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Abstract In this paper, a machine learning approach integrating with machine vision 
is proposed to predict the roughness of machined components. At first, specimens 
are prepared by using a CNC milling process, and then, their roughness values (Ra) 
are measured with a stylus instrument. With an in-house prepared machine vision 
setup, images are captured and analysed for their variation in the grey-level inten-
sity patterns for surface roughness values. Images are scanned across the surfaces 
to generate the dataset of grey-level intensity profiles and developed the machine 
learning (ML) model by training the dataset. ML model is implemented using the 
Python programming language by utilizing the image processing, data science, and 
ML libraries. Finally, the model is validated by using a test dataset. 

Keywords Surface roughness ·Machine learning · Image processing · Computer 
vision ·Machining 

1 Introduction 

It is very much essential to machine the components as per the specified dimensional 
and form accuracy, as well as surface finish to satisfy the functional performance 
and aesthetic requirements of mechanical components of final products. It is a well-
known fact that smoother surfaces exhibit higher wear resistance, higher corrosion 
resistance, and higher fatigue strength. These properties are very much needed in 
many engineering and medical applications as well. However, in certain applica-
tions like surface coatings, rougher surfaces are desirable to improve the adhesive 
properties. 

Typically, different machining and surface finishing processes produce surfaces 
with different roughness values (Ra) in the range of 0.05 µm (superfinishing) to 
25 µm (shaping) [1]. Two techniques, namely contact stylus profilometry and optical 
profilometry, are in practice to measure the roughness. Contact profilometers use
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diamond-tipped probes that physically move along the surface and surface irregular-
ities are registered as amplified profiles of peaks and valleys. Whereas, the optical 
profilometers use light to measure the surface irregularities, and their operation is 
based on principles such as focus variation microscopy, confocal microscopy, and 
coherence scanning interferometry. Since several commercially available profilome-
ters are desktop versions, machined components have to be taken to the measurement 
room to measure surface features. 

With the advent of advanced and intelligent manufacturing practices, demand for 
in situ measurement of surface roughness is increasing rapidly. Because it provides 
real-time feedback to make suitable decisions to control the machining process or 
for online monitoring. In situ measurement refers to the measurements taken at the 
machine without disturbing the component’s position on the machine table, however, 
the machining process is stopped during the measurement. Commercially available 
profilometers are generally desktop type and not suitable for in situ measurement. 

Quinsat and Tournier [2] proposed a method for in situ measurement of surface 
roughness of mechanical components using chromatic confocal sensors. The sensor 
was attached to the spindle of the 5-axis machining centre, and roughness values 
were evaluated for milling and polishing operations. Similarly, Fu et al. [3] proposed 
an experimental setup using a chromatic confocal sensor and developed a software 
programme to calculate the roughness values. A robotic arm was employed to align 
the chromatic confocal sensor to the workpiece with a standoff distance of 6.5 mm. It 
was observed that measurement error while comparing with a standard stylus-based 
profilometer (Talysurf PGI 800) was less than 50 nm [3]. 

In another optical method based on the laser scattering principle, researchers 
attempted to establish the relationship between the surface roughness Ra value and 
laser scattered density pattern [4]. For this purpose, lapped, diamond-turned, and 
ground surfaces with Ra values in the range of 0.005–6 µm were considered. About 
3–9% error was observed with the correlation obtained from laser scattering principle 
compared with stylus instrument [4]. The non-contact optical methods require very 
expensive optical/laser sensors as well as complex alignment and control systems. 
In this point of view, image processing techniques are a viable option for evaluating 
the surface features. Further, vision-based methods are easy to install, suitable for 
in situ measurement and automation. 

