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Abstract

Cancer is a major cause of death both in developed and developing countries.
Among the various types of cancers, primary liver cancer represents about 4% of
all cancers worldwide. Hepatocellular carcinoma (HCC) is a histological type of
liver cancer; the fact being that the aspects related to the development of hepa-
tocellular carcinoma and its metastasis are not yet known, and here animal models
play an important role in diagnosis, prognosis, and treatment strategies of the
disease. Animal models also provide an opportunity to explore new treatment
strategies. N-nitroso compounds mainly N-diethylnitrosamine (DEN) is a hepatic
carcinogen, which is well known to cause liver necrosis. The current review is
based on research and review of works on animal models treated with
DEN-induced hepatocarcinogenesis. Despite ongoing debate, animal models
could provide valuable information about biotransformation of toxicants and
how they worsen the damaging effects on DNA and cell proteins that result in
the development of cancer. Today, the emergence of various therapies that target
the immune system and the tumor microenvironment emphasizes the importance
of the host, conditions of chronic inflammation, and fibrosis. Thus, the use of
animal models for anti-HCC drug screening will find our best ability to success-
fully discover new drugs to combat HCC.
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Liver cancer · HCC · DEN · Herbal drugs

Introduction

One of the leading causes of cancer-related fatalities worldwide is hepatocellular
carcinoma (HCC), a prevalent form of liver illness. People with chronic liver
diseases, such as cirrhosis caused by hepatitis B or C infection, severe drinking
and diabetes, obesity, and non-alcoholic fatty liver disease are more likely to develop
HCC (Balogh et al. 2016; Manimekalai et al. 2016; Rajesh et al. 2016; Hemalatha
et al. 2020; Flora Priyadarshini et al. 2020; Rajesh and Sivakumari 2020;
Angalammal et al. 2021; Padmavathy et al. 2021). The incidence of HCC is higher
in men than in women (2.4:1), with higher incidence in East and South Asia, Central
and West Africa, Melanesia, and Micronesia/Polynesia (Ferlay et al. 2010).
According to Altekruse et al. (2009), the rate of HCC among Native Americans
and Alaskan Indians has increased from 1.6/100,000 to 4.6/100,000 people followed
by Blacks, Whites, and Hispanics (Altekruse et al. 2009).

To study the efficacy of drugs against HCC, chemicals are used to induce HCC
both in vitro in cell lines and in vivo in animal models. N-nitroso compounds are
well-known hepatic carcinogens that cause liver necrosis, especially
N-diethylnitrosamine (DEN) (Tricker et al. 1991). N-nitrosamines are known to
cause varieties of tumors in several animal models, and are also known to cause
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health hazards in humans too (Piot and Sirica 1980; Simonsen and Uirji 1984).
These chemicals and their precursors can be present in the environment, in specific
workplaces, in foods like meat and dairy products, in tobacco, pharmaceutical and
cosmetics items as well as endogenously generated in human body from dietary
components (Shank 1975; Bartch and Montesano 1984). Because of this, DEN
promotes oxidative stress and cell damage due to increased reactive oxygen species
(ROS) generation (Bartsch et al. 1989). By creating free radicals, the cytochrome
P450-dependent monoxide system’s enzymes increase oxidative stress by producing
hydrogen peroxide (H2O2) and superoxide anions (Farber and Gerson 1984). The
most harmful products of cellular metabolism are reactive oxygen species (ROS),
which have a direct impact on cell development, proliferation, and its survival in
cancer development. As liver is the primary metabolic biotransformation site for
DEN, oxidative stress produced by liver injury may be generated by ROS generation
in the liver (Gey 1993). Lipid peroxidation (LPO) is a measure of cell damage caused
by ROS (Spiteller 1996). The liver, on the other hand, has a powerful antioxidant
system that prevents ROS from causing damage to essential bio-molecules like
lipids, proteins, and deoxyribonucleic acid when they are exposed to oxidative
stress.

