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Preface

Initially emerging from map-based spatial data inventories in the 1960s, Geographic
Information Science (GIScience) has undergone decades of evolution characterized
by a breadth of technical breakthroughs and new applied fields. At the 28th Inter-
national Conference on Geoinformatics, Nanchang, China (in hybrid form), a panel
of twenty-two scholars presented their theoretical perspectives on GIScience, which
attracted a large audience worldwide. The enthusiastic response and constructive
discussion prompted the idea of publishing a collection of short articles to reflect
the new forms and frontiers of contemporary GIScience based on the panel discus-
sions. Encouraged by the firmed support from the publishers, we decided to broaden
the scope and invited an additional group of distinguished scholars to contribute
thought-based essays in this book New Thinking in GIScience.

Over one hundred authors contributed forty manuscripts. With the majority from
academia, the authors were leaders in GIScience research, development, and applica-
tions. Many lead authors are prolific writers well known in GIScience, among whom
are editors and editorial board members of prominent journals in the discipline. Also
included in the author team are junior scholars who are doing cutting-edge work that
advances and expands the field.

Thus, an important and unique purpose of this book is to provide an uncommon
outlet for a group of active thinkers in GIScience to present their most vanguard
and sometimes early thoughts, ideas, and speculations about the discipline. In our
invitation to the authors, we made it clear that what we need are seminal “position
papers” rather than ordinary research papers.

The essays cover a wide range of topics and represent diverse perspectives on the
future trend of GIScience. They are organized into four categories. The first category
deals with conceptual topics, including the changing connotations of GIScience and
a proposal to extend GIS to Holo Spatial Information System (HSIS), new represen-
tations in both GIS and remote sensing, elaboration on Virtual Geographic Environ-
ment (VGE) and the Neighborhood Effect Average Problem (NEAP), guidelines for
presenting the relevance of research, and proposals of new law and novel approaches

v
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to GIS-basedmodeling. Topics in the second category concern the functional compo-
nents of GIS, such as the management of unstructured geospatial data and Volun-
teered Geographic Information (VGI), implementation of new functions for spatial
causal analysis, Bayesian modeling, domain knowledge-based modeling, GeoAI,
deep learning, and energy-conscious cartographic design. Prospects on GIS soft-
ware development in the new era of cloud computing are also included in this group.
The third category highlights new research directions in remote sensing applica-
tions, namely retrieval of canopy structural and leaf biochemical parameters, LiDAR
remote sensing of forest ecosystems, time series analysis of dense satellite image, and
integration of earth remote sensing and social sensing. The fourth category covers
domain-specific topics. In addition to new perspectives on the integration of GIS
with humanities and social sciences as well as GIS-enabled urban science, the essays
share authors’ insights on specific application domains such as social governance,
planning, transportation, crime, health, and land use.

We are indebted to the authors who demonstrated not only distinct scholarships
but also a high level of professionalism. They submitted their first drafts in less
than two months from early November 2021 and completed the revisions by the
end of January 2022. The timeline was particularly demanding for many authors for
whom English is not their working language. They gracefully responded to editors’
suggestions for revisions in both content and language in a timely manner, which
made it possible to produce this valuable volume on such a tight timeline.

Most of the authors, including ourselves as editors, are members of the Inter-
national Association of Chinese Professionals in Geographic Information Sciences
(CPGIS) which was founded in 1992. We proudly present the book as a tribute to
the celebration of the 30th anniversary of CPGIS.

Mount Pleasant, USA
Hanover, USA
Madison, USA
Columbia, USA
Nanchang, China
March 2022

Bin Li
Xun Shi

A-Xing Zhu
Cuizhen Wang

Hui Lin
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Chapter 1
From Representation
to Geocomputation: Some Theoretical
Accounts of Geographic Information
Science

May Yuan

Abstract This essay discusses theoretical perspectives in GIScience in representing
and computing geographic information. Grounding the discussion is the need for new
ways of thinking about new facts. Information and geospatial technologies continue
acquiring new facts of various kinds. New ways of thinking about these new facts
are essential to theoretical advances. Geographic representation encodes new facts
to evoke new ways of thinking about them. Geocomputation carries out analyt-
ical and modeling procedures to realize these new ways of thinking. Discussions
follow the proposed object-field continuum and event-process continuum to capture
the essence of geographic representation and computational thinking. While much
progress has been made, theories in GIScience research mostly apply existing ones
from other disciplines or surround conceptual, logical, or ontological arguments.
The lack of a well-defined theory for geographic information presents an excellent
research opportunity. Theories for statistics and machine learning are exemplars.

Keywords Thinking · Object-field · Event-process · Theory · Law

1.1 Introduction

“The important thing in science is not so much to obtain new facts as to discover new
ways of thinking about them,” remarked Sir William Lawrence Bragg, the youngest-
ever Nobel laureate who received the 1915 Nobel prize in physics at age 25. Indeed,
new facts without new thinking help grow an archive but contribute little to under-
standing, innovations, or predictions. In the era of data deluge, new facts are not
only plentiful but overwhelming. The need to discover new ways of thinking about
the ever-growing new facts intensifies. Scientific advances come from acquainting
new facts with new thinking for novel perspectives and insights. This essay grounds
Geographic Information Science (GIScience) in Bragg’s premise to examine the
synergistic convergence between new facts and new ways of thinking for theoretical
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2 M. Yuan

developments in geographic information. The goal is not to have a comprehensive
review of theories in GIScience but to highlight how new facts and new ways of
thinking about them can scaffold new theories in GIScience.

New geospatial technologies acquire new facts, which stimulate new ways of
thinking. Theories often follow innovations. Hans Lippershey invented the first tele-
scope in 1608 physicists later grasped the theories of optics around 1650–1700.
Charles Babbage created the first calculator and then the analytical engine (the
precursor of computers) in the 1830s; theories of computing, algorithms, automation,
formal language, and database rose during 1950–1970, over a century after. Like-
wise, GIS technologies emerged in the 1960s; thirty years later, Goodchild (1992)
coined Geographic Information Science (GIScience) and pushed scientific questions
about geographic information. Innovations acquire new facts or transform facts into
new representations. Theories synthesize facts, drive intuitions, provide guidance to
make exploration and experimentation more systematic and effective by reducing
brutal-force search or serendipity happenstance, and enable us to make predictions.

This essay adopts Britannica’s (2018) definition of scientific theory. Empirical
laws express observed or posited regularities existing in objects and events. A scien-
tific theory renders a structure suggested by empirical laws to explain why these
laws obtain. Theories are imaginative constructions of the human mind resulting
from philosophical and aesthetic judgments of observations. Hence, theories are
only suggested by, not inductively generalized from, observational information. An
empirical law may convey a unifying relationship among limited observations, but a
scientific theory needs to explain a variety of known laws and predict laws yet known.
In this context, laws are new facts generalized from empirical facts of observations;
and theories are new ways of thinking about them.

1.2 Geographic Representation

Representation drives new ways of thinking about new facts. Geographic represen-
tation brings selected essentials before the mind to help simplify complexity for
reasoning. Existing knowledge influences the selection, and the selection exploits
current theories that structure the knowledge. Science is always a work in progress:
theories change when the outcome of new thinking deems logically inconsistent or
limiting with the existing knowledge or current theories. Geographic representation
shapes computational methods and substrates theoretical developments in GIScience
(Galton, 2001; Goodchild et al., 2007) and conceptually constitutes a continuum of
objects and fields (Fig. 1.1).

Since the mid-1960s, geospatial technologies have proliferated two approaches
of spatial thinking: GIS and Remote Sensing. GIS technologies provoke thinking
that transforms paper maps into digital objects with coordinate strings and topo-
logical encoding. With objects (e.g., settlements, rivers, or mountains) in mind,
geographic representation attends to what new facts that we can measure from iden-
tifiable objects and assess their relationships (e.g., the number of settlements along a
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Fig. 1.1 A continuum of objects and fields in geographic representation

river) as shown in the left end of the object-field continuum in Fig. 1.1. Object-based
thinking promotes inquiring about what objects are, where they are, how they relate
spatially, and how to develop computational methods to derive and cogitate new
facts. Examples of new thinking motivated by object-based facts include relational
database theory (Maier, 1983), topological spatial relations (Egenhofer & Franzosa,
1991; Egenhofer & Mark, 1995), and the maptree (Worboys, 2012).

Complimentarily, remote sensing technologies digitize the landscape into discrete
picture elements (i.e., pixels). On the right-hand side of the object-field continuum
(Fig. 1.1), picture elements constitute a featureless space characterized by fields of
properties with varying values across locations and subsequently invoke questions
about and computational methods for what combinatory fields of properties are at
locations, where properties of interest emerge, and how their spatial patterns and
gradients evince underlying processes. Pixel-based thinking privileges locations over
features; measurements are associated with locations, and spatial variations rise to
feature emergence. New facts from pixels may be finer, more frequent, and richer.
Consequently, correspondent emerging features may be in greater detail over space
and time. Examples of new thinking based on rasters of pixel-based facts include
map algebra (Tomlin, 1990), digital terrain modeling (Li et al., 2004), and scale
ramifications (Cohen et al., 2016; Goodchild, 2011).

GIScience literature commonly adopts the following convention: real-world enti-
ties are represented by database objects and symbolized by cartographic features.
People manipulate objects but cultivate fields (Couclelis, 1992). Fields provide
geographic contexts for objects (Gold, 2010). Most GIS technologies implement
vector and raster models to differentiate between such object- and field-based
representations. Yet, such differentiation is flawed. Voronoi diagram (or Voronoi
tessellation) partitions geography into spatially exhaustive object-centric locations
and spatially arranges locations and neighborhoods in a scale-dependent hierarchy.
Changes to features (e.g., movement or densification) alter the spatial structure of
locations,which hints at underlying geographic processes responsible for the changes
(Gold, 2016).
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The rise of GPS, SmallSats, and machine learning also pushes for vector-raster
integration rather than differentiation. As GPS technologies become ubiquitous,
geotagged facts about real-time locations and movement trajectories open new
ways of thinking for spatial interactions, activity space, contextual complexity,
and geographic dynamics among vector features over raster landscapes. A marked
increase in GIScience research fashions Hägerstrand’s time geography in modeling
movements, exposures, or interactions (Yuan, 2021), timely for COVID-19 risk
mapping (Li et al., 2021), contact tracing (Dodge et al., 2021), and mobility analytics
(Toger et al., 2021). The continuing growth of the research interest drives efforts
towards establishing movement science (Demšar et al., 2021; Miller et al., 2019).

SmallSats, CubeSats, andNanoSats expand opportunities for earth observations at
higher spatial, temporal, and spectral resolutions. Unmanned Aerial Vehicles (UAV)
customize geospatial data acquisitions on-demand at fine spatial resolutions down to
millimeters. Besides fine resolutions, these new remote sensing technologies acquire
geospatial data in multiple spectra across numerous elevations and generate dense
point clouds of geo-atoms that can be assembled into objects, fields, or anything
in-between (Fig. 1.1). These new facts cannot be fully ingested without innova-
tive algorithms with scalability, crosslinks to accelerate data routing, self-replan
capabilities for broader collaboration among satellites and hierarchical normaliza-
tion frameworks to produce and organize analysis-ready data. New data processing
and analytical approaches prevail, such as structure from motion, data fusion and
machine learning methods for applications. Image processing migrates from pixel-
and object-based classification to convolutional, self-supervised semantic segmen-
tation (Dong et al., 2020). Learning algorithms alternate the perspectives of objects
and fields throughout computational pipelines to extract micro-objects from fields
and assemble them to form higher-order objects.

An event-process continuum expands the object-field continuum from space to
space–time (Fig. 1.2). Space–time considerations are now common in the de facto
approach to many GIS applications. Analogous to objects and fields, events and
processes anchor the two ends of the discrete–continuous continuum and serve as the
basis for space–time analysis and reasoning (Yuan, 2020a, 2020b). Despite plentiful
real-world examples, research in geographic representation has yet much attended

Fig. 1.2 A continuum of events and processes in geographic representation
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to events encompassing multiple processes (e.g., a coastal flood resulted from over-
land runoff and storm surge), and processes driven by multiple events (e.g., inflation
caused by a pandemic and supply chain failure). Spatial narratives of acts, analo-
gous to point clouds of geo-atoms, serve as the space–time fundamentals to form
any space–time constructs along the event-process continuum. A narrative connects
happenings and situations meaningfully (i.e., acts by biotic or abiotic beings) to tell
a story. For spatial narratives, acts must be spatially relevant and geographically
contextualized. A spatial act associates a geo-atom with an action in a situation and
enables GIS to automatically generate spatial narratives (Yuan et al., 2015).

These new ways of thinking, while providing systematic frameworks to reason
or analyze geographic information, fall short of being scientific theories. GIScience
research has made great strides in spatial analysis and reasoning on spatial autocorre-
lation, spatial dependency, spatial heterogeneity, spatial relationships and how they
vary spatially. Much attention directs to search for geographic laws but not much
on developing theories that give explanations of why the laws obtain and enable
predictions of new laws. As such, GIScience studies often suffer limited validity and
generalizability.

1.3 Geocomputation

Innovations multiply. New facts lead to new ways of thinking about them. New
thinking in geographic representation promotes new geocomputation. Spatial auto-
correlation or neighborhood effects push for neighborhood and proximity measures.
For example, different clustering methods reflect various perspectives to consider
distance, density, reachability, centrality, and similarity. With field-based data, GIS
analyses elicit patterns, states, and state transitions. Integration of objects and fields
enables studies of movements, lifelines, activity spaces, and many individualized
geographic contexts.

There are many ways to compute events. Figure 1.3 summarizes four examples of
common thinking in building computational methods. Sequence analysis arranges
events over time and identifies periodicity or survival intervals, commonly used in
political science.Lifeline analysis and trajectory analysis followevents on individuals
to uncover accumulative effects. Spatial studies typically consider humans or animals
as individuals (Demšar et al., 2021). With locations as individuals, events endow
experiences to locations and, as such, transform a space into a place (Cho & Yuan,
2019).

Location analysis and spatial analysis bring geographic perspectives to many
disciplines. As geospatial technologies proliferate, many social sciences and human-
ities take a spatial turn for new perspectives in the geographic dimension. Social
scientists and humanists georeference objects and events and examine patterns and
relationships in space and time. Environmental phenomena, physical infrastruc-
ture or barriers, or social and political conditions give the geographic context for
interpretations.
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Fig. 1.3 Four example ways to analyze events

The fourth example shows events associated with multiple phases of a process.
These eventsmay be external or internal to the process. External eventsmay influence
the course of the process, such that a vehicle crash alters the traffic flow. Internal
events signal mechanistic or compositional changes in the process. A mesoscale
thunderstorm that produces hailstones signals the formation of strong updrafts and
growing severity. Environmental impact assessment adopts lifecycle analysis to eval-
uate effects on resources and human health throughout the manufacture, usage, and
disposal of a product. Likewise, system analysis applies to the entire business process
to assure efficiency and meet the set goals. Regardless of nature or social processes,
the key is to identify phases of a process and analyze external or internal events
taking place in each phase.

The four ways to organize facts about events build upon temporal ordering, accu-
mulating to individuals, georeferencing, and phasing along a process (Fig. 1.3). There
are many other possibilities, such as functional or semantical hierarchies, spatial or
temporal scales, and dependency connections. Agent-based modeling, genetic algo-
rithms, and various simulation methods are popular methods to decipher the space–
time dynamics of objects, fields, events, and processes. The emphasis is that what
we can analyze and conclude depends on what new fact is represented and how we
think about them.
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1.4 Concluding Remarks

Theoretical advances in GIScience have been made mainly on two fronts. One is
applying existing theories to GIS modeling. Examples are location theory, decision
theory, and Dempster-Shafer theory of evidence. The other is bringing forward theo-
retical considerations in GIS research. Examples are essays on scale, space–time,
conceptual models, formal logic, and ontologies. This essay falls in this group.

Geographic representation and geocomputation are at the heart of theoretical
development for geographic information. Geographic representation encodes and
organizes new facts and gives rise to new ways of thinking about them. Geocompu-
tation carries out analytical or modeling procedures to realize new ways of thinking
about the new facts. This essay presents an object-field continuum and an event-
process continuum to discuss the spectrum of geographic representation and ensued
GIS methods. Moreover, the essay presents four examples showing how different
ways of thinking about events correspond to other analyses and findings. Innova-
tions build upon new ways of thinking about new facts. Theories arise when we can
meaningfully structure new facts to invoke new ways of thinking about them and
making predictions.

Innovations in GIScience have led to new algorithms, new modeling techniques,
and new applications. To date, theories of geographic information are yet avail-
able, although GIScience research has utilized existing theories from geography and
other disciplines. LikeGIScience, Statistics andMachine learning aremethod-centric
disciplines. Statistical theories ground study design, data analysis, and statistical
inference. Computational learning theory scopes learning tasks and quantifies the
learning difficulty of a problem and the learning capacity of an algorithm. What will
a GIScience theory say?
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Chapter 2
On Holo-spatial Information System

Chenghu Zhou, Yixin Hua, Ting Ma, and Tao Pei

Abstract Geographic entities exist in a spatio-temporal continuum, yet traditional
geographic information system represents this dynamic geographic world using a
map model which is often static in nature. This discrepancy between the dyna-
mitic nature of the real world and the static representation scheme calls for a
new system which can capture and represent the dynamic nature of the spatio-
temporal continuum. This chapter presents such a system, referred to as Holo-Spatial
Information System (HSIS). HSIS consists of two major components: an object-
oriented representation scheme, which captures and represents the spatial entities
in the dynamic world as multi-granular spatio-temporal objects (MGSTO), and the
information management framework, which comprehensively manages the multi-
dimensional information in adaptive transformation under different objectifications
and granularity abstractions. The development ofHSISwill drive innovations in theo-
retical, methodological, technological and system framework perspectives, which
should lead to a drastic change in the landscape of geographic information science.
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2.1 Introduction

Sixty years have flown by since Dr. Roger Tomlinson put forward Geographical
Information System (GIS) in 1962. As amodern extension of traditional cartography,
GIS has continuously evolved with the development of related scientific fields and
application requirements. The late twentieth century saw the rapid development of
GIS and the glories. GIS has been extensively applied in many fields, ranging from
natural resources, environment management, ecosystem studies, to public health,
urban planning and design, demographics, education, socioeconomics research, and
policy making. The scale of these fields spans over a wide range from a small, closed
space to a planetary one. The growing diversity of applications and fields involved
boosts the development ofGIS both in depth and in breath. Present-dayGIS is a broad
discipline which consists of information science, information technology, statistics,
civil engineering, mathematics, and other inter-discipline fields. To some extent, GIS
not only made Geography and surveying/mapping flourishing and invigorating, but
also significantly promoted the entire field of Geosciences.

Classical GIS, starting with the raster and vector models, represents objects and
processes on Earth surface under geographic reference systems. However, emer-
gences of innovative information science and new technologies, such as observa-
tion network, mobile internet, internet of things, big data, and cloud computing,
increasingly present challenges for the development of GIS. These challenges will
lead to great changes in the theories, methods, technologies, platforms, and appli-
cations with spatial information. The traditional geo-spatial information modeling
approach using the map as a primary representational model is difficult to meet the
demands of acquiring, managing, analyzing, expressing, and applying information
in the multi-dimensional and dynamic space. These difficulties are mainly reflected
in the following aspects:

1. The dilemma of geometric abstraction. Simple plane/solid geometry and
abstraction using grid can hardly describe the complex shapes and status of
objective entities (entities that exist in the world as they are), as well as objective
existence and processes like flows and networks.

2. The dilemma of static modeling. Objects in the real world have dynamic char-
acteristics as reflected in location, shape, relationship, and properties. The static
data model and traditional map are difficult to describe the dynamic real world,
which exists in a spatio-temporal continuum.

3. The dilemma of discretization in modeling. It is hard to describe the complex
composition structures and functions of the entities in the objective world with
highly discrete abstraction and discrete organization.

4. The dilemma of behaviors and cognitions. The traditional modeling approach
are limited in handling the behaviors of objective entities in learnings and
cognition.

5. The dilemma of symbolization and expression. The map is suitable for
symbolic and layer-based expression methods, but it is limited for use with
new technologies such as AR/VR.
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6. The dilemma of data organization and management. The map-based spatial
data model can hardly adapt to the demands for managing and analyzing spatio-
temporal big data.

2.2 The Concept of Holo-spatial Information System

Traditional GIS is designed to handle static georeferenced objects and processes;
what would happen when the locations and the attributes of these objects and
processes become dynamic? Mobile objects and flows, for example, obviously
become dominant concepts in GIS nowadays. Thus, the domain and scope of GIS
need to expand into diverse ranges fully covering all observational spaces including
geographical and non-geographical, or more generally ‘Holo-Spatial Information
System’ (HSIS), which uses object-based model to describe this world (Zhou, 2015).
The idea of HSIS is driven by the developments of both theoretical fundamentals
and applications, and contains four salient aspects:

1. The extension of observations and research scope. From earth surface measure-
ment space to the universe, from indoor space to outdoor space, from macro-
space to micro-space, from geographical entity space to virtual network space,
from natural element space to social-economic space.

2. The extension of spatial and temporal dimensions of geographic data. From
measurement data to various types of perceptual big data, fromdiscrete sampling
data to continuous scene data, from regional representation data to individual
object data, from independent variable data to high-dimensional data, and from
simple relational data to complex network data.

3. The extension of data analysis methods. From single point computing to cluster
and cloud computing, from independent variable mining to massive text and
complex network mining, from spatial analysis to big data feature analysis,
and from single geographic process computing to multi-geographical process
analysis.

4. The extension of geographical law discovery and cognitive perspectives. From
the multi-variable correlation to pan-variable correlation, from the under-
standing of multi-factor influence to pan-factor effect, from multi-process to
pan-process geographical events analysis, from the recognition of indepen-
dent geographical phenomenon to the recognition of collective geographical
phenomenon, and from idiographic (qualitative and quantitative) to nomothetic.

Several extensive and innovative manners are highlighted in HSIS in the context
of theory, method, techniques, and system framework (Jiang et al., 2017). In theory,
mapping mechanism among physical space, social space and cyber space should be
deeply investigated for constructing universal expression and logical semantics of
pan-spatial big data. In themethodology domain, pan-spatial sampling and assessing,
pan-spatial field-based modelling, curved pan-spatial surface construction, multi-
scales stationary and non-stationary processes discrimination, and machine learning
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and mining, should receive much more attentions. In the development of software
systems, the combination of GIS system and distributed file system, as well as
parallel computing system and spatial database system are required for pan-spatial
big data computations. In the computing technology front, high performance geo-
computation and analytical techniques of big data are crucial for promoting extensive
applications in broad fields: urban dynamics, Earth’s surface processes, environment
and ecosystem evolutions, social network analysis. Moreover, new modelling and
analysis approaches should be developed to meet the needs of specific HSIS like
indoor, underground, underwater, and social space domains that cannot be covered
by traditional GIS.

2.3 Object-Oriented Modeling for HSIS

Themain goal of HSIS is aimed at breaking away from the indirect modeling method
that based on map model in traditional GIS and focuses on describing the real world
from micro-level to macro-level in a straightway manner with multi-granular spatio-
temporal object (MGSTO) and establishing an innovative information modeling and
management framework to meet the needs of HSIS (Hua & Zhou, 2017). Both the
description and the expression models for TheMGSTOmodel is established through
cognitive abstraction and contains formal definition, characterization, and functional
expression of object entities over time and space, which facilitates the realization of
multi-granular object-oriented modeling of the world in a pan-spatial framework.

Based upon multi-scale, multi-dimensional and multi-perspective spatial knowl-
edge and requirements of specific applications, the description and expression
model for multi-granular spatio-temporal objects are used for the multi-granular
feature description and expression of objective entities in the pan-space, in terms
of semantics, scale, dimensionality, temporality, and cognition. Considering the
object expression, life cycle and attribute structure, the design of this pan-spatial
spatio-temporal variation description method for multi-granularity objects is based
on multi-granularity, multi-dimensional and life-cycle characteristics. According to
the correlation, association, causality, logic and other relationships between different
object elements, the relationship expression model of multi granularity spatio-
temporal object elements forms the grammatical, semantic, and pragmatic rules of
object relational expression. Amulti-granularity object association network model is
constructed based on the research of the evolution law of the characteristics, behavior,
semantics, and knowledge information of objects with different spatio-temporal
granularity.

The MGSTO model M can be conceptually expressed as:

M = (E, O)
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whereE is the representative set, which is used to describe andmodel the relationship
between objects; O is the operation set, which used to model the process of dynamic
evolution and interaction of objects.

E consists of eight expression elements:

whereR is spatio-temporal reference system, including temporal reference and spatial
reference, which is used to describe the spatial coordinate and temporal coordi-
nate reference information of the multi-granular spatio-temporal object; S is the
spatio-temporal position, which is used to describe the location information of the
object under different spatio-temporal granularity levels;D is the spatialmorphology,
which is used to express the geometric and morphological characteristics of multi-
granular spatio-temporal object; A is the attribute feature, which is used to describe
the dynamic attributes of the object under the multi granularity cognitive system, �
is the expression of the composition structure, which is used to describe the rela-
tionship between the part and the overall spatio-temporal objects, including logical
composition and spatial composition; G is the association relationship, which is
used to express and model the association and action relationships among the multi-
granular spatio-temporal objects;ℵ is the behavior expression,which is used tomodel
the action occurrence and consequences of spatio-temporal objects with behavior
ability; is the cognitive expression, which is used to model the cognitive process
of spatio-temporal objects with cognitive ability.

O is the operational set defined on E:

O = {α, β, γ, δ, ε}

where α contains the construct and deconstruct operations, the operation and calcu-
lation of the rebirth and extinction of the multi-granular spatio-temporal objects
in the life cycle; β is the decomposition and combination operation, realizing the
segmentation and combination of different expression modes of the multi-granular
spatio-temporal object sets; γ is the transform and evolve operation, the dynamic
operation of the state and composition of the multi-granular spatio-temporal object
set is realized; δ is the relationship dynamic operation, the operation model is devel-
oped to realize the change of association relationship between the multi-granular
spatio-temporal objects; ε is the learning and decision operation, which is for the
process of the multi-granular spatio-temporal objects generating decision output
through self-learning for external input.

MGSTO is the result of direct object modeling and mapping of geographical
elements or entities in the objective world on the knowledge system. Compared
with the general object-oriented modeling method, the main characteristics are as
follows: (1) Modeling method is still based on objectification, but produces the
multi-granular objects as the observation scale, knowledge system, and description
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dimension changes; (2) Multi-granularity means that in the same modeling scenario,
the mapped objects may have different scale and morphology, and different levels
of attributes, and different description dimensions; (3) MGSTO are dynamic, with
life cycles, morphological transformation, attribute evolution, composition, and rela-
tionship changes corresponding to objective processes that correspond to real-world
processes; but are independent of observational scale and modeling expression cate-
gories. (4) Partial MGSTO have behavioral and cognitive features and can produce
results on external inputs. These modeling operations are implemented inside the
multi-granular object model rather than driven by external functions.

Compared with traditional GIS modeling methods, the main advantages of the
pan-spatial information modeling based on abstract expression of MGSTO are as
follows: (1) In geographic information theory, combining spatial modeling and
geographic cognition, defining, and describing the perceptive objective entities
through MGSTO are effective means to break through the limitations of tradi-
tional modelingmethods. (2) Through the integrated and comprehensivemodeling of
MGSTO on the object space and cognition system, the multi-dimensional attributes,
complex behaviors, and cognition of a larger range of complex observation objects,
can be comprehensively described and expressed, thus providing a new basis for
multimodality spatio-temporal analysis and visualization of geographic information
(Li et al., 2020). (3) With MGSTO as the core, research activities in this area can
include, but not limited to the interrelated processes of pan-spatial abstract method,
description and expression model establishment, spatio-temporal object modeling
implementation, as well as calculation and operation method. Outcomes from these
research activities will form a comprehensive theoretical basis for HSIS modeling.

2.4 Information Management Framework of HSIS

HSIS is an information system that obtains, processes, manages, analyzes, and visu-
alizes MGSTO. Therefore, holo-spatial is not only the coverage of all scales and
contents, but also a multi-dimensional information comprehensive expression and
management framework with an adaptive spatial scale transformation under objec-
tification and granularity abstraction. It is a new form of geographical information
science. The framework of MGSTO organization and management for HSIS are
based upon the spatio-temporal domain in the holo-spatial digital world, a compre-
hensive data body composed of spatio-temporal objects describing various entities
and elements in the real/virtual worlds in a computing environment (Hua et al., 2021).

The spatio-temporal domain is a data set composed of some spatio-temporal
objects in a spatio-temporal continuum in the pan-spatial digital world, that is, the
spatio-temporal domain formed by constraining spatio-temporal range and subject
content. The pan-spatial digital world can be regarded as a combination of multiple
spatio-temporal domains (Xiao et al., 2017). The spatio-temporal domain is a collec-
tion of objects divided according to the spatio-temporal scope and is the organi-
zation unit of the pan-spatial digital world. The spatio-temporal domain can meet
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the requirements of the pan-spatial digital world for spatio-temporal object orga-
nization and management. In order to organize and manage the spatio-temporal
objects in the spatio-temporal domain, we also need to record the organization data
of the spatio-temporal objects in the spatio-temporal continuum. These organiza-
tional data include: the sub-spatio-temporal domain, spatio-temporal object class,
spatio-temporal object relations and spatio-temporal object life cycle sequence (Li
et al., 2017). The management of the pan-spatial digital world is to manage the
spatio-temporal continuum and its spatio-temporal objects, which is divided into two
parts. The first part is the management of the spatio-temporal domain; the second
part is the management of the spatio-temporal objects in the temporal space. The
management includes the creation, deletion and maintenance of the spatio-temporal
domain and the collective operation of several of the spatio-temporal domains. There
are three management modes, including top-down hierarchical management mode,
cross-reference network management mode, and linear management mode based on
space–time object life cycle sequence.

2.5 Conclusion and Discussion

Boosted by the rapid developments in related scientific fields, a new generation of
GIS should meet the needs of all-around sensing, broad connections and compre-
hensive understandings of spatial objects, phenomena, processes, interactions, and
evolutions with several innovative information techniques in terms of data collecting,
computing, mining, and visualization. Extensions in spatio-temporal domain, infor-
mation content, analysis and visualization methods are inevitable, and crucial to
the evolution from “geo-spatial information system” to “holo-spatial information
system” (HSIS). HSIS is an innovative spatial information system designed to
capture, store, manipulate, analyze, manage, and represent multi-granular spatio-
temporal object, which plays the central role in context of the direct modeling of
real world into computer systems. In HSIS, everything is an object represented by
MGSTO, which depends on the observation scale, application strategy and dynamics
under a new spatial modeling framework. HSIS is designed to fully support dynamics
modeling of MGSTOs over the observation period in the context of changes in loca-
tions, shapes, patterns, components, relationship, and behaviors. We thus argued
HSIS as a direct mapping of real world to a cyber world. HSIS also implies a remark-
able extension in the context of the spatio-temporal domain into spatio-temporal
continuum, information content and analysis methodology aiming at a complete
coverage of dynamics in a changing world, which are crucially related to a new
research paradigm of geographical information science.
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Chapter 3
The Virtual Geographic Environments:
More than the Digital Twin
of the Physical Geographical
Environments

Hui Lin, Bingli Xu, Yuting Chen, Qi Jing, and Lan You

Abstract With past more than 20 years of development, virtual geographic envi-
ronments (VGE) had gradually matured and formed its own supporting theories
and remarkable characteristics. During this period, the remarkable steps forwards
of VGE were often inseparable from the promotion of new technologies. Recently,
the term of digital twins has emerged and attracted researchers from the community
of geographic information sciences to discuss what the digital twins of the physical
geographic environments should be alike. This chapter focuses on discussing the
conceptual connotations and typical characteristics of both virtual geographic envi-
ronments and digital twins, analyzes the basic requirements for building digital twins
of physical geographic environments, and summarizes whether VGE can match the
framework of digital twins of physical geographic environments. The final conclu-
sions of this chapter declare that: The concepts and framework ofVGE are essentially
consistent with those of digital twins; The characteristics ofVGE can absolutelymeet
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the basic requirements of digital twins of physical geographic environments; What’s
more, VGE has been more than a digital twin of the physical geographic environ-
ments, for instance, it can extensively fit well with the conceptual framework of
metaverse of geographic environments which have eight characteristics including
identity, friends, immersive, low friction, variety, anywhere, economy, civility.

Keywords Virtual geographic environments · Digital twins · Physical geographic
environments

3.1 Introduction

A digital twin, which was first applied by Michael Grieves (Jones et al., 2020), is
defined as a virtual representation that serves as the digital counterpart of a physical
object or process (Wikipedia, 2021). Digital twins are now widely used in diverse
applications, such as smart factories/manufacturing (Qi & Tao, 2018), Industry 4.0
(Yang et al., 2017), and smart cities (Farsi et al., 2020). Geographic information
science researchers are especially interested in defining and applying digital twins
in geographical environments.

Virtual Geographic Environments (VGE) is a new and important direction of
geographic research, particularly for Geo-Information Science. Salient features
of VGE include three-dimensional reconstructions of the geographic environ-
ments, geographic process modeling and simulation, multi-dimensional geo-
visualization, multi-disciplinary knowledge sharing, distributed collaborations,
establishing connections between virtual environments and physical environments,
and many others (Qi et al., 2004; Lin & Batty, 2009; Xu et al., 2011; Chen et al.,
2016; Lü et al., 2018). Such features have a significant overlap with the characteris-
tics of digital twins. Thus, there are many critical questions facing geo-information
scientists about how to integrate both concepts:What are the characteristics of digital
twins for geographic environments? Can VGE match the characteristics of digital
twins in geographic environments?What is the relationship betweenVGE and digital
twins? In this chapter, we will discuss the evolution and development, basic concep-
tion, and main characteristics of VGE.We also compare and contrast the similarities,
differences, and relations between VGE and digital twins. Finally, we will discuss
the questions posed above and draw conclusions.
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3.2 Virtual Geographic Environments

3.2.1 The Definition and Concepts of Virtual Geographic
Environments

VGE refers broadly and collectively to all geographic environments which are not
“real”. More specifically, virtual geographic environments are computer-generated
digital representation of geographic environments in which complex geographic
systems are realized via multi-channel human–computer interactions, distributed
geographic modeling and simulation, and cyberspace geographic collaboration
(Lin & Gong, 2001; Chen et al., 2016). Natural laws represented by spatial and
temporal distribution patterns, evolutionary laws of geographic processes, and inter-
action mechanisms between geographic elements are the core concepts of virtual
geographic environments (Wan et al., 2021) and the driving force behind the research
and development of VGE (Lü, 2011). Based on above definitions, the structure of
a complete VGE was designed to have four components, which were the data, the
modeling and simulation, the interaction, and the collaboration. The four components
were responsible for geographic data organization, the implementation of geographic
modeling and simulations, interactive channel construction, and collaborative tool
design, respectively (Chen et al., 2016).

3.2.2 The Evolution of Virtual Geographic Environments

The embryonic period of virtual geographic environments is during 1997 to 2002.
In 1997, Michael Batty firstly used the term “virtual geography” in his paper (Batty,
1997) to study geography in a digital world. Then in 2001, Lin and Gong formally
proposed the term of virtual geographic environments which was described as envi-
ronments for exploring the relationship betweenhumans and3Dvirtualworlds (Lin&
Gong, 2001).

During the period from 2003 to 2008, VGE underwent a continuous exploration
stage. 2003 was a crucial year for the development of VGE. In that year, the first
VGE International Conference was held at the Chinese University of Hong Kong. A
collection of the conference papers had since been published and distributed in China
and the United States. Later, the collection had also been translated into Russian and
Czech for distribution in Europe. In terms of theoretical research, researchers at
this stage are tried to seek what were the characteristics of VGE themselves. From
the view of communication, Lin and Gong regards VGE as the third generation of
geographic language comparing to the traditional maps, computer aided mapping,
and GIS and remote sensing (Lin et al., 2003). Meanwhile, Lin and Gong pointed
out that VGE could be a basic tool to represent geospatial information for both
physical environments and social environments. Technically, many searches carried
out to build VGE in high dimensions, which vastly benefited understanding and
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communicating geo-phenomena and geo-processes among researchers (Lin & Zhu,
2005; Xu et al., 2005; Zhu et al., 2007). Those technical achievements absolutely
proved that the VGE could be competent as the new generation of geo-language.

From 2009 to 2020, VGE was in the stage of explosion. Firstly, two cores of
geo-data and geo-models were emphasized to differentiate VGE from GIS (Lin &
Batty, 2009; Xu, 2009). At the same time, geo-collaboration amongmulti-users form
distributed locations, various domains of knowledge, and different departments was
added as another key feature to support VGE to be outstanding (Lin et al., 2013;
Lü et al., 2018; Xu et al., 2011). Secondly, VGE was theoretically promoted to be
a geographic experiment tool for geographic analysis (Chen et al., 2015; Lin et al.,
2013) based on a lot of outstanding researches, for instance air pollution simulation
(Xu et al., 2011), dam break simulation (Zhu et al., 2016), crowd evacuation simu-
lation (Gong et al., 2018), socio-environmental modeling (Voinov et al., 2018), and
so on. Third, in the recent years, knowledge engineering was proposed for managing
and sharing geographic knowledge in VGE (Lin & Chen, 2015).

Nowadays, driven by new technologies especially in 5G communication, virtual
reality, the internet of things, big data, artificial intelligence, and blockchain, concepts
of digital twins and metaverses have been rekindled. These new concepts will surely
drive VGE to step into a new stage by improving its principles, methodologies,
technologies, applications, and other aspects.

3.2.3 Features of Virtual Geographic Environments

1. Three-dimensional (3D) reconstructions of geographic environments

Virtual reality is one of the important premises of VGE. VGE constructs virtual
environments which matches the real environment and can reconstruct the
geographic environment in three dimensions. There are many current tech-
nical methods for 3D reconstruction of VGE, including traditional 3Dmodeling
methods (Zhao et al., 2011), 3D modeling with remote sensing images (Zomer
et al., 2002), 3D modeling with laser point cloud scanning (Moon et al., 2019),
and 3D modeling with UAV tilt photogrammetry (Guo et al., 2021). Whatever
the method employed, these three-dimensional reconstructions must be based
on accurate geographic spatial–temporal reference andmust follow the principle
of spatial–temporal scale.

2. Geographic process modeling and simulation

Geographic modelling and simulation is used to better understand geographic
environments and support decision making. VGE emphasizes the integration
of data and models. Geographical process modeling and simulation are impor-
tant features that distinguish VGE from GIS. The study of geographic process
modeling and simulation is currently a critical direction of VGE researches.
Geographic models have been applied tomany applications such as air pollution
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diffusion simulations (Xu et al., 2011), dam breach simulations (Yu et al., 2021;
Zhu et al., 2014), crowd evacuation simulations (Song et al., 2013), and many
others. Additionally, geoscientific workflow management methods in VGE
using version management can allow geographic simulation and computational
results to be easily reproducible and extendable (Chen et al., 2020).

3. Multi-dimensional geo-visualization

VGE visualization can be multi-dimensional, i.e., it can employ traditional two-
dimensional methods, can be three-dimensional, or may even involve higher
dimensional visualization. Visualization methods may involve a traditional
desktop mode, an immersive mode using VR headsets, or an augmented reality
mode (Xu et al., 2011; Chen & Lin, 2018; Lü et al., 2018). Visualization of
virtual geographic environments is realized in a geo-referenced space, meaning
that every entity and every process in the VGE needs to be geo-coded with
relevant time and space constraints and on the correct geographic temporal and
spatial scales. VGE visualization can be established on a macro scale, or it can
involve a fine-scale micro-expression which is nearly consistent with the real
environment.

4. Multi-disciplinary knowledge sharing

VGE can also assist in the realization of Geographic Knowledge Engineering
(GKE), the extension of the concept and connotation of geographic knowl-
edge (Laurini, 2014). This refers to knowledge closely related to geographic
things or processes, which have typical temporal and spatial geographic char-
acteristics. GKE can be used in geographic problem analysis, process simula-
tion, phenomenon prediction, and multiple other applications. Knowledge engi-
neering attempts to express the hidden mathematical parameters of geographic
knowledge. A combination of knowledge engineering and VGE can help to
solve the integration, evolution, innovation of different forms of geographical
knowledge in different fields (You et al., 2016), and can integrate emerging
computer technologies such as artificial intelligence, cloud computing, mixed
reality, and knowledge graphs.

5. Distributed collaboration

VGE pursues the organic integration of data, knowledge, and resources
distributed in different regions, different professions, and different departments,
and forms a comprehensive platform for solving complex geographic problems
through distributed collaboration. It is often possible to form a “synergy mode”
of different temporal and spatial parameters such as for the same place at the
same time, different place at the same time, different time at the same place, or
different time and different place. The development of Internet of Things (IoT)
technology can be combinedwith virtual geographic environments to synthesize
virtual environments and real environments and yield effective data intercom-
munication, mutual information integration, and operation interaction between
the virtual geographic environments and the physical geographic environments.
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6. Interactions between virtual environments and physical environments

The fusion and interactionof virtual and real refer to the interoperability and two-
way interaction between digital spaces and physical spaces for specific objects
or services, such as video-based virtual and real integration, dynamic loading
of tilted photography, or cross-terminal human–computer interaction. It can
reproduce and influence the real world in digital space and can also enter virtual
spaces in the realworld. This kind of visualization possesses real-time, dynamic,
automatic, and interactive attributes, as well as the capability for automatic real-
time dynamic evolution of a digital twin scene, automatic real-time dynamic
restoration of a digital twin operating situation, reverse intervention of a digital
twin system in the physical world, and a multi-entry physical world to reach a
digital twin system.

3.3 Digital Twins

3.3.1 Concepts and Definitions of Digital Twin

There are many definitions of digital twins. Digital twins were first proposed in
the manufacturing field, and subsequently adopted by other fields. Therefore, the
definition of digital twins in manufacturing is relatively rich, while other fields are
relatively less well defined. In this section, we will focus on collating the varied
definitions of digital twins, starting with the manufacturing field, and then expanding
the conceptual understanding of digital twin in a geographic information science
context.

The term “digital twin” was first coined by Grieves in a 2003 presentation and
later documented in a white paper (Fuller et al., 2020). A digital twin was described
as a digital informational construct about a physical system created as an entity on its
own and linked with physical system through the entire lifecycle of the system. Later,
in 2017, Grieves refined the definition of digital twin as: “a set of virtual information
constructs that fully describes a potential or actual physical manufactured product
from themicro atomic level to themacro geometrical level”. In 2012, NASA released
a paper detailing future designs of aerospace vehicles which defined a digital twin
as: “an integrated multi-physics, multi-scale, probabilistic simulation of an as-built
vehicle or system that uses the best available physical models, sensor updates, fleet
history, etc., to mirror the life of its corresponding flying twin” (Glaessgen& Stragel,
2012). This definition is regarded as key milestone in the definition of digital twins
(Fuller et al., 2020). Since then, there have beenmany permutations on the definition.
For instance, Negri defined it as: “The DT consists of a virtual representation of
a production system that is able to run on different simulation disciplines that is
characterized by the synchronization between the virtual and real system, thanks to
sensed data and connected smart devices, mathematical models and real time data
elaboration”.
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Within the field of geo-information science, the concept of a digital twin is still
searching for a suitable definition. At the city level, Deren et al. defined a digital twin
city as: “a digital twin city aims at constructing a complex giant system between the
physical world and the virtual space that can map each other and interact with each
other in both directions” (Li et al., 2021). Stefano defines the concept of digital twin
of the Earth as a “digital replica of an earth system component, structure, process,
or phenomenon obtained by merging digital modelling and real-world observational
continuity—i.e., remote, in-situ, and synthetic data streams” (Nativi et al., 2021). In
the book ofManual of Digital Earth, the digital twin for the Earth is associated with
the concept ofDigital Earthwhich iswidely accepted by scientists in geo-information
science (Guo et al., 2020).

3.3.2 Characteristics of Digital Twins

Grieves characterized a digital twin concept by three main components which were
“Physical products in real space, virtual products in virtual space, and the connec-
tions of data and information that ties the virtual and real products together” (Grieves,
2003; Holler et al., 2016). In 2017, Grieves re-defined digital twins and emphasized
four elements: real space, virtual space, the link for data flow from real space to
virtual space, and the link for information flow from virtual space to real space
(Grieves & Vickers, 2017). These four characteristics distinguish digital twins from
other similar concepts, such as digital models, digital shadows, and others. In 2020, a
systematic literature review titled with “Characterising the Digital Twin—A system-
atic literature review” conducted a thematic analysis of 92 Digital Twin publications
from the previous ten years (Jones et al., 2020). This work broadened the characteris-
tics of digital twins into thirteen aspects: Physical Entity/Twin, Virtual Entity/Twin,
Physical Environment, Virtual Environment, State, Realization, Metrology, Twin-
ning, Twinning Rate, Physical-to-Virtual Connection/Twinning, Virtual-to-Physical
Connection/Twinning, Physical Processes, and Virtual Processes.

Digital twins are characterized differently in technology applications. Liu et al.
contended that digital twins should be: individualized, high-fidelity, real-time, and
controllable (Liu et al., 2021). Tao and Qi (2019) outlined the main problems of
digital twins which are technically closed to data and models. For data problems, the
types of data collection, the optimal number and placing of sensors for data collec-
tion, the merging of disparate data types, and the scattered ownership of data are
identified as key difficulties. For model problems, standards and guidelines for veri-
fying the accuracy of the model results, model combination, and model integration
are highlighted as primary technical challenges.
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3.4 Discussion

1. What characteristics should the digital twin of a geographical environment
have?

Following the previous definitions of digital twins, we here define them for geograph-
ical environments as follows: The digital twin of a physical geographical environment
is constructed as a virtual counterpart using geo-data, geo-models, geo-visualization,
and other related technologies in a virtual geographic environment and realizes the
information interactions and mutual control between the physical geographic envi-
ronment and the virtual geographic environment. The digital twin of the geographical
environment needs to have at least the following three aspects:

First, the physical geographic environment (PGE), i.e., the true geographic space,
the geographic entities, and the geographic processes must exist.

Second, the virtual geographic environment organizes geographic entities and
geographic processes in a geo-referenced digital environment, acting as a counterpart
of the physical geographic environment.

Third, interaction and collaboration between the PGE and the VGE requires that
the data and information of the PGE can be accurately monitored, transmitted with a
standard format, passed to the VGE, and can be used to update the VGE in real time.
At the same time, the data and information generated in the VGE via operation and
simulation can provide feedback to and control the PGE.

2. Can the current framework of VGEmatch the requirement of digital twins
in geographic environments?

First, digital twins need to have a physical entity and a mirrored virtual entity,
and the two entities should be well-matched. The physical entity and the virtual
entity should be consistent in terms of composition structure and action process.
In essence, the virtual geographic environment maps the geographic entities and
geographic processes of the physical world into digital counterparts which are repre-
sented in geo-referenced virtual environments through three-dimensional reconstruc-
tions of geographic entities and modeling/simulation of geographic processes. The
mapping of VGE to PGE follows the principle of geographic space–time scaling.
Consequently, the fidelity of the mapping meets the requirements of space–time
scaling which depends on the relevant research problems and has multiple dimen-
sions. Overall, the virtual geographic environment acts as a mirror of the physical
geographic environment.

Second, the digital twin emphasizes the information interactions between real enti-
ties and their counterparts as virtual entities. Key components of virtual geographic
environments are the distributed collaboration among multiple users, multiple
domains of knowledge, and multiple departments. The collaboration of VGE is
formulated according to pace and time and across physical geographic environ-
ments and virtual geographic environments. The technical methodology of VGE
and PGE collaboration is implemented via data intercommunication, information
sharing, operational interaction, and consistent expression between the two types of
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environments. Therefore, the collaboration between VGE and PGE is consistent with
the information interaction between virtual and real matching entities emphasized
by previous digital twin definitions.

Third, data and models are the foundation for realizing digital twins. The data
is mainly used for the construction of the digital twin, and the models are used
for the representation of the processes conducted by the twin. At its inception, a
virtual geographic environment synthesizes geographic data and geographic models
to present and simulate geographical phenomena and processes. In this way, a VGE
is a suitable twin for a PGE in the context of data and models.

3. Is VGE more or less than a digital twin of the physical geographic
environment

The characteristics and basic functions of VGE include not only virtual mapping
for the physical geographic environment and the interaction between VGE and PGE,
but also knowledge collaboration, multi-person collaboration, multiple visualization,
spatial–temporal expression, etc. VGE can couple people, geographic entities, and
geographic processes together to produce a comprehensive integrated seminar envi-
ronment for complex geographic problems solving in the scopes of physical geog-
raphy, human geography, and other sciences overlapped with geography. Therefore,
it can be inferred that VGE is fully capable of playing the role as the digital twin
of physical geographic environments. What is more, the concept and framework of
VGE have gone beyond the basic scope of digital twins of physical geographic envi-
ronments and can fit well with the conceptual framework of metaverse in geographic
environments which have eight characteristics including identity, friends, immersive,
low friction, variety, anywhere, economy, civility.

4. Who should lead the research on digital twins of geographic environments

The geographic environment digital twin involves and integrates diverse disci-
plines such as geography, information science, environmental science, humanities,
economics, medicine, etc. Effective integration of these many perspectives to form
ideal digital twins of geographical environments requires geography, especially
geographic information science, to take the lead in future development of thismethod-
ology.Geographic information science itself uses information technology to study the
spatial patterns and spatial processes under appropriate time and space constraints.
GIS also studies the interactions between humanity and environments, explores the
interaction and coupling of natural and social processes, and interacts closely with
many disciplines. Therefore, continued research on digital twins of geographic envi-
ronments should be a primary direction of geographic information scientists in the
near future, and will necessitate effective communication with information scientists
to make full use of the latest information technology.
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3.5 Conclusions

The basic concept of virtual geographic environments has existed for more than
20 years. The concepts and framework of VGE are essentially consistent with those
of digital twins and also meet the basic requirements of digital twins of physical
geographic environments. This is still a conceptual construct, as there is no digital
twin of a geographic environment in the full sense at present. Digital twins, as
currently applied in information or industrial fields, are insufficient as” true” digital
twins of geographic environments. However, the digital twin framework outlines a
promising new research direction for building digital twins of physical geographic
environments. Virtual geographic environments, which we have demonstrated here
in theory, qualify as digital twins of physical geographic environments.What ismore,
VGE has been more than a digital twin of the physical geographic environments, it
can extensively fit well with the conceptual framework of metaverse of geographic
environments which have eight characteristics including identity, friends, immersive,
low friction, variety, anywhere, economy, civility.
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Chapter 4
Big Remote Sensing Data as Curves

Fang Qiu and Yunwei Tang

Abstract The latest improvement of sensor resolutions has led to the emergence
of various big remote sensing data, which provides great potentials for extracting
valuable geospatial information. However, traditional perceptions of these data could
not fully capitalize their benefits. In pursuing better solutions to the challenges posed
by the volume and variety of new big remote sensing data, we processed the data
fromdifferent perspectives by transforming the data into curves in frequency domain.
The derived curves enabled us to develop a new thinking about big remote sensing
data, based on which a theoretical framework was established with new directions
on forming commensurate variable types, compatible processing units, as well as
matching strategies and algorithms to process and fuse big remote sensing data.
The new thinking bears significant theoretical implication and will have widespread
adoption with its easiness to be applied to different features of the emerging data.

Keywords Curves ·Matching · Big remote sensing data · Data fusion · Frequency
distribution

4.1 Introduction

How you see a target determines how you treat it because thinking always precedes
doing. In the same sense, how you perceive your data often defines how you will
process the data. For a long period, remotely sensed images have been perceived as
a 2-dimensional (2D) or 3D array of pixels. As a result, pixel-based approaches have
dominated digital image processing. When the focus is changed from an individual
pixel to also its neighboring pixels, various kernel- or convolution-based approaches
were developed, introducing the new spatial concept into processing.
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Since the turn of last century, the advancement of sensor technologies has trig-
gered the emergence of many new remote sensors, constantly acquiring data from
satellites, aircrafts, unmanned aerial vehicles (UAV),mobile and terrestrial platforms.
These emerging sensors have significantly improved the spectral, spatial, vertical,
and temporal resolutions of traditional remote sensing data, resulting in hyperspec-
tral, high spatial resolution (HSR), LiDAR and multiple temporal remotely sensed
data. The high resolutions of big remote sensing data have provided unprecedent
potentials for extracting more precise, more accurate and much richer geospatial
information not possible before. The volume of these big data, however, have also
posed tremendous challenges for image analysts to process them, especially if they
still perceive the data from the perspectives they had with traditional data.

Each sensor type possesses advantages that are not available in other types. Ideally,
the complementary information from data acquired by different types of sensors
should be integrated through data fusion, allowing the shortcomings of one type to
be compensated by others. Data fusion is expected to achieve better results than using
data from a single sensor alone. However, the fusion of sensor data with a variety
of higher resolutions is even more challenging due to the disparate data structures
involved.

To meet these challenges, it is desirable to have a new kind of thinking about the
emerging big remote sensing data, so that commensurate variables can be extracted
from disparate data sources and fused in compatible processing units using a unified
methodology as a total solution to the problems faced in current algorithms. To this
end, this chapter proposes a new theoretic framework based on a novel concept of
“curve” to enable data processing and fusion of disparate big remote sensing data
much more intuitive and efficient. A set of “matching” algorithms have also been
proposed based on the new concept, which can be uniformly applied to different types
of remote sensing data and allow the combination of the advantages of disparate data
sources.

4.2 Traditional Perceptions of Big Remote Sensing Data

To realize the potentials offered by the big remote sensing data, various algorithms
have been developed to process a specific type of data. Based on traditional perception
of remote sensing data, these algorithms achieve limited success and face great
challenges in taking full advantage of the emerging data.

The spatial resolution of remotely sensed data has been significantly improved
with the advent of many commercial sensor systems that can acquired data with 1–4-
mmultispectral bands and a sub-meter panchromatic band since 1999. The reduction
of pixel size from Landsat TM’s 30 m toWorldView-3’s 30 centimeters increases the
data volume by 10,000 folds, while their temporal resolution is also greatly improved
with their revisit frequency shortening from16 days to 1 day through satellite constel-
lation, a tremendous leap in data acquiring velocity. A single pixel in a HSR image
now occupies only a small portion of a geographic object. Consequently, the spectral
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information of a single pixel becomes less representative of the target class (Arroyo
et al., 2006). As a result, pixel-based image analysis methods are no longer appro-
priate, and object-based image analysis (OBIA) was proposed to perform image
classification using image objects or segments as processing units. For classifica-
tion, object-level statistical summaries (such as mean and standard deviation) are
first derived from image segments and are used as inputs to a conventional image
classifier. In this case, each object is treated as if it was a pixel, and the object-level
summaries are treated as if they were pixel values.

LiDAR is an active sensor using visible or near-infrared laser beams, offering
improved vertical resolution by providing multiple readings for the same location
(Fowler, 2000; Zhou & Troy, 2008). There are two types of LiDAR data based
on how the signal is recorded: discrete-return LiDAR and full-waveform LiDAR
(Ussyshkin & Theriault, 2011). Currently, discrete-return LiDAR data with up to 6
laser returns are the mainstream product of commercial LiDAR (Ussyshkin & Theri-
ault, 2011). Full waveform, a relatively new product of LiDAR, records the quasi-
continuous time-varying measurements of signal strengths from the illuminated area
(i.e., footprint) using small time intervals (e.g., 1 ns), resulting in thousands of returns
for each transmitted laser pulse (Ussyshkin & Theriault, 2011). With the resulting
fine vertical resolution (15 cm), a waveform is big data that offers an enhanced capa-
bility to reflect the 3D structures of geographical objects than the discrete-return
LiDAR that only provides a few measurements, often separated by meters in vertical
distance (Ussyshkin & Theriault, 2011; Zaletnyik et al., 2010)

LiDAR data can detect elevated objects and the ground. However, LiDAR data in
the form of point cloud may need to be transformed into image format for traditional
remote sensing algorithms to be applied. This pixel perception of the LiDAR data
causes the degradation of the original precision during the transformation process. As
a result, point cloud-based classification (PCBC) for LiDARdata has been developed,
which are usually much more computationally intensive (Zhou, 2013). For the full-
waveform LiDAR, a waveform may exhibit many echoes, corresponding to multiple
objects or one object with multiple components that are vertically separable within
the footprint. Consequently, the shapes of a waveform can be complex. To utilize the
waveforms, existing studies have focused on simplifying the complex full-waveform
data. One approach is to discretize full-waveform into discrete returns. Another is to
derive shape-related metrics from the full-waveforms. Shape-related metrics, such
as the number of echoes, echo amplitude, echo width, skewness, and kurtosis, are
extracted by Gaussian decomposition to represent the important characteristics of
the waveform shapes (Zaletnyik et al., 2010), so that dealing with the complex shape
of a waveform itself is avoided. This is similar to the perception of traditional object-
based image analysis which treats each object as a pixel and uses the statistical
summaries as pixel values. In this case, each shape (or Gaussian decomposition) is
equivalent to a discrete return and its shape-related metrics as its return values.

With hundreds of contiguous bands with narrow bandwidth, hyperspectral image
is a big data cube made up of a massive 3D array of pixels. Compared to tradi-
tional multispectral imagery such as Landsat TM with 7 bands, the dimensionality
of a hyperspectral image such as AISA sensor with 492 bands are 70 times more in
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dimension. By measuring subtle absorption features related to physical, chemical,
and biological properties of ground materials, hyperspectral data provide improved
discrimination capability (Cochrane, 2000; Ustin et al., 2004). The presence of a
large number of spectral bands in hyperspectral data, however, results in unsatis-
factory classification when classical methods such as maximum likelihood classi-
fication (MLC) are applied. This is known as Hughes phenomenon, where with a
fixed number of training samples, the predictive power reduces as the dimensionality
increases (Duds&Hart, 1973).Apopular solution for this problem is to utilize spectra
signatures of pure materials, referred to as endmembers (Bajorski, 2004; Hestir et al.,
2008). Several endmember-based classification (EMBC) algorithms have been devel-
oped. For example, spectral angle mapper (SAM) assigns a class value to each pixel
based on how it resembles an endmember in the shapes of their spectral signa-
ture (Yuhas et al., 1992). However, obtaining representative endmember is difficult.
Limiting a single endmember to one class simplifies the classification process but
weakens the generalization ability for the EMBC algorithms.

