
the class of zero-divisor graphs at hand, it is natural to keep an eye on the properties of
their line graphs and seek any relation between them. The importance of line graphs
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stems from the fact that the line graph transforms the adjacency relation on edges to
adjacency relation on vertices (see [29]).

The line graphL(Γ (Zn)) ofΓ (Zn) is defined to be the graphwhose vertex set con-
stitutes of the edges of Γ (Zn), where two vertices are adjacent if the corresponding
edges have a common vertex in Γ (Zn).

Theorem 19 ([52] Theorem3.1) If p = 2 and q is an odd prime number, then energy
of L(Γ (Z2q)) is 2q − 4.

Theorem 20 ([52] Theorem 3.2) If p = 3 and q > 3 is any prime number, then
energy of L(Γ (Z3q)) is 4q − p − 5.

Theorem 21 ([52] Theorem 3.3) If p and 2 < q are distinct primes, then energy of
L(Γ (Zpq)) is 4pq − 8p − 8q + 16.

Theorem 22 ([52] Theorem 3.4) Let n = p2, where p ≥ 5 be any prime number.
Then E(L(Γ (Zp2))) = 2p2 − 10p + 8.

3.1 Unitary Cayley Graphs

The definition of Cayley graph was introduced by Arthur Cayley in 1878 to explain
the concept of abstract groups which are described by a set of generators. In the last
50years, the theory of Cayley graphs has grown into a substantial branch of algebraic
graph theory. The unitary Cayley graph of a ring was initially investigated for Zn

by Dejter and Giudici in [21] where some properties of GZn are presented. In 2009,
Akhtar et al. [4] generalized the unitary Cayley graph GZn to G R for a finite ring
R and obtained various characterization results regarding connectedness, chromatic
index, diameter, girth, and planarity of G R .

Definition 2 [4] Let R be a commutative ring and U (R) be the group of unit of R.
The unitary Cayley graph of R, denoted by G R , is a simple graph whose vertex set
is R and two distinct vertices x and y are adjacent if x − y ∈ U (R).

Note that G R is the special case of Cayley graph, in fact G R = Cay(R, U (R)).

Moreover, if R is a local ring with a unique maximal ideal m, then U (R) = R \ m.

Example 9 (a). If n is a prime, then GZn is the complete graph on n vertices. There-
fore, by Remark 1, the spectrum of GZn is (n − 1)[1], (−1)[n−1].

(b). If n is a power of 2, then GZn is the complete bipartite K n
2 , n

2
and so by

Remark 1, the spectrum of GZn is 0
[n−2],±

√
n2

4 . In particular, the spectrum of GZ4

is 0[2],±2.

First, let us consider the unitary Cayley graph ofZn . Note thatU (Zn) = {x ∈ Zn :
gcd(x, n) = 1}. Thus GZn has the vertex set V (GZn ) = Zn and edge set E(GZn ) =
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{(x, y) : x, y ∈ Zn and gcd(a − b, n) = 1}. For some results on GZn , one can refer
the reader to [13, 14, 26, 33].

Some basic properties of the eigenvalues of the unitary Cayley graphs of Zn

have been illustrated by Klotz and Sander, see Theorems 13 and 15 in [33]. In 2009,
Aleksandar Ilić [30] and Ramaswamy et al. [49] independently calculated the energy
of unitary Cayley graphs and have establish the necessary and sufficient conditions
for GZn to be hyperenergetic. Note that the graphs GZn have integral spectrum and
play an important role in modeling quantum spin networks supporting the perfect
state transfer.

Theorem 23 ([30] Theorem 2.3, [49] Theorem 3.7) The energy of unitary Cayley
graph GZn equals 2kφ(n), where k is the number of distinct prime factors dividing
n.

In what follows, we mean a graph G with order n is hyperenergetic if its energy
exceeds the energy of the complete graph Kn; that is E(G) > 2n − 2.

Theorem 24 ([30] Theorem 2.4, [49] Theorem 3.10) Let k be the number of distinct
prime factors dividing n. Then the unitary Cayley graph GZn is hyperenergetic if and
only if k > 2 or k = 2 and n is odd.

The next two results deal with the complement of unitary Cayley graph GZn .

Theorem 25 ([30] Theorem 3.1) Let m = p1 p2 · · · pk be the largest square-free
number that divides n. The energy of the complement of unitary Cayley graph GZn

equals

E(GZn ) = 2n − 2 + (2k − 2)φ(n) −
k∏

i=1

pi +
k∏

i=1

(2 − pi ).

Theorem 26 ([30] Theorem 3.2) The complement of unitary Cayley graph GZn is
hyperenergetic if and only if n has at least two distinct prime factors and n �= 2p,
where p is a prime number.

Anumber of other papers also have considered the eigenvalue properties of unitary
Cayley graphs of Zn , see [22, 31, 51, 57].

In [34], Lanski and Maróti considered the unitary Cayley graph of an Artinian
ring R and showed that G R contains 2k−1 connected components, each of which is
a bipartite graph, where k is the number of summands isomorphic to Z2 in R/J (R).
In [31], Kiani and Aghaei investigated the isomorphism problem for unitary Cayley
graphs associated with finite (commutative) rings. They proved that if G R

∼= GS

where R, S are finite rings, then G R/J (R)
∼= G R(S/J (S), and if, in addition, R and S

are commutative, then R/J (R) ∼= S/J (S). They also proved that if G R(Mn(F))
∼= G R

where F is a finite filed, then R ∼= Mn(F).
Akhtar et al. [4] studied and obtained eigenvalues of the unitary Cayley graph G R

when R is a local ring.
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Proposition 2 ([31] Proposition 2.1, [4] Proposition 10.2) Let R be a finite local
ring with maximal ideal m of size m. Then

Spec(G R) =
(|U (R)| −m 0

1 |U (R)|
m

|R|
m (m − 1)

)

In particular, if F is the field with q elements, then

Spec(G F ) =
(

q − 1 −1
1 q − 1

)

Since the eigenvalues of G F are all nonzero when F is a field, the formula for the
spectrum of G R becomes quite complicated when many of the local factors of R are
fields. However, if none of the local factors of R are fields, the formula takes on a
rather appealing form:

Theorem 27 ([4] Corollary 10.3) Let R be a finite ring and suppose R has t local
factors, none of which are fields. Then

Spec(G R) =
(

(−1)t |Nil(R)| 0
|Rred | |R| − |Rred |

)

where Rred = R1/m1 × · · · × Rs/ms .

It is well known that, see [10], every finite commutative ring can be expressed as a
direct product of finite local rings, and this decomposition is unique to permutations
of such local rings. Using this fact, the following result, provides all the eigenvalues
of the unitary Cayley graph of finite commutative ring.

Theorem 28 ([31] Lemma 2.3) Let R be a finite commutative ring, where R =
R1 × · · · × Rs and Ri is a local ring with maximal ideal mi of size mi for all i ∈
{1, 2, . . . , s}. Then the eigenvalues of G R are

(i). (−1)|C | |U (R)|∏
j∈C |U (R j )|/m j

with multiplicity
∏

j∈C |U (R j )|/m j for all subsets of C

of {1, 2, . . . , s} and

(ii). 0 with multiplicity |R| − ∏s
i=1

(
1 + |U (Ri )|

mi

)
.

We next proceed to the result of the energy of the unitary Cayley graph of a finite
commutative ring R.

Theorem 29 ([31] Theorem 2.4) Let R be a finite commutative ring, where R =
R1 × · · · × Rs and Ri is a local ring with maximal ideal mi of size mi for all i ∈
{1, 2, . . . , s}. Then the energy of G R is 2s |U (R)|.

Recall that a graph G with n vertices is called hyperenergetic if E(G) > 2(n − 1)
where E(G) is the energy of G.
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Theorem 30 ([31] Theorem 2.5) Let R be a finite commutative ring, where R =
R1 × · · · × Rs and Ri is a local ring with maximal ideal mi of size mi for all i ∈
{1, 2, . . . , s}. Assume that |R1|/m1 ≤ . . . ≤ |Rs |/ms. Then

(i). For s = 1, G R is not hyperenergetic.
(ii). For s = 2, G R is hyperenergetic if and only if |R1|/m1 ≥ 3 and |R2|/m2 ≥ 4.
(iii). For s ≥ 3, G R is hyperenergetic if and only if (|Rs−2|/ms−2 ≥ 3) or

(|Rs−1|/ms−1 ≥ 3 and |Rs |/ms ≥ 4).

The authors [31] have covered the energy of the complement of unitary Cayley
graphs G R . They have given the spectrum of G R which consists of eigenvalues
|R| − |U (R)| − 1,−1 − λ2, . . . ,−1 − λ|R|, where λi is an eigenvalue of G R not
associated with 1 for all i ∈ {2, 3, . . . , |R|}
Theorem 31 ([31] Theorem 4.1) Let R be a finite ring, where R = R1 × · · · × Rs,
and Ri is a local ring with maximal ideal mi of size mi for all i ∈ {1, 2, . . . , s}. Then
E(G R) = 2|R| − 2 + (2s − 2)|U (R)| − ∏s

i=1 |Ri |/mi + ∏s
i=1(2 − |Ri |/mi ).

The notion of the quadratic unitary Cayley graph of Zn was introduced by Beau-
drap in [11]. He defined the quadratic unitary Cayley graph of Zn , whose vertex set
is the ring Zn , and where residues x, y modulo n are adjacent if and only if their
difference is a quadratic residue.

In 2015, Liu and Zhou [58] generalized the concept of quadratic unitary Cayley
graph from Zn to a finite commutative ring. Moreover, they focused on the spectral
properties of the following family of Cayley graphs on finite commutative rings. The
quadratic unitary Cayley graph was defined as follows.

Definition 3 ([58]) Given a finite commutative ring R, the quadratic unitary Cayley
graph of R, denoted byGR , is defined as theCayley graphCay(R, TR) on the additive
group of R with respect to TR = Q R ∪ (−Q R), where Q R = {u2 : u ∈ U (R)}. That
is, GR has vertex set R such that x, y ∈ R are adjacent if and only if x − y ∈ TR .

Notice that the quadratic unitary Cayley graphs are also generalizations of the
well-known Paley graphs. In fact, in the special case where R = Fq is a finite field,
where q ≡ 1(mod 4) is a prime power, GFq is exactly the Paley graph P(q), which
by definition is the graph with vertex set Fq such that x, y ∈ Fq are adjacent if and
only if x − y is a non-zero square of Fq .

Recall that every finite commutative ring can be written as the direct product of
local ring. By using this, the authors made an assumption as follows:

Assumption 32 Whenever we consider a finite commutative ring R = R1 × · · · ×
Rs with unit element 1 �= 0, we assume that each Ri , 1 ≤ i ≤ s, is a local ring with
maximal ideal mi of order mi such that

|R1|/m1 ≤ |R2|/m2 ≤ . . . ≤ |Rs |/ms .

Further,
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|U (R)| =
s∏

i=1

(|Ri | − mi ) =
s∏

i=1

mi ((|Ri |/mi ) − 1) = |R|
s∏

i=1

(
1 − 1

|Ri |/mi

)
.

The following result deals with the spectral properties of GR when R is a local
ring.

Theorem 33 ([58] Theorem 2.4) Let R be a local ring with maximal ideal m of
order m.

(i). If |R|/m ≡ 1(mod 4), then

Spec(GR) =
⎛
⎝

|R|−m
2

m(−1+√|R|/m)
2

m(−1−√|R|/m)
2 0

1 (|R|/m − 1)/2 (|R|/m − 1)/2 |R| − |R|/m

⎞
⎠ .

(ii). If |R|/m ≡ 3(mod 4), then

Spec(GR) =
(|R| − m −m 0

1 |R|/m − 1 |R| − |R|/m

)
.

Authors of [58] have also defined a new notation as follows:
If A and B are disjoint subsets of {1, 2, . . . , s}, then

λA,B = (−1)|B| |U (R)|
2s

∏
i∈A

(√|Ri |/mi + 1
)∏

j∈B

(√|R j/m j − 1
) .

In particular, λ∅,∅ = |U (R)|/2s .

Theorem 34 ([58] Theorem 2.6) Let R be as in Assumption 32 such that |Ri |/mi ≡
1(mod 4) for 1 ≤ i ≤ s. Then the eigenvalues of GR are,

(i). λA,B, repeated 1
2|A|+|B|

∏
k∈A∪B

(|Rk |/mk − 1) times, for all pairs (A, B) of subsets

of {1, 2, . . . , s} such that A ∩ B = ∅; and

(ii). 0 with multiplicity |R| − ∑
A,B⊆{1,...,s}

A∩B=∅

(
1

2|A|+|B|
∏

k∈A∪B
(|Rk |/mk − 1)

)
.

Theorem 35 ([58] Theorem 2.7) Let R be as in Assumption 32 such that |Ri |/mi ≡
1(mod 4) for 1 ≤ i ≤ s, and let R0 be a local ring with maximal ideal m0 of order
m0 such that |R0|/m0 ≡ 3(mod 4). Then the eigenvalues of GR0×R are

(i). |U (R0)| · λA,B, repeated 1
2|A|+|B|

∏
k∈A∪B

(|Rk |/mk − 1) times, for all pairs (A, B)

of subsets of {1, 2, . . . , s} such that A ∩ B = ∅;
(ii). − |U (R0)|

|R0|/m0−1 · λA,B, repeated |R0|/m0−1
2|A|+|B|

∏
k∈A∪B

(|Rk |/mk − 1) times, for all pairs

(A, B) of subsets of {1, 2, . . . , s} such that A ∩ B = ∅; and
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(iii). 0 with multiplicity |R| − ∑
A,B⊆{1,...,s}

A∩B=∅

(
|R0|/m0

2|A|+|B|
∏

k∈A∪B
(|Rk |/mk − 1)

)
.

The following three results obtain the eigenvalues of GZn . Let n = pα1
1 pα2

2 · · · pαs
s

be an integer in canonical factorization, where p1 < p2 < . . . < ps are primes. It
is well known that Zn

∼= Zp
α1
1

× Zp
α2
2

× · · · × Zpαs
s
, where each Zp

αi
i
is a local ring

with unique maximal ideal (pαi
i ) of order pαi −1

i .

Corollary 3 ([58] Corollary 2.8)

(i). If p ≡ 1(mod 4) is a prime and α ≥ 1 an integer, then

Spec(GZpα ) =
(

pα−1(p − 1)/2 pα−1(−1 + √
p)/2 0 pα−1(−1 − √

p)/2
1 (p − 1)/2 pα − p (p − 1)/2

)

(ii). If p ≡ 3(mod 4) is a prime and α ≥ 1 an integer, then

Spec(GZpα ) =
(

pα−1(p − 1) −pα−1 0
1 (p − 1) pα − p

)

In what follows, φ denotes Euler’s totient function.

Corollary 4 ([58] Corollary 2.9) Let n = pα1
1 · · · pαs

s be an integer in canonical
factorization such that each pi ≡ 1(mod 4). Then the eigenvalues of GZn are

(i). (−1)|B| · φ(n)

2s
∏

i∈A(
√

pi +1)
∏

j∈B (
√

p j −1) , repeated 1
2|A|+|B|

∏
k∈A∪B

(pk − 1) times, for all

pairs (A, B) of subsets of {1, 2, . . . , s} such that A ∩ B = ∅; and

(ii). 0 with multiplicity n − ∑
A,B⊆{1,...,s}

A∩B=∅

(
1

2|A|+|B|
∏

k∈A∪B
(pk − 1)

)
.

Corollary 5 (Corollary 2.10 [58]) Let n = pα pα1
1 · · · pαs

s be an integer in canoni-
cal factorization such that each p ≡ 3(mod 4) and each pi ≡ 1(mod 4). Then the
eigenvalues of GZn are

(i). (−1)|B| · φ(n)

2s
∏

i∈A(
√

pi +1)
∏

j∈B (
√

p j −1) , repeated 1
2|A|+|B|

∏
k∈A∪B

(pk − 1) times, for all

pairs (A, B) of subsets of {1, 2, . . . , s} such that A ∩ B = ∅;
(ii). (−1)|B|+1 · φ(n)

2s (p−1)
∏

i∈A(
√

pi +1)
∏

j∈B (
√

p j −1) , repeated p−1
2|A|+|B|

∏
k∈A∪B

(pk − 1) times,

for all pairs (A, B) of subsets of {1, 2, . . . , s} such that A ∩ B = ∅; and

(iii). 0 with multiplicity n − ∑
A,B⊆{1,...,s}

A∩B=∅

(
p

2|A|+|B|
∏

k∈A∪B
(pk − 1)

)
.

By using the results on spectra of quadratic unitary Cayley graphs, Liu and Zhou
determined the energies of GR . Moreover they found out when such a graph is hyper-
energetic. The following is an immediate consequence of Theorem 33.
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Theorem 36 ([58] Theorem 3.1) Let R be a local ring with maximal ideal m of
order m.

(i). If |R|/m ≡ 1(mod 4), then E(GR) = (√|R|/m + 1
) |U (R)|/2;

(ii). If |R|/m ≡ 3(mod 4), then E(GR) = 2|U (R)|.
Theorem 37 ([58] Theorem 3.2) Let R be as in Assumption 32 such that |Ri |/mi ≡
1(mod 4) for 1 ≤ i ≤ s, and R0 be a local ring with maximal ideal m0 of order m0

such that |R0|/m0 ≡ 3(mod 4). Then

(i). E(GR) = |U (R)|
2s

∏s
i=1

(√|Ri |/mi + 1
)
;

(ii). E(GR0×R) = |U (R0)||U (R)|
2s−1

∏s
i=1

(√|Ri |/mi + 1
)
.

3.2 Unit Graphs and Total Graphs

The unit graph was first investigated by Grimaldi for Zn in [27]. In 2010, Ashrafi
et al. [8] generalized the unit graph G(Zn) to G(R) for an arbitrary ring R. Many
other papers are also devoted to this topic (see [9, 36–39]). A survey of the study of
unit graphs can be found in [35].

Definition 4 Let R be a commutative ring with nonzero identity andU (R) be the set
of all units in R. The unit graph of R, denoted by G(R), has vertex set as the set of all
elements of R, for distinct vertices x and y are adjacent if and only if x + y ∈ U (R).

In 2014, Pranjali andMukti Acharya [48] gave aMATLAB program to determine
the energy of G(Zn). Using that program, they have calculated the energy of G(Zn)

for some specific values of n.

Theorem 38 ([48] Theorem 3.2)For the unit graph G(Zn), the energy E(G(Zn)) =
n, when n = 2k, k > 1.

Theorem 39 ([48] Theorem 3.4) For an odd prime p, the energy of unit graph
G(Z2p) is E(G(Z2p)) = 22φ(p).

Theorem 40 ([48] Theorem 3.5) The energy of unit graph G(Zn) is never an integer,
where n = pk, k > 1 and p is an odd prime.

In variation to the concept of zero-divisor graph, Anderson and Badawi [6] intro-
duced the total graph of a commutative ring. In recent years, many research articles
have been published on the total graph of commutative rings (see [2, 6, 40, 54, 55]).