Several research works have been reported the hepatotoxic and carcinogenic
effects of DEN (Schmahl et al. 1960; Druckrey et al. 1967; Dhanasekaran et al.
2009; Janani et al. 2009, 2010; Khan et al. 2017; Nithya 2021). In 1963, a study
found that giving DEN to rats caused N7 atomic ethylation in nucleic acid guanines
in the liver (Magee and Lee 1963), which was a key step toward understanding the
chemical mechanisms behind the carcinogenic impact of DEN. A pathway that
depends on cytochrome P450 enzymes like CYP2E1 connects the biotransformation
of DEN and DMN (dimethylnitrosamine) to alkylating metabolites that result in the
production of a DNA adduct (Yang et al. 1990; Verna et al. 1996). CYP2E1 is
essential for the bio-activation of nitrosamines, according to studies done on
CYP2E1 null mice (Kang et al. 2007). These mice had considerably fewer and
smaller tumors, according to observations. After DEN treatment, these mice had a
significant drop in tumor size and repetition compared to wild animals. Because of
nitrosamine’s carcinogenic qualities, it’s becoming increasingly popular to utilize
these chemicals, particularly DEN, to induce liver tumorigenesis in mice as a test
model for human hepatocarcinogenesis (Kang et al. 2007).

Plants and their derivatives have long been recognized as efficient and versatile
chemopreventive treating agents for various malignancies. Medicinal plants have
been utilized for treating and preventing several diseases, as well as for the promo-
tion of good health, since antiquity. Anticancer therapy has progressed significantly,
as a result of medicinal plant-derived drug research, which has resulted in consid-
erable advancements in anticancer therapies. India is known as the “Medicinal
Garden of the World” because of the vast quantity of medicinal plants nature has
bestowed upon us. In the armory of modern medicine, the drugs manufactured from
phytocompounds or medicinal plants have been investigated for their efficacy
against specific diseases, so that they would be valuable therapeutic agent in modern
medicine.
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Effects of Herbal Medicine Against DEN-Induced HCC

Curcumin

Chuang et al. (2000a) looked into the effect of curcumin on DEN-HCC mice model.
Curcumin was demonstrated to be a potential inhibitor of DEN-induced hepatocar-
cinogenesis in C3H/HeN mice. p21 (ras) levels, nuclear antigen (PCNA) expression,
and CDC2 protein levels increased significantly in DEN-treated mice’s hepatic
tissues, but curcumin decreased the levels of all these biological indicators (Chuang
et al. 2000a). Curcumin might also significantly inhibit liver inflammation induced
by DEN and hyperplasia in rat HCC model, according to Chuang et al. (2000b). The
oncogenic p21 (ras), p53 proteins, PCNA, cyclin E, factor NF-, and p34 (cdc2)
proteins were likewise suppressed by curcumin, but not Cdk2, c-Jun, and c-Fos, as
revealed by immunoblotting studies (Chuang et al. 2000b). Curcumin’s antioxidant,
anti-inflammatory, and apoptotic potential in HCC models in vitro as well as in vivo,
as well as its role in multiple molecular signaling mechanisms, have all been well
documented (Table 1). The potential challenges, viz., the bioavailability, drug
delivery, pharmacokinetics of curcumin in HCC, and the lacunae in its clinical
studies have also been reviewed (Darvesh et al. 2012).

Terminalia arjuna

In male Wistar albino rats, the antioxidant potential of Terminalia arjuna bark
ethanolic extract (EETA) against DEN-induced liver cancer was investigated by
Sivalokanathan et al. (2006). Induction of liver cancer by DEN (200 mg/kg) was
followed after 2 weeks by Phenobarbital (PB) for cancer promotion up to 14 weeks.
Then, the HCC bearing rats were fed with EETA extract (400 mg/kg) and the
samples of serum, liver and kidneys were collected for biochemical analysis. LPO
levels such as H2O2, ascorbate, and FeSO4 were estimated in serum, liver, and
kidney of control and DEN treated rats. Likewise, non-enzymatic antioxidants like
Vitamin C (Vit-C) and Vitamin E and enzymatic antioxidants like superoxide
dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) (Vit-E) were
also assessed. With DEN therapy, LPO levels increased significantly, but enzymatic
and non-enzymatic antioxidant levels declined. In DEN-treated rats, EETA admin-
istration at a dose of 400 mg/kg dramatically improved these changed enzyme levels.
As a result, EETA’s protective impact was linked to DEN-induced LPO inhibition
and antioxidant enzyme levels being maintained (Sivalokanathan et al. 2006).