It is observed from the above that current methodologies for analyzing high reso-
lution sensors have a common limitation. They all try to convert big remote sensing
data into small data first to meet the computational challenges posed by the improved
resolution. For HSR data it is the use of object-level summary instead of all pixel
values in the object; for LiDAR waveform, it is the discretized returns or derived
metrics instead of the original full waveforms; and for hyperspectral, it is the use of
one endmember instead of multiple training samples per class. Converting to small
data causes loss of tremendous valuable information that big data offer and thus is
not an ideal solution.

Data fusion in remote sensing is generally defined as integrating the information
acquired with sensors of different spatial, spectral, vertical, and temporal resolu-
tions to produce fused data. The fused data is expected to contain more detailed and
comprehensive information than each individual data source (Zhang & Qiu, 2012;
Zhang, 2010). The challenges posed by the variety of big remote sensing data lie
in the fact that HSR and hyperspectral imagery are raster grid data with different
pixel size, while LiDAR data are vector point cloud of varied footprints with either
discrete returns or continuous waveform returns. Therefore, these fusion methodolo-
gies suffer from the following limitations: (1) Conversion of data from one format to
another, causing loss of precision during the conversion process; (2) Merge of inputs
of different types (e.g. reflectance and elevation), which are not commensurate vari-
ables; (3) Inclusion of processing units that are incompatible in size and shape due
to variety in pixel and footprint dimensions, and resulting in loss of accuracy in the
resampling process; and (4) Application of ad hoc solutions that are not designed for
high resolution sensor data and failing to take full advantage of information that big
data provide.
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4.3 Novel Perceptions of Big Remote Sensing Data

Toexploit the benefits of emerging big remote sensing data and to overcome the afore-
mentioned challenges, we have developed many specialized algorithms. Initially the
algorithms have been developed independently without connection, and later we
found they all operated on similar novel perceptions of remote sensing data.

HSR as histogram: Object-level statistical summary is a valid representation of the
pixel values of an image object only when they follow a normal distribution. We
observed that the spectral histograms of image objects of high spatial resolution
imagery were often not normal and different object classes demonstrated unique
patterns in their histograms. In this case, why not to classify image objects based
on their histogram instead of object-level statistical summaries? Spectral histograms
encompass all pixel values of image objects to depict their full frequency distribution
instead of only the central tendency or the dispersion of the distribution and contains
much richer information about the objects. Graphically, we can use Q-Q plot to
compare the histogram of an unknown image objects with that of a reference image
object to perform classification. Quantitatively, we developed an algorithm based on
Kolmogorov-Smirnov (KS) distance by matching object-level cumulative histogram
and achieved significant improvement over the statistical summary based results
(Sridharan & Qiu, 2013). Adopting a similar spectral histogram view of the images,
Stow et al. (2012) and Toure et al. (2013) also proposed to use spectral angle mapper
to perform OBIA, treating the object-level histogram as if it is the spectral signature
of an image object.

LiDAR as waveforms: We explored the full LiDAR waveforms to differentiate
objects having different vertical structures without simplifying the intensive wave-
form data through either discretization or derivation of shape-basedmetrics. Concep-
tually a waveform can be perceived as a time-varying frequency distribution of
returning impulses (Zaletnyik et al., 2010). Therefore, we similarly used the KS
distance to classify the full waveform of ICESAT data and achieved results substan-
tially better than the widely adopted rule-based classification using Gaussian decom-
position derivedmetrics (Zhou et al., 2015). Under this perception, the full waveform
has been utilized for classification instead of the shape metrics.

Fusion of HSR and LiDAR by pseudo waveform: To reap the maximum benefit
from the complementary strengths of HSR and high-density discrete return LiDAR,
we performed object-level data fusion. We first generated object-level spectral
histogram of pixels from HSR imagery. However, the discrete-return LiDAR does
not have waveform. To achieve the data fusion, we innovatively synthesized an
object-level pseudo-waveforms of discrete-returns LiDAR data by constructing
height-based histogram of the LiDAR points within the boundary of the object.
It was observed that the height-based pseudo-waveform was nearly identical to
the corresponding full waveform of the ICESAT data. Therefore, the height based
pseudo-waveforms were then fused with the object-level spectral histograms from
HSR imagery to perform classification using a Kullback–Leibler divergence-based



34 F. Qiu and Y. Tang

histogram matching approach and achieved an improvement of 7.61% in overall
classification accuracy over the use of HSR imagery alone (Zhou et al., 2015).

Unlike most of existing approaches that process high resolution sensor data by
simplifying the complexity of the big data, the novel algorithms that we have devel-
oped above attempted to fully utilize the complete information provided by the
emerging sensors.

4.4 New Thinking of Big Remote Sensing Data and New
Theoretic Frame for Data Processing and Fusion

Big remote sensing data as Curves: These novel algorithms were originally devel-
oped to specifically process and fuse HSR and LiDAR, but they all have something
important in common by coincidence. The new perceptions on the emerging remote
sensing data are all in the form of a certain type of “curve”, which laid the founda-
tion of their processing algorithms. For HSR data, pixel values of an object are trans-
formed into spectral histograms (Stow et al., 2012; Toure et al., 2013) and cumulative
histogram (Sridharan & Qiu, 2013) to provide a more comprehensive description of
various components of an image object. Histogram and cumulative histogram are
“curves” of spectral frequency distribution of the pixels. For LiDAR data, waveform
is a better 3D profile of an object’s structure compared to the discrete LiDAR returns.
Waveform is again a “curve” of quasi-continuous time-varying measurements of
signal strengthen from the illuminated area. High density discrete LiDAR returns
were transformed to pseudo waveforms by synthesizing height-based histograms,
which are also essentially “curves” of aggregated signal strength of the returned
laser pulses across height (i.e., time also). They are also similar to the spectral signa-
ture of hyperspectral data, which is a “curve” of reflectance aggregation across the
spectrum. Since “curves” in a certain form can be obtained from the high-resolution
data acquired by different types of sensors, “curve” is proposed in this chapter as a
common concept that established the theoretic framework for defining commensu-
rate variables, compatible processing units, and matching strategies and algorithm
for processing and fusing HSR, LiDAR and hyperspectral data.

Commensurate variable types: To process and fuse data from disparate sources
with heterogeneous structures, it is imperative to find commensurate variable types
that can be obtained or derived from the individual sources to be fused, whether the
fusion is to happen at the pixel or the object level. For fusion involving only imagery,
such variables can be the reflectance or radiance of the pixels. When data fusion
involves imagery and LiDAR whose value is point elevation, the issue becomes
more complex because pixel value and point elevation are not commensurate with
each other, which is a hurdle for traditional perception of remote sensing data to
overcome.
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Under the new thinking about big remote sensing data as curves, this hurdle is
much easier to overcome. For example, a waveform not only is a curve but also can be
considered as a time-varying frequency distribution function of return signal strength
(i.e., histogram) (Muss et al., 2011; Zaletnyik et al., 2010). The fact that they are of the
same mathematical nature provides the theoretic basis for conceptualizing LiDAR
waveform, synthesized pseudo-wave forms, and object level spectral histogram as
commensurate variables. When these histogram “curves” are normalized, they all
become probability distribution “curves”, which make their subsequent integration
with each other legitimate.

Compatible processing units: With commensurate variables defined, compatible
processing units are the next important issue to solve. The processing units for
imagery with moderate spatial resolution (such as 30 m resolution Hyperion hyper-
spectral data) are regularly pixels, while those for imagery with high spatial resolu-
tion (such asWorldView-2, 3 data) are segments or objects. The footprints of LiDAR
data, however, are of varied sizes and shapes, be it large, medium, or small, and with
irregular spacing between them, which match neither the regularly gridded pixels
nor the boundary of image objects that vary dramatically in shape and size. This
obstacle makes it difficult to fuse LiDAR and imagery data. We propose to still make
pixels as compatible processing units for fusing coarse and moderate imagery with
high density LiDAR, and objects as compatible processing units for fusing HSR
imagery with LiDAR. To fuse them, however, we will need to first synthesize the
pixel level or object-level pseudo-waveforms with the new footprint corresponding
to the boundary of a pixel cell or an image object respectively using high density
discrete-return or full waveform LiDAR by the method mentioned above. For object
level fusion, segmentation of high-resolution data is needed to generate object bound-
aries first. The fusion can be achieved then by simply integrating the image “curve”
layer and the LiDAR pseudo waveform as an additional “curve” layer to form a
composite dataset. Each processing unit, either a pixel or an object, now contain
“curves” made of array of values forming spectral signatures, object-level spectral
histograms, or object-level pseudo-waveforms, instead of a single pixel value or an
object-level statistical summary. The fused curve layers will then be subject to the
curve matching classifiers to be discussed below for classification.

Matching strategy and algorithms: The curve matching classifiers to be developed
operate on the idea that assigns the curve of an unknown pixel or object to a known
class that has the best resemblance based on the degree of matching of the curves
involved.Wepropose twodifferentmatching strategies. (1)Curve-to-curvematching,
(2) Curve-to-surfacematching. For bothmatching strategies, innovativemethodswill
be developed to improve their generalization ability. Generalization is the ability to
predict correct outputs for unseen inputs. Statistical classifiers such as MLC have
generalization ability with the probability density surface derived from the training
data. With good generalization, a pixel can be assigned to its desired class based on
the highest probability determined by the probability density surface of the trained
model no matter it is seen or unseen in the training data. Curve-to-curve matching
operates on the direct comparison of an unknown curve with reference curves of
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known classes and assigning it to the reference with highest matching. Like EMBC
algorithms, curve-to-curve matching may have low generalization ability because
no trained model is involved. To ensure the generalization ability for the curve-to-
curve matching, it is necessary to have multiple reference curves for each class. To
reduce redundancy and maximize within-class variability, it is necessary to select a
representative subset of references from the training samples.

Many algorithms that were designed to match spectral hyperspectral signatures,
such as spectral angel mapper and root sum squared difference, can be extended, and
reprogrammed as curve-to-curve matching algorithms. A rich collection of statistical
methods used to compare two histogram or cumulative histogram distributions such
as Kullback-Leibler (KL) divergence and Kolmogorov-Smirnov (KS) distance can
also be generalized as curve-to-curve matching algorithms. The curve-to-surface
matching algorithms, on the other hand, may have better generalization ability using
training samples to define probability density surface. The neuro-fuzzy classifier
that we designed originally for hyperspectral data (Qiu, 2008) by utilizing multiple
endmembers of each class to form fuzzy membership surface is an option that is free
from the curse ofHughes phenomenon. It can be easily extended as a general-purpose
curve-to-surfacematching algorithm to achieve generalization ability. Othermachine
learning methods, such as the one-dimensional deep learning algorithms can also be
adopted to perform curve-to-surface matching.

Theoretical implication and widespread adoptions: The “curves” obtained or
derived from the big remote sensing data above were conceptualized as histograms
or cumulative histograms, which depict the frequency distribution of pixel values or
returned pulses over spectral or height intervals. The transform of big remote sensing
data into histogram is similar to the thinking of Fourier transform. This similarity has
rendered significant implication for our new thinking. Fourier transform converts a
whole image from the 2D spatial domain to the 2D frequency domain, resulting in
a new set of algorithms for tasks impossible or very difficult to solve in the spatial
domain. Our new thinking, on the other hand, transforms big remote sensing data
from the 2D spatial domain to the 1D frequency domain for individual portions of the
data (e.g., image objects or LiDAR footprints), giving rise to a new set of matching
algorithms that could better capitalize the potentials of the emerging data.

Transforming data into 1D frequency domain is a simple aggregation calculation
of data values across multiple intervals of certain measurement (e.g., spectral reflec-
tion, height, and time). Using this simple process, virtually all features obtained or
derived from remote sensing data can be transformed as a certain type of curve, which
promises a widespread adoption of this new thinking. Guided by this new thinking,
we have already seen many innovative applications in our recent research, a few of
which are exemplified below.

The increasing availability of new sensors provides large volume of multi-
temporal data from which time series trajectories can be extracted as temporal-based
frequency distribution “curves”. Time series trajectory can reveal the distinctive
phenological cycles of vegetation species, which allowed us to better identify winter
wheat distribution (Zhang et al., 2019) andperform tree species classification of forest
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stands (Wan et al., 2021) through data fusion. We envision that time series trajectory
can be also employed to conduct change detection analysis, where different types of
changes are represented as curves with unique patterns.

It is well-known that the same histogram can have a very different spatial distribu-
tion of the input values. Curves that can capture spatial autocorrections such as empir-
ical semivariogram,model-fitted semivariogram, and binary spatial covariogram, can
be also included as additional curve layers to represent spatial distribution of pixels.
By combining object-level spectral histogram and binary spatial covariogram curve
layers, we were able to integrate within-object spectral variability and spatial distri-
bution of the pixels to improve OBIA using curve matching algorithms (Tang et al.,
2020). Additionally, we further integrated the within-object spectral variability with
the between-object spatial association, which is represented by frequency curves
of pairwise classes in four main directions (Tang et al., 2021). A new recurrent
curve matching algorithm is also developed to facilitate the integration through deep
relearning.

Recently, convolution neural networks (CNN) have been increasingly used to
classify high spatial resolution images, because the deep features they generate during
the training process can served as additional spatial texture layers for classification.
These deep features can also be used to synthesize curves for each image object and
used by curvematching algorithms for classification, which is anticipated to bemuch
more effective than the current pixel based deep learning classification.

4.5 Conclusions

New big remote sensing data demand new algorithms to analyze them effectively.
New algorithms should be derived from new thinking about the data instead of
being confined by traditional perception. Adopting new artificial intelligence algo-
rithms from other discipline could improve performance, but human intelligence
from image analysts can still play an even more important role, which is what a
geospatial researcher should contribute through creative thinking. In this chapter,
we explored different ways to fully capitalize the potentials provided by emerging
big remote sensing data, which led to a new thinking about remote sensing data
based on curves. This new thinking has given rise to a new theoretical framework
for processing and fusing various remote sensing data in an effective and consis-
tent manner, which may fundamentally change how remote sensing data are being
analyzed.
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Chapter 5
GIScience from Viewpoint
of Information Science

Zhilin Li and Tian Lan

Abstract The term “Geographical Information Science” (GIScience) was formally
introduced in 1992, after 30-year development of Geographical Information Systems
(GIS). The authors believe that it is the appropriate time to reexaminewhatGIScience
should actually be, as it has reached an age of 30 years. In this article, it is noted
that GIScience at its current content is focused on the “G” aspect and deals with
the theoretical aspect of spatial data handling. However, it is argued that GIScience
should also be a type of specialized information science (or a branch of information
science) as geographical information is a special type of information. Then, it is
pointed out that the foundation of developing GIScience as a branch of information
science has been laid down already and it is time to develop theories behind such a
science. This article provides an insight into the future development of GIScience.

Keywords GIScience · Spatial data handling · Specialized information science

5.1 Introduction

It is well-known that the first computerized GIS (Geographical Information Systems)
in the world, i.e., “Canada Geographic Information System”, was developed in 1963
by Roger Tomlinson to store, analyze, and manipulate data collected for the Canada
Land Inventory. After nearly 30 years of development, (that is, when it reached
an age of 30—the age of establishment in Chinese culture), the term GIScience
(Geographical Information Science) was proposed by Michael Goodchild in 1992,
in a paper (Goodchild, 1992) published at the “International Journal of Geographical
Information Systems”, which was based on his keynotes at the Fourth International
Symposium on Spatial Data Handling and EGIS 91.
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In the past 30 years, lots of discussions on the contents of GISceince have been
conducted (see next section for details) and a number of research agenda has been
set (e.g., Elmes, 2004; McMaster & Usery, 2004; UCGIS, 2006). As a consequence,
a range of accomplishments has been achieved and a lot of changes have happened.
For example, the “International Journal of Geographical Information Systems” was
renamed as “International Journal of Geographical Information Science” and “Car-
tography and Geographic Information Systems” as “Cartography and Geographic
Information Science”, in 1997. It is worthy of noting that the University Consortium
for Geographic Information Science (UCGIS) was formed in 1995, to serve as “an
effective, unified voice for the geographical information science research commu-
nity; to foster multidisciplinary research and education; and to promote the informed
and responsible use of geographical information science and geographic analysis for
the benefit of society” (Elmes, 2005).

AsGIScience is reaching the age of establishment, it is the time to reexaminewhat
GIScience is meant currently, what GIScience should be from different perspectives
and what is the future direction of development.

The remainder of this article is as follows. Section 5.2 examines the contents of
GIScience with its current definitions; Sect. 5.3 argues that GIScience should be a
specialized type of information science (or a branch of information science); Sect. 5.4
argues that the foundation of developingGIScience as a branchof information science
has been laid down already and it is the time to develop theories behind such a science;
and Sect. 5.5 presents an outlook.

5.2 GIScience in Its Current Definitions

Goodchild in his paper on GIScience tried to distinguish GIScience and GIS. He
stated that “spatial data handling may describe what we do, but give no sense of
why we do it” (Goodchild 1992). That is, while GIS answers “what” and “where”,
GIScience is concerned with the “how” (GISGeography, 2021). This implies that
GIScience is concerned with the “G” aspect and deals with the theoretical aspect of
spatial data handling.

Since 1992, a number of definitions have been produced by various organizations
and individual researchers. But the contents are very similar although emphasismight
be placed on different aspects.

In the NCGIA Core Curriculum in Geographic Information Science (Goodchild,
1997), GIScience is defined as “the science behind the technology, which considers
the fundamental questions raised by the use of systems and technologies, and is the
science needed to keep technology at the cutting edge”.

In the article entitled “Geographic information science: Critical issues in an
emerging cross-disciplinary research domain”, which was a report on a workshop
held in January 1999 at the National Science Foundation, Mark (2000) defined
GIScience as “the basic research field that seeks to redefine geographic concepts
and their use in the context of geographic information systems”.
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TheUniversity Consortium for Geographic Information Science provided an indi-
rect definition of GIScience. It states “The University Consortium for Geographic
Information Science is dedicated to the development and use of theories, methods,
technology, and data for understanding geographic processes, relationships, and
patterns. The transformation of geographic data into useful information is central
to geographic information science” (UCGIS, 2002).

The Wikipedia (2021) defines GIScience as the “scientific discipline that studies
the techniques to capture, represent, process, and analyze geographical information”.

Examples of other definitions by individual researchers are as follows:

• “Any aspect of the capture, storage, integration, management, retrieval, display,
analysis, and modeling of spatial data” (Wilson & Fotheringham, 2007).

• “The science associated with developing and advancing GIS and technologies”
(Masucci, 2008).

• “The general knowledge and important discoveries that have made GI systems
possible” (Longley et al., 2015).

• “A multi-disciplinary and a multi-paradigmatic field, where ‘spatial thinking’ is
fundamental” (Cabrera-Barona, 2017).

• “The scientific discipline that studies data structures and computational techniques
to capture, represent, process, and analyze geographic information” (Granell-
Canut & Aguilar-Moreno, 2018).

From these definitions, it can be observed that GIScience has been defined as a
scientific discipline dealing with geographical information, with emphasis on “G”.
However, we would like to argue that these definitions correctly reflect the contents
of current GIScience, which places much emphasis on spatial data handing but pay
too little attention to the properties and flow of information, as pointed out by Li
(2002, 2021).

5.3 GIScience from the Viewpoint of Information Science

Indeed, in the “Introduction” to the book “Foundations of Geographic Information
Science” edited by Duckham et al. (2003), it was stated that “Information science
can be defined as the systematic study according to scientific principles of the nature
and properties of information. Geographic information science is the subset of infor-
mation science that is about geographic information”. But there is no alternative
definition of GIScience provided, from this perspective of information science.

We argue that geographical information science is a branch of information science,
or a specialized type of information science (Li, 2002, 2021), because geographical
information is a special type of information, just like physical geography is a branchof
geography; and that a newdefinitionofGIScience from theperspective of information
science should be provided. The definition may be given by an analogy to that of
information science.
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“Information science is a discipline that investigates the properties and behavior
of information, the forces governing the flow of information, and the means of
processing information for optimum accessibility and usability. More precisely, such
a field is concerned with that body of knowledge relating to the origination, collec-
tion, organization, storage, retrieval, interpretation, transmission, transformation, and
utilization of information” (Borko, 1968). With an analogy to this definition of infor-
mation science, GIScience can be described as a discipline that investigates the
properties and behavior of geographical information, the forces governing the flow
of geographical information, and the means of processing geographical information
for optimumaccessibility and usability.More precisely, such a field is concernedwith
that body of knowledge relating to the origination, collection, organization, storage,
retrieval, interpretation, transmission, transformation, and utilization of geographical
information.

By comparing this definition with the definitions described in Sect. 5.2, it is found
that current GIScience particularly lacks theories for the properties and behavior
of geographical information and the forces governing the flow of geographical
information. These theories may be built upon the theories in information science.

5.4 GIScience as a Branch of Information Science

As information science studies the properties and behavior of information and the
forces governing the flow of information, there must be a quantitative measure of
information, first of all. The entropy introduced by Shannon (1948), also called
Shannon entropy, serves for such a purpose (Bristow&Kennedy, 2015). In Shannon’s
work for digital communication, the information content contained in a message is
defined as follows:

H(X) = −
n∑

i=1

P(xi ) log2 P(xi ) (5.1)

where X is a discrete random variable with possible values of
{x1, x2, . . . , xi , . . . , xn}, P(xi ) is the probability of X taking the value of xi

and H(X) is the Shannon entropy.
With entropy as the foundation, Shannon established the mathematical theory

of communication, or simply as information theory (Shannon & Weaver, 1949).
Since then, information theory has found wide applications in various fields, such as
biology, cognitive science, econometrics, linguistics, medical science, neural compu-
tation, psychology, social sciences, remote sensing, and telecommunication (e.g.,
Deco & Obradovic, 1996; Judge & Mittelhammer, 2011; Uda, 2020). On the other
hand, researchers do encounter difficulties in applying information theory to spatial
sciences such as cartography and urban studies. Although the concept of spatial
entropy has been proposed by some researchers (e.g., Batty, 1974), they are however
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Fig. 5.1 Two maps with same number and types of symbols

Fig. 5.2 Images with different spatial configurations but the same Shannon entropy

essentially statistics-based and have not taken spatial configurations into consider-
ation. This is perhaps the reason why the theories of the GIScience as a branch of
information science have not been developed yet.

The reason why information theory has difficulties in its applications to spatial
science is that Shannon entropy is a statistical measure, which does not take the
spatial configurations into consideration (Li & Huang, 2002). This can be illustrated
by the two examples shown in Figs. 5.1 and 5.2. In Fig. 5.1, the patterns of the two
maps appear to be very different. However, they indeed possess the same amount
of Shannon entropy because both of them have the same number of symbol types
and same number of symbols in each type. In Fig. 5.2, the left image is randomized
into different degrees, leading to different spatial configurations, however they still
possess the same amount of Shannon entropy because the number of pixels for each
grey level is identical.

To provide an insight into this problem, Li and Huang (2002) pointed out that
(a) there should be four types of information for a set of spatial data, i.e., statistical
information, metric information, thematic information, and topological information;
and (b) entropies for the other three types of information should be clearly defined,
apart from the current Shannon entropy for statistical information. As a consequence,
they developed mathematical models of entropies for metric information, thematic
information, and topological information. Figure 5.3 andEq. (5.2) show the definition
of metric information. The map space is tessellated by Voronoi diagram of map
symbols and the Voronoi region of each symbol is regarded as the zone of influence
of the symbol. Then the entropy for metric information, donated as H(M), is defined
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Fig. 5.3 A map and its Voronoi diagram (modified from Li & Huang, 2002)

as follows:

H(M) = −
N∑

i=1

(
Si

S

)
× log

(
Si

S

)
(5.2)

where Si (i = 1, 2, . . . , N ) is the Voronoi region of the i th map symbol; S is the
whole map space (i.e. S = ∑

Si ); and N is the total number of map symbols.
This set of information works well for spatial data in vector mode (e.g., maps)

but not convenient for raster data (e.g. images and land-cover maps). For the latter,
Boltzmann entropy (Perrot, 1998) is the solution. The basic equation was proposed
by physicist Ludwig Boltzmann in the 1870s as follows:

S = kB log(W ) (5.3)

where W is the number of microstates that belongs to a defined macrostate (macro-
scopic state) for a thermodynamic system, kB is a constant, equal to 1.38 ∗
10−23 J/K.

Although Boltzmann entropy is fundamentally important, and researchers have
made efforts to apply this measure to different disciplines, yet it remains largely at a
conceptual level. This difficulty has been emphasized byBailey (2009), that is, “quite
problematic when the notion of entropy is extended beyond physics, and researchers
may not be certain how to specify and measure the macrostate/microstate relations”.
Fortunately, Gao et al. (2017) have solved the problem by using the multi-scale
images to define these two concepts. Figure 5.4 illustrates the relationship between
a given macrostate and its microstates of a (2 × 2) image. Figure 5.5 illustrates the
relationship between a given macrostate and its microstates of a (2 × 2) categorical
maps.
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Fig. 5.4 Macrostates of two simple images and corresponding possible microstates (modified from
Gao et al., 2017)

Fig. 5.5 Macrostates of two simple categorical maps and corresponding possible microstates

With the establishment of these mathematical models, it is now possible to
build theories of GIScience upon such a foundation. Indeed, information theory
of cartography has recently been built based on such a basis (Li et al., 2021).

5.5 Outlook

In this article, we argued that (a) existing GIScience is focused on the theories
behind spatial data handling and pays too little attention to the information aspect;
(b) GIScience is a branch (or specialized type) of information science as geograph-
ical information is a special type of information, thus theories for GIScience from
the perspective of information science must be developed; (c) now it is possible
to build such theories as the foundation for spatial information since the entropies
for geographical information have been developed to overcome the shortcomings of
Shannon entropy.

It is noted that the GIScience theories from the perspective of information science
would be as important as those from the perspective of spatial data dandling because
information flow is essential to our world. According to the triangular relations
among matter, energy, and information (Somma, 2009), information is one of the
three major elements (the other two are matter and energy) of the real world (see
Fig. 5.6). It is believed by many that, without matter, nothing would exist; without
energy, nothing would happen; without information, nothing would be meaningful.
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Fig. 5.6 Resource triangle
of matter, energy, and
information modified from
Somma, 2009)

It is believed that the GIScience theories built upon information science will
become more and more important as information itself will become more and
more important. Indeed, a growing number of researchers (Wheeler, 1990, Seife,
2007, Vedral, 2012, Becker, 2020, Davies & Gregersen, 2014) have been wondering
whether information may be primary, or more fundamental than matter and energy.
For example,Wheeler (1990) advocated the “physical world as mode of information,
with energy and matter as incidental”. Therefore, it is expected that more efforts will
be made in building GIScience theories upon information science.

Acknowledgements This work is supported by a NSFC key project (41930104, 41971330 and
42101442) and a Hong Kong RGC GRF project (#152219/18E).

References

Bailey, K. D. (2009). Entropy systems theory. Systems science and cybernetics. Eolss
Publishers/UNESCO.

Batty, M. (1974). Spatial entropy. Geographical Analysis, 6(1), 1–31
Becker, K., Is information fundamental? https://www.pbs.org/wgbh/nova/article/is-information-fun
damental/. Accessed on February 8, 2020.

Borko, H. (1968). Information science: What is it? American Documentation, 19(1), 3–5.
Bristow, D., & Kennedy, C. (2015). Why do cities grow? Insights from nonequilibrium thermody-
namics at the urban and global scales. Journal of Industrial Ecology, 19(2), 211–221.

Cabrera-Barona, P. (2017). From the ‘Good Living’ to the ‘Common Good’: What is the role of
GIScience? Joint Urban Remote Sensing Event (JURSE) (pp. 1–4).

Davies, P., & Gregersen, N. H. (2014). Information and the nature of reality: From physics to
metaphysics. Cambridge University Press.

Deco, G., & Obradovic, D. (1996). An information-theoretic approach to neural computing.
Springer.

Duckham, M., Goodchild, M. F., &Worboys, M. F. (2003). Foundations of geographic information
science. Taylor and Francis Press.

Elmes, G. (2004). The UCGIS Research Agenda—Driving forward by locating chal-
lenges. www.directionsmag.com/entry/the-ucgis-research-agenda-driving-forward-by-locating-
challenges/123681. Accessed on January 1, 2022.

https://www.pbs.org/wgbh/nova/article/is-information-fundamental/
http://www.directionsmag.com/entry/the-ucgis-research-agenda-driving-forward-by-locating-challenges/123681


5 GIScience from Viewpoint of Information Science 49

Elmes, G. (2005). The university consortium for geographic information science: Shaping the future
at ten years. Transactions in GIS, 9(3), 273–276.

Gao, P. C., Zhang, H., & Li, Z. L. (2017). A hierarchy-based solution to calculate the configurational
entropy of landscape gradients. Landscape Ecology, 32(6), 1133–1146.

GISGeography. (2021). What is GIScience (Geographic Information Science)? https://gisgeogra
phy.com/giscience-geographic-information-science/. Accessed on January 1, 2022.

Goodchild, M. F. (1992). Geographical information science. International Journal of Geographical
Information Systems, 6(1), 31–45.

Goodchild, M. (1997). NCGIA Core Curriculum in Geographic Information Science. http://www.
ncgia.ucsb.edu/giscc/

Goodchild, M. F. (2011). Challenges in geographical information science. Proceedings of the Royal
Society a: Mathematical, Physical and Engineering Sciences, 467(2133), 2431–2443.

Granell-Canut, C., & Aguilar-Moreno, E. (2018). Geospatial influence in science mapping.
Encyclopedia of information science and technology (4th ed., pp. 3473–3483).

Judge, G. G., & Mittelhammer, R. C. (2011). An information theoretic approach to econometrics.
Cambridge University Press.

Li, Z. L.,&Huang, P. Z. (2002).Quantitativemeasures for spatial information ofmaps. International
Journal of Geographical Information Science, 16(7), 699–709.

Li, Z. L. (2002). The “I” in G.I.S., Invited Talk, Central South University, China.
Li, Z. L. (2021). From spatial data handling to GIScience. Theoretical Perspectives on GISci:
Panel Discussion. In The 28th International Conference on Geoinformatics (On-line conference),
November 1, 2021.

Li, Z. L., Gao, P., & Xu, Z. (2021). Information theory of cartography: An information-theoretic
framework for cartographic communication. Journal of Geodesy and Geoinformation Science,
4(1), 1–16.

Longley, P., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (2015). Geographic information
science and systems. Wiley.

Mark, D. M. (2000). Geographic information science: Critical issues in an emerging cross-
disciplinary research domain. URISA Journal, 12(1), 45–54.

Masucci, M. (2008). Interrelationships between Web-GIS and E-collaboration research. Encyclo-
pedia of E-Collaboration (pp. 405–410). IGI Global.

McMaster, R. B., & Usery, E. L. (2004). A research agenda for geographic information science.
CRC Press.

Perrot, P. (1998). A to Z of thermodynamics. Oxford University Press.
Seife,C. (2007).Decoding the universe: How the new science of information is explaining everything

in the cosmos, from our brains to black holes. Penguin Publishing Group.
Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical

Journal, 27(3), 379–423.
Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. University of
Illinois Press.

Somma, R. (2009). Matter-energy and information. Ideonexus. https://ideonexus.com/2009/05/05/
matter-energy-and-information/

UCGIS. (2002).UCGIS bylaws. Available from http://www.ucgis.org/fByLaws.html. Last accessed
on June 14, 2002.

UCGIS. (2006).UCGIS Research Agenda. https://gistbok.ucgis.org/publication/research-priorities.
Last accessed on July 10, 2018.

Uda, S. (2020). Application of information theory in systems biology. Biophysical Reviews, 12(2),
377–384.

https://gisgeography.com/giscience-geographic-information-science/
http://www.ncgia.ucsb.edu/giscc/
https://ideonexus.com/2009/05/05/matter-energy-and-information/
http://www.ucgis.org/fByLaws.html
https://gistbok.ucgis.org/publication/research-priorities


50 Z. Li and T. Lan

Vedral, V. (2012). Decoding reality: The universe as quantum information (p. 2012). Oxford
University Press.

Wheeler, J. (1990). Information, physics, quantum: The search for links. Addison-Wesley.
Wikipedia. (2021). The definition of geographic information science (GIScience). https://en.wikipe
dia.org/wiki/Geographic_information_science. Last accessed on January 1, 2022.

Wilson, J., & Fotheringham, A. S. (2007). The handbook of geographic information science. Wiley.

https://en.wikipedia.org/wiki/Geographic_information_science


Chapter 6
Towards Place-Based GIS

Song Gao

Abstract The space-place dichotomy has long been discussed in human geography,
digital humanity, and more recently in cartography and geographic information
science. Place-based GIS are not yet well developed, although there is an increasing
interest in semantic and ontological approaches. In this chapter, I present the tech-
nological building blocks towards the implementation of an operational place-based
GIS that requires the input of platial data from crowdsourced data streams, the under-
standing of place characteristics and associated human activities and cognition, the
support of representation and computational models of place, and the development
of platial analysis and visualization. Based on the literature review, I found that the
platial analysis functionalities with regard to their spatial counterparts were not suffi-
ciently implemented yet. Therefore,more researches are needed into the development
of platial operators for place-based GIS.

Keywords Place · Place-based GIS · Platial analysis

6.1 Introduction

The space-place dichotomy has long been discussed in human geography, digital
humanity, and more recently in cartography and geographic information science
(GIScience) (Couclelis, 1992; Goodchild, 2011; Janowicz, 2009; Jones et al., 2008;
MacEachren, 2017; Merschdorf & Blaschke, 2018; Pezanowski et al., 2018; Purves
et al., 2019; Tang & Painho, 2021; Tuan, 1977; Winter et al., 2009). Place names
are usually mentioned in human conversations while locations with underlying coor-
dinate information (latitude and longitude) are used in digital navigation systems
to answer the “where” questions. In the past decades’ development of geographic
information systems (GIS) and spatial analysis methods, there exist rich studies
about the role of space but only a few about the role of place due to the challenges
on conceptualization, digital representations, computational modeling and analysis
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of place in GIS. The typical spatial perspective in GIS is based on geometric refer-
ence systems that include coordinates, objects/fields, distances, and directions; while
the alternative place-based perspective is characterized by place descriptions and
semantic relationships extracted from human discourses, experiences, and activities
(Gao et al., 2013; Goodchild, 2011; Westerholt et al., 2020; Winter & Freksa, 2012).
The concepts of place (e.g., neighborhoods, vague cognitive regions, and sense of
place) are complex and difficult to handle inGIS. One gap lies between the vagueness
and richness of place in the human mind and the formalization need for place-based
representations and analytical operations in place-based GIS (or platial information
systems). Therefore, one of the main goals of place-based GIS research is to inte-
grate the concepts and characteristics of place into platial (or placial) data, operational
and analytical standards in GIS (Purves et al., 2019; Tang & Painho, 2021). There
have been recent discussions and reviews on the advancements towards place-based
GIS. For example, Merschdorf and Blaschke (2018) discussed the role of place in
various research branches of GIScience including critical GIS, participatory GIS,
crowdsourced geographic information, semantics, and ontologies, etc. Giordano and
Cole (2018) argued for a place-based GIS that can integrate quantitative spatial anal-
ysis and qualitative methods and data such as social networks and textual corpus.
Purves et al. (2019) reviewed the key challenges in representation and modeling
of place for information science. Westerholt et al. (2020) organized a special issue
on place-based GIS in the journal of Transactions in GIS and argued the need for
representational models, analytical approaches, and visualization methods for place
in GIScience. Tang and Painho (2021) conducted a comprehensive literature review
and bibliographic analysis on the topic of place-based research in GIScience. There
should also be humans in the loop for place-based GIS. For example, Scheider and
Janowicz (2014) showed how place references can be identified and localized by
involving participants. Blaschke et al. (2018) addressed the importance of human
language and culture differences reflected in place-based GIS. Shaw and Sui (2020)
proposed a smart space-place (splatial) framework to synthesize multidimensional
information of space and place to study human dynamics. Although the existence
of intensive conceptual reviews, few studies have addressed the key technological
issues for the development of an operational system for place-based GIS.

To this end, in this chapter, I focus on the discussion of technological building
blocks towards the development and implementation of place-based GIS from a
systematic perspective.

6.2 Building Blocks Towards Place-Based GIS

As shown in Fig. 6.1, the key technological building blocks for an operational place-
based GIS mainly include the input data about various characteristics of place,
the representation, and computational models of place, and platial analysis and
visualization functionalities.
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Fig. 6.1 Key building blocks for operational place-based GIS

6.2.1 Platial Data and Characteristics

Place can serve as a function between location and people (Mennis &Mason, 2016),
a function of location, activity, and time (McKenzie & Adams, 2017), and a function
of social relations (Giordano & Cole, 2018). Traditionally, data about places were
collected through mapping agency (e.g., gazetteer usually includes place names
and related entities) and survey-based narratives. The emergence of geospatial big
data brings new opportunities to extract fine spatiotemporal resolution of human-
place interaction data and understand the place semantics from large-scale volun-
teered geographic information and crowdsourced data streams, such as social media
posts (including texts, photos, and videos), GPS trajectories, location-based social
networks, comments and reviews on points of interest (POIs) or neighborhoods, and
other Web documents (Gao et al., 2014, 2017; Hu et al., 2019; Kruse et al., 2021;
McKenzie et al., 2015; Zhang et al., 2020). Thosemultiple data sources and advanced
(geospatial) data science and machine learning methods provide a great opportunity
to understand and extract the characteristics of place as well as associated human
activities, experiences, emotions, and movements in different contexts.

6.2.2 Representation and Computational Models of Place

In order to effectively process, manage, analyze, and visualize the platial data,
different approaches have been proposed for formalization, representation, and
modeling of place in GIScience. Some key questions to ask include: What is a place?
What are the core attributes and methods for a class of “place” in object-oriented
programming and system design? Gao et al. (2017) represented a place as a field-
object in which the degree of a location belongs to uses a membership function (e.g.,
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Southern/NorthernCalifornia) and demonstrated that place representations (thematic
and culture aspects) might be relaxed in human cognition compared to the metric
representation in GIS. Purves et al. (2019) demonstrated the linkage between the
ontology of spatial information and the social and cognitive aspects of place and
argued that places should include both names and geometries as well as relations.
Hierarchical relationship is common to both physical systems and to human cogni-
tion (Golledge, 2002), e.g., river networks and administrative divisions. The hier-
archical and other semantic relationships between places stored in the information
systems support human cognition of places and their affordance in the real world.
Recently, user-generated content has been used in extracting place characteristics
and representations. For example, Wu et al. (2019) proposed a fuzzy formal concept
analysis-based approach to uncovering spatial hierarchies among vague places (local
toponym) extracted from social media data.

Digital gazetteers (i.e., dictionary of places) usually contain three core elements
of geographic features: place names, place types, and spatial footprints (Hill, 2009).
Place names are often used in human conversations and link to entities in gazetteers.A
place may have more than one feature type based on different levels of categorization
or using different schemata. The footprint of a place may be simply represented
as a point in the information systems. However, it is challenging to select such a
point for different types of places. The geometric center may not always be the best
representative point. For example, one would not use the geometric center for a
national park but use the entry points along the road networks. In addition, places
may also be represented as areal objects (fields or polygons). Some places such
as “downtown” are valuable in nature. Fuzzy-set-based methods and kernel density-
based representations are usually used tomodel the intermediate boundaries of vague
places (Burrough & Frank, 1996; Jones et al., 2008). Based on the assumption that
a vague object can be viewed as the conceptualization of a field, a categorization
framework including five distinct categories to formalize the semantic differences
between vague objects using the fuzzy set theory is proposed by Liu et al. (2019),
which can be used to model vague places.

Places can bemodeled using graphswhere nodes represent place entries and edges
represent semantic relationships among places (e.g., part-of, directions, nearby).
Patterns and relations between places can be computed and extracted from place
graphs. For example, Chen et al., (2018a, 2018b) proposed a computation proce-
dure to georeference textual place descriptions to gazetteer entries based on string
and semantic similarities and qualitative spatial relationships using place graphs and
natural language processing techniques. Zhu et al. (2020) analyzed place characteris-
tics in geographic contexts through graph-based convolutional neural networks. Mai
et al. (2019) proposed to represent places as Linked Data and demonstrated how to
utilize Semantic Web reasoning and ontologies to extract and represent additional
properties of places.ALinkedData connectorwas also developed as a set ofArcGIS’s
toolboxes to enable the retrieval, integration, and analysis of Linked Data fromWeb
resources within GIS (Mai et al., 2019). In addition to the structured Linked Data,



6 Towards Place-Based GIS 55

future developments of place-based GIS need to further integrate un-structured data
about subjective human narratives about their experiences on places and dynamic
relations among places over time.

6.2.3 Platial Analysis and Visualization

The spatial analysis and statistical functions are key capabilities of current GIS and
based on the concepts of space, location, distance, and direction. Regarding the
characteristics of place, what are the equivalent platial operation functionalities for
their spatial counterparts? Gao et al. (2013) designed two platial analysis functions
using semantics, namely platial join and platial buffer. Analogous to spatial join, the
purpose of platial join is to attach the properties from the join entities to the target
place using semantics (e.g., part-whole relation, qualitative spatial relations) rather
than geometric constructs (e.g., geographic distance). The platial buffer might be
able to mitigate the uncertainty issue of using spatial joins when objects are closed
to border regions (Gao et al., 2013). In addition, platial buffer is to infer places
or derive place-based knowledge through the connectivity, hierarchical relations, or
other semantic relations between places. For example, using the semantic predicts
between subway lines and shared transit stations as well as the station-to-station
connectivity information, one can automatically generate a platial configuration on
the subway system without accurate geometric information of the subway lines. The
fundamental principles of platial operations rely on semantic relations betweenplaces
rather than geometry. However, the operators for places in GIS are not sufficiently
implemented yet.More researches are needed into the development of functionalities
for place-basedGIS. Someof the research directionsmay include platial associations,
platial focal/zonal/global analyses on place graphs.

Recent advancements in geospatial artificial intelligence (GeoAI) and geospatial
data science provide new opportunities for place-based analysis (Janowicz et al.,
2020). For example, A quantitative measurement framework for place locale was
developed using urban scene elements obtained from street-level images using a deep
learningmodel (Zhang et al., 2018). A data-driven approachwas proposed to uncover
the inconspicuous-nice places in cities using street view images and social media
check-in records combined with deep convolutional neural networks (Zhang et al.,
2020). Using AI-powered facial expression detection techniques, a computational
framework for extracting human emotions from over 6 million georeferenced photos
at different places was proposed to enrich the understanding of sense of place (Kang
et al., 2019).

Geospatial semantic queries and visualizations are also important functions
in place-based GIS. Yan et al. (2017) proposed a novel approach to reasoning
about place type similarity and relatedness by learning embeddings of places from
augmented spatial contexts. Papadakis et al. (2020) developed a rule-based frame-
work to support functional queries of a place (e.g., shopping areas). Hu et al. (2015)
constructed thematic and geographic matching features from the textual descriptions
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of places and implemented semantic search for linked-data-driven geoportals on
ArcGIS Online using geospatial and semantic expansion operators. As for visualiza-
tion, MacEachren (2017) addressed the importance of leveraging geospatial big data
with visual analytics to understand places and their inter-connectedness. A geovisual
analytics framework SensePlace3 for place–time–attribute information is proposed
and implemented by Pezanowski et al. (2018). Moreover, graph visualization and
interactive visual analytics techniques would be useful for place-based knowledge
discovery and supporting human decision making.

6.3 Conclusion

In this chapter, I discussed the notion of place in GIScience and presented the tech-
nological building blocks towards the development and implementation of an opera-
tional place-based GIS, which requires the input of platial data, the understanding of
its characteristics, the support of representation and computational models of place,
and platial analysis and visualization. Joint efforts from multiple disciplines such as
human geography, computer science, cartography and GIScience can facilitate the
design and development process towards future place-based GIS.
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Chapter 7
The Bottom-Up Approach
and De-mapping Direction of GIS

Xun Shi, Meifang Li, and Xia Li

Abstract We see that GIS is under amajor expansion of incorporatingmore bottom-
up methods. The bottom-up approach does not seek to build general/global and
therefore likely complicated and delicate models or problem solvers. Instead, it
employs local and simple operations, and resorts to intensive computation to achieve
the global solution. The burgeoning and adoption of the bottom-up approach are
motivated by the contemporary application problems dealt with by GIS, featuring
complex systems and high uncertainty, and facilitated by the explosive advance-
ment of modern computing capacity. We use problems of classification, assessment,
estimation, and prediction to illustrate the distinction between the top-down and
bottom-up approaches. We also point out that an outcome of this new expansion of
GIS is that mapping is receding from its center-stage position in GIS.

Keywords Top-down · Bottom-up · Computation · Uncertainty · De-mapping

7.1 Introduction

As in many sciences, the top-down approach used to be dominant in GI Science.
The top-down approach features generality and determinism. First, seeing each local
space or individual as a substantiation of the global situation or general pattern,
the top-down approach seeks to establish global/general models or laws (covering
the entire geographic area, entire temporal period, and entire population), and then
applies such models or laws to local areas or individuals to achieve classification,
characterization, assessment, and/or prediction. The global/general models or laws
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can be in the form of analytical procedures, differential equations, regressionmodels,
artificial neural networks, decision trees, and so on. Second, the top-down approach
is often deterministic, assuming accurate and precise data, representative samples,
constant parameter values, fixed processes, and rational behaviors.Within the context
of GIS, some early, basic, and most commonly used analytical procedures can be
considered top-down, including simple buffer, simple overlay, certain network anal-
yses, and some interpolations. The parameter setting used in those analyses is typi-
cally deterministic, represented by the clear-cut boundary, fixed buffer distance, even
distribution, centroid representation, constant driving speed, crisp classification, and
modeled semivariance.

The success of Newton’s laws in physics encouraged and eventually defined the
top-downmethodology in sciences such as physics, chemistry, and biology.However,
the limitations of the top-down approach are also obvious: it needs or assumes
controlled experiments; it tends to ignore uncertainty in the data and process; and,
while it is likely to oversimplify the complicated and complex reality, ironically the
model itself tends to be complicated and delicate, as it tries to be general to cover all
different situations.

On the other hand, in a sense, GIS was originally developed to automate the
mapping process, for both visualization and analysis. The map has been the primary
means for a human to handle spatial information. This is because such information
is essentially about geometric features and relationships, and to human eyes and
brains, nothing is more intuitive and effective to interpret, understand, and analyze
such geometric information than seeing it represented and presented as graphics.
Besides the cartographic functionality, some early and basic GIS analytical tools,
such as buffer and overlay, can be considered as an emulation of manual processes
with hardcopy maps.

The map-based operations of GIS are likely to be top-down. This is because
what they are emulating, the manual process with hardcopy maps, is limited by
calculation capability, manpower, and time. Due to such limitations, for the manual
process people have to develop clever methods to summarize the data and generalize
the methods, as well as to rely on assumptions, so as to make the process feasible
and useful.

We see that GIS is currently under a major expansion of incorporating bottom-up
methods and relatedly, exploring the de-mapping direction. This is due to that on the
one hand, the GI Science is challenged by the size and complexity of contemporary
application problems, such as climate change, globalization, urbanization, public
health, land use dynamics, just to name a few, and on the other hand, the GI tech-
nology is facilitated by the explosive advancement of data handling capability and
computing power supported by the modern computer technology. Section 7.2 will
elaborate on these motivation and facilitation. Section 7.3 uses problems of classifi-
cation, assessment, estimation, and prediction as examples to illustrate the distinction
between the top-down and bottom-up approaches. Section 7.4 gives some concluding
remarks.



7 The Bottom-Up Approach and De-mapping Direction of GIS 61

7.2 Motivation and Facilitation for GIS to Incorporate
Bottom-Up Methods

Geographic problems or phenomena are often too complicated to be character-
ized by global/general models (Batty & Longley, 1994). As Brown et al. (2005)
summarized, “Geographical processes, such as diffusion of disease, wildfire spread,
ecological evolution, transport and residential development, urban dynamics, and
land-use changes, are usually highly complex and often include non-linear and emer-
gence phenomena, stochastic components, feedback loops, andmultiple equilibriums
over various spatial and temporal scales. When characterizing or simulating these
phenomena, small randomness may lead to a great deviation in the resulting pattern
because of feedback effects”. Unlike certain fields such as physics, chemistry, and
biology, it is almost impossible to conduct condition-controlled experiments for
analyzing and understanding geographic problems. The output from the effort of
creating a general model or problem solver for geographic problems, especially
those aforementioned contemporary regional or global problems, can be too compli-
cated and too delicate, containing much more incompleteness, simplification, and
uncertainties than its counterparts in other areas.

Alternatively, it seems that the bottom-up approach is often better than the top-
down approach in representing, simulating, and understanding complex geographical
phenomena. This notion was originated from Wolfram’s argument that most, if not
all, complex phenomena are eventually outcomes of local simple phenomena and
their interactions, and a complex phenomenon at the global/general scale can be
modeled by applying simple rules to local spaces or individuals (Wolfram, 2002).
The bottom-up approach does not seek to build a global/general model beforehand.
Instead, it builds relatively simple rules that characterize local situations and indi-
vidual properties and behaviors, as well as their interactions. It then applies these
rules to local spaces and/or individuals. This local and simple application may run
repeatedly to mimic the real-world progression. It is expected that global/general
patterns or solutions emerge from this evolving process. Typical implementations of
the bottom-up approach include case-based reasoning (CBR), kernel density estima-
tion (KDE), cellular automata (CA), and agent-based modeling (ABM). The nature
of the bottom-up approach determines its characteristics or advantages, which can
be summarized as follows:

• The bottom-up approach features simple rules for local modeling, leading to
simple and local inference procedures, which are relatively easy to build, adjust,
run, and calibrate, and as a result, are more likely to be robust.

• The bottom-up approach favors empirical simulation through intensive computa-
tion, and thereby has less reliance on statistical and other assumptions.

• The bottom-up approach is good at modeling stochastic processes and in turn, the
uncertainty inherent to such processes, as it is easy for the approach to incorporate
a certain amount of randomness.
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• The bottom-up approach is good at representing interactions/feedback between
localities and individuals, and thereby can capture subtle variation in dynamics
and long-term evolution.

Methodologically and technically, the bottom-up approach is rather about compu-
tation than about deduction and/or statistical modeling. Therefore, it only became
feasible when modern computing technologies became available. The quality of
the output from a bottom-up method is closely related to the computing capacity
the method can exploit. The current explosive advancement of computing capacity
is undoubtedly a determining factor for the rapid popularization of the bottom-up
approach.

Another facilitator of the bottom-up approach is the increasing availability of the
data featuring vast extensivity and great details. By vast extensivity we mean large
spatial extent, long temporal period, and big population. By great details we mean
high spatial resolution, high temporal resolution, and less-aggregation. This type
of data, on the one hand, impose demands for novel methodologies, as it became
increasingly clear that conventional methodologies (typically being top-down) are
not able to take full advantage of such data due to their size and detail level; on the
other hand, the extensivity of and the detailed information in the data are necessary
to support the bottom-up approach, which by nature is data-hungry.

Spatial analysis and spatial modeling that take the bottom-up approach represent
a paradigm-shifting change, as they are no longer emulating map-based manual
processes.As a result, theydonot require input data to be in the conventional (graphic)
map form and do not necessarily generate conventional maps as the output. With the
bottom-up approach, the function of maps retreats to the secondary, only serving the
purpose of human visualization. Even human visualization starts to lose its critical
status, especially at the beginning of the analytical process (the widely regarded
exploratory data analysiswill become less critical). The function of the visualization
seems to become primarily just for the human to interpret, understand, and utilize
the output from the analysis.

7.3 Examples of Bottom-Up Methods

In this section, we use four generic problems to specifically compare top-down and
bottom-up methods.

Classification: Widely used top-down classifiers include regression, maximum
likelihood, artificial neural network, decision tree, genetic algorithm, Bayesian infer-
ence, support vector machine, and all their variants and descendants. They are top-
down, because they all seek to build a global/general classifier through manipulating
the available information, typically samples. They then classify new subjects using
the constructed global classifier. On the contrary, the k-NN (k nearest neighbors)
method and its alike, e.g., CBR (case-based reasoning), can be considered bottom-
up, because they do not build a general classifier beforehand. Instead, when given a
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new subject, they use the samples (or cases) that are most similar to the new subject
to achieve the classification. The similarity can be considered as the distance in
the feature space and/or the spatial (or spatiotemporal) space, and thus the solution
is considered local. In the field of knowledge systems, the top-down methods are
referred to as eager learning, and the bottom-up methods are referred to as lazy
learning (Shi et al., 2004).

Assessment: An application example of assessment is cluster (hotspot) detection in
spatial epidemiology. The detection is to find out if the disease intensity at a location
is abnormally high. A top-down method will build a general model, typically in the
form of a polynomial, to characterize the spatial variation of the disease intensity in
the study area, and then evaluates if the intensity at a location statistically significantly
deviates from the general trend of the area, according to the general model (Shi &
Wang, 2015). A bottom-up method, on the other hand, only measures the intensity
locally and evaluates it locally (typically through Monte Carlo simulations), without
trying to summarize the local values into a general representation of spatial variation
(Shi&Wang, 2015). In a sense, the bottom-upmethods in such detections correspond
to the non-parametric methods in statistics.

Estimation: Individualized epidemic modeling for communicable diseases can
be an example to illustrate the distinction between the top-down and bottom-up
approaches to estimation. Conventional epidemic modeling is top-down, which
works at the population level and treats the population spatially as an entirety. It repre-
sents the epidemic process with a series of differential equations (i.e., the general
model) and estimates the parameter values in the equations (i.e., estimates character-
istics of the epidemic, e.g., the reproduction number, Rt), by fitting actual data to the
equations. Alternatively, the Epidemic Forest is a bottom-up modeling method. This
method constructs tree structures to represent individual-level transmission relation-
ships and their spatiotemporal features. It can fully utilize individual-level informa-
tion about a disease case in all aspects, from genetic, biomedical, and epidemiolog-
ical, to demographic, socioeconomic, geographic, and temporal. Epidemic charac-
teristics and their spatiotemporal patterns can then be empirically derived from the
tree structures (i.e., the forest) (Li et al., 2019, 2020).

Prediction: The distinction between the top-down and bottom-up approaches
might be most obvious on the prediction problem. A typical example is modeling the
land-use change. While a top-down method directly generates an overall predicted
scenario, essentially an extrapolationwith a generalmodel derived from the historical
data, the cellular automata (CA), a typical bottom-up method, simply lets the local
situation evolve through interactions among nearby locations, each having particular
properties determined by various human and physical factors, resulting in the emer-
gence of the overall scenario from the local evolution (Chen et al., 2020; Li et al.,
2017; Liu et al., 2017).
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7.4 Concluding Remarks

The earliest GIS emulated map-based manual analytical processes. Ever since then,
GIS has been expanding to incorporate analyses that do not rely on conventional map
(graphic) representation. Many such analyses only use local information to generate
local results, primarily for revealing or characterizing spatial variation. Besides those
longstanding focal raster processes for terrain analysis or image processing, the rela-
tively new geographically weight regression (GWR) is another example of such
methods, and they can be generally called kernel-basedmethods. They are precursors
of more formalized bottom-up methods exemplified by those discussed in Sect. 7.3.
We see that GIS is currently under a major growth spurt of incorporating formal-
ized modern bottom-up methods, due to the motivation and facilitation discussed in
Sect. 7.2.

As an outcome of this type of expansion, mapping may give its center-stage posi-
tion to computation in dealing with applications featuring complex systems and high
uncertainty. In such applications, the importance of mapping in data representation
is diminishing, and the map will be mainly for information presentation. GIS with
visualization as auxiliary rather than essential functionality may become common.
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Chapter 8
The Geography of Geography

Weihe Wendy Guan

Abstract There are many definitions for geography, most contain the word space
or place. In order to foresee the future of geography, let us first examine the pres-
ence of the discipline, in particular, its variation in space. This chapter illustrates the
distribution of global leading higher education institutions and compare that with
the distribution of those leading the study of geography. Are they mostly overlap-
ping? Or in some countries, do they deviate from each other? Among the leading
institutions for the study of geography, are they focusing on physical geography,
human geography, geographic information science, or all sub-disciplines? Among
the leading institutions that are not strong in the study of geography, what are the
related disciplines they choose to focus on? Is there a geographic variation in the
composition of geographic education? If yes, how to describe it, and how to explain
it? Do these patterns reveal any insight to the future of the discipline?

Keywords Geography · Higher education · Future

8.1 The Questions

Let us begin from a basic question—What is geography? We set off to search for the
answer and found many. Below are a few examples.

• “Geography is the study of places and the relationships between people and their
environment.” (National Geographic Society, 2021) This definition focuses on
people—places as defined by people, and environment as related to people.

• “Geography is a science that deals with the description, distribution, and interac-
tion of the diverse physical, biological, and cultural features of the earth’s surface.”
(MerriamWebster, 2021) This definition focuses on the earth’s surface—inclusive
to natural and cultural features.
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• “Geography is the science of place and space. Geographers ask where things
are located on the surface of the earth, why they are located where they are,
how places differ from one another, and how people interact with the environ-
ment.” (American Association of Geographers, 2021) This definition focuses on
the inquiry—where, why, and how.

Instead of listing more definitions, let us try to summarize the key concepts we
found in them:Geography studies the earth’s surface; it is about space, place, regional
difference, change over time, movement, and human–environment interaction; it
explores natural and cultural features, phenomena, inhabitants, events, and processes;
it is descriptive and analytical; qualitative and quantitative…

A better summary might be illustrated by the 5-sphere diagram—geography
studies the earth’s lithosphere, hydrosphere, atmosphere, pedosphere, and biosphere,
plus the rapidly expanding human sphere (Fig. 8.1).

But there is a problem—all these spheres are already claimed by other sciences:
lithosphere is the domain for geology and geomorphology, hydrosphere for
hydrology and oceanography, atmosphere for climatology and meteorology, pedo-
sphere for pedology, biosphere for biology and ecology, andhuman sphere for human-
ities, social sciences, as well as the relatively new field of environmental science
(Fig. 8.2).

The new question becomes: Is Geography studying everything except objects in
outer space? Or nothing unique to it at all?

Fig. 8.1 The five spheres of earth science
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Fig. 8.2 Disciplines and their domains in earth science

Perhaps what matters more is not in what it studies, but how it studies. Jack
Dangermond of ESRI in 2017 promoted a term “The Science of Where” (Vardhan,
2017). He was talking about a new image for the Geographic Information Science
and Systems (GIS). “The Science of Where is applying a data-driven approach that
uses geography to unlock the understanding (of the world).” Perhaps we could say
Geography is The Science of Where in itself? The uniqueness of geography is at the
“where”, and the future of geographymight lie in the “how”—spatial data science (or
geographic data science, geodata science) represents a new approach for geographers
to conduct their studies, a new trend comes with the rising tide of data science.