Definition 5 Let R be a commutative ring and Z(R) be the set of all zero-divisors
of R. The total graph of R is a simple graph with all the elements of a ring as the
vertices in which distinct x, y ∈ R are adjacent if and only if x + y ∈ Z(R).

In 2017, Sheela Suthar and Om Prakash [53] studied the energy of total graph of
Zn. Specifically, the following main results are proved.
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Theorem 41 ([53] Theorem2.1) If p = 2 and q is an odd prime number, then energy
of TΓ (Z2q) is 4(q − 1).

Theorem 42 ([53] Theorem2.2) If p = 2 and q is an odd prime number, then energy
of TΓ (Zp2q) is 10q − 6.

Theorem 43 ([53]Theorem2.3) If p is an odd prime number, then energy of TΓ (Zp2)

is (p − 1)(p + 2).

Theorem 44 ([53]Theorem2.4) If p is an odd prime number, then energy of TΓ (Zp3)

is p3 + p2 − 2.

The authors of [53] offered few results for Laplacian energy of total graph on Zn.

The Laplacian energy, denoted by L E(G), is defined as

L E(G) =
n∑

i=1

|λi − 2m

n
|,

where m is the number of edges and n is the number of vertices.

Theorem 45 ([53] Theorem 3.1) If p = 2 and q is an odd prime number, then the
Laplacian energy of TΓ (Z2q) is 2q2.

Theorem 46 ([53] Theorem 3.2) If p = 2 and q is an odd prime, then the Laplacian
energy of TΓ (Zp2q) is 4q(2q + 1).

Another energy of a graph is the distance energy. The distance energy of a graph
is the sum of absolute values of the eigenvalues of the distance matrix. The distance
matrix of a connected graph, denoted by �(G), is defined in a similar way as the
adjacency matrix: the entry in the i th row, j th column is the distance between the
i th and j th vertex.

Theorem 47 ([53] Theorem 3.3) If p = 2 and q is an odd prime, then the distance
energy of TΓ (Z2q) is 2(2q + q − 2).

Theorem 48 ([53] Theorem 3.4) If p = 2 and q > 2 is any prime number, then the
distance energy of TΓ (Zp2q) is 14q − 8.

Theorem 49 ([53] Theorem 3.5) If p is any prime number and n ∈ N, then the
distance energy of TΓ (Zpn ) is ∞.
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On a New Extension
of Annihilating-Ideal Graph
of Commutative Rings

Nadeem ur Rehman, Mohd Nazim, and Junaid Nisar

Abstract Let R be a commutative ringwith unity and A(R)be the set of annihilating-
ideals R. In this paper, we introduced and studied the extended sumannihilating-ideal
graph of R, denoted by AGΩ(R), with vertex set A(R)∗ and two vertices I1 and I2 are
adjacent if and only if either I1 I2 = 0 or I1 + I2 is an annihilating-ideal R. We prove
that AGΩ(R) is a connected graph with diameter at most two and girth exactly three.
We classify all the Artinian commutative rings R for which AGΩ(R) is isomorphic
to some well-known graphs. Finally, we characterized Artinian commutative rings
for which AGΩ(R) has genus one.

Keywords Annihilating-ideal graph · Sum annihilating-ideal graph · Zero-divisor
graph · Complete graph · Planar graph

1 Introduction

Throughout this paper, all rings are commutative with unity. For a commutative
ring R, we use I(R) to denote the set of ideals of R and I(R)∗ = I(R) \ {0}. An
ideal I1 of R is said to annihilating-ideal of R if there exists a nonzero ideal I2 of
R such that I1 I2 = 0. The set of annihilating-ideals of R is denoted by A(R) and
A(R)∗ = A(R) \ {0}. For any undefined notation or terminology in ring theory, we
refer the reader to [11].

Let G be a graph with vertex set V (G). The distance between two vertices u
and v of G denoted by d(u, v), is the smallest path from u to v. If there is no such
path, then d(u, v) = ∞. The diameter of G is defined as diam(G) = sup{d(u, v) :
u, v ∈ V (G)}. A cycle is a closed path inG. The gir th ofG denoted by gr(G) is the
length of a shortest cycle in G (gr(G) = ∞ if G contains no cycle). A graph is said
to be complete graph if all its vertices are adjacent. A complete graph with n vertices
is denoted by Kn . If G is a graph such that the vertices of G can be partitioned into
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two nonempty disjoint sets U1 and U2 such that vertices u and v are adjacent if and
only if u ∈ U1 and v ∈ U2, then G is called a complete bipartite graph. A complete
bipartite graph with disjoint vertex sets of size m and n, respectively, is denoted by
Km,n . We write Kn,∞ (respectively, K∞,∞) if one (respectively, both) of the disjoint
vertex sets is infinite. A complete bipartite graph of the form K1,n is called a star
graph.

A connected graph G is said to be a tree if it does not contain any cycle. A graph
G is said to be unicycle if it contains unique cycle. A graph G is a split graph if the
vertex set can be partitioned into a clique and an independent set. A graph G is said
to be planar if it can be drawn in the plane so that its edges intersect only at their
ends. A subdivision of a graph is a graph obtained from it by replacing edges with
pairwise internally-disjoint paths. A remarkably simple characterization of planar
graphs was given by Kuratowski in 1930. Kuratowski’s Theorem says that a graph
G is planar if and only if it contains no subdivision of K5 or K3,3. An undirected
graph G is said to be outerplanar if it can be embedded in the plane in such a way
that all the vertices lie on the unbounded face of the drawing. The genus of a graph
G, denoted by γ(G), is the minimum integer k such that the graph can be drawn
without crossing itself on a sphere with k handles (i.e., an oriented surface of genus
k). Thus, a planar graph has genus 0, because it can be drawn on a sphere without
self-crossing. For more details on graph theory, we refer the reader to see [18, 19].

The concept of zero-divisor graph of a commutative ring R, denoted by Γ (R),
was introduced by Beck [12]. The vertex set of Γ (R) is Z(R)∗ and two vertices x1
and x2 are adjacent if and only if x1x2 = 0, for details see [5, 8, 10].

In [13], Behboodi generalized the zero-divisor graph to ideals by defining the
annihilating-ideal graph AG(R), with vertex set A(R)∗ and two vertices I1 and I2
are adjacent if and only if I1 I2 = 0. For more details on annihilating-ideal graph, we
refer the reader to see [1–4, 7, 14].

Recently, Visweswaran and Patel [17] have introduced and investigated the sum
annihilating-ideal graph of a commutative ring R, denoted by Ω(R), whose vertex
set is A(R)∗ and two distinct vertices I1 and I2 are adjacent if and only if I1 + I2 ∈
A(R). For more details, see [15].

In this paper, we introduced the extended sum annihilating-ideal graph of a com-
mutative ring R. It is an undirected graph denoted by AGΩ(R), whose vertex set is
A(R)∗ and two distinct vertices I1 and I2 are adjacent if and only if either I1 I2 = 0
or I1 + I2 ∈ A(R)∗. We prove that AGΩ(R) is a connected graph with diameter at
most two and girth exactly three. Further, all the Artinian commutative rings are char-
acterized for which AGΩ(R) is a complete graph. We investigated some situations
under which AGΩ(R) is identical to both AG(R) and Ω(R). Finally, we classify all
the Artinian commutative rings under which AGΩ(R) is a tree, a unicycle, a split
graph, an outerplanar graph, a planar graph, and a toroidal graph.

The following result is the direct consequence of the definition of the extended
sum annihilating-ideal graph.

Theorem 1 Let R be a commutative ring. Then AG(R) andΩ(R) both are spanning
subgraph of AGΩ(R).
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The following examples shows that AG(R),Ω(R) and AGΩ(R) are all different.

Example 1 Consider R = Z2 × Z4, then AG(R), Ω(R) and AGΩ(R) are given as

AG(Z2 × Z4) Ω(Z2 × Z4)

AGΩ(Z2 × Z4)

Example 1 Consider R = Z2 × Z2 × Z2, then AG(R), Ω(R) and AGΩ(R) are
given as

AG(Z2 × Z2 × Z2) Ω(Z2 × Z2 × Z2)

AGΩ(Z2 × Z2 × Z2)
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2 Connectedness of Extended Sum Annihilating-Ideal
Graph

In this section, first we discuss the connectedness of AGΩ(R). Thenwe characterized
all the Artinian rings for which AGΩ(R) is complete. Finally, we discuss some
situations under which AGΩ(R) is identical to AG(R) and Ω(R).

Theorem 2 Let R be a commutative ring. Then AGΩ(R) is connected with
diam(AGΩ(R)) ≤ 2.

Proof Let I1 and I2 be distinct vertices of AGΩ(R). We have the following cases:
Case(i) : I1 I2 = 0. Then I1 ∼ I2 is a path in AGΩ(R).
Case(ii) : I1 I2 �= 0, I 21 = 0 and I 22 = 0. Then I1 ∼ I1 I2 ∼ I2 is a path in AGΩ(R).
Case(iii) : I1 I2 �= 0, I 21 = 0 and I 22 �= 0. Then there exists K2 ∈ A(R)∗ such that
I2K2 = 0. If I1K2 = 0, then I1 ∼ K2 ∼ I2 is a path in AGΩ(R). If I1K2 �= 0, then
I1 ∼ I1K2 ∼ I2 is a path in AGΩ(R).
Case(iv) : I1 I2 �= 0, I 21 �= 0 and I 22 = 0. Using the similar argument as used in
Case(iii).
Case(v) : I1 I2 �= 0, I 21 �= 0 and I 22 �= 0. Then there exist K1, K2 ∈ A(R)∗ such that
I1K1 = 0 and I2K2 = 0. If K1 = K2, then I1 ∼ K1 ∼ I2 is a path in AGΩ(R). If
K1 �= K2 and K1K2 = 0, then K1(K2 + I1) = 0. Thus, K2 + I1 ∈ A(R)∗, which
implies that I1 ∼ K2 ∼ I2 is a path in AGΩ(R). If K1 �= K2 and K1K2 �= 0, then
K1K2(I1 + I2) = 0. Thus, I1 ∼ I2 in AGΩ(R).
In all the above cases, d(I1, I2) ≤ 2. Since I1 and I2 are arbitrary vertices of AGΩ(R).
Hence, AGΩ(R) is connected and diam(AGΩ(R)) ≤ 2.

Theorem 3 Let R be a commutative ring with at least three nonzero annihilating
ideals. Then AGΩ(R) contains a cycle and gr(AGΩ(R)) = 3.

Proof If AGΩ(R) is a complete graph, then gr(AGΩ(R)) = 3. Suppose that there
exist two vertices I1 and I2 such that I1 � I2. Since I1, I2 ∈ A(R)∗, there exist
K1, K2 ∈ A(R)∗ such that I1K1 = 0 and I2K2 = 0. If K1 = K2, then K1(I1 + I2) =
0, implies that I1 and I2 are adjacent, a contradiction. Since K1K2(I1 + I2) = 0
and I1 + I2 /∈ A(R)∗, therefore, K1K2 = 0. If I1 = K1, then K2(I1 + I2) = 0. This
implies that I1 ∼ I2, a contradiction. Thus, I1 �= K1. Also, if I1 = K2, then I1 I2 =
K2 I2 = 0, implies that I1 and I2 are adjacent. again a contradiction. Thus, I1 �= K2.
On the other hand K1(K2 + I1) = 0. Thus, I1 ∼ K1 ∼ K2 ∼ I1 is a cycle of length
three in AGΩ(R). Hence, gr(AGΩ(R)) = 3.

Theorem 4 ([15] Theorem 2.1) Let R be an Artinian commutative ring. ThenΩ(R)

is complete if and only if R is local.

Theorem 5 Let R be an Artinian commutative ring. Then AGΩ(R) is complete if
and only if either R is Artinian local or R ∼= F1 × F2, where F1 and F2 are fields.

Proof Suppose R is an Artinian local ring, then by Theorem 4, Ω(R) is complete
and hence AGΩ(R) is complete. If R ∼= F1 × F2, then AGΩ(R) ∼= K2.
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Conversely, suppose AGΩ(R) is complete. If R is an Artinian local ring, then we
are done. Thus, we assume that R is non-local. Since R is Artinian ring, R ∼= R1 ×
R2 × · · · × Rn , where each Ri is Artinian local and n ≥ 2. We claim that Ri is field
for each 1 ≤ i ≤ n. Suppose on contrary that Ri is not a field with nonzero maximal
ideal mi for some 1 ≤ i ≤ n. Consider I1 = R1 × R2 × · · · × mi × · · · × Rn and
I2 = (0) × (0) × · · · × Ri × · · · × (0). Then I1 and I2 are vertices of AGΩ(R) such
that I1 I2 �= 0 and I1 + I2 /∈ A(R)∗. Thus, I1 and I2 are not adjacent in AGΩ(R),
which is a contradiction to the completeness of AGΩ(R). Hence, Ri is a field for each
1 ≤ i ≤ n. If n ≥ 3, then I3 = F1 × F2 × (0) × F4 × · · · × Fn and I4 = F1 × (0) ×
F3 × · · · × Fn are vertices of AGΩ(R) such that I3 I4 �= 0 and I3 + I4 /∈ A(R)∗.
Thus, I3 and I4 are not adjacent in AGΩ(R), a contradiction. Hence, n = 2. This
completes the proof.

Corollary 1 Let R be a reduced Artinian commutative ring which is not a field.
Then AGΩ(R) is complete if and only if R ∼= F1 × F2, where F1 and F2 are fields.

Corollary 2 Let n be any positive integer. Then AGΩ(Zn) is complete if and only if
either n = pm, where p is prime number and m is positive integer or n = pq, where
p and q are distinct prime numbers.

Theorem 6 Let R be an Artinian commutative ring. Then AGΩ(R) = AG(R) if
and only if AG(R) is complete.

Proof Suppose that AG(R) is complete. Since AG(R) is spanning subgraph of
AGΩ(R), therefore, AGΩ(R) = AG(R).

Conversely, let AGΩ(R) = AG(R). Since R is Artinian, R ∼= R1 × R2 × · · · ×
Rn , where Ri is Artinian local for each i . If n ≥ 2, then I1 = (0) × R2 × (0) ×
· · · × (0) and I2 = (0) × R2 × R3 × (0) × · · · × (0) are adjacent in AGΩ(R) but
not adjacent in AG(R), a contradiction. Thus, n ≤ 2. Hence,the following two cases
occur:
Case(i): n = 1. Then R is Artinian local. Thus, by Theorem 5, AGΩ(R) is complete
and hence AG(R) is complete.
Case(ii): n = 2. We claim that R1 and R2 both are field. Suppose on contrary that R1

is not a field with nonzero maximal idealm1. Then I3 = (0) × R2 and I4 = m1 × R2

are annihilating-ideals of R such that I3 and I4 are adjacent in AGΩ(R) but not
adjacent in AG(R), a contradiction.Hence, R ∼= F1 × F2, which implies that AG(R)

is complete.

Corollary 3 Let R be an Artinian ring. Then AGΩ(R) = AG(R) if and only if
either R ∼= F1 × F2, where F1 and F2 are fields or R is local with exactly two
nonzero proper ideals.

Corollary 4 Let n be a positive integer. Then AGΩ(Zn) = AG(Zn) if and only if
either n = pm, where p is prime number, m is positive integer and m = 1, 2, 3 or
n = pq, where p and q are distinct prime numbers.

Theorem 7 Let R be an Artinian commutative ring. Then AGΩ(R) = Ω(R) if and
only if R is local.
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Proof Suppose R is local, then by Theorem 4, Ω(R) is complete. Since Ω(R) is
spanning subgraph of AGΩ(R), therefore AGΩ(R) = Ω(R).

Conversely, suppose that AGΩ(R) = Ω(R). Since R is Artinian, R ∼= R1 × R2 ×
· · · × Rn , where each Ri isArtinian local. If n ≥ 2, then I1 = R1 × (0) × R3 × · · · ×
Rn and I2 = (0) × R2 × (0) × · · · × (0) are vertices of AGΩ(R) such that I1 and I2
are adjacent in AGΩ(R) but not adjacent in Ω(R), a contradiction. Hence, n = 1,
which implies that R is local.

Corollary 5 Let n be a positive integer. Then AGΩ(Zn) = Ω(Zn) if and only if
n = pm, where p is prime number, m is positive integer.

3 Extended Sum Annihilating-Ideal Graph as Some Special
Type of Graphs

In this section, we characterized all the Artinian rings R for which AGΩ(R) is a tree,
a unicycle graph, a spit graph, an outerplanar graph, and a planar graph.

Theorem 8 Let R be an Artinian commutative ring. Then AGΩ(R) is a tree if and
only if one of the following holds:

1. R ∼= F1 × F2, where F1 and F2 are fields.
2. R is local with at most two nonzero proper ideals.

Proof Suppose AGΩ(R) is tree. Since R is Artinian, R ∼= R1 × R2 × · · · × Rn ,
where Ri is Artinian local for each 1 ≤ i ≤ n. Let n ≥ 3. Consider I1 = R1 × (0) ×
(0) × · · · × (0), I2 = (0) × R2 × (0) × · · · × (0), and I3 = (0) × (0) × R3 × (0) ×
· · · × (0). It is easy to see that I1 ∼ I2 ∼ I3 ∼ I1 is a cycle in AGΩ(R), a contradic-
tion. Hence, n ≤ 2. The following two cases occur:
Case(i) : n = 2.We claim that R1 and R2 both are fields. Suppose on contrary that R1

is not a fieldwith nonzeromaximal idealm1. Consider J1 = m1 × (0), J2 = m1 × R2

and J3 = (0) × R2. Then J1 ∼ J2 ∼ J3 ∼ J1 is a cycle in AGΩ(R), which is a con-
tradiction. Hence, R1 and R2 both are fields.
Case(ii) : n = 1. Then R is an Artinian local ring. Thus, by Theorem 5, AGΩ(R) is
complete. Since AGΩ(R) is tree, R has at most three nonzero proper ideals.

Converse is clear.

Theorem 9 Let R be an Artinian commutative ring. Then AGΩ(R) is unicycle if
and only if R is local with exactly three nonzero proper ideals.

Proof Suppose AGΩ(R) is unicycle. Since R is Artinian, R ∼= R1 × R2 × · · · × Rn ,
where Ri is Artinian local for each 1 ≤ i ≤ n. Let n ≥ 3. Consider I1 = R1 × (0) ×
(0) × · · · × (0), I2 = (0) × R2 × (0) × · · · × (0), I3 = (0) × (0) × R3 × (0) ×
· · · × (0) and I4 = R1 × (0) × R3 × (0) × · · · × (0). Then I1 ∼ I2 ∼ I3 ∼ I1 as
well as I1 ∼ I4 ∼ I2 ∼ I1 are two distinct cycles in AGΩ(R), a contradiction. Hence,
n ≤ 2. The following two cases occur:
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Case(i) : n = 2. We claim that R1 and R2 both are fields. Suppose on contrary
that R2 is not a field with nonzero maximal idealm2. Consider J1 = R1 × (0), J2 =
(0) × R2, J3 = (0) × m2 and J4 = R1 × m2. It is easy to see that J1 ∼ J2 ∼ J3 ∼ J1
and J1 ∼ J4 ∼ J3 ∼ J1 are two different cycles in AGΩ(R), which is a contradic-
tion. Thus, R1 and R2 both are fields. This implies that AGΩ(R) ∼= K2, again a
contradiction.
Case(ii) : n = 1. Then R is an Artinian local ring. Thus, by Theorem 5, AGΩ(R) is
complete. Since AGΩ(R) is unicycle, R has exactly three nonzero proper ideals.