Annona squamosa

In DEN-induced Swiss albino mice, Raj et al. (2009) investigated the
hepatoprotective effects of custard apple (Annona squamosa). Total protein, GOT,
GPT, ACP, ALP, AFP, Total bilirubin and Direct bilirubin in serum and liver along
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with histological investigations of the liver were carried out. GOT, GPT, ALP, Total
and Direct Bilirubin (both in blood and tissue), ACP, and AFP (only in serum) levels
increased in DEN-treated groups, while all values reduced in the DEN and Annona
squamosa-treated groups. Total protein levels were lower in DEN-treated mice and
higher in DEN and Annona squamosa-treated mice. Annona squamosa’s
hepatoprotective activity was further validated by histopathological examinations
(Raj et al. 2009).

Tinospora cordifolia

With a diterpenoid (5R, 10R)-4R, 8R-dihydroxy-2S, 3R: 15, 16-diepoxycleroda-
13 (16), 17, 12S: 18,1S-dilactone (ECD), eluted from Tinospora cordifolia,
Dhanasekaran et al. (2009) assessed the chemopreventive inhibitory efficacy against
DEN that produced HCC in mice. Antioxidant activity (SOD, CAT) and detoxifying
enzymes (GSH, GPx) decreased in DEN-treated animals, but hepatic signaling
activity increased (SGOT, SGPT, LDH). The treatment of ECD resulted in an
increase in antioxidants and detoxification enzymes, as well as a drop in blood
transaminases and hepatic indicators to normal levels in both treatment groups. ECD
effectively reduced tumor incidence according to histopathological and nodular
incidence (Dhanasekaran et al. 2009).

Tinospora cordifolia ECD also helped to avoid additional damage. In a solid
tumor model, it proved efficient in inhibiting tumor growth. This work indicated
ECD’s chemopreventive potential in DEN-induced hepatocarcinogenesis, which
was attributable to ECD’s antioxidant and detoxifying mechanisms. Reduced
serum transaminase secretion preserved membrane function, which is also attribut-
able to ECD’s protective impact. ECD’s chemopreventive activities were also
validated by biochemical and histological tests. ECD performs a dual effect by
suppressing carcinogen metabolic activity and increasing carcinogen detoxification,
according to Dhanasekaran et al. (2009).

Bacoside A

Janani et al. (2009) reported that bacoside A (BA), a substance derived from Bacopa
monniera Linn., protects rats from DEN-induced liver damage. The activity of serum
marker enzymes, viz., AST, ALT, LDH, ALP, and GGT rose significantly, as did
liver weight, lipid peroxidation (LPO), and liver weight in rats treated with DEN,
while the markers enzymes were on par with the levels of the above parameters in
rats treated with BA. Antioxidant enzyme activity, viz., SOD, CAT, GSH-Px, GR,
GSTs and reduced GSH in the liver was diminished in rats treated with DEN. The
findings imply that pre-treating BA decreases LPO and serum marker enzyme
activity while maintaining antioxidant activity, protecting rats from DEN-induced
hepatotoxicity (Janani et al. 2009).
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Likewise, the impact of BA on the activity and expression of MMP-2 and MMP-9
during HCC was examined by Janani et al. (2010). Co-treatment with BA consid-
erably reduced the activity of MMP-2 and MMP-9, which increased during HCC,
according to the results of a gelatin zymography investigation. Immunoblot analysis
demonstrated a decrease in the expression of MMP-2 and MMP-9 in BA co-treated
rats, than that of DEN-induced HCC rats. By suppressing MMP-2 and MMP-9
activity as well as expression, BA inhibits the metastasis of DEN-induced HCC
(Janani et al. 2010).