But wait, the definitions of geography are not so clear on whether geography is
a study, a science, or an applied science. In general, a Study deals with observation,
description, classification (what, who, where, when); a Science aims at explanation
and prediction (why, how, how many); and an Applied Science, which leads to
planning or engineering, focuses on prescription (what if). They are not exclusive
to one another, rather stages in an evolution of human understanding. The future of
geography might lie in this evolution.

Can we find any evidence to verify these bold predictions? Can we put the
promise of geographic data science to the test, and search for evidence of geography’s
evolution from data?
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8.2 The Exploration

Since the late 1940s, the identity and integrity of geography as an academic discipline
has been in question (Smith, 1987). Many geography departments changed their
names, and the trend has been accelerating in recent decades (Frazier, 2017). How
is geography faring in the global high education landscape? We set off to find data
that can present us an answer.

8.2.1 The Data

As a rudimentary attempt, we looked for data online on how universities are teaching
geography. In particular:

• Where are the global leading higher education institutions, and where are
universities leading the study of geography? Is there a regional difference?

• Among the leading institutions for geography, what sub-disciplines do they teach?
Is there a regional difference?

• What topics are in the geography courses? Is there a regional difference?

There are many sources reporting the ranking of universities worldwide, but most
of them do not rank universities by their geography standing. We found two sources
useful, one is the QS Top Universities website (QS Quacquarelli Symonds Limited,
2019), the other is a database behind the 2019AAGGuide to Geography Programs in
theAmericas (AmericanAssociation ofGeographers, 2021), in addition to individual
university websites.

The QS Top Universities website provides worldwide university ranks by overall
standing and geography standing. We visited websites of the top 100 universities
leading in geography and populated a database with the type of degrees each of them
offers in physical geography, human geography, regional geography, GI science,
environmental and urban studies, historical geography, and general geography. We
also georeferenced all the universities by location.

TheAAGguide provided a list of the geography sub-disciplines of 311 universities
in the Americas. We could not find similar data for other regions in the world, thus
arbitrarily picked just the top three highly ranked universities leading geography in
Europe and Asia respectively and extracted their geography course titles from the
university websites, to form the corpse of sub-disciplines for comparison. The results
are mapped and charted, and the findings are summarized below.
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Fig. 8.3 Number of universities per country among the Global Top 200. Blue is by QS
comprehensive ranking, and brown is by QS ranking of the geography subject

8.2.2 The Findings

Among the top 200 universities globally, if by overall standing (QSWorld University
Rankings based on six key metrics), the US leads the count; if by geography standing
(QS World University Rankings by subject), the UK leads. Australia and Canada
also have more universities included in the top 200 by geography than that by overall
standing. At a glance, the British Commonwealth is stronger in geography education
than the rest of the world (Fig. 8.3).

From the websites of the top 100 universities leading in geography, we recorded
the type of degrees each of them offers in (1) human-social geography (including
human geography, historical geography, and regional geography), (2) physical and
environmental geography (including environmental science, urban studies, and phys-
ical geography), and (3) Geographic Information Science, as well as general geog-
raphy. The general pattern from the data shows that in UK and EU, the first category
(human, regional and historical geography) seemsmore prevalent; in North America,
the third category (GIS) seems more dominating; while in Asia, the second category
(physical, environmental, GIS) seemmore common. But the differences are not easy
to present visually, and the data was manually gathered, most likely incomplete and
lack of a thorough quality control.

To verify this pattern, we explored data from the AAG (for the American Univer-
sities) and individual university websites (Oxford, Cambridge and UCL for UK;
NUS, HKU and PKU for Asia). In the course names word cloud, “Human” stands
out in the UK universities (Fig. 8.4); “GIS” stands out in the American universities
(Fig. 8.5);while “Urban” and “Planning” stand out in theAsian universities (Fig. 8.6).
Geography and environmental are high frequency words in all three regions.
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33 Geography

9 Environmental 

7 Human
6 Change 

5 Environment 

5 Development 

5 Processes

5 Society

5 Global

5 Field

4 Political

4 Physical

4 Earth

4 Urban 

3 Fieldclass

3 Historical

3 Overseas 

3 Cultural 

3 Economic

3 Methods 

3 Ecology

2 Understanding 

2 Globali sation

2 Biogeography

2 Cartography

2 Geopolitics

2 Quaternary 

2 Urbanism 

2 Politics

2 Thinking 

Fig. 8.4 Word cloudwith geography course names in 3UKuniversities (Oxford, Cambridge, UCL)

1367 Geography
363 GIS
247 Economic
237 Cultural 
220 Urban 
210 Physical
209 Environmental 
205 Remote
202 Sensing
201 Poli cal

192 Geographic 
181 Development 

Climatology
169 Meteorology
159 Cartography
156 Planning 
155 Management 
154 Water
153 Resources 
150 Applied

142 Biogeography
140 Resource 
139 Quan ta ve
136 Methods 
135 Conserva on
135 Land 
135 Use
130 Geomorphology
125 Ecology
124 Regional

Fig. 8.5 Word cloud with geography discipline names in 311 American universities
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37 Geography
25  Environmental 
21 Urban
21 Planning
16  Introduction 
16 Ecology
14 Practice 
11 Science 
10 Physical
10 Field

9 Social
9 Global

8 Design
7 Methods
7 Change 
6 Development
6 Cultural 
6 World

8 Geographies
8 Environment

5 Management
5 Resources
5 Research
5 Sciences
5 Tourism
5 Applied
5 Remote

6 Human 
6 Space 

5 Sensing

Fig. 8.6 Word cloud with geography course names in 3 Asian universities (NUS, HKU, PKU)

8.3 The Future

The preliminary data exploration shows that theUK is leading theworld in geography
study, particularly in the study of human geography; the Americas are embracing
the GI science; while Asia is pushing forward on the applied front, not only in urban
planning but also in resource management, development, tourism, etc.

Perhaps geography is evolving from a study to a science and continues towards
an applied science. As a study, geography has a long history in fields such as Human
Geography, Regional Geography, or Historical Geography, led by European univer-
sities. As a science, geography is thriving in fields such as Earth Science, Geographic
Information Science, or Geospatial Data Science, led by North American universi-
ties. As an applied science, geography is branching out to relatively new fields such
as GeoDesign, GeoPlanning, or GeoEngineering, led by Eastern Asian universities.

Nonetheless, the future of geography will evolve along multiple fronts. As Peng
Liangwrote in his essay of “Geography:Un-diminishableValue” (inChinse): “Geog-
raphy reveals the laws of nature and demonstrates the essence of humanity.” “The
charm of geography lies at three levels: it serves the needs for human survival; it
presents the beauty of nature; and it frames the background for civilization.” (Liang,
2014).
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Chapter 9
Classification and Description
of Geographic Information:
A Comprehensive Expression
Framework

Guonian Lv, Zhaoyuan Yu, Linwang Yuan, Mingguang Wu,
Liangchen Zhou, Wen Luo, and Xueying Zhang

Abstract Geography is a comprehensive discipline that studies spatial–temporal
patterns, evolution processes, and interaction mechanisms of geographic objects
and phenomena. With the evolution of the world from a binary space to a ternary
space, it is urgent to deepen and expand the understanding, expression, and mining
of geographic information. Most current GIS models use the geometry + combi-
nation to express geographic information. Geographic processes, including inter-
play among features, cannot be directly modeled under the above notion. Geog-
raphy analyzes spatial and temporal structure of macroscopic patterns as a whole
and studies evolutionary processes from the perspective of comprehensive integra-
tion, and reveals system structures from the perspective of the integrated role of
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multiple elements. Based on the concept of ternary space, we identify seven dimen-
sions of geographic information elements, which include semantics, spatial loca-
tion, geometric structure, attribute, interrelationship, evolution process, and interplay
mechanism.We also discussed how such representation framework can be employed
under a geometric algebra approach to represent geographic scenes and to achieve a
unified representation of the seven dimensions.

Keywords Geographic information · Ternary space · Elements of information ·
Dimensions of geographical description · Geographic information classification

9.1 Introduction

With the rapid development of ICT (Information, Communication and Technology),
such as cloud computing, internet of things, virtual reality and other technolo-
gies, great progress and improvement have been made on the acquisition, analysis,
and display of geographic information. Geographic information has become inter-
link, dynamic and ubiquitous. With the continuous increase of the heterogeneity of
geographical information, the traditional geographic information description schema
is prone problems, such as incomplete attribute, inaccurate semantics, and unclear
evolutionary processes. How to build a comprehensive description framework of
geographic information for the era of ICT is a frontier scientific problem.

Geographical information contains a variety of physical, human, social, andmany
other aspects. Geographic information can capture comprehensive properties of earth
processes and phenomena that are multidimensional, and dynamic. In recent years,
the description of geographic space has changed from a binary space (physical, and
social-human world) to a ternary world (physical, social-human, and information
world). In this context, geographic information description should include the inter-
pretation of time, place, process, law, mechanism, and other elements. Therefore,
we suggest a description framework that integrally expresses the seven dimensions:
semantics, spatial location, geometric structure, attribute, interrelationship, evolution
process, and interplay mechanism (Lü et al., 2017).

9.2 The Connotation of Geographic Information

9.2.1 Overall Framework

Based on the concept of a ternary world, we aim to develop an abstract mapping
mechanism of the ternary world of physical, human, and information to the computer
from the perspective of geography. In this chapter, a geographic information clas-
sification system is analyzed systematically, and a framework consisting of seven-
dimensional descriptors of geographic information is given (Fig. 9.1). The physical,
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Fig. 9.1 Geographic information description framework

human, and information worlds are composed of various geographical elements.
These geographical elements, which are the key concepts and expression units of
geography, are interconnected and can be transformed as geographic information.
The comprehensive expression of geographic information can then be organized
with a unified and complete expression model. This unified expression model, as
an organization of information, can provide a theoretical foundation that enables
geographic information to incorporate complex geographic objects and geographic
processes into geographic information systems.

9.2.2 Information Elements for Ternary Space

The traditional binary space is suited for the physical world which only perceived to
be consisting of two parts: physical and human. However, with the rapid development
of ICT, the word has evolved into a new generation that covers the physical world, the
human world, and the information worlds (Zhou, 2015). The physical world refers to
the physical environment in which humans live and the material systems contained
therein; the human world refers to the sum of human behavior and social activities;
and the information world is a virtual world built on the physical space and social
space where the physical and human geographic information transformed from the
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real world is captured, stored, managed, expressed, and analyzed in the form of a
digital twin.

Based on the perspective of a ternary world, geographic elements can be divided
into physical elements, humanistic elements, and information elements. Physical
elements include geology, landforms, weather and climate, hydrology, soil, biology,
and other elements. Human elements include political, economic, military, cultural,
social, and historical elements. Information elements include time, place, character,
object, event, phenomenon, scene. The information world can carry and map the
physical world and the human world. Meanwhile, it can further influence and even
reconstruct the physical and human worlds employing multi-situation simulation
and digital twins (Guo & Ying, 2017). In this context, information organization
in geographic space needs a comprehensive description of physical, human, and
information in the ternary world. The physical elements are the foundation of human
elements, and the information elements are further abstractions of the physical and
human elements.

All physical, human, and information elements complement each other and can
be expressed by information elements. The development of GIS has accelerated the
mutual integration of physical, human, and information worlds. The introduction of
ternary space has expanded the representation dimensions of geographic information
to capture the ternary elements of the world (Guo et al., 2018). The abstraction and
description of the physical and human worlds from the perspective of information
elements can be summarized into seven elements, namely time, place, character,
object, event, phenomenon, and scene. The seven elements of information are the
top-level abstraction of the ternary world, and each element can be further divided.

9.2.3 Seven Dimensions for Geographical Information
Description

Geography is a science that studies spatial patterns, temporal evolutions of the human
living environment, and the interaction between humans and their environment in
Earth surface systems (Chen et al., 2019).Geographical information is fundamentally
different from other information, with characteristics that are often regional, multidi-
mensional, and changing over time and space. Traditionally, geographic information
description follows the schema of “location + geometry + attribute” using discrete
geometric objects such as points, lines, polygons, and volumes to approximate the
complex real geographic world. This schema showsweakness in organizing complex
and continuous geographic objects and in modeling geographic processes.

Recently, the concept of geographic scene has been applied to the expression of
geographic information. A geographic scene is a specific synthetic region comprising
physical, human, and information factors and their mutual relationships and interac-
tions. A geographic scene has a specific structure and functions and is characterized
by comprehensiveness. In our previous research, we proposed a representationmodel
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consisting of six elements of geographic scene (Lü et al., 2018): semantics, location,
the shapes and attributes of geographic elements, the relationships among elements,
and evolutionary processes. The ternary space model can be adopted to extend the
concept of geographic scenes by refining the dimensions of shape and relationship as
geometric structure and interrelationship, and by adding interactionmechanism as an
additional dimension. These seven dimensions, namely semantics, spatial location,
geometric structure, attributes, interrelationships, evolution processes, and interplay
mechanisms, will be discussed as follows.

9.2.3.1 Semantics

Semantics refers to the geographic characteristics of information elements in
geographic scenes that have been processed and recognized by humans. It is mostly
indirect and obtained through reasoning. The semantic description of information
elements may include definitions, classification systems, and schematic diagrams
(schematics). Among them, definition is the connotation, including time, place, and
scene. Classification system refers to the hierarchy of differentiating and associating
diverse geographic elements in a given context. Schematic diagram is a graphical
(often abstracted) representation of the connotation; it usually embodies a graphical
description and decomposition of its essential characteristics.

9.2.3.2 Spatial Location

Spatial location is a description of the location of geographic entities, identifying
where a geographic element is located, or where an event/process/phenomenon
occurs. Coordinates are widely used to encode spatial location. More broadly, land-
marks, placenames, and addresses, or even spatial relationships (e.g., near, opposite),
can also provide useful references about spatial location as spatial identifiers.

9.2.3.3 Geometric Structure

Geometric structure is a description of the geometric forms of various geographic
entities, including shapes, orientations, and reflections There are many types of
geometric forms such as points, lines, polygons, and bodies in the existing geographic
information system. In addition to traditional object descriptions, geometric descrip-
tions and expressions can also be carried out through pixels and voxels. Pixel is a basic
and atomic component of the two-dimensional grid, and a voxel can be considered as
a three-dimensional volume pixel, which represents a basic and atomic component
of the regular grid in a three-dimensional space.
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9.2.3.4 Attribute

Attribute components aremainly dedicated to the non-spatial characteristics of spatial
entities, such as land cover, temperature, and population.Attribute components can be
recorded from multiple perspectives, such as geometric, physical, chemical, biolog-
ical, cultural, social, and economic, among others. Note that attribute components
can also evolve with temporal and/or spatial components of geographic entities.

9.2.3.5 Interrelationship

Interrelationship is used to describe the spatial and/or temporal relationships between
information elements. The traditional geographic information representation model
highlights spatial relationships (e.g., distance relationships, topological relationships,
directional relationships), and often overlooks the interplay relationships among
features. The relationships that expressed by differential equations, chemical equa-
tions, and information diagrams are also overlooked by current GIS data models.
More interrelationships that focus on geology and landform, climate and hydrology,
landform and vegetation and other physical elements, regions and economic devel-
opment, social relations, as well as communities and other human factors could be
included to form a comprehensive description of the relationships among physical,
human, and information worlds.

9.2.3.6 Evolution Process

Evolution process refers to the change of information elements over time. The
description of the evolution process should first include the description of the time
information, including the point in time (ti ), the time snapshot (�t , dt), or the process
(∂t) description of the full life cycle. Descriptions of the state and behavior of the
element at the time could also be attached.

9.2.3.7 Interplay Mechanism

Behind visual appearance, there are interplay mechanisms among geographic
elements. These mechanisms mainly reveal the possible cause of material migra-
tion, energy conversion, and information transmission. The mechanism of actions
among elements in the real world can be described, perceived, and analyzed through
various functions such as scenes, maps, networks, and models. On the other hand,
the mechanism of action can also be used as constraints and rules for the expression
of geographic information.
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9.3 Example of the New Geographic Information
Description

For the seven-dimensional expression of geographic information, it is necessary to
establish an innovative data model. Unlike traditional GIS data models that mainly
focus on the organization of spatiotemporal information with related attributes, a
new data model should be developed with consideration of all the seven dimensions.
Thus, semantics, spatial location, geometric structure, attributes, interrelationships,
evolution processes, and interplay mechanisms must be expressed structurally and
unified in the data model. In our previous works, geometric algebra (GA), which is a
high dimensional algebra system, is used to develop such data models. GA integrates
geometric and algebraic expressions organically, and realizes the unified description
of time and space, continuous and discrete, as well as unified measurement and
operation in high-dimensional space through unique reversible geometric product
operations and rich geometric algebra operators. The multi-dimensional unity and
the coordinate independence of GA are used to construct a multi-dimensional unified
expression and calculation model of geographic information, which provides high-
dimensional expression and calculation support for various information elements
(Fig. 9.2).

GA provides a blade andmultivector structure for organizing and representing the
complex structure of the ternary world and facilitates object expression andmeasure-
ment through geometric product. Themultivector structure provides the fundamental
containers that can connect different types of elements with different dimensions.
In GA, spatial location is represented as the basis of GA and the geometric struc-
tures can be developed based on the Grassmann structure and multivector structures
(Yuan et al., 2012). Evolution process can be represented using versors, which can be
used as calculation operators to construct differential equations or discrete dynamical

Fig. 9.2 Geographic information description with geometric algebra
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representations (Yu et al., 2015, 2016). Semantics, attribute, interrelationship, and
interplay mechanism are usually unstructured and cannot be represented as geome-
tries or simple algebraic equations. To integrate these four components in the model,
a GA-based distributed knowledge representation mechanism (Patyk, 2010) is used
for coding them. Such integrated representation provides the mathematical and theo-
retical basis for integrated information modeling of geographic multi-factors (Yuan
et al., 2019).

9.4 Conclusion

Based on the concept of ternary space, we proposed a seven dimensions frame-
work to represent geographic information, which includes, semantics, spatial loca-
tion, geometric structure, attribute, interrelationship, evolution process, and inter-
play mechanism. This representation model should enable the systematic integra-
tion of geographic information with multiple scales, dimensions, attributes, and
spatial properties, which solves the problems of incomplete expression of infor-
mation elements and lack of geographic characteristics. On this basis, the proposed
framework expands the scope and domain of geographic information science and
can serve as the basis for the development of a new generation of the geographic
information system.
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Chapter 10
On the Third Law of Geography

A-Xing Zhu

Abstract Laws are statements of relation of phenomena that currently hold under
given conditions and powerful ways for people to communicate and even advance
human understanding about the world around us. Currently, three general princi-
ples in geography have been named as Law of Geography. The first is the spatial
autocorrelation principle, which describes the relation among the attribute values of
a given geographic variable over distance. The second is the spatial heterogeneity
principle, describing the uncontrolled variance of geographic variables. The third is
the geographic similarity principle which describes the resemblance of geographic
phenomena under similar geographic configurations (geographic contexts). The
Third Law of Geography is different from the first two in that it emphasizes the
individual representation of single samples using the similarity in geographic config-
uration. This focus on individual representation offers a completely new perspective
on geographic analyses and knowledge discovery. There are three key issues to be
addressed for the Third Law of Geography to fully manifest itself in this capacity:
the characterization of geographic configuration; the integration of the individual
representation-based techniqueswith the averagemodel-based techniques; and appli-
cation of the Third Law in the broader range of geographic subfields and related
disciplines.

Keywords First Law of Geography · Spatial autocorrelation · Second Law of
Geography · Spatial heterogeneity · Third Law of Geography · Geographic
similarity
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10.1 About Laws of Geography

TheMerriam-Webster Dictionary has two definitions for law in the context discussed
here (Entry 6a and 6b) (Merriam-Webster, online). 6a defines it as “a statement of
an order or relation of phenomena that so far as is known is invariable under the
given conditions” and 6b defines it as “a general relation proved or assumed to hold
between mathematical or logical expressions”. In both definitions one can clearly
see that laws are not universally true and should not be taken as such. They are
true “under the given conditions”, can even be “assumed” to hold. For example,
even Newton’s three Laws of Motion are not universal. They only hold for objects
which are idealized as single point masses (Truesdell et al., 2003) and they do not
hold for the motion of deformable bodies (Lubliner, 2008), not for reference frames
which are in acceleration (Chabay & Sherwood, 2015), not for objects that are at
the small scale of atom (Peskin & Schroeder, 1995). Even with these conditions (or
constraints), these laws advanced our understanding about theworld around us in two
ways. First, they provided the basis for understanding the motion of objects and used
as a unified quantitative explanation of a wide range of physical phenomena. Second,
they, through their conditions under which they hold, directed efforts in furthering
our understanding. For example, the conditions posed on objects for which these
laws hold inspired researchers to study the motions about other objects, which led
the discoveries synthesized as Euler’s laws of motion (for rigid body) (McGill &
King, 1995), Cauchy’s continuum mechanics (fluid body) (Kurrer, 2018), quantum
mechanics (at the scale of atomic particles) (Feynman et al., 1964).

Currently, there are three general principles in geography which have been named
as Laws of Geography. The first is about the spatial continuity (spatial autocorre-
lation) exhibited by geographic phenomena (The First Law of Geography, “near
things are more related than distant things”) (Tobler, 1970). The second is about
the spatial heterogeneity of geographic phenomena (The Second Law of Geog-
raphy, “uncontrolled variance”) (Anselin, 1989; Goodchild, 2004). The third is
about the geographic similarity, describing the resemblance of geographic config-
urations between two locations (The Third Law of Geography, ““the more similar
the geographic configurations between two points, the more similar the values of the
target geographic variable at these two locations”) (Zhu & Turner, 2022; Zhu et al.,
2018). If one uses the above definitions of law to assess the validity of these principles
as law, one might find that they do fit the definition. They each do capture the “order
or relation” of geographic phenomena that generally hold but with conditions. There
are exceptions to these orders or relations. For examples, a cliff exhibits discontinuity
in elevation; the surface of temperature over a calm lake surface is quite uniform;
and a human may not have similar thoughts at the similar geographic scenes. Never-
theless, the spatial continuity described in the First Law, the spatial heterogeneity in
the Second Law, and the geographic similarity in the Third Law are all well-known
norms (order) and relations exhibited by geographic phenomena and hold true at the
vast majority of times. In this regard, the scale independence (Phillips, 2022) may
be another Law of Geography (maybe the Fourth in the order of being named as law,



10 On the Third Law of Geography 87

not in its importance). These properties guided us well in understanding geographic
phenomena and in our interaction with the geographic environment.

Laws of Geography have two properties: synopsized and descriptive (Zhu et al.,
2020). By “synopsized” I mean that the scholars who named these principles as laws
were not the personswho initially discovered these principles. In fact, what expressed
in these principles exists in the form of general knowledge (or common knowledge)
which has been accumulated by researchers in the field over a long time. The naming
scholars of these respective laws synthesized and distilled the understanding, and then
abstracted the understanding to a law like statement. For example, the knowledge
on spatial continuity of geographic variable is well-known and even widely applied
before Tobler named it as the First Law of Geography. The same can be said about the
other two Laws of Geography and the law of scale independence. By “descriptive” I
mean these laws are expressed in a qualitative form, not in a quantitative explanation
as we are accustomed to the laws in physics. For example, the Second Law describes
the nature of spatial heterogeneity as “uncontrolled variance” and the Third Law
describes the effects of geographic resemblance on a target geographic variable in
terms of “the more similar…, the more similar”. This way of expressing geographic
principles exhibits the nature of geographic knowledge and suits the custom so far
geographers use to describe our understanding about geographic phenomena (Zhu
et al., 2020).

10.2 The Third Law of Geography

In searching for an alternative to the average model approach to spatial predic-
tion, Zhu et al. (2015) discovered the importance of individual representation of
single samples through geographic configuration in capturing local variations in
spatial prediction. Based on this line of work, Zhu et al. (2018) abstracted the
commonly known geographic similarity to a law like statement, “The more similar
the geographic configurations of two points (areas), the more similar the values
(processes) of the target variable at these two points (areas)”, referred to as the
geographic similarity principle, which can be simplified to as “the more similar the
geographic configurations between two points, the more similar the status of the
target variable”. The essence of what captured in the Third Law of Geography is
the use of individual representation of single samples, which argues that a sample
can be used to represent locations or areas which are similar to itself in geographic
configuration (Fig. 10.1). If one of the two locations is a sample (where status of
the target geographic variable is known), then the status of the target variable at the
other location can be assessed by the similarity in geographic configuration between
these two points (Fig. 10.2) (Zhu, 2022; Zhu & Turner, 2022).

There are three unique aspects about what was stated in the Third Law of Geog-
raphy (Zhu & Turner, 2022). The first is the use of individual representation of single
samples. Under the Third Law, status of a target geographic variable at an unvis-
ited location is assessed by the status of the target variable at one and only one
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Fig. 10.1 Explicit use of the individual presentation of a single sample. Sample k can be used to
represent the points which are similar (or close) to itself in geographic configuration [revised from
(Zhu, 2022)]

Fig. 10.2 Assessment based on individual representation of single samples [revised from (Zhu,
2022)]

sample location at a time (Zhu et al., 2015), not by the average model developed
from the entire sample set. The second aspect is that the assessment is done through
the comparison of the locations, not through the construction of a relationship (an
average model) derived from all samples, which (constructing the average model) is
the common practice adopted in most geographic learning and knowledge discovery
(Jiang, 2015). The third aspect is that the comparison is measured using the simi-
larity in geographic configuration between the two locations, not by a linkage of
geographic configuration to the status of the target variable directly.
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These unique aspects or characteristics of the Third Law of Geography provides
a significant opportunity to conduct geographic analyses and knowledge discovery
from a completely different angle than the widely adopted average model approach
in current geographic knowledge discovery (Zhu, 2022). This significance comes
from the benefits using the individual representation of single samples and can be
summarized in four areas: sample requirement, relationship requirement, uncertainty
provision, and knowledge retention.

No sample requirement: One of the key requirements for the averagemodel to work
well (applicable to the entire geographic area under study) is that the samples used
to develop this model are representative of the area under concern, which is often
achieved through the requirements on the sample size and sample distribution (de
Gruijter et al., 2006; Wheeler et al., 2013). Achieving a good sample representation
of the study area is a non-trivial task due to budget limitation and accessibility
constraints (Meyer et al., 2015). More importantly, geographers are now relying
more on volunteered data from non-specialists (volunteered geographic information,
VGI) (Goodchild, 2007; Heipke, 2010) and becoming an important source of data
for geographic knowledge discovery (Sui et al., 2013). However, these data sources
have their limitations or biases on the level of representation due to the ad-hoc nature
in their collection (Mullen et al., 2015). These limitations or biases would lead to
biased, even wrong, conclusions, just as one would be completely misled if one relies
on the selection process (sampling process) from a social media app, which is based
on the preference of the audience, not on the representation of what is happening in
the world. The use of the individual representation of single samples coupled with
uncertainty provision allows the removal of the requirement for good representation
of the study area in the sample set, which significantly reduces the risk of drawing
biased or wrong conclusions from biased samples.

No relationship requirement: The average model approach also imposes a station-
arity requirement on the relationship captured in the model so that the developed
model can be applied to the entire study area under concern. The applicability of
the model (the likelihood of the stationarity requirement being met) depends on two
aspects: the representation of the study area in the samples as discussed above and the
variation of the actual relationship over the study area. Even if the samples are repre-
sentative of the study area, the developed average model may still not be appropriate
for some parts of the study area due to the complex nature of geographic phenomena
which leads to a great variation of their relationships to other geographic factors, just
as stipulated in the Second Law of Geography. For example, when examining the
relationship between vegetation coverage and soil depth (here defined as the depth to
the bottomof theB horizon) for an areawith three different parentmaterials (assumed
to be granite, limestone, and mudstone). Clearly, the relationships are significantly
different among the three areas. Even though the samples used are representative of
the entire area, the average model developed from the samples would still not work
well for the entire area due to the vast differences in how vegetation coverage is
related to the soil depth among the three regions of different parent materials. This
is because what is captured in the samples, the different relationships for the three
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sub regions, is not represented in the model which is the average condition in the
samples. One may argue that there are more sophisticated learning methods (such
as machine learning techniques) which can be used to address this issue. This is
true but there are two caveats with these types of learning techniques. One is that
they are so data dependent that generalization is a major issue for these techniques.
The other is that these techniques are often unable to work with relationships that
vary continuously over space. The Third Law does not require a specific relationship
to be built, thus there is no requirement of stationarity (Zhu & Turner, 2022). The
differences in relationships among geographic variables can be easily accounted for
as long as they are captured in the samples (Zhu et al., 2015).

Uncertainty provision: Uncertainty about the assessment of status of a geographic
variable at a location is an important part of the information that should be provided
because it can provide quality information about the assessment at that location
and can be used to assess the quality of the resulting decision and decision alter-
natives (Zhang & Goodchild, 2002). This information is more than often not
provided for each location from current geographic analytical techniques. Through
the emphasis on the individual representation of single samples through the similarity
in geographic configuration, the Third Law of Geography offers an effective way to
quantify the uncertainty associated with the assessment of status of the target vari-
able at each location (Liu et al., 2020; Zhu et al., 2015). This is achieved through the
employment of similarity in geographic configuration between the sample and the
location of assessment. If the geographic configuration at the location of assessment
is similar to that at a sample, then there is a high confidence to use that sample to
assess the status of the target variable at that location. If none of the samples available
is similar in geographic configuration with the location of assessment, using any of
these samples to assess the status of the target variable at the location would lead
to high uncertainty. Thus, similarity in geographic configuration between the most
similar sample and the location of assessment can be used to quantify the uncer-
tainty associated with the assessment at each location using these samples. It has
been shown that the so quantified uncertainty is a good surrogate to the quality of
the assessment (Zhu et al., 2015). Due to the fact that uncertainty is available for
every location, the spatial variation of assessment quality can be provided as well
(Zhu et al., 2015). This spatial variation of uncertainty (assessment quality) can be
used to effectively allocate additional sampling efforts (Li et al., 2016; Zhang et al.,
2016) and to mitigate sampling bias (Zhang & Zhu, 2019).

Knowledge retention and representation: Existing knowledge in geography, like
in many other disciplines, exists in the form of averages (means) or generalized rules.
This form of knowledge retention and representation is certainly important due to its
simplicity and clarity, but this form alone is insufficient (Taleb, 2017). The negative
consequences of this insufficiency or tolerance of difficult-to-predict events are best
exemplified in Taleb’s Black Swan Theory (Taleb, 2010). One of the elements in this
insufficiency is the neglect of the individuality captured in samples (or the individual
representation of single samples). The Third Law focuses on the usefulness of the
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individual contributions from single samples, which effectively complements what
is missing in current forms of geographic knowledge retention and representation.

In summary, these four elements of significance suggest that the Third Law of
Geography can serve as a new theoretical basis for fundamentally transforming
geographic analyses. By adding the individual representation-based approach, the
Third Law effectively broadens geographic analyses from a single average model
doctrine to duo model doctrine, or even a doctrine integrating the average model
approach with the individual representation-based approach. This will significantly
enhance the analytical capacity of geographers and related practitioners.

10.3 Issues to Address

There are three key issues which need to be addressed to maximize the benefits
brought forward by the Third Law of Geography. The first is the characterization of
geographic configuration. The term, geographic configuration, means the structure
of geographic conditions around a point, including the conditions of the covariates
(other geographic factors that covary with the target variable), the ranking (weights)
of these covariates, the spatial arrangement of the conditions of these covariates, as
well as the scale at which the configuration is characterized. Given these, geographic
configuration is a spatial statement, sometimes people would treat it as “spatial
context”. However, I prefer geographic configuration or geographic context over
spatial context because the latter is likely to be interpreted as tied to spatial distance
alone. The following questions need to be answered about geographic configuration
first before applying the Third Law. What covariates should be included for a given
target variable?How toweight these covariates?How to quantify spatial arrangement
of the conditions from the covariates around the location of interest? What would be
the geographic configuration for an area or an area at different scales?

The second key issue is the development of spatial analytical methods/tools based
on the Third Law of Geography. Efforts are underway in spatial prediction, such
as new prediction techniques (Zhu et al., 2015), uncertainty assessment methods
(Liu et al., 2020), sample selection (Zhu et al., 2019), and sample-bias mitigation
(Zhang&Zhu, 2019). These are far too few if the Law is going to be applicable to the
discipline of geography as whole. Newmethods/techniques need to be developed for
other spatial analysis as well as for the integration of individual representation-based
approach with the average model approach.

The third key issue is more applications in other sub-fields of geography and
related disciplines. Currently researches on the Third Law of Geography are mostly
in physical science side of geography (such as soil mapping, landslide susceptibility
mapping, wildlife habitat suitability mapping). There is a great need for examples
in other subfields, particularly from human geography perspective (such as analysis
of crimes, assessment of ideation of suicide). The applications in human geography
will present new issues and new challenges to solve, which will definitely enrich the
concepts behind the Third Law.
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10.4 Summary

The Third Law of Geography, “The more similar the geographic configurations
between two points, the more similar the status of the target variable”, synopsizes an
important principle in Geography which focuses on the individual representation of
single samples. It has been shown that this principle can serve as a theoretical basis
for addressing the challenges facing the analytical ability based on the averagemodel
approach, such as specific sample requirement, relationship requirement (including
stationarity), uncertainty deficiency, and over-generalization in knowledge retention
and representation. By addressing these key challenges in geographic analyses, the
Third Law provides a brand-new perspective and opportunity for geographic anal-
yses, which could potentially change the landscape for geographic analyses and
knowledge discovery.

Geographic analyses are experiencing an important change, from small area
focused studies to large spatial extent research, from coarse spatial granularity (reso-
lution) to fine grainedmodeling requiring high level of spatial detailswith uncertainty
evaluation, which calls for the use of the geographic similarity principle as advocated
by the Third Law. At the same time, the development of location-enabled personal
devices and the increasing ability for capturing information on geographic envi-
ronment have changed the landscape of data provision which greatly enhance our
ability to characterize geographic configuration, in turn makes the geographic simi-
larity principle viable for its wider application in different sub-fields of geography
and related fields.
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Chapter 11
Human Mobility and the Neighborhood
Effect Averaging Problem (NEAP)

Mei-Po Kwan

Abstract The neighborhood effect averaging problem (NEAP) was discovered in
2018. It arises when human mobility is ignored when assessing individual exposures
to environmental factors (e.g., noise and air pollution). Neighborhood effect aver-
aging occurs because most people move around in their daily life, and as a result,
their mobility-based exposures would tend toward the average of the population or
participants of the study area. Assessments of individual exposures or their health
impacts based only on residential neighborhoods do no capture people’s exposures
in non-residential neighborhoods and thus may lead to erroneous findings (because
people’s daily mobility may amplify or attenuate the exposures they experienced
in their residential neighborhoods). To date, there has been limited research on the
NEAP and its effects on research findings. This chapter provides a succinct overview
of the NEAP and relevant recent studies on the problem. It also highlights the need
to mitigate the NEAP in research and its policy implications, especially concerning
the situations of socially disadvantaged groups.

Keywords Neighborhood effect · Health geography · Environmental health · Air
pollution · Ethnic segregation

11.1 Introduction

A major focus of geographic research is to discover the relationships between
different phenomena over space (e.g., how geographic contexts and environmental
factors like land use or air pollution affect people’s health). To derive the rele-
vant variables to examine these relationships, much of past research is based on an
area-based or zone-based framework. For example, the relationships between toxic
environmental substances and health are examined by first deriving environmental
and health variables from fixed areal or contextual units like census tracts and then
analyzing the relationships between the variables using appropriate methods (e.g.,
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spatial regression). As a result of using an area-based framework, all such past studies
faced the well-knownmodifiable areal unit problem (MAUP) because using different
zonal schemes or spatial scales for deriving area-based variables may yield different
results (Fotheringham&Wong, 1991). Much research has been conducted to deepen
our understanding of the MAUP, its effects on research findings, and methods for
mitigating it (e.g., identifying and using the best areal division, neighborhood size,
or geographic scale) (e.g., Mu & Wang, 2008).

In recent years, a newmethodological problem in geographic analysis was discov-
ered. It is the uncertain geographic context problem (UGCoP) discovered by Kwan
(2012a, 2012b). It refers to the problem that findings on the effects of area-based
attributes (e.g., land-use mix) on individual behaviors or outcomes (e.g., physical
activity) could be affected by how contextual units or neighborhoods for deriving the
environmental variables are geographically delineated. Because no researcher has
complete and perfect knowledge of the precise geographic context that influences
individual behaviors or outcomes being examined, no study that uses area-based envi-
ronmental variables can fully overcome the problem. As discussed in Kwan (2012a),
the UGCoP poses serious inferential challenges and is a fundamental methodolog-
ical problem. Note that the UGCoP is not relevant to area-based outcomes such as
cancer or crime rates of census tracts because it is not clear how a true causally
relevant geographic context may be meaningfully conceptualized or delineated for
an area-based group, such as all the individuals who live in the same census tract.

While theUGCoP seems similar to themodifiable areal unit problem (MAUP), it is
a different kind of problem because it is not due to the use of different zonal schemes
or spatial scales for area-based variables (Kwan, 2018a). Instead, the UGCoP is
due to the use of arbitrary areal units (e.g., buffer areas of different types and sizes
around individuals’ homes) for deriving area-based variables because of the lack of
knowledge about the precise spatial and temporal configurations of the contextual or
environmental factors that exert influence on the individual behavior or experience
under study. As a result, methods for addressing the MAUP do not necessarily solve
the UGCoP. This poses a major challenge to all studies that derive contextual or envi-
ronmental variables based on arbitrarily delineated areal units (e.g., different types
and sizes of homebuffers).Unlike addressing theMAUP, addressing theUGCoPcalls
for more accurate delineations of the “true causally relevant” geographic context and
more accurate measurements of the pertinent geographic or environmental variables.

A major source of the UGCoP is a result of ignoring people’s daily mobility and
real-timemicroenvironments (e.g., in a restaurant) over space and time. For instance,
most studies to date use static administrative areas (e.g., census tracts) and people’s
home locations to derive measures of their exposures to environmental factors (i.e.,
exposure measures). However, people move around in their daily life and thus are
exposed to environmental contexts not only in their residential neighborhoods but
also inmany other areas (Kwan, 2009, 2013). TheUGCoP thus arises fromour lack of
knowledge of people’s precise exposures as their daily lives unfold in space and time
and the use of static and fixed delineations of neighborhood or geographic context
that ignore human mobility. The static residence-based approach of past research
ignores individuals’ daily mobility and may lead to erroneous exposure assessments



11 Human Mobility and the Neighborhood Effect … 97

and health effect estimates (Chen & Kwan, 2015; Kwan et al., 2019; Park & Kwan,
2017; Yoo et al., 2015).

In 2018, one particular manifestation of the UGCoP, which is also a result of
ignoring people’s daily mobility, was discovered: the neighborhood effect aver-
aging problem (NEAP) (Kwan, 2018b). While there have been considerable studies
on the UGCoP to date, there is limited research on the NEAP and its effects on
research findings. This chapter provides a succinct overview of the NEAP and rele-
vant recent studies on the problem. It also highlights the need tomitigate theNEAP in
research and its policy implications, especially concerning the situations of socially
disadvantaged groups.

11.2 The Neighborhood Effect Averaging Problem

In many social science disciplines, the neighborhood effect has played an impor-
tant role in understanding the influences of neighborhood environments on various
social and behavioral outcomes (e.g., health or crime). Past studies tend to assess
the neighborhood effect based on people’s residential neighborhood (i.e., the neigh-
borhoods where people live). However, people move around in their daily lives to
conduct different activities (e.g., work, attend school, or shop) outside of their resi-
dential neighborhoods. They are thus also exposed to environmental factors in those
non-residential neighborhoods. Adopting a residence-based approach and ignoring
people’s non-residential exposures associatedwith their dailymobility (i.e.,mobility-
based exposures) may introduce errors in the assessments of people’s exposures to
environmental factors and their health impacts.

One specific kind of error due to ignoring people’s daily mobility and their non-
residential exposures arises from the phenomenon of neighborhood effect averaging.
It was first observed by Kwan (2018b) based on several recent studies (Dewulf
et al., 2016; Shafran-Nathan et al., 2017; Yu et al., 2018). Neighborhood effect
averaging occurs because when an individual travels in his/her daily life, the values
of the environmental factors (e.g., noise or air pollution) the person is exposed to
would tend to have a wider range than the value of the environmental factors in the
person’s residential neighborhood. Take air pollution as an example, this means that
air pollution levels are higher in some non-residential neighborhoods and lower in
others when a person moves around outside his/her residential neighborhood. Now,
consider the high and low end of the pollution levels in the study area. For people
who live in residential neighborhoods with a high air pollution level, it is more likely
for them to be exposed to neighborhoods with lower levels of air pollution when
they move around. For people who live in residential neighborhoods with a low
air pollution level, it is more likely for them to be exposed to neighborhoods with
higher levels of neighborhoods when they move around. This means that individual
exposures to air pollution would tend toward the average value of air pollution in the
study area when people’s daily mobility and their exposures to non-residential are
taken into account. This is the phenomenon of neighborhood effect averaging.
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As a result of neighborhood effect averaging, assessing individual exposures
to environmental factors based on people’s residential neighborhood may lead to
erroneous results in studies of mobility-dependent exposures (e.g., noise and air
pollution) and their health impacts. Kwan (2018b) first discovered this problem and
called it the neighborhood effect averaging problem (NEAP). She suggested that
“for health outcomes that are also affected by exposures to environmental factors
in people’s nonresidential neighborhoods as they move around in their daily life
(mobility-dependent exposures), using residence-based neighborhoods to estimate
individual exposures to and the health impact of environmental factors will tend
to overestimate the statistical significance and effect size of the neighborhood effect
because it ignores the confounding effect of neighborhood effect averaging that arises
from human daily mobility” (Kwan, 2018b).

11.3 Recent Studies on the NEAP

TheNEAPwasfirst discovered byKwan (2018b) based on several studies on people’s
exposures to air pollution (e.g.,Dewulf et al., 2016;Yu et al., 2018). Toprovide further
evidence on the existence of theNEAP,Kwan and her collaborators conducted several
studies that examined individual exposures to air pollution, traffic congestion, and
other ethnic groups in different studies areas (e.g., LosAngeles in theU.S. andXining
in China). These studies showed that the NEAP exists in other kinds of individual
exposures and that they are closely associated with the patterns of daily mobility of
different social groups.

For example, in a study that investigated whether ignoring people’s daily mobility
and activity patternswould affect assessments of people’s exposures to traffic conges-
tion, Kim and Kwan (2019) found that people’s exposures to traffic congestion are
significantly different between two assessments: when only commuting trips are
considered and when non-community trips are also considered. They observed the
existence of the NEAP: people’s exposures to traffic congestion tend toward the
average value of the participants in the study area when their daily activity patterns
are considered. The results indicate that ignoring even part of people’s daily mobility
and activity patterns (i.e., non-commuting trips) can lead to erroneous findings.

Subsequently, Kim and Kwan (2021a, 2021b) published two papers that provide
further evidence that the NEAP exists when examining individual exposures to envi-
ronmental factors. One of these papers investigated people’s exposures to ozone in
LosAngles using an activity-travel diary dataset. The study concluded that theNEAP
is observed and that older, non-working, and low-income people, and women (when
compared to younger, employed, and high-income people, and men) experienced
less neighborhood effect averaging because they have lower levels of daily mobility.
In the second paper that used the same dataset, Kim and Kwan (2021a) found that
certain groups of people (e.g., non-workers like students and homemakers) expe-
rience very little downward averaging (i.e., their mobility-based exposures do not
significantly decrease even when their daily mobility is taken into account). In other
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words, because of the limited daily mobility of these social groups, it is difficult
for them to lower the high levels of exposure in their residential neighborhoods by
traveling and exposing to lower levels of ozone in areas outside of their residential
neighborhoods.

While these studies examined whether the NEAP exists and its potential impacts
on research findings in the assessments of people’s exposures to traffic congestion
and air pollution, research has also been conducted to investigate the effects of the
NEAP on research findings in other kinds of exposures. For instance, a study by Tan
et al. (2020) used people’s limited exposures to other ethnic groups as a measure
of ethnic segregation based on an environmental exposure conceptual framework.
According to this exposure-based conceptualization, lower exposures to people of
other ethnic groups mean higher levels of ethnic segregation and vice versa. Based
on a comparison of the activity-travel patterns of the Han majorities and the Hui
ethnic minorities in Xining, China, the study concluded that the NEAP exists when
investigating people’s exposures to other ethnic groups. Participants tend to have
higher ethnic exposures in their non-residential activity locations if they have low
exposures to the other ethnic group in their residential neighborhoods (i.e., if they
live in highly segregated neighborhoods). On the other hand, participants tend to
have lower ethnic exposures in their non-residential activity locations if they have
higher exposures to the other ethnic group in their residential neighborhoods (e.g.,
if they live in highly mixed neighborhoods).

Extending research on the NEAP to other realms, Huang and Kwan (2021) exam-
ined how assessments of individual exposure to COVID-19 risk are affected by
the NEAP and the UGCoP. Using the COVID-19 data on an open-access govern-
ment website and the individual-level activity data of 60 confirmed COVID-19 cases
(infected persons) in Hong Kong, the study represented COVID-19 risk environ-
ments using case-based and venues-based high-risk locations. The COVID-19 risk
of each of the 60 selected cases is then evaluated by three approaches based on their
exposure to the case-based or venue-based risk environments: the mobility-based
approach, the residence-based approach, and the activity-space-based approach. The
results of this study indicate that the UGCoP and the NEAP exist in the assessment of
COVID-19 risk. It concluded thatCOVID-19 studies need to address the uncertainties
due to the UGCoP and the NEAP by considering people’s daily mobility. Ignoring
peoples’ daily mobility and its interactions with the complex and dynamic COVID-
19 risk environments may lead to misleading results and misinform government
non-pharmaceutical intervention measures.

11.4 Implications of the NEAP

These studies indicate that research findings on people’s mobility-dependent expo-
sures such as traffic congestion, air pollution, and infectious disease are likely to
be affected by the NEAP. Researchers in geographic and environmental health
research thus need to pay special attention to the pertinent methodological and policy
implications.
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For instance, without taking into account people’s daily mobility, assessments of
individualmobility-dependent exposures like air pollutionmay be erroneous because
of the NEAP. Further, since neighborhood effect averaging may have different
impacts on the mobility-dependent exposures of different social groups, policy-
makers need to recognize such differential impacts when developing policymeasures
to address the needs of different social groups (especially the socially disadvantaged
groups). On the positive side, people with high daily mobility may experience more
neighborhood effect averaging that mitigates their high exposures in their residential
neighborhoods. However, people with low daily mobility (e.g., low-income people
and older adults) may experience little neighborhood effect averaging, and as a result,
may not be able to mitigate the impacts of the high exposures found in their residen-
tial neighborhoods (Huang & Kwan, 2021; Kim & Kwan, 2019; Ma et al., 2020).
Policymakers should thus pay special attention to the experiences of the socially
disadvantaged groups and develop intervention measures to address their needs (e.g.,
increasing the mobility of those who live in disadvantaged neighborhoods).

Although we now have a better understanding of the NEAP thanks to these recent
studies, we need to be aware of how the NEAP happens and recognize the situations
in which it does not apply. For example, the NEAP may not influence individual
exposures to factors that occur mainly in or around people’s residential neighbor-
hoods (e.g., social capital) because it was largely observed in mobility-dependent
exposures. Further, for people with very low mobility (e.g., older adults), the NEAP
seems less relevant because it is largely due to people’s daily mobility. Also, the
environmental factors under examination need to vary considerably in space and
time in the study area for the NEAP to have its effect. Otherwise, the NEAP will not
be observed because people’s exposures would not be significantly different even if
they move around or visit non-residential neighborhoods. Further, while our under-
standing of the NEAP has advanced considerably in recent years, the relevant studies
to date are largely on individual exposures to traffic congestion and air pollution.
Therefore, future studies also need to investigate whether the NEAP exists in other
kinds of mobility-dependent exposures (e.g., green spaces and healthy food environ-
ment) because different environmental factors have different space–time dynamics
and interactions with human movement patterns, leading to different manifestations
of the NEAP.
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Chapter 12
How to Form and Answer the So What
Question in GIScience

Lan Mu

Abstract SoWhat is about justifying contribution to knowledge. It is often presented
as the relevance, significance, and broader value of the research. Building upon some
successful formats from education, medicine, and geography, we present a style to
form and answer the So What question in GIScience. The format is Where? Why?
How? and SO What? (WWHO). It is also referred to as the “Gazing on the Peak”
format, inspired by the famous poem by Du Fu.

Keywords So What · GIScience · Relevance · Significance

12.1 Introduction

Thinkers and researchers constantly seek good questions, from “asking the right
question is half the answer” by Aristotle (384–322 BC) to “the formulation of a
problem is far more essential than its solution” By Albert Einstein (1879–1955).
Those walking down the academic career path have undoubtedly encountered the
famous So What question, a politer version of Who Cares. A presenter spends 90%
of the time elaborating on how advanced, complicated, and efficient a geospatial
algorithm is and throws tons of equations on the screen. The audience is lost, and
the famous question appears, So What?

In preparing this chapter, I realized that I have been thinking about this question for
GIScience research for years but never dedicated time towriting it.We constantly ask
the SoWhat question during students’ thesis and dissertation proposals and defenses,
corresponding to the initialOverarching question. In reviewingmanuscripts, we have
also seen many articles, including our own, suffering from a rudimentary lack of
clarity regarding explaining their significance and relevance.

So What is about justifying contribution to knowledge. It is often presented as
the relevance, significance, and broader value of the research (Selwyn, 2014). In
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medicine, the So What question leads to the difference between academic and prac-
tice. In clinical trial research, it is estimated that one-third of the time between the
initial idea andpublication is spent fighting about the research question and answering
the So What (Riva et al., 2012).

GIScience is an applied and practical discipline. Like clinicians and researchers
in the medical field, much effort has been made to close the academic-practitioner
gap in GIScience. This chapter reviews some successful formats from education,
medicine, and geography and searches for a style to form and answer the So What
question in GIScience.

12.2 The “So What” Question in Education, Medical
Research and Geography

12.2.1 The Relevance in Technology Education

In an editorial, Selwyn (2014) explained why some articles cannot be published due
to the missing answer to the So What question. He used the examples of two submis-
sions, and bothwere about using computer games in classrooms.One described using
a game in Grade 7 history classroom, and the other was about another game in Garde
9 science classroom. While both pieces of research were exciting, neither article
explained why their project might be of interest or relevance beyond the teachers
and students in those two classrooms. The editors decided that neither translated
automatically into scholarly, academic writing due to the inadequate “wow” factor.
According to Selwyn (2014), the So What question in this kind of research should
demonstrate how such teaching methods “add to the understanding of the social
complexities of digital technology and media use in education.”

From the perspective of education research, the SoWhat question is briefed as four
types of relevance—the relevance to educational practice, the relevance to policy,
the relevance to other academic research and writing, and the relevance to theory
(Selwyn, 2014).

12.2.2 The PICOT Format in Medical Research

In medical research, the format of forming research questions was first introduced
in 1995 as PICO (P—Population, I—Intervention, C—Comparison, O—Outcome),
and later expanded to PICOT (T—Time) (Richardson et al., 1995). To close the gap
between clinical practice and research and to facilitate raising research questions
and answering the So What question, the PICOT format is advocated in medical trial
research. The authors form the research question by following the PICOT format.
For examples,
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• “In adults with chronic neck pain (P), what is the minimum dose of manipulation
necessary (I) to produce a clinically important improvement in neck pain (O)
compared to supervised exercise (C) at six weeks (T)?” (Riva et al., 2012)

• “In patients without preoperative anemia (P) undergoing cardiac or orthopedic
surgery (I), does treatment with: (1) intravenous iron alone; or (2) intravenous iron
with recombinant erythropoietin; compared with (3) placebo (C), administered
a day after surgery, increase hemoglobin concentration (O) 7 days after surgery
(T)?” (Thabane et al., 2009).

ThePICOT format is easy to follow. It provides clinicians and researchers an initial
basis for mutual understanding and communication, and helps frame and answer the
relevance question. ThePICOT format generallyworkswell in comparative studies or
association studies, such as the association between exposure and outcome(s). The
format has been routinely advocated in evidence-based medicine (Thabane et al.,
2009).

Additionally, other formats or styles have been proposed, such as PICO (stands
for Population, Intervention, Comparison, and Outcomes), PICOS (stands for Popu-
lation, Intervention, Comparison, Outcomes, Setting), SPIDER (stands for Sample,
Phenomenon of Interest, Design, Evaluation, and Research type) (Methley et al.,
2014) and PESICO (stands for Person, Environments, Stakeholders, Intervention,
Comparison, and Outcome) (Schlosser et al., 2007).

After the research question is set up using the PICOT or other format, its answer,
especially the I—intervention and O—outcome parts, can address the So What
question. Asking the right question is INDEED half the answer.

12.2.3 The WWO Format in Geography

Geographer Shannon McCune wrote “Geography: Where? Why? SO What?”
(WWO) in 1970 (McCune, 1970). He emphasized that “the geography taught in
America must be realistic—it must deal with this current, changing world; in order
to fit students for their lives, moreover, it must deal with the world of tomorrow.” He
went on decomposing the geography study into three questions.

The first question is Where? McCune considered it the beginning or the first
steppingstone of geography inquiry. He pointed out, amazingly, more than 50 years
ago, that “rapid transit and fast communications are forcing the reading of maps in
the light of new geographical relationships.” He also mentioned that “geographers
are fortunate to be aided in their task of seeking the answer to their question where
by the development of new tools such as the satellite photograph, the remote sensor
images, and the computer-drawn map.”

The second questionWhy? rises when just answering the question where does not
satisfy geographers. “Why are observable things, includingman and all his activities,
where they are on this earth?” In order to answer theWhy, geographers bring a deep
concern to the uneven distribution of resources, both physical and socioeconomic,
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in the world and the geographic variation. The answer to this question really distin-
guishes and highlights geography from others and, therefore, the discipline’s core.
McCune predicted the futureWhy question-solving for geographers, that “Machines
can gather and analyze all this new data, but then these machines have to be asked
the right questions. Wisdom, foresight, and concern—these must be used as the vast
array of geographical facts are interpreted and theorized.”

The third question So What is inevitable followingWhere andWhy. The So What
question will help students “see the relevance of what they study to their lives today
and for the years to come.” McCune used examples of the Vietnam War, landing on
the moon, unequal human and natural resource distributions and more, to illustrate
the So What by utilizing phrases such as global responsibility, and relevance to the
world’s needs.

For example, the following statement has the WWO format: In Alaska (Where),
will a newly established oil field change the measures of the environment and life
(Why), and therefore deteriorate or enhance the environment of today and tomorrow
(So What).

12.3 The WWHO or the “Gazing on the Peak” Format
in GIScience

Formats of relevance, PICOT, and WWO from education, medical research, and
geography set excellent and easy-to-follow examples. When thinking of using them
forGIScience research, I realized thatwe could not use those directly sinceGIScience
has its unique element. GIScience is rooted in geography and deals with all kinds of
phenomena on the earth’s surface. Therefore, P—Population and C—Comparison
are not necessarily present in all GIScience research. Meanwhile, GIScience is a
data and application-driven field, so concrete methods or procedures are required in
almost all research projects. Thus, the How question. When framing and answering
research questions in GIScience, we can build upon McCune’s WWO, add the How,
and create a format: Where? Why? How? and SO What? (WWHO).

A well-known Chinese poem came to my mind when I took a moment to write
down this thought: “Gazing on the Peak” by Du Fu, one of the greatest Chinese poets
in the Tang Dynasty. It has all the elements we are looking for in WWHO (Table
12.1) format. The first two lines answer theWhere question. The following four lines
address the Why question for Mountain Tai (Daizong)’s breathtaking beauty. The
seventh line identifies and answers the How question (i.e., how to enjoy the scenic
landscape)—climb up to its highest summit. The last line summarizes the SoWhat—
with one sweeping view see how small all other mountains are. For this reason, we
can also refer to WWHO as the “Gazing on the Peak” format.

To further illustrate the format, I searched on the Web of Science Core Collection
using the keywords of “GIS” and “health” and retrieved 5519 articles. The top two
original research articles with the highest number of citations (excluding review
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Table 12.1 Examples following the WWHO format

《望岳》杜甫
Gazing on the peak
by Du Fua

Luo and Wang (2003) Eeftens et al. (2012)

Where 岱宗夫如何
齐鲁青未了
And what then is Daizong
like?
over Qi and Lu, green
unending

Chicago region 20 European study areas
at 20 sites per area

Why 造化钟神秀
阴阳割昏晓
荡胸生层云
决眦入归鸟
Creation compacted spirit
splendors here
Dark and light, riving dusk
and dawn
Exhilirating the breast, it
produces layers of cloud;
splitting eye-pupils, it has
homing birds entering

Examine spatial
accessibility to primary
care

Estimate individual
exposure if air pollution

How 会当凌绝顶
Someday may I climb up to
its highest summit

The two-step floating
catchment area (FCA)
method

Land use regression
(LUR) models with
GIS-derived variables

So What 一览众山小
with one sweeping view
see how small all other
mountains are

Improve the designation of
health professional
shortage areas

Air pollution
concentrations at small
scale, i.e., the home
addresses of participants,
can be estimated

a Translated by Stephen Owen (2015)
Luo and Wang (2003) and Eeftens et al. (2012)

articles and software/patent articles) were authored by Luo and Wang (2003) and
Eeftens et al. (2012). I analyzed these two articles using the WWHO format (Table
12.1).

12.4 Conclusion

Forming questions is as important as answering them. In order to answer the So
What question in GIScience, we reviewed formats of relevance, PICOT, and WWO
from education, medical research, and geography. Building upon those excellent
examples, I propose a WWHO format to form and answer the So What question in
GIScience:Where?Why?How? and SOWhat? It is also referred to as the “Gazing
on the Peak” format, inspired by the famous poem by Du Fu. Use the format to frame
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research questions in GIScience, then answer them. Presenting the format clearly in
both the abstract and conclusion sections increases the readability of articles, justifies
contribution to knowledge and articulates the research’s relevance, significance, and
broader value.
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Chapter 13
Prospects on Causal Inferences in GIS

Bin Li

Abstract Although causal reasoning is a tradition in geographic inquiry, adapta-
tions of statistical and computational causal inference frameworks developed in the
past decades have been limited in GIS. To facilitate spatial causal analysis, GIS
should develop new data models and software tools for the discovery of causal struc-
tures as well as the identification and estimation of causal effects. Event-based and
scenario-based spatio-temporal models are promising concepts. Spatially explicit
causal models can be developed by integrating spatial statistical models with existing
computational and statistical models for causal analysis. There are limits to quantita-
tive approaches to causal inferences; a comprehensive causal analysis should include
qualitative analysis.