Converse is clear.

Lemma 1 [18] Let G be a connected graph. Then G is a split graph if and only if
G contains no induced subgraph isomorphic to 2K2, C4, C5.

Theorem 10 Let R be an Artinian commutative ring. Then AGΩ(R) is a split graph
if and only if one of the following holds:

1. R ∼= F1 × F2, where F1 and F2 are fields.
2. R is local with at most three nonzero proper ideals.

Proof Suppose AGΩ(R) is split graph. Since R is Artinian, R ∼= R1 × R2 × · · · ×
Rn , where Ri is Artinian local for each 1 ≤ i ≤ n. Let n ≥ 3. Consider I1 = R1 ×
(0) × (0) × · · · × (0), I2 = (0) × R2 × (0) × · · · × (0), I3 = (0) × (0) × R3 ×
(0) × · · · × (0) and I4 = R1 × (0) × R3 × (0) × · · · × (0). It is easy to see that
I1 ∼ I2 ∼ I3 ∼ I4 ∼ I1 is a cycle of length four in AGΩ(R), which is a contra-
diction by Lemma 1. Hence, n ≤ 2. The following two cases occur:
Case(i) : n = 2. We claim that R1 and R2 both are fields. Suppose on contrary that
R1 is not a field with nonzero maximal ideal m1. Consider J1 = R1 × (0), J2 =
m1 × (0), J3 = m1 × R2 and J4 = (0) × R2. Then J1 ∼ J2 ∼ J3 ∼ J4 ∼ J1 is a
cycle of length four in AGΩ(R), a contradiction. Hence, R1 and R2 both are fields.
Case(ii) : n = 1. Then R is an Artinian local ring. Thus, by Theorem 5, AGΩ(R) is
complete. Since AGΩ(R) is a split graph, R has at most three nonzero proper ideals.

Converse is clear.

Lemma 2 [19] A graph G is outerplanar if and only if it does not contain a subdi-
vision of K4 or K2,3.

Theorem 11 Let R be an Artinian commutative ring. Then AGΩ(R) is outerplanar
if and only if one of the following holds:

1. R ∼= F1 × F2, where F1 and F2 are fields.
2. R ∼= F1 × R2, where F1 is field and (R2,m2) is an Artinian local ring with unique

nonzero proper ideal m2.
3. R is local with at most three nonzero proper ideals.

Proof Suppose AGΩ(R) is outerplanar. Since R is Artinian, R ∼= R1 × R2 × · · · ×
Rn , where Ri is Artinian local for each 1 ≤ i ≤ n. Let n ≥ 3. Consider I1 = R1 ×
(0) × (0) × · · · × (0), I2 = (0) × R2 × (0) × · · · × (0), I3 = (0) × (0) × R3 ×
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Fig. 1 The graph
AGΩ(F1 × R2), where m2
is the only nonzero proper
ideal of R2

0×m2

F1 ×m2

F1 × (0)

(0)× R2

(0) × · · · × (0), J1 = R1 × R2 × (0) × · · · × (0) and J2 = R1 × (0) × R3 × (0) ×
· · · × (0). One can see that the subgraph induced by the set {I1, I2, I3, J1, J2} con-
tains a copy of K2,3 in AGΩ(R), which is a contradiction by Lemma 2. Hence, n ≤ 2.
The following two cases occur:
Case(i) : n = 2. We claim that R1 or R2 is a field. Suppose on contrary that
R1 and R2 both are not field with nonzero maximal ideals m1 and m2, respec-
tively. Consider I1 = m1 × (0), I2 = (0) × m2, I3 = m1 × m2, J1 = R1 × (0) and
J2 = (0) × R2. Then the subgraph induced by the set {I1, I2, I3, J1, J2} contains a
subdivision of K2,3 in AGΩ(R), a contradiction by Lemma 2.
If R1 and R2 both are fields, then we are done. Suppose R2 is not a field with
nonzero maximal ideal m2. Let I be a nonzero ideal of R2 such that I �= m2.
Consider K1 = R1 × (0), K2 = (0) × m2, L1 = R1 × m2, L2 = R1 × I and L3 =
(0) × I .
Then the subgraph induced by the set {K1, K2, L1, L2, L3} contains a copy of K2,3

in AGΩ(R), again a contradiction. Hence,m2 is the only nonzero proper ideal of R2.
Case(ii) : n = 1. Then R is an Artinian local ring. Thus, by Theorem 5, AGΩ(R) is
complete. Since AGΩ(R) is outerplanar, R has at most three nonzero proper ideals.

Converse is clear by Theorem 5, Lemma 2, and Fig. 1.

Lemma 3 (Kuratowski’s Theorem) A graph G is planar if and only if it contains
no subdivision of K5 or K3,3.

Theorem 12 Let R be an Artinian commutative ring. Then AGΩ(R) is planar if
and only if one of the following holds:

1. R ∼= F1 × F2, where F1 and F2 are fields.
2. R ∼= F1 × R2, where F1 is field and (R2,m2) is an Artinian local ring with unique

nonzero proper ideal m2.
3. R is local with at most four nonzero proper ideals.
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Proof Suppose AGΩ(R) is planar. Since R is Artinian, R ∼= R1 × R2 × · · · × Rn ,
where Ri is Artinian local for each 1 ≤ i ≤ n. Let n ≥ 3. Consider I1 = R1 × (0) ×
(0) × · · · × (0), I2 = (0) × R2 × (0) × · · · × (0), I3 = (0) × (0) × R3 × (0) ×
· · · × (0), J1 = R1 × R2 × (0) × · · · × (0), J2 = R1 × (0) × R3 × (0) × · · · × (0)
and J3 = (0) × R2 × R3 × (0) × · · · × (0). It is easy to see that the subgraph induced
by the set {I1, I2, I3, J1, J2, J3} contains a subdivision of K3,3 in AGΩ(R), a con-
tradiction by Lemma 3. Hence, n ≤ 2. The following two cases occur:
Case(i) : n = 2. We claim that R1 or R2 is a field. Suppose on contrary that R1 and
R2 both are not field with nonzero maximal ideals m1 and m2, respectively. Con-
sider I1 = m1 × R2, I2 = R1 × m2, I3 = (0) × R2, J1 = m1 × m2, J2 = (0) × m2

and J3 = m1 × (0). Then the subgraph induced by the set {I1, I2, I3, J1, J2, J3} con-
tains a subdivision of K3,3 in AGΩ(R), which is a contradiction by Lemma 3.

If R1 and R2 both are fields, we are done. Suppose R2 is not a field with nonzero
maximal ideal m2. Let I be a nonzero ideal of R2 such that I �= m2. Consider
K1 = R1 × (0), K2 = (0) × m2, K3 = R1 × m2, K4 = R1 × I and K5 = (0) × I .
Then the subgraph induced by the set {K1, K2, K3, K4, K5} contains a subdivision
of K5 in AGΩ(R), again a contradiction by Lemma 3. Hence,m2 is the only nonzero
proper ideal of R2.
Case(ii) : n = 1. Then R is an Artinian local ring. Thus, by Theorem 5, AGΩ(R) is
complete. Since AGΩ(R) is planar, R has at most four nonzero proper ideals.

Converse is clear by Theorem 5, Lemma 3, and Fig. 1.

4 Genus of Extended Sum Annihilating-Ideal Graph

In this section, we characterized all the Artinian commutative rings R for which
AGΩ(R) is toroidal.

Lemma 4 [19] γ(Kn) = 	 1
12 (n − 3)(n − 4)
, where 	x
 is the least integer that is

greater than or equal to x. In particular, γ(Kn) = 1 if n = 5, 6, 7.

Lemma 5 [19] γ(Km,n) = 	 1
4 (m − 2)(n − 2)
, where 	x
 is the least integer that

is greater than or equal to x. In particular, γ(K4,4) = γ(K3,n) = 1 if n = 3, 4, 5, 6.
Also, γ(K5,4) = γ(K6,4) = γ(K3,m) = 2, if m = 7, 8, 9, 10.

Lemma 6 (Proposition 4.4.4 [16]) Let G be a connected graph with q edges and
m ≥ 3 vertices. Then

γ(G) ≥ ⌈ q
6 − m

2 + 1
⌉

.

Theorem 13 Let R be an Artinian local commutative ring which is not a field. Then
γ(AGΩ(R)) = 1 if and only if R has at least five and at most seven nonzero proper
ideals.

Proof The proof follows from Theorem 5 and Lemma 4.
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F1 × (0)× (0) F1 × (0)× (0)

F1 × (0)× (0) F1 × (0)× (0)

(0)× F2 × (0) (0)× F2 × (0)

(0)× (0)× F3

F1 × F2 × (0)

F1 × (0)× F3

(0)× F2 × F3

Fig. 2 Toroidal embedding of AGΩ(F1 × F2 × F3)

Theorem 14 Let R ∼= F1 × F2 × · · · × Fn be an Artinian commutative ring, where
each Fi is a field and n ≥ 3. Then γ(AGΩ(R)) = 1 if and only if n = 3.

Proof Suppose γ(AGΩ(R)) = 1. If n ≥ 4, then the subgraph induced by the
set {F1 × (0) × · · · × (0), F1 × F2 × (0) × · · · × (0), F1 × (0) × F3 × (0) × · · ·
× (0), F1 × (0) × (0) × F4 × (0) × · · · × (0), (0) × F2 × F3 × (0) × · · · × (0),
(0) × F2 × (0) × F4 × (0) × · · · × (0), (0) × (0) × F3 × F4 × (0) × · · · × (0)} ∪
{(0) × F2 × (0) × · · · × (0), (0) × (0) × F3 × (0) × · · · × (0), (0) × (0) × (0) ×
F4 × (0) × · · · × (0)} contains a copy of K3,7 is AGΩ(R). Thus, by Lemma 5,
γ(AGΩ(R)) > 1, a contradiction. Hence n = 3.

Converse is clear by Fig. 2.

Theorem 15 ([15]Theorem4.7)Let R ∼= R1 × R2 × · · · × Rn,where each (Ri ,mi )

is Artinian local ring with mi �= 0 and n ≥ 2. Then γ(Ω(R)) = 1 if and only if n = 2
and mi is the only nonzero proper ideal of Ri .

Theorem 16 Let R ∼= R1 × R2 × · · · × Rn, where each (Ri ,mi ) is Artinian local
ring with mi �= 0 and n ≥ 2. Then γ(AGΩ(R)) = 1 if and only if n = 2 and mi is
the only nonzero proper ideal of Ri .

Proof Since Ω(R) is a spanning subgraph of AGΩ(R), therefore, the proof follows
from Theorem 15 and Fig. 3.

Theorem 17 ([15] Theorem 4.9) Let R ∼= R1 × R2 × · · · × Rn × F1 × F2 × · · · ×
Fm be an Artinian commutative ring, where (Ri ,mi ) is Artinian local ring with
mi �= 0, Fj is field and n,m ≥ 1. Then γ(Ω(R)) = 1 if and only if n = m = 1 and
R1 has exactly two or three nonzero proper ideals.

Theorem 18 Let R ∼= F1 × F2 × · · · × Fm × R1 × R2 × · · · × Rn be an Artinian
commutative ring, where (Ri ,mi ) is Artinian local ring with mi �= 0, Fj is field and
n,m ≥ 1. Then γ(AGΩ(R)) = 1 if and only if n = m = 1 and R1 has exactly two
nonzero proper ideals.
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m1 ×m2 m1 ×m2

m1 ×m2 m1 ×m2

m1 × (0) m1 × (0)

(0)×m2

(0)×m2

R1 ×m2

R1 × (0)
(0)× R2

m1 × R2

Fig. 3 Toroidal embedding of AGΩ(R1 × R2), at (8, −3.3) where Ri has exactly one nonzero
proper ideal for i = 1, 2

F1 × (0) F1 × (0)

F1 × (0) F1 × (0)

(0)×m (0)×m

(0)×m2

F1 ×m

(0)× R1

F1 ×m2

Fig. 4 Toroidal embedding of AGΩ(F1 × R1), at (8, −3.4) where R1 has exactly two nonzero
proper ideals

Proof Since Ω(R) is a spanning subgraph of AGΩ(R), the proof follows from
Theorem 17, Lemma 6, and Fig. 4.
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Spectrum of the 3-zero-divisor
Hypergraph of Some Classes of Local
Rings

K. Selvakumar, J. Beautlin Jemi, and Nadeem ur Rehman

Abstract In this paper, we initiate the study of the spectrum of the 3-zero-divisor
hypergraph of commutative rings. We first compute the adjacency matrix of this
hypergraph for some classes of local rings. Also, we discuss the spectrum of the
3-zero-divisor hypergraph H3(R) of some local rings R. Furthermore, we discuss
the Laplacian matrix and their spectrum of H3(R).

Keywords k-zero-divisor hypergraph · Adjacency matrix · Laplacian matrix ·
Spectrum · Energy

1 Introduction

The study linking commutative ring theory with graph theory has been started with
the concept of the zero-divisor graph of a commutative ring. This definition was
introduced by Beck, Anderson, and Livingston in [2, 3]. In view of this, Eslahchi
and Rahimi [6] have introduced and investigated a graph called the k-zero-divisor
hypergraph of a commutative ring and later was studied extensively in [8–10]. In
this paper, we initiate the study of the spectrum of the 3-zero-divisor hypergraph
of commutative rings. We first compute the adjacency matrix of this hypergraph
for some classes of local rings. Also, we discuss the spectrum of the 3-zero-divisor
hypergraph H3(R) of some local rings R. Furthermore, we discuss the Laplacian
matrix and their spectrum ofH3(R).
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A hypergraphH is a pair (V (H ), E(H )) of disjoint sets, where V (H ) is a non
empty finite set whose elements are called vertices and the elements of E(H ) are
nonempty subsets of V (H ) called edges. The hypergraph H is called k-uniform
whenever every edge e of H is of size k. The number of edges containing a vertex
v ∈ V (H ) is its degreedH (v). Theadjacencymatrix A(H )ofH is a squarematrix
whose rows and columns are indexed by the vertices ofH and for all x, y ∈ V (H ),
whose entry ax,y is defined as follows:

ax,y =
{

|{e ∈ E(H ) : x, y ∈ e}| x �= y

0 otherwise

The spectrum of H is defined as

σ(H ) = ( λ1(H ), λ2(H ), . . . , λt (H ) )

where λ1(H ) ≤ λ2(H ) ≤ · · · ≤ λt (H ) are the eigenvalues of A(H ) and t =
|V (H )|. If λ1, λ2, . . . , λs are distinct eigenvalues of A(H ) and their multiplici-
ties are m(λ1), · · · ,m(λs), then we shall write

Spec(H ) =
(

λ1 λ2 · · · λs

m(λ1) m(λ2) · · · m(λs)

)

The Laplacian matrix of H is defined as L(H ) = D(H ) − A(H ), where

D(H ) = diag ( D(x1), D(x2), . . . , D(xn) ) and D(x) =
∑
y∈V

ax,y

is the degree of x inH . A hypergraph is called integral hypergraph if all the eigen-
values of its adjacency matrix are integers. The energy of a hypergraphH is defined
as the sumof the absolute values of all the eigenvalues. Also, At denotes the transpose
matrix of A. For basic definitions on hypergraphs, one may refer [1, 4].

2 Adjacency Matrix ofH3(Z pn)

First, we obtain the adjacencymatrix of the 3-zero-divisor hypergraphH3(Zpn )when
3 ≤ n ≤ 7, n ∈ N and p is a prime number.

From the definition of k-zero-divisor, for any k ≥ 3, Z(Z8, k) = ∅ and soHk(Z8)

is the empty graph. In view of this, throughout this paper, we assume that Zpn is a
ring, where p is a prime number, pn �= 8 and n ≥ 3.

Proposition 1 ([8]) Let R = Zpn , where p is a prime number, pn �= 8 and n ≥ 3.
Then |Z(R, 3)| = p

(
pn−2 − 1

)
.
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Theorem 1 Let R = Zp3 , where p ≥ 3. Then the adjacency matrix ofH3(R) is

A(H3(R)) =

⎡
⎢⎢⎢⎣

0 p(p − 1) − 2 · · · p(p − 1) − 2
p(p − 1) − 2 0 · · · p(p − 1) − 2

...
...

. . .
...

p(p − 1) − 2 p(p − 1) − 2 · · · 0

⎤
⎥⎥⎥⎦

Proof By Proposition 1, Z(R, 3) = {
kp : 1 ≤ k ≤ p2 − 1 and p � k

}
with cardinal-

ity m = p(p − 1). For any distinct x, y, z ∈ Z(R, 3), xyz = 0 and by definition of
3-zero-divisor, {x, y, z} is an edge of H3(R) and so H3(R) is complete. Hence, all
the entries in the m × m adjacency matrix ofH3(R) other than the diagonal entries
are p(p − 1) − 2.

Theorem 2 Let R = Zp4 , where p ≥ 2. Then the adjacency matrix ofH3(R) is

A(H3(R)) =

⎡
⎢⎢⎢⎢⎢⎣

0 p(p − 1) · · · p(p − 1)
p(p − 1) 0 · · · p(p − 1) Kp2(p−1)×p(p−1)

...
...

. . .
...

p(p − 1) p(p − 1) · · · 0
K t

p(p−1)×p2(p−1) Op(p−1)×p(p−1)

⎤
⎥⎥⎥⎥⎥⎦

where O is the p(p − 1) × p(p − 1) zero matrix, K = [bi j ] is the p2(p − 1) ×
p(p − 1) matrix with bi j = p2(p − 1) − 1 for all i, j and K t denotes the transpose
matrix of K .

Proof By Proposition 1, Z(R, 3) = {
kp : 1 ≤ k ≤ p3 − 1 and p2 � k

}
with cardi-

nality p(p2 − 1). Consider Z(R, 3) = P ∪ Q, where P = {
kp : 1 ≤ k ≤ p3 − 1

and p � k
}
, andQ = {

�p2 : 1 ≤ � ≤ p2 − 1 and p2 � �
}
. Then |P| = p2(p − 1) and

|Q| = p(p − 1). Also, P ∩ Q = ∅.
Note that E(H3(R)) = { {x, y, z} : x, y ∈ P, z ∈ Q }. Let x, y ∈ Z(R, 3). If

x, y ∈ P , then ax,y = |{{x, y, z} : z ∈ Q}| = p(p − 1). If x ∈ P , y ∈ Q or x ∈ Q,
y ∈ P , then ax,y = |{{x, y, z} : z ∈ P}| = p2(p − 1) − 1. If x, y ∈ Q, then xy = 0.
Hence, x, y /∈ e for all e ∈ E(H3(R)) and so ax,y = 0. Hence, we rearrange the 3-
zero-divisors such that all the elements of P appear first and then the elements of Q,
we get the required adjacency matrix.