Saffron

Saffron was found to be a strong medication against HCC in another investigation by
Amin et al. (2011). The number and incidence of hepatic dyschromatic nodules
caused by DEN were considerably reduced by saffron. In the livers of rats treated
with DEN, saffron decreased the intensity and distribution of placental GST positive
foci. It also protected rats against the oxidative stress caused by DEN by restoring the
levels of SOD, CAT, and GST. Similarly, MPO activity, MDA activity, and COb
formation were inhibited in liver. According to immunohistochemical labelling of rat
liver, Saffron lowers the amount of cells positive for Ki-67, COG 2, inducible NOS,
NF-kB, p-65, and phosphorylated TNF receptors in rats treated with DEN. In the
liver tissues of mice treated with DEN, saffron decreased the number of cells positive
for TUNEL and M30 Cyto-Death (Amin et al. 2011).

Luteolin

Balamurugan and Karthikeyan (2012) investigated the effectiveness of luteolin in
Wister albino rats with DEN-induced HCC. The researchers looked at
non-enzymatic antioxidant enzymes including AST, ALP, LDH, and c-GT, as well
as enzymatic antioxidants like SOD, CAT, GSH, and GPx, along with histopatho-
logical alterations. In the DEN-treated groups, tissue-damaging enzymes were
higher, while enzymatic antioxidants were lower. The DEN-treated rats developed
severe lesions and cirrhosis. The levels of tissue-damaging enzymes and enzymatic
antioxidants recovered in DEN-treated rats after treatment with luteolin, which
almost entirely healed the damaged lesions in the liver induced by DEN. In albino
rats, luteolin functions as a potential anti-HCC agent (Balamurugan and Karthikeyan
2012).

Leucas aspera

In Wister rats, Gupta et al. (2015) investigated the chemoprotective efficacy of
Leucas aspera against DEN-induced and CCL4-stimulated hepato-carcinogenesis.
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Except control, all other groups got a single dose of CCl4 (2 ml/kg i.p.) 2 weeks after
the commencement of the test protocol to enhance liver cell proliferation and
regeneration. The extent of protection was measured once the treatment period
was completed by analyzing blood antioxidant indicators. To validate the effect of
toxicants on the liver and to assess the chemoprotective potential of Leucas aspera
extracts, biochemical parameters of the liver were measured. In addition to an
increase in GGT levels, which indicated hepatic carcinogenesis, DEN administration
in animals resulted in an increase in ALP activity, which could be attributable to
changes in enzyme production, as in other examples of hepatotoxicity. The extracts
normalized serum GGT levels and lowered serum AST and ALT levels, indicating a
hepatoprotective action and suppression of carcinogenesis. In rats treated with
aqueous and hydro-ethanolic extracts of DEN þ CCL4, a significant reduction in
ALP activity indicated suppression of pre-cancerous alterations in the liver. As a
result, both extracts of Leucas aspera were found to be efficient in suppressing cell
proliferation and hepatic nodulogenesis (Gupta et al. 2015).

Graptopetalum paraguayense

In HCC cells, the release of Graptopetalum paraguayense (GP) suppressed the
expression of many oncoproteins, including AURKA, AURKB, and FLJ10540,
according to Hsu et al. (2015). When the fractions eluted from the extracts were
tested for their effects on onco-protein exposure in HCC cells, it was discovered that
the HH-F3 fraction enriched with active components had cytotoxic effects and
inhibited onco-protein expression. Studies on apoptosis showed that HH-F3 caused
HCC cells to undergo apoptosis by increasing the energy loss from the mitochondrial
membrane and the production of active oxygen species. In a concentration-
dependent manner, HH-F3 improved PTEN expression and reduced AKT phosphor-
ylation at Ser473 in HCC cells. The combination of GP or HH-F3 and sorafenib also
suppressed Huh7 cell proliferation. Treatment with GP and HH-F3 reduced hepatic
collagen levels and prevented tumor growth in DEN-treated mice. The results clearly
depicted the protection of liver by GP and HH-F3 extracts liver, and that they could
be used to treat HCC (Hsu et al. 2015).

