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Abstract

Integromics is necessitated as the complex diseases require to collate the
integrated analysis expression, variation, and regulation of genes involved in
trigger, prognosis, and establishment of factors creating the complete disease
paradigm. The further involvement of the non-genetic and environmental exog-
enous factors are also designated to formulate the multitude of data for furthering
the “integromic” approaches. Identification and validation of interaction networks
and network biomarkers have become more critical and important in the
development of disease models, which are functionally changed during disease
development, progression, or treatment. We represent the requirement of
the multi-node analyses that goes beyond the binary relationships to enterprise
the structured interactions at the interface of genotype to phenotype correlations
in disease biology. The prevalence and sporadic occurrence of endemic and
pandemic infectious diseases, as well as the unmanageable burden of the
non-communicable diseases, have emerged as the most burgeoning task of
scientific investigations. Disease-specific interaction networks, network bio-
markers, or Dynamic network biomarkers have great significance in the under-
standing of molecular pathogenesis, risk assessment, disease classification and
monitoring, or evaluations of therapeutic responses and toxicities. The systems
level studies have indicated biomolecule to cellular organization requires com-
munication and cross-talk possibilities at the organism levels. Designing newer
theranostic regimes, thus is required to focus on disease heterogeneity integrating
the knowledge base of dynamic physical or functional interactions of network of
networks. The chapter is targeted toward the identification, characterization, and a
follow through of the experimental and computational tools for evincing the
futuristic plan for modular endeavors in disease biology.
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Chapter Learning

• Disease Biology – Categories, characterization, and challenges of complex
diseases

• Physical and Functional Networks – Multi-omics analyses
• Disease Networks and pathways – Expression, variation, and regulatory factors

for identifying dysregulation
• Integromics – Constructing network modules on multifactorial data types and

integrating non-genetic components modelling genotype to phenotype
correlations

• Applications of networks inferring precision and accuracy in disease biology and
management
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Introduction

“Disease” aka malaise is a result of combination of genetic and non-genetic factors
that have varied stages of acquisitions, activation, advancement and institution.
The fact that most of the events of cellular welfare is pertaining to its inherent
capacity to repair and regenerate the archetypical state. The perturbations in this
capacity is mounted through a scheme of dysregulation involving genes, small
molecules, proteins, RNA species propagated through the various stages of dis-
ease. Thus, disease biology contemplates the role of such networks, conditioned to
the nodes of inter-connected genetic modules or sub-networks (Ghadie and Xia
2022). The emergence of diseases is with shared symptomatic patterns are also
pinning that the focal causal factors are co-evolved, with cross-talk between
interactive networks. A plethora of diseases fall in the category of such complex
disorders that relay the importance of creating the niche of network of networks in
concerted efforts toward clinical translation of the mega-initiatives toward preci-
sion medicine. The chapter is designated to provide the reader facts behind the
pathobiology of complex diseases with focus toward curating the types of tools for
functional theranostic designs.

Disease Biology: Noncommunicable/Communicable/Metabolic
Syndromes

Diseases are complex network involving interactions between genes, environment,
and lifestyle associated with self-limiting to life-threatening entities in all underlying
classified diseases, e.g., tumors, infectious diseases, and cardiovascular diseases
(Chan and Loscalzo 2012a). These diseases are complex, multifactorial diseases
with varied outcome. Multiple physiological systems interact throughout the devel-
opment of a complex disease. Life sciences research has been revolutionized in past
decades by a series of technologies, starting with the Human Genome Project in
1990. The speed and scale of genomics analysis increased exponentially and is
classified as discovery science, along with other omics such as transcriptomics,
miRNAomics, epigenomics, cistromics, proteomics, metabolomics, and micro-
biomics. The goal of all these sciences is to collect and store data based on all the
molecules involved (Manzoni et al. 2018). This helped in generation of enormous
amount of biological data, leading to emergence of challenges in term of analysis
and interpretation of data. This led to the discovery of the Network science which
is involved with the analysis of interactions occurring between biomolecules (pro-
teins, RNA, gene sequences), pathways, cells, organs. Hence, through network
analysis, it is possible to identify complex patterns among different components to
generate scientific hypotheses regarding the interactions present in health and dis-
ease events (Li et al. 2015). Gaining knowledge of the dynamics interactions across
physiological systems facilitate the prevention or mitigation of biological damage in
term of loss of functions in complex diseases, many of which are used to add on
information or targets in developing new interventions (e.g., hypertension) (Abbas
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et al. 2019; Zhou et al. 2016). There is a probability that complex biological pathway
have low abundant molecular entities (genes and proteins) which interact with other
molecules involved in similar pathways. Hence each pathway represents a specific
region of an extended network in a given biological system. This led to thought that
there is dire need of network analysis methods that can be elucidated to provide an
add on biological insights that cannot be obtained from pathway analyses alone
in vivo (Joshi et al. 2021).