Jeyapoovan and Murugan [5] created the database of the images for milled surfaces 
along with measured surface roughness values (Ra). When the surface roughness 
has to be evaluated for a new specimen, its image is compared with images in the 
database for the difference in image intensity pattern considering Hamming distance 
and Euclidean distance as the metrics [5]. Similarly, Kumar et al. [6] applied an 
image processing method to evaluate the surface roughness of components produced 
by an incremental forming process. In this work, images of formed components, 
whose surface roughness is in the range of 0.6–3.6 µm, are stored in a database and 
compared with images of components of the components to be tested. Typically, 
a comparison of pixel intensity values has been done using Euclidean distance, 
Hamming distance, and Wavelet-based methods [6].
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Chiou et al. [7] proposed a vision-based system to monitor the surface roughness 
of milled components remotely. In this study, 4-axis CNC milling machine was 
considered and surface roughness values for the different cutting conditions (spindle 
speed 1000–10,000 rpm, feed 0.84–6.35 mm/s) are correlated to mean intensity 
values of images. A good agreement between the surface roughness values and the 
mean intensity of images was observed and noted as a linear relationship [7]. 

In contrast to above, Lee and Tarng [8] evaluated the surface roughness of turned 
components by considering the arithmetic average of the grey-level intensity of the 
images Ga, extracted along a straight line. The correlation was built based on the 
polynomial model by considering Ga and machining parameters including cutting 
speed, feed rate, and depth-of-cut. It was observed that error in the measurement is in 
the range of 0.2–12% while comparing the Ga-based correlation to surface roughness 
measured by contact type profilometer (Ra) [8]. Similarly, Rajneesh Kumar et al. 
[9] also considered the grey-level intensity of the images (Ga) to relate to surface 
roughness value (Ra) for machined specimens obtained from the grinding, milling, 
and shaping processes. A linear regression model was developed to evaluate Ra value 
as a function of Ga and cutting parameters, i.e. speed, feed, and depth-of-cut. 

Further, the effect of magnification of images on correlation was studied and noted 
that magnification of the images is ineffective in the case of milling and shaping. 
However, it was found to be effective for the grinding process. It was observed that 
the developed regression model has the maximum error of 2%, 6.44%, and 8.2% for 
grinding, milling, and shaping processes, respectively [9]. 

Alessandro et al. [10] applied the convolutional neural network (CNN) method 
to classify images that represent the roughness values in the range of 0.2–2.0 µm 
produced with the EDM machining process. A dataset of 4400 images was used 
to train the network and observed that the error of the prediction model is around 
10%. Since it is a classification method, several hundreds of images corresponding 
to discrete values of surface roughness are needed, which is cumbersome [10]. Simi-
larly, Achmad et al. [11] built CNN models for turning, slot milling, and side milling 
processes considering the datasets of images of 41,680 for slot milling, 45,200 for 
side milling and 73,600 for turning process. The accuracy of the prediction of the 
model is in the range of 81–91%. 

In the present work, a novel method is followed to generate the dataset of grey-
level intensity profiles from the images of machined surfaces, and then, a machine 
learning model is proposed as follows. 

2 Machine Vision Setup and Experimental Data 

To develop the prediction model for evaluating the surface roughness, aluminium 
plates of 100 × 100 × 6 mm are taken and machined using a CNC vertical milling 
machine. By varying the spindle speed (in the range of 275–1050 rpm), federate (in 
the range of 120–280 mm/min) and depth-of-cut (constant 0.5 mm), specimens with 
different roughness values (Ra) are obtained. Stylus instrument (TIME-TR1100) is
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used to measure the surface roughness and the measured roughness values (Ra) are  
shown in Table 1. 

Then, a machine vision setup is prepared, in-house, using a CCD camera (IDS 
USB 3.0, resolution of 2456× 2054 pixels −5 MP), 25 mm focal length lens, co-axial 
light (100 × 100 mm size, make-VST) and a stand as shown in Fig. 1. The workpiece 
is placed on a flat surface and co-axial light is placed just above the workpiece to 
illuminate it. Lens is attached to the camera and positioned at a certain height from 
the co-axial light and adjusted the focus till the image is clear on IDS manager, 
an image capturing software. Figure 2a shows photographs of the specimens taken 
with a normal camera, and Fig. 2b, c, d shows images captured through IDS image 
capturing software for specimen numbers 1, 7, and 13, respectively. 

