
Chapter 14
Bayesian Methods for Geospatial Data
Analysis

Wei Tu and Lili Yu

Abstract This chapter provides an applied introduction to model two types of
point-based geospatial data using Bayesian methods. Unlike frequentist inference,
Bayesian inference describes unknown statistical parameterswith a prior distribution.
With this foundation, Bayesian approach provides a valuable alternative to analyze
geospatial data.Webegin the chapter by introducing the basic concepts andbenefits of
Bayesian inference and survey four selectedBayesianmodels andmethods, including
Bayesian spatial interpolation, spatial epidemiology/diseasemapping, Bayesian hier-
archical models, and Bayesian spatial autoregressive models, for their applications in
geospatial data analysis. Thenwe discuss some popular software packages to perform
Bayesian analysis. We conclude the chapter by encouraging geospatial researchers
and practitioners to add Bayesian methods in their toolboxes.

Keywords Geospatial data analysis · Case and count data · Bayesian inference ·
Markov Chain Monte Carlo (MCMC) · Bayesian spatial interpolation · Spatial
epidemiology/disease mapping · Bayesian hierarchical models · And Bayesian
spatial autoregressive (SAR) models

14.1 Introduction

Geospatial data analysis has always been deeply rooted in two main inference
paradigms in statistics, the classical frequentist inference and the younger but fasting-
growing Bayesian inference (Haining, 2014). The two paradigms represent two
ontologically (model-building) and epistemologically (integrating knowledge from
other sources) different statistical reasonings (Withers, 2002). Geographers have
for decades recognized the great potential of Bayesian inference. For instances,
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Bennett (1985) suggested that Bayesian approaches held the greatest potential in
advancing spatial analysis; Hepple (1995) introduced the Bayesian analysis in spatial
and network econometrics; Fotheringham et al. (2000) discussed Bayesian infer-
ence along with classical inference in their quantitative geography textbook;Withers
(2002) provided a comprehensive review on the methodological and substantive
benefits of Bayesian methods in human geography research and encouraged geogra-
phers to try the new approach; and Lawson and Banerjee (2009) conducted a compre-
hensive technical review of Bayesian spatial analysis, which covered a broad range
of topics including spatial data types, basic concepts and algorithms of Bayesian
inference, Bayesian models and examples for point processes and disease mapping,
and software packages for Bayesian modeling.

This chapter is organized into five sections: after a brief introduction, Sect. 14.2
reviews the basics of Bayesian inference and its potentials in geospatial research;
Sect. 14.3 discusses four applications and models; Sect. 14.4 provides a short discus-
sion on the implementation of Bayesian models; and the last section offers some
concluding remarks.

14.2 Bayesian Inference

Between the twomajor inference frameworks in statistics, the frequentist inference is
the conventional approach. It interprets the probability as the long-run frequency or
repeatable experiments. Therefore, it can estimate the parameters, which are consid-
ered as unknown but fixed quantities, based on the sample data. On the other hand, the
Bayesian inference is based on Bayes’ theorem, named after Thomas Bayes. In addi-
tion to the long-run frequency which can be obtained from sample data (Greenland,
2000), this approach includes subjective experience of uncertainty (De Finetti, 1974)
to interpret the probability. The subjective experience relies on previous knowledge
on uncertainty to describe the distributions of the parameters, which are considered
as unknown but random variables and we call them as prior distributions of the
parameters. Bayesian methods combine the information from both sample data and
the prior distributions to produce posterior distribution. The model fitting and the
implications of the resulting posterior distribution can also be evaluated (Gelman,
2014).

To be specific, let y be a random variable with distribution f (y|θ). A sample is
collected for the random variable y with independent observations y1, . . . , yn , then
the likelihood is defined as: L(θ |y1, . . . , yn) = ∏n

i=1 f (yi |θ).

The likelihood summarizes the information about θ based on the observations
(Tanner, 1998) and is used by the frequentist inference to estimate the parameter
θ . Therefore, the frequentist inference uses information only from sample data. In
comparison, Bayesian inference is based on information from the likelihood as well
as the prior distribution. Let p(θ) be the prior distribution of θ which represents the
subjective knowledge of θ , then theBayes’ theory calculates the posterior distribution
(Kreft & de Leeuw, 2007) as:
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p(θ |y1, . . . , yn) = p(θ)L(θ |y1, . . . , yn)
p(y1, . . . , yn)

= p(θ)L(θ |y1, . . . , yn)
∫ p(y1, . . . , yn|θ)p(θ)dθ

(14.1)

The posterior distribution is a conditional distribution, i.e., the distribution of θ

given the sample data. It updates the knowledge about θ from the prior distribution
using the information from the sample data. Then it can be used to make inference
about θ , such as mean, credibility interval which corresponds to confidence interval
of the frequentist approach.