Biological networks comprise nodes that correspond to genes, proteins, metabo-
lites, or other biological entities, and edges that correspond to molecular interactions
and other functional relationships between the biological molecules. In general,
biological networks of the same size and connectivity exhibit significant differences
in aspects such as: wiring type or presence of topological motifs (groups of inter-
connected nodes with a given structure). This affects (1) modularity, i.e., the degree
of division of the network into subnetworks that comprise densely connected nodes
but share few edges outside the module, (2) dissortativity, i.e., the tendency of nodes
to connect to other nodes in the network that are associated with different charac-
teristics (e.g., nodes with many connections link to nodes with few connections), and
(3) robustness, i.e., the resilience of the network to the removal of nodes or edges.
For example, COPD will be one of the top five chronic diseases in terms of global
mortality and morbidity by 2030. The present chapter highlight network biomarkers,
interaction networks, dynamical network biomarkers in diseases, with an emphasis
to integrate bioinformatics-based screening of biomarkers, network biomarker,
dynamic network biomarkers with clinical informatics and phenotypes, and establish
a systems biomedicine-evidenced dynamic network specific disease models
(Barabasi et al. 2011).

Causative Analysis; Etiology of Disease Immunopathogenesis,
Molecular Events, Cellular Events

Complex disease conditions characterized by co-morbidities involve pathological
dysregulation that evolves across multiple systems over time. Thus, a holistic
approach is required to deconvolve the spatiotemporally distributed mechanisms
of multifactorial disease pathogenesis at the tissue, cellular, and molecular levels of
analysis. A disease’s etiology, or cause, generally falls into three main categories;
intrinsic, extrinsic, and idiopathic. The intrinsic etiologies are part of internal system,
e.g., inherited disease, metabolic and endocrine disorders, neoplastic disorders and
immunity, while the extrinsic etiologies are associated with infectious agents, animal
bites, chemical agents. There are certain unknown etiologies are also called idio-
pathic (Fig. 1).

The development and progression of the disease involves complex etiology
associated with interplay of a group of correlated molecules or a network, rather
than from the malfunction of the individual gene, protein, or cell. Traditionally,
molecular pathology analyzed well-characterized individual genes, proteins, or other
molecules. Subsequently, this strategy was expanded to more elaborately
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deciphering the systematic alterations in the expression of mRNA using gene
expression microarrays. Further, this technology has been advanced with full-
genome, deep- and transcriptome-sequencing platforms, for example, mRNA or
non-coding RNA quantitation, detection of gene copy-numbers, and genomic
sequencing. Similarly, recent advances in mass spectrometry-based analysis now
enable detection and quantitation of selected small compounds, proteins, and other
biomolecules. Hence, identify and assess individual molecular entities (proteins, in
particular) to ongoing molecular pathology toward higher-throughput and clinical
applications, using technologies such as serum mass spectrometry. Cell signaling
molecules are highly dynamic, potent, and specific in both structure and utilization
and in both cell- and tissue-specific manner (Wang 2011) (Fig. 2). In the last
decade, network-based approaches have been successfully applied to a broad
range of diseases, with examples ranging from rare Mendelian disorders, cancer
or metabolic diseases, to identifying basic strategies by which viruses hijack the
host interactome, to name but a few. The important aspects of molecular networks
such as simultaneous input cues should be processed and integrated to determine
alterations in cellular behavior such as migration, proliferation, apoptosis, differ-
entiation, etc. in order to design biomarker-based assays. An important aspect of
cellular signaling networks is that at any given time in a given state impacts
directly on the cellular response to an environmental stimulation. This multivariate
nature enables cells to respond to multiple input events in an integrative and
quantitative manner (Winslow et al. 2012) (Fig. 2). Hence there is a probability
that failing to describe network states and biological context for molecular bio-
markers can have potentially damaging consequences for the patient. It is believed
that these potent alternations of complexes will represent and influence the
responses of cells or organs to real-time changed microenvironment. Therefore,

Fig. 1 Hierarchical generation of clinical interventions related to disease pathobiology and struc-
tured disease phenotype analyses – Contributions of the biomolecular interactions that modulate the
cellular/tissue behavior and the studies conducted to unravel disease progression and establishment
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identification and validation of interaction networks and network biomarkers,
especially at the protein level, become critical to develop disease-specific bio-
markers for monitoring disease occurrence, progression, or treatment efficacy. In
order to study clinical manifestations, interaction networks between immunologic,
molecular, and cellular events should be envisioned. The new insights generated
by extracting information from biological events depending on varied patterns of
interconnections between these events during the initiation, progression, and
extension of disease should be analyzed to understand the clinical sequalae and
development of target specific therapies to treat the disease.