Theorem 3 Let R = Zp5 , where p ≥ 2. Then the adjacency matrix ofH3(R) is

A(H3(R)) =
⎡
⎣ A B C
Bt D O
Ct O O

⎤
⎦

where A = [ai j ] is the p3(p − 1) × p3(p − 1) with aii = 0 and alt = p(p − 1) for
l �= t ,
B = [bi j ] is the p3(p − 1) × p2(p − 1) matrix with bi j = p2(p − 1) − 1,
C = [ci j ] is the p3(p − 1) × p(p − 1) matrix with ci j = p3(p − 1) − 1 and



466 K. Selvakumar et al.

D = [di j ] is the p2(p − 1) × p2(p − 1) matrix with dlt = p3(p − 1) + p2(p −
1) − 2 for all t �= l, dii = 0, and O denotes the zero matrix.

Proof By Proposition 1, Z(R, 3) = {
kp : 1 ≤ k ≤ p4 − 1 and p3 � k

}
with cardi-

nality p(p3 − 1). Consider Z(R, 3) = P1 ∪ P2 ∪ P3, where P1 = {
kp : 1 ≤ k ≤ p4

−1 and p � k
}
, P2 = {

�p2 : 1 ≤ � ≤ p3 − 1 and p2 � �
}
, and P3 = {

mp3 : 1 ≤ m ≤
p2 −1 and p3 � m

}
. Then Pi ∩ Pj = ∅ for all i �= j . Also |P1| = p3(p − 1), |P2| =

p2(p − 1) and |P3| = p(p − 1).
Let x, y ∈ Z(R, 3). If x, y ∈ P1, then ax,y = |{{x, y, z} : z ∈ P3}| = p(p − 1). If

x ∈ P1, y ∈ P2 or x ∈ P2, y ∈ P1, then ax,y = |{{x, y, z} : z ∈ P2}| = p2(p − 1) −
1. If x ∈ P1, y ∈ P3 or x ∈ P3, y ∈ P1, then ax,y = |{{x, y, z} : z ∈ P1}| = p3(p −
1) − 1. If x, y ∈ P2, then ax,y = |{{x, y, z} : z ∈ P1}| + |{{x, y, z} : z ∈ P2}| = p3

(p − 1) + p2(p − 1) − 2. If x ∈ P2, y ∈ P3 or x ∈ P3, y ∈ P2 or x, y ∈ P3, then
xy = 0. Hence, x, y /∈ e for all e ∈ E(H3(R)) and so ax,y = 0. Now we rearrange
the 3-zero-divisors such that all the elements of P1 appear first, P2 appear second,
and then the elements of P3, we get the required adjacency matrix.

By modifying the proof of Theorems 2 and 3, we can prove Theorems 4 and 5.

Theorem 4 Let R = Zp6 , where p ≥ 2. Then the adjacency matrix ofH3(R) is

A(H3(R)) =

⎡
⎢⎢⎣

A B C D
Bt E F O
Ct Ft O O
Dt O O O

⎤
⎥⎥⎦

where A = [ai j ] is the p4(p − 1) × p4(p − 1) with aii = 0 and alt = p(p − 1) for
l �= t ,
B = [bi j ] is the p4(p − 1) × p3(p − 1) matrix with bi j = p2(p − 1),
C = [ci j ] is the p4(p − 1) × p2(p − 1) matrix with ci j = p3(p − 1),
D = [di j ] is the p4(p − 1) × p(p − 1) matrix with di j = p4(p − 1) − 1,
E = [ei j ] is the p3(p − 1) × p3(p − 1) matrix with elt = p2(p − 1) + p3(p −
1) − 2 for all t �= l and eii = 0,
F = [ fi j ] is the p3(p − 1) × p2(p − 1) matrix with fi j = p4(p − 1) + p3(p −
1) − 1,
O = [oi j ] is the zero matrix.
Theorem 5 Let R = Zp7 where p ≥ 2. Then the adjacencymatrix of the hypergraph
H3(R) is

A(H3(R)) =

⎡
⎢⎢⎢⎢⎣

A B C D E
Bt F G H O
Ct Gt K O O
Dt Ht O O O
Et O O O O

⎤
⎥⎥⎥⎥⎦

where A = [ai j ] is the p5(p − 1) × p5(p − 1) with aii = 0 and alt = p(p − 1) for
l �= t ,
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B = [bi j ] is the p5(p − 1) × p4(p − 1) matrix with bi j = p2(p − 1),
C = [ci j ] is the p5(p − 1) × p3(p − 1) matrix with ci j = p3(p − 1) − 1,
D = [di j ] is the p5(p − 1) × p2(p − 1) matrix with di j = p4(p − 1),
E = [ei j ] is the p5(p − 1) × p(p − 1) matrix with ei j = p5(p − 1) − 1,
F = [ fi j ] is the p4(p − 1) × p4(p − 1) matrix with flt = p2(p − 1) + p3(p − 1)
for all t �= l and fii = 0,
G = [gi j ] is the p4(p − 1) × p3(p − 1) matrix with fi j = (p3(p − 1) − 1) +
(p4(p − 1) − 1),
H = [hi j ] is the p4(p − 1) × p2(p − 1) matrix with hi j = p5(p − 1) + p4(p −
1) − 1,
K = [ki j ] is the p3(p − 1) × p3(p − 1) matrix with klt = p5(p − 1) + p4(p −
1) + p3(p − 1) − 2 for all t �= l and kii = 0, O denotes the zero matrix.

3 Spectrum ofH3(R)

In this section, we discuss the spectrum of the 3-zero-divisor hypergraph H3(Zpn )

for n = 3 and n = 4. Furthermore, we determine the energy ofH3(Zpn ).

Theorem 6 ([7]) Let M1, M2, M3 and M4 be, respectively, p × p, p × q, q × p,
and q × q matrices with M1 and M4 invertible. Then

det

[
M1 M2

M3 M4

]
= det(M4) det(M1 − M2M

−1
4 M3) = det(M1) det(M4 − M3M

−1
1 M2)

Theorem 7 Let R = Zp3 , where p ≥ 3. Then

Spec(H3(R)) =
( (

p2 − p − 2
) (

p2 − p − 1
) − (

p2 − p − 2
)

1 p(p − 1) − 1

)

and H3(R) is integral.

Proof By Theorem 1, the adjacency matrix of H3(R) is given by

A(H3(R)) =

⎡
⎢⎢⎢⎣

0 p(p − 1) − 2 · · · p(p − 1) − 2
p(p − 1) − 2 0 · · · p(p − 1) − 2

...
...

. . .
...

p(p − 1) − 2 p(p − 1) − 2 · · · 0

⎤
⎥⎥⎥⎦

Let λ be a non-zero eigenvalue of A(H3(R)). Then
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det(A(H3(R)) − λI ) = det

⎡
⎢⎢⎢⎣

−λ p(p − 1) − 2 · · · p(p − 1) − 2
p(p − 1) − 2 −λ · · · p(p − 1) − 2

...
...

. . .
...

p(p − 1) − 2 p(p − 1) − 2 · · · −λ

⎤
⎥⎥⎥⎦ = 0

Using the properties of the determinant, we get

n det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 · · · 0 1 0 · · · 0
0 −1 · · · 0 0 1 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · −1 0 0 · · · 1
1 1 · · · 1 −λ

p2−p−2 1 · · · 1
1 1 · · · 1 1 −λ

p2−p−2 · · · 1
...

...
. . .

...
...

...
. . .

...

1 1 · · · 1 1 1 · · · −λ
p2−p−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0 where n =

(
p2 − p − 2

)p(p−1)
(

λ
p2−p−2 + 1

) p(p−1)
2

. Then by Theorem 6,

det(A − λI ) = (
p2 − p − 2

)p(p−1)
(

λ
p2−p−2 + 1

) p(p−1)
2

det

[
P Q
R S

]
. Then

det(A − λI ) = (
p2 − p − 2

)p(p−1)
(

λ
p2−p−2 + 1

) p(p−1)
2

det(P) det(S − RP−1Q) = 0.
Since P is a scalar matrix of order p(p−1)

2 , we get det(P) = (−1)
p(p−1)

2 and

RP−1Q =

⎡
⎢⎢⎢⎣

−1 −1 · · · −1
−1 −1 · · · −1
...

...
. . .

...

−1 −1 · · · −1

⎤
⎥⎥⎥⎦ .

Thus det(S − RP−1Q) = det

⎡
⎢⎢⎢⎢⎣

−λ
p2−p−2 + 1 2 · · · 2

2 −λ
p2−p−2 + 1 · · · 2

...
...

. . .
...

2 2 · · · −λ
p2−p−2 + 1

⎤
⎥⎥⎥⎥⎦

Using the properties of the determinant, we get
det(S − RP−1Q)

= (−1)
p(p−1)

2 −3
(

λ
p2−p−2 + 1

) p(p−1)
2 −1 [

−λ
p2−p−2 + p (p − 1) − 1

]
.

Therefore,
det(A − λI ) = (

λ + p2 − p − 2
)p(p−1)−1 (

λ − p (p − 1)
(
p2 − p − 2

)
+p2 − p − 2

) = 0.

and so
(
λ + p2 − p − 2

)p(p−1)−1 = 0 or λ − p (p − 1)
(
p2 − p − 2

) + p2 − p −
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2 = 0.

Hence, Spec(H3(R)) =
( (

p2 − p − 2
) (

p2 − p − 1
) − (

p2 − p − 2
)

1 p(p − 1) − 1

)
.

Corollary 1 Let R = Zp3 , where p ≥ 3. Then the energy of H3(Zp3) is

2
(
p2 − p − 1

) (
p2 − p − 2

)
.

Proof By Theorem 7, the Energy of H3(Zp3)

= |λ1| + |λ2| + · · · + ∣∣λp(p−1)

∣∣
= ∣∣− (

p2 − p − 2
)∣∣ + · · · + ∣∣− (

p2 − p − 2
)∣∣︸ ︷︷ ︸

p(p−1)−1 times

+ ∣∣(p2 − p − 2
) (

p2 − p − 1
)∣∣

= (p (p − 1) − 1)
(
p2 − p − 2

) + (
p2 − p − 2

) (
p2 − p − 1

)
= 2

(
p2 − p − 1

) (
p2 − p − 2

)
.

Theorem 8 Let R = Zp4 , where p ≥ 2. Then

Spec(H3(R)) =
(

0 a b −p (p − 1)
p(p − 1) − 1 1 1 p2(p − 1) − 1

)

where a= p(p−1)[p2(p−1)−1]
2

(
1 + √

1 + 4p
)
and b= p(p−1)[p2(p−1)−1]

2

(
1 − √

1 + 4p
)
.

Proof By Theorem 2, the adjacency matrix of H3(R) is given by,

A(H3(R)) =

⎡
⎢⎢⎢⎢⎢⎣

0 p(p − 1) · · · p(p − 1)
p(p − 1) 0 · · · p(p − 1) Kp2(p−1)×p(p−1)

...
...

. . .
...

p(p − 1) p(p − 1) · · · 0
K t

p(p−1)×p2(p−1) Op(p−1)×p(p−1)

⎤
⎥⎥⎥⎥⎥⎦

where O is the p(p − 1) × p(p − 1) zero matrix, K = [bi j ] is the p2(p − 1) ×
p(p − 1) matrix with bi j = p2(p − 1) − 1 for all i, j .

Let λ be a non-zero eigenvalue of A(H3(Zp4)). Then by Theorem 6,

det(A − λI ) = det

[
P Q
R S

]
= det(S) det(P − QS−1R) = 0

where P =

⎡
⎢⎢⎢⎣

−λ p(p − 1) · · · p(p − 1)
p(p − 1) −λ · · · p(p − 1)

...
...

. . .
...

p(p − 1) p(p − 1) · · · −λ

⎤
⎥⎥⎥⎦; S =

⎡
⎢⎢⎢⎣

−λ 0 · · · 0
0 −λ · · · 0
...

...
. . .

...

0 0 · · · −λ

⎤
⎥⎥⎥⎦
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Q = Rt =

⎡
⎢⎢⎢⎣
p2(p − 1) − 1 p2(p − 1) − 1 · · · p2(p − 1) − 1
p2(p − 1) − 1 p2(p − 1) − 1 · · · p2(p − 1) − 1

...
...

. . .
...

p2(p − 1) − 1 p2(p − 1) − 1 · · · p2(p − 1) − 1

⎤
⎥⎥⎥⎦

Clearly, det(S) = (−λ)p(p−1) and QS−1R =
⎡
⎢⎢⎢⎢⎢⎢⎣

−(p(p−1))
λ

[(
p2(p − 1) − 1

)2] −(p(p−1))
λ

[(
p2(p − 1) − 1

)2] · · · −(p(p−1))
λ

[(
p2(p − 1) − 1

)2]
−(p(p−1))

λ

[(
p2(p − 1) − 1

)2] −(p(p−1))
λ

[(
p2(p − 1) − 1

)2] · · · −(p(p−1))
λ

[(
p2(p − 1) − 1

)2]
.
.
.

.

.

.
. . .

.

.

.
−(p(p−1))

λ

[(
p2(p − 1) − 1

)2] −(p(p−1))
λ

[(
p2(p − 1) − 1

)2] · · · −(p(p−1))
λ

[(
p2(p − 1) − 1

)2]

⎤
⎥⎥⎥⎥⎥⎥⎦

and hence

det(P − QS−1R) = det

⎡
⎢⎢⎢⎣
x y · · · y
y x · · · y
...

...
. . .

...

y y · · · x

⎤
⎥⎥⎥⎦

where x = −λ + p(p−1)
λ

[(p2(p − 1) − 1
)2] and y=p(p − 1) + p(p−1)

λ
[(p2(p − 1)

−1)2].
Using the properties of the determinant, we get
det(P − QS−1R) = (−1)p

2(p−1)−2[λ + p(p − 1)]p2(p−1)−1 1
λ
[λ2 − p(p − 1)

[p2(p − 1) − 1]λ − p(p − 1)[p2(p − 1)] (p2(p − 1) − 1
)2].

Therefore,
det(A − λI ) = (−λ)p(p−1)−1 [λ + p(p − 1)]p2(p−1)−1

[λ2 − p(p − 1)[p2(p − 1) − 1]λ − p(p − 1)[p2(p − 1)] (p2(p − 1)
−1)2] = 0.
Since λ �= 0, we have

[λ + p(p − 1)]p2(p−1)−1 = 0
or

λ2 − p(p − 1)(p2(p − 1) − 1)λ − p(p − 1)(p2(p − 1))
(
p2(p − 1) − 1

)2 = 0.

Hence

Spec(H3(R)) =
(

0 a b −p (p − 1)
p(p − 1) − 1 1 1 p2(p − 1) − 1

)

where a= p(p−1)[p2(p−1)−1]
2

(
1 + √

1 + 4p
)
and b= p(p−1)[p2(p−1)−1]

2

(
1 − √

1 + 4p
)
.

Corollary 2 Let R = Zp4 , where p ≥ 2. Then the energy of H3(Zp4) is

2p (p − 1)
[
p2 (p − 1) − 1

]
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Proof By Theorem 8, the Energy of H3(Zp4) is

= |λ1| + |λ2| + · · · + ∣∣λp2(p−1)+p(p−1)

∣∣
= |−p (p − 1)| + · · · + |−p (p − 1)|︸ ︷︷ ︸

p2(p−1)−1 times

+
∣∣∣∣ p(p − 1)[p2(p − 1) − 1]

2

(
1 + √

1 + 4p
)∣∣∣∣ +

∣∣∣∣ p(p − 1)[p2(p − 1) − 1]
2

(
1 − √

1 + 4p
)∣∣∣∣

= 2p (p − 1)
[
p2 (p − 1) − 1

]
.

4 Laplacian Spectrum ofH3(R)

In this section, we discuss the Laplacian spectrum ofH3(Zpn ) for n = 3 and n = 4.

Theorem 9 Let R = Zp3 , where p ≥ 3. Then the Laplacian spectrum of H3(Zp3)

is

LSpec(H3(R)) =
(
0 (p(p − 1) − 2) (p(p − 1))
1 p(p − 1) − 1

)

Proof By Theorem 1, D(x) = (p(p − 1) − 1) (p(p − 1) − 2) for all x ∈ Z(R, 3)
and by definition of D(H3(R)),

D =

⎡
⎢⎢⎢⎢⎣

(p(p − 1) − 1) (p(p − 1) − 2) 0 · · · 0
0 (p(p − 1) − 1) (p(p − 1) − 2) · · · 0
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · (p(p − 1) − 1) (p(p − 1) − 2)

⎤
⎥⎥⎥⎥⎦

Since L(H3(Zp3)) = D − A(H3(Zp3)) and by Theorem 1, the Laplacian matrix
of H3(R) is given by

L(H3(Zp3)) =

⎡
⎢⎢⎢⎣

y − (p(p − 1) − 2) · · · − (p(p − 1) − 2)
− (p(p − 1) − 2) y · · · − (p(p − 1) − 2)

...
...

. . .
...

− (p(p − 1) − 2) − (p(p − 1) − 2) · · · y

⎤
⎥⎥⎥⎦

where y = (p(p − 1) − 1) (p(p − 1) − 2).
Let λ be a non-zero eigenvalue of L(H3(Zp3)). Then det(L − λI ) = 0 and so

det

⎡
⎢⎢⎢⎣

y − (p(p − 1) − 2) · · · − (p(p − 1) − 2)
− (p(p − 1) − 2) y · · · − (p(p − 1) − 2)

...
...

. . .
...

− (p(p − 1) − 2) − (p(p − 1) − 2) · · · y

⎤
⎥⎥⎥⎦ = 0

where y = (p(p − 1) − 1) (p(p − 1) − 2)] − λ.
Using the properties of the determinant, we get
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m det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 · · · 0 1 · · · 0
0 −1 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · −1 0 · · · 1
1 1 · · · 1 λ−(p(p−1)−1)(p(p−1)−2)

p(p−1)−2 · · · 1
1 1 · · · 1 1 · · · 1
...

...
. . .

...
...

. . .
...

1 1 · · · 1 1 · · · λ−(p(p−1)−1)(p(p−1)−2)
p(p−1)−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0.

where m = [p(p − 1)]p(p−1)
(
1 − [λ−(p(p−1)−1)(p(p−1)−2)]

p(p−1)−2

) p(p−1)
2

Let det(L − λI )= [p(p − 1)]p(p−1)
(
1 − [λ−(p(p−1)−1)(p(p−1)−2)]

p(p−1)−2

) p(p−1)
2

det

[
P Q
R S

]
.

Then det(L − λI ) =
[p(p − 1)]p(p−1)

(
1 − [λ−(p(p−1)−1)(p(p−1)−2)]

p(p−1)−2

) p(p−1)
2

det(P) det(S − RP−1Q) = 0.

Since P is a scalar matrix of order p(p−1)
2 , we get det(P) = (−1)

p(p−1)
2 . Also

RP−1Q =

⎡
⎢⎢⎢⎣

−1 −1 · · · −1
−1 −1 · · · −1
...

...
. . .

...