The roughness profiles can be seen from the images and noted that peak and 
valley spots are dominant as the roughness values increase. Interpreting this intensity 
pattern and correlating it with roughness is a challenging task since it depends on 
the quality of the image, interpretation method, and efficiency of the model. In the 
present work, images are captured with a professional machine vision camera and

Table 1 Surface roughness values measured with a stylus instrument 

Specimen No. Ra (µm) Specimen No. Ra (µm) Specimen No. Ra (µm) 

1 0.63 6 1.41 11 10.25 

2 0.68 7 5.75 12 11.92 

3 0.79 8 6.39 13 16.21 

4 0.82 9 7.12 

5 0.93 10 7.65 

Fig. 1 Proposed machine 
vision setup 
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<-Refer Table 2 for Grey Level Values 
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Fig. 2 Photographs of the specimens and images captured using the proposed setup 

capturing software. Further, from Fig. 2, it is clear that the quality of the images is 
good and clear. The next step is the extraction of the digitation data and relating it to 
roughness texture is an important task as follows.

3 Extraction and Analysis of Digital Data from Image 

Digital information extracted from the images, i.e. grey-level values are analysed 
to understand the relation between the surface texture and corresponding grey-
level values. This analysis is carried out using Python programming executed 
through Jupyter notebook. Python provides several built-in libraries needed for image 
processing, data science, machine learning, mathematical functions, and plotting. 

Images captured through the proposed machine vision setup are stored in a local 
drive of the PC and processed through the Python programming language. At first, 
coloured images are converted into grey images and their grey-level values are 
extracted. Grey-level values for a specific window (6 rows and 10 columns) for the 
image (Fig. 2b) are shown in Table 2. It is well known that grey-level values are in the 
range of 0–255, and 0 represents black and 255 represents white. Variation in these 
grey-level values represents the texture of the image, particularly surface roughness 
in the present case. Since surface roughness is measured by the stylus instrument by 
moving the probe parallel to the edge on the surface, variation in grey-level values 
along a horizontal line is considered for this study.
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Table 2 Grey-level value of the image (Fig. 2b) at the specified window 

0 1 2 3 4 5 6 7 8 9 

400 113 120 128 138 145 146 148 154 160 161 

401 116 120 127 137 145 146 147 151 158 161 

402 118 121 127 135 142 148 146 149 154 158 

403 121 126 130 136 140 146 146 149 153 155 

404 126 132 136 138 139 142 145 151 155 155 

405 129 136 140 140 139 137 144 153 158 155 

In this work, all the images are taken in the sizes of 450 × 649 except the last 
image (specimen no. 13) which is 542 × 1307 in size. To analyse the variation in 
grey-level values, intensity values along the scanned lines, as shown on the image 
(Fig. 2b), are considered. Variation in grey-level values along a horizontal scanned 
line at position (10, 10) with a length of 400 pixels for images (Fig. 2 b, c, d) is shown 
in Fig. 3. 

From Fig. 3, it is observed that variation in the grey-level values looks similar 
to a typical roughness profile generated by stylus instruments. Hence, it is more 
appropriate to consider grey-level values along a straight line, while developing the 
correlation between the roughness values and grey-level pattern. In this work, the 
arithmetic average of the grey-level values (Ga) is calculated as given in the equation 
below. 

Ga =
(∑

(|y1 − ym | + |y2 − ym | + . . .  + |yn − ym |) (1) 

ym = (y1 + y2 + . . .  + yn)/n (2) 

where 

n Number of pixels 
yi Grey-level intensity value for ith pixel 
ym Mean of grey-level intensity values 

It can be seen from Figs. 3 and 4 that Ga values have a linear relationship with 
surface roughness. As the roughness increases, Ga value also increases. In this work, 
a machine learning approach is proposed to find this relationship as discussed below. 