One of the major challenges in the medicine is the lack of disease-specific
biomarkers for disease diagnosis, illness monitoring, therapy evaluation, and prog-
nosis prediction. Hence, there is a dire need to identify biomarkers that should be a
measurable indicator of normal physiological and pathological events. The disease
specific biomarkers should be a guiding element in clinical manifestations, interven-
tion, risk assessment, early diagnosis, and prognosis of disease. Disease-specific
biomarkers are also expected to demonstrate the disease-associated specificity,
sensitivity, traceability, stability, repeatability, and reliability. For example, somatic
mutations in the tyrosine kinase domain of the epidermal growth factor receptor was
shown to be a predictive marker in many lung cancer. However, only a few have
been found to be useful clinically, although numbers of discovered and identified
biomarkers are generated from preclinical research.

Fig. 2 Biological Networks – Disease biology profiling and the control networks which are
integrated to allow dynamic programming and information processing through multitude of inter-
action networks. The interplay of these integrative models layered and connected to generate the
network of networks as the focal high throughput disease models, converging disease states,
phenotypes and regulatory patterns in disease biology
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Profiling and Diagnostic Approaches in Disease Biology:
Experimental/Computational/Mathematical

The culmination of the high-throughput studies of live images at cellular, and
molecular levels have created stimulating possibilities for systematically investigat-
ing disease biology. The cataloguing of the diagnostic approaches followed by
traditional toward integration of both in vitro and in vivo investigations with
molecular basis will allow the clinical decisions based on such exploratory under-
standing of the disease. A perspective futuristic diagnostic and therapy regimen
would thus be mapping functional details of disease progression and hence profiling
in depth clinico-molecular aspects. The varied targets of disease biology includes the
Experimental analyses, computational simulations, and mathematical modeling
(Miles Macleod 2021; Scholl et al. 2018; Trapotsi et al. 2021). Here, we present
the profiling approaches based on all these aspects.

Experimental Profiling

Disease research had extensive work performed in creating the experimental niche
for demarcating the live cell imaging, cellular and tissue analyses, followed with
molecular analysis. These studies have enabled us to update, improve, and facilitate
empirical designs of disease biology. The results of experimental profiling is incor-
porated in the corresponding computational models. The computational studies
including drug efficacy mechanistic studies, simulations of the genetic variants,
predictive analyses, and dynamic profiling further makes the mathematical models
that perceives to theranostic analysis. Together, these convey how experimental
standardization, improvized parametric optimization in simulations, model refine-
ments, inverse engineering can lead to inculcation of futuristic use of deep learning
and machine learning while designing AI-based disease management strategies.

Computational Profiling

The recent years have seen a heightened interest in generating computational models
for predictive and potential disease pathophysiology and drug targets. The compu-
tational models mostly range from score-function-based, network algorithm-based,
machine learning-based, and experimental analysis-based models (Saiker 2021).

Multifactorial/Combinatorial Designs in Disease
Diagnostics/Prognosis and Interventions

Disease biology involves the layered biological components that include the genes,
regulatory components, proteins, metabolites, and epigenomes. Singular level omics
approaches have been prevalent to be undertaken in disease pathobiological analysis

4 Cellular Interactions Networking in Interactive Models of Diseases 71



interrogating pools of genomes, trancriptomes, epigenomes, proteomes, meta-
bolomes, and microbiomes using the ever diversifying workflows of high-
throughput technologies. The mechanistic details of each such work-pipelines
have paved way from hypothesis driven targeted approach to discovery driven
untargeted analyses in disease biology. The data derived from the single level
omics is enormous, though still not sufficing the need to resolve the causal relation-
ships between molecular alterations at each level to the phenotypic manifestations in
totality. This directs the systems level integration that allows multi-disciplinary data
information to be processed through studying physical and functional interactions
holistically. Integration of such systematic studies would also require adding up the
regulatory window of information that is suitable to dissect the aberrant cellular
functions behind complex diseases (Hood et al. 2004).

Multi-omics data generates the clusters of biologically relevant groups, enabling
aspects of genetic variants and environment and interaction parameters between
them. Thus, predictive models of prognostic and therapy have been devised, that
now needs to be processed into integrative disease models to assist clinical transla-
tion of the research findings.

Interactome: Molecular Niche

Interactome refers to the inter-connected networks housing the physical and func-
tional interactions, with physical interactions involving direct contact between
participating biomolecules while functional interactions catering to biologically
relevant relationships. In expression networks where genes are co-expressed and
regulated, there are expression patterns that maybe connected, while functional
interactions provide for genetic interactions, where genes are linked if simultaneous
changes occur in genes involved. The functional and physical interaction networks
provide for important insights into disease mechanisms. We process some details of
these interaction networks for further analysis.