Oldenlandia diffusa

Demonstrated Oldenlandia diffusa’s therapeutic potential in vitro and in vivo.
Oldenlandia diffusa enhanced apoptosis and anti-proliferation activities while reduc-
ing the ability of HCC cells to migrate. In in vivo experiments, Oldenlandia diffusa,
when given twice daily for 28 days following confirmation of the HCC model
utilizing two images – [18F]-fluoro-2-deoxy-D-glucose (18F-FDG) imaging, showed
a higher survival rate in Oldenlandia diffusa treated group than in the control group.
Tumor counts, size, tumor cell proliferation, 18F-FDG uptake, and serum enzyme
levels such as ALT, AST, and ALP were all considerably less in the Oldenlandia
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diffusa treated group than control group after 28 days of therapy. Furthermore,
several Oldenlandia diffusa-treated rats lived for more than 60 days, and their liver
morphology revealed variations between tumor mass and normal tissue compared to
control rats.

Celastrol

Chang et al. (2016) investigated the anti-tumorogenic activity of Celastrol, an active
component in Tripterygium wilfordii, in DEN-induced HCC in Sprague-Dawley rats.
For 16 weeks, DEN (10 mg/kg) was given intragastrically 6 days a week.
Hematoxylin-Eosin (HE) staining was used to determine the number of nodules
developed and hepatic pathological abnormalities. Similarly, Elisa kits were used to
determine serum ALT, AST, ALP, and AFP levels, as well as p53 protein levels,
MDM 2, Bax, Bcl-2, Bcl-xl, cytochrome C, Caspase-3, Caspase-9, and PARP levels.
In comparison to rats treated with DEN, Celastrol dramatically decreased liver index,
tumor nodule count, and mortality in rats treated with Celastrol. Celastrol also
lowered elevated levels of ALT, AST, ALP, and AFP and appeared to improve
liver pathological abnormalities. Celastrol, on the other hand, inhibited anti-
apoptotic Bcl-2 and Bcl-xl and activated pro-apoptotic Bax, cytochrome C, PARP,
and caspases by repressing MDM2 protein expression, activating the p53-induced
intrinsic mitochondrial apoptotic pathway (Chang et al. 2016).

Tetilla dactyloidea

Gowri Shankar et al. (2017) investigated the zoochemical status, antioxidant capa-
bility, and anti-cancer efficacy of Tetilla dactyloidea crude methanol extract
(CMETD) in Sprague Dawley (SD) rats treated with DEN. Nodule formation,
body mass, hepatic marker enzymes, enzymatic and non-enzymatic antioxidants,
Phase-I metabolizing and hepatic macromolecular enzymes, and immuno-
histopathological alterations were evaluated in the DEN and DEN þ CMETD
treated groups. Following oral administration of 400 mg/kg body weight of
CMETD, all parameters in the DEN-treated groups were restored to normal levels.
The recovered biochemical levels were in accordance with histological findings,
indicating that CMETD has a dose-dependent hepatoprotective effect. Six chemicals
were detected in CMETD after GCMS screening. In DEN-induced HCC, the results
demonstrated that CMETD reduced liver damage, protected the antioxidant immune
system, and exhibited anti-cancer activities (Gowri Shankar et al. 2017).

Ajwa Dates, Phoenix dactylifera

Khan et al. (2017) conducted another study in Wister rats, this time looking at the
anti-cancer properties of Ajwa dates (Phoenix dactylifera L.), where HCC was
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caused by DEN administration. The liver architecture of the DEN-treated rats was
reversed from partial to complete, while the liver architecture of the AD-treated rats
was reversed from partial to complete. Antioxidant enzymes like SOD, GR, GPx,
and CAT elevated, whereas liver enzymes like ALT, AST, and ALP, as well as LPO,
declined in AD treated rats compared to DEN. Antitumor cytokines like IL-2 and
IL-12 were found to be elevated in DEN-treated groups’ serum, while
pro-inflammatory cytokines like IL-1 and GM-CSF increased in AD-treated groups’
serum. Furthermore, gene levels of Alpha-Feto Protein (AFP) and IL-6 were
up-regulated in DEN-treated groups, but down-regulated in AD-treated groups.
AD extract helped to restore normalcy to a damaged liver that had been treated
with DEN. Following AD treatment, antioxidant enzymes, liver enzymes, cytokine
balance, and gene expression all restored to normal, proving that AD enhances the
function of liver and protects it against HCC (Khan et al. 2017).