Keywords Causal inference · Potential outcome · Causal diagram · Spatial
statistics · GIS

13.1 Introduction

Causal inference is considered one of the most important ideas in statistics in the
past 50 years (Gelman &Vehtari, 2021). The 2021 Nobel Prize in Economic Science
was awarded to Joshua Angrist and Guido Imbens “for their methodological contri-
butions to the analysis of causal relationships.”1 Prior to that, the 2011 Turing Award
in computer science was given to Judea Pearl, for his “fundamental contributions
to artificial intelligence through the development of a calculus for probabilistic and
causal reasoning.”2 However, both significant advances in causal reasoning have
had limited impacts on the theoretical and methodological development in geog-
raphy. The advances in statistical causal inferences have yet to be implemented in

1 https://www.nobelprize.org/prizes/economic-sciences/2021/press-release/.
2 https://amturing.acm.org/award_winners/pearl_2658896.cfm.
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GIScience despite the ubiquitous use of GIS in social governance and management,
where rigorous causal inferences are in high demand. Integration of spatial effects
in current causal inference frameworks presents opportunities for geography and
GIScience. This essay speculates on some of the niche areas for research and devel-
opment in GIS. I will show that while causal inference is not completely new to
geography and GIScience, spatial causality analysis with statistical and computa-
tional approaches remains scarce. Methodological and technical elements, however,
do exist for developing spatially explicit causal inference models.

13.2 Causal Inference Is Not New

Humans have always been trying to find the cause of the phenomena occurring
around them and to themselves, pursuing the laws and logic that relate events and
outcomes to each other. Some attribute these occurrences to the supreme power of
Gods or deities who created the rules for the world’s operation. Scientists believe
that a phenomenon is the outcome of processes governed by some laws. To find
the cause of an event or an outcome is either to uncover the laws and logics that
chain them together, or to derive explanations and conclusions based on experiences
and observations. The tradition of deductive and inductive reasoning has perpetuated
modern day scientific inquiries.

Although statistical learning through regression is a contemporary inductivemode
of reasoning, it was historically believed that its use was limited to revealing asso-
ciation but not causality between outcomes and causes. Regression modeling often
concludes at establishing associations, quantifying estimation uncertainty, and some-
times achieving predictions at certain levels of accuracy, while falling short of causal
reasoning. Such a state of inquiry is far from satisfactory, particularly for economists
who aspire to intervene with economic operations through policies, for biomed-
ical scientists who need to evaluate the efficacy of a new drug, or for geographers
who pride themselves on their mission to acquire knowledge about human–environ-
ment relationship. Causal inference, or identifying the cause of a phenomenon and
determining what would happen to the phenomenon when the cause changes, has
attractedmajor research efforts in the science community in recent decades; in partic-
ular, several influential theoretical frameworks have been established, represented
by the potential outcome models (Angrist et al., 1996; Fisher, 1936; Holland, 1986;
Imbens & Rubin, 2010, 2015; Neyman, 1923; Rosenbaum & Rubin, 1983; Rubin,
1997) and the causal diagram model (Pearl & Mackenzie, 2018; Pearl, 2009a). The
presentation of the 2011TuningAward toPearl and the 2021Nobel Prize inEconomic
Science award to Angrist and Imbens for their contributions to causal inferences are
recognitions of the significant achievement in research and applications of causal
inferences. Among statistical scientists, development in causal inferences is consid-
ered as one of the most important ideas in the past 50 in statistics (Gelman &Vehtari,
2021).
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While causal inference has yet to become mainstream in geography and
GIScience, it is by no means neglected. Mercer conducted regression modeling of
causal relationships between housing quality and social economic factors in the
70s, which was one of the earlier attempts to tackle statistical causal inferences
in geography (Mercer, 1975). As a rudimentary look into the academic landscape
of causal inference in geography and GIScience, we selected a group of journals
and conducted a keyword search of two phrases, “difference in differences” and
“propensity score,” which are signature methods for causal analysis. We regard a
paper containing either of these two phrases as a paper that involves causal infer-
ence. As Table 13.1 shows, after a gap of several decades since Mercer’s paper, there
is a surge of causal analysis with the potential outcome framework in economic
geography, regional science, and epidemiology. Among the selected journals, those
centered at economics and epidemiology and with strong geographic associations,
i.e., Urban Economics, Regional and Urban Economics, and Epidemiology, have
experienced a surge of papers involving causal inferences after 2000. Among the
geography journals, economic geography stands out in the group due to its strong
ties with economics. The Annals of AAG, a flagship journal in geography, started
to publish papers that explored causal relationships with statistical/computational
methods. These publications dealt with a range of theoretical, technical, and applied
topics, mostly within the potential outcome framework. Meanwhile, research on and

Table 13.1 Frequencies of key phrases for statistical causal inferences with select journals in
geography and related disciplines

Journals “Difference in differences” “Propensity score”

Economic Geography 33 23

Journal of Economic Geography 26 21

Urban Geography 5 3

Annals of AAG 7 3

Professional Geography 1 2

International Regional Science Review 7 14

Urban Economics 125 50

Regional and Urban Economics 200 73

Epidemiology 895 115

Geographical Analysis 5 2

Spatial Statistics 1 2

Geographical Systems 2 1

Computer Environment and Urban Systems 0 0

International Journal of GISci 0 0

Cartography and Geographic Information
Science

0 1

Transactions in GIS 0 0

Remote Sensing of Environment 0 2
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with causal diagrams is scarce, except for epidemiology.Without diving into compre-
hensive literature reviews (which can be found in Akbari et al., 2021; Baum-Snow&
Ferreira, 2015; Reich et al., 2020) these numbers give us a rough picture of the
consideration of causal inference within geography and related disciplines. Though
geography has been slow to integrate causal inference into its methodological frame-
works compared to its sister disciplines, there are clear indications that geographers
have taken notice of research opportunities in causal inferences, signified by the
emergence of spatially explicit causal models (Kolak & Anselin, 2020; Zhang et al.,
2019).

In the realm of GIS, scenariomodeling, which has been practiced through geopro-
cessing and simulation and applied to themes such as urban growth, land use change,
and environmentalmanagement (Batty&Longley, 1986; Chen et al., 2020; Li&Yeh,
2000, 2002; Swetnam et al., 2011; Torrens & Torrens, 2004), can also be considered
a type of causal inference. It tries to answer the question of “what if” the state of one
or more factors changes over time, how specific aspects or the entire system would
respond (Batty, 2007). Although statistical methods for causal inferences have yet
to enter GIS’ mainstream, causal reasoning is nevertheless one of its theoretical and
technical traditions.

13.3 Spatial Statistical Causal Inference Is New

Our keyword search revealed an obvious absence of research on causal inferences in
GIScience; most existing causality papers in geography journals were published in
recent years.Researchon spatially explicit causal inferences is in its infancy. Software
tools are hard to come by, therefore conducting spatial causality studies requires
integrating different software packageswith programming. Causal inferences present
a new frontier for geographic research in general, and for GIScience in particular
(Carré & Hamdani, 2021).

Geography and GIScience are new to all three sub-areas of statistical causal infer-
ences, i.e., causal discovery, causal identification, and estimation of causal effects
(Tikka & Karvanen, 2018). Discovering causal rules and structures from data based
has been an active area of research in general data mining (Bhoopathi &Rama, 2017;
Silverstein et al., 2000) and geospatial data mining (Bleisch et al., 2014; Galton et al.,
2015; Yuan, 1996). They often were based on computational approaches that are not
designed to adjust for confounding effects and do not necessarily produce repre-
sentations readily adoptable to statistical models for identification and estimation
of causal effects. Causal structure discovery algorithms based on the causal graph
model (Glymour et al., 2019; Pearl, 2009b) have yet to be widely adopted to geospa-
tial research and applications of existing tools are rarely seen (Ramsey et al., 2018),
with a few exceptions in epidemiology and public health (Fleischer & Roux, 2008;
Textor et al., 2011, 2016).

Given a causal structure, the causal effect is not necessarily identifiable from
observations. Pearl proposed the do-calculus rules and accompanying algorithms to
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help solve the identifiability problem (Pearl, 1995; Shpitser & Pearl, 2006), which
has been implemented in the R package “causaleffect” (Tikka & Karvanen, 2018),
supplementing “DAGitty”, another tool for graph-based causal inferences that can
be used to determined instrumental variables (Textor et al., 2016). Applications of
causal discovery tools such as TETRAD and MIM (Haughton et al., 2006) as well
as causal effect identification tools have been scarce in geography and GIScience.
In addition, spatial effects—whether direct or indirect—have not been explicitly
incorporated in these algorithms, leaving room for refinement.

Estimation of causal effects is the area that has made noticeable progress in
geographic research in recent years. A niche area identified by geographers is the
Stable Unit Treatment Value, or the SUTVA assumption, which is key to the estima-
tion of treatment effects in the counterfactual framework (Imbens & Rubin, 2015)
and often violated by spatial dependence and spatial heterogeneity (Kolak&Anselin,
2020). Kolak and Anselin (2020) recently showed that spatial panel models (Elhorst,
2014) can be extended to relax the SUTVA assumption when performing difference-
in-differences analysis while noting that “estimation of treatment effects is in its
infancy in regional science,” which mirrors the situation across the spectrum of
methodologies in estimating causal effects.

13.4 Relevance to GIS

GIS as a computer software system can contribute to all three aspects of computa-
tional and statistical causal reasoning, i.e., discovery of causal structure, identification
and estimation of causal effects. I will focus on exploring the computational and soft-
ware perspectives: data models and database models, data processing functions, core
functions for causal discovery, identification, and estimation.

Data models are digital representations of real-world systems, which determine
how computational algorithms can be designed, implemented, and executed effi-
ciently (Fox et al., 1988). The original vector-raster data models and their extensions
play crucial roles in solving geo-spatial problems with GIS (Zeiler, 1999). It is hard
to imagine how to calculate slopes for a region without the raster or the TIN data
models, or to find the shortest routes without the network data model. Implementing
tools for conducting statistical causal inferences in GIS will require new data models
that can represent geographic phenomena and processes that are multi-scale, multi-
dimensional, and multi-representational. The event-based data model advocated by
Yuan (2020), scenario-based data model outlined by Lü et al. (2019), legacy system
in use (netCDF) (Rew&Davis, 1990), along with the numerous spatio-temporal data
models proposed in the past decades (Gong, 1997; Yuan, 1996; Yuan et al., 2014),
provide the theoretical and technical foundations for developing data models and
database models that can accommodate spatial statistical causal reasoning.

For geo-spatial objects, their relationships in geographic space and through time
also require formal representations. Spatial weights matrix and semi-variograms
are two common approaches to representing spatial relationships, which can be
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extended to the time dimension via spatio-temporal weights matrix in the former
case and spatio-temporal covariance functions (spatio-temporal Kriging) in the latter
(Cressie &Wikle, 2015), supplementing the traditional panel data model commonly
used in spatial econometrics (Elhorst, 2014). These computational representations
of spatio-temporal relationships are fundamental for subsequent implementation of
spatial causal inference algorithms. For example, a synthetic variable can be gener-
ated through the eigenvector spatial filtering (ESF) methodology, serving as a proxy
of spatio-temporal relationship (Griffith, 2012), and potentially solving critical issues
in spatial causal inferences. We will elaborate on this point shortly.

Data manipulation and processing ensures the data sets from various sources and
differentmodels to be integrated and conformed to the requirements of computational
and statistical causal models. Areal interpolation, for example, is commonly used to
downscale or upscale data from different spatial units where data were collected to a
common unit. While GIS functions for areal interpolation have evolved from simple
weighted average methods (Goodchild & Lam, 1980) to the more rigorous geosta-
tistical approach that can accommodate both Gaussian and count data (Krivoruchko
et al., 2011), there are many issues with non-Gaussian data remained to be resolved
(Comber & Zeng, 2019; De Oliveira, 2014). Lastly, all the areal interpolation algo-
rithms must address the Modifiable Areal Unit Problem (MAUP) (Openshaw &
Taylor, 1979), and its siblingModifiable Temporal Unit Problem (MTUP). The latter
is particularly relevant when longitudinal data need to be combined to perform causal
analysis (Cheng & Adepeju, 2014).

As discussed in the previous section, efforts in integrating spatial componentswith
the causal diagram framework put forward by Pearl have been scarce despite active
research in discovering causal rules and relationships in spatial data sets. Because
geographic configuration can affect both causal factors and the outcome, control-
ling geographic confounding effects may be necessary. Instead of using absolute
geographic locations (spherical or plane coordinates), a synthetic variable formed
by a linear combination of eigenvectors from the spatial weights matrix or spatial
temporal weights matrix can enter the causal diagram, participating in the causal
structure discovery and identification processes.

Traditional methods for conducting causal inferences with the potential outcome
framework, such as propensity score, instrumental variables, and difference in differ-
ences have assumed away spatial effects. There have been efforts in filling such gaps.
Propensity score matching reduces geographic confounding by including proximity-
based variables in logistic regression or employing more rigorous spatial probit
models that account for neighborhood effects (De Castris & Pellegrini, 2015). Instru-
mental variable analysis uses geographic region or ESF generated synthetic variable
as an instrument to mitigate confounding effects (Le Gallo & Páez, 2013; Vertosick
et al., 2017). Difference in differences analysis can be spatially extended using the
spatial panelmodel (Kolak&Anselin, 2020). ESF-basedmethods have the advantage
of maintaining the same model specification and estimation of existing non-spatial
models, particularly in modeling non-Gaussian outcomes (Griffith et al., 2019). Soft-
ware implementations of these spatially explicit methods and models as well as
mainstream causal inference models are available mostly as R packages (Bivand
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et al., 2013; Millo et al., 2012; Murakami, 2017; Rosseel, 2012; Textor et al., 2016;
Tikka & Karvanen, 2018). Integrating them with commercial GIS platforms can be
done through bridging APIs as demonstrated by the ESF Tool, which links R func-
tions and ArcGIS tools to perform advanced spatial regression modeling (Koo et al.,
2018).

13.5 Conclusions

As a mode of academic inquiry, causal reasoning is a tradition in geography and
GIScience. As theories and methods, statistical and computational causal inferences
have yet to enter the mainstream of research and development in the discipline. This
is particularly true in graph-based causal inferences. Today, the opportunity is ripe to
bring geography to causal inferences and to elevate the functionalities of GIS beyond
geometric/cartographic modeling and regression modeling.

Meanwhile, we should be mindful of the limitations of quantitative approaches,
particularly the quasi-experimental frameworks discussed in this essay. Social
systems are complex, and many causal factors may not be quantifiable and measur-
able. When resorting to surrogate and composite variables to represent them, we
may obtain causal effects that are inaccurate or even misleading (Berrie, 2019).
In addition, causal structures for social, economic, and political phenomena could
be too complex to be quantified. Most critical is the assumption of uni-directional
causal relationship in current causal inference frameworks, which does not allow for
two-way interactions between causal variables. Lastly, there are substantial critiques
on quantitative causal reasoning from the perspectives of political economy and
social theory (Poore & Chrisman, 2006; Walters & Vayda, 2009), which calls for an
integration of quantitative and qualitative approaches to causal reasoning.
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Chapter 14
Bayesian Methods for Geospatial Data
Analysis

Wei Tu and Lili Yu

Abstract This chapter provides an applied introduction to model two types of
point-based geospatial data using Bayesian methods. Unlike frequentist inference,
Bayesian inference describes unknown statistical parameterswith a prior distribution.
With this foundation, Bayesian approach provides a valuable alternative to analyze
geospatial data.Webegin the chapter by introducing the basic concepts andbenefits of
Bayesian inference and survey four selectedBayesianmodels andmethods, including
Bayesian spatial interpolation, spatial epidemiology/diseasemapping, Bayesian hier-
archical models, and Bayesian spatial autoregressive models, for their applications in
geospatial data analysis. Thenwe discuss some popular software packages to perform
Bayesian analysis. We conclude the chapter by encouraging geospatial researchers
and practitioners to add Bayesian methods in their toolboxes.

Keywords Geospatial data analysis · Case and count data · Bayesian inference ·
Markov Chain Monte Carlo (MCMC) · Bayesian spatial interpolation · Spatial
epidemiology/disease mapping · Bayesian hierarchical models · And Bayesian
spatial autoregressive (SAR) models

14.1 Introduction

Geospatial data analysis has always been deeply rooted in two main inference
paradigms in statistics, the classical frequentist inference and the younger but fasting-
growing Bayesian inference (Haining, 2014). The two paradigms represent two
ontologically (model-building) and epistemologically (integrating knowledge from
other sources) different statistical reasonings (Withers, 2002). Geographers have
for decades recognized the great potential of Bayesian inference. For instances,
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Bennett (1985) suggested that Bayesian approaches held the greatest potential in
advancing spatial analysis; Hepple (1995) introduced the Bayesian analysis in spatial
and network econometrics; Fotheringham et al. (2000) discussed Bayesian infer-
ence along with classical inference in their quantitative geography textbook;Withers
(2002) provided a comprehensive review on the methodological and substantive
benefits of Bayesian methods in human geography research and encouraged geogra-
phers to try the new approach; and Lawson and Banerjee (2009) conducted a compre-
hensive technical review of Bayesian spatial analysis, which covered a broad range
of topics including spatial data types, basic concepts and algorithms of Bayesian
inference, Bayesian models and examples for point processes and disease mapping,
and software packages for Bayesian modeling.

This chapter is organized into five sections: after a brief introduction, Sect. 14.2
reviews the basics of Bayesian inference and its potentials in geospatial research;
Sect. 14.3 discusses four applications and models; Sect. 14.4 provides a short discus-
sion on the implementation of Bayesian models; and the last section offers some
concluding remarks.

14.2 Bayesian Inference

Between the twomajor inference frameworks in statistics, the frequentist inference is
the conventional approach. It interprets the probability as the long-run frequency or
repeatable experiments. Therefore, it can estimate the parameters, which are consid-
ered as unknown but fixed quantities, based on the sample data. On the other hand, the
Bayesian inference is based on Bayes’ theorem, named after Thomas Bayes. In addi-
tion to the long-run frequency which can be obtained from sample data (Greenland,
2000), this approach includes subjective experience of uncertainty (De Finetti, 1974)
to interpret the probability. The subjective experience relies on previous knowledge
on uncertainty to describe the distributions of the parameters, which are considered
as unknown but random variables and we call them as prior distributions of the
parameters. Bayesian methods combine the information from both sample data and
the prior distributions to produce posterior distribution. The model fitting and the
implications of the resulting posterior distribution can also be evaluated (Gelman,
2014).

To be specific, let y be a random variable with distribution f (y|θ). A sample is
collected for the random variable y with independent observations y1, . . . , yn , then
the likelihood is defined as: L(θ |y1, . . . , yn) = ∏n

i=1 f (yi |θ).

The likelihood summarizes the information about θ based on the observations
(Tanner, 1998) and is used by the frequentist inference to estimate the parameter
θ . Therefore, the frequentist inference uses information only from sample data. In
comparison, Bayesian inference is based on information from the likelihood as well
as the prior distribution. Let p(θ) be the prior distribution of θ which represents the
subjective knowledge of θ , then theBayes’ theory calculates the posterior distribution
(Kreft & de Leeuw, 2007) as:
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p(θ |y1, . . . , yn) = p(θ)L(θ |y1, . . . , yn)
p(y1, . . . , yn)

= p(θ)L(θ |y1, . . . , yn)
∫ p(y1, . . . , yn|θ)p(θ)dθ

(14.1)

The posterior distribution is a conditional distribution, i.e., the distribution of θ

given the sample data. It updates the knowledge about θ from the prior distribution
using the information from the sample data. Then it can be used to make inference
about θ , such as mean, credibility interval which corresponds to confidence interval
of the frequentist approach.

As the Bayes’ theory incorporates the prior information, it adds complexity to the
computation. The integration of denominator in Eq. (14.1) may not have a closed
form. Because the analytical and numerical integration are often not intractable,
especially for high dimension integration, methods were proposed to approximate
the posterior distribution. The most popular method is Markov Chain Monte Carlo
(MCMC) (Berger, 2000; Cappe & Robert, 2000), which includes Gibbs sampler and
Metropolis Hastings algorithm.

The MCMC method is based on the theory of Law of Large Numbers which
states that an expectation can be efficiently approximated by a Monte Carlo esti-
mator. Therefore, the basic idea of the MCMCmethod is to make inference based on
samples drawn fromposterior distribution. Specifically, it first generates sequences of
dependent observations which is called Markov chains, then inference is done using
these samples, such as estimating expectation of the parameter using the sample
mean. It has been proved that, although the samples are dependent, the observations
in these samples can be considered as independent and identical from the true poste-
rior distribution when theMarkov Chain is long enough (i.e., to infinity) and is under
certain conditions (the chain must be finite, aperiodic, irreducible, and ergodic). To
meet those conditions, some iterations at the beginning of the MCMC run need to
be discarded and the process is called Burn-in samples. The number of Burn-in
samples that need to be discarded can be determined by diagnostics, such as the
Geweke Diagnostic, the Heidelberg and Welch Diagnostic, the Raftery and Lewis
Diagnostic, and the Gelman and Rubin Multiple Sequence Diagnostic. In addition,
the Gibbs sampler is the simplest MCMC algorithm, and it is a special case of
Metropolis Hastings algorithm.

Bayesian inference are detailed in numerous textbooks (Congdon, 2014; Gelman,
2014). Several journal articles also provide extensive discussions of Bayesian
methods that are directly dealingwith geospatial data (Berger, 2000;Cappe&Robert,
2000; Hepple, 1995; Lawson&Banerjee, 2009). The following discussion addresses
only selected applications of Bayesian inference on geospatial data analysis.
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14.3 Applications of Bayesian Models in Geospatial
Problems

We focus our discussions on models that analyze two types of geospatial data, point
data with attributes and count data aggregated to areal units. The following discus-
sions are confined to four selected methods and models, namely Bayesian spatial
interpolation, spatial epidemiology/disease mapping, Bayesian hierarchical models,
and Bayesian spatial autoregressive models.

14.3.1 Bayesian Spatial Interpolation

The classical interpolation method such as Kriging relies on the BLUP (Best Linear
Unbiased Predictor) and substitutes maximum likelihood estimates for the model
parameters (Lam, 1983). The Bayesian approach, on the other hand, first computes a
posterior distribution for model parameters and then computes the posterior predic-
tive distribution bymarginalizing over (averagingover) the posterior distribution. The
major advantage of the latter solution is that the inference is supported by proper and
moderately informative priors on the weakly identified correlation function param-
eters (Lawson & Banerjee, 2009; Mugglin et al., 1999). Bayesian approach fuses
information from multiple sources in the development of models, so it can better
handle uncertainty in the interpolation results. Bayesian spatial interpolationmethods
are applied most commonly in environmental studies (Brown et al., 1994; Cooley
et al., 2007; Fuentes & Raftery, 2005). More recently, Bayesian-based spatiotem-
poral methods have been developed to analyze rapidly increasing collections of and
access to spatiotemporal data (Christakos, 2000; Cressie & Wikle, 2011; Esmaeil-
beigi et al., 2020; Haining & Li, 2021; Li & Revesz, 2004; Sahu et al., 2010, 2015;
Susanto et al., 2016), because of the above-mentioned advantages.

14.3.2 Bayesian Models for Disease Mapping, Risk Estimate,
and Prediction

There are two common types of disease data. The first type is case event data, where
the locations of cases (points) are usually known residential addresses of patients.
These data form a spatial point process. But such data are usually unavailable, partic-
ularly for large study areas. The second type is aggregated counts of cases (events),
which are more common and accessible. The boundaries of aggregation that form
the basic spatial units of the study region are typically subjective with respect to the
disease process (such as zip code areas). Bayesian models have long been applied on
disease mapping, risk estimate, and prediction (Besag & Newell, 1991; Greenland,
2006, 2007, 2009; Lawson, 2018; Wakefield &Morris, 2001; Waller et al., 1997). A
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wise choice of the prior distribution can inform the models by bringing in epidemio-
logical domain knowledge and other information from the study area, which can lead
to more reliable model results. In addition, the Bayesian approach is more flexible
and effective in dealing with sparse data or rare events. Lawson and Banerjee (2009)
illustrated the technical details of specifying Bayesian models for analyzing the two
types of data and highlighted the applications of count data.

14.3.3 Bayesian Hierarchical Models

Hierarchical (multilevel) regression models have long been used in geospatial
research to explicitly incorporate data collected at various spatial scales of observa-
tions, for instance, individuals nested in neighborhoods and neighborhoods in cities.
Hierarchical models are naturally Bayesian because the distributions of regression
coefficients across various clusters (groups, geographic regions etc.) can be treated as
a special type of prior distribution. The “empirical Bayes” method estimates regres-
sion coefficients as weighted average of the coefficients obtained from sample data
from all clusters. In this case, sample data are used to form the prior population
distribution, so there are no prior distributions for the hyperparameters. The “Pure
Bayes” method generates prior distributions for the hyperparameters from a popula-
tion. Though the two approaches commonly yield similar results, the latter approach
explicitly takes account of prior uncertainty, so it usually generates larger posterior
variance (Western, 1999). Moreover, datasets used in hierarchical models could be
complex due to problems such as measurement error, censored or missing observa-
tions, complex multilevel correlation structures, and multiple endpoints. Comparing
to frequentist procedures, Bayesian procedures are not onlymore flexible in handling
the above data issues, but also easier to justify the theoretical properties in the model
(Congdon, 2021; Dunson, 2001; McGlothlin & Viele, 2018).

14.3.4 Bayesian Spatial Autoregressive Models

Spatial autoregressive (SAR) models differ from standard regression models in that
they account for spatial autocorrelation in the sample data (Griffith, 2009). Bayesian
methods have been used to estimate SARmodels for several decades (Hepple, 1979;
LeSage, 1997, 2000) and the motivation was driven by several advantages of the
approach: it can accommodate the presence of an unknown formof heteroskedasticity
in the disturbance term in SARmodels; it can produce posterior distribution of spatial
lag parameters; it can help choose between a logit or probit model; and it by nature
can allow prior knowledge to be introduced in the model when available. Doğan
and Taşpınar (2014) compared the robust method of moments (GMM) estimator
and the estimators based on the Bayesian MCMC approach for SAR models with
heteroskedasticity of an unknown form. Their results indicate that the Maximum
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Likelihood Estimation (MLE) and the Bayesian estimators impose relatively greater
bias on the SAR parameter estimation when there is a negative spatial dependence
in the model, they also found that the Bayesian estimators perform better than the
robust GMM estimator in terms of finite sample efficiency. LeSage and Chih (2018)
developed a Bayesian heterogeneous coefficients SAR panel model to estimate spill-
in and spill-out effects for wage in the contiguous US states.

Litterman (1986) proposed the Bayesian vector autoregressive model (BVAR) to
overcome the collinearity and overparameterization that are typically found in unre-
stricted vector autoregressive models (VAR). The Bayesian approach can specify
coefficientswith varyingweights and the estimated coefficients are therefore a combi-
nation of prior knowledge and the information from sample data. Like other Bayesian
SAR models, BVAR models have mostly been applied in economic and regional
forecasting research (Cuaresma et al., 2016; Puri & Soydemir, 2000).

14.4 Bayesian Implementation

Bayesian models are often fit using MCMC techniques. Many software packages
can perform MCMC estimation with varying degrees of difficulty and different
sampling procedures. The most popular one isWinBUGS (Bayesian inference Using
Gibbs Sampling). This free software package employs both Gibbs sampling and
Metropolis–Hastings updating methods for a wide range of models. It allows spec-
ifying models, sampling from the posterior distribution of parameters, diagnosing
model convergence, and creating graphical and analytic output (Lunn et al., 2009).
GeoBUGS, a GIS add-on module of WinBUGS, can be used to fit spatial models
and to produce a range of map products from model output.

JAGS (Just Another Gibbs Sampler) is an open-source and cross-platform
Bayesian analysis program that uses the same model description language as
WinBUGS. It can specify Bayesian models and generate samples from the poste-
rior distribution (Plummer, 2003). JAGS users usually rely on R packages such
as “coda” and “mcmcplot” to test model convergence, analyze model output, and
generate graphics of model results. The “rjags” package of the R software provides
an interface to access the JAGS library.

STAN is another specialized software package for Bayesian analysis. Different
from JAGS and WinBUGS samplers, it uses a Hamiltonian Monte Carlo and No-U
Turn sampling procedure due to their abilities to handle nonconjugate priors and high
posterior correlations (Stan Development Team, 2021). Like JAGS, the R package
“rstan” is commonly used to access the STAN library fromRand the sameRpackages
for JAGS can be used to analyze model output and produce result graphics.

Bayesian analysis is also facilitated by a growing number of R packages. For
instances, “brms” is for fitting Bayesian generalized (non-)linear multivariate multi-
level models using STAN for full Bayesian inference; “geoR” is for geostatis-
tical analysis including variogram-based, likelihood-based, and Bayesian methods;
“spBayes” is for spatially varying short-length time series data; “spTimer” is for
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fitting large hierarchical Bayesian spatiotemporal models; and “CARBayes” is for
fitting a class of univariate and multivariate spatial generalized linear mixed models
for areal unit data, with inference in a Bayesian setting using MCMC simulation.

A growing number of researchers have been adopted INLA (the integrated nested
Laplace approximation) as an alternative method for approximating Bayesian infer-
ence over the past 10 or so years (Blangiardo & Cameletti, 2015; Rue et al., 2009).
The INLA methodology focuses on models that can be expressed as latent Gaussian
Markov random fields (GMRF), therefore it works for a large family of models.
It also enjoys significant computational advantages over classic methods such as
MCMC in dealing with complex models. The method can be implemented using the
R-INLA package (R-INLA Project).

14.5 Some Concluding Thoughts

For more than four decades, the Bayesian inference has been proposed as an alterna-
tive inference to overcome some intrinsic issues in the classical statistical inference
in geospatial inquires. For instances, Summerfield (1983) questioned the validity and
relevance of applying the classical statistical inference to population data in geog-
raphy research. Bennett (1985) argued Bayesian approaches had offered powerful
alternative theory and techniques to advance statistical inference in spatial science.
Haining (2014) highlighted three areas of development in spatial data analysis in the
coming years after summarizing the major progress in spatial statistics in the first
decade of the twenty-first century: spatial data mining; the “new” geostatistics; and
the Bayesian spatial hierarchical modeling. Although the word “Bayesian” appears
only in the last area, Bayesian methods have also been applied in the other two areas
(Diggle & Lophaven, 2006; Gelfand & Banerjee, 2017; Zhang et al., 2019).

The Bayesian approach has provided geospatial researchers a versatile alternative
to fit a wide range of models. In addition to the benefit of including prior knowl-
edge to models, the Bayesian approach is much more flexible because almost any
model assumption can be treated as a priori. In addition, the fact that geospatial
datasets are not always samples and they could be populations or apparent popula-
tions (irreplicable observations) has made it difficult to do classical inference. The
Bayesian approach provides a debatable solution to this unique inference challenge in
geospatial research (Berk et al., 1995;Mendoza et al., 2021).Moreover, the Bayesian
approach can accommodate the needs in the rapidly growing space–time modeling
(Faghmous & Kumar, 2014; Holmström et al., 2015).

The opponents of the Bayesian approach hold two fundamental objections to the
method. One is that the approach might be abused as an automatic inference engine,
and the other is the subjectivity in the choice of prior distribution (Gelman et al.,
2013). Like many other authors, we view Bayesian inference as an ontologically
and epistemologically different approach with appealing statistical properties that
the classical inference lacks. The true value of the approach, however, will need to
be assessed by whether it can advance geospatial reasoning in the long run (Withers,
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2002). We encourage you to explore the great potential offered by this compelling
alterative approach to tackle the problems in the fascinating geospatial world.
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Chapter 15
GIS Software Product Development
Challenges in the Era of Cloud
Computing

Fuxiang Frank Xia

Abstract Over the past four decades, GIS software products have evolved from
workstations to desktops to client–server systems, culminating in today’s SaaS-based
Cloud computing platforms (Platform as a Service—PaaS). Previous generations of
GIS products were mostly self-contained with very limited interactions outside the
system. The Geospatial database built on top of the traditional relational database
(RDBMS) was usually part of the self-contained system as well. In the first decade of
the twenty-first century, Web applications were often lightweight with limited GIS
functionality. However, in this new era of cloud computing with SaaS, the whole
paradigm has shifted to having full-blown GIS capabilities running in a browser or
smart device. In the future, cloud computing will replace much of the desktop func-
tionalitywe see today. This leads to awhole newway inwhich aGIS software product
should be developed. The traditional waterfall approach to developing a product—
from defining specifications, to prototyping, to reviewing with stakeholders—will
not survive this rapidly changing era of SaaS. In this chapter, we will discuss the
contemporary challenges of cloud computing, particularly with SaaS. We will focus
on the various aspects of the development process including design, development,
testing, and monitoring of a product system. We will also briefly discuss the critical
importance of a team in the success of product development.

Keywords SaaS ·Microservice · Big datastore · Spatial aggregation

15.1 Introduction

Starting in the early 1980s, the GIS software industry has become one of the most
innovative and unique industries, to the point that even the biggest technology players
have trouble competing with vendors specializing in the field.

One of the key reasons for this barrier to entry is that GIS software is spatial-
oriented and requires special attention to its research and development. The industry
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leaders must not only have a solid grasp of information technology trends, but also
a deep understanding of geospatial users across many different fields.

GIS software development faces some common challenges across all platforms.
In the early years, GIS functionality and geospatial databases were the biggest chal-
lenges for GIS vendors. In some cases, GIS vendors would have to innovate beyond
what general information technology could offer (such as ESRI’s geodatabase). In
those days, GIS software was mostly a self-contained system, and the traditional
waterfall development methodology worked great for that. This method starts with a
defined product specification and prototype to prove viability to stakeholders, which
leads directly into a robust development cycle. To ensure success in this process,
there is quality assurance and testing, iterating, and product refining before release.
In the first two decades, GIS software vendors set up a solid foundation for geospatial
functionality and geodatabase capabilities.

In this new era of cloud computing and SaaS, articulated by industry visionaries
like ESRI’s JackDangermond,GIS capabilities should bemade available to everyone
via SaaS in any cloud platform. The evolution started over a decade ago through
early Web GIS offerings such as ESRI’s ArcWeb Service, a predecessor of ArcGIS
Online, and continues to evolve as we face tremendous challenges as the information
technology landscape changes. Starting in the next section,wewill outline the specific
challenges we are facing and explore possible solutions.

15.2 Challenges to Developing GIS Software as SaaS

Developing GIS software as SaaS is not as simple as moving all the GIS functionality
to theWeb and running a GIS server (or even a cluster of servers) on a cloud platform
like Amazon AWS orMicrosoft Azure. Here are a series of challenges one may face:

1. Adapting to the continuously evolving technology landscape: The rapid
changes in information technology required to for developing a GIS product
as SaaS pose huge challenges in approaching architecture, design, and
development.

2. Security: In a self-contained client–server architecture, communication
between the client and server is well-defined. Once the client is authenticated,
it is assumed to be secure for the entire time when customers are using the
system. Internet security breaches are inevitable, so it’s paramount to design
the system and all the services securely so customers can confidently adopt
the technology. Security must be a core part of the development process and a
key component of the system.

3. Service Interruption: The REST service architecture has been the standard
choice for service-oriented architecture for a long time (Fielding, 2000). Now,
microservice architecture is the default choice for implementing the REST
services. It is assumed that any of these microservices could be offline due to
various reasons such as resource scarcity and restarting of services.
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4. Strategic adoption of open-source software: Traditionally, GIS software
vendors use very limited open-source software. In the era of cloud computing,
no single company can develop every component of its system from scratch.
In fact, in order to offer software as SaaS, it is necessary to use open-source
software ranging from platform to service orchestration to data storage. There
is a delicate balance between in-house development and adopting open-source
projects.

5. Verification and testing of SaaS products: Standard regression testing and
manual testing of user interaction will not be sufficient for SaaS products.
New ways must be adopted to verifying and testing the system and in partic-
ular, capability verification should be conducted from the start of the product
development process.

6. Integrating with existing products: Most GIS software vendors do not develop
a new product from scratch without carefully considering integration with
existing products. Here, the challenges are both technical and organizational.
In a technical sense, existing products may not support the APIs or protocols
the new system requires. It may require significant development time to add the
support of those API and protocols. In an organizational sense, collaboration
with existing product teams is vital. It is crucial to have buy-in from both the
leadership and team members of those existing products.

7. Production system monitoring: Once a SaaS system is deployed and used by
customers, customers will almost always assume it will be available 24/7. A
production monitoring system is a must to guarantee services to customers (in
fact, product owners may have contractual obligations to said customers).

8. Old and new geospatial functionality/capability: Moving current geospatial
functionality to the cloud will not be easy; some geospatial capabilities may
require rewriting in a new language or divide a set of services into multiple
microservices. In addition, new geospatial functions will also have to be devel-
oped to meet new requirements from users or new application fields that are
only possible via SaaS.

9. Big Data and integration of GeoAI and Machine Learning capability: Recent
advances in AI/Deep Learning have made it possible to develop many GeoAI
capabilities. However, effectively integrating those capabilities in SaaS is still
a big hurdle.

10. Team building: No software product development can succeed without an
effective team—from product visionaries, managers, engineering leaders to
product engineers and developers.
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15.2.1 Agile Development Philosophy and Microservice
Architecture

Traditionally, most software developers have used a waterfall-style approach to
design software architecture, accounting for every detail in the development life-
cycle, long before a single line of code is written. A slightly improved version of the
waterfall style usually starts with product specification, then prototyping, stakeholder
review and then full-scale development. However, in the era of SaaS, that model no
longer works as it is far too slow for today’s ever-changing technology landscape.

To overcome the limitation of the waterfall style approach, the industry has come
to understand that the Agile methodology, popularized by the 2001 Manifesto for
Agile Software Development (Beck et al., 2022), is the best approach. The product
architecturemust be flexible enough to accommodatemany changes down the road—
sometimes before the first version of the product is even released. One of the most
important elements of the Agile methodology is called “Minimum Viable Architec-
ture” (MVA). The MVA states that the architecture built for product release must be
continuously improved over the life of the product. In other words, there is no need
to over-design the product in the beginning, as the product may become obsolete by
the time it reaches the market. Some platform technologies can change so much that
the product may have to switch to a platform different from the original before it is
ready for release. The real risk for a new GIS product is not becoming obsolete in
geospatial capabilities, but the underlying architecture and platform it is built on. For
example, the Distributed Cloud Operating System (DC/OS) was the most important
player in the cloud container orchestration arena until Google introduced Kubernetes
as an open-source version of its Borg system in 2014 (RisingStack, 2022). It quickly
became the industry standard for container orchestration for cloud computing in
2016. If a SaaS GIS product started with DC/OS and didn’t architect it correctly, it
could take longer than expected to switch the system to a better technology. This
leads us to another important aspect of SaaS: containerization of GIS services.

The traditional GIS products aremostlymonolithic systems, where a heavyweight
server provides all the services for a complicated workflow, which may involve tens
and even hundreds of different services. Any of those services going down would
bring the whole system down and interrupt every customer who uses the services.
To overcome the limitation of traditional systems, a Microservices Architecture
should be used to develop each service as self-contained with clear bounded context.
Microservices are small, independent, and loosely coupled as shown in Fig. 15.1:

For example, a traditional map server may provide many different services:

• Feature services for delivering a set of geospatial features as GeoJSON to a
browser client via a standard REST API

• Map services that render a set of features into a JPEG or PNG images via a similar
REST API

• Tile services that deliver vector tiles to a client to be rendered in the requesting
clients (browser, desktop, or smart devices)

• A geocoding service to return a geographic coordinate for a given street address
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Fig. 15.1 A reference microservice architecture

• A routing service to return a GeoJSON feature for a route from a given starting
and ending street addresses, or an JPEG/PNG image depicting a route on top of
a basemap.

In a microservice architecture, each one of above services should be a self-
contained “small” service. However, most geospatial services are computationally
heavy compared to other Internet services. It still poses a great challenge toGIS archi-
tects to divide and design those services in a way that could be orchestrated to deliver
the functionality and performance that meet GIS users’ needs. Containerization of
a well-designed microservice makes development and deployment of those services
much easier than the traditional monolithic system. Any change or bug fixes could
be isolated in a single container, deployed independently without affecting other
services. Currently, the dominating container technology isDocker fromdocker.com.

The old style of managing a cluster of servers does not fit with the new era of
SaaS. The Kubernetes play a critical role in the management/orchestration layer on
top of the cloud platform providers. It manages all the service containers and can
automatically scale up and down the system based on the system load. Getting it
right is not easy and creating a set of tools to automatically deploy and update the
service containers is even harder. The GIS product development team not only has to
understand the characteristics of geospatial functionality running within each service
container but also the way the Kubernetes orchestrates the containers. On top of that,
it is not ideal to be locked into a single cloud provider. In otherwords, the systemmust
be developed in such a way to separate the specific platform capability/functionality
from the system itself so there is flexibility to switch to different cloud providers if
needed. For any global GIS vendors, running the SaaS in multiple cloud platforms
(such as Amazon AWS, Microsoft Azure, Google Cloud and Ali Yun) could be a
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required feature. In this case, there is no choice but to design its SaaS system as a
cross cloud platform product.

15.2.2 Security

Security should be an integral part of system development from the very beginning.
In a SaaS system, user authentication and authorization for using certain servicesmay
not even reside in the GIS SaaS system. The GIS SaaS systemmay have to connect to
an outside service to authenticate connected users and the services they are allowed
to access. In a SaaS system, to fully utilize the cloud resources to reduce overall
cost, it becomes a common practice to have multiple customers use the same set of
resources such as a cluster of VMs (Virtual Machines) or databases, which is called
a multi-tenants system. In a multi-tenant system, any kind of security mix-up would
not be tolerable since it could easily breach the service contractor with customers
and greatly diminish their confidence in the product and related services. That is an
internal security challenge. Externally, Internet security breaches happen so often,
it’s paramount to design the system and services securely so customers are confident
while using the technology. The recent security vulnerability in Log4j/Log4Shell
Java library (one of the most widely used Java libraries) underscores the seriousness
of a security flaw in a system design that causes a real global crisis in the whole
internet community (Newman, 2022; Nicholas, 2022).

15.2.3 Continuous Integration/Continuous Delivery (CI/CD)

Once a SaaS GIS system is deployed, it is often required to be available 24/7, and
oftentimes users will expect this as standard. To meet this requirement, one must
adopt a software development practice called Continuous Integration/Continuous
Delivery (CI/CD). CI/CD combines development and operations teams with their
day-to-day tasks. CI/CD creates organized code structures that support streamlined
development and deployment processes that also allow for more frequent updates
with fewer disruptions. However, the process alone does not guarantee a smooth
deployment process. More tools are needed to harden the new functions and features
before the SaaS system is delivered to the production system. This is where testing
automation and chaos engineering can play a critical role.
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15.2.4 Shift-Left Testing, Testing Automation and Chaos
Engineering

In contrast to waterfall’s linear development model, the “shift-left” methodology
promotes early identification of issues by incorporating quality assurance at the outset
of the software development process. By using some testing automation frameworks,
the process can trigger automated responses and actions for the failed test cases. The
testing automation process should contain a set of typical use cases that simulate
the workflow users would create. And these test cases should be performed in an
environment close to the real production system. The testing cases should use as
much real-world data as possible, then supplement with simulated data if necessary.
If the system is model driven, then it should have built-in functionality that will
automatically validate the model before running it. A strong test automation strategy
allows GIS vendors to bring products to the market faster, reduce operating costs,
and deliver a positive experience to customers. In essence, shift left testing operates
under this idea that prevention is the best medicine. Testing early and often means
development teams and stakeholders always know where things stand at any given
moment.

The chaos engineering methodology developed by Netflix brings another tool
to harden the SaaS system. It experiments with the resilience of a SaaS system
in a production or semi-production system by setting up a tool that would cause
breakdowns in the system. These kinds of experiments can reveal where the most
vulnerable parts of the whole system are and give developers an opportunity to fix
them before they become a big problem for customers in the future.

15.2.5 Integration with Existing Systems

Most GIS software vendors do not develop a new product from scratch without
thinking of integration with current existing products. Here the challenges are two-
fold: one is technical where the existing products may not support the APIs or proto-
cols the new system requires. This means the existing product team may require
significantly more development time. The second challenge is the collaboration with
the existing product team. It will be crucial to have buy-in from both the leadership
and the team members of those existing products, especially if the new system needs
the existing product(s) to add new functionalities or fix issues.

15.2.6 Big Data Stores

Due to the spatial characteristics of geospatial data, a product teammust make a crit-
ical decision about how the data are stored. Traditionally, RDBMS dominated the



136 F. F. Xia

field. But in theBigData era, distributed data stores such as Elasticsearch,MongoDB,
Cassandra, PostgreSQL-Citus, TimescaleDB andmore have become strong competi-
tors to traditional databases like Oracle and SQL Server. Interestingly, most of the
distributed data store technologies are open source. More importantly, almost all of
them have built-in geospatial data types. In a cloud environment, beyond the usual
querying performance for all data stores, two additional criteria become very impor-
tant to evaluate the data store technology: data partitioning and sharding. These are
two different techniques for breaking up a large dataset into smaller subsets.

Data partitioning is the technique of distributing data across multiple tables, disks,
or nodes to improve query processing performance or to increase database manage-
ability. Data query performance can be improved in one of twoways. First, depending
on how the data is partitioned, in some cases it can be determined a priori that a parti-
tion does not have to be accessed to process the query. For example, if a spatiotem-
poral dataset is partitioned with its temporal attribute, and the query contains a
temporal constraint, it is easy to determine if a given partition contains the requested
data from a client. Moreover, when data is partitioned or sharded across multiple
data nodes, it can be accessed in parallel and I/O parallelism and query parallelism
can be achieved.

Sharding a database involves breaking up a big database into many, much smaller
and unique databases that can be stored across multiple servers with one or more
replicas. Sharding implies the data is spread across multiple computer nodes while
partitioning does not. For spatial data, there are many different partitioning and
sharding algorithms that have been developed, such as GeoHash (Wikipedia, 2022a),
z-order curve (Wikipedia, 2022b), and the Hilbert Curve (Wikipedia, 2022c). The
common thread among these algorithms is that they all transform the spatial 2-D
coordinate (point) into a 1-D integer number, which can then be used to decide the
partition and/or sharding location of the given feature. The algorithms can be applied
to geographic feature types, such as Point, Polygon (via centroid), and Polylines
(via center point, though less common than Point/Polygon). Most of the open source
datastores do not have good strategies for spatial sharding and partitioning. Currently,
there is no clear or agreed upon best partitioning and sharding strategy one should
use for any given spatial temporal big dataset—it is still an open research question.

It is quite a challenge to select the best data store for a SaaS product from at
least half dozen candidates, one must evaluate each of them with real geospatial data
and decide which one meets the specific requirements for the product. For example,
ESRI’s ArcGIS Velocity and GeoEvent Server chose Elasticsearch as its Big Data
Store due to its capability to partition the data into smaller indexes based on time
dimension and at the same time it could shard the data across multiple data nodes to
provide the kind of distributed and parallel processing power to get the performance
required for the products. It could greatly benefit both academic researchers and
the GIS industry if various metrics could be developed to evaluate the performance
of those open-source data stores with well-defined open-source geospatial datasets,
similar to the ImageNet (Deng et al., 2009) which plays a critical role in pushing
deep learning from early academic research to today’s widely adopted status.
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When data volumes go beyond what these Big Data Stores can handle, one may
need to look for cloud data warehouses such as Amazon Redshift, Google BigQuery
and Snowflake to host billions of geospatial data points. Integrating this kind of data
stores into one’s SaaS system poses different engineering challenges than big data
stores that are tightly integrated with the SaaS system.

With the rapid accumulation of real time data, the data stores discussed will have
a hard time making all the data available all the time. For example, in some IoT
(Internet of Things) use cases, the daily data collection would exceed hundreds of
millions of data points. In these use cases, the geospatial data must be archived into
some cloud storage like Amazon S3 or Microsoft Azure Block Storage. Data stored
in these cloud storage systems cannot be processed in real time (hence sometimes
they are called “Cold Store” while the regular data stores discussed above are called
“Hot Store”).

15.2.7 Big Data Processing and GPU Database

Real-time geospatial data processing with big data is another great challenge that
GIS SaaS developers are facing. Here we consider two categories of geospatial data
capabilities: aggregating data on-the-fly and dynamic geofencing to illustrate the
challenges surrounding big data processing.

When data size exceeds hundreds of millions or even billions of records, the
raw data must be aggregated first before any realistic analysis is done. In these
cases, analyzing individual data points is not only unrealistic but also unnecessary.
Therefore, aggregating data into certain geographies becomes the critical step in the
geospatial analytics workflow.

For example, to analyze the billions of data points they collect every day, Uber
developed a Hexagonal Hierarchical Spatial Index called H3 to index the geospatial
data they collect in real time (Brodsky, 2022). They use the H3 system to optimize
their ride pricing and dispatch, and to visualize and explore the spatial data in real
time. They even use the aggregated hexagon data points to feed into their own deep
learning model to predict riding traffic within each hexagon. H3 is available as an
open-source project, though integrating it into any data store mentioned above is still
a challenge for GIS SaaS developers.

As another example, ESRI realized the importance of real-time data analysis
very early on and developed its own proprietary aggregation technology used in its
GeoEvent server and ArcGIS Velocity products. This fulfilled the requests of some
of its institutional customers, who needed to process geospatial data in real- and
semi-real time. This aggregation strategy (using hexagon indexing or others) should
be part of the evaluation criteria when one chooses a spatial temporal big data store.

When it comes to real-time geospatial data analysis, there are certain use cases
where even on-the-fly aggregation technology would not be enough. In these
instances, a GPU based data store would be a great addition to the system.



138 F. F. Xia

In recent years, GPU technology has been popularized by the AI/Deep Learning
community. GPU data store technology takes advantage of GPU processing powers
and can handle billions of points in sub-seconds. For example, it can aggregate
billions of point data into a hexagon grid at any detail level and render them as
a heatmap on top of a basemap within a second. It can also return the aggregated
hexagon grid as a set of features to feed other analytics for further analysis. Currently,
there are multiple vendors offering GPU-based geospatial capabilities: OmniSci,
Kinetica and SQream. These GPU data stores are sometimes called “Super-Hot
Stories.” The geospatial algorithms using GPU data stores are still in their early
stages and there are a lot of opportunities for both academic and industry researchers
and developers.

For GIS SaaS product developers, the question of how to integrate this kind
of GPU based technology into the system and workflow will be critical to remain
competitive. In this type of SaaS system, the real-time geospatial data would flow
through three types of data stores in real time: from incoming sources to super-hot
for instant analysis, to hot-store for real time analysis, and to cold-store for archiving
and batch-analytics.

Apache Spark has become the industry standard for big data processing, which
provides capabilities for both real-time and batch processing of big data. The unique
challenge for GIS developers comes from the fact that the geospatial functions are
usually much more computationally intensive than non-spatial data. For instance, in
a real-time geospatial data processing use case like dynamic geofencing, the real-
time data points most likely need to be enriched with some existing datasets which
need to be available all the time. In computational terms, it is stateful processing
versus the more common stateless one, which is much easier to handle in terms of
scaling the application to meet sudden change conditions like spiking of incoming
data events, or failure of certain nodes in a cluster. For a stateful use case, both the
big data processing engine itself and the stateful states would require scaling up.
There are many such operations in geospatial data processing such as a spatial join
of incoming events with existing data layers. Developing a unified framework to
handle these stateful use cases will be very important to differentiate one SaaS from
others offering similar services.

15.2.8 Production System Monitoring

Before the SaaS becomes live to serve customers, the production system monitoring
subsystemmust be ready to monitor and collect all the metrics regarding the produc-
tion system performance and stability. This will not only quickly and efficiently solve
any issues arising in the production system, but will also help the development team
resolve bugs and improve performance of the production system in the next iteration.
Production monitoring should never be an afterthought and developed after the SaaS
goes live. It should be part of the SaaS system development from the start. Collec-
tion of a series of performance and system load metrics should be part of the core
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functionality for a SaaS product. Once the system becomes live, all these metrics
need to be analyzed to support further system improvements. One way to approach
this analysis would be to use machine learning models to predict possible system
outages and to decide when to take preventative action.

15.2.9 Integration of GeoAI and Machine Learning

Most GIS vendors already provide some traditional machine learning models such
as Random Forest, Support Vector Machine (SVM), various clustering models (such
as KMeans), and many spatial statistics tools.

The integration here refers to the recent deep learning phenomena. By using
transfer learning, the GIS industry has already made tremendous progress. For
example, ESRI has released dozens of pre-trained deep learning models for various
use cases and geography. ESRI customers can already use thosemodels—viaArcGIS
Pro or Python scripts to do many things they could not do before or much more
efficiently than before.

However, integrating these models into a Big Data workflow still posts a great
challenge. When integrating a set of machine models into a Big Data processing
pipeline, itwill addmany additional pre-processing anddata transformation functions
before the data can be fed into the model. And outputs from the models also have to
go through another set of transformations (post-processing) before they can be fed
or saved into an existing geospatial data store.

For instance, in a real-timeGIS system running as a SaaS, those pre-post processes
can easily become the bottleneck of the system, which can degrade the performance
of the services. Another likely challenge comes from the fact that these models are
designed for desktop and Notebook users, and most likely will not be able to be
used directly in a SaaS system. One solution to this challenge could be for machine
learning developers to create an inferencing sub-system that would provide a set
of predefined services based on those pre-trained models. However, even current
state-of-the-art deep learning models can only answer the question of “what” but not
“why,” which is still an open research question. This will pose tremendous challenges
when customers ask for explanations about the outputs from these GeoAI models.

Most current GIS systems are descriptive (such as, possible causes for higher
crime rate in certain areas) and prescriptive (such as, measures to reduce crime rate
after analyzing the historic data). Future GIS systems will certainly have predictive
capability, of which machine learning models will be a part. The specific kinds of
predictive functionality that will be integrated into a SaaS system is another challenge
facing the current generation of developers and architects.
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15.2.10 Open-Source Strategy

In today’s world, no software product can be developed without using any open-
source products, especially with SaaS systems. As we have discussed above, the
cloud service orchestration platform, Kubernetes, and data stores like Elasticsearch,
OpenSearch, PostgreSQL-Citus, are all open-source products.

However, not all open-source projects are created equal. Some of the open-source
projects are truly openwithApache 2.0 license, so that any vendor can use them freely
without any license cost. On the other hand, ones like Elasticsearch and PostgreSQL-
Citus can be used in an enterprise setting but cannot be used in a SaaS offeringwithout
licensing costs. The license fees for a SaaS system may be prohibitive enough that a
technically less capable alternative is adopted.

Some open-source licenses, likeGPL, even require derivativeworks to be released
under the same license. Programs linked with a library released under the GPL must
also be released under the GPL. This restriction alone could prevent it from being
used as part of a full offering. It is a delicate balance, as onemistake in the early-stage
development phase can have impactful ramifications down the road.

Open-source projects with one or more vendors behind them are usually more
stable than ones without. A problem could still arise if the main vendor behind the
open-source project changes its license. A recent license change for Elasticsearch
by Elastic.com illustrates this issue: Elastic, the company behind the Elasticsearch
project, changed the Elasticsearch license from Apache 2.0 to less open Elastic
License after version 7.10. Any company using the Elasticsearch version after 7.10
in a SaaS system has to pay a license fee.

Therefore, a SaaS product developer must contemplate an open-source strategy.
Product managers must consider the ramifications of various open-source projects
when they are deciding whether to utilize them as part of the SaaS system. Are these
open-source projects truly open? If not, what kind of license costs could affect the
specific SaaS system trying to be developed? Is the cost prohibitive in terms of the
overall SaaS system expenses? And developers must aim to design the system and
services such that open-source products can be replaced with alternatives without
causing a huge re-engineering of the system.

15.2.11 Geospatial Functionality Development

As we have discussed in the previous section, big data processing requires GIS
vendors to develop new functionality like aggregating data into square, triangle, and
hexagon grids to make it possible to visualize and analyze hundreds of millions and
even billions of features.

Furthermore, existing geospatial capabilities like buffering, spatial overlay and
spatial statistics must still be made available in the new SaaS system.Migrating these
functionalities into the newmicroservice-based architecture poses another significant
challenge.
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First, traditional GIS systems usually process in a sequential fashion and mostly
in a single machine but in a SaaS system, both data and processing are distributed.
A batch job could be accomplished via technology like Apache Spark framework,
but the same technology may not be enough to handle a real-time job as discussed
above.

Second, some well-defined workflows may not fit the big data processing require-
ment. For example, it is proven that a hexagon grid for aggregating data is the best
gridding system for most spatial analysis tasks (ESRI, 2022). However, determining
the best grid size for a given dataset and specific problem is a very computation-
ally intensive process. It may work for an offline, batch process workflow but may
not be feasible for a given SaaS offering for real-time analysis without expensive
GPU-based technology. An alternative is to use the aggregation strategy like H3 and
similar ones developed by ESRI, which can compute stats for a hexagon grid at a
given level of detail quickly and efficiently enough to make real-time spatial analysis
possible.

But there are limitations with these spatial indexing schemes. For one, the grid
systems and hexagon grid are fixed at a given detail level (Uber, 2022). A proper
level of detail should be selected for the specific dataset and problem set, which may
lead you to face the old MAUP (modifiable areal unit problem) issue. It would be a
great contribution to the GIS community if someone could develop a strategy and/or
algorithm to help users select amost appropriate level of detail grid for a given dataset
and the question(s) to be answered. This is similar to choosing hyper-parameters for
deep learning. In the early days, extensive training and background were required to
be able to select the right set of hyper-parameters but nowadays, most deep learning
models have very good default values for all the hyper-parameters.

Breaking down traditional monolithic GIS functionality into much smaller
services requires collaboration between system architects and GIS specialists. A
gradual migration is probably the best approach, starting with well-defined and most
commonly used functions like buffering and spatial join. Then more sophisticated
capabilities like networking and routing can be layered on top.

Another important trend in geospatial analysis is real-time or near real-time
analytics. With increased deployment of IoT devices, there is a strong demand for
real-time algorithms for spatio-temporal analysis of IoT streaming data. A related
challenge is to apply existing geospatial algorithms to real-time data, where one may
have to improve or even reinvent the existing algorithms so that they can be used in
real-time workflow.