As the Bayes’ theory incorporates the prior information, it adds complexity to the
computation. The integration of denominator in Eq. (14.1) may not have a closed
form. Because the analytical and numerical integration are often not intractable,
especially for high dimension integration, methods were proposed to approximate
the posterior distribution. The most popular method is Markov Chain Monte Carlo
(MCMC) (Berger, 2000; Cappe & Robert, 2000), which includes Gibbs sampler and
Metropolis Hastings algorithm.

The MCMC method is based on the theory of Law of Large Numbers which
states that an expectation can be efficiently approximated by a Monte Carlo esti-
mator. Therefore, the basic idea of the MCMCmethod is to make inference based on
samples drawn fromposterior distribution. Specifically, it first generates sequences of
dependent observations which is called Markov chains, then inference is done using
these samples, such as estimating expectation of the parameter using the sample
mean. It has been proved that, although the samples are dependent, the observations
in these samples can be considered as independent and identical from the true poste-
rior distribution when theMarkov Chain is long enough (i.e., to infinity) and is under
certain conditions (the chain must be finite, aperiodic, irreducible, and ergodic). To
meet those conditions, some iterations at the beginning of the MCMC run need to
be discarded and the process is called Burn-in samples. The number of Burn-in
samples that need to be discarded can be determined by diagnostics, such as the
Geweke Diagnostic, the Heidelberg and Welch Diagnostic, the Raftery and Lewis
Diagnostic, and the Gelman and Rubin Multiple Sequence Diagnostic. In addition,
the Gibbs sampler is the simplest MCMC algorithm, and it is a special case of
Metropolis Hastings algorithm.

Bayesian inference are detailed in numerous textbooks (Congdon, 2014; Gelman,
2014). Several journal articles also provide extensive discussions of Bayesian
methods that are directly dealingwith geospatial data (Berger, 2000;Cappe&Robert,
2000; Hepple, 1995; Lawson&Banerjee, 2009). The following discussion addresses
only selected applications of Bayesian inference on geospatial data analysis.
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14.3 Applications of Bayesian Models in Geospatial
Problems

We focus our discussions on models that analyze two types of geospatial data, point
data with attributes and count data aggregated to areal units. The following discus-
sions are confined to four selected methods and models, namely Bayesian spatial
interpolation, spatial epidemiology/disease mapping, Bayesian hierarchical models,
and Bayesian spatial autoregressive models.

14.3.1 Bayesian Spatial Interpolation

The classical interpolation method such as Kriging relies on the BLUP (Best Linear
Unbiased Predictor) and substitutes maximum likelihood estimates for the model
parameters (Lam, 1983). The Bayesian approach, on the other hand, first computes a
posterior distribution for model parameters and then computes the posterior predic-
tive distribution bymarginalizing over (averagingover) the posterior distribution. The
major advantage of the latter solution is that the inference is supported by proper and
moderately informative priors on the weakly identified correlation function param-
eters (Lawson & Banerjee, 2009; Mugglin et al., 1999). Bayesian approach fuses
information from multiple sources in the development of models, so it can better
handle uncertainty in the interpolation results. Bayesian spatial interpolationmethods
are applied most commonly in environmental studies (Brown et al., 1994; Cooley
et al., 2007; Fuentes & Raftery, 2005). More recently, Bayesian-based spatiotem-
poral methods have been developed to analyze rapidly increasing collections of and
access to spatiotemporal data (Christakos, 2000; Cressie & Wikle, 2011; Esmaeil-
beigi et al., 2020; Haining & Li, 2021; Li & Revesz, 2004; Sahu et al., 2010, 2015;
Susanto et al., 2016), because of the above-mentioned advantages.