Garcinia mangostana

In a rat animal model of DEN-induced HCC, Priya et al. (2018) revealed a protective
mechanism of G. mangostana fruit extract (GME). In rats treated with DEN, the
levels of HCC indicators such as AFP, CEA, TNF-α, hepatic hydroxyproline and
total protein were determined by ELISA. Immunohistochemistry was used to detect
the expression of vascular endothelial growth factor in liver tissue. Serum AFP,
CEA, hepatic hydroxyproline and total protein levels were significantly higher in the
DEN-treated rats than that of the control group. Treatment with GME at low or high
dosages resulted in significant decline in AFP, CEA, hepatic hydroxyproline, and an
elevation rise in total blood protein levels in the DEN-treated rats. Interestingly,
treatment with GME resulted in significant improvements in the histological archi-
tecture of the liver and down-regulated tumor necrosis factor alpha levels. GME thus
exhibited its chemopreventive potential against DEN-induced HCC by reducing the
expression of tumor promoting growth factor (Priya et al. 2018).

Wedelia calendulacea

In Wistar rats and HepG-2 and HuH-7 cell lines, Verma et al. (2018) investigated the
hepatoprotective potential of 19--Hydroxyurs-12 (13)-hypertensive method of
28 oic acid-3-O-D-glucopyranoside (HEG) eluted from Wedelia calendulacea
against DEN-induced oxidative stress, hyperproliferation, inflammation, and apo-
ptotic tissue damage. To cause liver damage, single dose of DEN (200 mg/kg) and
two doses of phenobarbitol were given. This was followed by a 22-week HEG
treatment. Hepatic nodules were confirmed by macroscopic examination, and serum
and hepatic samples were subjected to additional biochemical and histological
analyses. Inflammatory cytokines such as TNF-α, IL-6, IL-1, and NF-kB were also
evaluated, as were hepatic and non-hepatic Phase I and II antioxidant enzymes
(NF-kB). To examine the changes that have occurred in the liver of both DEN and

450 K. Sivakumari et al.



HEG treated rats, histopathological changes were identified. HCC induced by DEN
in all groups was significantly altered in a dose-dependent manner by HEG. Like-
wise, tumor growth and DNA synthesis was reduced by HEG in both cell lines.
Pro-inflammatory cytokines were found to be decreased and membrane-bound
enzyme activity was altered by HEG. HEG inhibited phase I, II and antioxidant
enzymes in an active dose-dependent way, and proved HEG as a precursor in
combating HCC. According to alterations in phase I, II, and antioxidant enzymes,
HEG suppressed inflammatory responses and oxidative stress that either explicitly or
implicitly decreased NF-kB expression. HEG inhibited the growth of HCC by
inhibiting the NF-kB pathway (Verma et al. 2018).

Cynanchum auriculatum (Baishouwu)

Ding et al. (2019) investigated the effect of Baishouwu extract (BE) on
DEN-induced HCC as well as the potential mechanisms involved in its treatment.
Animals were treated simultaneously with BE, which was administered daily by oral
gavage for 20 weeks to investigate its preventive benefits, and multistep hepatocar-
cinogenesis was commenced by injecting DEN. To assess the effect of BE on hepatic
carcinogenesis, a serum sample was taken at a predetermined time and organ
samples were taken from each group. BE co-treatment significantly reduced the
liver damage caused by DEN in rats, as seen by lower levels of serum biochemical
markers (AST, ALT, ALP, TP, and T-BIL). From the inflammatory phase until the
HCC stage, BE decreased the fibrosis-related index in blood and tissues, which was
produced by DEN. In a dose-dependent way, BE dramatically reduced the incidence
and frequency of DEN-induced HCC development. Pre-treatment with BE for
20 weeks appeared to be successful in avoiding inflammation produced by DEN,
liver fibrosis, and HCC, according to macroscopic and microscopic findings. Fur-
thermore, BE reduced TLR4 over DEN expression, resulting in considerable down-
regulation of MyD88, TRAF6, NF-B, p65, TGF-1, and -SMA in hepatitis, cirrhosis,
and HCC (Ding et al. 2019).