15.2.12 Development Team Building

All great software products are developed by great teams. No software product devel-
opment can succeed without an effective team where everyone contributes from the
product visionary, product managers, engineering leads to product engineers and
developers. The team visionary must be an effective communicator to convey the
vision to both upper-level stakeholders (usually non-technical) and all teammembers
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(most of which are technical). Both groups must buy into the vision. The product
manager(s) and engineering leader(s) must excel at daily management of detailed
workflows. Architects must either be masters of microservice architecture or geospa-
tial capability design. Developers and testing engineers must have talents spreading
multiple domains: both at a systems level and in the realm of geospatial functionality.

15.3 Concluding Remarks

In this chapter, we briefly discussed the challenges in developing a SaaS GIS
product and what kinds of actions, design methodologies, and best practices should
be adopted. Some of these challenges require collaborations between academic
researchers and industry professionals. As a GIS developer who can adopt the
methodology and best practices outlined here, will have a better chance to develop
a successful SaaS product. The whole information technology industry is moving to
the cloud platform, and the GIS industry must do the same. It will not be easy to
keep current customers satisfied while convincing them to move to the new platform
despite its benefits. The key is to have an openmind and to not be afraid of improving
the current system based on the changing IT landscape.
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Chapter 16
Spatial Thinking of Computational
Intensity in the Era of CyberGIS

Shaowen Wang

Abstract The transformation of spatial data into knowledge and understanding
through spatial analysis has become an important and ubiquitous element of research
and education in numerous fields, especially with support provided by geographic
information science and systems (GIS). However, as the complexity and size of
spatial data and sophistication of associated analysis approaches have significantly
increased, spatial analysis has become increasingly computationally intensive. The
focus of this chapter is to address the fundamental challenge of representing and eval-
uating computational requirements for optimal use of cyberGIS to enable computa-
tionally intensive spatial analysis. The chapter describes a computational intensity
map (CIM) approach to representing computational requirements of spatial anal-
ysis and guiding cyberGIS-enabled spatial analysis. Computational intensity maps
(CIMs) are conceptualized to apply the analytical capabilities of cartographic maps
and critical spatial thinking to the representation of computational requirements.
This map-based formalization allows for the exploitation of critical spatial thinking
to evaluate computational requirements for cyberGIS-enabled spatial analysis.

Keywords Computational intensity map · cyberGIS · Geographic information
science and systems (GIS) · Spatial analysis

16.1 Introduction

The transformation of spatial data into knowledge and understanding based on
spatial analysis has become an important and ubiquitous element in numerous fields
(Wang, 2016). Spatial analysis, broadly defined to encompass spatial analytical and
modeling approaches that include but are not limited to artificial intelligence and deep
learning (Openshaw & Openshaw, 1997; Xu et al., 2018), heuristics and optimiza-
tion (Lin et al., 2015; Murray, 2021), simulation modelling (Benenson & Torrens,
2004; Davis & Wang, 2018), spatial statistics (Anselin, 1995; Gao et al., 2018), and
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visual analytics (Andrienko et al., 2007; Zhao et al., 2013) for geospatial problem-
solving and decision-making (Jankowski & Nyerges, 2001; Yin et al., 2019). As
geographic information science and systems (GIS) have been developed to empower
spatial analysis in digital environments (Fotheringham & Rogerson, 1993), these
methods of spatial analysis have been extensively applied in many domains (Good-
child& Janelle, 2004) but are facedwith substantial computational challenges (Wang,
2013). CyberGIS is defined as cyber-based GIS (Wang, 2010) and integrates high-
performance and distributed computing resources in a service-oriented and scalable
fashion, necessary to resolve these challenges (Wang & Zhu, 2008).

CyberGIS departs from conventional GIS approaches as it represents a paradigm
shift for harnessing big data, integrating advanced cyberinfrastructure resources and
digital services, and solving complex scientific problems. CyberGIS has emerged
as a new generation of GIS for seamlessly integrating cyberinfrastructure, GIS, and
spatial analysis capabilities to enable widespread research advances and broad soci-
etal impacts (Wang & Goodchild, 2019). Theoretical foundations of cyberGIS have
been developed to harness geospatial big data and enable computationally inten-
sive spatial analysis (Wang, 2017). For example, a theoretical construct of spatial
computational domain has been developed to guide development of generic methods
and efficient algorithms for multi-scale spatial analysis (Shook et al., 2013; Wang
et al., 2013). Formalizing the spatial computational domain enables us to address
the following research questions. How to harness massive, shared cyberinfrastruc-
ture resources for solving computationally intensive geospatial problems? What is
the nature of computational intensity of spatial analysis? Why is spatial special for
evaluating computational intensity of spatial analysis?

These questions in the context of cyberGIS revolving around the computational
challenges of spatial analysis are important because representations of computational
requirements must capture varying characteristics (e.g., spatial relationships inherent
in spatial data) of spatial analysis problems. Furthermore, evaluation of computa-
tional requirements must be sufficiently accurate to enable efficient use of cyberGIS
capabilities in a scalable way. This chapter focuses on transforming spatial character-
istics of data and analysis into computational requirement information that is crucial
for cyberGIS to make optimal decisions on conducting spatial analysis tasks with
varying computational requirements.

Consider the following scenario of spatial analysis that needs to engage evalua-
tion of computational requirements beyond personal computers. A team of scientists
needs to perform a suite of spatial interpolation analyses on a large collection of
geospatial datasets for comparative assessment of spatial patterns of environmental
impacts. This type of spatial analysis is often exploratory as it requires the tuning
of parameters (e.g., interpolation resolution, and the number of nearest neighbors),
and is computationally intensive (Wang & Armstrong, 2003). Personal computers
may not be able to meet the computational requirements of such analyses to achieve
results of adequate quality within reasonable time. Consequently, these scientists
need to use high-performance and distributed computing resources made available
as integrated cloud computing and supercomputing environments through advanced
cyberinfrastructure. Most cyberinfrastructure environments are shared by users for
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simultaneously solving numerous problems (Wang & Liu, 2009). Therefore, it is
imperative to allocate computational resources efficiently for satisfying the computa-
tional requirements of each problemanduser. The purpose of this chapter is to address
the fundamental challenge of representing and evaluating computational require-
ments of cyberGIS-enabled spatial analysis to assure optimal use of computational
resources and achieve desirable analysis performance.

The process of conducting spatial analysis tasks enabled by cyberGIS can be
abstracted as the problem of optimally mapping a set of tasks onto high-performance
and distributed computing resources. This problem has been shown, in general, to
be NP-complete, requiring the development of heuristic techniques (Wang, 2008).
These heuristics have an objective to minimize the total execution time of the tasks
based on the assumption that the estimated Expected Time to Compute (ETC) for
each individual task on each available computational resource must be given as a
priori knowledge.ETC estimation is also vital for achieving desirable spatial analysis
performance, and often done based on task profiling and analytical benchmarking
approaches (Smith et al., 2004). These approaches have the following two major
drawbacks: (1) task profiling requires extra computational resources, and (2) bench-
marking often cannot cover all possible scenarios. This chapter describes an approach
to exploiting spatial characteristics for the representation of computational require-
ments such as ETC and argues that the advancement of cyberGIS-enabled spatial
analysis needs rigorous evaluation of spatial characteristics in order to facilitate its
wide adoption and foster broad applicability of cyberGIS to diverse spatial analysis
problems.

16.2 Computational Intensity Map

The formalization of computational intensity maps (CIMs) serves the purpose of
representing and evaluating computational requirements of spatial analysis. Compu-
tational intensity, collectively referring to computing, data, and communication inten-
sity, is defined as the magnitude of computational requirements of a spatial analysis
based on the evaluation of characteristics of the analysis, its input and output, and
computational complexity (Wang, 2008). This definition has a different and broader
scope than the concept of computational intensity in the literature of computer
science that was used to characterize the ratio of the number of computing opera-
tions executed to the number of memory accesses (Dongarra & Dunigan, 1997). The
importance and necessity of this spatially explicit approach are reflected in the focus
of cyberGIS on efficiently solving scientific problems in a scalable way, the limi-
tations of existing theoretical and experimental approaches (Worboys & Duckham,
2004), and computational challenges of data-intensive sciences (Wang et al., 2014).

CIM provides a means to fill the knowledge gap between computational
complexity notations and experimental approaches. For example, for the purpose of
deriving theoretical bounds in computational complexity assessment, spatial charac-
teristics such as spatial distributions of point patterns may be generalized to satisfy
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a particular assumption of a balanced tree data structure (Samet, 2006). Although,
this type of generalization is necessary for computational complexity assessment,
it is not designed to capture spatial characteristics for the derivation of computa-
tional requirement information that is needed for optimal spatial analysis enabled by
cyberGIS. Wang and Armstrong (2009) formulated a spatial computational domain
that is composed of a set of two-dimensional computational intensity surfaces and
defined computational transformation to derive these surfaces. CIM exploits carto-
graphic modeling to integrate the capabilities of spatial computational domain and
computational transformation. Based on this integrated approach, I argue for funda-
mental new research based on critical spatial thinking to resolve the computational
intensity challenge of spatial analysis.

CIMs are constructed as a cartographic map-based abstraction that synthesizes
the representation and evaluation of computational intensity. CIMs, rooted in carto-
graphicmodeling, are virtualmaps that characterize computational intensity (Tomlin,
1990). Mapping functions are essential to transform spatial characteristics of compu-
tational intensity into CIM. This map-based formalization allows for the exploita-
tion of well-established spatial representation and related analytical capabilities to
evaluate computational intensity (Egenhofer & Mark, 1995; Miller & Wentz, 2003;
Peuquet, 2002). Methodologically, a CIM instance can be modeled as a graph of
objects, an array of cells on a field, or both using integrated object- and field-based
representations (Goodchild et al., 2007). Each cell or object is associatedwith a vector
of computational intensity values. Such values represent computational requirements
in the aspects of computing time, memory/storage, input/output, and communica-
tion that are derived from transforming spatial characteristics of data and analysis
operations.

16.3 Summary

Whilemany researchers have long attempted to tackle the challenge of understanding
computational requirements of spatial analysis to enable efficient and scalable use of
high-performance and distributed computing resources, existing approaches lacking
a systematic evaluation of spatial characteristics are often not applicable to resolving
the practical computational intensity challenge as framed in this chapter. Therefore,
fundamental research is called upon to address spatial characteristics in the repre-
sentation and evaluation of computational intensity, as the exploitation of spatial
knowledge is also crucial to engage the development of new methods and neces-
sary tools for computationally intensive scientific problem solving. Spatial thinking,
fundamental to numerous types of scientific problem solving, is ideal to be leveraged
in this regard. The primary focus of this research direction examines the formaliza-
tion of CIM through the exploitation of spatial thinking in the representation and
evaluation of computational intensity. Specifically, cartographic modeling facilitates
spatial thinking of computational intensity based on the development and evaluation
of CIM.
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CIM fills the knowledge gap between the computational complexity and exper-
imental benchmarking approaches by systematically evaluating the spatial charac-
teristics of computational intensity. The CIM formalization suggests the following
cyberGIS law: “computational intensity map units are related to each other, but near
units are more related than distant units” because CIM functions that transform
spatial characteristics of data and analysis operations into computational intensity
information reflect spatial autocorrelation (Wang & Armstrong, 2009). This law
reflects the first law of geography: “Everything is related to everything else, but
near things are more related than distant things” (Sui, 2004; Tobler, 1970). This
cyberGIS law aims to pave a new path to synergistically apply spatial and compu-
tational thinking to cyberGIS-enabled spatial analysis while achieving optimal use
of high-performance and distributed computing resources, which lays a foundation
for theory-guided cyberGIS and, thus, empowers widespread scientific advances.
Furthermore, CIM may be used to visually communicate the knowledge of compu-
tational intensity by leveraging the universal nature of spatial thinking, which
promises to facilitate the education and workforce development for cyberGIS across
disciplinary boundaries.
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Chapter 17
GeoAI and the Future of Spatial
Analytics

Wenwen Li and Samantha T. Arundel

Abstract This chapter discusses the challenges of traditional spatial analytical
methods in their limited capacity to handle big and messy data, as well as mining
unknown or latent patterns. It then introduces a new form of spatial analytics—
geospatial artificial intelligence (GeoAI)—and describes the advantages of this new
strategy in big data analytics and data-driven discovery. Finally, a convergent spatial
analytical framework is suggested as a potential future pathway for spatial analysis.

Keywords Spatial analysis · GeoAI · Artificial intelligence · Deep learning ·
Data-driven discovery

17.1 Challenges in Spatial Analytics

As a set of quantitative and computational approaches for analyzing geospatial data,
spatial analytics is the core ofGeographic InformationScience (GIScience) for explo-
ration, knowledge discovery, and decision making in the spatial realm. Identified by
Golledge (2009) as the unique contribution by geographers to the scientific commu-
nity, spatial analysis is defined as the methods developed exclusively for analyzing
location-based information. Location-based data need specialized analytics to handle
spatial dependence, scale dependence, and ecological fallacy, which are not suffi-
ciently accounted for using conventional statistical methods. In the past decades,
as spatial theory and computing technology advanced, spatial analysis expanded
considerably to cover spatial statistics (for example, exploratory spatial data anal-
ysis and spatial regression), spatial simulation (such as agent-based modeling and
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microsimulation), spatial optimization (Murray, 2021), and data-driven techniques,
such as data mining and artificial intelligence (Li, 2020).

Despite covering remarkable breadth, spatial analytics still faces substantial chal-
lenges.Goodchild (2009) identifiednotable issues that spatial analysis is facing. From
the perspective of technology, the trend towards the migration of spatial analytical
functions to the Web necessitates new business models. New models would ideally
handle server-client communication and interoperability and manage data innova-
tively for online parallel processing services that require use of server-client commu-
nication. They also would ideally promote transparency in spatial analysis modules
available online. From the science perspective, a (re)formulation of GIScience based
on how spatial analytics are being used in scientific and practical problem solving
would be beneficial. Over a decade later, we ask “how has the research landscape
of spatial analysis changed, how well were Goodchild’s challenges addressed, and
what new challenges are emerging?”.

The last 10 years have witnessed revolutionary advances in technology. Although
the term ‘cloud computing’ was new a decade ago, it has become prevalent today to
support the storage, computing, and analysis of geospatial data and its applications
(Li et al., 2016). Instead of maintaining a dedicated server, geographic information
system (GIS) users and developers have increasingly used cloud infrastructure based
on highly reliable virtualized cloud machines capable of elastic computing to meet
the different needs of end users. For example, Google Earth Engine, Google’s cloud
platform that hosts multi-decades of remote sensing images, offers the public rapid
access to massive geospatial data and planetary-scale spatial analytics (Gorelick
et al., 2017; Yang et al., 2018). The emergence of cyberinfrastructure and CyberGIS
has also revolutionized the landscape of spatial analysis to allow collaborative data
sharing, analytics, and decision-making (Anselin&Rey, 2012; Li et al., 2016, 2019a,
2019b; Wang, 2010; Yang et al., 2017).

Despite these advances, spatial analytics still have existing and new challenges.
Here we present a few examples of these challenges from the computational and data
science perspectives.

17.1.1 The Size Challenge of Big Data

Big data have changed nearly every aspect of our lives and the way we conduct
science. Datasets, such as earth observation and remote sensing images, images
from unmanned aerial vehicles (UAVs), and georeferenced data from social media
platforms and sensors for the Internet of Things (IoT) have yielded the production
and availability of geospatial data at unprecedented spatial and temporal coverage,
resolution, and collection frequency (Li et al., 2020). Handling these data at high
throughput and in real-time has presented considerable challenges for traditional
analytical methods designed for processing small, clean datasets (Li et al., 2022).
Spatial statistical methods, for instance, often require an abstraction of raw data to
point data in tabular forms to identify clustering patterns or the associations between
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certain numerical attributes through linear regression. These methods have reached
limitations when it comes to analyzing big data, which are, by definition, large, noisy,
diverse, and complex. Although redesigning existing statistical methods to handle
big data has been attempted (Laura et al., 2015; Li et al., 2019a, 2019b), many widely
used spatial statistical software, such as PySAL (Python Spatial Analysis Library)
(Rey et al., 2015) and Geographically Weighted Regression (GWR) (Oshan et al.,
2019), continue deployment in desktop computing environments and lack the utiliza-
tion of advanced computing devices, such asGraphics ProcessingUnits (GPUs). This
is likely because the focus of innovation remains onmethodology rather than compu-
tational performance. In addition, to handle big data, sampling approaches are often
introduced. However, in a large dataset with an unknown distribution, it is difficult
to guarantee that conventional sampling does not introduce bias into the data, for
example in sub-setting training and test sets.

17.1.2 Navigating Through the Messiness of Big Data

Conventionally, big data equals messy data. At the rates data are generated today,
the diversity in data collection methods makes (timely) quality control difficult. For
example, very fast sampling of some phenomena, such as an event of interest that
occurs sporadically, can lead to many empty records. Data reduction can introduce
problems, such as when stacking large numbers of raster images over time and
then computing a mean or median response in co-located pixels, one can end up
with a median image that is too dark in areas of dense cloud cover. Resampling
issues result in less accurate results when images are not registered uniformly, and
their pixels are aligned. Such issues are easier to detect in small datasets than in
large ones. Hence, the ability to navigate through big, complex data becomes a
new challenge that calls for innovative techniques designed for big data analytics.
Census data for the 2020 Census alone cost the U.S. Census Bureau over $14 billion
for compilation and delivery (GAO, 2021). This is one example of high quality,
official data managed by governments. However, many other big datasets are created
from social media and crowd sourcing platforms, such as Twitter, which have been
increasingly used for research because of their broad spatial coverage, richness of
content, and low collection cost. However, data from these platforms inevitably
contain a substantial amount of noise due partially to their openness, which allows
anyone to say anything at any time. In Bayesian statistics, where random variables
are introduced, determining the proper prior distribution is often needed to make
the estimated posterior distribution match with reality. In such cases, data noise
will impede the accurate estimation of a prior distribution. The resulting errors will
propagate to later stages of the inference process and lead to imprecise results.
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17.1.3 Hypothesis Test Versus Knowledge Mining

Besides relying onwell processed data, the traditional spatial analytical approach also
requires an accurate understanding and prior knowledge of the underlying process.
For instance, in agent-based modeling, heuristic rules need to be defined to guide
how an agent moves in space and interacts with the environment and other agents
(Li et al., 2020). When applying regression analysis, one needs to specifically define
both the independent (X) and dependent variables (y) when building the model,
which means we should have knowledge about how X are affecting y. The goal
of the analytics is to explain whether and how these independent variables (for
example, income or climate) affect the dependent variable (such as housing price) in
a geographical region. To incorporate geographically varying effects resulting from
spatial heterogeneity, local modeling, such as GWR, is introduced to determine the
variation of effects across space. These analyses belong in general to the testing of
a hypothesis or identifying the degree of effect between X and y in a predefined
model. Whereas such methods are known to be effective in identifying patterns that
are expected, their ability to discover or learn unknown relations is weak.

Confronting these challenges requires new spatial analytical methods capable
of mining new knowledge from large datasets containing unanticipated or previ-
ously unknown patterns, as well as being tolerant to noise. The methods also would
ideally be able to learn to model the process itself rather than relying on definitions
drawn from prior knowledge. GeoAI has emerged as a new arena for attacking these
challenges.

17.2 GeoAI: A New Form of Spatial Analytics

GeoAI, or geospatial artificial intelligence, is a transdisciplinary research area inte-
grating cutting edge AI to solve geospatial problems (Li, 2020). In the past decade,
amazing progress has been made in the field of AI, particularly in machine learning
and deep learning. The convolutional neural network (CNN) framework is a mile-
stone development (Reichstein et al., 2019). The CNN framework adopts the novel
concept of artificial neural network (ANN) in building a computer model mimicking
the biological neural network of the human brain even as it brings transformative
changes through the introduction of the convolution modules (Fukushima, 2007; Li,
2021; Li et al., 2012; Zhang, 1988). Suchmodules can conduct information extraction
(also known as feature extraction, with each feature treated being the independent
variable X in a regression process) from the raw data. CNN-based techniques, there-
fore, can directly act on the rawdata and uncover hidden patterns throughdeepmining
and iterative learning. This kind of data-driven analysis relaxes the constraint in tradi-
tional spatial analytics for assuming any predefined rules or relationships between the
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data (input) and the objective (output), thus supporting discovery and pattern recog-
nition directly from data. This is also known as data-driven discovery (Miller &
Goodchild, 2015; Yuan et al., 2004).

Another breakthrough in the design of CNNs is that each convolution layer
(Albawi et al., 2017) performs local operations on the data, making parallel compu-
tation possible. This design lifts the computation constraint in traditional ANN
that has high dependency among the artificial neurons across the fully connected
layers. The recent development of high-speed GPUs that contain a few hundred
to several thousand micro-processing units allows the high-performance training of
CNNs, even with complex structures, on its computing units running in parallel. This
also empowers a deep learning model to process big data, furthering its ability to
detect new patterns, extract useful information, and create high-quality foundational
datasets to aid the elucidation of important scientific questions (Arundel et al. 2020).

Moreover, deep learning models are arguably better at handling noise in training
labels than traditional statistical methods (Rolnick et al., 2017). Because many such
models are designed to learn complex relations, they tend to overfit the training data.
Overfitting occurs when a model fits the training data exactly. When this happens,
the model’s performance on unseen data will be inferior. One solution is to add
noise to the training data such that the model will fit less perfectly, reducing the
likelihood of overfitting, and increasing predictive accuracy. In addition, strategies,
such as increasing the batch size and thus exposing the model to more samples for
updating its parameters during the iterative learning process, lowering learning rates,
allowing a more thorough search for the optimal solutions, and providing enough
correctly labeled samples, will enable a deep learningmodel to tackle even extremely
noisy data (Rolnick et al., 2017). Although noise in big data is inevitable, the way
deep learning is designed and how it handles the data makes deep learning more
robust towards dealing with noise than traditional spatial analytical approaches. On
the other hand, deep learning requires thousands to billions of training examples to
develop abstractions that the human brain can easily intuit through explicit, verbal
definition (Marcus, 2018). Interpretability of the results and extension beyond the
scope of the training data are also limitations to deep learning systems (Reichstein
et al., 2019) that must be overcome.

17.3 Concluding Remarks

As a new form of spatial analytics, GeoAI is exciting because of its outstanding
performance in big data analytics, especially in classification, prediction, and pattern
recognition. However, the GeoAI domain is still in its infancy and more research is
needed for it to become a well-established scientific field. The role of GeoAI in
(re)formulating GIScience also needs to be more clearly defined. This need echoes
insights shared by Goodchild (2009) in terms of the challenges of spatial analytics in
general. We know that the complexity and black-box nature of GeoAI models render
the model’s reasoning process more difficult to explain than that of traditional spatial
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analytical approaches (Goodchild & Li, 2021). But this also offers an opportunity
to create an even more powerful analytical framework by combining GeoAI and
traditional methods. GeoAI can serve as a data pre-processing module that directly
interacts with raw big data to achieve high-yield analysis and data filtering (Li et al.,
2022).

For instance, a GeoAI-based analytical framework can achieve near real-time
processing of satellite remote sensing imagery to create a national to global scale
database characterizing natural and human-made features on Earth (Li &Hsu, 2020).
This dataset, for which scientists and researchers have waited decades, can be inte-
grated into subsequently processed statistical models to understand crucial environ-
mental and climate change problems (Reichstein et al., 2019). The data and models
may jointly contribute to a convergent research agenda for spatial analytics.

Clearly, the development and refinement of existing and future spatial analytics
(GeoAI and beyond) should consider fundamental geospatial principles, such as loca-
tion, scale, spatial autocorrelation, spatial heterogeneity, and geographic similarity.
As data and systems become more open, they are less likely to follow fundamental
principles and best practices. This concern is like that expressed by scholars during
the early years of the development of GIS. Concerns included whether users would
utilize the correct projection for the variable studied, correct their statistical analyses
for bias in location, or analyze error by combining the variables of the spatial themes.

Whereas some elements of these potential problems are now controlled inher-
ently by software systems, other problems persist or may not be envisioned in the
present. Like GIS, GeoAI and subsequent technologies would ideally balance the
accessibility of the approach with its applicability, the enforcement of the principles
with the flexibility of application. This is the grand challenge of the spatial science
community: to not only create and disseminate new tools towards the goal of empow-
ering more vast and ethical utilization, but more importantly to leverage these tools
to improve analysis of spatial information to address critical global, regional, and
local problems.
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Chapter 18
Deep Learning of Big Geospatial Data:
Challenges and Opportunities

Guofeng Cao

Abstract With rapid advances of geospatial data acquisition technologies,
spatiotemporal data have become increasingly available. As the geography and
spatial science community is shifting rapidly to embrace the data-rich era, the long-
standing challenges facing the spatiotemporal analysis remain not only unsolved
but of increasing prominence in producing geographic knowledge out of the rich
data. This chapter reviews these challenges posed by the big spatiotemporal data and
discusses the recent progresses in addressing them with a particular focus on the
promises of deep learning and GeoAI methods. The chapter is then concluded with
a discussion on possible future directions.

Keywords Machine learning · GeoAI · Big data · GIScience · Spatial statistics

18.1 Introduction

In the past two decades, the landscape of geospatial science and technology has
shifted dramatically driven by the recent advances in computing and information
technology. What is most remarkable in the shift is the advent of the ‘Big Data’
revolution and the rise of machine intelligence, defined by the increasing avail-
ability of data sources with fine scales and the advance of smart algorithms and
computing resources. These technology advancements enable enormous opportuni-
ties for GISciences and spatiotemporal analysis and at the same time pose significant
challenges technically and methodologically.

Geospatial data have become important contributing sources to the Big Data
(Manyika et al., 2011) and play increasingly important roles in scientific discovery
and practical decision-making. Several drivers are behind the data explosion. The first
one is the rapid advances in communication and locational technologies, whichmake
it possible to integrate highly accurate spatial and temporal informationwith virtually
any observations. Example data sources include location-based social media, mobile
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phone call logs andhumanmovement trajectories. The secondone is the growingvari-
eties of remote sensors, particularly the ones that are satellite-borne sensors, making
it possible to observe the geographic environments with global coverage and with
high resolutions. The remote sensors can be further complemented with networks
of ground sensors for a more reliable and comprehensive picture of the processes
at study. The above two advancements also enable citizens to perform observa-
tions of their own about the surrounding environments and to share the observations
via different discourses with communities. The so-called citizen science provides a
unique approach to address the challenges in scientific research and practical appli-
cations. The crowd-sourcing geospatial data or volunteered geographic information
(Goodchild, 2007) filled an important gap in the spectrum of big spatial data. Thirdly,
the ideas of open data and open source were more adopted by governments and data
vendors in the past few years, marked by the Landsat imagery collection made freely
available in 2008 (Zhu et al., 2019a; Zhu et al., 2019b) and the pass of the open-
data law in New York City in 2012 (The New York City Council, 2012). These new
sources of geospatial data are complementary to each other and together provide
an unprecedented comprehensive view of the physical and socioeconomic environ-
ments. In addition to the novel sources of data, new modes of geospatial analysis,
such as cyberGIS (Wang, 2010) and GeoAI (Janowicz et al., 2020) buoyed by the
advances of high-performance computing and machine learning, are emerging to
enable the effective analysis of big geospatial data. The advances of big data and
spatially explicit machine intelligence make it possible to examine the geographic
and socioeconomic environments at fine scales that were deemed impossible before.

Despite the promises, to fully take advantages of the technology advancements
poses significant challenges to GIScientists. In particular, the fundamental method-
ological and theoretical challenges posed by the highly complex nature and unique
characteristics of geospatial data, such as geospatial pattern complexity, geospa-
tial uncertainty, and geospatial data heterogeneity, remain largely unsolved, and
become more prominent in the Big Data era as we look to fully take advantage of
the geographic information buried in the sea of heterogeneous geospatial data. The
remainder of the chapter will revisit these challenges and discuss the opportunities
and recent progresses in addressing them with the advent of deep learning.

18.2 Challenges in Geospatial Analysis of Big Geospatial
Data

18.2.1 Complex Geospatial Patterns

The analysis of geospatial patterns lies in the very heart of GIScience. One can
argue that most if not all the theories, methods, and tools in GIScience are devel-
oped to represent, recognize, characterize, and model geospatial patterns. As is
well-recognized in the literature, a key property of geospatial data is that spatial
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information, such as geographic locations and boundaries, scales and proximity or
configurations, plays a prominent role. Geospatial data hence exhibits distinctive
spatial characteristics compared to aspatial data. These characteristics have been
well documented by geographers and GIScientists (Goodchild, 2004). For example,
the most well-known Tobler’s First Law of geography describes the ubiquity of
the similarity or autocorrelation of spatial observations (Tobler, 1970). It indicates
the statistical methods developed under the assumption of independence might not
work best for spatial patterns (Anselin, 1990). The less well-known second law
of geography describes the spatial heterogeneity and the non-stationary nature of
spatial observations (Goodchild, 2004), which highlights the importance of incorpo-
rating local conditions in modeling and understanding spatial patterns. Furthermore,
a recent version of the third law of geography was proposed (Zhu et al., 2018) to
extend the spatial patterns into more general geographic contexts including spatial
configurations (e.g., spatial scales) and environmental conditions. These character-
istics of spatial observations render methods and analytic originally developed for
aspatial data might not be best suitable for spatial data. How to effectively represent,
characterize and consider such characteristics of geospatial data is one of the most
long-standing problems in GIScience and geospatial analysis.

A geospatial pattern can become complex as it involves increasing number of loca-
tions or objects and interactions. In GIScience, many theoretical frameworks have
been proposed to represent the complex spatiotemporal patterns (e.g., Goodchild
et al., 2007; Takeyama, 1997; Yuan, 2001) and a plethora of methods have been
devised from different perspectives for modeling of spatial patterns in maps and
imagery. Most of these methods typically assume geospatial observations regularly
distributed over a Euclidean space and tend to model the complex spatiotemporal
patterns as functions of pairwise interactions such as Euclidean distances and time
lags among local neighbor- hoods (Besag et al., 1974; Cressie & Wikle, 2011). For
example, in the well-known kriging family of methods in geostatistics (Chiles &
Delfiner, 1999), multivariate statistics of spatial patterns (multiple-point or higher
order statistics) are simplified in terms of the so-called covariograms or covariance
functions of distances (two-point or second order statistics) that essentially measure
the pairwise dissimilarity (or similarity) between two locations. The two-point statis-
tics are then combined to estimate the needed higher order statistics for modeling
the spatiotemporal patterns. Similarly in Markov-based statistical methods (e.g.,
Markov random fields) (Besag et al., 1974; Clifford & Hammersley, 1971; Tso &
Mather, 2009) and geographically weighted methods (Brunsdon et al., 1998; Fother-
ingham et al., 2015; Huang et al., 2010), the pattern statistics are often simplified as
a log-linear combination of pairwise potential functions.

This simplification-based statistical paradigm has gained widespread popularity
in the research and practices of diverse disciplines over the years. Due to the simplifi-
cation, thesemethods tend to performbest at homogeneous geospatial patterns but are
limited to complex geospatial patterns. Figure 18.1 gives several examples of these
geographic patterns that are common in practice but well beyond the capabilities of
the current statistical methods to effectively model. The problem can become even
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Fig. 18.1 Examples of common geographic patterns that are difficult for existing spatial statistical
methods tomodel:a is a soilmap,where soil types demonstrate complex geometric and juxtaposition
(adjacency) patterns; gray areas in b represent the urban neighborhoods, and the blue areas in c
represent the water in the delta of a river

more daunting when multiple spatial variables with complex patterns are involved
and when it is extended into spatiotemporal settings for changing dynamics.

18.2.2 Heterogeneous Data Sources

The concept of Big Data is often characterized by the volume, velocity, and variety.
As a specific type of Big Data, the large volume of geospatial data often demonstrates
a large amount of variety, which tends to fragment the data-rich environment. Most
recent advances inGIScience and spatial analysis (e.g.,Wang, 2010;Wright&Wang,
2011; Yang et al., 2010, 2017) have focused on the issues of volume and velocity,
buoyed by advances in computing resources. Much less attention has been given
to the heterogeneity of geospatial data sources, despite the wide recognition of its
importance (Goodchild, 2016).

The two main aspects comprising geospatial data are well known: the non-spatial
attribute measurements, and the associated spatial units or spatial support indicating
where the attribute is measured and how the attribute measurements are aggregated
geographically. Both the attribute variables and spatial support vary in terms of data
types resulting in a wide range of heterogeneity in geospatial data. The attribute
variables can be continuous, categorical (or binary) and count variables, while the
spatial support varies in terms of size, shape (point, line, area, and surface in the
format of lattice or uniform grid), orientation and map scale. These different types
of spatial data have distinct statistical properties and often require specific methods
for statistical modeling and analysis. For different types of attribute variables (linear
or non-linear), different flavors of kriging methods (Chiles & Delfiner, 1999) and
Bayesian hierarchical models (Banerjee et al., 2004; Diggle et al., 1998) have been
developed for point-referenced data. Failure to consider the distinction of the data
characteristics can result in severe bias. Similarly for different types of spatial support,
methods developed for point-referenced data cannot directly be used for areal data.
Existing statistical developments for each type of spatiotemporal data have been
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well documented in the existing literature (Chiles & Delfiner, 1999; Cressie, 1993;
Cressie & Wikle, 2011; Schabenberger & Gotway, 2017).

The heterogeneity of geospatial data and the associated methods makes the
joint use of available data exceedingly difficult. Given a research problem for a
specific geographic region, the geospatial data available are typically collected by
diverse sources of providers with differing emphases and purposes, and with a large
variety of incompatible data characteristics (e.g., incompatible spatial support, scales,
misaligned spatial and temporal units, differing intrinsic attribute types). As high-
lighted by van der Putten et al. (2002), in spite of the exponential growth of the
available data, the number and diversity of data sources, over which the information
is fragmented, grow at an even faster rate, thus making more difficult the joint use
of the data. Despite the heterogeneity, each source of data often offers a partial yet
complementary view of the research problem at hand. It therefore highlights the need
for statistical methods that can effectively reconcile the heterogeneity of spatial data
for a comprehensive view in geographic analysis.

Many statistical data fusion or transformation methods have been developed to
address the differences in attribute and spatial support separately. To account for the
attribute difference, the statistical venue of Bayesian maximum entropy (Christakos,
2000, 2002) has been trimmed as a data fusion framework to combine hard and
soft data for spatial prediction (Bogaert & Fasbender, 2007; Fasbender et al., 2007),
while the spatial mixed model (Cao et al., 2011) has been developed as a data fusion
framework for the integration of Gaussian and non-Gaussian spatial measurements
(Cao et al., 2014;Yoo et al., 2013). The problemdealingwith the differences in spatial
support is often referred to as change of support problem (COSP) (Gelfand et al.,
2001;Gotway&Young, 2002). The problemhas been encountered in several fields of
study, with numerous terms introduced to describe one or more facets of the problem
and associated solutions (Gotway &Young, 2002). For example, the well-known the
ecological inference problem (Robinson, 1950), the modifiable areal unit problem
(MAUP) (Openshaw & Taylor, 1979) and the scaling problem (e.g., downscaling)
can be taken as special cases of this incompatible problem (Gotway &Young, 2002).

18.2.3 Geospatial Uncertainty

Geospatial uncertainty describes the disagreements between the geospatial data and
the corresponding true phenomena or processes they represent. Since it is impossible
to create a perfect representation of the infinitely complex real world, all geospatial
data are subject to uncertainty (Goodchild, 2008). New sources of uncertainty are
introduced in every step of themap derivation processes, and the exact characteristics
of this uncertainty usually are not known. If multiple sources of data are available for
a geographic process, in a stochastic sense, each geospatial dataset can be regarded
as a sample of the ‘true’ process it represents. The core question is then how to
model the spatiotemporal uncertainty and evaluate the impact of data uncertainty in
practical applications and scientific modeling.
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Fig. 18.2 A flowchart of Monte Carlo-based methods in evaluating the propagation of geospatial
uncertainty; modified based on Kyriakidis and Dungan (2001)

The proliferation of geospatial data has spurred considerable interests in the
problem of spatiotemporal uncertainty and the needs are shared by many fields,
including climate science, atmospheric science and GIScience, for effective statis-
tical methods in the quantification of spatiotemporal uncertainty. Geospatial uncer-
tainty inherits many of the characteristics of themeasurements themselves, including
the issues inherent to spatiotemporal effects and spatial support. Therefore, the
previous discussion on spatiotemporal pattern and heterogeneity can also be applied
to spatiotemporal uncertainty. See Zhang et al. (2002) and Shi et al. (2018) for the
numerous methods developed for spatial uncertainty modeling and characterization.
The commonly used geostatistical methods can be used for quantifying spatiotem-
poral uncertainty by adding a simulated noises on measurements (Chiles & Delfiner,
1999). The uncertainty and the impact on decision marking can then be charac-
terized through the Monte Carlo-based geostatistical simulations (see Fig. 18.2 for
an example workflow of the Monte Carlo-based approaches). Bayesian hierarchical
model (Banerjee et al., 2004; Cressie & Wikle, 2011) is another venue for charac-
terizing and modeling spatiotemporal uncertainty by assuming a prior distribution
on the geospatial measurements and specification parameters. However, existing
methods for spatiotemporal uncertainty characterization and modeling share the
above-mentioned pitfalls for data analysis and modeling; that is, they tend to over-
simplify the complex spatiotemporal patterns and cannot effectively deal with the
wide range of geospatial heterogeneity.

18.3 The Promises of Deep Learning

Deep neural network-based methods, namely deep learning, have dramatically
improved the state-of-the-art in pattern recognition (LeCun et al., 2015). With a
deep neural network with multiple levels of processing layers, deep learning-based
methods have been shown to excel at discovering intricate complex patterns from
high-dimensional data. Deep learning-based methods have been developed to model
complex spatiotemporal dynamic systems, such as weather (e.g., Ravuri et al., 2021)
and climate systems (e.g., Stengel et al., 2020). GIScientists are on the frontiers of
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the adoption and development of the new deep learning paradigm. A plethora of
spatially explicit deep learning methods have been developed for geospatial pattern
analysis and modeling, and the collective efforts led to the emergence of the new
interdisciplinary field of GeoAI (Janowicz et al., 2020).

Great progresses were made in exploiting the power of deep learning in
addressing the above-mentioned challenge of complex geospatial patterns. Most of
the progresses focus on remote sensing imagery analysis and understanding [see Ma
et al. (2019) and Zhang et al. (2016) for recent reviews of deep learning in remote
sensing]. Itmakes sense considering the similarity of the challenges in remote sensing
and computer vision (e.g., segmentation, classification, and change detection) where
most of the deep learning innovationswere started. Asmentioned previously, geospa-
tial analysis and modeling rely on the effective characterization and modeling of
complex spatial patterns and for different types of geospatial data, geospatial patterns
exhibit differently. Many works were reported to go beyond image analysis and to
apply recent deep learning innovations in general tasks of geospatial analysis. For
the traditional task of spatial interpolation, for example, the idea of conditional GAN
(generative adversarial neural network) has been successfully applied for filling gaps
of elevation data (Zhu et al., 2019a; Zhu et al., 2019b). The graph neural networks
that integrate the graph theory and deep learning have been used for spatiotemporal
interpolation of observations made at irregular locations (Amato et al., 2020; Wu
et al., 2020). The recurrent neural networks that excel at learning long-term depen-
dencies, such as LSTM (long short-term memory) and GRU (gated recurrent unit),
were used for modeling complex spatiotemporal dynamics like human movement
trajectories (Rao et al., 2020) and weather systems (Shi et al., 2015; Sonderby et al.,
2020).

More efforts are needed to exploit the power of the deep learning paradigm in
the other challenges discussed previously (modeling of geospatial uncertainty and
the integration of heterogeneous geospatial data). To quantify the uncertainty in
geospatial data and the deep learning models, a promising and active direction is
the Bayesian deep learning that aims to integrate the concepts of Bayesian approach
(e.g., priors and Bayesian inferences) with deep neural networks. One conceptually
straightforward approach is to applyMonte Carlo dropout (MC-dropout) (Gal, 2016;
Gal & Ghahramani, 2016) to the deep neural networks. MC-dropout is based on the
simple idea of randomly dropping out the links in a deep neural network (Mele &
Altarelli, 1993), and can be taken as an approximation of Bayesian inferences. To
integrate the heterogeneous geospatial data, most of deep learning related progresses
are made in analyzing image or gridded geospatial data. Particularly, the GANmodel
has shown superior performance to traditional statistical methods in downscaling
(or super-resolution) and fusing satellite images (e.g., Tsagkatakis et al., 2019) or
climate predictions (e.g., Stengel et al., 2020). Both the above mentioned spatial
interpolation and downscaling work can be taken as special cases of heterogeneous
data integration. Given its effectiveness in capturing complex patterns, the potential
of deep learning in addressing the general problem of geospatial heterogeneity needs
more exploration.
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18.4 Discussions

This chapter revisited the traditional challenges in geospatial analysis and modeling
(i.e., complex geospatial patterns, geospatial heterogeneity, and geospatial uncer-
tainty) in the context of Big Data and briefly reviewed the recent progresses of deep
learning in addressing such challenges. These challenges becomemore prominent as
geospatial data with fine spatiotemporal scales become increasingly available. The
power of deep learning in expressing complex structures of high dimensional data
makes it a promising paradigm for geospatial analysis and modeling. In the past few
years, great progresses have been made in exploring this power in addressing the
traditional challenges in geospatial analysis and modeling. The potentials of deep
neural network structures are far from being fully exploited particularly in modeling
geospatial uncertainty and integrating heterogeneous geospatial data.

As in other technical advances, deep learning is not free of issues. For geospatial
analysis and modeling, one of its major issues is the lack of model interpretability.
While themodels canperformwell for the tasks of spatial estimations andpredictions,
due to the highmodel complexity, one often finds it difficult to interpret themodel and
to link the model parameters with the domain knowledge. Also related to the model
complexity, the training process usually requires a large amount of training data, a
requirement often hard to satisfy in geographic research. The lack of interpretability
also raises interesting issues from the perspectives of education, curriculum design,
and public outreaching. Tackling these issues may require a geography-informed
deep learning or a deep integration of the geographic domain knowledge and the
deep learning structures. It becomes critically important as the GeoAI algorithms are
permeating in every aspect of GIScience as well as people’s everyday life.
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Chapter 19
Towards Domain-Knowledge-Based
Intelligent Geographical Modeling

Cheng-Zhi Qin and A-Xing Zhu

Abstract Geographical modeling has been recognized as a powerful way to solve
complex geographic problems. However, its wide applicability is increasingly
hindered by its complexity in domain knowledge required and the procedures
involved. In this chapter, we argue that domain knowledge plays a key role in making
geographical modeling intelligent. Domain-knowledge-based intelligent geograph-
ical modeling would not only solve wide geographical problems in an easy-to-
use manner on the premise of the effectiveness of the built model specific to the
application context, but also contribute to research in artificial intelligence.

Keywords Intelligent geographical modeling · Artificial intelligence (AI) ·
Domain knowledge · Knowledge-based modeling

19.1 Complexity in Geographical Modeling

Currently, geographical modeling is the fundamental means of conducting geospa-
tial analysis and simulation in a quantitative and computer-aided manner. It has been
recognized as a powerful way to solve diverse complex problems related to geog-
raphy, from scientific research to decision-making problems in application domains
with multiple stakeholders (including watershed management and urban planning)
(Chen et al., 2020). Users of geographical modeling extend from those modeling
experts to end-users in application domains (such as decision-makers) who are often
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non-experts in modeling. New progress in model research, data collection abili-
ties, and advanced computing technologies has made it possible to model and solve
complex problems more effectively. However, for many users (especially non-expert
modelers), geographical modeling is becoming increasingly complicated due to the
following issues.

• Problem definition. Note that end-users andmodeling experts are often concerned
with different aspects of modeling. The end-users, especially those non-experts in
modeling, are concernedwith themodel outcomes to their respective applications.
For example, a resource manager would be more interested in knowing how to
manage the landuse in a watershed to maximize the economic and environmental
benefits. In contrast, the modelers concern themselves with modeling conditions,
steps, and details. They need to define the modeling problems in a technical way
such as which processes to consider and what optimization techniques to use.
The successful transformation between the end-users’ application problems and
modelers’modeling problems is highly dependent on the domain (both application
domain and modeling domain) knowledge. The gap in such a transformation in
problem definition remains a non-trivial issue, despite increasing attention being
given to participatory modeling (Hedelin et al., 2021).

• Model structure determination and algorithm selection. For a specific modeling
problem, diverse model structures can be adopted to define which geographic
factors and/or (sub-)processes should be considered, and how to organize them
logically. Model structures can be classified into different types, including
probability-based or process-based, lumped or spatially distributed, determin-
istic or stochastic, loosely coupled or tightly coupled. For each component within
the model, different algorithms can be adopted. Each of the model structures and
algorithms for the same model component have different application conditions,
mixing diverse dimensions in a spatially heterogeneous manner. The determi-
nation of a proper model structure and corresponding algorithms often requires
implicit and/or empirical knowledge that requires a steep study curve, which is
complicated for many end users.

• Input data preparation and parameter settings. Different model structures and
algorithms for a specific modeling problem may largely diverge on their input
data, together with the metaphor of “Garbage-in-garbage-out.” Therefore, the
availability and quality of input data largely determine whether a model structure
can be not only executable but also effective for modeling problems. In many
situations, most modeling efforts are on input data preparation. A typical example
is the input data preparation for a watershed model, such as SWAT model. Such
preparation involves the collection of the original dataset available for the study
area, a series of transformation processes from the original dataset to the input
data ready for the model, and the parameter settings for each algorithm in the
model. Not only is the collection of the original dataset often tedious, but the
transformation process is complicated, multidisciplinary, and often leads to errors
during user operations. This process can also be regarded as an iterative secondary
modeling problem.
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• Efficient execution of the model. Even when a model with all algorithms, input
data, and parameter settings is ready for execution, the model execution also
faces the diversity of computation resources with different efficiencies for appli-
cations. Currently, advanced cyberinfrastructures (e.g., parallel computing and
cloud services;Wang, 2010) are increasingly available andnecessary for executing
geographic models with increasingly high data throughput and large compu-
tational complexity for large-area, long-term simulations under high spatio-
temporal resolution. Consideration of the computational resources for a model
application often tangles with the modeling stage. For example, the data services
from the data portal on the web bring not only wider data availability, but also
the requirement for the corresponding algorithm implementation for the model.
This is particularly challenging for users with less experience and knowledge of
programming or cyberinfrastructure.

The above-mentioned complexities in geographical modeling create a bottle-
neck that limits the wider applicability of geographical modeling among different
application domains by diverse users.

19.2 Intelligent Geographical Modeling

Intelligent geographical modeling has been proposed to handle the complexities of
geographical modeling by automatic means instead of manual user operations. It can
minimize the dependence on users’ modeling knowledge and skills on the premise
of the reasonableness and effectiveness of the models constructed. Thus, users, espe-
cially non-expert users, can apply geographical modeling in an easy-to-use manner
to build application-problem-specific models to solve their geographical problems
in applications (Zhu et al., 2021). This means that it may break the bottleneck and
foster wide applicability among different application domains by diverse users.

Intelligent geographical modelling is not an entirely new approach. In a broad
sense, since the first geographical information system (GIS) was proposed, the
automation of geographical models and algorithms for easy-to-use geographical
modeling has received the attention of GIS researchers and developers. These efforts
include, but are not limited to:

• Implementing and integrating algorithms/models into algorithm/model libraries
(e.g., ArcGIS Toolbox), which can be called and executed in a consistent manner.

• Providing secondary programming tools for calling algorithm/model libraries to
customize application-specific models. This requires users to possess sufficient
programming skills.

• Combining a model with its necessary data-processing workflow to be a GIS-
coupled tool, for example ArcSWAT for the watershedmodel SWAT. This method
is often limited to specific models and difficult for end-users to extend to wide
applications.
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• Visualizing the modeling process of building a geographical model (often as
a workflow), for example ArcGIS Modelbuilder. This user-friendly interactive
method ensures that the built models are executable; however, this does not mean
that the models are reasonable or effective for specific application problems.

Note that the key difference between intelligent geographical modeling and auto-
mated geographical modeling is that the former highlights the built models as reason-
able and effective for specific application problems when the latter highlights fewer
manual user operations during the modeling process. Current GIS software is still
far from intelligent geographical modeling, which has become a research frontier in
GIS.

Similar to the growth of GIS, which has closely followed the development of
computer science, the growth of intelligent geographical modeling follows develop-
ment within the domain of artificial intelligence (AI). Currently, the prevailing trend
in AI is data-driven machine learning, especially its representation of deep learning,
which has dramatically succeeded in processing diverse problems across wide appli-
cation domains (Bergen et al., 2019), particularly classification problems related to
text, voice, and image. Advanced AI methods have also been widely explored for
solving geographical problems (such as classification or clustering related to remote
sensing images, point cloud, map layout, and geospatial citizen data, Reichstein
et al., 2019). In recent efforts, geospatial characteristics in geographical patterns
and processes (including spatial autocorrelation, spatial heterogeneity, and spatial
configuration, Goodchild, 2004) have been considered within existing data-driven
AI frameworks, which is now encapsulated as GeoAI (Janowicz et al., 2020; Li,
2020).

The data-driven and black-box characteristics of prevailing machine learning
methods make them comparatively incompatible with knowledge-driven tradition
in geographical modeling (Reichstein et al., 2019). The prevailing machine learning
methods and GeoAI still cannot effectively solve geographical modeling problems.
How can geographical modeling be made more intelligent?

19.3 Domain Knowledge and Operation of Intelligent
Geographical Modeling

Think about how domain experts conduct geographical modeling to solve applica-
tion problems. Domain experts exhaustively apply domain knowledge to every step
of geographical modeling to address modeling complexity and then achieve satisfac-
tory solutions of geographic problems. Domain knowledge includes different types,
including the following:

• Knowledge of the concepts and relations between concepts of the application
domains and related disciplines. Such discipline knowledge is used to transform
application problems into modeling problems, consider the model structure at the
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conceptual modeling level, and transform the final model results to their non-
expert end-users or stakeholders.

• Knowledge of model and algorithm implementation (such as the semantics of
input/output and parameters, valid data type(s), and value ranges). At either the
logical or numerical modeling level, such model-algorithm knowledge is used
to ensure that the model, algorithms, and data can be coupled as an executable
application model (but unnecessary to be a proper model for a specific modeling
problem).

• Knowledge of application context suitable for each model and algorithm
(including parameter settings). Knowledge of application context is key to
ensuring that an applicationmodel built is not only executable but also appropriate
for specific modeling problems (Qin et al., 2016).

Domain knowledge should play a key role in intelligent geographical
modeling. The more thoroughly the domain knowledge can be used by computer-
understandable means, the more intelligent geographical modeling. An imagi-
nary example of intelligent geographical modeling when thoroughly using domain
knowledge could behave as described in the following stages:

• Problem-defining stage. The user’s description of the application problem is
parsed as the modeling problem (for the application goal, i.e., the solution for
the application problem) based on discipline knowledge related to the applica-
tion domain. An example, as mentioned in Sec. 19.1, is “which kind of a water-
shed model with which coupled processes should be built for a watershed to
conduct scenario analysis and optimization under a given set of conditions?” The
application context of the application problem (such as study area characteris-
tics, data availability, and other user-assigned restrictive conditions) can also be
formalized as part of the modeling problem for the following stages of intelligent
geographical modeling. Note that when the study area is located, information on
the application context may be automatically derived using existing spatial anal-
ysis methods (such as digital terrain analysis, remote sensing image processing,
and map algebra) with increasingly open-access spatial datasets (including DEM,
remote sensing images, and land use maps).

• Goal-driven iterative modeling stage. The start of this stage is to answer the ques-
tion: Which model fits the above-defined modeling problem (i.e., achieving the
application goal) in its application context? Model–algorithm knowledge is used
to filter out candidate models with outputs that semantically match the appli-
cation goal (Jiang et al., 2019). Then, a semantic match between the necessary
input of each candidate model and the available dataset list of the local database
or/and open data portal is conducted to identify those missing inputs for the
candidate model (Hou et al., 2019). Application context knowledge is used to
ensure that the model, as well as the corresponding algorithm and parameter
settings, are appropriate for the application context (Qin et al., 2016). The ques-
tion waiting for the answer is then updated: Which model/algorithm may output
data for the unsettled goal, that is, the missing input for the candidate model under
its application context? Under the guidance of both model-algorithm knowledge
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and application context knowledge, this modeling process iterates automatically
in a goal-driven manner. In each iteration, the candidate model(s) is updated with
each of its necessary inputs being satisfied with existing data or output from other
models/algorithms coupled to the former version of the candidate model. Candi-
date models whose necessary inputs cannot be satisfied are discarded. Such a
goal-driven iterative modeling stage continues until each candidate model has all
necessary inputs ready and has set its algorithms and parameter settings properly
as the application context fits.

• Model-submission and result-interaction stages. The candidate model chosen can
be seen as an application model that is not only executable but also suitable for
specific modeling problems. It is ready for submission and execution. The execu-
tion results and intermediate results are fed back to users, typically through visu-
alization for user-friendly interaction. Users may adjust the application problem
(such as restrictive conditions) to conduct further geographical modeling.

19.4 How to Realize Intelligent Geographical Modeling?

The key to realizing intelligent geographical modeling is to extract and formalize
diverse types of geographical modeling knowledge to be computer-understandable
(such as external knowledge base directly accessed by a program, and solidification
within an algorithm). This is similar to the situation in knowledge-based modeling
in other disciplines. What makes it particularly difficult in intelligent geographical
modeling is not only that the geographical modeling knowledge is multidisciplinary,
but that the application-context knowledge is highly spatially varied, application-
dependent, often non-systematic, and tacit.

Both discipline knowledge of concepts and relations between concepts and the
model-algorithm knowledge have been explicitly described in textbooks, model
manuals, and scientific papers. Advanced machine learning methods are suitable for
text processing. Semantic web technologies (including ontology, knowledge graphs,
and resource description frameworks) have shown promising results in formalizing
and using these types of knowledge. However, application-context knowledge, which
is crucial for intelligent geographical modeling, is difficult to extract and formalize.
This originates from the characteristics of this knowledge, including:

• highly spatially varied (having weak replication across space; Goodchild & Li,
2021);

• application-dependent (thus, inconsistent with those factors considered for
different applications);

• often non-systematic (thus hard to formalize in a top-down manner);
• often empirical and tacit (thus hard to be formalized as rules).

Application-context knowledge is often implicitly (rather than explicitly as for
other knowledge types) contained in application cases that have been recorded in
many scientific papers and application reports. Case and case-based reasoning, as an
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intuitive way to apply modeling, are good at formalizing and using such knowledge.
Some preliminary studies have shown that case-based methods are promising for
intelligent geographical modeling (Liang et al., 2020; Qin et al., 2016). However, a
main challenge to its success is how to efficiently build large-scale case bases for
diverse application domains when those papers, representing the knowledge source,
are often weak structures and many necessary case contents are only implicitly
contained and unspecified in the text.

19.5 Potential Contributions to AI

Since the beginningofAI in the 1950s, symbolicAI (or rule-basedAI) has been exten-
sively and successfully applied, for example, to expert systems. However, symbolic
AI requires experts to encode knowledge in advance to formulate computer-readable
rules (crisp or fuzzy), which is a non-trivial task. Case-based methodology is also not
new. The difficulty in building a comprehensive case base impedes its applicability.
Along with the large leap of advanced computing power and big data, data-driven
AI currently prevails and symbolic AI is comparatively reduced. Recent calls for
explainable AI (Reichstein et al., 2019) may indicate the renovation of symbolic AI
and case-based methodologies, probably in some form of mixing of symbolic and
data-driven AI.

Along with such trends of AI research, intelligent geographical modeling will not
only solve wide geographical problems effectively and efficiently but also contribute
to the broader domain of AI research. What makes “geographical” special also
makes “geographical modeling” special. The unique characteristics of geographical
modeling knowledge (particularly application-context knowledge) provide probably
the most challenging testbed for explainable AI. This is similar to the fact that in
GIS history, both the unique characteristics of geospatial data and the requirement
of efficient geospatial data processing fostered geospatial database and also largely
contributed to database research.

19.6 Concluding Remarks

Intelligent geographical modeling can solve a wide range of geographical problems
in an easy-to-use manner on the premise of reasonableness and effectiveness of
the built model specific to the application context. This should be an indispensable
functionality of next-generation GIS (Zhu et al., 2021). Geographical modeling has
beenmodel-directed for a longperiod inGIS andhas become increasingly data-driven
in recent years. Although facing many methodological and technical challenges,
the domain-knowledge-based method might move towards intelligent geographical
modeling, which could further innovate geographical computing based on the triplet
of model-data-knowledge.
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Chapter 20
Mitigating Spatial Bias in Volunteered
Geographic Information for Spatial
Modeling and Prediction

Guiming Zhang

Abstract VGI (volunteered geographic information) observations are often
spatially biased, which degrades the quality of inferences drawn from field sample
sets consisting ofVGI observations. This chapter presents a novel representativeness-
directed approach to mitigating spatial bias in VGI for spatial modeling and predic-
tion. The approach, based on the Third Law of Geography (the similarity principle),
defines the representativeness of a field sample set as the degree to which the field
sample locations capture the spatial variability of environmental covariates in the
study area. Sample representativeness is then quantified as the overlap between the
probability distribution of covariate values over sample locations and the distribution
over the whole study area. Adjusting the weights for individual sample locations
towards increasing the overlap thus mitigates spatial bias in the sample locations
and improves sample representativeness. Applications of the approach to species
habitat suitability mapping and digital soil mapping demonstrate its effectiveness in
mitigating spatial bias to improve the accuracy of spatial modeling and prediction.

Keywords Volunteered geographic information (VGI) · Sample
representativeness · Spatial bias mitigation · Modeling and prediction · Predictive
mapping

20.1 Introduction

Volunteered geographic information (VGI) refers to geographic information created
by citizen volunteers (Goodchild, 2007). It has proliferated in recent years as advance-
ments in geospatial and communication technologies enable the general public to
contribute geographic data. With ubiquitous access to the Internet, ordinary citi-
zens can now easily create and share geographic observations of the world, for
example, by sharing geo-referenced photos of species observations in citizen science
communities or on social media through location-aware smartphones. VGI broadly
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encompasses geographic data generated by volunteer participants in citizen science,
crowdsourcing, social media, etc. as they all involve voluntary and non-expert
geographic data creation (Zhang, 2021).VGI is useful inmany domains such as emer-
gency response, environmental monitoring, land cover map validation, and biodiver-
sity modeling (Yan et al., 2020). Exemplary VGI projects include OpenStreetMap
(Haklay & Weber, 2008) that compiles an open and free geographic databases for
the world, and iNaturalist (Unger et al., 2020) and eBird (Wood et al., 2011) which
document species observations across the globe on a daily basis. VGI represents a
paradigm shift in how geographic data is created and shared and in its content and
characteristics (Elwood, 2008). In a broader context, VGI is an important source of
geospatial big data (Yang, 2017) which is propelling geographic research towards
emerging paradigms such as “data-driven geography” (Miller & Goodchild, 2014)
and “data-intensive science” (Kelling et al., 2009).