−1 −1 · · · −1

⎤
⎥⎥⎥⎦ and so det(S − RP−1Q) =

det

⎡
⎢⎢⎢⎣

λ−(p(p−1)−1)(p(p−1)−2)
p(p−1)−2 + 1 2 · · · 2

2 λ−(p(p−1)−1)(p(p−1)−2)
p(p−1)−2 + 1 · · · 2

.

.

.
.
.
.

. . .
.
.
.

2 2 · · · λ−(p(p−1)−1)(p(p−1)−2)
p(p−1)−2 + 1

⎤
⎥⎥⎥⎦

Using the properties of the determinant, we get

det(S − RP−1Q)=2 (−1)
p(p−1)

2 −3
(

λ−(p(p−1)−1)(p(p−1)−2)
p(p−1)−2 − 1

) p(p−1)
2 −1 [

λ
2(p(p−1)−2)

]
.

Therefore, det(L − λI ) = λ [λ − (p(p − 1) − 2) (p(p − 1))]p(p−1)−1 = 0.

Hence, LSpec (H3(R)) =
(
0 (p(p − 1) − 2) (p(p − 1))
1 p(p − 1) − 1

)
.

Theorem 10 Let R = Zp4 , where p ≥ 2. Then the Laplacian spectrum ofH3(Zp4)

is

LSpec (H3(R)) =
(
a b c d
1 1 p2(p − 1) − 1 p(p − 1) − 1

)

where a= p(p − 1)[p2(p − 1) − 1]
2

(
3 + √

1 + 4p
)
, b= p(p − 1)[p2(p − 1) − 1]

2(
3 − √

1 + 4p
)
, c = p(p − 1) + 2p(p − 1)

(
p2(p − 1) − 1

)
and d = 2p(p − 1)(

p2(p − 1) − 1
)
.
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Proof By Theorem 2, D(x) = 2p(p − 1)
(
p2(p − 1) − 1

)
for all x ∈ Z(R, 3) and

by definition of D(H3(R)),

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

2p(p − 1)
(
p2(p − 1) − 1

)
0 · · · 0

0 2p(p − 1)
(
p2(p − 1) − 1

) · · · 0
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · 0
0 0 · · · 2p(p − 1)

(
p2(p − 1) − 1

)

⎤
⎥⎥⎥⎥⎥⎥⎦

Since L(H3(Zp3)) = D − A(H3(Zp3)) and by Theorem 2, the Laplacian matrix of
H3(R) is given by

L(H3(Zp4 )) =

⎡
⎢⎢⎢⎢⎢⎢⎣

x −p(p − 1) · · · −p(p − 1)
−p(p − 1) x · · · −p(p − 1) Kp2(p−1)×p(p−1)

.

.

.
.
.
.

. . .
.
.
.

−p(p − 1) −p(p − 1) · · · x
K t
p(p−1)×p2(p−1)

Cp(p−1)×p(p−1)

⎤
⎥⎥⎥⎥⎥⎥⎦

where x = 2p(p − 1)
(
p2(p − 1) − 1

)
,C=[di j ] is the p(p − 1) × p(p − 1)matrix

with dlk = 2p(p − 1)(p2(p − 1) − 1) for all l �= k and dii = 0, K = [bi j ] is the
p2(p − 1) × p(p − 1) matrix with bi j = −(p2(p − 1) − 1) for all i, j and K t

denotes the transpose matrix of K .
Let λ be a non-zero eigenvalue of L(H3(Zp4)).

Then det(L − λI ) = det

[
P Q
R S

]
= det(S) det(P − QS−1R) = 0, where

P =

⎡
⎢⎢⎢⎣

x −p(p − 1) · · · −p(p − 1)
−p(p − 1) x · · · −p(p − 1)

...
...

. . .
...

−p(p − 1) −p(p − 1) · · · x

⎤
⎥⎥⎥⎦, x = 2p(p − 1)

(
p2(p − 1)

−1) − λ.

S =

⎡
⎢⎢⎢⎣
x 0 · · · 0
0 x · · · 0
...

...
. . .

...

0 0 · · · x

⎤
⎥⎥⎥⎦, x = 2p(p − 1)

(
p2(p − 1) − 1

) − λ.

Q = Rt =

⎡
⎢⎢⎢⎣

− (
p2(p − 1) − 1

) − (
p2(p − 1) − 1

) · · · − (
p2(p − 1) − 1

)
− (

p2(p − 1) − 1
) − (

p2(p − 1) − 1
) · · · − (

p2(p − 1) − 1
)

...
...

. . .
...

− (
p2(p − 1) − 1

) − (
p2(p − 1) − 1

) · · · − (
p2(p − 1) − 1

)

⎤
⎥⎥⎥⎦

Clearly, det(S) = (
2p(p − 1)

(
p2(p − 1) − 1

) − λ
)p(p−1)

; QS−1R =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

p(p−1)
[
(p2(p−1)−1)

2
]

2p(p−1)(p2(p−1)−1)−λ

p(p−1)
[
(p2(p−1)−1)

2
]

2p(p−1)(p2(p−1)−1)−λ
· · · p(p−1)

[
(p2(p−1)−1)

2
]

2p(p−1)(p2(p−1)−1)−λ

p(p−1)
[
(p2(p−1)−1)

2
]

2p(p−1)(p2(p−1)−1)−λ

p(p−1)
[
(p2(p−1)−1)

2
]

2p(p−1)(p2(p−1)−1)−λ
· · · p(p−1)

[
(p2(p−1)−1)

2
]

2p(p−1)(p2(p−1)−1)−λ

...
...

. . .
...

p(p−1)
[
(p2(p−1)−1)

2
]

2p(p−1)(p2(p−1)−1)−λ

p(p−1)
[
(p2(p−1)−1)

2
]

2p(p−1)(p2(p−1)−1)−λ
· · · p(p−1)

[
(p2(p−1)−1)

2
]

2p(p−1)(p2(p−1)−1)−λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and hence det(P − QS−1R) = det

⎡
⎢⎢⎢⎣
x y · · · y
y x · · · y
...

...
. . .

...

y y · · · x

⎤
⎥⎥⎥⎦

where x = 2p(p − 1)
(
p2(p − 1) − 1

) − λ − p(p−1)
[
(p2(p−1)−1)

2
]

2p(p−1)(p2(p−1)−1)−λ
and

y = −p(p − 1) − p(p−1)
[
(p2(p−1)−1)

2
]

2p(p−1)(p2(p−1)−1)−λ
.

Using the properties of the determinant, we get
det(P − QS−1R) = (−1)p

2(p−1)−1[p(p − 1) + 2p(p − 1)
(
p2(p − 1) − 1

) − λ]p2(p−1)−1 · x

where x =
[λ2 − 3p(p − 1)[p2(p − 1) − 1]λ + p(p − 1)

(
p2(p − 1) − 1

)2 [2p(p − 1) − p2(p − 1)]]
2p(p − 1)

(
p2(p − 1) − 1

) − λ
.

Therefore, det(L − λI ) = 0 which implies that(
2p(p − 1)

(
p2(p − 1) − 1

) − λ
)p(p−1)−1 [p(p − 1) + 2p(p −

1)
(
p2(p − 1) − 1

) − λ]p2(p−1)−1

[λ2 − 3p(p − 1)[p2(p − 1) − 1]λ + p(p − 1)
(
p2(p − 1) − 1

)2 [2p(p − 1) −
p2(p − 1)]] = 0.

Since λ �= 0, we have
(
2p(p − 1)

(
p2(p − 1) − 1

) − λ
)p(p−1)−1 = 0

[λ2 − 3p(p − 1)[p2(p − 1) − 1]λ + p(p − 1)
(
p2(p − 1) − 1

)2 [2p(p − 1) −
p2(p − 1)]] = 0,

[p(p − 1) + 2p(p − 1)
(
p2(p − 1) − 1

) − λ]p2(p−1)−1 = 0.

Hence

LSpec (H3(R)) =
(
a b c d
1 1 p2(p − 1) − 1 p(p − 1) − 1

)

where a= p(p − 1)[p2(p − 1) − 1]
2

(
3 + √

1 + 4p
)
, b= p(p − 1)[p2(p − 1) − 1]

2(
3 − √

1 + 4p
)
, c = p(p − 1) + 2p(p − 1)

(
p2(p − 1) − 1

)
and d = 2p(p − 1)(

p2(p − 1) − 1
)
.

Problem 1 1. Find the Spectrum of H3(Zpn ) for n = 5, 6, and 7.
2. Find the Laplacian Spectrum of H3(Zpn ) for n = 5, 6, and 7.
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Complement of the Generalized Total
Graph of Commutative Rings – A Survey

T. Tamizh Chelvam

Abstract There are so many graph constructions from algebraic structures. In par-
ticular, graphs from commutative rings are extensively studied. Zero-divisor graphs
from commutative rings are the first graph construction in this regard. In the zero
divisor graph of a commutative ring, edges are constructed through multiplication of
the underlying ring. In variation to this, several graphs are constructed using addi-
tion of a commutative ring. The first graph construction using addition is the total
graph and later generalized total graphs from commutative rings are introduced and
studied. In this paper, we make a survey of results obtained on the complement of
the generalized total graph of commutative rings as well as fields.

Keywords Total graph · Cayley graph · Unitary cayley graph · Generalized total
graph · Domination number · Dominating sets · Intersection graphs

1 Introduction

Construction of graphs from commutative rings was started with the study initiated
by Beck [14] through zero-divisor graphs of commutative rings. Since then, many
graphs are constructed from commutative rings and through these graphs various
properties of commutative rings are studied by several authors [5, 14]. There are so
manyways to construct graphs from ring structures. Through these constructions, the
interplay between algebraic structures and graphs are studied. Indeed, it isworthwhile
to relate algebraic properties of commutative rings to combinatorial properties of
derived graphs. In the case of zero-divisor graphs, multiplication of the ring is used
for adjacency(edges) of vertices in the graph. In variation to this, the addition of the
ring is used to construct edges in the total graph. Several authors studied the total
graph of commutative rings [3, 4, 7–12, 21, 23–30].
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2 Additive Graphs from Commutative Rings

Throughout this paper, R denotes a commutative with identity 1, Z(R) be its set of
all zero-divisors, U (R) be the multiplicative group of unit elements of R. Cayley
graphs is the first graph construction from finite groups. In similar to the Cayley
graph of finite groups, several graphs are defined through addition of R. Cayley
graph of commutative ringswere introduced and studied byAkhtar et al. [2]. Actually
the Cayley graph of R, denoted by Cay(R, U (R)), is the simple undirected graph
with vertex set R and two distinct vertices x and y are adjacent if x − y ∈ U (R).
Subsequently several authors studied about Cayley graph from commutative rings [1,
2, 19, 20]. Further properties about unitary Cayley graph are studied in [22]. Later
on, Ashrafi et al. [6] introduced the unit graph of R, denoted byG(R). Actually G(R)

is the graph obtained by setting all the elements of R to be the vertices and defining
distinct vertices x and y to be adjacent if x + y ∈ U (R). Anderson and Badawi [3]
introduced and studied the total graph TΓ (R) of a commutative ring R. Actually the
total graph of R is the undirected graph whose vertices are the elements in R and
two distinct vertices x and y are adjacent if x + y ∈ Z(R). The complement of the
total graph is denoted by TΓ (R). Note that two distinct vertices x and y in TΓ (R)

are adjacent if x + y ∈ Reg(R). Several properties of TΓ (R) were studied by the
authors in [31–33, 38].

Khashyarmanesh et al. [18] introduced the graph Γ (R, G, S) where G is a
multiplicative subgroup of U (R) and S is a non-empty subset of G such that
S−1 = {s−1 : s ∈ S} ⊆ S. The graph Γ (R, G, S) is a simple graph with vertex set
R and two distinct vertices x and y are adjacent if there exists s ∈ S such that
x + sy ∈ G. Note that all these graphs are not isomorphic. But there are relations
between these graphs. For instance, if S = {1}, then Γ (R, S, U ) is same as the
unit graph G(R) and if S = {−1}, then Γ (R, S, U ) is the unitary Cayley graph
Cay(R, U (R)) of R. Further if R is finite, then the complement TΓ (R) of the total
graph TΓ (R) is nothing but the unit graph G(R). In case of an infinite ring, G(R)

is a subgraph of TΓ (R). The classes like Γ (R, U, U ) were extensively studied by
Tamizh Chelvam et al. [34–37].

3 Generalized Total Graphs

A subset H of R to be a multiplicative-prime subset of R if the following two
conditions hold: (i) ab ∈ H for every a ∈ H and b ∈ R; (ii) if ab ∈ H for a, b ∈ R,
then either a ∈ H or b ∈ H . For example, H is multiplicative-prime subset of R if H
is a prime ideal of R, H is a unionof prime ideals of R, H = Z(R), or H = R \ U (R).
In fact, it is easily seen that H is a multiplicative-prime subset of R if and only if
R \ H is a saturated multiplicatively closed subset of R. Thus H is a multiplicative-
prime subset of R if and only if H is a union of prime ideals of R. Note that if
H is a multiplicative-prime subset of R, then Nil(R) ⊆ H ⊆ R \ U (R); and if H



Complement of the Generalized Total Graph of Commutative Rings – A Survey 479

is also an ideal of R, then H is necessarily a prime ideal of R. In particular, if
R = Z(R) ∪ U (R) (e.g., R is finite), then Nil(R) ⊆ H ⊆ Z(R).

The notion of the generalized total graph of a commutative ring was introduced
and studied by Anderson and Badawi [5]. For a multiplicative-prime subset H of R,

the generalized total graph of R, denoted by GTH (R), as the (simple) graph with all
elements of R as vertices, and for distinct x, y ∈ R, the vertices x and y are adjacent if
and only if x + y ∈ H . For A ⊆ R, let GTH (A) be the induced subgraph of GTH (R)

with all elements of A as the vertices. For example, GTH (R \ H) is the induced
subgraph of GTH (R) with vertices R \ H . When H = Z(R), we have that GTH (R)

is the so-called total graph. The concept of generalized total graph, unlike the earlier
concept of total graph, allows us to study graphs of integral domains. For a prime
ideal P of a commutative ring R which is not an integral domain with |P| = α and
|R/P| = β, we have |P| = |ai + P| ≥ 2 for ai + P ∈ R/P for 1 ≤ i ≤ β. Since R
contains identity 1, we denote 1 + 1 by 2. Let us give examples for the generalized
total graph now.

Example 1 Let R = Z6. Then, < 2 >= {0, 2, 4} and < 3 >= {0, 3} are the two
different multiplicative prime subsets of Z6. The generalized total graph of Z6 with
respect to < 2 >, < 3 > are given below (Figs. 1 and 2):

Fig. 1 GT<2>(Z6)

2 4

0

3 5

1

Fig. 2 GT<3>(Z6)

4 50

3 1 2
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Certain results obtained by Anderson and Badawi [5] on a generalized total graph
are given below.

Theorem 1 (Theorem 2.2, [5]) Let P be a prime ideal of a commutative ring R and
let |P| = α and |R/P| = β.

(i) If 2 ∈ P, then GTP(R) is the union of β − 1 disjoint Kα’s;
(ii) If 2 /∈ P, then GTP(R) is the union of β−1

2 disjoint Kα,α’s

Theorem 2 (Theorem 2.3, [5]) Let P be a prime ideal of a commutative ring R.

Then

(i) GTP(R) is complete if and only if either R/H ∼= Z2 or R ∼= Z3;
(ii) GTP(R) is connected if and only if either R/H ∼= Z2 or R/H ∼= Z3;
(iii) GTP(R) (and hence GTP(P) and GTP(R)) is totally disconnected if and only

if P = {0} (thus R is an integral domain) and char(R) = 2.

Theorem 3 (Theorem 2.5, [5]) Let P be a prime ideal of a commutative ring R.

Then

(i) (a) diam(GTP(R)) = 0 if and only if R ∼= Z2;
(b) diam(GTP(R)) = 1 if and only if either R/P ∼= Z2 and R � Z2; (i.e.,
R/P ∼= Z2 and |P| ≥ 2), or R ∼= Z3;
(c) diam(GTP(R)) = 2 if and only if either R/P ∼= Z3 and R � Z3; (i.e.,
R/P ∼= Z3 and |P| ≥ 2);
(d) Otherwise, diam(GTP(R)) = ∞.

(ii) (a) gr(GTP(R)) = 3 if and only if 2 ∈ GTP(R) and |P| ≥ 3;
(b) gr(GTP(R)) = 4 if and only if 2 /∈ P and |P| ≥ 2;
(c) Otherwise, gr(GTP(R)) = ∞.

(iii) (a) gr(GTH ) = 3 if and only if 2 ∈ GTP(R) and |P| ≥ 3;
(b) gr(GTP(R)) = 4 if and only if 2 /∈ P and |P| ≥ 2;
(c) Otherwise, gr(GTP(R)) = ∞.

Theorem 4 (Theorem 2.8, [5]) Let P be a prime ideal of a commutative ring R.

Then the following statements are equivalent.

(i) GTP(R) is connected;
(ii) Either x + y ∈ P or x − y ∈ P for all x, y ∈ R \ P;
(iii) Either x + y ∈ P or x + 2y ∈ P for all x, y ∈ R \ P. In particular, either

2x ∈ P or 3x ∈ P (but not both) for all x ∈ R \ P;
(iv) Either R/P ∼= Z2 or R/P ∼= Z3.

Theorem 5 (Theorem 3.1, [5]) Let R be a commutative ring and H a multiplicative
prime subset of a commutative ring R that is not an ideal of R. If GTH (R) is
connected, then GTH (R) connected.

Theorem 6 (Theorems 3.2 & 3.4, [5]) Let R be a commutative ring and H a multi-
plicative prime subset of a commutative ring R that is not an ideal of R. Then GTH (R)

is connected if and only if 1 = z1 + · · · + zn for some z1, . . . , zn ∈ H. (Z(R)) = R
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(i.e., R = (z1, . . . , zn)) for some z1, . . . , zn ∈ Z(R)). In particular, if H is not a
ideal of R and either dim(R) = 0 (i.e., R is finite) or R is an integral domain with
diam(R) = 1, then GTH (R) is connected. Let n ≥ 2 be the least integer such that
1 = z1 + · · · + zn for some z1, . . . , zn ∈ H. Then diam(GTH (R)) = n. In particu-
lar, H is not an ideal of R and either dim(R) = 0 (i.e., R is finite) or R is an integral
domain with dim(R) = 1, then GTH (R) is connected.

Corollary 1 (Corollary 3.5, [5])Let R be a commutative ring and H a multiplicative
prime subset of a commutative ring R that is not an ideal of R such that GTH (R) is
connected.

(i) diam(GTH (R)) = d(0, 1);
(ii) If diam(GTH (R)) = n, then diam(GTH (R)) ≥ n − 2.

Theorem 7 (Theorem3.14, [5])Let R be a commutative ring and H a multiplicative
prime subset of a commutative ring R that is not an ideal of R.