Echinacoside

A phenylethanoid glycoside called as echinacoside (ECH) is obtained from the
Chinese herb Cistax’nches salsa. Ye et al. (2019) explored the impact of ECH on
HCC as well as the mechanisms involved. ECH decreased DEN-induced HCC in
mice and had anti-proliferative and pro-apoptotic effects in the HepG-2 cell line,
according to the findings. ECH suppressed AKT (p-AKT) phosphorylation and
increased p21 and Bax expression in HepG-2 cells in a dose-dependent manner.
ECH reduced p-AKTand cell proliferation generated by insulin-like growth factor-1,
demonstrating that PI3K/AKT signaling was involved in ECH’s anti-HCC effect. It
was shown that the activation of receptors expressed in myeloid cells 2 (TREM2)
expression in HCC tissues was positively linked with the PI3K pathway. TREM2
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protein levels in HepG-2 cells and DEN-induced HCC in mice were both dramati-
cally reduced after exposure to ECH. Overexpression of TREM2 also substantially
inhibited ECH-mediated proliferation inhibition and AKT signaling inactivation.
Eventually, the ECH suppressed tumor growth by inhibiting TREM2 expression
and PI3K/AKT signaling (Ye et al. 2019).

Ginger

In Wister rats, Hamza et al. (2021) studied the mechanisms of ginger rhizome
extracts against DEN-induced HCC. At dosages of 75, 150, and 300 mg/kg/day,
ginger was found to have chemopreventive potential in the liver damage caused by
DEN and 2-acetylaminofluorene in rats (2-AAF). After 22 weeks of cancer induc-
tion, ginger decreased the quantity of placental GST in the liver of the DEN/2-AAF
treated groups, as well as the number and incidence of hepatic dyschromatic nodules
and positive focal regions. In addition, ginger reduced the levels of
myeloperoxidase, malondialdehyde, and protein carbonyl in the liver via inhibiting
oxidative stress with DEN. The restoration of SOD, CAT, GST, and glutathione was
used to determine this. Ginger decreased the proliferation of Ki-67 cell counts,
cyclooxygenase-2 (COX-2) and NF-B p65 in rat liver, as depicted by immunohis-
tochemical staining. In mice treated with TUNEL DEN/2-AAF, M30, and caspase-3
liver tissue, ginger lowered the number of cancer cells. Ginger has a significant
chemopreventive potential against liver cancer, as per this study, by slowing cell
growth and increasing apoptosis. Ginger protects the rat liver from cancer by
lowering oxidative damage and inflammation (Hamza et al. 2021).

Cow Ark with Allium sativum

In a study by Nithya (2021), the ability of Cow Ark to control and regulate cancer
activity in Wister rats induced with DEN þ 2AAF. The weight loss in rats showed
that HCC was caused by DEN þ 2AAF in the experimental group. On the other
hand, Cow ark significantly reduced MMP in mitochondria of HCC hepatocytes in a
time-phased way. Allium sativum extracts independently showed an insignificant
effect on MMP of liver mitochondria, isolated from the control group. Likewise,
production of Hydrogen peroxide in the liver mitochondria of the HCC cells was
found to be enhanced in rats induced by DENþ 2AAF, whereas the H2O2 activity in
plant extract did not have significant effects in control group treated only with plant
extract. Significant increase in H2O2 production was observed in rats treated with
Cow Ark and plant extract, due to their synergistic effect. Thus the enhancing
potential of Cow ark and plant extract was established by the radical scavenging
into the antioxidant activity. In addition, the synergistic action of Cow Ark and plant
extract treated mitochondria increased cytochrome c release by cleaving the mito-
chondrial membrane integrity in liver mitochondria from DEN þ 2AAF treated rats,
but no such effect was seen in the control group (Nithya 2021).
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Conclusion

Based on previous findings, it could be concluded that animals can be considered to
be the exact models for drug testing against HCC. Today, the emergence of new
therapies that target the immune system and the tumor microenvironment empha-
sizes the importance of the host, conditions of chronic inflammation, and fibrosis.
Hence, use of animal models for a wide range of cancer research will help us to
discover new drugs to combat HCC.
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