Physical and Functional Interactions

Diversifications and adaptations in the fields of chemistry, physics, mathematics,
biology, critically engineering, the field of diagnostics, and therapy of diseases have
paved its way from immunotherapies, radiotherapies, chemotherapies, tissue engi-
neering, and realms of personalized medicine (Krzyszczyk et al. 2018). The genera
of innovative technologies have seen the clinical translation and varying levels of
success with a research stronghold that involves novel interventions using the
“omics” toolkit, mathematical modelling, pharmacokinetics (PK)/pharmacodynam-
ics (PD), and computational simulations and models [Docking and molecular
dynamics (MD)] (Kitano 2002).

Cellular activities governed by physical and functional interactions to create
biological pathways, with interactions between biomolecules or gene products.
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Identification of the systems level cellular process description as a pre-requisite of
meaningful derivations of biological state. Disease biology is similarly being
addressed, where the advent of high throughput data and sequence details pave
way toward elucidation of diverging descriptions of interactomes. The meaningful
and accurate procedures deriving binary interactions and gauging their influence in
disease development require convergence and comparative assessment of
interactome descriptions. These include the core genomic, transcriptomic, and
proteomic data inputs deepening the efficacy of theranostics obtained through the
comprehensive interplay of bio-interactions.

Network biology scores in coordinating the conserved relations between the
immune pathways, effects of pathogens on immunity, diversity and heterogeneity
of immune cellular responses, mechanistic details of bio-interactions at the system’s
level. The integrative networks are being explored to provide for innovative infor-
mation using a tri-partite approach that involves experimental data, advanced math-
ematical and computational modelling with validations to ensure the generation of
high throughput reliable data (Lim et al. 2013; Voit 2000).

Network of Networks

Human disease is a constant aspect of life and consistently being studied using latest
techniques, increasing our knowledge dramatically, through molecular basis, taxo-
nomic and phenotypic screening, and creating therapeutic screens. The associations
between diseases using these aspects has further helped in re-categorization and
structuring of existing knowledge through the data driven analyses. This is a strong
indication of the complex biological and cellular networks underlying the genotype
to phenotype correlations. The demarcation of the network biology discussing the
relevant types of interactome networks, their mapping, and integration into
interactome network models is important for functional theranostic designs in
most of communicable and non-communicable diseases.

The interactome networks are suggesting unique inter-connected nodes which
represent the biomolecules that are possibly perturbed in disease conditions. These
are sometimes referred to as modules or sub-networks that comprehensively depict
the coordinated role of the molecular players at the cellular system. The genetic
factors that are responsible or modulated can be caused by different genetic direc-
tives but have many overlapping factors involved (Vidal et al. 2011). Scientific
deliberations are now focusing increasingly on the study of the patterns of interac-
tion networks to comprehend the underlying causal effects in disease development.
The complex diseases have inherent heterogeneity that spices up the utmost need of
generating the discreet data that relays quantitative details as per the patient based
phenotypic characteristics (Vidal et al. 2011).

The complex disease investigations have fundamental difficulties in ascertaining
the details of the factors, their levels and role due to the shared combinatorial effects
of the genetic and non-genetic influences. The demarcation and discovery of such
elements and also the broad spectrum impact of the findings have led to altering the
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specified complex disorders mostly to be grouped under the “group of – or spectrum
disorders or part of syndrome.” Examples of such exist in genetically inherited
diseases (e.g., autism); infectious diseases (e.g., Leishmaniases); non-communicable
diseases (Cancer) (Pujana et al. 2007). The individual contributions of genetic
changes, rare mutations, expression level modulations are challenging to be
deciphered for such complex disease settings, making the need of network of
networks, more pertinent and prominent in near future.

The identification, characterization, and validation of the interaction networks
and network based biomarkers is critical to organize the disease-specific functional
biomarker details that modulate during the progression, development, or treatment of
the disease. Precision medicine tethers to the concept of network medicine that is
crucial to extricate the interplay and cross-talk between clinico-molecular features
associated with disease utilizing the multiplexed network of genetic and non-genetic
factors.

Drafting Interactome Networks

The dissection of the cellular interactomes is a bottom up approach which simplify
the complex systems as components or nodes and interactions as edges. This is how
the usual interaction networks are structured, where nodes as mostly biomolecules
like proteins, RNA, gene sequences, or metabolites, while the edges are the physical,
biochemical, or functional interactions between them that have been demarcated
either through experimental means or by prediction algorithms (Allore and Murphy
2008). The “interactome networks” are prepared through systematic, empirical, and
standardized assays, serving as scaffold information to create graph theory property
or neural networks scaled at either local or global levels between the interacting
components or nodes. The unbiased and statistically different outputs from random-
ized networks have led to potential true estimations of biological processes, though
powerful details of dynamic and logical features that connect the structural alter-
ations with functional outputs of the gene products, e.g., alternate splice variants,
allosteric changes, and post-translational modifications are mostly not included in
the simplified models (Licatalosi and Darnell 2010). To create the modelling details
that can scale at the level of complete cells, such molecular transitions also need to be
added to the layered interactome networks that might overcome the lacunae of
individual interactome networks.