14.3.2 Bayesian Models for Disease Mapping, Risk Estimate,
and Prediction

There are two common types of disease data. The first type is case event data, where
the locations of cases (points) are usually known residential addresses of patients.
These data form a spatial point process. But such data are usually unavailable, partic-
ularly for large study areas. The second type is aggregated counts of cases (events),
which are more common and accessible. The boundaries of aggregation that form
the basic spatial units of the study region are typically subjective with respect to the
disease process (such as zip code areas). Bayesian models have long been applied on
disease mapping, risk estimate, and prediction (Besag & Newell, 1991; Greenland,
2006, 2007, 2009; Lawson, 2018; Wakefield &Morris, 2001; Waller et al., 1997). A
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wise choice of the prior distribution can inform the models by bringing in epidemio-
logical domain knowledge and other information from the study area, which can lead
to more reliable model results. In addition, the Bayesian approach is more flexible
and effective in dealing with sparse data or rare events. Lawson and Banerjee (2009)
illustrated the technical details of specifying Bayesian models for analyzing the two
types of data and highlighted the applications of count data.

14.3.3 Bayesian Hierarchical Models

Hierarchical (multilevel) regression models have long been used in geospatial
research to explicitly incorporate data collected at various spatial scales of observa-
tions, for instance, individuals nested in neighborhoods and neighborhoods in cities.
Hierarchical models are naturally Bayesian because the distributions of regression
coefficients across various clusters (groups, geographic regions etc.) can be treated as
a special type of prior distribution. The “empirical Bayes” method estimates regres-
sion coefficients as weighted average of the coefficients obtained from sample data
from all clusters. In this case, sample data are used to form the prior population
distribution, so there are no prior distributions for the hyperparameters. The “Pure
Bayes” method generates prior distributions for the hyperparameters from a popula-
tion. Though the two approaches commonly yield similar results, the latter approach
explicitly takes account of prior uncertainty, so it usually generates larger posterior
variance (Western, 1999). Moreover, datasets used in hierarchical models could be
complex due to problems such as measurement error, censored or missing observa-
tions, complex multilevel correlation structures, and multiple endpoints. Comparing
to frequentist procedures, Bayesian procedures are not onlymore flexible in handling
the above data issues, but also easier to justify the theoretical properties in the model
(Congdon, 2021; Dunson, 2001; McGlothlin & Viele, 2018).

14.3.4 Bayesian Spatial Autoregressive Models

Spatial autoregressive (SAR) models differ from standard regression models in that
they account for spatial autocorrelation in the sample data (Griffith, 2009). Bayesian
methods have been used to estimate SARmodels for several decades (Hepple, 1979;
LeSage, 1997, 2000) and the motivation was driven by several advantages of the
approach: it can accommodate the presence of an unknown formof heteroskedasticity
in the disturbance term in SARmodels; it can produce posterior distribution of spatial
lag parameters; it can help choose between a logit or probit model; and it by nature
can allow prior knowledge to be introduced in the model when available. Doğan
and Taşpınar (2014) compared the robust method of moments (GMM) estimator
and the estimators based on the Bayesian MCMC approach for SAR models with
heteroskedasticity of an unknown form. Their results indicate that the Maximum
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Likelihood Estimation (MLE) and the Bayesian estimators impose relatively greater
bias on the SAR parameter estimation when there is a negative spatial dependence
in the model, they also found that the Bayesian estimators perform better than the
robust GMM estimator in terms of finite sample efficiency. LeSage and Chih (2018)
developed a Bayesian heterogeneous coefficients SAR panel model to estimate spill-
in and spill-out effects for wage in the contiguous US states.

Litterman (1986) proposed the Bayesian vector autoregressive model (BVAR) to
overcome the collinearity and overparameterization that are typically found in unre-
stricted vector autoregressive models (VAR). The Bayesian approach can specify
coefficientswith varyingweights and the estimated coefficients are therefore a combi-
nation of prior knowledge and the information from sample data. Like other Bayesian
SAR models, BVAR models have mostly been applied in economic and regional
forecasting research (Cuaresma et al., 2016; Puri & Soydemir, 2000).

14.4 Bayesian Implementation

Bayesian models are often fit using MCMC techniques. Many software packages
can perform MCMC estimation with varying degrees of difficulty and different
sampling procedures. The most popular one isWinBUGS (Bayesian inference Using
Gibbs Sampling). This free software package employs both Gibbs sampling and
Metropolis–Hastings updating methods for a wide range of models. It allows spec-
ifying models, sampling from the posterior distribution of parameters, diagnosing
model convergence, and creating graphical and analytic output (Lunn et al., 2009).
GeoBUGS, a GIS add-on module of WinBUGS, can be used to fit spatial models
and to produce a range of map products from model output.