4 Preparation of Dataset and Machine Learning Model 

Machine learning (ML) is one of the important components in data science and 
the subset of artificial intelligence (AI). Machine learning algorithms generate the 
models through the training of the labelled or unlabelled data to predict or classify
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Fig. 3 Variation of grey-level values along a straight line for specimens 1, 7, and 13 (index of 
specimens starts from 0) 

the data. In the present work, a prediction model is developed to predict the surface 
roughness of the specimen from the given image corresponding to a specimen. Since 
the images of the machined components are captured in a non-contact manner, this 
method is more suitable for in situ measurement which is a very important feature 
in advanced machining centres. 

A large amount of data is needed for ML algorithms to attain the higher accu-
racy of the model. In this work, a novel approach is followed to generate a large 
dataset by scanning along the several horizontal lines on the images of machined 
surfaces (shown as dotted lines in Fig. 2). The purpose of the scanning process is
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Fig. 4 Variation in pixel intensity patterns among the specimens 1, 7, and 13 

to extract the grey-level values along a straight line across the workpiece. Then, 
the arithmetic average of the grey-level values (Ga) for each of the scanned lines is 
calculated as expressed in equation (1). Grey-level values for typical scanned lines 
and corresponding Ga values and measured Ra values are shown in the dataset of 
Table 3. 

Each row in Table 3 corresponds to a scanned line considered on the image of the 
surface. In this case, 3 scanned lines are considered on each image and since there 
are 13 specimens, a total of 39 rows can be seen in Table 3. The last two columns

Table 3 Structure of the dataset for the prediction model 

Grey-level intensity values along scanned lines Specimen No. Ra Ga 

0 1 2 3 4 … 398 399 

0 180 175 177 180 176 … 180 175 0 0.63 4.63 

1 183 177 185 193 192 … 195 195 0 0.63 4.04 

2 203 201 202 202 202 … 190 191 0 0.63 3.62 

3 198 183 194 201 198 … 195 188 1 0.68 4.43 

4 188 195 195 190 190 … 198 205 1 0.68 4.04 

5 193 188 187 187 197 … 203 200 1 0.68 4.65 

6 199 203 202 200 197 … 182 183 2 0.79 4.56 

7 201 199 198 197 194 … 185 177 2 0.79 4.53 

8 199 198 198 199 199 … 179 181 2 0.79 5.15 

… … … … … … … … … . … … 

33 174 160 146 129 110 … 117 114 11 11.92 25.66 

34 182 171 147 129 122 … 109 113 11 11.92 23.75 

35 133 152 153 148 147 … 140 134 11 11.92 12.61 

36 135 134 129 123 119 … 164 163 12 16.21 26.44 

37 175 191 214 204 175 … 136 122 12 16.21 29.34 

38 98 101 106 122 131 … 158 170 12 16.21 27.59
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For S = 1 to number of specimens 
Read the Image S 
Convert S into Grey Image 

L= Length of a scanned line (input) 
For k = 1 to number of scanned lines (along y axis) 
Get the grey level values along the L 
Calculate Ga as per the equation (1) 
Add grey level values, Ga and Ra to dataset 

Spilt the data into training set and testing set 
Train and fit the model using ML regression model  
Validate the model 
Get the coefficients 
Predict the values 

Fig. 5 Algorithm for the proposed model 

show roughness values (Ra) and the arithmetic average of grey-level values (Ga), 
respectively. Elements in columns 0 to till the specimen number indicate the grey-
level values of the scanned line. For example, (180, 175, 177, 180, 176, ...180, 175), 
(183, 177, 185, 193, 192, ...195, 195) and (203, 201, 202, 202, 202, ...190, 191) indi-
cate the grey-level values for the 1st, 2nd, and 3rd scanned lines of length 400 pixels 
on specimen number 0. Size of the dataset and its values depend on the number of 
scanned lines, and its position and length. The dataset is programmatically generated 
and will be the input for the ML prediction model. Then, the model is trained with 
the ML linear regression algorithm. The major steps in the proposed algorithm are 
shown in Fig. 5.