(i) Either gr(GTH (H)) = 3 or gr(GTH (H)) = ∞. Moreover, if gr(GTH (H)) =
∞, then R ∼= Z2Z2 and H = Z(R); so GTH (H) is a K1,2 is a star graph with
center 0;

(ii) gr(GTH (R)) = 3 if and only if gr(GTH (R)) = 3;
(iii) gr(GTH (R)) = 4 if and only if gr(GTH (H)) = ∞ (if and only if R � Z2Z2);
(iv) If char R = 2, then gr(GTP(R)) = 3 or ∞. In particular, gr(GTP(R)) = 3 if

char R = 2 and GTP(R) contains a cycle;
(v) gr(GTP(R)) = 3, 4, or ∞. In particular, gr(GTP(R)) ≤ 4 if GTP(R) contains

a cycle.

4 Complement of the Generalized Total Graph

Tamizh Chelvam and Balamurugan [31–33, 38] studied about the complement of the
generalized total graph GTP(R) extensively. In this section, we present results on
some graph theoretical properties of GTP(R). More specifically, we present results
on girth, Eulerian nature of GTP(R), independence number, clique number and
chromatic number of GTP(R). Let us start with some basic properties of GTP(R).

For a prime ideal P of a commutative ring R which is not an integral domain
with |P| = α and |R/P| = β, we have |P| = |ai + P| ≥ 2 for ai + P ∈ R/P for
1 ≤ i ≤ β.Assume that R is finite and 2 ∈ P. Since |R| is finite, R ∼= R1 × · · · × Rq

where each Ri is a local ring. Note that P = P1 × · · · × Pq where Pi ⊆ Ri for
1 ≤ i ≤ q. Since P is a prime ideal in R, Pi = Z(Ri ) for exactly one i, 1 ≤ i ≤ q
and Pj = R j for 1 ≤ j 	= i ≤ q. Since 2 ∈ P ⊆ Z(R), 2 ∈ Pi ⊆ Z(Ri ) for some
i, 1 ≤ i ≤ q. By [18, Corollary 2.3], |Ri | = 2αi where αi is a positive integer. This
implies that β is even. Hence we get that β is even if 2 ∈ P and β is odd if 2 /∈ P.

The following partition of R into distinct cosets a0 + P, a1 + P, . . . , aβ−1 + P of
P with a0 ∈ P is considered through out this paper.
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(i) If 2 ∈ P, then R = P
⋃

(
β−1⋃

i=1
ai + P);

(ii) If 2 /∈ P, then R = P
⋃

(

β−1
2⋃

i=1
ai + P)(

β−1
2⋃

i=1
−ai + P).

Now, using Theorem 1, we see the degrees of vertices in GTP(R).

Lemma 1 (Lemma 1, [32]) Let R be a finite commutative ring which is not an
integral domain and P be a prime ideal in R. Assume that |P| = α and |R/P| = β.

Then the following are true in GTP(R).

(i) If 2 ∈ P, then deg(v) = (β − 1)α for every v ∈ R;
(ii) If 2 /∈ P, then deg(v) =

{
(β − 1)α f or v ∈ P;
(β − 1)α − 1 f or v ∈ R \ P.

The following is an immediate consequence of Lemma 2.

Lemma 2 (Lemma 2, [32]) Let R be a finite commutative ring which is not an
integral domain and P be a prime ideal in R. Assume that |P| = α and |R/P| = β.

Then the following hold:

(i) GTP(R) contains no isolated vertex;
(ii) GTP(R) contains no vertex of degree |R| − 1;
(iii) GTP(R) is complete β-partite if and only if 2 ∈ P;
(iv) GTP(R) is connected bi-regular if and only if 2 /∈ P. Moreover, �(GTP(R))

= δ(GTP(R)) + 1;
(v) GTP(R) is connected.

The following lemma follows from Theorem 1.

Lemma 3 (Lemma 3, [32]) Let R be a finite commutative ring which is not an
integral domain and P be a prime ideal in R. Assume that |P| = α and |R/P| = β.

Then the following are true in GTP(R).

(i) Let 2 ∈ P. Two distinct vertices x and y are adjacent in GTP(R) if and only if
x and y are not in the same coset of P;

(ii) Let 2 /∈ P. Two distinct vertices x and y are adjacent in GTP(R) if and only if
x ∈ ai + P and y ∈ R \ (−ai + P) for some i, 0 ≤ i ≤ β−1

2 .

The following lemma gives the girth of GTP(R).

Lemma 4 (Lemma 4, [32]) Let R be a finite commutative ring which is not an
integral domain and P be a prime ideal in R. Assume that |P| = α and |R/P| = β.

Then

gr(GTP(R)) =
⎧
⎨

⎩

4 i f 2 ∈ P and β = 2;
3 i f 2 ∈ P and β ≥ 3;
3 i f 2 /∈ P.



Complement of the Generalized Total Graph of Commutative Rings – A Survey 483

Note that, a clique in a graph G is a complete subgraph of G. The order of the
largest clique in a graph G is its clique number, which is denoted by ω(G). The
following lemma gives the clique number of GTP(R).

Lemma 5 (Lemma 5, [32]) Let R be a finite commutative ring which is not an
integral domain and P be a prime ideal in R. Assume that |P| = α and |R/P| = β.

Then

ω(GTP(R)) =
{

β i f 2 ∈ P;
(

β−1
2 )α + 1 i f 2 /∈ P.

An assignment of colors to the vertices of a graph G so that adjacent vertices
are assigned different colors is called a proper coloring of G. The smallest number
of colors in any proper coloring of a graph G is called the chromatic number of G
and is denoted by χ(G). A set of vertices in a graph G is an independent if no two
vertices in the set are adjacent. In the following lemma, we see the chromatic number
of GTP(R).

Lemma 6 (Lemma 6, [32]) Let R be a finite commutative ring which is not an
integral domain and P be a prime ideal in R. Assume that |P| = α and |R/P| = β.

Then

χ(GTP(R)) =
{

β i f 2 ∈ P;
(

β−1
2 )α + 1 i f 2 /∈ P.

Corollary 2 ([15]) A nontrivial connected graph G is Eulerian if and only if every
vertex of G has even degree.

Using Corollary 2, a characterization for GTP(R) to be Eulerian is obtained and the
same is given below.

Lemma 7 (Lemma 7, [32]) Let R be a finite commutative ring which is not an
integral domain and P be a prime ideal in R. Assume that |P| = α and |R/P| = β.

Then the following are true:

(i) If 2 ∈ P, then GTP(R) is Eulerian if and only if α is even;
(ii) If 2 /∈ P, then GTP(R) is not Eulerian.

The vertex independence number (or the independence number) β(G) of a graph
G is the maximum cardinality of an independent set of vertices in G. In the following
lemma, we obtain the independence number of GTP(R).

Lemma 8 (Lemma 8, [32]) Let R be a finite commutative ring which is not an
integral domain and P be a prime ideal in R. Assume that |P| = α and |R/P| = β.

Then the independence number β(GTP(R)) = α.

The edge independence number β1(G) of a graphG is themaximumcardinality of
an independent set of edges. In the following lemma,weobtain the edge independence
number of GTP(R).
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Lemma 9 (Lemma 9, [32]) Let R be a finite commutative ring which is not an
integral domain and P be a prime ideal in R. Assume that |P| = α and |R/P| = β.

Then the edge independence number

β1(GTP(R)) =
{ |R|

2 i f 2 ∈ P;
(

β−1
2 )α + 
α�

2 i f 2 /∈ P.

Tamizh Chelvam and Balamurugan [32] obtained certain characterizations like
when GTP(R) is claw-free, unicylic, pancyclic or perfect. A graph G is said to be
unicyclic if G contains exactly one cycle. A graph G is a claw-free if G does not
have K1,3(a claw) as the induced subgraph.

Theorem 8 (Theorem 2, [32]) Let R be a finite commutative ring which is not an
integral domain and P be a prime ideal in R with |P| = α and |R/P| = β. Then
the following hold:

(i) GTP(R) is claw-free if and only if |P| = 2;
(ii) GTP(R) is unicyclic if and only if R is isomorphic to either of the rings Z2 ×

Z2, Z4,
Z2[x]
<x2>

.

Note that a graphG is perfect if and only if bothG andG have no induced subgraph
that is an odd cycle of length at least 5 [39, 8.1.2]. Using this, a characterization for
GTP(R) to be perfect is obtained and the same is given below.

Theorem 9 (Theorem 3, [32]) Let R be a finite commutative ring which is not an
integral domain and P be a prime ideal in R with |P| = α and |R/P| = β. Then
GTP(R) is a perfect graph.

A graph G of order m ≥ 3 is pancyclic [13, Definition 6.3.1] if G contains cycles
of all lengths from 3 to m.

Theorem 10 (Theorem 4, [32]) Let R be a finite commutative ring which is not an
integral domain and P be a prime ideal in R, where |P| = α and |R/P| = β. Then
GTP(R) is pancyclic if and only if either 2 /∈ P or 2 ∈ P with β > 2.

Now, let us see some results concerning planarity and outerplanarity of GTP(R).

Using the known famous characterizations for planarity, Tamizh Chelvam and Bal-
amurugan obtained the following.

Theorem 11 (Theorem 7, [32]) Let R be a finite commutative ring which is not an
integral domain and P be a prime ideal in R, where |P| = α and |R/P| = β. Then
the following hold:

(i) If 2 ∈ P, then GTP(R) is planar if and only if R is isomorphic to any one of
Z4, Z2Z2,

Z2[x]
<x2>

;
(ii) If 2 /∈ P, then GTP(R) is planar if and only if R = Z6;
(iii) GTP(R) is outerplanar if and only if R is either Z4, Z2 × Z2 or Z2[x]

<x2>
.
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Now let us list out some of the results concerning various domination parameters
of GTP(R). More specifically, we present results on γt , γc, γcl , γp, γs, γw and γi of
GTP(R).

A nonempty subset S of V is called a dominating set if every vertex in V \ S is
adjacent to at least one vertex in S. A subset S of V is called a total dominating set
if every vertex in V is adjacent to some vertex in S. A dominating set S is called
a connected (or clique) dominating set if the subgraph induced by S is connected
(or complete). A dominating set S is called an independent dominating set if no
two vertices of S are adjacent. A dominating set S is called a perfect dominating
set if every vertex in V \ S is adjacent to exactly one vertex in S. A dominating set
S is called a strong (or weak) dominating set, if for every vertex u ∈ V \ S there
is a vertex v ∈ S with deg(v) ≥ deg(u)(ordeg(v) ≤ deg(u)) and u is adjacent to
v. The domination number γ of G is defined to be the minimum cardinality of a
dominating set in G and the corresponding dominating set is called as a γ-set of
G. Similar definition is applicable for the total domination number γt , connected
domination number γc,clique domination number γcl , independent domination num-
ber γi , perfect domination number γp, strong domination number γs and the weak
domination number γw. For all these definitions, one can refer Haynes et al., [17].
In the following Lemma, we present the domination number of GTP(R).

Lemma 10 (Lemma 10, [32]) Let R be a finite commutative ring which is not an
integral domain and P be a prime ideal in R. Assume that |P| = α and |R/P| = β.

Then γ(GTP(R)) = 2.

In view of Lemma 10, the following characterization provides all γ-sets in
GTP(R).

Lemma 11 (Lemma 11, [32]) Let R be a finite commutative ring which is not an
integral domain and P be a prime ideal in R. Then S = {x, y} ⊆ V (GTP(R)) is a
γ-set in GTP(R) if and only if x, y are in two distinct cosets of P in R.

Corollary 3 (Corollary 2, [32]) Let R be a finite commutative ring which is not an
integral domain and P be a prime ideal in R. Assume that |P| = α and |R/P| = β.

Then γt (GTP(R)) = γc(GTP(R)) = γcl(GTP(R)) = 2.

A graph G is called excellent if, for every vertex v ∈ V (G), there is a γ-set S
containing v. Using Lemma 11, the following is obtained.

Corollary 4 (Corollary 3, [32]) Let R be a finite commutative ring which is not an
integral domain and P be a prime ideal in R. Assume that |P| = α and |R/P| = β.

Then GTP(R) is excellent.

Lemma 12 (Lemma 12, [32]) Let R be a finite commutative ring which is not an
integral domain and P be a prime ideal in R. Assume that |P| = α and |R/P| = β.

Then GTP(R) has a perfect dominating set if and only if 2 ∈ P and β = 2.
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Lemma 13 (Lemma 13, [32]) Let R be a finite commutative ring which is not an
integral domain and P be a prime ideal in R. Assume that |P| = α and |R/P| = β.

Then the following are true:

(i) If 2 ∈ P, then γs(GTP(R)) = γw(GTP(R)) = 2;
(ii) If 2 /∈ P, then γs(GTP(R)) = α and γw(GTP(R)) = 2.

In the following lemma, the independent domination number of GTP(R) is
obtained.

Lemma 14 (Lemma 14, [32]) Let R be a finite commutative ring which is not an
integral domain and P be a prime ideal in R. Assume that |P| = α and |R/P| = β.

Then

γi (GTP(R)) =
{

α i f 2 ∈ P;
2 i f 2 /∈ P.

Note that, a graph G is said to be well-covered if β(G) = γi (G). The following
lemma provides a characterization for GTP(R) to be well covered.

Lemma 15 (Lemma 15, [32]) Let R be a finite commutative ring which is not an
integral domain and P be a prime ideal in R. Assume that |P| = α and |R/P| = β.

Then

(i) If 2 ∈ P, then GTP(R) is well-covered;
(ii) If 2 /∈ P, then GTP(R) is well covered if and only if |P| = 2.

A domatic partition of G is a partition of V (G) into dominating sets of G. The
maximum number of sets in a domatic partition of G is called the domatic number
of G and the same is denoted by d(G).

Lemma 16 (Lemma 16, [32]) Let R be a finite commutative ring which is not an
integral domain and P be a prime ideal in R. Assume that |P| = α and |R/P| = β.

Then

d(GTP(R)) =
{ |R|

2 i f 2 ∈ P;
|R|−α

2 + 1 i f 2 /∈ P.

5 Complement of the Generalized Total Graph of Zn

Tamizh Chelvam and Balamurugan[33] further studied the complement of the gener-
alized total graph ofZn. Especially they have obtained characterizations for Eulerian
and Hamiltonian, and further obtained the independence number and covering num-
bers. In the main result, it is proved that the conjecture on coloring of graphs from
commutative rings proposed by Beck [14] is true for the complement of the gener-
alized total graph for Zn. Also, they have obtained some domination parameters for
the complement of the generalized total graph for Zn. Further, they studied some
distance properties for the complement of the generalized total graph for Zn.
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Let n = pα1
1 pα2

2 . . . pαk
k where p1 < p2 < · · · < pk, p′

j s are prime, α′
j s are pos-

itive integers and P =< p j > for some j. Then P is a prime ideal of Zn and hence
one can have GTP(Zn)

Lemma 17 (Lemma 2.2, [33]) Let n = pα1
1 pα2

2 . . . pαk
k where p1 < p2 < · · · < pk,

p′
j s are prime, α′

j s are positive integers and P =< p j > for some j. Then the

following are true in GTP(Zn)

(i) If n = 2, then deg(v) = 1, for every v ∈ Zn;
(ii) If n is an odd prime p, then deg(v) =

{
n − 1 if v = 0

n − 2 if v 	= 0;
(iii) If 2 ∈ P, then deg(v) = n

2 , for every v ∈ Zn;
(iv) If 2 /∈ P, then deg(v) =

{
n − n

p j
for v ∈ P

n − n
p j

− 1 for v ∈ Zn \ P.

In view of Lemma 17, the following was proved by Tamizh Chelvam and
Balamurugan [33].

Lemma 18 (Lemma 2.3, [33]) Let n = pα1
1 pα2

2 . . . pαk
k where p1 < p2 < · · · < pk,

p′
j s are prime, α′

j s are positive integers and P =< p j > for some j. Then

(i) GTP(Zn) contains no isolated vertex;
(ii) GTP(Zn) contains a vertex of degree n − 1 if and only if n is a prime integer.
(iii) GTP(Zn) is regular if and only if n = 2 or 2 ∈ P;
(iv) GTP(Zn) is biregular if and only if n is odd. Moreover in this case,

�(GTP(Zn)) = δ(GTP(Zn)) + 1;
(v) GTP(Zn) is a nontrivial connected graph.

Example 2 The graph GT<2>(Z6) is given in Fig. 3.

In view of Lemma 18 and Example 2, the structure of the complement of the
generalized total graph of Zn when P =< 2 > is given in the following lemma.

Lemma 19 (Lemma 2.4, [33]) Let n = pα1
1 pα2

2 . . . pαk
k where p1 < p2 < · · · < pk,

p′
j s are prime, α′

j s are positive integers and P =< p j > for some j. If p j = 2, then

GTP(Zn) = K n
2 , n

2
.

Fig. 3 GT<2>(Z6) 1

3

5

0

2

4
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Remark 1 (Remark 2.5, [33]) In Lemma 5, if p j is an odd prime, then two distinct
elements x and y are adjacent in GTP(Zn) if and only if x ∈ i + P and y ∈ Zn \
(p j − i + P) for some i and 1 ≤ i < p j .

The following is proved regarding distances between vertices in GTP(Zn).

Lemma 20 Let n = pα1
1 pα2

2 . . . pαk
k where p1 < p2 < · · · < pk, p′

j s are prime, α′
j s

are positive integers and P =< p j > for some j. Let x, y be two distinct vertices in
Zn. Then the following are true in GTP(Zn).

(i) If n = 2, then d(x, y) = 1;
(ii) If n is an odd prime, then

d(x, y) =
{
1 if x + y /∈ P;
2 otherwise.

(iii) If n is composite and p j = 2, then

d(x, y) =
{
1 if x ∈ P and y ∈ 1 + P;
2 if either x, y ∈ P or x, y ∈ 1 + P.

(iv) If n is composite and p j 	= 2, then

d(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if x ∈ P and y ∈ Zn \ P;
2 if x, y ∈ P;
2 if x ∈ i + P and y ∈ (p j − i) + P;
1 otherwise.

In view of Lemma 20, authors observed the following regarding eccentricity,
radius, self-centered, and periphery. In the following lemma, we see the eccentricity
of all the vertices in the complement of generalized total graph for Zn.

Lemma 21 Let n = pα1
1 pα2

2 . . . pαk
k where p1 < p2 < · · · < pk, p′

j s are prime, α′
j s

are positive integers and P =< p j > for some j. Let x ∈ Zn. Then the following
are true in GTP(Zn):

(i) If n = 2, then e(x) = 1;
(ii) If n is an odd prime, then e(x) =

{
1 if x = 0;
2 if x ∈ Zn \ {0}.

(iii) If n is composite and p j = 2, then e(x) = 2;
(iv) If n is composite and p j 	= 2, then e(x) = 2.

The following lemma gives the radius and diameter of the complement of gener-
alized total graph for Zn.

Lemma 22 Let n = pα1
1 pα2

2 . . . pαk
k where p1 < p2 < · · · < pk, p′

j s are prime, α′
j s

are positive integers and P =< p j > for some j. Let x ∈ Zn. Then the following
are true:

(i) If n = 2, then rad(GTP(Zn)) = diam(GTP(Zn)) = 1;
(ii) If n is an odd prime, then rad(GTP(Zn)) = 1;
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(iii) If n is an odd prime, then diam(GTP(Zn)) = 2;
(iv) If n is composite, then rad(GTP(Zn)) = 2;
(v) If n is composite, then diam(GTP(Zn)) = 2.