VGI has become a supplementary or even alternative mechanism for acquiring
geographic data due to its unique advantages. First, VGI contains rich local infor-
mation because citizens as local experts and sensors (Goodchild, 2007) have long
been accumulating knowledge of their local environments (Zhang et al., 2018; Zhu
et al., 2015b). Second, VGI makes it feasible to collect geographic data over large
areas given that potential VGI contributors are all over the world. Third, VGI can
provide timely updated data that are difficult to obtain through other means. Lastly,
VGI is much less expensive than traditional spatial data collection protocols (e.g.,
survey). As such, VGI has a great potential to reveal the spatiotemporal dynamics of
geographic phenomena at high spatiotemporal resolutions over large areas.

Such potential can be realized through spatial modeling and prediction based
on VGI observations. Nonetheless, VGI observations still represent only a set of
sample observations regarding the phenomenon under concern, despite its seem-
ingly extensive coverages (Zhang & Zhu, 2018). For instance, occurrence loca-
tions of a bird species reported by volunteers is a sample set from the population
consisting of all possible species occurrence locations. In this respect, VGI obser-
vations are similar to field sample data collected through traditional geographic
sampling. One of the significant differences, though, is that locations for designed
geographic sampling are carefully chosen (e.g., following statistical sampling design)
so that the sampled locations are representative of the spatial variabilities in the study
area (Jensen & Shumway, 2010). In contrast, VGI contributors decide where (and
when) to conduct observations at their own discretion without following a coordi-
nated sampling scheme. This characteristic of voluntary data creation often results
in spatial bias in VGI data, which has profound implications on drawing inferences
about the target phenomenon (i.e., population) from VGI observations (i.e., sample).
This chapter focuses on this issue and presents a novel representativeness-directed
approach to mitigating spatial bias in VGI for spatial modeling and prediction.
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20.2 Spatial Bias in VGI

Data quality of VGI is under constant scrutiny (Goodchild & Li, 2012), and spatial
bias is a prominent concern when using VGI for mapping, modeling, and prediction
(Zhang & Zhu, 2018). VGI observations in spatial distribution tend to concentrate
in certain geographic areas as observations made by volunteers are opportunistic in
nature, which results in spatial bias in sampling. Spatial distribution of the observa-
tion effort can be considered neither random nor regular in the sense of geographic
sampling design, but ‘ad hoc’ (Zhu et al., 2015b). As a result, VGI observations are
often of higher density in specific areas, for example, populous and accessible areas
(Kadmon et al., 2004; Zhang, 2020).

Due to spatial bias, a field sample set consisting of VGI observations may not
be representative of the spatial variabilities of the phenomena in the study area.
Spatial bias, if not appropriately accounted for, would adversely affect the quality of
inferences drawn fromVGI observations (Leitão et al., 2011). Spatial bias is one form
of sample selection bias (Zhang & Zhu, 2018). Many methods rely on information
of the underlying observation process (e.g., selection probabilities) to correct for
sample selection bias, but such information is often unavailable in VGI data.

Here a novel representativeness-directed approach was developed to mitigate
spatial bias in VGI to improve the quality of spatial modeling and prediction (Zhang,
2018; Zhang & Zhu, 2019a, 2019b). Specifically, it is for mitigating spatial bias in
field sample sets to improve the accuracy of predictive mapping, a framework for
predicting the spatial variation of a target variable based on environmental covariate
data and amodel capturing the covariation relationship (f ) between the target variable
(T ) and the covariates (E) (Fig. 20.1).

Fig. 20.1 Basic idea of representativeness directed spatial bias mitigation. Reused from Zhang and
Zhu (2019b) with permission
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20.3 A Representativeness-Directed Approach to Bias
Mitigation

Spatial bias has adverse effects on spatial modeling and prediction as it impedes
the representativeness of VGI-based field sample sets. In the context of predictive
mapping, sample representativeness essentially is the degree to which the obser-
vations made at sample locations capture the spatial variability of the relationship
between the target variable (e.g., species habitat suitability) and the environmental
covariates (e.g., elevation, land cover, precipitation) in the area. This is achieved by
capturing the variability in the target variable and that in covariates. With covariate
data (raster layers), it is feasible to assess sample representativeness. Sample repre-
sentativeness with respect to the target variable is hard to assess as its spatial variation
is unknown (to be predicted). Nonetheless, according to the Third Law of Geography
(Zhu et al., 2018; Zhu & Turner, 2022), which states that similar values of the target
variable can be expected at locations with similar geographic configurations (e.g.,
environmental conditions), it can be reasonably expected that the representativeness
measured on the covariates would approximate the representativeness on the target
variable because the target variable and the covariates should correlate (Zhu et al.,
2015a). Based on this idea, sample representativeness can be defined and measured
to guide spatial bias mitigation.

20.3.1 Measuring Sample Representativeness

Sample representativeness is defined as the “goodness-of-coverage” of the sample
locations in the covariate space, which in turn is measured as the similarity between
the probability density distribution of the sample locations in the covariates space
(i.e., sample distributionQ) and the probability density distribution of all spatial units
(e.g., raster cells) in the area (i.e., population distribution P) (Fig. 20.1). Stronger
spatial bias in the sample locations would lead to poorer sample representativeness.

Sample representativeness is computed as the similarity between the sample
and population distributions over the covariate space (Zhang & Zhu, 2019b).
Kernel density estimation was used to estimate probability density distributions
for computing sample representativeness. First, sample and population distributions
with respect to individual covariate were estimated as per Eqs. (20.1) and (20.2),
respectively.

Ql(vl) =
n∑

i=1

wi
1

hlQ
K

(
vl − Vli

hlQ

)
(20.1)

Pl(vl) =
m∑

j=1

1

hlP
K

(
vl − Vl j

hl P

)
(20.2)
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In the above equations, K(·) is the Gaussian kernel function, n is the number of
sample locations andm is the number of locations (cells) in the study area. Ql and Pl
are the estimated sample and population distributions on covariate l (denoted as vl),
respectively. Vli is the value of vl at sample location i and wi is a normalized sample
weight (

∑n
i=1 wi = 1) associated with location i. Vl j is the value of vl at cell j in

the study area. hlQ and hlP are kernel bandwidths. Second, the similarity between
Ql and Pl (Sl) was computed as the overlapping area between the two distributions
(Eq. 20.3) (Zhu, 1999):

Sl = 2 × AQl ∩ APl

AQl + APl

(20.3)

where AQl and APl are the areas under the sample and population distribution curves,
respectively and AQl ∩APl is the overlapping area (Fig. 20.2). Sl reflects the goodness-
of-coverage of the sample regarding this covariate. Finally, sample representativeness
was computed as the overall similarity between the sample and population distribu-
tions with respect to all covariates. It is a weighted average of the similarities with
respect to individual covariates (Eq. 20.4):

R =
L∑

i=1

λi∑L
j=1 λ j

Si (20.4)

Fig. 20.2 An illustration of the effects of representativeness-directed spatial bias mitigation.
Reused from Zhang and Zhu (2019b) with permission
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where R is sample representativeness with a larger value indicating higher sample
representativeness, and λi the weight associated with covariate i indicating covariate
importance in measuring sample representativeness.

20.3.2 Representativeness-Directed Bias Mitigation

Spatial bias in field sample sets can then be mitigated by improving sample repre-
sentativeness. Weights of the sample locations (Eq. 20.2) affect the estimated sample
distributions and hence sample representativeness. Therefore, improving sample
representativeness is achievedbyadjusting the sample distribution towards increasing
its similarity to the population distribution through weighting sample locations
(Zhang & Zhu, 2019b). That is, sample locations in under-represented areas would
receive largerweights and be treated asmore important in trainingmodels.Weighting
the sample locations in this way is expected to mitigate spatial bias and improve
sample representativeness. The key is to determine the optimal weights. This can
be conceived as an optimization problem, where the goal is to find a set of optimal
weights associated with the sample locations that maximizes sample representative-
ness. A Genetic Algorithm was adopted to search for the optimal weights using
sample representativeness as the objective function.

The weighted sample locations were used to train models to establish the relation-
ships between the target variable and the covariates. Weights can be incorporated in
the model training process by weighting the error term associated with each sample
location (e.g., training a regression model using weighted ordinary least square)
(Zhang & Zhu, 2019a, 2019b). The trained models can be applied to the covariate
data layers (cell-by-cell) to predict spatial variation of the target variable.

20.4 Applications

The representativeness-directed approach to spatial bias mitigation was evaluated
through case studies in two application domains: species habitat suitability mapping,
and digital soil mapping.

Occurrence locations of the red-tailed hawk (Buteo jamaicensis) obtained from
eBird were used to model and predict the species habitat suitability in Wisconsin,
United States. The approach was applied to determine weights for species occur-
rence locations (Fig. 20.3) to train a habitat suitability model with logistic regres-
sion. Validation shows that the accuracy of predicted suitability map (Fig. 20.4)
improved with weighted occurrence locations. Additionally, a positive relationship
between sample representativeness and prediction accuracywas observed (Fig. 20.5),
suggesting that sample representativeness is a valid indicator of suitability prediction
accuracy (Zhang & Zhu, 2019b).
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Fig. 20.3 Optimal weights determined through the representativeness-directed approach for all
eBird observation locations (left) and for the red-tailed hawk occurrence locations (right). Reused
from Zhang and Zhu (2019b) with permission

Fig. 20.4 Predicted habitat suitability maps based on unweighted species occurrence locations
(left) and weighted occurrence locations (right). Higher AUC (area under the receiver operating
characteristic curve) indicates higher prediction accuracy. Reused from Zhang and Zhu (2019b)
with permission

The representativeness-directed approach was also applied to mitigate spatial bias
in existing soil samples for digital soil mapping in Heshan study area, northeastern
China. Existing soil samples in the study area were pooled from various sources and
subject to spatial bias. Quantitative evaluations show that weighting soil samples
using the weights determined from the approach (Fig. 20.6) improved A-horizon
soil organic matter content prediction accuracy with either the iPSM method (Zhu
et al., 2015a) ormultiple linear regression (Fig. 20.7). A positive relationship between
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Fig. 20.5 The relationship between sample representativeness and prediction accuracy over the
generations of the genetic algorithm. Reused from Zhang and Zhu (2019b) with permission

Fig. 20.6 Weights of the
soil samples determined
through the
representativeness-directed
approach. Reused from
Zhang and Zhu (2019a) with
permission

sample representativeness and prediction accuracy was again observed (Fig. 20.8).
Moreover, the weights were informative of individual sample importance and thus
can be used as guidance to filter soil samples to improve soil prediction accuracy
(Zhang & Zhu, 2019a).
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Fig. 20.7 A-horizon soil organic matter content predicted with iPSM (top row) and multiple linear
regression (bottom row) based on unweighted soil samples (left column) and weighted soil samples
(right column).LowerRMSE (rootmean squared error) indicates higher prediction accuracy.Reused
from Zhang and Zhu (2019a) with permission

20.5 Outlook on Future Research

Beyond the two application case studies, the idea of the representativeness-directed
approach should apply to sample selection bias mitigation in general for spatial
modeling and prediction. Specifically, beyond its applicability to global modeling
methods, the approach can be extended to train localized models (e.g., modeling
based on sample locations within a neighborhood of the prediction location) that
account for spatial non-stationarity. It would also be interesting to examine the
applicability of the approach for classification problems (e.g., soil class prediction)
in addition to regression tasks explored. Lastly, spatial bias in a field sample set
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Fig. 20.8 Relationship between sample representativeness and prediction accuracy (measured by
root mean squared error—RMSE, mean absolute error—MAE, mean error—ME, and explained
variance score—EVS) over the generations of the genetic algorithm. Reused from Zhang and Zhu
(2019a) with permission

may not be mitigated completely. It is thus worth exploring how to utilize informa-
tion on sample representativeness to quantify modeling and prediction uncertainties,
preferably in a spatially explicit manner.

At the core of the approach is defining and measuring sample representativeness
in the covariate space. The idea can be translated to the social space. For example, it
may be used to quantify demographic and socio-economic biases embedded within
social media users to inform to what extent inferences drawn from social media
data truly reflect the status of the population at large. In a broader sense, big data
often suffers from biases. The concept of defining and quantifying representativeness
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offers a novel perspective on how to appropriately deal with biases in big data so that
more accurate insights can be gained from them.
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Chapter 21
Dealing with Unstructured Geospatial
Data

Huayi Wu and Zhaohui Liu

Abstract Unstructured geospatial data become more and more important in the
big data era. Compared with classic spatial data and other big data, the special
characteristics of the unstructured geospatial data are investigated and summarized.
The key technologies and challenges in data storage, management, analysis, mining,
and high-performance computing are evaluated. Finally, future GIS are characterized
as smart GIS with real-time sensing, ubiquitous interconnection, deep integration,
and intelligent services integrated.

Keywords Unstructured geospatial data · Smart GIS · Data management ·
High-performance computing

21.1 Introduction

With the rapid development of earth observation, wireless sensor networks, Internet
and communication technologies, and the popularity of social media platforms, the
collection tools for geographic data have changed from traditional surveying instru-
ments to ubiquitous sensors. The development of collection tools has promoted that
the acquisition mode of geospatial data is changed from “purposely data acquisition
for predefined questions” to “ubiquitously data acquisition for undefined questions”
and the research paradigm is changed from “seeking data for predefined questions”
to “seeking questions for ubiquitous data”.

The active observation data with simple objectives have the predefined data units,
attributes, and relationships among them, and they have a clear mapping relationship
with the entities in the real world, thus they are structured data. The ubiquitous
monitoring data are flexible but vague sometimes for the data units, attributes, and
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relationships among them; therefore, the data structure cannot be predefined, which
is also defined as semi-structured and unstructured.

The development of the theory and technology for data acquisition and processing
facilitates the changing of the connotation and scope of unstructured data. From the
traditional perspective, the data that can be stored in relational databases are the struc-
tureddata, andgeospatial data, especially vector data, are unstructureddata.However,
classical geospatial data, such as vector data, are also considered as structured data
with the development of object-oriented data model and databases.

At the same time, many new unstructured geospatial data have appeared. Text,
images, videos, and other data are generated by various business and entertainment
applications on the Internet, and some of them contain geographical information.
Internet of Things sensors such as radio frequency identification devices, infrared
sensors, global positioning system, and laser scanners constantly generate the flow
data for environmental detection, which also include dynamic geographical informa-
tion. In the last decades, new surveying and mapping technologies such as oblique
photogrammetry, laser scanning survey, satellite video remote sensing, and nighttime
light remote sensing are developing vigorously, and original oblique photogram-
metry photos, high-density point clouds, and street view photos produced by these
techniques are also important unstructured geospatial data (Zhong et al., 2020).

21.2 Characteristics of the Unstructured Geospatial Data

Different from classical geospatial data and unstructured non-geospatial data,
unstructured geospatial data has some unique characteristics:

1. Implicit geographic information and fuzzy semantics

Compared with classical spatial data, unstructured geospatial data appears in multi-
modal forms such as text, audio, pictures, videos. Some unstructured geospatial data
are geo-tagged, such asWeibo check-in data, tracks of vehicles and ships, and surveil-
lance videos, while other data have implicit spatial information, such as social media
texts, news, and geospatial images,which contain location. In addition, these unstruc-
tured geospatial data also record the semantic descriptions of attributes, themes, and
emotions about all kinds of geographical entities, geographical phenomena, and
geographical events. The implied spatial and fuzzy semantic information could be
extracted artificially; however, they cannot be input to spatial models directly given
that their structures are flexible, irregular, and diverse.

2. Dynamic space–time correlation

Compared with other big data, unstructured geospatial data has unique spatio-
temporal characteristics. The unstructured geospatial data records the dynamic evolu-
tion and correlation of geographical entities, geographical phenomena, andgeograph-
ical events through spatio-temporal sampling with different granularity. There is
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abundant spatial and semantic information about the geographic entities, geographic
phenomena, and geographic events in unstructured geospatial data, but these data
are disorganized with ambiguous relationships. Therefore, linking and aggregating
unstructured geospatial data to form a comprehensive description of spatial and
semantic attribute information of geographical entities, geographical phenomena and
geographical events are the key issues for unstructured geospatial data applications.

3. Big data characteristics

Unstructured geospatial data is a type of big data, inheriting the 5Vs of big data,
e.g., volume, velocity, variety, veracity, and value (Zhong et al., 2020). Volume
and velocity refer to a surge of data scale and generation speed. Variety is about
the multiple forms of big data and various semantic information behind these data,
which are difficult to describe with uniform data models and data structures. Veracity
deals with the data certainty and trustworthiness, which is a key issue in big data
processing. Value is an important feature of big data, turning big data to big value is
the goal of big data applications.

21.3 Technologies and Challenges of Unstructured
Geospatial Data

Opportunities and challenges coexist in the big data era. On the one hand, the
massive unstructured geospatial data drastically increase the availability of data
resources for research in geography and across academic disciplines. On the other
hand, unstructured geospatial data require processing functionality for both conven-
tional GIS data and big data. Traditional GIS aims at processing and analyzing
fixed classical spatial data, which cannot deal with unstructured geospatial data with
implicit geographic information and fuzzy semantics. Specifically, traditional GIS
faces challenges in data storage and management, analysis and mining, as well as
other technical domains.

1. Storage and management

Since the turn of the century, traditional spatial data collected by surveying, mapping
and remote sensing are managed by relational databases. Designing a spatial data
engine based on a mature relational database to achieve centralized storage and
management of data was a hot topic for spatial data storage. Relational databases
performwell in processing structured data. To adapt to the relational database model,
traditional spatial data are always split and encapsulated into BLOB (Binary Large
Object). However, the BLOB model may lead to efficient access and analysis; and
the relational database model has problems with schema definition and scalability.
With the emergence of unstructured geospatial data, data storage and management
based on the relational database has reached a bottleneck, which limits the scalability
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of storage capacity and cannot support the low-latency and high-concurrency access
for large-scale application (Guan, 2020).

Distributed non-relational databases, with a flexible, scalable, and portable data
model, have been widely employed on the Internet, providing a new option for
the storage and management of unstructured geospatial data. Height-balanced tree
index based on dynamic partitioning and spatiotemporal index based on static rule
provide support for efficient storage and management. Spatiotemporal coding tech-
nologies such as tandem coding and spatiotemporal cross coding reduce the dimen-
sion of multi-dimensional spatiotemporal coordinates, supporting the fast retrieval
of spatiotemporal objects. These key technologies have promoted the transformation
of GIS application from traditional data processing, mapping, and spatial analysis to
online analysis and location service.

With the scope of GIS data expanding from 2 to 3D, outdoor to indoor, surface to
underground, and gradually establishing the digital world corresponding to the phys-
ical world, future GISwill be all-encompassing. The digital world serves the physical
world, making it potentially more efficient and orderly. Bidirectional mapping, real-
time connection, and dynamic interaction between the physical world and the digital
world will generate ubiquitous unstructured geospatial data, which will pose a great
challenge to data storage and management.

2. Analysis and mining

Traditional GIS analysis develops algorithms for vector, raster, and other classical
data for numerical calculation directly. However, unstructured data have flexible
forms and embed implicit spatial and semantic information. An essential work with
unstructured geospatial data is to mine the implied location and semantic infor-
mation. Extracting the spatiotemporal semantic information with dynamic change
of geographical entities, geographical phenomena, and geographical events from
massive, dynamic, and fuzzy data poses a challenge to developing intelligent analysis
and mining algorithms.

The rise of artificial intelligence technology (AI) provides a powerful tool for
the analysis and mining of unstructured geospatial data, enabling the development
of geospatial natural language processing, geospatial computer vision, geospatial
data mining. AI technology represented by deep learning can be applied to the
research of geospatial artificial intelligence (Janowicz, 2020), and many represen-
tative works have emerged. For example, mining spatial and semantic information
about geographical entities, geographical phenomena, and geographical events, from
geospatial texts such as social media texts, blogs, news, and historical archives, and
knowledge inferences are hot topics (Hu, 2018). Some researches focus on automatic
mapping and environmental perception based on oblique photographic images, high-
density point clouds, street photos, which are obtained bymapping technology based
on oblique photogrammetry, laser scanning measurement, satellite remote sensing
(Zhong et al., 2020). In addition, some researchers attempted to understand the char-
acteristics of social activities from taxi tracks, and mobile phone cellular signaling
data (Wu et al., 2019).
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With the development of the analysis andmining algorithms, the application scope
of unstructured geospatial data will gradually expand from automatic information
acquisition, environmental perception, and social activities understanding to spatial
information service and decision-making supporting of digital twin, which provide
the means to monitor, understand, and optimize the functions of physical entities
(Francesco, 2020). Future GIS calls for a higher demand for analysis and mining
algorithms of multimodal data including unstructured geospatial data.

3. High performance computing

Parallel computing based on multi-thread and multi-process technology, enabled by
GPU and software platforms such as CUDA and OpenCL, makes it possible to build
high performance GIS computing engines that achieve unprecedented computing
capability (Guan, 2020). However, in the big data era, the volume, velocity, and
scale of unstructured data pose new challenges to the computational performance,
resulting a surge of demand for computational capacity and efficiency.

Cloud computing, characterized as large scale, virtualization, high reliability,
versatility, high scalability, and on-demand, provides a new approach for massive
unstructured data processing. However, network delay and bandwidth limitation
may reduce service performance and reliability in centralized cloud applications.
As a supplement to cloud computing, edge computing can improve the perfor-
mance of the entire system using edge servers deployed near the terminal to share
processing functions. At the same time, GIS integrated cloud-edge-terminal provides
management and scheduling of computing resources based on virtualization and
container technology, achieving the processing capabilities for big data through a
dynamically scalable distributed infrastructure (Zhong et al., 2020). Dynamically
allocating computing resources according to the tasks, employing dynamic expan-
sion of computing nodes, and maximizing the use of computing resources in the
entire distributed system are effective approaches to improving the performance of
distributed processing of massive unstructured data.

With the continuous expansion of application scope, the service field of GIS will
expand from public service, enterprises service, and government service to other
industries in the society, and the future GIS will be ubiquitous. Distributing all kinds
of information, knowledge, functions, and even resources to users in the form of
services and providing users with comprehensive, convenient, efficient, and intelli-
gent services, require a higher standard for high-performance service capability of
GIS.

21.4 Conclusion

Unstructured geospatial data are a new data source and a new approach to data acqui-
sition, with combined characteristics of traditional geospatial data and big data.
Originating from a wide range of sources and taking diverse forms, unstructured
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geospatial data greatly expanded the data pool but introduced theoretical and tech-
nical challenges as they are in large volume, updated in high frequency and often have
spatial and semantic information implicitly embedded, which requires new ways for
management, processing, and analysis. The GIS academic and industrial communi-
ties have taken advantages of unstructured geospatial data and greatly expanded the
scope of GIS. The emergence of digital twins, which aims to establishing bidirec-
tional and real timemapping of the physical world and enabling dynamic interactions
between the two worlds, and the introduction of smart GIS, which is equipped with
real-time sensing, ubiquitous interconnections among objects, deep integration of
hardware and software, and intelligent services functions, represent the future trend
of GIS, with unstructured geospatial data being an integral component.
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Chapter 22
Green Cartography and Energy-Aware
Maps: Possible Research Opportunities

Mingguang Wu, Guonian Lv, and Linwang Yuan

Abstract Cartography’s roles in environmentally sustainable development are
twofold: first, expressive maps can communicate and narrative environmentally
sustainable development; second, digital maps themselves, as device-dependent
digital tools, can be more energy efficient in minimizing our impact on the environ-
ment. In this chapter, we discuss the concept of green cartography that encourages
aligned map design and use for energy awareness. First, we investigate how map
design and use impact energy consumption. Then, we discuss the possible ways in
which digital maps can be energy-aware, including how to make and how to use
energy-aware maps, outlining a series of possible research opportunities.

Keywords Digital maps · Green cartography · Energy consumption

22.1 Introduction

Cartography intersects environmentally sustainable development with two trends.
First, informative and expressivemaps are needed to communicate information about
environmentally sustainable development. Many wonderful atlases and thematic
maps have been made, and more are coming with the topic of sustainable devel-
opment. Second, as digital maps themselves consume energy, they can be more
energy-aware to minimize greenhouse gas emissions, which is considered a major
concern for climate change (Erickson, 2017). In this chapter, we focus on the later.

Discussion on digital maps’ energy consumption is limited. The current discus-
sion on digital maps’ energy consumption is dedicated to an urgent problem with
mobile maps: battery life. While mobile maps provide us with incredible mobility
by allowing one to explore spaces and experience places, they also face a series of
physical constraints resulting from the limitations of mobile devices, such as small
screen size and limited bandwidth and processing power, and battery life is one of
the most critical among these constraints (Roth et al., 2018), imaging a map user
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who wants to use navigation in an unfamiliar place on a mobile device whose battery
is dying (Han et al., 2021).

We argue here that the idea of energy awareness intersects with cartography not
only on mobile maps with battery life as a physical constraint but also on energy
awareness, which impacts almost all digital maps, including server-side data storage
and client-side map display. With the rapid development of information and commu-
nications technology (ICT), an increasing number of helpful digital tools have been
developed, such as the Internet and, recently, the Internet of Things. The ICT industry
also accounts for an enormous amount of greenhouse gas emissions. Emissions from
the global ICT industry accounted for approximately 2% of global greenhouse gas
emissions in 2008 (Mingay & Pamlin, 2008) and could reach 23% in 2030 in the
worst case (Andrae & Elder, 2015), suggesting a new trend: the efficient creation,
use, and disposal of computing resources to limit environmental impacts, called green
computing (Williams & Curtis, 2008).

Digital maps involve green computing for two major reasons. First, there are a
large number of map users. Digital maps are now indispensable visual media on
various displays: globally, using a map or directions service was one of the top
three online activities in 2019 (Statista, 2020). An enormous amount of energy is
used to digital maps on billions of client-side devices. Second, massive data volume.
Behind front-end cartographic representation, a huge amount of data, such as aerial
imageries, trajectories fromGPS trackers, geo-tagged textual data from social media,
and data streams from sensor networks, are collected (still contiguously) to make
content-rich and up-to-datamaps. Storing and processing those data and transforming
the raw data into readable maps also consume large amounts of energy. Discussion
on green cartography remain limited.

In this chapter, we use the term green cartography to describe the knowledge,
methods, and attitudes regarding making and using digital maps with a specific
concern for their carbon footprint. In the following, we investigate why we need
energy-awaremaps in Sect. 22.2. We then explore the possible ways in which digital
maps can be energy-aware, outlining a series of possible research opportunities in
Sect. 22.3. Finally, we summarize our discussion in Sect. 22.4.

22.2 Should Digital Maps Be Energy-Aware?

We address energy-aware maps from two aspects: map content and form. Here,
map content refers to the underlying geospatial data of digital maps, including three
major components: geographic, attribute, and temporal.Map form refers to the visual
appearance of a map, including scale, projection, symbolization, typography, visual
hierarchy, and interfaces and interactions. For energy consumption, through specific
devices and applications, we distinguish three primary energy-intensive operations:
1) displaying, 2) computing, and 3) storage and transmission. In the following, we
analyze the carbon footprint of digital maps’ content and form in terms of those three
operations.
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22.2.1 Map Content with Energy Consumption

22.2.1.1 Geographic Components

One major factor that dominates map content is cartographic generalization. Cartog-
raphers often apply generalization, such as selection, simplification, smoothing, and
aggregation, to modify the details of features and the overall information density.
Its impacts on energy consumption are twofold: first, it impacts the visual look of
maps and therefore influences the energy consumption on displaying. Generalization
operators may change the shape and density of map objects that need to be displayed.
As shown in Fig. 22.1, there are two test maps with the same area but hold different
mapping themes. They cost different amount of energy on display. Second, gener-
alization itself is computationally intensive and therefore energy hungry; the more
mapping features are involved, the more energy is needed.

As generalization is data- and computing-intensive, tiling, and prerendering maps
into tiles, tiling techniques are now widely used to make sloppy maps (Sack & Roth,
2017). Ramm (2012) conducted a test on the tiling OpenStreetMap (OSM) dataset
in which the average render time per metatile was approximately 0.2 s at zoom 12.
It would take more than 15 h to render every tile at these zoom levels; the rendering
time will exponentially increase at higher zoom levels and therefore will consume
a much larger amount of energy. Importantly, tiling will also exponentially increase
the data volume, requiring substantial energy consumption to store the map tiles. For
example, the volume of the rawOSMdataset is approximately 50G, and prerendering
all tiles would use approximately 54 TB of storage (Wiki, 2021a).

Fig. 22.1 A comparison of the energy consumption of two maps with the same area but hold
different mapping themes. a With construction land; b without construction land
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22.2.1.2 Attribute Components

When making maps, cartographers often use classification to reveal patterns on
attributes. Classification methods’ impact on energy consumption are twofold: first,
classification impacts the visual look of maps. A series of classification methods
are crafted for different data distributions, such as equal intervals, quantiles, stan-
dard deviations, and natural breaks. These classification methods lead to noticeable
differences in visual looks, which require different energy consumption for display.
Second, classification themselves could be computationally intensive. Much energy
is needed to classify large datasets.

Interpolation is another attribute-related operation that impacts maps’ energy
consumption. Interpolation impacts energy consumption in a similar way as clas-
sification. First, it impacts the visual look of maps. A series of interpolation methods
are suggested to estimate the attributes of uncovered sites by using samples, such
as inverse distance weighting, kriging, natural neighbor, and spline. Certainly,
they derive different estimations, resulting in different energy consumption when
displaying the results. Second, interpolation methods themselves could also be
computationally intensive.

22.2.1.3 Temporal Components

Temporal samplingwith dynamicvariables, such as displaydate, duration, order, rate-
of-change, frequency, and synchronization, impacts the representation of spatiotem-
poral processes. With the development of sensors, many temporal processes, such
as traffic flow, can be frequently sampled, which enables cartographers to directly
capture detailed spatiotemporal changes. Different sampling techniques and dynamic
variables may result in different visual looks of visualization of spatiotemporal
processes, which require different amounts of energy to display. In addition, while
temporal processes can now be intensively sampled with high temporal resolution,
extra storage and bandwidth resources are needed to store and transmit streaming
data over the network.

22.2.2 Map Form with Energy Consumption

22.2.2.1 Visual Look

A visual look of the map directly impacts the energy consumption on display. Dong
and Zhong (2012) propose a model for estimating the energy consumption of a
pixel according to the red, green, and blue components of the color of the pixel.
Cartographic scale, projection, color, symbol, thematic map type and figure-ground
separation are all involved in shaping the appearance of maps and therefore impact
maps’ energy consumption on display.
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Fig. 22.2 A comparison of the energy consumption of map and remote-sensed imagery; a remote-
sensed imagery; b a map in light mode; and c a map in dark mode with the same map data

To demonstrate the visual impact on energy consumption, we compare the two
maps’ energy consumption with paired remotely sensed imagery. As shown in
Fig. 22.2, we use two testing maps with exactly the same underlying data but with
different colors. When compared with the paired remotely sensed imagery, the map
in light mode consumes more energy, the map in dark mode consumes far less, and
the map in light mode consumes almost 4.5 times as much energy as the map in
dark mode. Beyond this case, symbol, typography, and visual hierarchy also impact
maps’ energy consumption.

Although the energy consumption of a single map-use activity is rather small
(see Fig. 22.2), it will accumulate over billions of devices and applications. For
example, the total active user count of GaudMaps from China and Google Maps
from the USA is approximately 926 million per month (BigData Research, 2021;
VertoAnalytic, 2021). The annual energy consumption of these twomobilemap apps
is approximately 906,964,648 kWh, equivalent to releasing 711,967 metric tons of
greenhouse gas. For a national comparison, the energy consumption of these apps in
2019 was greater than 65 countries’ energy consumption worldwide in 2020 (Wiki,
2021b).

22.2.2.2 User Interface

The impacts of the user interface and interaction on the energy consumption of
displaying are also twofold. First, similar to the visual look of maps (as shown in
Fig. 22.2), different user interface styles (e.g., light or dark) may consume different
amounts of energy. Second, interaction through user interfaces, such as routing
with road networks, may involve computing and performing data access and query
operations, which consume extra energy for data retrieval and data transmission.
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22.3 Possible Research Opportunities of Digital Maps
Being Energy-Aware

22.3.1 Making Energy-Aware Maps

Making energy-aware maps requires compromising map content, form, and the
carbon footprint with a map use context. Accordingly, there are three possible ways
to make energy-aware maps: (1) reorganize map content; (2) adjust map form; and
(3) refine map-use context to be energy-aware.

22.3.1.1 Opportunity #1: Reorganize Map Content to Be Energy-Aware

Map elements could be reorganized to be energy-aware. Involving bothmapping data
and map design decisions, upscaling, dimension reduction, and removing features
does not necessarily reduce energy consumption, but replacing bright pixels does.
In this sense, energy awareness encourages cartographers to derive energy-saving
resolution, map scale, and map element dimensionality with a specific mapping
context.

Mapdata can also be reorganized to save energy by saving storage space, removing
redundancy, and minimizing data access. For example, as we mentioned before,
prerendering all OSM tiles would use approximately 54 TB of storage, which would
consume considerable energy to maintain them all. In practice, overall, 1.79% of
tiles are viewed (Wiki, 2020), suggesting an opportunity to design an on-demand
data organization schema that considers users’ interests.

22.3.1.2 Opportunity #2: Adapt Map Form to Save Energy

One possible way of being energy-aware is to adjust map form to save energy for
existingmaps. For example, when craftingmap color, designers tend to follow certain
conventions, typically blue for water bodies, blue for low (cool) values and red for
high (hot) values (e.g., inweathermaps).Dong andZhong’s (2012) energy estimation
model suggests that blue is the most energy-hungry primitive color, and white is the
most energy-hungry mixed color. Furthermore, as shown in Fig. 22.2, figure-ground
separation plays a critical role in energy consumption on map display. For existing
maps, mapmakers can adjust visual looks, such as map color, symbols, and figure-
ground separation, to save energy without sacrificing the underlying data. Thus, the
aesthetic and communicative quality of the original maps should be considered for
consistent map use.

Another possible way is to craft novel principles to make energy-aware maps.
Generally, colorless (darker) and compact graphics (occupying fewer pixels)
consume less energy, coinciding with Occam’s Razor, which states that “entities
should not be multiplied unnecessarily”. While there has been much discussion
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of visual variables, gestalt organization, iconicity, and the cultural negotiation of
map symbol design, with several new trends (such as pluralism and feminism)
receiving much attention, the development of minimalism of maps to reduce the
carbon footprint is limited.

22.3.1.3 Opportunity #3: Refine Map-Use Context to Be Greener

Specificmap use context impacts the direction and level of trade-offs between content
and form. Typically, individual differences, such as disability (e.g., visual impair-
ment) and map-reading experience, impact the direction of these trade-offs. For
example, for a navigation user who is familiar with the mapping area, more map
content can be compromised; for a map user with visual impairment, such as color
blindness, adapting map color should be carefully addressed to avoid misunder-
standing. In practice, energy savings may not be the only concern when crafting
maps. In this sense, energy savings should be compromised among other carto-
graphic design concerns, such as consistency of map content and aesthetics of map
form.

Ignoring all the differences amongmapuse contexts, a research opportunity comes
up with developing an ‘energy saver’ mode that maximizes energy reduction while
minimizing the loss of map content and form. As map content and form are all
involved, it would be extremely computationally intensive to find the best energy
saving solution. Thus, the extra energy consumed to develop the ‘energy saver’
mode should also be compromised with the energy intended to save when using the
resulting maps.

22.3.2 Using Energy-Aware Maps

Energy-aware maps can absolutely help to save energy, but they do not certainly
contribute to improving the quality of maps.

22.3.2.1 Opportunity #4: Examine the Byproducts of Energy-Aware
Maps

One possible byproduct of energy-aware maps is color shifting. Generally, energy-
aware maps tend to be dark, as black consumes the least amount of energy. While
people with impaired vision tend to perform better in dark mode (Sloan, 1977),
general user performance is better in light mode (Aleman et al., 2018). Examination
of the color shifting of making energy-awaremaps is lacking: light mode and darker
mode, which one is better for map reading, and for what kinds of map-use context?
More broadly, color shifting not only introduces differences in physical stimuli with
visual perception but also may result in more or less drift on affective responses,
which is critical in specific mapping contexts, such as narratives or storytelling.
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Another possible byproduct of energy-aware maps is inconsistency with map
content. As we discussed in Sect. 22.3.1.2, a series of techniques, such as gener-
alization, can potentially be used to reduce energy consumption. However, it also
results in inconsistency with map content, such as changing map element shapes,
which could be problematic. For example, when using maps in a cooperative context
in which multiple users need to share a common map, if individual users use
energy-aware maps with different shapes, then undesired misunderstandings could
be introduced. Generally, byproducts of energy-aware maps should be systemically
examined toward making and using energy effective yet communication effective
maps.

22.3.2.2 Opportunity #5: Reshape the Attitude of Using Energy-Aware
Maps

Energy-awaremaps matter only when they gain a large population. As we discussed
in Sect. 22.2, although the energy consumption of a single map-use activity is rather
small, it will accumulate over billions of devices and applications. Even though
cartographers can (hopefully)make energy-awaremaps, using energy-awaremaps to
benefit our environment is not necessarily a well-known sense and therefore a default
option. In other words, environmentally friendly organizational and social practices
are needed, suggesting a gap between the techniques of making energy-aware maps
and the end user’s attitude toward using energy-awaremaps. The question of how to
encourage using energy-aware maps may be beyond current discussion in the field
of cartography, but as digital maps are involved in the worldwide issue of sustainable
development, we note that green cartography requires additional ideas from related
disciplines, such as social psychology. For example, benefitting from education and
legislation on environmental protection, plastic or paper are now a common sense
and public option in our daily life; can energy-awaremaps be a paper-or-plastic-like
option in the future? If so, how.

22.4 Summary

As environmentally sustainable development is now an urgent concern worldwide, in
this chapter, we discuss the concept of green cartography,which encourages aligned
map making and use for energy awareness. We analyzed how map design decisions
impact the energy consumption of digital maps; we then outlined the possible ways
in which digital maps can be energy aware. Specifically, how to make and how to
use energy-aware maps are discussed.

We also recognize that green cartography not only requires novel principles, tech-
niques, and tools to be energy-aware but also requires environmentally friendly atti-
tudes and individual, organizational, and social behavioral changes with regard to
making and using energy-aware maps.
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Chapter 23
Next Step in Vegetation Remote Sensing:
Synergetic Retrievals of Canopy
Structural and Leaf Biochemical
Parameters

Jing M. Chen, Mingzhu Xu, Rong Wang, Dong Li, Ronggao Liu, Weimin Ju,
and Tao Cheng

Abstract Shortwave remote sensing signals acquired from vegetation contain infor-
mation not only for vegetation structure, such as leaf area index and clumping index,
but also for leaf biochemical parameters, such as pigments, nitrogen content, water
content, dry matter, etc. However, the retrievals of these two types of parameters
are generally carried out separately without considering the influence of one type
of parameters on the spectral signals used to retrieve the other type of parameters.
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Since green leaves would be very different from brown leaves in performing photo-
synthesis and transpiration, we suggest that a next step in vegetation remote sensing
be directed towards synergetic retrievals of these two types of parameters for the
purpose of improving regional and global carbon and water cycle estimation.

Keywords Vegetation structural parameters · Leaf biochemical parameters ·
Shortwave remote sensing · Photosynthesis · Transpiration

23.1 Introduction

Terrestrial ecosystems regulate the Earth’s climate through their large energy and
mass fluxes. They are also structurally and biologically diverse, and their fluxes
are spatially and temporally variable and highly challenging to estimate. Satellite
remote sensing data have played indispensable roles in retrieving vegetation infor-
mation for regional and global carbon and water cycle estimation (Running et al.,
1989; Xiao et al., 2019; Yan et al., 2012). The most widely used satellite-retrieved
vegetation parameters have been leaf area index (LAI) (Knyazikhin et al., 1998; Liu
et al., 2012; Verger et al., 2015) and Fraction of Photosynthetically Active Radi-
ation (FPAR) absorbed by vegetation (Gitelson, 2019; Gobron et al., 2007). LAI,
defined as one half the total all-sided leaf area per unit ground surface area (Chen &
Black, 1992), is the most important vegetation structural parameter that determines
the amount of radiation absorbed by the canopy under a given incident radiation that
drives photosynthesis and transpiration, while FPAR can either be derived from LAI
or from vegetation indices (Friedl et al., 1995; Gitelson, 2019). To characterize the
diverse vegetation structure, the second structural parameter, clumping index (CI),
has also been derived from multi-angle remote sensing (Chen et al., 2005; He et al.,
2012; Jiao et al., 2016; Wei et al., 2019). CI quantifies the degree of foliage spatial
distribution that deviates from random distribution. Using these structural param-
eters in conjunction with climate and soil data, global distributions of vegetation
productivity as well as carbon and water fluxes have been produced in many studies
(Chen et al., 2019; Prince & Goward, 1995; Yan et al., 2012; Zhao et al., 2005).

While vegetation structure forms the substrate for absorbing radiation that drives
subsequent physical and biological activities within the structure, the physiological
status of leaves in the canopy determines how the absorbed radiation is utilized for
photosynthesis and its associated water vaporization. It has therefore been realized
that carbon and water flux estimation based on vegetation structural parameters is
only an approximation without knowing the leaf-level physiological conditions. This
realization has prompted rapid development of remote sensing algorithms to retrieve
leaf biochemical parameters related to leaf physiological conditions, including leaf
chlorophyll content (LCC), leaf nitrogen content (LNC), leaf water content (LWC),
and other leaf contents. These parameters are mutually related and determine in
concert howplant leaves utilize radiative energy. LCC, for example, is responsible for
harvesting photosynthetically active radiation (PAR) and creating excitation energy
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that is used in photosystems that assimilate air CO2 for photosynthesis (Demmig-
Adams & Adams, 1992). In leaves fully adapted to the environment, LCC is closely
linked to the photosynthetic nitrogen pool in the leaf carboxylation enzyme control-
ling the leaf photosynthetic capacity (Croft et al., 2017; Lu et al., 2020; Xu et al.,
2012). It is also related to LWC as the production and function of LCC need water.
Recently, a global map series of LCC has been produced with multi-spectral satellite
data (300 m, 7 days interval, 2003–2012) (Croft et al., 2020), and this map series
has been converted to the maximum carboxylation rate (Vcmax) to improve global
gross primary productivity (GPP) and evapotranspiration (ET) estimation (Luo et al.,
2019).

Incident radiation on vegetation undergoes interception, absorption and scattering
processes by leaves and woody materials in the canopy before exiting the canopy
as reflected radiation, and therefore not only LAI and CI (structure) but also the
optical properties (leaf internal structure and biophysical and biochemical contents)
are responsible for the amount and spectral distribution of reflected radiation (Baret
et al., 1992). Observed reflectance from vegetation, therefore, carries the signals of
both canopy structure and leaf physiological status. Few efforts have been made to
entangle the contributions of canopy structure and leaf biochemical parameters to
spectral reflectance, and therefore it would not be accurate to retrieve one type of
parameters without considering the influence of the other type. Houborg et al. (2015)
pioneered a remote sensing algorithm to derive LAI and LCC simultaneously for
two crop types, as a proof of concept for the possibility and usefulness of separating
these two types of parameters using multi-spectral remote sensing data. As structural
and biophysical parameters are both needed for accurate estimation of terrestrial
carbon and water cycles, we suggest that synergetic retrievals of these two types of
parameters be a next step in vegetation remote sensing methodological development.
For the convenience of discussion, we focus on the canopy structural parameter LAI
and the leaf biochemical parameter LCC in this chapter.

23.2 Synergetic Retrievals of Both Canopy Structural
and Leaf Biochemical Parameters

The contributions of canopy structural and leaf biochemical parameters to optical
reflectance vary greatly with wavelength (λ) because leaf reflectance and trans-
mittance spectra vary greatly with λ due to variable spectral absorption by leaf
constituents (pigments, water content, dry mass, etc.). The variations of structural
parameter LAI and biochemical parameter LCC have similar but somewhat different
effects on canopy spectral reflectance, as demonstrated in Fig. 23.1, which is simu-
lated using the 5-Scale geometric optical model (Chen & Leblanc, 1997, 2001). As
green leaves absorb strongly in blue (400–500 nm), red (650–680 nm) and shortwave
infrared (SWIR, 1300–2400 nm) and weakly in near-infrared wavelengths (NIR,
800–1300 nm), increasing LAI leads to decrease in blue, red and SWIR reflectance
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Fig. 23.1 Modelled canopy spectral reflectance using the 5-Scale model. a At different LAI
values with fixed LCC of 40 µg/cm2; b at different LCC values with fixed LAI of 3 m2/m2.
The leaf reflectance and transmittance spectra used in the 5-Scale model were simulated using the
PROSPECT-D leaf opticalmodel, with fixed values of leaf structure parameter (1.5), total carotenoid
content (10µg/cm2), total anthocyanin content (0), brown pigment content (0), LWC (0.021 g/cm2)
and dry matter content = 0.007 (g/cm2). Other parameters of 5-Scale were fixed as: stand density
= 1400 trees/ha, crown (spheroid) radius = 1.25 m, crown height = 8 m, stick height = 10 m,
clumping index= 0.9, solar zenith angle= 30°, view zenith angle= 0°, and relative azimuth angle
= 30°. A reflectance spectrum of soil was assumed as the background

and increase in NIR reflectance, as shown in Fig. 23.1a, which is simulated for an
average LCC of 40 µg/cm2 with other leaf parameters being fixed. The variation of
LCC has similar effects on canopy reflectance in the visible part of the spectrum,
e.g., as LCC increases, both blue and red reflectances decrease (Fig. 23.1b). NIR and
SWIR reflectances are not directly affected by LCC but would also vary with LCC
if LCC is correlated with other leaf parameters such as LNC, LWC, leaf dry matter,
etc., but these correlations are not considered in Fig. 23.1.

It can be easily inferred from Fig. 23.1 that the retrieval of LAI cannot be inde-
pendent of LCC because LCC would have strong effects on the red reflectance used
in LAI retrieval. Conversely, LCC cannot be reliably retrieved without considering
LAI as LAI would have the dominant contribution to canopy reflectance.

23.2.1 Major Issues in LAI Retrieval

Global LAI products have so far been exclusively derived from passive shortwave
remote sensing data, although the usefulness of active sensors has also been explored
(Manninen et al., 2013; Tang et al., 2014). The basic passive spectral information
useful for LAI retrieval is in red and NIR bands, although SWIR bands are some-
times used to derive LAI (Brown et al., 2000; Chen et al., 2002). Empirical LAI
algorithms are developed based on correlations of field-measured LAI with two-
band (red, NIR) or three-band (red, NIR, SWIR) vegetation indices (VIs) (Nemani
et al., 1993). Model-based LAI algorithms are generally developed with assumed
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average leaf spectral reflectance representing the average leaf physiological condi-
tions (pigments, LWC, LNC, etc.) (Deng et al., 2006; Myneni et al., 2002). Both
types of LAI algorithms do not consider the influence of LCC variation. Based on
the discussion above and previous studies (Gobron et al., 1997; Myneni et al., 2002;
Wang et al., 2017), we summarize the following major issues in the current LAI
retrieval methodology:

1. Leaf biochemical conditions are not explicitly considered. Since these condi-
tions vary spatially and seasonally, such as the large seasonal variation in LCC,
we expect large distortions in the seasonal and spatial variations of retrieved
LAI;

2. Vegetation background is not explicitly considered. Many algorithms assume
soil as the background, but the background could consist of understory, litter,
and moss in forests and sometimes snow. Since the optical properties of these
background types differ greatly from soil, the retrievedLAI based on the contrast
between vegetation and soil would be in large error (Pisek et al., 2010).

3. Random leaf spatial distributions within plant canopies are often assumed,
although leaves in forests, shrubs and row crops are clumped, causing consid-
erable underestimation of retrieved LAI (Garrigues et al., 2008).

While the first issue has not been addressed in any regional and global LAI algo-
rithms and deserves our further attention, the second and the third issue have been
considered in some LAI algorithms. For example, multiple angle data have been
used to retrieve forest background regionally (Pisek et al., 2010) and globally (Jiao
et al., 2014) and used for LAI retrieval. Clumping index has also been derived using
multi-angle remote sensing data at the global scale (Chen et al., 2005; He et al., 2012;
Jiao et al., 2016; Wei et al., 2019), and CI has been used to convert effective LAI
obtained from mono-angle remote sensing data to the true LAI (Deng et al., 2006;
Xiao et al., 2016). The MODIS LAI algorithm also considered the clumping index
simulated using a radiative transfer model (Knyazikhin et al., 1998). Therefore, the
major outstanding issue in LAI retrieval is how to overcome the influence of leaf
biochemical parameters on spectral signals used for deriving LAI.

23.2.2 Major Issues in LCC Retrieval

During the growing season, spectral reflectance observed fromhealthy plant canopies
is dominated by LAI while LCC modifies the reflectance in some spectral ranges. In
order to retrieve LCC, the dominant influence of LAI needs to be fully considered.
The major issues in LCC retrieval are:

1. LAI used in LCC algorithms is not accurate. Since LAI retrieval algorithms
have not considered the influence of LCC, it is in considerable error especially
when LCC is low at the beginning and end of the growing season;
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2. The influence of other pigments in leaves on canopy spectral reflectance
is difficult to consider in LCC algorithms with often insufficient spectral
information;

3. Vegetation background (soil, litter, moss, grass, etc.) also interferes with the
retrieval of LCC because the chlorophyll absorption over the visible spec-
trum could be mixed with spectral absorption by the background. The effect
of background is particularly pronounced for sparse vegetation (e.g., low LAI).

Although the first issue has yet to be addressed in future LCC algorithm develop-
ment for global applications, LAI has been the key parameter considered in existing
LCC algorithms. Xu et al. (2019) developed an LCC inversion method based on a
two-dimensional matrix constructed with two VIs, one sensitive to LAI and the other
sensitive to LCC. In this way, LCC is estimated separately within different ranges of
LAI, and hence the influence of LAI on LCC derivation is minimized. This algorithm
is developed andvalidated for a cropland inChina.Croft et al. (2020) developed a two-
step model algorithm for global LCC retrieval. In the first step, a geometrical optical
model 5-Scale (Chen & Leblanc, 2001) for forests and shrubs and the SAIL model
(Verhoef, 1984) for crops and grasses are used to invert canopy-level reflectance to
sunlit leaf reflectance based on the inputs of LAI and sun-target-sensor observation
geometry. In the second step, a leaf radiative transfer model (PROSPECT) (Féret
et al., 2017) is used to derive LCC from sunlit leaf reflectance. LAI therefore plays a
critical role in this algorithm. Li et al. (2020) formulated an LAI-Insensitive Chloro-
phyll Index (LICI) for retrieving LCC for crops. It is demonstrated that LICI can
greatly suppress the influence of LAI ranging from 1 to 6 on LCC retrieval. Such a
method is simple, but its generality for other crops and other vegetation types is yet
to be demonstrated. There are also empirical studies that relate VIs to either LCC
(Croft et al., 2014; le Maire et al., 2008; Wu et al., 2008; ) or canopy chlorophyll
content (Gitelson et al., 2005; Inoue et al., 2016; Li et al., 2017). The empirical rela-
tionships developed without explicit consideration of the influence of LAI in these
studies may be site and plant type specific and may not be reliable for regional and
global applications.

There have been some studies on the second issue. Brown pigments in leaves have
spectral absorption partly overlapping with that of LCC and were found to interfere
with LCC retrieval (Houborg et al., 2009). The new versions of the PROSPECT
model (Féret et al., 2017) are capable of simulating the effect of brown pigments on
leaf spectral reflectance and would be a useful tool for developing LCC algorithms
with consideration of the influence of brown and other pigments (Jiang et al., 2018).

The third issue is not yet systematically addressed in existing studies, although
the global forest background dataset retrieved from Multi-angle Imaging Spec-
troRadiometer (MISR) (Jiao et al., 2014) would be useful for addressing this
issue.
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23.2.3 Synergetic Retrievals of LAI and LCC

From the discussion above, it becomes apparent that the current LAI and LCC algo-
rithms developed separately cannot avoid the issue of the mutual influence of LAI
and LCC on the canopy spectral reflectance used for their retrievals. This issue can
cause large errors in retrieved LAI and LCC, in particular when LAI is low or when
the seasonal variation of LCC is large. To avoid this issue, we therefore propose to
retrieve LAI and LCC synergistically and simultaneously, as an important next step
in vegetation remote sensing aiming at improving terrestrial carbon and water cycle
estimation.

There are several ways to achieve synergetic retrievals of LAI and LCC. Some of
them are:

1. To develop algorithms in the form of lookup tables that simultaneously consider
the influences of LAI and LCC on canopy reflectance in various spectral bands
(Houborg et al., 2015). Typically blue, red and NIR bands are influenced by
both LAI and LCC, while red edge bands are more influenced by LCC than LAI
(Gitelson et al., 2005; Jacquemoud, 1993). Green bands are influenced more by
other pigments than by LCC and LAI, and SWIR bands are mostly sensitive
to LAI and LWC (Cheng et al., 2014; Hunt et al., 2011). Because responses to
LAI and LCC have large and subtle differences across the shortwave spectral
range, it is possible to separate these two parameters with a set of spectral bands.
Ideally, we need all blue, green, red, red edge, NIR and SWIR bands to retrieve
both parameters simultaneously. However, the interactions among the signals
from these spectral bands are complex, sowe need an advanced canopy radiative
transfer model to simulate the influence of LAI and LCC on the reflectance in
these spectral bands. Amodel for this purpose would need to have the capability
of considering the complex canopy structure andmultiple scattering of radiation
in plant canopies. DART (Gastellu-Etchegorry et al., 2004), 5-Scale (Chen &
Leblanc, 1997, 2001) and GOST (Fan et al., 2014) are some of the models
suitable for this purpose. These models can be used to construct large look-up
tables with the mechanism to iteratively calculate LAI and LCC or to construct
their cost functions in different bands because both have a strong influence on
red and NIR reflectances in particular.

2. To developmachine learningmethods to handle the complex interactions among
different spectral bands over wide ranges of LAI and LCC. Advanced radiative
transfer models are also needed to produce outputs as the basis for machine
learning (Ali et al., 2021). Such machine learning for rather complex radiative
transfer processes involving multiple canopy structural and leaf biochemical
attributes would be a daunting task but would be possible if it is guided by
physical principles in steps and the outcomes in each step have clear physical
meanings.

3. To develop semi-empirical algorithms to estimate LAI and LCC either sepa-
rately or simultaneously. The two-dimensionalmatrix approach (Xu et al., 2019)
developed to retrieve LCC for crops has the potential for retrieving both LCC
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and LAI simultaneously and could be expanded to consider other vegetation
types. As concurrent empirical data for LAI and LCC are rather limited, the
relationships of LAI and LCC with different VIs can be established with the aid
of advanced canopy radiative transfer models. It is also possible to find some
mathematical combinations of several spectral bands that are insensitive to LAI
in LCC retrieval, such as LICI (Li et al., 2020), or insensitive to LCC in LAI
retrieval (yet to be developed).

In all three types of methods mentioned above, the use of an advanced radia-
tive transfer model is essential. However, models, although complex and sophis-
ticated, are only abstract representations of reality and often produce results with
unknown errors. It is therefore rather important to compile concurrent LAI and LCC
field measurements for model validation purposes. Through the effort of the remote
sensing community, a fairly large global LAI dataset is now available (Camacho et al.,
2013), but the concurrent LAI and LCC dataset is rather small (Croft et al., 2020).We
therefore need to make a concerted global effort in collecting and compiling concur-
rent LAI and LCC data, since we have demonstrated the feasibility in retrieving
LCC globally using remote sensing data and its usefulness in carbon and water cycle
studies.

23.3 Tradeoff of Canopy Structural and Leaf Biochemical
Parameters in Terrestrial Ecosystem Models

The contributions of canopy structural and leaf biophysical parameters to canopy-
level photosynthesis, quantified with gross primary productivity (GPP), can be simu-
lated using a process-based ecosystem model. Figure 23.2 shows the simulated GPP
and ET results at different LAI and LCC values using the Boreal Ecosystem Produc-
tivity Simulator (BEPS) (Chen et al., 1999, 2012; Ju et al., 2006). GPP increases
with LAI due to increased PAR absorption by the canopy, while GPP also increases
with LCC because LCC is positively related to the maximum leaf carboxylation rate.
We understand that the errors in LAI retrieval would be positive without considering
LCC if LCC is larger than the average, so the ultimate question is: would the posi-
tively biased LAI compensate for the ignorance of higher LCC in GPP estimation?
Conversely, LCC retrievals would be overestimated if LAI used in the retrieval algo-
rithm is underestimated, so the ultimate question would also be: would the increased
LCC compensate for underestimated LAI in GPP estimation? It is necessary to ask
these questions because if LAI and LCC mutually compensate each other in GPP
estimation, we can treat the traditional LAI retrieval as a surrogate of LAI and
LCC without the need to separate them (this is implicitly our current practice). In
other words, are we troubling ourselves in separating LAI and LCC for something
insignificant?