With the proposed algorithm, as described in Fig. 5, it is found that there is good 
agreement between surface roughness and grey-level intensity patterns of images 
corresponding to the surfaces, as discussed below. 

5 Results and Discussion 

To develop the prediction model, labelled data of Ra and Ga is considered. In this 
case, 80% of data is used to train the model and the remaining 20% is used to the 
test model. Table 4 shows typical data consisting of original Ga and Ra values, and 
Ga and Ra values considered for training and testing. 

Since Ga is linearly related to Ra, a simple linear regression technique is applied 
while training the ML model. The relation between the Ga and Ra is  shown in Fig.  6, as  
the scattered plot along with the regression model evolved through the ML approach. 
From Fig. 6, it can be seen that Ra values are linearly related to Ga values. However, 
there is variation in Ga values of scanned lines for the same specimens.
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Table 4 Data considered for training and testing the machine learning (ML) algorithm 

Sl. No. Ga Ra X_train (Ga) y_train (Ra) X_test (Ga) y_test (Ra) 

0 4.63 0.63 4.44 0.82 4.04 0.68 

1 4.04 0.63 13.89 7.65 15.01 7.65 

2 3.62 0.63 12.09 5.75 14.07 7.65 

3 4.43 0.68 7.71 1.41 25.66 11.92 

4 4.04 0.68 3.62 0.63 23.75 11.92 

5 4.65 0.68 27.59 16.21 13.97 7.12 

6 4.56 0.79 12.68 5.75 4.30 0.82 

7 4.53 0.79 26.44 16.21 14.32 6.39 

8 5.15 0.79 8.25 1.41 NaN NaN 

9 3.9 0.82 12.61 11.92 NaN NaN 

… … … … … … … 

37 29.34 16.21 NaN NaN NaN NaN 

38 27.59 16.21 NaN NaN NaN NaN 

Fig. 6 Prediction model 
with the proposed ML model 

Ra = −1.93 + 0.62 × Ga (3) 

Correlation arrived through the ML model along with coefficients is shown in 
Eq. (3). The model is validated with test data. The predicted values for the test data 
are shown in Table 5. It can be noted that predicted values are closer to actual values 
and variation is in the range of 0.1–0.6 µm.
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Table 5 Predicted surface 
roughness values with the 
proposed ML approach 

Test No. Actual (Ra) (µm) Predicted (Ra) (µm) 

1 0.68 0.56 

2 7.65 7.33 

3 7.65 6.75 

4 11.92 13.91 

5 11.92 12.73 

6 7.12 6.69 

7 0.82 0.72 

8 6.39 6.91 

6 Conclusions 

The proposed machine learning approach shows a good agreement of surface rough-
ness with the grey-level intensity pattern of the images corresponding to the machined 
surfaces. It is observed that three is only a slight error in the range of 0.1–0.6 µm for  
predicted and actual values. This is due to the certain variations in grey-level intensity 
patterns among the scanned lines for a given specimen. This variation occurs due to 
several factors including lay direction and certain black spots/patches on the image. 
There is a good scope for further study in this direction to build a more robust model. 
Further, a greater number of experiments and images may improve the performance 
of the model. Similarly, several uncertainty parameters in measurement, prepara-
tion of specimens, and capturing the images have an impact on the quality of the 
prediction model. 

Applying the machine learning prediction model with the generation of a large set 
of data is the novelty of the present work. Even though there are certain correlations 
available in ligature, based on the arithmetic average of grey-level values with surface 
roughness, they are limited to a single scanned value per specimen and thus cannot 
guarantee the precision in prediction. 

The proposed machine vision setup consists of a professional industrial camera, 
lens, and lighting system, found to be suitable for non-contact prediction of surface 
roughness. However, one can explore a different combination of image capturing 
systems. 
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