Network Biomarkers

Biomarkers are quantifiable indicators of differential aspects of normal biological
processes in comparison to the pathological conditions and therapeutic responses
that allow for early diagnosis, predicting, and monitoring outcomes. The disease-
related biomarkers are critically important for demonstrating specificity, sensitivity,
stability, reliability, repeatability, traceability, as well as levels of treatment efficacy
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that can be conferred while banking on their application in disease biology (Simon
2005; Liu et al. 2012). It has been well established that the physiological alterations
in the cellular systems is conveyed by mechanistic changes of varied players and
their interactions at different stages of disease progression and establishment is
critical to estimate dynamical networks and the associated network biomarkers that
have inherent all types of interaction networks including the experimental, compu-
tation, or bioinformatics based, mathematical model based clinically relevant
modules.

The high throughput data mining from the various omics technologies at the level
of genome, transcriptome, proteome, epigenomes, and metabolomes all contribute
toward the multi-dimensional data that form the systems clinical medicine exploring
the untangled realms of functional modules in complex diseases. The categorical
heterogeneity of such complex diseases, that confers the severity and progression
differences and also the drug responses of being sensitive to resistance, have been
deciphered for cardiovascular-related network and respiratory networks. These
networks are widely used in studying the complex interactions, InSyBio BioNets,
which is a cloud-based web platform offering a unique biomarker discovery pipe-
line, which combines differential expression analysis and a method for comparing
biological networks to identify biomarkers efficiently. As a case study, InSyBio
BioNets was applied to a Parkinson dataset of gene expression measurements and
outperformed a standard statistical approach by recovering a more compact and
informative set Biological of biomarkers (Theofilatos et al. 2016).

The sensitive detections of such network biomarkers have led to categorization of
the clinical details in terms of patient stratification in terms of their biological
molecular interaction, perturbed under specific therapeutic conditions leading to
improved outcomes of patients. The candidate network biomarkers have been
intensively utilized in cancer diagnostics, prognosis, efficacy prediction studies
that includes microarray analysis as well as protein-protein interaction networks as
layered information that were combined to reach accurate molecular interpretations
and classification of tumors (Wu et al. 2012; Liu et al. 2013). The network biomarker
studies have provided details of disease-related molecular interactions that are
altered under the dysfunctional processes triggered under specific conditions relay-
ing diseased phenotypes, e.g., expression profiling studies in combination with
functional genomics and proteomics data found potential functional associations in
breast cancer studies (Marcotte et al. 2016). Similarly, network biomarkers have
been utilized in other complex disorders that target both non communicable as well
as infectious diseases.

Interaction Networks and Dynamic Network Biomarkers

Interaction networks embrace the biomolecular factors creating gene regulatory
networks (GRNs), RNA network that includes mRNA –miRNA networks, signaling
networks, protein-protein interactions (PPI), and metabolite networks. The high-
throughput collections of the large heterogenous datasets build using such

4 Cellular Interactions Networking in Interactive Models of Diseases 75



interaction networks have been collated for various cancer studies that include breast
cancer, prostate cancer, bladder cancer, colorectal cancers, hepatocellular carcinoma
(Nibbe et al. 2010; Chan et al. 2012b; Debmalya et al. 2020; Green et al. 2018).

The experimental scale interactome network mapping has been created using
proteome scale analysis (Loscalzo et al. 2017; Finley and Brent 1994; Bartel et al.
1996; Fromont-Racine et al. 1997; Vidal 1997), while metabolic pathways at cellular
scales and signaling pathways have given detailed cross-talk between biomolecules
involving physical as well as functional web of interactions (Leiserson et al. 2015).
Similarly, identification of interactions between transcription factors and DNA
regulatory sequences are being captured to estimate the expression regulation and
its global organization within the cells (Chen et al. 2008). The interactome networks
have been compiled using three major strategies, i.e., (i) curating the data from
literature studies or text mining, usually obtained from few types of physical and
biochemical interactions (Roberts 2006); (ii) Computational simulations and pre-
dictions that is structured on “orthogonal” information in addition to the physical and
functional interactions that involves sequence, gene order conservations,
co-occurrence of genes, as well as protein structural information (Marcotte and
Date 2001); and (iii) experimental mapping using high throughput systematic data
using the whole genome or proteome analyses (Walhout and Vidal 2001). The
interactome networks thus created are complimentary but still have different possible
interpretations. Thus, network of networks could probably bridge the gap that exists
between the varied literature-based interactome data that lacks systematic analysis,
to the efficiency of computational predictions, that handle large data sets though on
indirect information to the detailed experimental interactomics describing unbiased,
systematic, and controlled data. Such a thorough interactome studies have been
conducted on model organisms that have proven a milestone of information and
provided support to the conceptual integration through pioneering technologies and
improvement in the algorithms thereby.