It has been demonstrated that in GPP estimation for plant canopies, sunlit and
shaded leaves need to be separated using two-leaf models (Guan et al., 2021; Luo
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Fig. 23.2 Gross primary productivity (GPP) and evapotranspiration (ET) of a conifer forest
modelled by BEPS at different LAI and LCC values, with CI = 0.66, Ta = 20 °C, shortwave
radiation of 1000 W m−2 at a solar zenith angle of 30º, soil moisture at 60% of field capacity
and Vcmax = 1.3 + 3.72LCC (in µmol m−2 s−1) (Luo et al., 2019). a GPP variation with LAI
at different LCC values. The arrows indicate the relative impacts of LAI and LCC on GPP at low
(1–2) and high (5–6) LAI values; b ET variation with LAI at different LCC values

et al., 2018; Sprintsin et al., 2012), because these two leaf groups are controlled
by different biological processes (i.e., limitations by carboxylation rate and electron
transport rate for sunlit and shaded leaves, respectively) and have different light use
efficiencies. The structural parameters LAI and CI as well as solar zenith angle are
needed to separate sunlit and shaded LAI, while LCC can be used to determine the
maximum carboxylation rate (Vcmax) in process-based models (e.g. Farquhar et al.,
1980). As sunlit leaves have much larger photosynthesis rates than shaded leaves, the
sunlit LAI has larger contributions than shaded LAI to the total canopy GPP, globally
about 60% (Chen et al., 2012). However, as LAI increases, sunlit LAI reaches an
asymptote not exceeding 2, so at high LAI, Vcmax, that can be determined by LCC
(Croft et al., 2017; Lu et al., 2020), plays a critical role in determining the level of
canopy GPP. Therefore, the increase in LAI would not compensate for the decrease
in LCC in GPP estimation, especially at high LAI values (see the arrows at LAI =
5–6, Fig. 23.2a). Conversely, at low LAI values, most leaves are sunlit, so the amount
of sunlit LAI is critical in determining the canopy-level GPP, and the increase in LCC
would compensate slightly for the decrease in LAI in GPP estimation (see also the
arrows at LAI= 1–2), as the radiation absorption has the first order importance while
the carboxylation rate that determines the utilization of absorbed radiation may be
regarded as the second order.

The above simple analysis qualitatively answers the questions related to mutual
compensation of LAI and LCC in GPP estimation, leading to the conclusion that
for accurate GPP estimation it is necessary to use both LAI and LCC inputs in
ecosystemmodels because they have different functions: LAI for radiation absorption
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and distribution in the canopy andLCC for leaf carboxylation rate. The sameprinciple
would apply to ET estimation (Fig. 23.2b) because LAI would similarly determine
the available energy absorbed by the canopy for vaporization and LCC would have
effects on stomatal conductance that is proportional to the photosynthesis rate (Ball
et al., 1987) that depends on LCC (Luo et al., 2019). We therefore suggest that
synergistic retrievals of LAI and LCC be a next step of vegetation remote sensing
for improving terrestrial carbon and water cycle estimation.

23.4 Summary

In this chapter, we show how canopy structural parameter LAI and leaf biochem-
ical parameter LCC influence canopy reflectance and the usefulness to retrieve these
two parameters synergetically using multi-spectral remote sensing data. Synergetic
retrievals of both LAI and LCC can avoid the issues in current LAI and LCC algo-
rithms that do not consider the influence of one parameter on canopy reflectance used
to retrieve the other parameters and can be a next step in vegetation remote sensing
for the purpose of improving regional and global carbon and water cycle estimation.
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Chapter 24
LiDAR Remote Sensing of Forest
Ecosystems: Applications and Prospects

Qinghua Guo, Xinlian Liang, Wenkai Li, Shichao Jin, Hongcan Guan,
Kai Cheng, Yanjun Su, and Shengli Tao

Abstract The three-dimensional (3D) structure of forests has long been recognized
to have profound effects on forest ecosystems. However, the use of spectral and radar
remotely sensed data for forest structure quantification is insensitive to changes in
forest vertical structure. LiDAR has emerged as a robust means to measure forest
structures. Numerous studies have been devoted to accurately quantifying forest
structures from LiDAR data at various scales (from tree branches level to global
level) and revolutionized the way we consider forest structure in ecosystem studies.
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In this chapter, we outline how LiDAR sheds light on forest ecosystem studies and
discuss current challenges and perspectives of LiDAR applications.

Keywords LiDAR · Forest ·Monitoring · Radiative transfer model · Ecological
processes

24.1 Introduction

Forest structure has a major impact on ecosystem processes including forest growth,
energy flux, carbon and nitrogen cycling, vulnerability to droughts and fires, and
biodiversity. Over the last decades, capacities of forest structure mapping are contin-
ually growing to meet the ever-increasing needs of forest management. Previously,
mapping of forest structures relied on multispectral, hyperspectral, and radar remote
sensing. However, these sensors have limited ability to penetrate canopies and often
encounter the well-known saturation problem (i.e., reflectance values are not sensi-
tive to the increase of biomass in dense forests), thus cannot effectively measure
vertical forest structure (Guo, Jin, et al., 2020a; Guo, Su, et al., 2020b).

LiDAR is an active remote sensing technology that emits laser beams for
measuring distances to objects and uses a positioning system to convert distance
measurements into three-dimensional (3D) coordinates (x, y, and z) in space (Guo
et al., 2017). The emitted pulses from LiDAR sensors can penetrate canopies through
gaps in the foliage. Thus, LiDAR enables measurements of both vertical and hori-
zontal forest structures, revolutionizing the way we investigate canopy structure in
forest ecosystem studies (Hu et al., 2016). During the past decades, numerous studies
have demonstrated the advantages of LiDAR for quantifying forest structures (Guo,
Jin, et al., 2020a; Guo, Su, et al., 2020b).

In this chapter, we review the advancement of LiDAR technologies and their appli-
cations in 3D forest observation.We also discuss current challenges and perspectives
of such applications.

24.2 Evolution of 3D Forest Observation

LiDAR sensors can be mounted on various types of platforms, offering 3D forest
observations at a wide range of spatial scales (Fig. 24.1). Static terrestrial laser
scanning (TLS) captures the 3D structure of a forest understory at the millimeter
level. It is suitable for scanning individual trees and small plots (<1 ha in size).
However, the relatively high cost of TLS equipment (e.g., the cost of Rigel VZ-400i
laser scanner\RIEGL Laser Measurement Systems GmbH is more than 100 K USD)
puts this method out of reach for many potential users. Recent lightweight systems,
e.g., Lipod (GreenValleyTechnologyCo., Ltd),makeTLS easier andmore affordable
than ever before.Most recent research successfully scanned 12-ha tropical rainforests
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Fig. 24.1 LiDAR platforms used in forest studies

with a lightweight terrestrial laser scanner (Tao et al., 2021). Mobile systems (e.g.,
backpack LiDAR) are estimated to be at least 10-time faster than static techniques
and are suitable for collecting data in large plots. Recent studies have shown that tree
height and diameter at breast height (DBH) extracted by some commercial mobile
systems (e.g., LiBackpack DGC50 system developed by GreenValley Technology
Co., Ltd.) achieved equivalent accuracy to TLS (Su et al., 2021). Unmanned Aerial
Vehicles (UAVs) outperform terrestrial mobile platforms in efficiency since their
movement is unobstructed by ground obstacles (Liang et al., 2019). The current
estimates (e.g., tree height andDBH) fromhigh-endmobile platforms are comparable
with those from static platforms in homogeneous forests with simple structures but
do not yet meet the requirements of practical applications in heterogeneous forests
(Liang, Hyyppä, et al., 2018a; Liang, Kukko, et al., 2018b).

Airborne laser scanning (ALS) systems, deployed on airplanes or helicopters, are
often used for large-area forest observations. As ALS data are becoming increasingly
available, it is possible to produce accurate wall-to-wall maps of forest structural
and functional variables at regional and country-wide scales. For example, the U.S.
Geological Survey (USGS) 3D Elevation Program (3DEP) was recently established
to provide ALS data for the conterminous United States, Hawaii, and U.S. territories.

Spaceborne LiDAR systems have the longest ranging capability and can map
forest structures globally. A series of space missions have been successfully imple-
mented in recent years. For example, the Advanced Topographic Laser Altimeter
System (ATLAS) on ICESat-2 and the Global Ecosystem Dynamics Investigation
(GEDI) installed on the International Space Station (ISS)were both launched in 2018.
With the continuous growth of spaceborne LiDAR data, it is possible to scale up local
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forest studies to regional and global scales by combining spaceborne, airborne, and
UAV-borne LiDAR (Liu et al., 2022).

Each LiDAR platform has its own advantages and disadvantages. When choosing
LiDAR techniques for forest ecology, one should consider the size of the studied
area, the data quality expected, and the time and labor costs. For example, the low-
cost UAV-borne laser scanning (ULS) is suitable for tree height and crown diameter
measurements in forests with simple stand structures. In dense stands (ca. 2000
stems/ha or higher), TLS and ULS suit better for the estimation of tree DBH, height,
volume, and biomass (Liang et al., 2016).

During the last decade, low-cost LiDAR systems have been the primary drivers of
the boomofLiDARsystems in forestry applications. Challenges associatedwith low-
cost LiDARhave been graduallymitigated. For example, the early handheld Personal
Laser Scanning (PLShh) suffers from an insufficient measurement range (around
20 m) and introduces a bias in tree height estimates. A recent PLShh instrument,
the ZEB-HORIZON (GeoSlam Ltd), integrates an improved ranging sensor with
up to 100-m measurement range and can reliably measure the height of deciduous
trees in a homogeneous forest (Jurjević et al., 2020). In addition to the performance
improvement, the costs of LiDAR instruments have dropped dramatically. Recently,
Da-Jiang Innovations (DJI) has released a LiDAR sensor called LivoxMID40 priced
at only 599USD. LivoxMID40 has been installed on theUAV for forest investigation
(Hu et al., 2021).

Alternatively, point clouds can also be obtained with sensors such as cameras
or smartphone cameras, but their applications in real forests are still rare. Pioneer
studies used consumer cameras.More recently, systems such as Tango byGoogle and
Azure Kinect by Microsoft were used to capture point clouds. They use optical and
depth sensors to reconstruct surrounding environments into point clouds. For DBH
estimation in forests, the accuracy (root mean square error, RMSE) was around 2 cm
using Tango (Hyyppä et al., 2018). Azure Kinect was reported to have an RMSE of
8.43 cm for 51 urban trees (McGlade et al., 2020). ARKit and ARCore augmented
reality (AR) projects were introduced by Apple and Google, respectively. Compared
to Tango, both ARKit and ARCore do not require depth sensors, allowing a greater
number of devices to use such AR solutions, with lower accuracy than Tango. The
challenge with the AR solution is that direct sunlight can cause failures in data acqui-
sitions, especially for infra-red sensors. Dense forests with full crown coverage are
therefore more suited for data acquisition, reducing the likelihood of direct sunlight
exposure of the camera.Another significant limitation is the short functional distance.
The newest version of ARKit supports the LiDAR that is implemented on iPad Pro
2020/iPhone 12 pro (max)/iPhone 13 pro(max). LiDAR provides depth information;
this may solve the problem associated with the short functional distance. The prac-
tical advantage is that the operator can see the resulting point cloud right away in
the field and adjust the data acquisition according to realtime environmental condi-
tions. In the future, these techniques may compete with both TLS andmobile LiDAR
systems in forest inventories.
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Another notable advancement in hardware in the last decade is the rapid develop-
ment of multi- and hyperspectral LiDAR in 3D forest observations. It combines 3D
and spectral information at two or more wavelengths. While the multi- and hyper-
spectral LiDARprototypes are still being developed in laboratories, they are expected
to open up new opportunities for, e.g., the separation of tree species and monitoring
pest and disease. Currently, the utilization of multi- and hyperspectral LiDAR in
forests is still at a very early stage. Two main challenges must be solved before they
can be widely utilized. The first is the selection of optimal wavelengths for practical
applications (e.g., their number and required spectral resolution). The second is the
lack of applicable calibration solutions, especially for incidence angles and range
effects.

24.3 Beyond 3D: New Spectrum of LiDAR Applications
in Forest Ecosystem Studies

24.3.1 Application of LiDAR Structural, Temporal,
and Spectral Information in Forest Ecosystem Studies

LiDAR transforms how we map forest ecosystems, thanks to its ability to provide
accurate structural information of forests and their surrounding terrains. Researchers
relate forest structural information to processes such as the evolutionary strategy of
tree architecture (Su et al., 2020), the relationship between forest growth and stand
structure (Forrester, 2019), and the interconnectivity of tree size and stand dynamics
(West et al., 2009). Such studies typically use LiDAR-based forest traits like canopy
height, canopy cover, vertical foliage profile, and undercanopy topography to achieve
a quantitative depiction of forest 3D structure. It’s particularly worth mentioning that
LiDAR-based forest traits are excellent predictors of forest biomass. With statistical
techniques such as linear regression andmachine learning, LiDAR-based forest traits
have enabled accuratemappingof forest biomass across a rangeof forest types (Coops
et al., 2021).

The complexity of forest structure determines the quality of habitat available
for species to occupy. Structural information from LiDAR has also contributed to
substantial advances in wildlife behaviors, habitat modeling and biodiversity predic-
tion. Most of these studies have been focused on flying animals (e.g., birds and bats)
(Davies & Asner, 2014). Recently, the importance of topographical metrics is grad-
ually being noticed by researchers for nonflying animals. For example, airborne
LiDAR data revealed that fishers in the Southern Sierra Nevada Mountains in
California prefer nesting sites on steeper slopes (Zhao et al., 2012).

A growing number of studies have used temporal andmulti-band LiDAR to under-
stand and monitor forest ecosystems. For instance, multi-temporal LiDAR metrics
have opened up new opportunities for mapping dynamics of forest biomass and
carbon stocks, which deepened the understanding of how forests are responding
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to rapid global changes. In phenology studies, repeated TLS data acquisition has
provided an unprecedented opportunity to explore the phenological differences
between understory and canopy trees, among trees with different functions, and
between canopy dominants and emergent trees. Moreover, spectral information
provided by multi-band LiDAR enables much more comprehensive and accurate
descriptions of the physiochemical properties of leaves, organs, and trees, providing
a better quantification of the distribution of matter and energy within trees, and a
better understanding of the interaction between forest structure and function.

24.3.2 Linking the Forest Structure Information
with Radiative Transfer Models and Ecological
Processes

In addition to deriving metrics for forest ecosystem studies, LiDAR data can also
be fed to radiative transfer (RT) models to study the interaction between light and
forest ecosystems. RT models are useful tools for understanding many ecological
processes, such as exchanges of energy, carbon, and water between the biosphere
and atmosphere. Examples of RTmodels for such study purposes include: testing the
possible biophysical mechanisms for the green-up of Amazon forests (Morton et al.,
2014); simulation of the transport of energy, absorption of photosynthetically active
radiation, and gross primary productivity in a plantation forest (van Leeuwen et al.,
2015); understanding the relationship between heterogeneous vegetation structure,
radiation, and snowmelt (Ni-Meister & Gao, 2011); revealing patterns of photosyn-
thetic partitioning in an Arctic shrub (Magney et al., 2016). A key step to parame-
terize RT models is to reconstruct the 3D structures of forest scenes. Three typical
approaches for LiDAR-parameterized RT models are:

1. Approximations of individual trees with simple geometric primitives. By
applying individual tree segmentation in LiDAR data, the boundaries of indi-
vidual trees can be delineated and the structural parameters of individual trees
(e.g., locations, heights, crown radii, leaf area index, and leaf angle distribu-
tion) can be estimated. Tree crowns are abstracted by simple geometric shapes
(e.g., cone, sphere, cylinder, and ellipsoid), which can be defined by the struc-
tural parameters of individual trees derived from LiDAR data. Models such
as FLiES (Forest Light Environmental Simulator), RAPID (Radiosity Appli-
cable to Porous IndiviDual objects), and DART (Discrete Anisotropic Radiative
Transfer) can be parameterized using this approach.

2. Voxel-based approximations of canopies. The whole forest scene is subdivided
into a set of voxels filled with specific elements. The voxel size is usually set
to be large (e.g., 2 m), and vegetation voxels are assumed to be turbid media.
The turbid medium voxels make statistical simplifications of tree architectures,
and they are parameterized by LiDAR-derived attributes such as plant area
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index or plant area density. A typical example of this approach is the voxel grid
parametrization of the DART model in Schneider et al. (Schneider et al., 2014).

3. Reconstructions of realistic trees. It is also possible to reconstruct realistic 3D
trees to approximate the fine-scale tree architectures from LiDAR data and
provide more realistic RT simulations. The reconstructed 3D trees can be repre-
sented by triangular meshes, so we name this approach as triangular-based
parametric reconstruction. Alternatively, tree architectures can be defined by
voxelizing the point cloud data without requiring extra parameters or making
certain assumptions on the tree architectures, but this approach requires a high
density of point cloud data and uses high resolution (e.g., 0.01m) solid voxels to
ensures the accuracy of reconstruction, which is named voxel-based nonpara-
metric reconstruction. The triangular-based parametric reconstruction is suit-
able for RT models like PBRT (physically based ray tracer), LESS (large-scale
emulation system), DART, whereas the voxel-based nonparametric reconstruc-
tion is suitable for the voxel-basedMonteCarlo radiative transfermodel (VBRT)
(Li et al., 2018).

The point density is relatively low in ALS data, and hence the first two approaches
can be used to approximate the forest structures at coarse scales. For high-density
point cloud data such as TLS, the last approach can be used for fine-scale approx-
imations. With a defined 3D forest scene, numerical methods such as Monte Carlo
ray tracing can be used to solve the RT equation.

24.4 Prospects for LiDAR Remote Sensing of Forest
Ecosystems

With various types of LiDAR systems being used for forest observations in temporal,
spatial, and spectral dimensions, LiDAR remote sensing of forest ecosystems enters
the era of big data (Guo, Jin, et al., 2020a; Guo, Su, et al., 2020b), and is facing
unprecedented challenges and opportunities.

Establishing and sharing LiDAR datasets is a prerequisite for translating LiDAR
data into ecological knowledge. There have been several LiDAR datasets for devel-
oping and validating data-processing algorithms (Dong et al., 2020; Liang, Hyyppä,
et al., 2018a; Liang, Kukko, et al., 2018b), but LiDAR datasets complemented by
ecological observations (e.g., phenology and carbon flux) are rare. It remains chal-
lenging yet important to construct such LiDAR datasets following the principles of
findable, accessible, interoperable, and reusable.

TheLiDARrevolution is a part of the big data revolution.Deep learninghas perme-
ated into big data mining and contributed to LiDAR data processing and ecological
cognition due to its ability to extract spatial–temporal features from massive data
(Guo, Jin, et al., 2020a; Guo, Su, et al., 2020b). Deep learning has been used for
processing LiDAR data in various aspects, such as registration, upsampling, comple-
tion, detection, classification and segmentation. These algorithms have contributed
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to the processing of LiDAR data in forested environments, including but not limited
to, ground point filtering, tree species classification, individual tree segmentation,
and wood and leaf separation (Jin et al., 2020). Thus, the combination of LiDAR
data, environmental data, and deep learning has been advancing forest studies tremen-
dously. For instance, a simple neural network has recently been used to map country-
scale canopy height from spaceborne and UAV LiDAR data, aided by other ancillary
datasets (Liu et al., 2022). Future research could endeavor to better fuse LiDAR
data and other kinds of big data such as satellite radar data. Efforts should also be
given to clarify why deep learning can achieve satisfying results, and to develop
hybrid models by coupling data- and physical-process-driven models, for the ulti-
mate purpose of improving ecosystem applications dominated by long-range spatial
connections across multiple timescales.

Ecologicalmodelling could also benefit from the rapid evolution of LiDAR remote
sensing. As stated earlier, LiDAR provides accurate forest structural and topograph-
ical information, which can be fed into solar radiation models, vegetation dynamic
models, biodiversity models, and ecological niche models, and are expected to
increase the accuracies of these models. Moreover, LiDAR sheds new lights on clas-
sical ecological questions that could not be answered easily by traditional approaches.
For example, TLS unlocks the possibility of characterizing 3D tree branch architec-
ture, providing an excellent opportunity to quantify the branching system of trees
accurately and efficiently without harvesting trees. LiDAR-derived vegetation and
topographic structures have also led to a deeper understanding of animal behaviors
such as nesting, hunting, and thermoregulation (Melin et al., 2014).

Despite its capability of providing accurate structural information, most LiDAR
systems cannot obtain the spectral information of an object. As new, often more
complex, questions emerge in forest ecology, future research should be encouraged
to fuse LiDAR data with multispectral and hyperspectral data. This allows for the
quantification of physiological properties of plants but in a 3D dimension, with the
possibility of revolutionizing our understanding of plant structures and functions.

Another important direction for future research would be to merge LiDAR data
acquired from different platforms, as LiDAR platforms differ hugely in point density,
laser range, and data accuracy (Guan et al., 2019). For example, ULS measures
top-canopy parameters (such as tree height and crown diameter) more accurately
than terrestrial platforms. Terrestrial platforms, on the other hand, digitize targets
under a forest canopy, providing e.g., stem and branch parameters (such as DBH and
stem curve). Multi-platform collaborative observation for a forest ecosystem is the
only way to obtain a comprehensive and accurate quantification of forest structural
features.

24.5 Conclusions

LiDAR provides a powerful tool for forest structure quantification. Various types of
LiDAR platforms have been applied to extract accurate forest structural traits across
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scales (from tree branch scales to global scales). These structural traits provide new
sources for understanding andmodelling forest ecosystemprocesses.Up to now,most
studies focus on static structural information from LiDAR data, yet the full potential
of LiDAR for forest ecosystem studies has not been realized. As LiDAR applications
are moving into the era of big data, it opens new opportunities for linking both the
structural, temporal, and spectral information to elucidate ecological processes at
larger spatial and temporal scales. Moreover, with current LiDAR hardware equip-
ment and processing algorithms are still undergoing a period of rapid development,
we expect that LiDAR remote sensing will continue to be an exciting field in forest
ecosystem studies for the near future.
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Chapter 25
Dense Satellite Image Time Series
Analysis: Opportunities, Challenges,
and Future Directions

Desheng Liu and Xiaolin Zhu

Abstract Earth observation satellites provide important data for monitoring land
surface dynamics. In recent years, with the development of new satellite constella-
tions, supercomputing, artificial intelligence, and cloud computing, remote sensing
studies of land surface changes have been gradually shifted from sparse time series
analysis to dense time series anslysis. Dense satellite image time series dramati-
cally improve our capability for capturing frequent changes in the land surface. It
has changed the research questions, data processing techniques, and applications
compared with the traditional sparse time series analysis. This chapter discussed
the opportunities, challenges, and future directions of dense satellite time series
data analysis. It can help researchers from the remote sensing community or other
disciplines apply dense satellite time series analysis to solve real-world problems.

Keywords Dense satellite image time series · Remote sensing · Time series
analysis

25.1 Introduction

Since the 1970s, earth observation satellites have opened a new dimension in our
ability to observe and study the Earth system (Hansen&Loveland, 2012). The advan-
tages of satellite images include the large spatial coverage and repeated observations,
which are better than in-situ data to study changes of our Earth environment with
high efficiency and low cost over large areas (Zhu, 2017). Due to their capabilities
to monitor land cover and land use change, satellite image time series (SITS) have
been widely used to detect land surface changes and model the human–environment
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interactions under the pressure of accelerated urbanization and global climate change
(Liu & Cai, 2012; Zhu & Liu, 2019).

In the early stage of remote sensing development, studies mainly use two or
more satellite images over multiple years with a relatively long time interval (e.g.,
every five years) to investigate land surface changes (Fig. 25.1). The multi-temporal
images used in these studies can be named as sparse SITS. The main reason for using
sparse SITS was the high cost of satellite images and the limited number of available
satellites. In particular, Landsat satellite series provide the only available SITS over
the past several decades atmedium spatial resolutions to capture detailed land surface
changes induced by human activities. However, Landsat images were not free to the
public before 2008, so studies using Landsat images over large areas had a high cost.
Traditional studies compared the classification results of individual images in the
sparse SITS (i.e., post-classification methods) or directly calculated the difference
of spectral signals between two images in the sparse SITS (i.e., change-vector based
methods) to quantify the land cover and land use changes (Liu & Cai, 2012).

Although sparse SITS analyses provided us with new insights on the land surface
changes at different scales and in various ecosystems, they have several drawbacks.
First, the impact of seasonality brings uncertainties to change detection. The season-
ality of land surface, such as vegetation phenology, crop phenology, and wetland
dynamics, is affected by both human activities and climate. Sparse SITS cannot
well differentiate between the land surface changes caused by human activities and
seasonality, which leads to large uncertainties in the change detection results. Second,
the snapshot mode (e.g., one image per year) of using sparse SITS cannot well differ-
entiate land surface objects sharing high similarity in spectral signals in the period
of which the image is acquired (Zhu & Liu, 2014). For example, many studies select
summer images to compose the sparse SITS as the summer images can best show
the distinct differences between vegetation and non-vegetation objects, but different

Fig. 25.1 Diagram of sparse time series (a) and dense time series (b) based studies
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vegetation types (e.g., forests, shrub, grass, and crops) cannot be well classified only
using images in summer due to their similar spectral responses.

In recent years, remote sensing studies have gradually shifted from sparse SITS
analysis to dense SITS analysis. Dense SITS is defined as the images in the time
series that contain high-frequency information, such as the seasonality and monthly
dynamics (Fig. 25.1). Since 2008, dense SITS data from Landsat and other medium-
resolution satellites, such as Sentinel, have been made available at no charge to end
users. It has greatly promoted the studies of land surface dynamics using dense
SITS because these data have a spatial resolution appropriate for heterogonous land
surfaces, such as urban areas (Schneider, 2012). Meanwhile, a free cloud computing
platform, Google Earth Engine (GEE), currently facilitates the use of dense SITS for
large area monitoring of land and water dynamics, because it has a super ability to
process massive satellite images (Gorelick et al., 2017). Studies based on dense SITS
can overcome the drawbacks of sparse SITS mentioned above. However, analyzing
dense SITS faces new challenges, which require new data analytics methods, such
as new techniques in image processing, time series analysis, and data integration, as
summarized in Fig. 25.2. This chapter aims to discuss the opportunities, challenges,
and future directions of dense SITS studies.

Fig. 25.2 Challenges, key technologies, and applications of dense time series based remote sensing
studies
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25.2 Opportunities for Developing Dense Time-Series
Remote Sensing

25.2.1 New Data Sources

In recent years, to increase the frequency of satellite observations, many Earth obser-
vation missions adopted a constellation strategy, i.e., two or more satellites working
together as a system to collect images with similar configurations. In particular,
Sentinel-2 has two identical satellites (Sentinel-2A and -2B) flying on a single orbit
plane but phased at 180°, which can improve the revisit cycle of a single satellite from
10 to 5 days. Besides, more microsatellites forming a constellation make SITS even
denser. For example, Planet operates with two constellations. The PlanetScope (PS)
consists of more than 180 CubeSats, and SkySat (SS) has 21 CubeSats. They provide
daily and sub-daily coverage of the entire land surface of the Earth, respectively. As
more Earth observation satellites expect to be launched owing to the development of
new sensors and low-cost satellite platforms, more satellite data with high temporal
frequencies will become available in the near future, providing great opportunities
for dense SITS analysis.

25.2.2 Stronger Capability of Data Processing

Recently, with the rapid development of supercomputers and artificial intelligence
(AI), the processing of dense SITS is facing an unprecedented revolution. Super-
computing cluster is the hardware foundation and computing support of dense
SITS processing. Based on the existing CPU-GPU heterogeneous supercomputing
architecture, big data algorithms such as statistical algorithms, machine learning
algorithms, deep learning algorithms, and reinforcement learning algorithms can
be further optimized by strengthening parallel computing, signal communica-
tion, memory or video memory, instruction set, and even field-programmable gate
array (FPGA) hardware accelerating. It dramatically improves the efficiency and
performance of SITS processing. The cloud-computing environment with big data
management and analytics capabilities, e.g., GEE, has already opened opportuni-
ties for continuous and dynamic monitoring of our changing environment (Kennedy
et al., 2018). Additionally, state-of-the-art geoscience algorithms are integrated and
constantly upgraded in GEE-like cloud platforms, facilitating the long-term and
large-scale research under a uniform framework (Gomes et al., 2020).
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25.2.3 New Applications

Currently, dense SITS has been highly desired by applications that require timely
spatial–temporal information, including emergency response, ecosystemmonitoring,
smart agriculture, and smart cities. First, with global climate changes and increases
of extreme weather events, natural disasters such as floods and wildfires could occur
more often; dense SITS can provide timely assessment of disasters to support prompt
rescue missions (Xu et al., 2021). Second, ecosystems are threatened by climate
change and human activities. Dense SITS can study vegetation-climate interactions
(Zhu, 2017), including phenology (Tian et al., 2021) and carbon monitoring (Zhu &
Liu, 2015). Third, modern agriculture needs timely information on crop growth and
stress from water and nutrients. Dense SITS can provide such information up to
daily frequency (Deng et al., 2018). Last, smart city is a new concept in current
city planning and management, which requires spatial data with very high frequency
to solve problems related to energy, water, food, waste, urban heat island, and air
pollution (Zhu et al., 2019). These new applications will greatly promote the wide
applications of dense SITS.

25.3 Challenges of Dense SITS Analysis

25.3.1 Data Quality Control

Data quality has a direct effect on the reliability of dense SITS analysis. Convention-
ally, masking clouds is a common method to control the quality of satellite data. In
general, cloud masks can be generated for single images. For example, the Fmask
algorithm has been used to generate the quality assessment (QA) band of the Landsat
dataset (Zhu & Woodcock, 2012). However, significant errors of the Fmask algo-
rithm have been widely reported (Bolton et al., 2020). As a result, time-series-based
methods were developed to improve the accuracy of cloudmasks, e.g., the Automatic
Time-Series Analysis (ATSA) method (Zhu & Helmer, 2018), which adds temporal
information into the screening of clouds. Moreover, inconsistency among different
satellites, in terms of sensor configuration, viewing and illumination angles, and
atmosphere, is a tough factor for data quality control when combining multi-source
data to compose dense SITS. Several studies have tried to solve this problem. For
example, the Harmonized Landsat Sentinel-2 (HLS) datasets normalized Sentinel-2
to match Landsat data using a linear correction (Claverie et al., 2017).



238 D. Liu and X. Zhu

25.3.2 Data Analysis Techniques

Compared with sparse SITS, dense SITS brings more temporal information, but it
also bringsmore challenges for data analysis andmakes traditional techniques unsuit-
able. Dense SITS has a much higher dimension than sparse SITS. For example, there
will be 23 Landsat-7 images if a study uses all the available Landsat images in a
year to classify land cover types in a region covered by one Landsat scene. With
six non-thermal bands in each image, there will be 23 × 6 = 138 input features for
the classification, which could lead to the Hughes Problem, i.e., the classification
accuracy decreases with number of features if the training samples are limited for
supervised classifiers (Foody & Arora, 1997). Therefore, how to reduce the dimen-
sion of dense SITS or select the most informative features is a challenging issue to be
addressed. This cannot be simply done by dimension reduction techniques (e.g., prin-
cipal components analysis) or the feature searching algorithms (e.g., recursive feature
elimination) (Zhu & Liu, 2014) since temporal information is complex and may be
removed during the process. Moreover, pixels in dense SITS are spatially correlated
especially for high spatial resolution satellite imagery. How to effectively model
spatial–temporal information in dense time series analysis is another challenging
issue to be addressed.

25.3.3 Cloud Impact

Frequent cloud contamination is an inevitable challenge for optical SITS. A previous
study discovered that nearly one-third of the places in the world have less than six
cloud-free Landsat images each year, which is far less than the regular 16-day satellite
revisit (Ju&Roy, 2008). Therefore, some studies have explored the potential of time-
series image reconstruction using partially cloudy images (Qiu et al., 2021). With
the launch of new satellites (e.g., Landsat-9) and constellations (e.g., PlanetScope),
combining data frommultiple sources may alleviate the influence of cloud coverage.
During the past decade, spaceborne SAR remote sensing,which can penetrate clouds,
has become a significant data source for earth observation. The optical-SAR fusion
may be a possible way formitigating the cloud impact on dense SITS analysis (Zhu&
Helmer, 2018).
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25.4 Future Directions

25.4.1 Data Fusion to Reconstruct High-Quality Time Series

It is foreseen that a single satellite sensor cannot provide data with both high spatial
and high temporal resolutions in the near future. For optical satellites, the data avail-
ability is further limited by clouds. Therefore, integrating data frommultiple satellite
sensors will be a feasible and cost-effective way to produce high-quality dense SITS.
Three types of data fusion techniques can be developed for different situations. The
first type is spatio-temporal-spectral fusion techniques which can integrate optical
images from satellite sensors with different spatial, temporal, and spectral resolu-
tions, such as Landsat, Sentinel-2, and MODIS. Although a substantial number of
spatiotemporal fusion algorithms have been developed, most of them cannot fuse
data of different spectral bands and their accuracies may not be good enough to
support real-world applications (Zhu et al., 2018). The second type is cross-sensor
fusion methods that can normalize the difference of data collected by the sensors
onboard satellite constellations, such as PlanetScope constellation of more than 180
sensors. The cross-sensor fusion needs to normalize the differences of data caused
by illumination and viewing geometries, radiometric range, atmospheric effect, and
pointing accuracies (Wang et al., 2020). The third type is optical-radar fusion tech-
niques that combine radar and optical images to solve the cloud problem since radar
signals can penetrate clouds. However, these two types of satellites collect ground
information with different principles so the optical-radar fusion algorithms should be
designed to integrate the consistent features extracted from both satellites (Ahmad
et al., 2020).

25.4.2 Modeling Spatial–Temporal Information

Dense SITS can be viewed as a collection of pixels in a spatially correlated time-
series, a time-series of images, or a space–time image cube. New techniques for
analyzing dense SITS need to consider both spatial and temporal dimensions.
Existing methods for dense SITS analysis mainly focus on modeling the temporal
information of individual pixels. For example, some studies have explored the
potential of phenology features extracted from dense SITS for land cover mapping
and showed promising results (e.g., Weisberg et al., 2021). Another strategy is to
segment the dense time series into numerous periods with stable land cover types
and then generate land cover maps by classifying time series images in each stable
period, which can produce accurate land cover trajectories (Cai & Liu, 2015, 2018;
Zhu &Woodcock, 2014). Future research can focus on adding spatial information in
phenologymodeling and segmentation-based approaches, extendingMarkov random
field (MRF) based spatial–temporal classification model (Liu & Cai, 2012) to higher
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temporal frequency, and developing a fully integrated spatial–temporal model for
dense SITS.

25.4.3 Development of Analysis-Ready Data
and User-Friendly Tools

Analysis-ready data and user-friendly tools can facilitate the wide applications of
dense SITS. First, analysis-ready SITS data are more convenient for researchers out
of the remote sensing field. For example, the HLS dataset, a dense SITS product,
harmonized three groups of fine-scale datasets, i.e., Landsat 8 and Sentinel-2A and
Sentinel-2B. The HLS datasets have 30-m spatial resolution and frequent temporal
resolution around 1–4 days, depending on the location (Li & Roy, 2017). Until now,
theHLSproducts can cover the entireNorthAmerica and partial Europe, and they can
be freely downloaded. Therefore, future studies should put more effort in producing
analysis-ready time series data with global coverage. Second, user-friendly anal-
ysis tools can remove the barrier of dense SITS applications since most time-series
analysis tools are relatively more complicated than conventional ones. There are
new demands of technologies to store, process, disseminate, analyze, and visualize
dense SITS (Gomes et al., 2020). Cloud-based platforms such as GEE, can store
analysis-ready time series datasets and provide high-performance and intrinsically
parallel computation services (Gorelick et al., 2017). However, not everyone in the
geospatial community or other disciplines is familiar with programming in cloud
platforms. Many scholars developed open-source packages to perform geospatial
analysis directly within the user interface without writing a single line of code (e.g.,
Aybar et al., 2020; Wu, 2021). With further development and application of backend
analysis tools, it would be time- and cost-saving to monitor and predict land surface
changes using dense SITS.

25.5 Conclusion

This chapter discussed the opportunities, challenges, and future directions of dense
SITS analysis. This is a new paradigm of remote sensing studies, with the help
of increasing free remote sensing data sources and cloud computing platforms. It
has changed the research questions, data processing techniques, and applications
compared with the traditional sparse SITS analysis. Free earth observation satel-
lite data and new microsatellite constellations provide opportunities to capture the
land surface dynamics at high frequency and from multiple dimensions. The devel-
opment of computer hardware and software provides a more powerful capacity to
process dense SITS with big volumes. At the same time, dense SITS brings new
challenges, including data quality control to reduce the noises, maintaining a balance
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between dimension and information abundance, modeling spatial–temporal informa-
tion, and generating reliable SITS in cloudy regions. To advance dense SITS analysis
techniques and make dense SITS more accessible to researchers in broad disci-
plines, future studies should develop new data fusion and spatial–temporal modeling
methods tailored for dense SITS, develop analysis-ready data sets with high quality
and scientific standards, and integrate such analysis-ready data with powerful cloud
computing platforms, which can significantly remove the barrier for users to directly
apply dense SITS to solve real-world problems.

References

Ahmad, S. K., Hossain, F., Eldardiry, H., & Pavelsky, T.M. (2020). A fusion approach for water area
classification using visible, near infrared and synthetic aperture radar for south asian conditions.
IEEE Transactions on Geoscience and Remote Sensing, 58, 2471–2480.

Aybar, C., Wu, Q., Bautista, L., Yali, R., & Barja, A. (2020). rgee: An R package for interacting
with Google Earth Engine. Journal of Open Source Software, 5, 2272.

Bolton, D. K., Gray, J. M., Melaas, E. K., Moon, M., Eklundh, L., & Friedl, M. A. (2020).
Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery.
Remote Sensing of Environment, 240, 111685.

Cai, S., & Liu, D. (2018). Mapping Land cover trajectories using monthly MODIS time series from
2001 to 2010. In Q. Weng (Ed.), Remote Sensing time series image processing (pp. 137–155).
CRC Press.

Cai, S., & Liu, D. (2015). Detecting change dates from dense satellite time series using a sub-annual
change detection algorithm. Remote Sensing, 7(7), 8705–8727.

Claverie, M., Masek, J. G., Junchang, J., & Dungan, J. L. (2017). Harmonized Landsat-8 Sentinel-2
(HLS) Product User’s Guide 2, pp. 1–17.

Deng, L., Mao, Z., Li, X., Hu, Z., Duan, F., & Yan, Y. (2018). UAV-based multispectral remote
sensing for precision agriculture: A comparison between different cameras. ISPRS Journal of
Photogrammetry and Remote Sensing, 146, 124–136.

Foody, G. M., & Arora, M. K. (1997). An evaluation of some factors affecting the accuracy of
classification by an artificial neural network. International Journal of Remote Sensing, 18, 799–
810.

Gomes, V. C. F., Queiroz, G. R., & Ferreira, K. R. (2020). An overview of platforms for big earth
observation data management and analysis. Remote Sensing, 12, 1253.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google
Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment,
202, 18–27.

Hansen, M. C., & Loveland, T. R. (2012). A review of large area monitoring of land cover change
using Landsat data. Remote Sensing of Environment, 122, 66–74.

Ju, J., & Roy, D. P. (2008). The availability of cloud-free Landsat ETM+ data over the conterminous
United States and globally. Remote Sensing of Environment, 112, 1196–1211.

Kennedy, R. E., Yang, Z., Gorelick, N., Cohen, W. B., & Healey, S. (2018). Implementation of the
LandTrendr Algorithm on Google Earth Engine. Remote Sensing, 10(5), 691.

Li, J., & Roy, D. P. (2017). A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 data
revisit intervals and implications for terrestrial monitoring. Remote Sensing, 9(9), 902.

Liu, D., & Cai, S. (2012). A Spatial-Temporal modeling approach to reconstructing land-cover
change trajectories from multi-temporal satellite imagery. Annals of the Association of American
Geographers, 102, 1329–1347.



242 D. Liu and X. Zhu

Qiu, Y., Zhou, J., Chen, J., & Chen, X. (2021). Spatiotemporal fusion method to simultaneously
generate full-length normalized difference vegetation index time series ( SSFIT ). International
Journal of Applied Earth Observations and Geoinformation, 100, 102333.

Schneider, A. (2012). Monitoring land cover change in urban and peri-urban areas using dense time
stacks of Landsat satellite data and a data mining approach. Remote Sensing of Environment, 124,
689–704.

Tian, J., Zhu, X., Chen, J.,Wang, C., Shen,M., Yang,W., Tan, X., Xu, S., & Li, Z. (2021). Improving
the accuracy of spring phenology detection by optimally smoothing satellite vegetation index time
series based on local cloud frequency. ISPRS Journal of Photogrammetry and Remote Sensing,
180, 29–44.

Wang, J., Yang, D., Detto, M., Nelson, B. W., Chen, M., Guan, K., Wu, S., Yan, Z., & Wu, J.
(2020).Multi-scale integration of satellite remote sensing improves characterization of dry-season
green-up in an Amazon tropical evergreen forest. Remote Sensing of Environment, 246, 111865.

Weisberg, P. J., Dilts, T. E., Greenberg, J. A., Johnson, K. N., Pai, H., Sladek, C., Kratt, C., Tyler, S.
W., & Ready, A. (2021). Phenology-based classification of invasive annual grasses to the species
level. Remote Sensing of Environment, 263, 112568.

Wu, Q. (2021). Leafmap: A Python package for interactive mapping and geospatial analysis with
minimal coding in a Jupyter environment. Journal of Open Source Software, 6, 3414.

Xu, S., Zhu, X., Helmer, E. H., Tan, X., Tian, J., & Chen, X. (2021). The damage of urban vegetation
from super typhoon is associated with landscape factors: Evidence from Sentinel-2 imagery.
International Journal of Applied Earth Observations and Geoinformation, 104, 102536.

Zhu, X., Cai, F., Tian, J., & Williams, T. (2018). Spatiotemporal fusion of multisource remote
sensing data: Literature survey, taxonomy, principles, applications, and future directions. Remote
Sensing, 10, 527.

Zhu, X., & Helmer, E. H. (2018). An automatic method for screening clouds and cloud shadows
in optical satellite image time series in cloudy regions. Remote Sensing of Environment, 214,
135–153.

Zhu, X., & Liu, D. (2019). Investigating the impact of land parcelization on forest composition and
structure in southeastern Ohio using multi-source remotely sensed data. Remote Sensing, 11(19),
2195.

Zhu,X.,&Liu,D. (2015). Improving forest aboveground biomass estimation using seasonal Landsat
NDVI time-series. ISPRS Journal of Photogrammetry and Remote Sensing, 102, 222–231.

Zhu,X.,&Liu,D. (2014).Accuratemappingof forest types usingdense seasonal landsat time-series.
ISPRS Journal of Photogrammetry and Remote Sensing, 96, 1–11.

Zhu, Z. (2017). Change detection using landsat time series: A review of frequencies, preprocessing,
algorithms, and applications. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 370–
384.

Zhu, Z., & Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat
imagery. Remote Sensing of Environment, 118, 83–94.

Zhu, Z., & Woodcock, C. E. (2014). Continuous change detection and classification of land cover
using all available Landsat data. Remote Sensing of Environment, 144, 152–171.

Zhu, Z., Zhou, Y., Seto, K. C., Stokes, E. C., Deng, C., Pickett, S. T. A., & Taubenböck, H. (2019).
Understanding an urbanizing planet: Strategic directions for remote sensing. Remote Sensing of
Environment, 228, 164–182.



Chapter 26
Digital Earth: From Earth Observations
to Analytical Solutions

Cuizhen Wang

Abstract Remote sensing collects the primary data for Earth observations. Social
sensing especially citizen science offers crowdsourced volunteered geographic infor-
mation (VGI) as patchworks of geospatial data infrastructure. Digital Earth inte-
grates remote sensing and social sensing by employing Big Earth Data approaches.
Via integration, geospatial information can be improved in four domains: spatial
(coverage vs. details), temporal (timeliness), social (contextual), and data (cred-
ibility). While facing significant challenges in harnessing the soaring amount of
spatial and social data, Digital Earth holds great opportunities for geospatial analytics
to assist sustainable decision making.

Keywords Digital Earth · Remote sensing · Social sensing · Geospatial analytics ·
Big Earth data

26.1 Introduction

The first-generation Digital Earth was initially introduced by former U.S. Vice-
President Al Gore to represent the Earth planet in a multi-resolution, three-
dimensional system that allowed users to navigate through space and time (Gore,
1999). With rapid technological advances in Big Data era, it is now much closer
to reality by utilizing vast amount of geographic information in both physical and
social dimensions. Since 1992, more than 20,000 publications relevant to Digital
Earth have been google-scholar indexed, and the numbers are steadily increasing
(van Genderen et al., 2020).

Earth observations have heavily relied on remote sensing to collect imagery in a
synoptic view. In 1858, the first aerial photograph was taken near Paris, France from
a balloon tethered at 80 m high (Paine & Kiser, 2012). The real field of aerial remote
sensing emerged in 1909 after airplane was invented by theWright Brothers in 1903.
Historical Earth observations were primarily based on analytical interpretation of
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film-developed photographs, for example aerial reconnaissance during World War I
and II. The first man-made satellites, Sputnik launched in 1957 by the former Soviet
Union and Corona in 1960 by the U.S., represented Earth sensing transiting from
airborne to spaceborne.

Digital remote sensing started in 1972when thefirst Landsat satellitewas launched
by theU.S.NationalAeronautics and SpaceAdministration (NASA) to collect digital
imagery instead of films for photo prints. Since then, multispectral, multi-sensor and
multi-platform satellite remote sensing has become flourishing, providing countless
digital imagery all over the world. Around 150 Earth observation satellites were
in orbit in 2008 with daily acquisition of 10 terabytes (Tatem et al., 2008). By
the end of 2020, it has increased to 906 Earth observation satellites amongst 3372
actively operating ones (Mohanta, 2021).More satellites are expected to be launched,
providing an incredibly mass amount of spatial data for synoptic observations of our
planet Earth.

Earth remote sensing, however, is restricted by various systematic and environ-
mental constraints such as limited spatial resolutions, long revisit cycles, heavy cloud
cover and atmospheric contamination. It is therefore often less useful in application
cases such as rapid response of disasters like earthquakes and extreme weathers.

Social sensing emerges as a new, open source of spatial information. It falls
in a broad category of sensing and data collection from humans or devices on their
behalf (Dong et al., 2015). This chapter only studies social sensing in a perspective of
spatial data collection from human sensors. In a sense of citizen science (Goodchild,
2007), volunteered geographic information (VGI) collected and distributed by non-
authoritative individuals provides an opportunity to timely tackle the societal prob-
lems. The most common examples are VGI from social media and crowdsourcing,
for example geo-tagged Twitter data (Palen et al., 2010), OpenStreetMap andGoogle
Street View images. Although the reliability and validity of VGI are still heavily crit-
icized (Schnebele & Waters, 2014), social sensing has become increasingly utilized
in a variety of fields where spatial information is needed.

Digital Earth enables the integration of Earth remote sensing and social sensing
for improved analytical solutions. This chapter explores the recent advancement of
each category, elaborates the integrated approaches, and discusses the challenges
and opportunities of Digital Earth for geospatial analytics in support of a sustainable
society.

26.2 Remote Sensing: A Long Path of Earth Observations

Earth remote sensing has long been the primary source of spatial data and informa-
tion. Early efforts in the 1950s–1960s were made primarily via analytical interpre-
tation of film-developed photos. One famous example is the Cuban Missile Crisis
(Len & Gerald, 2015). In 1962, with a set of photos collected by the U-2 spy aircraft,
analysts detected the evidence of the Soviet Union installing medium-range missiles
in Cuba, just 90 miles away fromU.S. shores. After thirteen days (October 16–28) of



26 Digital Earth: From Earth Observations to Analytical Solutions 245

confrontation between the two countries, themissiles were removed. Remote sensing
played a major role in preventing a nuclear war.

Digital remote sensing since the 1970s dramatically expanded the capacities of
Earth observations and applications. The electromagnetic spectrum it can sense spans
from ultraviolet, visible, infrared (including thermal) to microwave regions. Beyond
linear and area array cameras, image sensors could also be optical scanners, laser
altimeters, synthetic aperture radar (SAR), and radiometers, etc. Depending on the
energy source, it could be passive sensing that records the reflected sunlight or Earth
surface emission, or active sensing that emits laser or radar signals and records the
returns. Longer-wavelength sensors allow day-and-night observations such as land
surface temperature or brightness temperature. Active sensors like LiDAR and SAR
are also weather-free to be operated in cloudy environments.

Superior to visual interpretation of film-based photos, digital remote sensing
employs numerical approaches for image analysis and interpretation. Digital imagery
is built on its unit pixels in each band. While a pixel’s size varies from sub-meter to
tens of kilometers for different sensors, its digital number values provide numeric
representation of the unit area on Earth surface, e.g., greenness, wetness, tempera-
ture, and terrain. Various models were developed to automatically identify the land
use/cover types from the image and to determine their changes such as deforestation,
urbanization, and agricultural expansion. Beyond this type of per-pixel analysis,
object-based image analysis (OBIA) became popular in the 2000s to segment the
imagery for improved feature extraction and classification (Blaschke, 2010). A large
number of spectral indices were extracted to quantitatively measure land properties
such as vegetation healthiness, impervious surface percentage, snow cover and soil
wetness. More recently, machine learning and deep learning are increasingly applied
in remote sensing to mine the mass amount of spatial data for improved classification
and object detection. Deep learning, especially, mimics the function of human brain
in neural networks to perform artificial intelligence for advanced image classification
and object detection (Li et al., 2020; Ma et al., 2019).

Earth observations are more than 2-dimensional (2D) image view and mapping.
Photogrammetry, the science and technology of measuring objects on photographic
imagery, were intensively utilized to extract the 2D/3D information of an object such
as distance, direction, area, and height on historical aerial photos. Digital photogram-
metry software packages were later evolved to extract 3D products such as digital
elevation models and ortho-rectified images based on the stereoscopic image pairs.
The 30-m ASTER Global Digital Elevation Model (GDEM) product released in
2009, for example, was developed with the stereo image pairs collected from two
TERRA/VNIR telescopes, one nadir and the other looking backward (Abrams et al.,
2010). Similarly, radar remote sensing collects the paired SAR images in slightly
different view angles to extract the interferogram and calculate elevation based on
their phase differences. In 2000, NASA launched the Shuttle Radar Topographic
Mission (SRTM) to develop its global DEM database (Farr & Kobrick, 2000).
The interferogram of two SAR image scenes acquired at different times could also
extract earth deformation such as subsidence and earthquake inmm-scale accuracies.
Although not an imaging sensor, LiDAR emits discrete laser pulses and records the
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time ranges of the returned laser pulses. Both digital bare Earth model and digital
surface model atop landscape are extracted.

Ready-to-use global products derived from satellite imagery have been popular.
Earlier efforts include the Advanced Very High Resolution Radiometer (AVHRR)
Global Inventory Modeling and Mapping Studies (GIMMS) NDVI3g product that
is globally available at 8-km grid size and 15-day interval in 1981–2015 (Pinzón &
Tucker, 2014). The most highly utilized ones are the NASA Moderate Resolution
Imaging Spectroradiometer (MODIS) products from TERRA launched in 1999 and
AQUA in 2002, which are providing optical imagery and products at 250–1000 m
and global coverage at daily to monthly intervals. Both satellites are still in good
operating conditions. A wealth of MODIS products is freely available, e.g., radiation
budget variables such as land surface temperature; ecosystem variables such as leaf
area index and net primary production; and land cover characteristics such as fire
and snow.

Lastly, fine-scale Earth observations are under rapid development. In 1994, the
Clinton Administration of the U.S. government announced its policy to allow civil
commercial companies to market high spatial resolution imagery (Sneifer, 1996).
The first commercial satellite, IKONOS, was launched in 1999 by SpaceImaging, an
American company that was later merged to GeoEye and now Maxar Technologies.
The IKONOS collected the multispectral (4 m) and panchromatic (1 m) imagery
per custom orders in 1999–2015. Since then, a number of meter-scale commercial
satellites such as Quickbird and WordView series have been launched, providing a
wealth of high-resolution satellite imagery although the cost is also high. In more
recent years, the concept of SmallSat—a constellation of small satellites—is well
accepted internationally. Even smaller, nanosatellites and CubeSat—a large constel-
lation of boxlike, lightweight satellites as low as 1 kg—are also under rapid growth.
The most successful example is the Planet Lab Inc., which holds the world record of
deploying a fleet of “Dove” CubeSats (10 × 10 × 30 cm in size). The 180+ Doves
by 2021 have the imaging capacity of up to 350 million km2 per day at 3–5 m reso-
lution, covering nearly the entire landmass on Earth at a daily cadence. These new
achievements may potentially meet our need of low-cost Earth imaging in fine-grain
details.

In short, with more than one century’s development, remote sensing for Earth
observations has expanded from airborne to spaceborne, form film-based photog-
raphy to digital imagery, from cameras to wide-spectral sensors, from narrow orbit
swath to global observations, and from coarse-medium to meter-scale observations.
Especially in the past 50 years, the long series of satellite observations enables us
to collect spatially and temporally continuous information as essential geospatial
support.
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26.3 Social Sensing: VGI Collection and Dissemination

With the advancement of crowdsourcing, social sensing becomes increasingly
utilized in tackling environmental problems. The concept of “Citizens as Sensors”,
or citizen science defined in Goodchild (2007), allows the collection and web-
dissemination of VGI in forms of text, pictures, and videos. In this sense, social
sensing is also a means of Earth observations, although the data collected heavily
weighs in a social dimension. Superior to remotely sensed data that has fixed spatial
resolutions and temporal revisit cycles, the real-time VGI provides timely infor-
mation for situation awareness and rapid response during a specific event. Among
some popular VGI examples, OpenStreetMap is an international effort to create open
sourced map data by citizens anywhere of the world, and Google Earth allows the
general public to reach and share their own data on a global web interface. Although
not homogeneously available around the world, these volunteering efforts poten-
tially fill in the gap of digital geographic information where official sources cannot
be available.

Citizen science defines a network of citizens who serve as observers of an event
in a spatial domain. While some large citizen science projects provide a fair degree
of training, such projects are designed to open to any person who can contribute to
the network without much expertise. A recent example is the Ghost of the Coast
project by the Gedan Lab at the George Washington University. It engages citizen
science to help document ghost forests along the U.S. east coast. Any person who
spots the sign of dead or dying trees in coastal forest could post the photos with
attributes including date, forest type and location (conveniently identified fromphone
apps such as Google Maps). The identified locations and their tagged attributes are
visually available on satellite maps.

With more crowdsourcing platforms in social media (e.g., Twitter, Flickr, Baidu)
available, there is an upsurging interest in VGI involvement. Information posted in
social media are geotagged, i.e., the location of the post is asserted. Therefore, the
posts related to a specific event such as a hurricane and the induced flooding (Huang
et al., 2018a), could be effectively manipulated in geospatial analysis. For example,
Huang et al. (2018b) established a multi-level flooding reconstruction model by inte-
grating stream gauge gage data, satellite imagery and points of tweets with verified
flooding.

The geotagged social media posts may contain both texts and visual (photo)
contexts. Early efforts of verifying the VGI were through text-matching and manual
verification of each post. However, social media posts have always been massive
especially during an event. For example, during South Carolina’s 1000-year flood
on 1–18 October 2015, a total of 1.28 million georeferenced tweets were collected
using Twitter Stream API and REST API (Li et al., 2017). It was extremely time
consuming and practically infeasible to manually identify the valid tweets. Taking
advantage of deep learning in pattern recognition, some textual and visual-textual
fused Convolutional Neural Network architectures have been utilized for automated
tagging of the tweeted texts and photos (Huang et al., 2020).
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Social media relies on participant populations and access to internet. Therefore,
VGI distributions are spatially heterogeneous, mostly clustered with human settle-
mentswith access to stablewired orwireless internet connections. VGI in vast natural
environments or countries without low-cost internet access remains limited. It thus
contributes to patchworks of spatial data infrastructure as guided by the National
Spatial Data Infrastructure (NSDI) authorized by President Clinton administration
in 1994 (Goodchild, 2007).

Social sensing and its applications are still debated. First, VGI holds high uncer-
tainties collected by untrained, non-professional volunteers. Second,VGI is abundant
in some areas but less frequent in other areas due to its patchwork nature. The abun-
dance of VGI in an area should not be simply counted as the abundance or severity
of a specific event. There is also debate that VGI may threaten individual privacy and
homeland security when fine-detailed spatial and social information is posted online
without authorization. Nevertheless, VGI has become more commonly utilized to
augment conventional data sources in solving real-world problems.

26.4 Digital Earth: An Integrated Analytical Solution

The emerging Big Earth Data implements geospatial information from both remote
sensing and social sensing. Remote sensing deploys a traditional top-down approach
to collecting and disseminating geographic information. On the contrast, social
sensing follows a reversal, bottom-up approach in a framework of citizens as sensors.

Both sensing approaches have their own advantages and disadvantages.
Figure 26.1 summarizes their primary differences in aspects of spatial coverage
and details, timeliness, imbedded information, and credibility. The integration of
remote sensing and social sensing may achieve the full potential of Digital Earth.
The improvement can be reflected in four domains as described below.

1. Spatial domain: Remote sensing provides global coverage in a continuous field.
Social sensing is local, contributing to patchworks of geospatial infrastructure.
By integrating the pixelized imagery with the mass amount of VGI in a specific
“patch”, we are able to gain more detailed, continuous spatial information in
this area.

2. Temporal domain: Satellite imagery for timely Earth observations is restricted
by its revisit cycle and spatial resolutions. VGI could be real-time. During a
specific event, the integration of two data sources helps to gain better awareness
of its spatiotemporal development of the event.

3. Social domain: Remote sensing imagery records land covers and the implicated
uses onEarth surfaces. It does not contain any contextual information such as the
names of places. We may imbed the imagery with the relevant social, cultural,
and economic information asserted in VGI to assist social analytics.

4. Data domain: Remote sensing data is affirmative, i.e., the imagery fairly repre-
sents the land characteristics. Yet errors in image processing and interpretation
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Fig. 26.1 Comparison of remote sensing and social sensing and their integrative usage in Digital
Earth. The “BED” represents Big Earth Data approaches

may be introduced even by professional analysts. VGI holds high uncertain-
ties through crowdsourcing of the untrained volunteering inputs. Digital Earth
benefits from cross validation of the two information pieces.

Digital Earth does not simply treat remote sensing and social sensing as two
discrete data sources. Big Earth Data (BED) complies with the five V’s of Big
Data: velocity, volume, value, variety, and veracity. Information richness and redun-
dancy are intimately blended. The BED approaches thus face great challenges and
opportunities toward the development of Digital Earth.

1. Harnessing Big Earth Data: All observational data contains noises and biases.
Remote sensing is affirmative, but atmospheric interaction attributes to data loss
or noises to Earth observations. In case of cloud cover, Earth information cannot
be collected with optical remote sensing. Noises in social sensing is intrinsic.
VGI is also heavily biased by the observer’s inclination. The BED approaches
to fusing remote sensing and social sensing require new and creative solutions
in a well-designed architecture and system (van Genderen et al., 2020). Deep
learning and artificial intelligence have been offering great opportunities for
us to harness Big Earth Data. Yet many issues are still upfront to be solved,
for example data standardization and strategies to maintain data quality and
up-do-datedness in the rapidly changing geospatial landscape.