In the following Corollary, a characterization for the complement of generalized
total graph for Zn to be self-centered.

Corollary 5 Let n = pα1
1 pα2

2 . . . pαk
k where p1 < p2 < · · · < pk, p′

j s are prime,
α′

j s are positive integers and P =< p j > for some j. Then the following are true:

(i) Let n be prime. Then GTP(Zn) is self-centered if and only if n = 2;
(ii) If n is composite, then GTP(Zn) is self-centered.

The following lemma gives the relation between the complement of generalized
total graph for Zn and its periphery graph.

Lemma 23 Let n = pα1
1 pα2

2 . . . pαk
k where p1 < p2 < · · · < pk, p′

j s are prime, α′
j s

are positive integers and P =< p j > for some j. Then the following are true:

(i) If n is prime, then Per(GTP(Zn)) = GTP(Zn) if and only if n = 2;
(ii) If n is composite, then Per(GTP(Zn)) = GTP(Zn);
(iii) If n is an odd prime, then

Per(GTP(Zn)) =
{

K1 ∪ K1 if n = 3;
(n − 3) regular connected graph if n > 3.

In the following lemma, a characterization forGTP (Zn) to be Eulerian is obtained.

Lemma 24 (Lemma 2.7, [33]) Let n = pα1
1 pα2

2 . . . pαk
k where p1 < p2 < · · · < pk,

p′
j s are prime, α′

j s are positive integers and P =< p j > for some j. Then the
following are true:

(i) If P =< p1 > and p1 = 2, then GTP(Zn) is Eulerian if and only if n = 4k for
some positive integer k;

(ii) If P =< p j > and p j 	= 2 or n is prime, then GTP(Zn) is not Eulerian.

The following lemma provides a situation where the complement of the general-
ized total graph for Zn is Hamiltonian.

Lemma 25 (Lemma 2.9, [33]) Let n = pα1
1 pα2

2 . . . pαk
k > 3where p1 < p2 < · · · <

pk, p′
j s are prime, α′

j s are positive integers and P =< p j > for some j. Then

GTP(Zn) is Hamiltonian.

The vertex independence number of GTP(Zn)was obtained through the following
lemma.
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Lemma 26 (Lemma 2.10, [33]) Let n = pα1
1 pα2

2 . . . pαk
k where p1 < p2 < · · · <

pk, p′
j s are prime, α′

j s are positive integers and P =< p j > for some j. Then

β(GTP(Zn)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if n = 2;
2 if n is an odd prime;
n
2 if n is a composite integer and p j = 2;
n
p j

if n is a composite integer and p j 	= 2.

The vertex covering number α(GTP(Zn)) is given by the following corollary.

Corollary 6 (Corollary 2.12, [33]) Let n = pα1
1 pα2

2 . . . pαk
k where p1 < p2 < · · · <

pk, p′
j s are prime, α′

j s are positive integers and P =< p j > for some j. Then the
vertex covering number

α(GTP(Zn)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if n = 2;
n − 2 if n is an odd prime;
n
2 if n is a composite integer and p j = 2;
n − n

p j
if n is a composite integer and p j 	= 2.

Note that a graph G is planar if and only if G does not contain either K5 or K3,3.

Using this, a characterization for GTP(Zn) to be planar was obtained and the same
is stated below.

Theorem 12 (Theorem 3.3, [33]) Let n = pα1
1 pα2

2 . . . pαk
k where p1 < p2 < . . . <

pk, p′
j s are prime and α′

j s are positive integers. Then the following are true:

(i) Let n be composite, p1 = 2 and P =< p1 > . Then GTP(Zn) is planar if and
only if n = 4;

(ii) Let n be composite, p j 	= 2 and P =< p j > . Then GTP(Zn) is planar if and
only if n = 6;

(iii) Let n be prime, n = p and P =< p > . Then GTP(Zp) is planar if and only if
p ∈ {2, 3, 5}.

Now, we state characterization for GTP(Zn) to be toroidal.

Theorem 13 (Theorem 3.4, [33]) Let n = pα1
1 pα2

2 . . . pαk
k where p1 < p2 < . . . <

pk, p′
j s are prime and α′

j s are positive integers. Then the following are true:

(i) Let n be composite, p1 = 2 and P =< p1 >. Then GTP(Zn) is toroidal if and
only if n ∈ {6, 8};

(ii) Let n ≥ 9 be composite, p j 	= 2 and P =< p j >. Then GTP(Zn) is not
toroidal.

(iii) Let n be prime and P =< n >. Then GTP(Zp) is toroidal if and only if n = 7.
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6 Domination Properties of GTP(Zn)

The concepts of dominating sets and domination numbers are very important con-
cepts in graph theory. In this section, we present results concerning the domination
number of the complement of the total graph of a commutative ring through ring
theoretic properties. In the following lemma, we present the value of the domination
number of GTP(Zn).

Lemma 27 (Lemma 4.1, [33]) Let n = pα1
1 pα2

2 . . . pαk
k where p1 < p2 < · · · < pk,

p′
j s are prime, α′

j s are positive integers and P =< p j > for some j. Then

γ(GTP(Zn)) =
{
1 if n is a prime integer;
2 if n is a composite integer.

The following characterization of γ-sets in GTP(Zn) was proved in [33].

Theorem 14 (Theorem 4.2, [33]) Let n = pα1
1 pα2

2 . . . pαk
k where p1 < p2 < · · · <

pk, p′
j s are prime, α′

j s are positive integers and P =< p j > for some j.

(i) Let n be composite and S = {a, b} ⊆ Zn. Then S is a γ-set if and only if a, b
are in two distinct cosets of P in Zn;

(ii) The set S = {0} is a γ-set in GTP(Zn) if and only if n is a prime number.

Corollary 7 (Corollary 4.3, [33]) Let n be composite. Then γt (GTP(Zn))

= γc(GTP(Zn)) = γcl(GTP(Zn)) = 2.

Recall that when p j = 2, GTP(Zn) is a complete bi-partite graph. Using this
along with Theorem 14, the following was proved.

Lemma 28 (Lemma 4.4, [33]) Let n = pα1
1 pα2

2 . . . pαk
k where p1 < p2 < · · · < pk,

p′
j s are prime, α′

j s are positive integers and P =< p j > for some j. Then the
following are true:

(i) If n is a composite integer, then GTP(Zn) is excellent;
(ii) Let n be prime. Then GTP(Zn) is excellent if and only if n = 2.

In the following Lemma, a characterization for the complement graph of Zn to
have a perfect domination set was obtained.

Lemma 29 (Lemma 4.5, [33]) Let n = pα1
1 pα2

2 . . . pαk
k where p1 < p2 < · · · < pk,

p′
j s are prime, α′

j s are positive integers and P =< p1 > . Then the following are
true:

(i) If n is a prime integer, then {0} is a perfect dominating set in GTP(Zn);
(ii) If n is a composite integer, then perfect dominating set exists in GTP(Zn) if and

only if p1 = 2.
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Corollary 8 (Corollary 4.6, [33]) Let n = pα1
1 pα2

2 . . . pαk
k be an integer where p1 <

p2 < · · · < pk, p′
j s are prime, α′

j s are positive integers. Then

γp(GTP(Zn)) =

⎧
⎪⎨

⎪⎩

1 if n is a prime ;
2 if n is a composite and p1 = 2;
0 if n is a composite and p1 	= 2.

Lemma 30 (Lemma 4.7, [33]) Let n = pα1
1 pα2

2 . . . pαk
k be a composite integer where

p1 < p2 < . . . < pk, p′
j s are prime and α′

j s are positive integer. Then the following
are true:

(i) If n is composite, p1 = 2 and P =< p1 >, then γs(GTP(Zn)) =
γw(GTP(Zn)) = 2;

(ii) If n is composite, p j 	= 2 and P =< p j > for some j, then γs(GTP(Zn)) = n
p j

and γw(GTP(Zn)) = 2.

Lemma 31 (Lemma 4.8, [33]) Let n > 1 be a prime integer. Then the following are
true:

(i) If n = 2, then γs(GTP(Zn)) = γw(GTP(Zn)) = 1.
(ii) If n 	= 2, then γs(GTP(Zn)) = 1 and γt (GTP(Zn)) = γc(GTP(Zn)) =

γcl(GTP(Zn)) = γw(GTP(Zn)) = 2.

In the following lemma, authors obtained the independent dominating number of
GTP(Zn).

Lemma 32 (Lemma 4.9, [33]) Let n = pα1
1 pα2

2 . . . pαk
k where p1 < p2 < · · · < pk,

p′
j s are prime, α′

j s are positive integers and P =< p j > for some j. Then

γi (GTP(Zn)) =

⎧
⎪⎨

⎪⎩

1 if n is a prime;
n
2 if n is composite and p j = 2;
2 if n is composite and p j 	= 2.

Corollary 9 (Corollary 4.10, [33]) If n > 1 is prime, then γe f f (GTP(Zn)) = 1.

A graph G is well-covered if β(G) = γi (G). In the following lemma, authors
discussed when GTP(Zn) is well-covered.

Lemma 33 (Lemma 4.11, [33]) Let n = pα1
1 pα2

2 . . . pαk
k where p1 < p2 < . . . <

pk, p′
j s are prime and α′

j s are positive integers. Then the following are true:

(i) If n = 2, p1 = 2 and P =< p1 >, then GTP(Zn) is well-covered;
(ii) If n is composite, p1 = 2 and P =< p1 >, then GTP(Zn) is well-covered;
(iii) Let n be composite, p j 	= 2 and P =< p j > . Then GTP(Zn) is well covered

if and only if n = 2p j .
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Lemma 34 (Lemma 4.12, [33]) Let n = pα1
1 pα2

2 . . . pαk
k where p1 < p2 < · · · <

pk, p′
j s are prime, α′

j s are positive integers and P =< p j > for some j. Then

d(GTP(Zn)) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2 if n = 2;
n+1
2 if n is an odd prime;

n
2 if n is composite and p j = 2;
n − n

p j

2
+ 1 if n is composite and p j 	= 2.

In the following lemma, authors obtainedwhen the complement of the generalized
total graph of Zn is domatically full.

Lemma 35 (Lemma 4.13, [33]) Let n = pα1
1 pα2

2 . . . pαk
k where p1 < p2 < · · · <

pk, p′
j s are prime, α′

j s are positive integers and P =< p j > for some j. Then

GTP(Zn) is domatically full if and only if n = 2, 3.

7 Complement of the Generalized Total Graph of Fields

Throughout this section F denotes a finite field. In a field F, {0} is the only prime
ideal. When R is the field F and H = {0}, Tamizh Chelvam and Balamurugan [31]
studied about generalized total graph as GT (F). In this section, we present several
graph theoretical properties of the generalized total graphGT (F) and its complement
GT (F). In particular, we provide the structure of GT (F) and GT (F). Further we
present results concerning the domination number ofGT (F) andGT (F) and gamma
sets in GT (F) and GT (F).

Note that GT (F) is the generalized total graph of the field F with the unique
multiplicative prime subset {0}. If F is a fieldwith of characteristic 2, then x + x = 0
for every x ∈ F. When the characteristic of the field F is greater than 2, for any
0 	= x ∈ F, x 	= −x and x + (−x) = 0. In view of these, one can have the following
structure for GT (F).

Lemma 36 (Lemma 2.2, [31]) Let F be a finite field. Then

GT (F) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

K1 ∪ · · · ∪ K1︸ ︷︷ ︸
|F |copies

if char(F) = 2;

K1 ∪ K1,1 ∪ · · · ∪ K1,1
︸ ︷︷ ︸

|F |−1
2 copies

if char(F) > 2.

The following lemma follows from Lemma 36.

Lemma 37 (Lemma 2.3, [31]) Let F be a finite field. Then the following are true:

(i) ω(GT (F)) =
{
1 if char(F) = 2;
2 if char(F) > 2.
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(ii) χ(GT (F)) =
{
1 if char(F) = 2;
2 if char(F) > 2.

Lemma 38 (Lemma 2.4, [31]) Let F be a finite field. Then

(i) The vertex independence number

β(GT (F)) =
{

|F | if char(F) = 2;
|F |+1

2 if char(F) > 2.

(ii) If char(F) > 2, then the edge independence number, β1(GT (F)) = |F |−1
2 .

Lemma 39 (Lemma 2.7, [31]) Let F be a finite field. Then the following are true:

(i) The vertex covering number α(GT (F)) =
{
0 if char(F) = 2;
|F |−1

2 if char(F) > 2.
(ii) The edge covering number, α1(GT (F)) = 0.

In the following Lemma, authors obtained the domination number of the gener-
alized total graph GT (F).

Lemma 40 (Lemma 2.8, [31]) Let F be a finite field. Then the following are true:

(i) γ(GT (F)) =
{

|F | if char(F) = 2;
|F |+1

2 if char(F) > 2.
(ii) GT (F) is an excellent graph;

(iii) γi (GT (F)) = γp(GT (F)) = γe f f (GT (F)) =
{

|F | if char(F) = 2;
|F |+1

2 if char(F) > 2.
(iv) GT (F) is well-covered;

(v) γs(GT (F)) = γw(GT (F)) =
{

|F | if char(F) = 2;
|F |+1

2 if char(F) > 2.

Now we present results concerning some graph theoretical properties like diam-
eter, girth, radius, Eulerian, and Hamiltonian of GT (F). The following lemma pro-
vides the structure of GT (F).

Lemma 41 (Lemma 3.1, [31]) Let F be a finite field. Then the following are true:

(i) If char(F) = 2, then GT (F) = K|F |;
(ii) If char(F) > 2, then GT (F) is a connected bi-regular graph with � = |F | − 1

and δ = |F | − 2.

Lemma 42 (Lemma 3.2, [31]) Let F be a finite field. Then gr(GT (F)) ={
∞ if |F | = 2, 3;
3 if |F | ≥ 5.

Lemma 43 (Lemma 3.3, [31]) Let F be a finite field. Then

ω(GT (F)) =
{

|F | if char(F) = 2;
|F |+1

2 if char(F) > 2.
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The chromatic number of GT (F) is proved in the following lemma.

Lemma 44 (Lemma 3.4, [31]) Let F be a finite field.

Then χ(GT (F)) =
{

|F | if char(F) = 2;
|F |+1

2 if char(F) > 2.

Corollary 10 (Corollary 3.5, [31]) Let F be a finite field. Then GT (F) is weakly
perfect.

Lemma 45 (Lemma 3.6, [31]) Let F be a finite field. Then GT (F) is not Eulerian.

Lemma 46 (Lemma 3.8, [31]) Let F be a finite field and |F | > 3. Then GT (F) is
Hamiltonian.

Lemma 47 (Lemma 3.9, [31]) Let F be a finite field. Then β(GT (F)) ={
1 if char(F) = 2;
2 if char(F) > 2.

Corollary 11 (Corollary 3.10, [31]) Let F be a finite field. Then α(GT (F)) ={
|F | − 1 if char(F) = 2;
|F | − 2 if char(F) > 2.

Lemma 48 (Lemma 3.11, [31]) Let F be a finite field. Then the edge independence

number β1(GT (F)) =
⌊

|F |
2

⌋
.

Corollary 12 (Corollary 3.12, [31]) Let F be a finite field. Then the edge covering
number
α1(GT (F)) = |F | −

⌊
|F |
2

⌋
.

In the following results, we present about various domination parameters of
GT (F). More specifically, we discuss about γt , γc, γcl , γp, γe f f , γs, γw and inde-
pendence domination number of GT (F). In the following Lemma, we obtain the
domination number of GT (F).

Lemma 49 (Lemma 4.1, [31]) Let F be a finite field. Then γ(GT (F)) = 1.

Lemma 50 (Lemma 4.2, [31]) Let F be a finite field. Then the following hold:

(i) The set S = {v}, v ∈ V (GT (F)) is a γ-set in GT (F) if and only if char(F) =
2.

(ii) The set S = {0}, is the γ-set in GT (F) if and only if char(F) > 2.

Lemma 51 (Lemma 4.3, [31]) Let F be a finite field. Then GT (F) is excellent if
and only if char(F) = 2.

Lemma 52 (Lemma 4.4, [31]) Let F be a finite field. Then the following are true:

(i) γp(GT (F)) = γi (GT (F)) = 1.
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(ii) If char(F) = 2, then γs(GT (F)) = γw(GT (F)) = 1;
(iii) If char(F) > 2, then γs(GT (F)) = 1 and γt (GT (F)) = γc(GT (F)) =

γcl(GT (F)) = γw(GT (F)) = 2.

Corollary 13 (Corollary 4.5, [31]) Let F be a finite field. Then γe f f (GT (F)) = 1.

Lemma 53 (Lemma 4.6, [31]) Let F be a finite field. Then GT (F) is well-covered
if and only if char(F) = 2.

Lemma 54 (Lemma 4.7, [31]) Let F be a finite field. Then

d(GT (F)) =
{

F if char(F) = 2;
|F |+1

2 if char(F) > 2.

Lemma 55 (Lemma 4.8, [31]) Let F be a finite field. Then the following are true:

(i) If char(F) = 2, then GT (F) is domatically full.
(ii) If char(F) > 2, then GT (F) is domatically full if and only if |F | = 3.

Lemma 56 (Lemma 2.3, [38]) Let F be a finite field. Then the following are true:

(i) If char(F) = 2, then GT (F) = K|F |;
(ii) If char(F) > 2, then GT (F) is a connected bi-regular graph with � = |F | − 1

and δ = |F | − 2.

Note that, a graph G is said to be unicyclic if G contains exactly one cycle.

Theorem 15 (Theorem 2.4, [38]) Let F be a finite field. Then the following hold:

(i) GT (F) is bipartite if and only if either F ∼= Z2 or F ∼= Z3;
(ii) GT (F) is neither a cycle nor an unicyclic graph.

Recall that, a chordal graph is a simple graph G in which every cycle in G of
length four and greater has a cycle chord. Also, a split graph is a graph in which the
vertices can be partitioned into a clique and an independent set.

Theorem 16 (Theorem 2.6, [38]) Let F be a finite field. Then the following are
equivalent:

(i) Either char(F) = 2 or F ∼= Z3;
(ii) GT (F) is a split graph;
(iii) GTP(R) is a chordal graph.

A graph G is a claw-free if G does not have the claw K1,3 as the induced subgraph
of G.

Theorem 17 (Theorem 2.7, [38]) Let F be a finite field. Then GT (F) is a claw-free
graph.

A graph G is perfect if and only if no induced subgraph of G is an odd cycle of
length at least five or the complement of one.
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Theorem 18 (Theorem 2.8, [38]) Let F be a finite field. Then GT (F) is a perfect
graph.

Theorem 19 (Theorem 2.9, [38]) Let F be a finite field. Then GTP(R) is a pancyclic
if and only if |F | > 3.

Corollary 14 (Corollary 2.10, [38]) Let F be a finite field. Then GTP(R) is a vertex-
pancyclic if and only if |F | > 3.