The largely incomplete and sometimes overrepresented networks that may confer
missing nodes, i.e., biomolecules, complexes, or phenotypes and edges, e.g., asso-
ciations due to co-localization, reactions, or influences; sometime false positives that
have any conclusive contextual information in cellular processes. The dynamic
structures of the networks also represent changes that necessitate the development
of scale free networks (Albert 2005) that allows node connectivity distribution to
follow a power-law, having small world networks such that the distance between
nodes have proportional increment to the logarithm of the network size (Albert
2005). This leads to few nodes as highly “connected hubs” with majority of these
nodes having low degree of connectivity. These dynamical networks have also
proven to be valuable in representing the complex biological processes. The
dynamic interactions of disease biology is also linked to designing these dynamic
interactome networks, as the gene co-expression data, stoichiometry, and kinetic
parameters are required to have accurate characterization for knowledge of the
underlying mechanisms in disease progression. These are to be further integrated
with drug and phenotype networks that could correlate the dysfunctional biological
perturbations in disease, to provide comprehensive and concise details for effectual
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medical interventions (Pichlmair et al. 2012). Identification of disease micro-
biomarkers requires effective computational and statistical methods for
determiningfrom a very large number of candidate biomarkers a minimal subset of
biomarkers that can accurately discriminate between two or more phenotypes. The
various resources, e.g., SparCC: Sparse Correlations for Compositional data
(SparCC) infers a network of associations between the microbial species based on
the linear Pearson correlations between the log-transformed components (e.g.,
OTUs). SparCC makes two main underlying assumptions: (i) the number of nodes
(e.g., OTUs) is large; and (ii) the underlying network is sparse. Implementation of
SparCC included as part of the SPIEC-EASI tool is recommended (Hood et al.
2004). The Meinshausen and Bühlmann (MB) method is another technique for
estimating sparse networks based on estimation of the conditional independence
restrictions of each individual node in the graph and can also be implemented in
SPICE EASI tool (Manazalwy et al. 2019).

Interactome Network Types

Gene Regulatory Networks

The gene regulatory networks (GRNs) or the transcriptional networks involve the
transcription factor or putative regulatory biomolecules that act as nodes, and edges
represent the physical interaction of these transcriptional factors (TFs) with DNA
regulatory elements. The edges are considered as incoming (TFs binding to regula-
tory DNA) or outgoing (regulatory DNA bound by TFs), that have been deciphered
using either in vivo yeast one hybrid or in vitro ChIP approaches for large scale
mapping. The yeast one hybrid, utilizes a cis-regulatory DNA element as bait that
uses genes and captures associated proteins (gene-centric), while in chromatin
immunoprecipitation antibodies are raised against TFs, or against peptide tags
fused with TFs, making it as protein centric approach. The techniques can unravel
novel regulatory motifs if accurate predictions of TFs are made for applying either of
these to demarcate gene regulatory interactions (Zhang and Horvath 2005; Reece-
Hoyes et al. 2005; Vaquerizas et al. 2009). Model organisms including yeast,
C. elegans, as well as cultured mammalian cells have been used for creating
interactome networks using Y1H and ChIP (Vermeirssen et al. 2007; Grove et al.
2009; Lee et al. 2002; Cawley et al. 2004).

The regulatory RNAs including miRNAs or short non-coding RNAs that also
sometimes part of the GRNs as they bind to complementary cis-regulatory RNA
elements located in 30 UTRs of target mRNAs. miRNAs form complex networks,
interactions with its targets, where nodes are either these miRNAs or target 30 UTRs,
with similar incoming and outgoing interactions possible as edges. The non-coding
RNAs are not master regulatory molecules, as they mostly attune to post-
transcriptional regulation of gene expression, while mostly computational predic-
tions of miRNA interactions as well as experimental methods are now focusing
toward these miRNAs/30 UTRs as part of GRNs as studies performed as large-scale
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miRNA network in C. elegans. These studies need to be also appended in the other
known genomes for a comprehensive look into the interactome networks.

Metabolic or Protein: Protein Interactome Networks

The functional protein-protein interaction networks represent the physical associa-
tion between proteins, its signature peptides, or motifs/domains of the complete
proteins as nodes while edges that are non-directed as the interaction module itself.
There are various in vitro and in vivo technologies that have been utilized to create
the experimental PPI maps as binary interactions, e.g., yeast two hybrid, or as
indirect associations using TAP-Tags or Affinity or immune-precipitation for map-
ping multitude of interacting proteins in a complex, or directly using affinity
associated MS analysis for the same (Rolland et al. 2014; Bonder et al. 2017).
These interactions create differential maps of interactions due to their direct or
indirect analyses patterns, serving as gene essentiality relationships with the number
of interacting proteins. The interaction maps have been prepared using the compre-
hensive Y2H technologies with model organisms (S.cerevisiae, D.melanogaster and
C.elegans), and also mapping of co-complex high throughput protein interactions
using the AP/MS efforts (Sun et al. 2016).