JAGS (Just Another Gibbs Sampler) is an open-source and cross-platform
Bayesian analysis program that uses the same model description language as
WinBUGS. It can specify Bayesian models and generate samples from the poste-
rior distribution (Plummer, 2003). JAGS users usually rely on R packages such
as “coda” and “mcmcplot” to test model convergence, analyze model output, and
generate graphics of model results. The “rjags” package of the R software provides
an interface to access the JAGS library.

STAN is another specialized software package for Bayesian analysis. Different
from JAGS and WinBUGS samplers, it uses a Hamiltonian Monte Carlo and No-U
Turn sampling procedure due to their abilities to handle nonconjugate priors and high
posterior correlations (Stan Development Team, 2021). Like JAGS, the R package
“rstan” is commonly used to access the STAN library fromRand the sameRpackages
for JAGS can be used to analyze model output and produce result graphics.

Bayesian analysis is also facilitated by a growing number of R packages. For
instances, “brms” is for fitting Bayesian generalized (non-)linear multivariate multi-
level models using STAN for full Bayesian inference; “geoR” is for geostatis-
tical analysis including variogram-based, likelihood-based, and Bayesian methods;
“spBayes” is for spatially varying short-length time series data; “spTimer” is for
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fitting large hierarchical Bayesian spatiotemporal models; and “CARBayes” is for
fitting a class of univariate and multivariate spatial generalized linear mixed models
for areal unit data, with inference in a Bayesian setting using MCMC simulation.

A growing number of researchers have been adopted INLA (the integrated nested
Laplace approximation) as an alternative method for approximating Bayesian infer-
ence over the past 10 or so years (Blangiardo & Cameletti, 2015; Rue et al., 2009).
The INLA methodology focuses on models that can be expressed as latent Gaussian
Markov random fields (GMRF), therefore it works for a large family of models.
It also enjoys significant computational advantages over classic methods such as
MCMC in dealing with complex models. The method can be implemented using the
R-INLA package (R-INLA Project).

14.5 Some Concluding Thoughts

For more than four decades, the Bayesian inference has been proposed as an alterna-
tive inference to overcome some intrinsic issues in the classical statistical inference
in geospatial inquires. For instances, Summerfield (1983) questioned the validity and
relevance of applying the classical statistical inference to population data in geog-
raphy research. Bennett (1985) argued Bayesian approaches had offered powerful
alternative theory and techniques to advance statistical inference in spatial science.
Haining (2014) highlighted three areas of development in spatial data analysis in the
coming years after summarizing the major progress in spatial statistics in the first
decade of the twenty-first century: spatial data mining; the “new” geostatistics; and
the Bayesian spatial hierarchical modeling. Although the word “Bayesian” appears
only in the last area, Bayesian methods have also been applied in the other two areas
(Diggle & Lophaven, 2006; Gelfand & Banerjee, 2017; Zhang et al., 2019).

The Bayesian approach has provided geospatial researchers a versatile alternative
to fit a wide range of models. In addition to the benefit of including prior knowl-
edge to models, the Bayesian approach is much more flexible because almost any
model assumption can be treated as a priori. In addition, the fact that geospatial
datasets are not always samples and they could be populations or apparent popula-
tions (irreplicable observations) has made it difficult to do classical inference. The
Bayesian approach provides a debatable solution to this unique inference challenge in
geospatial research (Berk et al., 1995;Mendoza et al., 2021).Moreover, the Bayesian
approach can accommodate the needs in the rapidly growing space–time modeling
(Faghmous & Kumar, 2014; Holmström et al., 2015).

The opponents of the Bayesian approach hold two fundamental objections to the
method. One is that the approach might be abused as an automatic inference engine,
and the other is the subjectivity in the choice of prior distribution (Gelman et al.,
2013). Like many other authors, we view Bayesian inference as an ontologically
and epistemologically different approach with appealing statistical properties that
the classical inference lacks. The true value of the approach, however, will need to
be assessed by whether it can advance geospatial reasoning in the long run (Withers,
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2002). We encourage you to explore the great potential offered by this compelling
alterative approach to tackle the problems in the fascinating geospatial world.
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