Note that, an edge clique cover of a graph G is a collection of cliques L1, L2

, . . . , Lk such that E(G) =
k⋃

i=1
E(Li ). The minimum cardinality of an edge clique

cover of G is called the edge-clique covering number of G and is denoted by θ1(G).

The following lemma provides the clique number of GT (F).

Lemma 57 (Lemma 2.11, [38]) Let F be a finite field. Then

ω(GT (F)) =
{

|F | if char(F) = 2;
|F |+1

2 if char(F) > 2.

Theorem 20 (Theorem 2.12, [38]) Let F be a field. Then

θ1(GTP(R)) =

⎧
⎪⎨

⎪⎩

1 if char(F) = 2;
2 if F ∼= Z3;
2 + |F |−1

2 otherwise.

Now we present a result about planarity and outerplanarity of GT (F).

Theorem 21 (Theorem 3.3, [38]) Let F be a finite field. Then the following hold:

(i) GT (F) is planar if and only if |F | ≤ 5;
(ii) GT (F) is outer planar if and only if |F | ≤ 3.

Acknowledgements This research work is supported by CSIR Emeritus Scientist Scheme (No. 21
(1123)/20/EMR-II) of Council of Scientific and Industrial Research, Government of India.

References

1. Aalipour, G., Akbari, S.: Some properties of a Cayley graph of a commutative ring. Comm.
Algebra 42(4), 1582–1593 (2014). https://doi.org/10.1080/00927872.2012.745866

2. Akhtar, R., Boggess,M., Jackson-Henderson, T., Jimenez, I., Karpman, R., Kinzel, A., Pritikin,
D.: On the unitary Cayley graph of a finite ring. Electron. J. Combin. 16(1), 117–130 (2009)

3. Anderson, V., Badawi, A.: The total graph of a commutative ring. J. Algebra 320, 2706–2719
(2008)

4. Anderson, D.F., Badawi, A.: On the total graph of a commutative ring without the zero element.
J. Algebra Appl. 11(4), 1250074, 18 (2012). https://doi.org/10.1142/S0219498812500740

https://doi.org/10.1080/00927872.2012.745866
https://doi.org/10.1142/S0219498812500740


498 T. Tamizh Chelvam

5. Anderson, D.F., Badawi, A.: The generalized total graph of a commutative ring. J. Algebra
Appl. 12(5), 1250212, 18 (2013). https://doi.org/10.1142/S021949881250212X

6. Ashrafi, N., Maimani, H.R., Pournaki, M.R., Yassemi, S.: Unit graphs associated with rings.
Comm. Algebra 38, 2851–2871 (2010)

7. Asir, T., Tamizh Chelvam, T.: On the total graph and its complement of a commutative ring.
Comm. Algebra 41, 3820–3835 (2013). https://doi.org/10.1080/00927872.2012.678956

8. Asir, V., Tamizh Chelvam, T.: On the intersection graph of gamma sets in the total graph II. J.
Algebra Appl. 12(4), 1250199, 14 (2013). https://doi.org/10.1142/S021949881250199X

9. Asir, T., Tamizh Chelvam, T.: On the genus of generalized unit and unitary Cayley graphs of
a commutative ring. Acta Math. Hungar. 142, 444–458 (2014)

10. Asir, T., Tamizh Chelvam, T.: On the genus two characterizations unit, unitary Cayley and
comaximal graphs. ARS Combinatoria 138, 77–91 (2018)

11. Asir, T., Maimani, H.R., Pournaki, M.R., Tamizh Chelvam, T.: Some bounds for the genus of
a class of graphs arising from rings. Houston J. Math. 45(2), 371–384 (2019)

12. Badawi, A.: On the total graph of a ring and its related graphs: a survey. In: Fontana, M.,
et al. (eds.) Commutative Algebra: Recent Advances in Commutative Rings, Integer-Valued
Polynomials, and Polynomial Functions, pp. 39–54. Springer, New York (2014)

13. Balakrishnan, R., Ranganathan, K.: A Text Book of Graph Theory. Springer (2000)
14. Beck, I.: Coloring of commutative rings. J. Algebra 116, 208–226 (1988)
15. Chartrand, G., Zhang, P.: Introduction to Graph Theory. Tata McGraw-Hill Edition (2006)
16. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. Elsevier B.V, Ams-

terdam (2004)
17. Haynes, T.W., Hedetniemi,S.T., Slater,P.J.: Fundamentals of Domination in Graphs, Marcel

Dekker (1998)
18. Khashyarmanesh, K., Khorsandi, M.R.: A generalization of the unit and unitary Cayley graphs

of a commutative ring. Acta Math. Hungar. 137(4), 242–253 (2012)
19. Klotz, W., Sander, T.: Some properties of unitary Cayley graphs. Electron. J. Combin. 14(1),

45, 12 (2007)
20. Liu, X., Zhou, S.: Spectral properties of unitary Cayley graphs of finite commutative rings.

Electron. J. Combin. 19(4), 13, 19 (2012)
21. Nazzal, K.: Total graphs associated to a commutative ring. Palestine. J. Math. 5(1), 108–126

(2016)
22. Su, H., Zhou, V.: On the girth of the unit graph of a ring. J. Algebra Appl. 13(2), 1350082, 12

(2014)
23. Tamizh Chelvam, T., Asir, T.: A note on total graph ofZn,. J. DiscreteMath. Sci. Cryptography

14(1), 1–7 (2011). https://doi.org/10.1142/S1793830911001309
24. Tamizh Chelvam, T., Asir, T.: Domination in total graph on Zn,. Discrete Math. Algorithms

Appl. 3(4), 413–421 (2011). https://doi.org/10.1142/S1793830911001309
25. Tamizh Chelvam, T., Asir, T.: Intersection graph of gamma sets in the total graph. Discuss.

Math. Graph Theory 32, 339–354 (2012). https://doi.org/10.7151/dmgt.1611
26. Tamizh Chelvam, T., Asir, T.: On the intersection graph of gamma sets in the total graph I. J.

Algebra Appl. 12(4), 1250198, 18 (2013). https://doi.org/10.1142/S0219498812501988
27. Tamizh Chelvam, T., Asir, T.: Domination in the total graph of a commutative ring. J. Combin

Math. Combin. Comput. 87, 147–158 (2013)
28. Tamizh Chelvam, T., Asir, T.: On the genus of the total graph of a commutative ring. Comm.

Algebra 41, 142–153 (2013)
29. Tamizh Chelvam,T., Asir, T.: Distances in zero-divisor and total graphs from commutative

rings: a survey. AKCE Int. J. Graphs Comb. 13, 290–298 (2016). https://doi.org/10.1016/j.
akcej.2016.11.009

30. Tamizh Chelvam, T., Asir, T., Selvakumar, K.: On the domination in graphs from commutative
rings. In: Rizvi, T., et al. (eds.), Algebra and its Applications. Springer Proceedings in Math-
ematics and Statistics, vol. 174, S. Springer Science (2016). https://doi.org/10.1007/978-981-
10-1651-6

https://doi.org/10.1142/S021949881250212X
https://doi.org/10.1080/00927872.2012.678956
https://doi.org/10.1142/S021949881250199X
https://doi.org/10.1142/S1793830911001309
https://doi.org/10.1142/S1793830911001309
https://doi.org/10.7151/dmgt.1611
https://doi.org/10.1142/S0219498812501988
https://doi.org/10.1016/j.akcej.2016.11.009
https://doi.org/10.1016/j.akcej.2016.11.009
https://doi.org/10.1007/978-981-10-1651-6
https://doi.org/10.1007/978-981-10-1651-6


Complement of the Generalized Total Graph of Commutative Rings – A Survey 499

31. Tamizh Chelvam, T., Balamurugan, M.: On the generalized total graph of fields and its com-
plement. Palestine J. Math. 7(2), 450–457 (2018)

32. Tamizh Chelvam, T., Balamurugan, M.: On the complement of the generalized total graph of
commutative rings. J. Anal. 27, 539–553 (2019). https://doi.org/10.1007/s41478-018-0093-6

33. Tamizh Chelvam. T., Balamurugan, M.: Complement of the generalized total graph of Zn
FILOMAT 33(18), 6103–6113 (2019). https://doi.org/10.2298/FIL1918103T

34. Tamizh Chelvam, V., Anukumar Kathirvel, S.: Note on generalized Cayley graphs of finite
rings and its complement. J. Anal. 27, 555–566 (2019). https://doi.org/10.1007/s41478-018-
0094-5

35. Tamizh Chelvam, T., Anukumar Kathirvel, S.: Generalized unit and unitary Cayley graphs of
finite rings. J.AlgebraAppl. 1950006, 21 (2019). https://doi.org/10.1142/S0219498819500063

36. Tamizh Chelvam, T., Anukumar Kathirvel, S., Balamurugan, M.: Domination in generalized
Cayley graphs of finite rings. Indian J. Pure Appl. Math. 51(2), 533–556 (2020). https://doi.
org/10.1007/s13226-020-0415-7

37. Tamizh Chelvam, T., Anukumar Kathirvel, S., Balamurugan, M.: Intersection graph of gamma
sets in generalized Cayley graphs of finite rings. Houston J. Math. 46(3), 561–582 (2020)

38. Tamizh Chelvam, T., Balamurugan, M.: Complement of the generalized total graph of fields.
AKCE J. Graph Theory Comb. 17(3), 730–733 (2020). https://doi.org/10.1016/j.akcej.2019.
12.005

39. West, D.B.: Introduction to Graph Theory. 2nd edn, (2007)

https://doi.org/10.1007/s41478-018-0093-6
https://doi.org/10.2298/FIL1918103T
https://doi.org/10.1007/s41478-018-0094-5
https://doi.org/10.1007/s41478-018-0094-5
https://doi.org/10.1142/S0219498819500063
https://doi.org/10.1007/s13226-020-0415-7
https://doi.org/10.1007/s13226-020-0415-7
https://doi.org/10.1016/j.akcej.2019.12.005
https://doi.org/10.1016/j.akcej.2019.12.005

	Organization
	Preface
	Contents
	About the Editors
	*-1.5pc  Algebra
	 Characterization of b-generalized Derivations in Rings with Involution
	1 Introduction
	2 Results
	References

	 Jordan Generalized n-derivations of Unital Algebras Containing Idempotents
	1 Introduction
	2 Preliminaries
	3 Multiplicative Jordan Generalized n-derivation
	4 Applications
	References

	 Variational Analysis of Approximate Defective Eigenvalues
	1 Introduction
	2 Approximate Multiple Eigenvalues
	3 Approximate Defective Eigenvalues
	References

	 Structure of Prime Near Rings with Generalized Derivations
	1 Introduction
	2 Main Results
	References

	 w-FP-projective Modules and Dimensions
	1 Introduction
	2 W-FP-projective Modules
	3 The W-FP-projective Dimension of Modules and Rings
	References

	 Central Values of X-generalized Skew Derivations on Right Ideals in Prime Rings
	1 Introduction
	2 An Auxiliary Generalized Polynomial Identity
	3 The Case of Inner X-generalized Skew Derivations
	4 The Main Result for Prime Rings
	5 The Main Result
	5.1 The Proof of Theorem 3

	References

	 Commutative Polynomial Rings which are Principal Ideal Rings
	1 Introduction
	2 Structure Theorem of PIRs
	3 Characterization of Polynomial Rings that Are PIRs
	4 Non-principal Ideals in Some Polynomial Rings
	References

	 Two Remarks on Generalized Skew Derivations in Prime Rings
	1 Annihilating Condition for a Single Generalized Skew Derivation
	2 Annihilating Conditions for Two Generalized Skew Derivations
	References

	 Dimensional Dual Hyperovals—An Updated Survey
	1 Introduction
	1.1 The Definition
	1.2 Basic Notions

	2 DHOs over mathbbFq, q>2
	2.1 Odd Characteristic
	2.2 Even Characteristic

	3 Split DHOs and DHO Sets
	4 DHOs with Ambient Spaces of Maximal Rank
	4.1 Yoshiara's Upper Bound for the Rank of an Ambient Space
	4.2 DHOs Meeting Yoshiara's (Conjectured) Bound for the Rank of an Ambient Space
	4.3 calVn(q), calHn, calDn and calTn Are Split
	4.4 Bilinear DHOs Whose Ambient Space Has Maximal Rank

	5 Quotients of DHOs
	5.1 Universal Covers
	5.2 Quotients of the Veronesean DHOs
	5.3 Quotients of the Huybrechts DHOs
	5.4 Quotients of the Buratti–Del Fra DHOs
	5.5 Quotients of the Taniguchi DHOs

	6 Duality
	6.1 Doubly Dual Hyperovals
	6.2 DHOs in Polar Spaces
	6.3 Knuth Operations

	7 Secondary Constructions
	7.1 Quotients of Spreads
	7.2 Quotients of Orthogonal Spreads
	7.3 Extensions of Bilinear DHOs

	8 Direct Constructions
	8.1 DHOs of Type calSc
	8.2 DHOs Constructed with Presemifields

	9 DHOs and Groups
	9.1 DHOs with Many Translation Groups
	9.2 DHOs with Many Extension Groups
	9.3 Doubly Transitive DHOs

	10 Miscellaneous Topics
	10.1 Edel's Characterization of Alternating DHOs
	10.2 Small DHOs over mathbbF2

	References

	 A Note on FMS Modules and FCP Extensions
	1 Introduction
	2 Results
	References

	 A Pair of Derivations of Prime Rings with Involution
	1 Some Preliminaries
	2 Main Results
	References

	 Basic One-Sided Ideals of Leavitt Path Algebras over Commutative Rings
	1 Introduction
	2 Preliminaries and Notation
	3 Basic One-Sided Ideals
	4 Minimal Basic Left Ideals Generated by a Vertex
	References

	 On Certain *-differential Identities in Prime Rings with Involution
	1 Introduction
	2 The Main Results
	References

	 On b-Generalized Derivations in Prime Rings
	1 Introduction and Notations
	2 The Results
	References

	 Commutativity of ast-Prime Rings with Generalized Derivations on ast-Jordan Ideals
	1 Introduction
	2 Auxiliary Lemmas
	3 Main Results
	4 Examples
	References

	 Local Subsemigroups and Variants of Some Classes of Semigroups
	1 Preliminaries
	2 Local Subsemigroups and Variants of Full Transformation Semigroups
	3 Variants of Symmetric Inverse Monoids
	4 Local Subsemigroups and Variants of Symmetric Inverse Monoids
	References

	 Closed Weak Supplemented Lattices
	1 Introduction
	2 Preliminaries
	3 Closed Weak Supplemented Lattices
	References

	 On Compatible Ring Structures of the Injective Hull of a Ring
	1 Introduction
	2 Essential Overrings Versus Rings of Quotients
	3 More on Compatible Ring Structures of E(RR)
	References

	 On Commutators Involving Derivations and Automorphisms in Prime Rings
	1 Motivation
	2 Preliminaries and Results
	References

	 Modules Invariant Under Clean Endomorphisms of Their Injective Hulls
	1 Introduction
	2 Clean-Invariant Modules
	References

	 A Note on Central Idempotents in Finite Group Rings of Symmetric Groups
	1 Introduction
	2 Proof (Theorem 1)
	References

	 Jordan Product Preserving Generalized Skew Derivations on Lie Ideals
	1 Introduction
	2 Inner Generalized Skew Derivations
	2.1 Proof of Proposition 2

	3 The Proof of Theorem 1
	3.1 Proof of Theorem 1

	References

	 Prime Rings with Generalized Derivations and Power Values on Lie Ideals
	1 Introduction
	2 Preliminary Results
	3 When mathscrT Is Generalized Inner Derivations
	4  The Study of General Case
	References

	*-1.5pc  Coding Theory
	 On the Purity of Resolutions of Stanley-Reisner Rings Associated to Reed-Muller Codes
	1 Introduction
	2 Reed-Muller Codes
	3 Characterizations of Purity
	References

	 Skew Constacyclic Codes over Fq+vFq
	1 Introduction
	2 Preliminaries
	3 Gray Map and Linear Codes over R
	4 v-Skew Constacyclic Codes over R
	5 Applications
	6 Conclusion
	References

	 Cyclic and LCD Codes over a Finite Commutative Semi-local Ring
	1 Introduction
	2 Basic Facts and Gray Map
	3 Linear Codes over mathfrakR
	4 Cyclic Codes over mathfrakR
	5 LCD Codes over mathfrakR
	6 Conclusion
	References

	*-1.5pc  Graph Theory
	 Some Recent Results on the Graphs of Finite-Dimensional Vector Spaces
	1 Definitions and Preliminaries
	2 Introduction
	3 Non-zero Component Graphs on Finite-Dimensional Vector Spaces
	4 Non-zero Component Union Graph of a Finite-Dimensional Vector Space
	5 Distinct Component Graph on Finite-Dimensional Vector Space
	6 Component Intersection Graphs on Finite-Dimensional Vector Spaces
	7 Subspace Inclusion Graph mathcalIn(mathbbV)
	References

	 Two Value Graph Magma Algebras and Amenability
	1 Introduction
	2 Preliminaries
	3 Two Value Graph Magma Algebras
	4 Commutative Two Value Graph Magmas
	5 Amenable Bases for Commutative Two Value Graph Magma Algebras
	6 Further Results on Commutative Two Value Graph Magma Algebras
	References

	 Graph of Linear Transformations Over mathbbR
	1 Introduction
	2 Results
	References

	 On Distance Laplacian (Signless) Eigenvalues of Commuting Graphs of Dihedral and Dicyclic Groups
	1 Introduction
	2 Distance Laplacian Spectra of the Commuting Graphs of  D2n  and  Q4n 
	3 Distance Signless Laplacian Spectra of the Commuting Graphs of  D2n  and  Q4n 
	References

	 Spectrum of Graphs over Rings:  A Survey
	1 Introduction
	2 Spectrum of Graphs Associated to Rings
	2.1 Zero-Divisor Graphs

	3 Laplacian Spectrum of Graphs Associated to Rings
	3.1 Unitary Cayley Graphs
	3.2 Unit Graphs and Total Graphs

	References

	 On a New Extension of Annihilating-Ideal Graph of Commutative Rings
	1 Introduction
	2 Connectedness of Extended Sum Annihilating-Ideal Graph
	3 Extended Sum Annihilating-Ideal Graph as Some Special Type of Graphs
	4 Genus of Extended Sum Annihilating-Ideal Graph
	References

	 Spectrum of the 3-zero-divisor Hypergraph of Some Classes of Local Rings
	1 Introduction
	2 Adjacency Matrix of mathcalH3(mathbbZpn)
	3 Spectrum of mathcalH3(R)
	4 Laplacian Spectrum of mathcalH3(R)
	References

	 Complement of the Generalized Total Graph of Commutative Rings – A Survey
	1 Introduction
	2 Additive Graphs from Commutative Rings
	3 Generalized Total Graphs
	4 Complement of the Generalized Total Graph
	5 Complement of the Generalized Total Graph of mathbbZn
	6 Domination Properties of overlineGTP(mathbbZn)
	7 Complement of the Generalized Total Graph of Fields
	References