The cumulative efforts of protein-protein interactions require accurate and sensi-
tive mapping utilizing the empirical framework favoring critical parameters of
completeness (most or all of protein physical interactions allowed in given search
space), precision (true biophysical interactors), and assay or sampling sensitivity
(number of interactions detected by particular assay or fraction of all detectable
interactions in a single assay) (van Leeuwen et al. 2016). The interactome proteome
maps could pave way for a roadmap toward comprehensive functional maps
addressing the biological processes (Srivas et al. 2016). NetworkAnalyst 3.0 its
key need for interpreting gene expression data within the context of protein-protein
interaction (PPI) networks.

Metabolic Networks

Networks comprising all plausible biochemical reactions, in particular, cellular
system or organism, where metabolites act as nodes and reactions or enzyme
catalyzing these reactions occur as edges. Like the PPIs, the edges here are
non-directions either directed or undirected, depending upon whether reactions is
reversible or not (Motter et al. 2008). In some metabolic network models, the
opposite situation can also be true, as per the representation of the nodes and
edges, with enzyme as nodes and edges belonging to “adjacent” enzyme pairs
with interdependent substrate and products among them. Classically metabolic
networks have been represented as large metabolic pathways that have been com-
pleted with additional gene annotation data from the sequenced genomes. The
metabolic networks have been constructed manually with computation prowess
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added through a thorough curation of literature or text mining of published reports
describing experimental evidences of metabolic reactions characterized from
reconstituted or purified enzymes. There is also additionally compilation of ortho-
logous enzyme reactions as part of the computational layer added that are experi-
mentally characterized and show sequence conservation across species. Metabolic
reconstructions involve the base of these elaborate proteome scale metabolic net-
work maps demarcated for many prokaryotes and unicellular eukaryotes, as these are
the most comprehensive maps of all biological processes occurring inside a cell and
representing validated experimental evidences. The gaps that exists in such maps
need also direct experimental analysis to generate more robust metabolic network
systems or reconstructions simulated on existing networks (Ghiassian et al. 2015).

Designing Interactome Networks with Cellular Networks

The three major types of interactome networks discussed so far based on both
physical and biochemical interactions need to be extrapolated to design the “scaf-
fold” that could be used to overlay complete information of cellular systems, with
additional “functional” layers to be appended to fine tune representation of biolog-
ical processes and actual quantitative estimations. These networks that have the
functional links represent the conceptual interactions where links between genes and
gene products are reported based on functional interactome integrations taking cues
from the existing interactome networks, though not requiring always the physical
macromolecular interactions (Dezs et al. 2009; Greene et al. 2015). These designs
are possible due to the complementary data made available genome scale analyses
and predictions that interrogate the complexities or heterogeneities of the genotype
to phenotype relationships. This has been mainly branched from the realization of
the dysbiotic physiological modulations that affect the functional aspects on the
existing interactome network maps (Menche et al. 2015; Corradin et al. 2016;
Greene et al. 2015; Xenarios et al. 2002).

These have been further grouped as discussed in brief here so that these accrue the
graph properties of interactome networks that can be simulated to generate the most,
unbiased profile of cellular status and its correlation to the physiological conditions.
These include

(i) Transcriptome – Interactome Profiling Networks
(ii) Phenotypic Profiling Networks
(iii) Genetic Interactions Networks

Transcriptome: Interactome Profiling Networks

Macromolecules or biomolecules are known to coordinate and act together in a
biological process, not just individual entities. This cooperativity is tended to be
captured at varied interaction networks including the Protein – DNA/RNA/protein
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interactions, conveniently represented as networks or graphs with the molecules
addressed as nodes or vertices and links or edges denoting the interactions between
them. These networks have topological characteristics that include scale free prop-
erty in a network, that confers in highly connected nodes, called “hubs” have a
sub-network of sparsely connected nodes. The contextual application of these
networks in disease biology refers to the topological properties of the interacting
networks using connectivity or modularity of the participating genes or gene prod-
ucts that rely on generating both the physical and functional correlation. The gene
products and complexes in common signaling cascades or similarly in disease
biology are expected to show patterns of expression with higher similarities, and
such a situation from either using transcriptome or proteome data need to be
correlated globally with interactome networks. The vast majority of the trans-
criptome profiles generated from microarray, RNAseq data, that have been detailed
for different species residing across multitude of diverse genetic and environmental
conditions (Vidal 2001, 2011). The genes may be co-localized, co-regulated,
co-expressed punched in matrices of genes of an organism against all conditions
that the organism is exposed toward to generate the expression compendium.
Discriminant and correlation analysis are statistically tested on the nodes and
edges in the co-expression networks above a set threshold (Kim et al. 2001; Stuart
et al. 2003) so as to agree to titration procedures applied thereof in such trans-
criptome interaction networks. The transcriptome co-expression network profiles
created have higher degree of confidentiality about the regulatory network opera-
tions (Amit et al. 2009). The profiling networks have been combined using similarly
co-expression profiles with the protein interaction maps in yeast revealing the
significant overlaps between the interaction edges in interactome networks with
the one found in transcription profiling networks. These studies have to be addition-
ally linked to biologically relevant protein interactions who are not a part of such
co-expressed systems or are rather segregated as never correlated, to generate a true
functional transcriptome interaction profile.

Phenomics: Phenotype Profiling Networks

The need for linking gene modulations that relay functionally or phenotypic detect-
able changes is quite pertinent to disease biology. Genes encoding functionally
related products are linked in networks contributing to similar phenotypic alter-
ations. In the transcriptional profiling networks these are the genes that are grouped
under the matrices with all genes of an organism and the phenotypes that are profiled
in a same phenotypic compendium. Studies in model organisms (yeast, C. elegan,
Drosophila) and even in humans (Giaever et al. 2002; Mohr et al. 2010) using gene
knock-out/down techniques have shown all genes amenable to perturbations leading
to variety of standardized phenotypes. The phenomics or “phenome” networks that
are investigated through systematic gene-phenotype analyses is targeted to show
these linked genes as nodes, and edges linking pair of genes depicting correlated
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phenotypes tested above a set threshold. These efforts require titrations and decisions
for the threshold properties of the phenotypic similarity or dissimilarity.

The phenome profiling networks have been shown to be associated with
protein-protein interactome networks where overlapping and integrating the binary
interactions, co -expression, or transcriptional networks and protein-protein inter-
actions are overlayed to create very robust integrated networks with precise
prediction patterns and power (Piano et al. 2002; Walhout et al. 2002; Gunsalus
et al. 2005; Grove et al. 2009). The efforts to design these genome-wide phenome
networks are underway in most of the model organisms after the proof of concept
detailing in yeast model.

Gene Interaction Networks

The systematic mapping of the functionally related genes also points toward them
exhibiting genetic interactions through gene mutations studies. The studies include
comparison of phenotypes generated by double mutants (mutations in pair of
genes) to single mutants (mutation in either pair of genes). These are also termed
as synthetic lethals or negative, when phenotype conferred by the double mutant is
aggressively worse than single mutant, or as positive or alleviating/suppressive if
the phenotype of double mutant is significantly better compared to single mutant
(Mani et al. 2008). These gene interaction or linkage studies have been utilized
traditionally by genetics, while their inclusion in the functional genome analyses
using systematic high throughput mapping has given rise to large-scale gene
interaction networks (Boone et al. 2007). The pattern of genetic interactions here
would confer similar details as the transcriptional and phenotypic profiling net-
works, with the gene or the nodes in genetic interaction networks representing the
matrices of genes exhibiting the positive or negative features in the interaction and
the edges functionally linking such genes based on their high similarities. The
genetic interaction networks here provide an additive layer of predictive models of
biological processes for its power and robustness along with the other interactome
networks. The nature of the genetic interaction maps, derived using various
methodologies like high density arrays or synthetic genetic arrays, barcoding
microarray using deletion mutants in yeast clearly depicts that these interactions
may not correspond to physical interaction of the corresponding gene products
(Boone et al. 2007; Mani et al. 2008; Costanzo et al. 2010). This leads to detailing
of unique patterns of the interactions from the different datasets, as these increase
probability to reveal pair of genes in parallel pathways or in different molecular
machines. The negative mode of interactions here would not correlate with the
protein-protein interactions in either binary or multi-complex protein modes, while
the positive mode genetic interactions provide more probable physical interactions
between these genes (Beltrao et al. 2010; Costanzo et al. 2010). These details of
positive interactions is studied as loss of either one or two gene products coordi-
nating to provide similar effects in a molecular complex.

4 Cellular Interactions Networking in Interactive Models of Diseases 81



Conclusion and Perspectives

The interactome networks confer that discreet detailing and inter-connection of the
normal biological processes as well as the disease-specific insights would have a
greater impact in understanding and establishing the molecular transitions that are
related to the mechanistic details, early diagnosis, risk assessment, classification of
the stage or grade, as well as monitoring and therapy regimes. These intricate details
would step up the efforts toward targeted directive or combinatorial therapeutics,
with highest degrees of sensitivities and specificities. The disease networks could
point toward the differential states of normal or pre-disease analyses, optimization of
the effectiveness of direct assessment many-fold to allow designing theranostics
with impactful effectiveness and finesse. We hope to usher into the era of utilizing
and optimizing the upcoming machine learning and artificial intelligence
approaches (Sniecinski et al. 2018; Moingeon et al. 2021) further to swiftly turn
from reactive to preventive medicine strategies and designs.
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