2. Spatial data openness and privacy: The high resolution satellite imagery and
citizen as sensors allow the public to access the extremely detailed information
in an unprecedented breadth and speed. This brings in the confrontation between
data openness and social privacy. Homeland security has always been a concern
with the release of spatial data with fine-grained details. How open should all
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data in Digital Earth systems be? There are no answers yet. It is still challenging
to clarify the transitional shift from data sharing to information and knowledge
dissemination.

Digital Earth is built for adaptive human and societal analytics. It embraces
geospatial data infrastructure, social networks, citizen science and human processes
on Earth (Wang et al., 2015). Geospatial analytics is in an increasing demand for
workforce in service employment sectors. Within the scope of Digital Earth, one
active example is geospatial intelligence (GEOINT) that has been under rapid devel-
opment in both high education and geospatial industry. Guided by a complete set
of essential body of knowledge (BoK), the competency-based GEOINT certificates
and certifications have been widely offered to promote Digital Earth education and
professional training (Wang et al., 2015). Rooted on the fundamental components
of GIScience, image analysis, data management and geo-visualization, the geospa-
tial intelligence BoK has also included cross-field competencies such as qualitative
analytical skills and abilities across the full scope of practice.

Digital Earth and geospatial intelligence are interactively evolving. The high reso-
lution satellite imagery has allowed the emerging business of Earth Intelligence
under the partnership between geospatial industry and government agencies and
sometimes academia. Maxar Technologies in 2019, for example, won a significant
contract to provide US Government users with on-demand access to mission-ready,
high-resolution satellite imagery in multiple classification levels within 2–4 h after
image acquisition. Othermajor geospatial companies such asGoogle and Planet have
also built their own web API for user-friendly image services globally, including
raw image and analytical products at various levels. Regarding the new develop-
ment of citizen as sensors, small Unmanned Aircraft Systems (sUAS) have been
treated as “personal remote sensing” for consumer-oriented 3D landscape moni-
toring (Wang et al., 2021). The rapid development of wireless sensor networks and
Earth observation sensor webs (Chen et al., 2014) are becoming timely and pertinent
data acquisition, processing, and service networks for Digital Earth.

Integrating geospatial information in physical and social dimensions,Digital Earth
allows a deeper understanding of our natural and social environments and the change-
response mechanisms in local to global scales. It enables better schemes of decision
making on sustainable development and conservation of our Earth planet.

26.5 Conclusion

Remote sensing has longhistory ofEarth observations, yet the imagery is restricted by
spatial and temporal resolutions. Social sensing collects crowdsourced information
via citizens as sensors although the applicability of VGI is often criticized. Digital
Earth takes advantage of the merits of both sensing categories and filling their gaps
utilizing Big Earth Data approaches. It expands our abilities from Earth observations
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to geospatial analytical solutions, preparing for a full capability of observing, inter-
preting, measuring, and decision making in tackling societal problems. Information
in Big Earth Data is abundant and redundant in nature. Digital Earth faces the chal-
lenges of an effective Earth architecture to harness the five V’s and a balanced system
to maintain spatial data openness, human privacy, and social security. These could
be better answered with the ever-changing digital technologies and internationally
adopted data policies.
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Chapter 27
Spatial–Temporal Big Data Enables
Social Governance

Jianya Gong and Gang Xu

Abstract The application of GIS technologies has extended from natural sciences to
social sciences. The emerging spatial–temporal big data supported by GIS has broad
applications in social governance. Through a unified time–space reference, multi-
source big data from different departments can be linked and organized, forming a
block data. A cloud platform based on the block data is developed for data processing,
data fusion, data analysis, and data mining. This cloud platform can support the
management of specific public affairs, such as natural resources management, urban
and rural planning, and urban construction. In the future, we need to further explore
and use spatial–temporal big data to constantly improve our spatial governance
capabilities.

Keywords GIS · Social governance · Big data · Time–space reference

27.1 Introduction

Geographic Information Science (GIS) has long been applied beyond geography.GIS
is not only widely applied in the fields of natural sciences such as geo-sciences, but
also extended to social sciences such as history and public management (Liu, 2021).
Following the development of GIS, its application includes at least the following
four aspects: natural resources management, smart city, public services, and social
governance (Fig. 27.1).

GIS has been applied to natural resourcemanagement early (Wright et al., 2009). It
is well known that the earliest GIS systemwas the Canadian Geographic Information
System (CGIS) developed for land-use management and resource monitoring in the
early 1960s. The application ofGIS to natural resourcemanagement is also constantly
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Fig. 27.1 The application of
GIS extending from natural
sciences to social sciences

evolving (Pei et al., 2021). At present, not only the management of land resources,
but also water resources, forest and grass resources and other natural resources are
inseparable from GIS, since natural resource data are all spatial data. The survey
and monitoring of natural resources, ownership confirmation, and land use planning
require the support of GIS technology. This type of application focuses on objects
whose natural attributes change slowly.

Another field is the application of GIS to the construction of smart cities (Lv
et al., 2018). Urbanization is the most important social transformation in the twenty-
first century. By 2050, more than two-thirds of the world’s population will live in
cities (United Nations, 2015). At the turn of the new century, the field of geo-science
proposed tobuild digital cities,which later developed into smart cities (Li et al., 2014).
A city is composed of diverse types of networks, infrastructure and environmental
systems that support the core functions of the city (Gong et al., 2020). The construc-
tion of smart cities requires the realization of comprehensive perception, ubiquitous
interconnection, high-speed computing, and integrated applications (Gong & Wu,
2012). All of these applications are closely linked with cloud computing and other
new-generation information technology (Trencher, 2019). GIS is indispensable in the
construction of smart cities, and the typical representative is the building of “urban
brain” of megacities.

The third aspect is the application of GIS to public services (Shi et al., 2018).
Navigation and location-based services have been developed and improved in the
past two decades; and they have quickly entered our daily lives. It is difficult to
imagine howurban residentswouldfind their destination in the complex road network
without navigation. Location-based services have become inseparable for our daily
lives (Ding et al., 2021). We use location-based services in all aspects of our daily
travel, shopping, and other social activities. The difference from the previous two
aspects is that public service is directly oriented towards people.

Today, application of GIS is extending to social governance (Lin, 2008, 2013).
Social governance refers to the process by which the government, organizations,
and citizens guide and regulate public affairs and social lives, and ultimately realize
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the maximization of public interests. China proposed to improve the modernization
of the social governance system and governance capabilities. The improvement of
spatial governance capabilities is an important step to achieve the above goals, which
cannot be separated fromGIS technologies. Different from public services with GIS,
participants of social governance are broad, and social affairs are complex and diverse
(Lazer et al., 2009, 2020). Therefore, the application ofGIS to social governance faces
unprecedented challenges (Zhou et al., 2020). This chapter attempts to explore the
prospects, challenges and countermeasures of spatial–temporal big data supported
by GIS in social governance.

27.2 Current Situation of Social Governance

The social structure is undergoing profound changes, and the needs of social partic-
ipants have become more diverse. Therefore, social governance has become more
challenging. The current social governance is transforming from digitization to intel-
ligence, from fragmentation to integration, and from government-centered to citizen-
centered. The emergence of spatial–temporal big data provides new ideas for social
governance. Of course, this requires us to expand the functions of GIS to meet the
needs of managing and analyzing spatial–temporal big data.

27.2.1 Why Social Governance Needs GIS?

We are now living in the new era of information. The advancement of information
technology and the development of economy have made our lives more convenient.
Great changes have taken place in our entire society and personal lifestyle, which are
embodied in the following three aspects: (1) People’s activity space expands from
real geographic space to virtual space on the Internet. (2) Our social organization has
changed from enterprises and public institutions to decentralized communities in a
modern city. (3) We have transformed from a person constrained by conventional
institutions to a person who can choose employment flexibly and independently or
start a business on our own. In order to adapt to changes in social and organizational
forms, social governance also needs to keep pace with the times (Mukherjee, 2018).

Our new life is fast-paced, and new technology research and development cycles
are short. In addition, diverse social participants have very different demands and
social governance involves numerous departments, objects, and events (Fig. 27.2).
It is difficult for conventional top-down linear social governance to keep up with
these changes (Mukherjee, 2020). At the same time, fast-paced social operation has
produced massive and diverse spatial–temporal big data, which are often related to
spatial location (Anselin et al., 2021). The effective organization and management
of these massive spatial and temporal big data can resolve social problems and
significantly improve the level of social governance. Therefore, social governance,
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Fig. 27.2 Government affairs and social governance involving multiple departments, objects, and
events

especially urban governance, urgently needs to introduce spatial–temporal big data
supported by GIS technologies (Lin, 2008).

27.2.2 Problems and Challenges in Social Governance

There are many problems in current social governance (Fig. 27.3). First, at the
community-level, staff personnel are overburdened. In order to fine-tune manage-
ment, Chinese cities are divided into fine grids, which are usually finer than the
community, and can be as fine as every building. Each grid has a dedicated person
in charge, called a grid manager. Many specific management tasks of higher-level
departments fall to the gridmanager,whichmakes the community-level staff overbur-
dened. Second, community-level departments produce data but do not have permis-
sion to use the data. Community-level departments are direct participants in social
governance, and they have produced a lot of data in the management process;

Fig. 27.3 Problems and challenges in current social governance
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however, they do not have access to the data. Thus, these data cannot be directly used
to support community-level management. Third, the conventional social governance
process is overly complicated, tedious, and inefficient. The conventional top-down
social governance is difficult to effectively manage the modern society that has a flat
structure.

27.2.3 New Ways and Exploration of GIS for Social
Governance

Conventional GIS has been mainly used to manage fixed objects on the Earth’s
surface, while social governance involves moving objects including people, vehicles,
etc. How to extend the conventional functions of GIS to manage dynamic objects is a
big challenge in social governance. It is necessary to build a new information system
for social governance. The ideas and strategies for the improvement are refining
subjects and objects, and integrating information from different departments, such
as urban planning, urban construction, public security, etc.We need to build a unified
platform with diversified participation in the social governance system to improve
efficiency. This comprehensive system needs GIS technology.

Specific strategies are as follows:

• Refining governance units. We need to carry out refined community management
and services in micro-units such as streets, courtyards, buildings, and grids.

• Multiple co-governance. We can encourage more organizations and individuals
to participate in social governance, so as to achieve shared-governance and co-
management.

• New Information Technologies. We need to introduce emerging information tech-
nologies such as big data and cloud computing to provide innovative ideas and
strong support for social governance.

27.3 Spatial–Temporal Big Data in Social Governance

It is necessary to effectively manage spatial–temporal big data before using it in
social governance, which relies on a unified time–space reference. The time–space
reference is the infrastructure for urban informatization. Specific applications in
social governance rely on cloud platforms, which establish the link between spatial–
temporal big data and public affairs.
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27.3.1 Time–Space Reference: Infrastructure for Urban
Informatization

In order to process multi-source heterogeneous spatial–temporal big data in modern
social governance, it is necessary to construct a unified time–space reference system
to facilitate the organization and management of these big data (Fig. 27.4). A unified
time–space reference system bridges data association and the cornerstone of intelli-
gent social governance. In this system, each geographic entity is assigned a unique
code that is a combination of its street address and geographic coordinates (Fig. 27.4).
This step achieves the unification of the spatial reference. We can further add a time
dimension in this framework so as to manage time-series big data. As a result, we
build a spatial–temporal information database with a unified time–space reference.

Then, through the geographical identification of themanagement objects, the rela-
tionship between the social governance objects and the spatial–temporal information
database is established. The objects of social management and services are mainly
natural persons and legal persons, so population database and enterprise database
are very important. We can associate them with the spatial–temporal information
database through the residential address of the natural person and the registered
address of the company. Next, we can develop specialized information systems
for specific management affairs, such as urban planning systems and real estate
management systems.

Fig. 27.4 Time–space
reference system forming the
infrastructure for urban
informatization
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27.3.2 Cloud Platform for Spatial–Temporal Big Data

Under the unified framework of time–space reference, we can build a spatial–
temporal big data cloud platform by integrating multi-source heterogeneous spatial–
temporal big data (Fig. 27.5). With the help of the spatial–temporal big data cloud
platform, we can achieve the transformation from simple data publishing to compre-
hensive capability services, from data combination to multi-source data fusion, from
static data to dynamic data, and from geographic positioning to geographic associ-
ation. On this basis, we can realize geographic information fusion services, real-
time data services, geographic event services, and space–time multidimensional
analysis. The spatial–temporal big data cloud platform effectively helps us realize
data processing, data fusion, data analysis and data mining. These technologies and
methods can directly serve specific public affairs, such as natural resource manage-
ment, urban and rural planning, urban construction, operation management, and
public services.

27.4 Practice of Social Governance with GIS

This section introduces the practice of social governance with GIS in Shenzhen,
China. We first explain the concept of block data, which consists of geographic
data block, basic data block, and data block for specific affairs. Taking Shenzhen,
China as an example, three typical applications are described to demonstrate how
spatial–temporal big data play a role in specific public affairs.

Fig. 27.5 Cloud platform for spatial–temporal big data supporting data pre-processing, data fusion,
data analysis, and data mining
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27.4.1 Building Data Blocks for Social Governance

Shenzhen, the youngest megacity in China, is at the forefront of social governance
innovation. The government of Shenzhen proposed the concept of multiple gover-
nance based on block data. Block data encapsulates the social management elements
(strip data, such as people, affairs, things, organizations) scattered in various depart-
ments into “blocks”,which corresponds to provinces, cities, districts, streets, commu-
nities, and grids according to the management level. Through the establishment of
block data models and relational graphs, we can perceive the social operation situ-
ation in an all-round way, so as to perform accurate analysis, conduct governance,
provide services, and obtain feedback. This new system then provides scientific and
technological support for improving the level of refinement of social governance.

Block data is composed of three parts: spatial geographic block, basic data block,
and data block for specific affairs. Spatial geographic block mainly refers to spatial
geographic information data, which ismainly divided into 8 levels of block units such
as city block, district block, street block, community block, grid block, buildingblock,
apartment block and room block. The basic data block mainly refers to five major
categories, including people, houses, corporations, events, and communications, and
their respective subcategories. With the unified address code as the link, the five
codes are associated to form a basic block data (Fig. 27.6). Data blocks for specific
affairs are related to various departments, such as public security, fire protection, and
market supervision.

Fig. 27.6 Connecting five codes to form basic block data. a Social governance affairs involve
people, houses, corporations, events, and communications. b Five elements are linked through the
unified address code of houses
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27.4.2 Example Cases of Social Governance

Through the technological innovation of block data, Shenzhen has achieved a number
of social governance innovations. One is the change from grid management to block
management. Grid management is a top-down refinement of administrative manage-
ment, trying to carry out a comprehensive and refined management of the society.
Grid management relies on a large number of people. The block management puts
the elements of social governance into the eight-level blocks, making data manage-
mentmore refined and business governancemore precise. The second is from ex-post
disposal to pre-prediction. Often social governance problem can only be dealt with
after the fact. Block data analysis helps to achieve early warning and prediction, more
proactive discovery of social governance problems, andmore humane push for social
grassroots services. The third improvement is changing from top-down to point-to-
point link. The conventional governance chain is hierarchical and cannot meet the
needs of social governance which is flat in structure. Block data utilizes a point-to-
point and end-to-end approach to realize the direct dissemination of information to
specific responsible entities and optimize the chain of government management.

Example applications include the following 3 cases:

• COVID-19 epidemic prevention and control. Relying on the unified address and
block data intelligent backplane, Shenzhen has enabled residents’ self-declaration
of itinerary information, which are accessible in the spatial database in real time,
opening up the path to COVID-19 contact tracing and community investigation,
improving the efficiency of epidemic prevention and control. During the epidemic,
the self-declared itinerary data from more than 100 million people were matched
to specific spatial locations (Fig. 27.7).

• Integration of commercialmanagement. The registered addresses of enterprises
have changed from filling in by oneself to selecting from the information system,
which solves the problem of providing false registered addresses from the source
(Fig. 27.8). Through the aggregation and linking of multi-department legal person
data through the block data backplane, the “closed loop of law enforcement” in
the entire process of registration and approval, service, supervision, and credit of

Fig. 27.7 Epidemiological investigation and COVID-19 prevention based on block data platform
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Fig. 27.8 Integration of commercial management and services based on block data platform

commercial entities has been realized, providing strong support for optimizing
the business environment (Li et al., 2018).

• Service for special patients. Local government uses block data to accurately
locate keypersonnel such as patientswithmental health, drug addicts, and explores
multiple co-treatment of key personnel. Based on this, a closed management
loop is built for the discovery, visit, control, and treatment of special populations
(Fig. 27.9).

Fig. 27.9 The integrated platform for the management and services for special patients
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27.5 Conclusions

The role of spatial–temporal big data in social governance is becoming increasingly
important. Spatial–temporal big data can transform personal decision-making to
intelligent decision-making based on data. With the support of muti-dimensional
data, the needs of social governance are more precise and the description of social
governance objects are clearer. We can build a new pattern of social governance by
using data to extract information, to make decisions, to manage and to innovate,
which can promote the governance system and governance capabilities.

From a single data source to multiple data datasets, we can realize the continuous
aggregation and fusion of data across industries, departments, and fields. The highly
correlated characteristics within the block data provide conditions for the contin-
uous accumulation of data. Highly related data can be gathered together to reveal
relationship patterns among people, things, in geo-space and through time. In the
future, it is necessary to build a global social governance chain to serve public sector
decision-making from a broader spatial data perspective.
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Chapter 28
Geo-computation for Humanities
and Social Sciences
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Abstract Humanities and social sciences (HSS) are undergoing the transformation
of quantification and spatialization. Geo-computation provides effective computa-
tional methods and tools for processing geographic information. Geo-computation
for humanities and social sciences (GHSS) is a field coupling geo-computation with
humanities and social sciences. This chapter introduces the concept of GHSS, and
introduces the origin and development, the related theories and methods, and some
applications of GHSS. At the end of the chapter, the future development directions
of GHSS are discussed.

Keywords Geo-computation for humanities and social sciences · Computational
social sciences · Geo-computation for social sciences · Spatially integrated
humanities and social sciences

K. Qin (B) · D. Liu · Y. Xu · X. Yu · Y. Zhou
School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079,
Hubei, China
e-mail: qink@whu.edu.cn

D. Liu
e-mail: ldhwhdx@whu.edu.cn

Y. Xu
e-mail: yanqing.xu@whu.edu.cn

X. Yu
e-mail: yxs95@whu.edu.cn

Y. Zhou
e-mail: zhouyang0612@whu.edu.cn

G. Xu
School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
e-mail: xugang@whu.edu.cn

© Higher Education Press 2022
B. Li et al. (eds.), New Thinking in GIScience,
https://doi.org/10.1007/978-981-19-3816-0_28

265

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-3816-0_28&domain=pdf
mailto:qink@whu.edu.cn
mailto:ldhwhdx@whu.edu.cn
mailto:yanqing.xu@whu.edu.cn
mailto:yxs95@whu.edu.cn
mailto:zhouyang0612@whu.edu.cn
mailto:xugang@whu.edu.cn
https://doi.org/10.1007/978-981-19-3816-0_28


266 K. Qin et al.

28.1 Introduction

Geo-computation is originally introduced in the first international conference on
‘Geo-computation’, hosted by the School of Geography at the University of Leeds
in 1996 (Openshaw & Abrahart, 1996). Longley (1998) sees geo-computation as
providing the framework for the execution of geo-computation science—in both
advancing the state-of-the-art in the computation of geography as well as extending
our understanding of geographical phenomena. Geo-computation is not simply about
applying computational methods to explore geographical concepts, it offers an exten-
sive toolkit for the examination and identification of new perspectives on spatial
processes (Chen et al., 2012).

Humanities are the disciplines about the knowledge of human heart and feeling,
including philosophy, history, literature, linguistics, journalism, art, and so on. Social
sciences are the disciplines about the research of various social phenomena, including
economy, politics, sociology, law, management, and so on.

In the big data era, humanities and social sciences are undergoing a transition from
traditional methods to quantification and spatialization. Some research directions,
such as spatially integrated humanities and social sciences (SIHSS) (Lin et al., 2006,
2010), geo-computation for social sciences (GCSS) (Li et al., 2020), are emerging in
recent years. SIHSS refers to introducing spatial thinking, spatial concepts into the
fields of humanities and social sciences (Lin et al., 2006, 2010; Qin, Lin, et al., 2020).
GCSS is a discipline that employs remote sensing earth observations and is driven by
spatiotemporal big data that reflects surface features and human activities. It senses,
analyzes, andmines categories and intensities of human activities and their influences
on natural and social environments in multiple spatial and temporal dimensions (Li
et al., 2020). Both humanities and social sciences need geo-computation to provide
theories, methods, and toolkits for them. Thus, we refer to this research direction as
Geo-computation for Humanities and Social Sciences (GHSS).

The remainder of this chapter is organized as follows. In Sect. 28.2, we discuss
the origin and development of GHSS. In Sect. 28.3, we discuss the related theories
and methods of GHSS. In Sect. 28.4, we introduce some applications of GHSS. In
the conclusion, the future development directions of GHSS are discussed.

28.2 The Origin and Development of GHSS

Geo-computation for humanities and social sciences (GHSS) stemmed from compu-
tational social sciences (CSS), geo-computation for social sciences (GCSS), spatially
integrated humanities and social sciences (SIHSS), and so on. So, we firstly intro-
duce the origin and development of CSS, GCSS, SIHSS, then discuss the origin and
development of GHSS.

In the era of big data, scientific research enters the fourth paradigm: data-intensive
scientific discovery (Hey et al., 2009). With the development and application of the
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internet, especially the internet of things, large quantities of behavior records about
human production and life activities are recorded as data, which provide big data
sources for social scientists to research problems in social sciences fields. Compu-
tational social sciences (CSS) mainly referred to applying computational simulation
technologies into the research of social problems (Bankes, et al., 2002; Kuznar,
2006). The paper Computational Social Science is published in Science in 2009,
which boomed large quantity research about this theme (Lazer et al., 2009).

Computational Social Sciences (CSS) apply computationalmodels and algorithms
into the big data analysis about human behaviors, and build models, simulate, and
analyze different social phenomena. Compared with biology and physics, there are
more obstacles for CSS, for privacy and privilege reasons. CSS in the big data era
has the characteristics of complexity, self-adaptability, social interaction, and time–
space. It is a new research direction to develop spatiotemporal analysis theories
and methods of CSS from spatiotemporal viewpoints (Qin, Wang, et al., 2020).
The research about the human-nature relationship becomes an essential section
of CSS. The spatial information sciences and technologies including geographic
information system (GIS), remote sensing (RS), global navigation satellite system
(GNSS), provide new technologies for the research of the human-nature relationship.
They research the human-nature relationship from different viewpoints and derive
geo-computation for social sciences (GCSS), which is illustrated in Fig. 28.1.

Spatially integrated humanities and social sciences (SIHSS) is a new inter-
discipline which introduces spatial thinking and spatial concepts into humanities
and social sciences. Since the first forum on spatially integrated humanities and
social sciences was held at the Chinese University of Hong Kong in 2009, this new
inter-discipline has developed vigorously and achieved significant progress. Qin,
Lin, et al. (2020) gave a review of SIHSS in the recent ten years. SIHSS is a typical
multi-discipline, which combines “3S (GIS, RS, GNSS)” with humanities and social
sciences.

Geo-computation for humanities and social sciences (GHSS) is a discipline
which provides theories and methods of geo-computation for humanities and social
sciences. The framework of GHSS is illustrated in Fig. 28.2.

Fig. 28.1 Geo-computation for social sciences (GCSS)
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Fig. 28.2 Framework of GHSS

28.3 The Related Theories and Methods of GHSS

GHSS is developed based on the theories and methods of network sciences, social
physics, 3S (GIS, RS, GNSS), spatiotemporal analysis, and so on. These related
theories and methods of GHSS will be introduced in the following.

Network science, especially complex network science, is the basic theoretical
foundation of GHSS. Different from regular network and random network, complex
network includes the characteristics of small world, scale-free, hierarchical archi-
tecture, self-similarity, and self-organization. The interaction phenomena may be
expressed by complex networks. The spatial interaction network is a kind of directed
network which embeds population flow, commodity flow, and information flow into
geographical space. Geographical multiple flow (GMF) is shaped when different
types of geographical flows exist together (Pei et al., 2020). Communication, trade,
population migration, population movement, transportation, international relations,
and social contacts provide an environment for spatial interaction network.

Social physics firstly refers to applying physics concepts into the research of social
science. Pentland (2015) pointed out that social physics aims to describe the flow
of information and thoughts, and the reliable mathematical relationship among the
flows with human behavior. Social physics is a discipline about thought flow. With
the help of thought flow, we can improve collective intelligence, and promote the
development of a smart society.

3S (RS, GIS, GNSS) provides technologies for GHSS. RS provides abundant data
sources for GHSS, GIS provides methods of spatial data management, and spatial
analysis, GNSS provides location and navigation for GHSS.

Spatiotemporal big data analysis provides advanced technologies for GHSS. For
example, spatiotemporal big data analysis methods are utilized to explore hotspots
based on taxi trajectory data (Zhao et al., 2017), detect abnormal trajectories (Wang
et al., 2018) and abnormal behavior patterns, analyze congestion events (Qin, Xu,
et al., 2019), and so on.
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28.4 Applications of GHSS

There are many examples of application of GHSS including history integrated GIS,
literature integrated GIS, linguistic integrated GIS, GIS and philosophy, human
dynamics, human geography, politics GIS, GIS and management sciences, spatial
econometrics, spatial social networks, spatial interaction networks, geography of
crime, and geography of public health, etc. Some applications are introduced in the
following section.

28.4.1 Geo-computation for Politics and International
Relations

The research concerns of political science include public policies, authoritative distri-
bution of benefits or power, and the behaviors of national subjects. Distribution of
power and benefits involves complex political behavior.

Taking elections as an example, some scholars utilized GIS tools to research how
geographic elements affect elections and the spatial distribution of election elements.
For examples, Bowen (2014) studied the cost of different principles in the process
of determining elections in the United State. Based on geo-tagged tweets, Liu et al.
(2021) studied the relationship between voting results and county economic growth,
approval rates and other factors, and established a prediction model.

Scholars have also used GIS tools to study satisfaction for public policies,
the distribution of policy target groups, and so on. For examples, Wang (2020)
explored the methodology of applying public health policies to geographic infor-
mation systems. Pedro et al. (2019) used GIS for sustainability assessment to assist
in the formulation of land-use policies.

In addition, international relations (IR) studies the behavior between countries,
which is also a research priority of GIS in political science. Scholars use the tools
of network science to conduct research on IR. For examples, Zhukov and Stewart
(2013) researched how to determine the proximity of two countries (regions) in
the IR network. Similarly, related scholars also combined geospatial relations with
the social network of national relations to explain the phenomenon of international
conflicts or alliances (Flint et al., 2009).

GDELT dataset is composed of real-time international publication news.
Assuming that countries A and B often participate in cooperation, the relationship
between them is positive, otherwise it would be negative. Therefore, GDELT can be
applied to IR studies. An IR network G = (V, E, W ) can be constructed, where V
represents nodes in the network, andE represents edges in the network (whichmeans
two entities appear together in the events),W represents the weights of the edges (the
number of events that both A and B participate in for a certain period). The structural
mining of the network shows that IR networks have the scale-free characteristic,
that is, a small number of countries have a large number of interactions with other
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countries, and most countries have very little interaction with other countries (Qin,
Luo, et al., 2019).

Geo-computation for politics and international relations is an important applica-
tion of GHSS. Geo-computation may provide spatiotemporal analysis methods for
politics and international relations.

28.4.2 Geo-computation for Human Mobility

The last decade has witnessed a trend in literature of combing GIS and human
mobility to solve more sophisticated problems. Human geography has always been
an important subject in geographic studies. Volunteered geographical information
(Goodchild, 2007) and social sensing (Liu et al., 2015) provided new data sources
and new thoughts for the research of human mobility. As our understanding of
humanmobility advances, models to explain the mechanisms governing human trav-
eling behaviors become increasingly more refined. Tools and methods in GIS like
layer overlapping and spatial buffering are required to support the application and
visualization of human mobility theory (Barbosa et al., 2018; Pindolia et al., 2012).

Related works can be divided into two categories: (i) using geo-tagged data of
human movements to solve GIS problems; (ii) using GIS approaches to explain
the spatial pattern of human mobility. In the first category, varied data such as taxi
trajectory data (Zhao et al., 2016), social media check-in data (Jia et al., 2019),
and mobile phone data (Kang et al., 2013) are used, aiming to find hotspots in
the city, delineate urban regions, or infer land uses from the perspective of real
human interactions. In the second category, tools in GIS can be used in many studies.
For example, when building parameterized gravity-like human mobility models,
distances and travel time need to be estimated first, in this situationGIS resources like
road networks and methods like route planning can help (Pindolia et al., 2012). For
another example, POIs can be overlapped on street blocks as indications of different
regional functions, therefore the travel pattern derived fromGNSS trajectories among
those blocks can be understood (Yuan et al., 2012). Both methods have proven to
benefit from the combination of GIS and human mobility.

Geo-computation for human mobility is an important application of GHSS. Geo-
computation may provide effective spatiotemporal analysis methods for human
mobility.

28.4.3 Geo-computation for Public Health

Public health issues are closely related to location, including the natural environment,
personal behavior, and health outcomes. Geographic information science (GIS) is an
emerging science concerning spatial location. The application of GIS theories and
methods in the field of public health is becoming more and more extensive. In short,
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it mainly includes two aspects. The first is revealing the spatiotemporal pattern of
disease incidence and its spatial correlation with environmental elements; the second
is evaluating the spatial distribution of medical service facilities and resources and
their accessibility, effectiveness, and fairness.

Since the outbreak of the COVID-19 epidemic, the application of GIScience in the
field of public health has been particularly emphasized. GIS has played an irreplace-
able role in the prevention and control of the COVID-19 epidemic. For example, GIS
technology can analyze the temporal and spatial evolution of the epidemic. Previous
studies revealed that the outflow population of Wuhan determined the spatial pattern
of the epidemic in other cities in China (Xu, Wang, et al., 2021). This also shows that
the lockdown of Wuhan has prevented the further spread of the COVID-19 epidemic
in China. GIS technologies can also reveal the influencing factors of the COVID-19
spatiotemporal pattern within the city, generally including urban population density,
the demographic structure, population interaction frequency, and natural factors such
as temperature and air quality (Xu et al., 2022). GIS can also quantify the social and
economic impact of public measures such as epidemic prevention and control. For
example, non-pharmaceutical intervention measures such as lockdowns were gener-
ally adopted to prevent and control the epidemic, which led to a general dimming of
city lights at night, indicating that public measures have significantly affected social
and economic activities (Xu, Xiu, et al., 2021).

Health will be a topic of increasing concern for urban residents, healthy cities are
an important aspect of sustainable urban development. The application of GIS in the
field of public health and health geography is bound to become more robust.

28.5 Summary

GHSS (Geo-computation for humanities and social sciences) couples geo-
computation with HSS (humanities and social sciences), it is a multidisciplinary
intersection research direction. Geo-computation can provide spatiotemporal anal-
ysis and computation methods and toolkits for humanities and social sciences. In the
future, the research directions ofGHSS include the research framework ofGHSS, and
GHSS’s computational models, spatiotemporal analysis methods, geo-visualization
methods, and the development of online platforms.
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Chapter 29
Four Methodological Themes
in Computational Spatial Social Science

Fahui Wang

Abstract This chapter outlines four methodological themes in spatial analytics with
broad applications in social sciences and public policy, all grouped under the umbrella
of “Computational Spatial Social Science”. Spatial accessibilitymeasures the relative
ease by which the locations of activities or services can be reached, and serves as a
major matric for location advantages. Regionalization constructs regions by merging
small areas that are similar in attributes or are tightly connected. The former forms
homogenous regions and the latter defines functional regions. Both can be scale flex-
ible and thus produce a series of area units to support analysis, management, and
planning. Spatial simulation imitates real-world social, economic, and human envi-
ronments, behaviors and interactions in a lab setting, and empowers social scientists
for discovery and cost-effective policy experiments. Finally, the maximal accessi-
bility equality problem (MAEP) is proposed as a new location-allocation paradigm
in spatial optimization to plan public resources and services.

Keywords Computational spatial social science · Spatial accessibility ·
Regionalization · Spatial simulation · Spatial optimization ·Maximal accessibility
equality problem (MAEP)

29.1 Introduction

In the last three decades or so, the advancement of social science can be charac-
terized by three major trends, going scientific, pursuing public policy relevance,
and making a spatial turn. Increasingly social science relies on data analysis that
can be computationally intensive, and this is especially true when data are spatial.
Harnessing discoveries of social science often means actionable public policy. Effec-
tive and efficient policy needs to be place sensitive, for example, many advocate
precision public health. The convergence of these forces gives rise to the growth of
Computational Spatial Social Science. In the U.S., the Center for Spatially Integrated
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Social Science (CSISS) at the University of California Santa Barbara, funded by the
National Science Foundation in 1999, has been an important force in promoting the
usage of Geographic Information System (GIS) technologies, increasingly known as
geographic information science (GIScience), in social science.

This short chapter discusses four exemplary methodological themes in spatial
analytics and showcases somebest practices in each.They are chosen as the author has
been intimately involved in developing them, witnessed their broad applications in
social sciences and public policy, and believes in their potentials for further advancing
the field of computational spatial social science. Each theme begins with a brief
review of methods and then discusses various applications. Due to space limit, only
representative or most recent literature is cited.

29.2 Spatial Accessibility for 4As

Spatial accessibility refers to the relative convenience by which services can be
reached from a given location, and thus captures the very essence of location advan-
tage. Since its inception about two decades ago, the 2-step floating catchment area
(2SFCA) method has been a popular measure of spatial accessibility. It overcomes
the shortcomings of preceding methods that focus on either proximity to the nearest
facility or simply supply–demand ratios within fixed geographical or administrative
boundaries. Later the generalized 2SFCAmethodwas proposed to synthesize various
refinements to the original 2SFCA method, such as:

Ai =
n∑

j=1

[
Sj f

(
di j

)
/

m∑

k=1

(
Dk f

(
dkj

))
]

(29.1)

where Ai is accessibility at demand (population) location i, Dk is amount of demand
at location k, Sj is the capacity of supply facility at location j, d is the distance or travel
time between them, f (d) is a distance decay function that can be continuous, discrete
or hybrid between them, and n and m are the total numbers of facility locations and
population locations, respectively. The popularity of 2SFCA method is aided by an
intuitive interpretation of accessibility score (e.g., physicians per 1000 people) and
its automation in an ArcGIS toolkit (Wang, 2015: 112–113).

By switching the notations for demand (D) and supply (S) in Eq. (29.1), it turns
to the inverted 2SFCA (or i2SFCA) method that measures potential crowdedness for
facilities (or scarcity of resource). The population-based accessibility and facility-
oriented crowdedness are two sides of the same coin in examining the geographic
variability of resource allocation but have their distinctive emphases for different
purposes. A recent paper (Wang, 2021) provides the theoretical derivations for both
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methods and also validates them by empirical data. Another extension is the propo-
sition of 2-step virtual catchment area (2SVCA) method that measures spatial acces-
sibility to telehealth by accounting for broadband availability (Alford-Teaster et al.,
2021). Specifically, the 2SVCA method replaces the distance decay function f by a
measurement of virtual connection strength between supply and demand, e.g., their
broadband strengths.

The broad applications of spatial accessibility studies can be summarized as:
accessibility matters for “4As”:

1. for anything (e.g., healthcare, job, education, recreation, food),
2. to anyone (e.g., on disparity in access between socio-demographic groups),
3. by any means (e.g., via different transportation modes, challenges by the

handicapped), and
4. at any time (e.g., accounting for temporal variability of supply, demand, and

transportation between daytime versus nighttime, seasonally, normal vs. in the
event of natural disasters) (Li et al., 2022).

Once the disparity of accessibility is quantified, public policy and planning
strategy can be designed to mitigate the problem for promoting equal opportunities
for all, an issue examined in Sect. 29.5.

29.3 Scale-Flexible Regionalization

Regionalization groups a large number of small areas to a relatively small number of
regionswhile optimizing a given objective function and satisfying certain constraints.
Aided by automation in a GIS environment, some regionalization methods generate
a series of different numbers and thus different sizes of regions to enable a researcher
to examine a study area at different scales. These methods are termed “scale-
flexible regionalization”, a classic task in geographic analysis modernized by GIS-
based computational methods. This section covers two families of scale-flexible
regionalization methods.

One type of regionalization is to derive homogeneous regions. In other words,
it merges contiguous areas that are similar in attributes. For example, the region-
alization with dynamically constrained agglomerative clustering and partitioning
(REDCAP) method first (1) constructs a cluster hierarchical tree based on attribute
similarities among small areas, and then (2) partitions the spatially contiguous cluster
tree to generate a series of regions of different sizes while explicitly optimizing a
homogeneity measure (Guo & Wang, 2011). The homogeneity measure is the total
sum of squared deviations (SSD) defined as

SSD =
k∑

r=1

nr∑

i=1

d∑

j=1

(
xi j − x j

)2
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where k is the number of regions, nr is the number of small areas in region r, d
is the number of variables considered, xij is an attribute variable value and x j is
the regional mean for variable j. Each input variable should be normalized and be
assigned a weight as its relative importance in contributing to the overall measure
of homogeneity. The mixed-level regionalization (MLR) method decomposes areas
of large population and merges areas of small population to derive regions with
comparable population size, and thus the final regions are composed of different
(mixed) areal units (Mu et al., 2015). The core algorithm of MLR remains merging
neighboring areas that are most similar in attributes. In other words, similarity is
defined by the attribute distance Dij between them, such as

Di j =
∑

t
(xit − x jt )

2

where an area i and its adjacent object j have their tth attributes standardized as xit
and xjt , respectively.

There are several values for constructing homogeneous regions in various appli-
cations. For instance, crime analysis and health studies often encounter the small
population (numbers) problem when the subject under investigation is a rare event
(e.g., cancer, AIDS, homicide). Its rates in sparsely populated areas are unreliable
or sensitive to missing data and other data errors, and the data can be suppressed
for privacy protection. Regionalization mitigates the problem by constructing larger
geographic areas to obtainmore stable and reliable rates. Additional benefits include:
newly-derived regions tend to be spatially independent fromeach other (since areas of
similar attributes are alreadymerged) and thus traditional statistical analysis methods
(e.g., ordinary least square regression) may be applied without the need to control
for spatial autocorrelation, and a series of regions of various sizes enable analysis at
different geographic scales and affords a researcher an opportunity to examine the
modifiable area unit problem (MAUP). A recent study uses regionalization to divide
China into two regions of nearly identical area size and greatest contrast in popu-
lation and shreds new light to the scientific foundation of classic “Hu Line” (Wang
et al., 2019a). Another uses mobile app data to define a hierarchical urbanization
“source-sink” regions in China in terms of intensity of labor force import or output
(Y. Wang et al., 2019).

The other type of regionalization is to delineate functional regions. A functional
region is coherent so that connection strengths in terms of service flow, passenger
volume, financial linkage, or communication are stronger within a region than
beyond. Functional region can be in various forms such as catchment area for a
service facility, trade area for a store, and hinterland or urban sphere of influence
for a central city. Here, hospital service area (HSA) is used as an example to illustrate
the methods and its application in defining healthcare market areas (Wang & Wang,
2022). Dartmouth method pioneered the delineation of HSAs in the USA. It uses
a simple plurality rule by assigning an area (e.g., a ZIP code area) to a hospital if
its residents visit the hospital most often out of alternatives, and then collects the
areas assigned to the same hospital to form an HSA. The Dartmouth method lacks a
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systematic perspective and cannot ensure the maximal total service volumes within
derived HSAs. It only defines one set of HSAs and thus not scale flexible. Some
recent studies use the network community detection approach to segment a network
of patient-to-hospital OD flows into subnetworks (communities) so that the resulting
subnetworks have the maximum connections within each and the minimum connec-
tions between them. The network community detection approach delineates a given
number of HSAs corresponding to a resolution value defined by the analyst, and thus
is scale flexible.

Defining HSAs helps provide a basic geographic unit for health care delivery
assessment, management, and planning. The unit needs to pertain to the specific
medical service (e.g., cancer service areas, pediatric surgical areas, primary care
service areas), and be updated in a timely fashion and at a scale suitable for the
purpose of research and public policy relevance. Two promising methods, namely
“spatially constrained Louvain and Leiden algorithms”, are automated in ArcGIS
tools to meet these challenges. The tools can certainly benefit other applications that
involve delineation of functional regions such as trade areas in market analysis and
urban hinterlands in planning for a system of cities.

29.4 Spatial Simulation for Pursuit of Finest Scale
in Individuals

Spatial simulation is a spatially explicit, bottom-up modeling approach to explore
how spatial patterns emerge from simulated individuals and their interaction in space.
It has rather a broad scope. This section covers two areas of spatial simulation the
author has involved in. One focuses on Monte Carlo simulation of individuals in
space, and by a simple extension, connections between locations (e.g., commuting).
The other is agent basedmodeling (ABM) that is truly dynamicwith individual agents
moving spatio-temporally. Both can be considered a pursuit of modeling individuals,
the finest scale in spatial analysis.

Spatial data often comeas aggregateddata in various areal units.Analysis of aggre-
gated data incurs several problems such as the aforementioned MAUP, ecological
fallacy, and loss of spatial accuracy in calibratingmeasures such as location precision,
distance, and travel time. Monte Carlo simulation generates a set of random points
according to a defined probability distribution function (PDF). In some studies, it
is desirable to first disaggregate data in area units to individual points according
to a spatial pattern revealed in observed data, then aggregate data back to an area
unit of one’s chosen. For example, Wang et al. (2019b) uses Monte Carlo simula-
tion to generate individual residents that are consistent with land use data, and then
aggregates population back to various uniform area units to examine the scale and
zonal effects. The study indicates that the logarithmic function, instead of the popular
exponential function, is the best fitting one for the urban population density pattern
in Chicago. Similarly, Hu and Wang (2019) use it to simulate individual resident
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workers and individual jobs, and then their linkages in individual trips in order to
improve the estimation of commute distance and time for journey-to-work trips.

Another popular application of Monte Carlo simulation is to test statistical
hypotheses using randomization tests. For example, it is used to design statistical
significance tests for global and local spatial autocorrelation indices such asMoran’s
I and G statistic. Wang et al. (2017) also use Monte Carlo simulation to calibrate
the global and local indicator of colocation quotients with corresponding statistical
significance tests to detect whether two types of points tend to cluster (collocate) or
disperse (the opposite) from each other. The methods are now available in ArcGIS
Pro.

More advanced spatial simulation techniques such as cellular automata (CA) and
agent-based model (ABM) simulate multiple agents and their movements and inter-
actions in a nearly-realistic environment. Here a recent agent-based crime simulation
model (Zhu & Wang, 2021) is used to illustrate its basic features and functionali-
ties and demonstrate its potentials. The model defines three types of agents such as
motivated offenders, vulnerable targets, and police for their distinct roles. It then
dynamically simulates agents’ daily routines including (1) mandatory activities such
as work and rest, and (2) flexible activities (e.g., shopping, dining, and recreation).
Police may follow a hotspot policing, random patrol, or other strategy so the model
can test the effect of each. Within a detailed representation of a study area with a
road network and points of interest, crime opportunities and deterrence emerge from
intersecting space–time trajectories of three types of agents. The model shows good
fitness between predicted vs. reported crime hotspots.

29.5 The Maximal Accessibility Equality Problem (MAEP)
in Spatial Optimization

Spatial optimization uses computational approaches to find the optimal solutions
to decision variables, which are spatial, for objective function(s) under defined
constraints. It is grouped under a broad umbrella “operations research (OR)”, widely
taught and practiced in business management, applied mathematics, engineering,
planning, and geography. Here spatial optimization refers to its narrow definition
related to location-allocation problems that seek the best decision on where to locate
facilities and how large those should be.

Planning often faces two competing goals, efficiency vs. equality. It has been
long debated on which should be prioritized among academics. Among traditional
location-allocation models, the p-median problem minimizes total travel burden,
the location set covering problem (LSCP) minimizes resource commitment, and the
maximum covering location problem (MCLP) maximizes demand coverage. All are
designed for a goal related to the principle of efficiency such as maximum gain or
minimum cost for the whole system. An exception is theminimax problem that seeks
to minimize the largest travel burden. However, the minimax problem only attempts
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to reduce the inconvenience of the least accessible user without accounting for the
distribution of demands across the whole spectrum, and therefore is considered as
marginally addressing the equality issue. These classic models and their variants
have sustained extensive popularity, in part because of the convenience of solving
them in ArcGIS.

Only modest progress has been made in research on location-allocation models
addressing equality issues. One of such early efforts formulates the optimization
objective as minimal inequality in accessibility of facilities across geographic areas
(Wang & Tang, 2013). Specially, accessibility is measured by the 2SFCA method
in Eq. (29.1), and inequality is defined as the variance (i.e., least squares) of the
accessibility index. Therefore, the objective function is

Min
∑

i

(Ai − a)2 or Min
∑

i

[Di (Ai − a)2] (29.2)

where a is the weighted average accessibility score in a study area and a constant,
the first formula minimizes the total diversions from that average, and the second
minimizes the weighted total diversions by adding a weighting factor Di (demand at
each location i). The decision variables are supply capacities for facilities to be solved,
and the problem is subject to the total supply constraint. Such a model is termed a
quadratic programming (QP) problem and can be solved in various open-source
programs or commercial optimization software.

The above QP only solves the capacities for facilities. Many location-allocation
problems also need to decide where to site the facilities. Luo et al. (2017) argues
that such a decision is often sequential by deciding on their sites first and then their
capacities, and formulates a method termed “two-step optimization for spatial acces-
sibility improvement (2SO4SAI)”. The first step is to find the best locations to site
new facilities by emphasizing accessibility as proximity to the nearest facilities. The
second step adjusts the capacities of facilities for minimal inequality in accessibility
measured by the 2SFCA method. The solution to the first step is to strike a balance
among the solutions to the p-median, MCLP and minimax problems, and the second
step solves the QP problem as defined in Eq. (29.2). This trade-off approach is
further validated in a recent study on planning emergency medical services (EMS)
in Shanghai (Li et al., 2022).

These spatial optimization models advocate a common objective of maximal
equality (orminimal inequality) and emphasize that achieving such a goal beginswith
equal accessibility, not equal utilization nor equal outcome, a principle consistent
with the consensus reached by Culyer and Wagstaff (1993). They are grouped under
the term “Maximal Accessibility Equality Problem (MAEP)” (Wang & Dai, 2020).
Many variantmodels can be derived from this broad framework. For instance, beyond
the variance definition in Eq. (29.2), inequality can be formulated as maximum devi-
ation, mean absolute deviation, coefficient of variation, Gini coefficient and others.
Beyond the 2SFCA method or spatial proximity in distance, accessibility can also
be measured in cumulative opportunities, gravity-based potential model and others
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(Wang, 2015: 93–95). The applications are seen in planning health care services,
schools, senior care facilities and EMS.

In summary, Computational Spatial Social Science (CSSS) is truly an interdis-
ciplinary field that has benefited from the advancements in computational science,
social sciences, and GISc, and more importantly their increasing intersections.
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Chapter 30
Geosocial Analytics

Kai Cao, Yunting Qi, Mei-Po Kwan, and Xia Li

Abstract The adoption of spatially integrated approaches has become an increasing
trend in social sciences. Concurring with the spatial turn in social sciences, there has
been a social turn in geography. Inspired by the theoretical debates in the social turn
in geography, particularly the debate around the concept of space, we critically reflect
on existing studies of spatially integrated social sciences. Following that, we propose
a geosocial analytical framework for a more comprehensive knowledge of our lived
society. The geosocial analytical framework should lay geographical research path-
ways at its center, keeps open to both quantitative and qualitative methods as well
as computational technologies, remains interested in any topics relevant to human
societies and potentially engages with conventional social theories. Some challenges
possibly faced by the implication of geosocial analytics have been identified as well,
namely data sources, ethical concerns, and the difficulties in the combination of
different research approaches. We take the chapter as an initiative to introduce the
geosocial analytics and we encourage more researchers to further work on it.
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30.1 Introduction

In early 2020, when people still possessed very little knowledge of COVID-19 per se
and merely had limited ideas about its spread throughout the world, scholars at John
Hopkins University publicly published a global map of COVID-19 that displays the
number of confirmed cases and death by regions, tracks critical data in the last 28 days
and in its later version, provides more explicit and diverse statistics on the pandemic
(Dong et al., 2020). The COVID-19 Dashboard is a map but definitely is more than
a geographical map. Through frankly and vividly presenting the distribution and
spread of COVID-19 at different geographical scales, it has great significance in
terms of public health, medical service and related research in sociology, medicine,
social work, politics, other disciplines. The global map of COVID-19 can be taken
as a splendid example of how spatial thinking and computational technology could
benefit knowledge and studies in social sciences.

Since the late 1990s when they were launched, spatially integrated social sciences
(which is part of the result of the so-called spatial turn in social science) have been
proved as an insightful approach to examining social problems. In this chapter, we
first briefly review related literature regarding the spatial turn in social sciences. We
then suggest a framework of geosocial analytics taking both social and geographical
thoughts into consideration. Finally, we reflect on future directions and potential
challenges of conducting geosocial analytics.

30.2 Spatially Integrated Social Sciences

Space is one of the most fundamental concepts in the discipline of geography but
has received rather limited attention in social sciences for a long time. The distinct
attitudes towards space and related spatial thinking could be explained by research
focus varying between geography and social sciences. To put it more specifically,
geographers are interested in the embeddedness of human activities and relation-
ships in specific places aswell as human-place interactions, while social scientists are
paying dominant attention to human activities per se. Considering that people’s activ-
ities, subjectivities and various social relationships always occur in space, the igno-
rance of space in social research has been accused of uprooting human behaviours
from relevant contexts and further potentially causing biased knowledge (Goodchild
et al., 2000; Sui, 2010). In this regard, social scientists have increasingly adopted
the concept of space and spatial analytic toolkits, like geographical information
systems, remote sensing, spatial statistics, in their research (Wang, 2011), which is
an exciting trend at least from our viewpoint as geographers. But the integration of
spatial approaches into social sciences has been far from sufficient in both theoret-
ical and methodological terms. In order to ground social research better in specific
time–space, scholars call for more advocation to spatially integrated social sciences
(Anselin et al., 2004; Goodchild & Janelle, 2003; Nyerges et al., 2011). Spatially
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integrated social sciences do not refer to specific disciplines and instead appear as an
extensive termwhich “describe[s] the integration of space and place in social science
research using Geographic Information Systems (GIS)” (Lechner et al., 2019, p. 1)
and attempts to deal with conventional and emerging problems in social sciences
through quantitative analysis of spatial (big) data and qualitative GIS approaches
(Bainbridge, 1999; Lechner et al., 2019; Nyerges, 2009).

The spatially integrated approach could be witnessed in a range of social disci-
plines. The most famous example is found in Economics and the work by Krugman
(1991),who re-introduces the importance and significanceof place in economic activ-
ities, particularly in international trades. The award of the Nobel Prize in Economics
to Kurgman in 2008 undoubtedly demonstrates the tremendous potential of spatial
understanding and reasoning for social sciences. Closely relevant to economics and
urban/regional studies, sub-disciplines like land market studies, real estate studies
and others benefit greatly fromGIS and spatial econometrics, which were introduced
by Anselin et al. (2004) and many other scholars. Besides, due to the successful
application of GIS in indicating the distribution and spread of disease and everyday
health risks, health studies have become an important area in the spatial turn of social
sciences (Cromley &McLafferty, 2002; Richardson et al., 2013) and the importance
of GIS has been further proved in recent public health research regarding COVID-19
(Dong et al., 2020; Franch-Pardo et al., 2021; Kan et al., 2021). Work conducted
by Kwan and her associates indicates the relationships between health conditions,
activities, and urban environment (Hawthorne & Kwan, 2012; Huang et al., 2021;
Kwan, 2013, 2018; Zhao et al., 2018). In their Science report, Richardson et al.
(2013) comment that “Research agendas that systematically incorporate spatial data
and analysis into global health research hold extraordinary potential for creating new
discovery pathways in science” (p.1391).

Criminology is another area that benefits significantly from the increasing integra-
tion of spatial technologies due to its spatial characteristics. For instance, Cohen and
Tita (1999) illustrated the successful application of GIS and spatial analysis to homi-
cide patterns detection in Pittsburgh. More recent studies employ spatial analysis in
criminology to challenge some long-standing assumptions regarding ethnicity, social
segregation, crime rate (Wang & Minor, 2002). Anthropology is also pioneering
in the application of GIS and geo-visualisation, as significant supplementary tools
to the traditional ethnographic approaches. A rapidly growing number of studies
using GIS and analytic mapping can also be found in anthropology in past decades
(Aldenderfer & Maschner, 1996; Padilla, 2013; Roberts, 2016). Scholars also start
employing GIS and other spatial analysis methods to examine conventional topics in
sociology, such as the interactions and isolations between social groups and various
social processes (like gentrification, segregation, cultural expansion, etc.), partic-
ularly those occurring in urban spaces (Goldfield & Schlichting, 2007; Sohoni &
Saporito, 2009; Zambrano et al., 2021).

Compared to conventional approaches, the spatially integrated approaches have
largely emerged outside themainstream of social sciences. Based on a brief review of
key works in selected disciplines in the last paragraph, we suggest that the spatially
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integrated methods, including but not limited to GIS and spatial statistical anal-
ysis, could promote social sciences from the three following perspectives. First, the
spatially integrated approaches provide social scientists with a powerful analytical
toolkit to identify, interrogate and find solutions to various social problems. Taking
health research as an example, GIS data illustrates people’s daily movement in urban
built environments and helps to calculate the exposure possibility to (un)healthy
urban facilities like fast food stores and gyms, which leads to the argument that a
better urban design could lower urban residents’ health risks like obesity (Cromley&
McLafferty, 2011; Richardson et al., 2013). Both the research data and argument are
distinct from usual health studies that mostly rely on longitudinal observations and
surveys to gain knowledge of human daily activities while overlooking the circum-
stances where these activities happen. Similar cases could be witnessed in Crimi-
nology, GIS and spatial statistical analysis contribute to more reliable and feasible
crime prediction modelling compared to those merely on the basis of existing crime
records (Wang & Minor, 2002).

Second, the spatially integrated approaches equip social scientists with fresh
thinking to conduct their research and opens the possibility of practical innova-
tions and even theoretical advancement. Different from conventional approaches that
largely exclude space with specific temporal attributes into the discussion, spatially
integrated social sciences disclose the time–space situatedness of human activities,
decisions, and relationships. Thus, some innovative research methods have been
emerging in social sciences, like collecting data through wearable GPS devices and
mobile sensing devices (Ho et al., 2021; Kwan & Ding, 2008; Wang et al., 2021).
With the awareness of the spatial and temporal dimensions, “we are better able
to inform decision making targeted at addressing the challenges facing people and
places” (Corcoran et al., 2021, p. 445).

Third, the spatially integrated approaches further promote the integration of social
sciences and other disciplines, such as computational sciences and engineering.With
the development of computational and internet technology, computational social
sciences (hereafter CSS) have become another notable emerging interdisciplinary
field which “advances theories of human behaviour by applying computational tech-
niques to large datasets from social media sites, the Internet, or other digitised
archives such as administrative records” (Edelmann et al., 2020, p. 62). Largely driven
by big data, CSS offers scholars great potential to conduct research involvingmassive
samples and data with huge volume and surprising diversity which was once unreal-
istic (Hox, 2017). Some computational technology like machine learning even helps
to overcome the obstacles encountered by quantitative social research examining the
emotional world of human beings and mitigating some long-standing bias in social
sciences like socio-culturally and ethnically unbalanced sample structures (Giles,
2012; Lazer et al., 2020). While not so many researchers adopting the approach
of CSS have explicitly claimed that they were using spatial analysis, the relevant
hints are rather obvious, such as the visualisation of data in the format of maps. We
suggest that GIS and other spatial analytics should be taken as an essential part of
CSS, because spatial analytics helps to ground digitised data in the real world and
links the cyberspace with the material space humans actually live in.
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As can be seen in existing literature, spatial analytics have played an essential
role in recent social sciences. Admitting that the approach is far from being perfect,
it has brought so much inspiration in both conceptual perspectives and practical
applications. In the next section, we critically reflect on the spatial turn in social
sciences and call for a more comprehensive integration between geographical and
social thinking.

30.3 From Geospatial to Geosocial

The first step of critically reflecting on the spatial turn in social sciences should be to
enquire about the meaning of space, one of the most vital geographical concepts. At
least in the works we have reviewed in the last section, ‘space’ in spatially integrated
social sciences largely remained a geometric container and a spatio-temporal context
where human activities occur and where recorded matters exist. While admitting the
material and geometrical aspect of space, geographers have significantly furthered the
understanding of space in recent theoretical debates and empirical exploration. In the
latest literature, space is ontologically cognitive (people need to perceive and estab-
lish their personal knowledge and emotions regarding the space), relational (various
social relations are embedded in specific spaces and there exist mutual shaping forces
between social relations and spaces) and temporally dynamic (spaces are changing
across time, life stages and other temporal elements, and space is a becoming process)
(Massey, 2005; Thrift & Crang, 2000). In short, the concept of space in geography
has become ontologically dialectical. Considering that such conceptualization of
space has spoken a lot about emplaced human activities, emotions, relations, which
are the primary concerns of social sciences, the narrowed understanding of space as
a geometric container may hinder the future progress of spatially integrated social
sciences.

Second, spatially integrated social sciences remain geometrically topological and
dismisses more or less a deep understanding of micro-level details of human activi-
ties. For example, although researchers cangain informationon residents’ exposure to
(un)healthy facilities and ethnic diversities through GIS data of their daily commute
(Kwan, 2018; Tan et al., 2022; Wang, 2011), we still have limited knowledge of
how people interact with other individuals or social groups in specific sites and
how they attach specific emotions to these interactive activities and spaces (Kwan,
2002, 2007), which could be explored widely and insightfully in conventional social
sciences adopting interviews and observations. Third, following the first and second
points of criticism, the subjectiveworld of human beings is hardly fully represented in
the current framework of spatially integrated social sciences. While there have been
CSS works exploring human emotions on sites through collecting and analysing
emotional words (Giles, 2012), we doubt whether the coded texts can sufficiently
deliver emotional expressions given the unspeakable, perceivable nature of emotions
(Bondi, 2005).As the critical aspect of everyday lives, the emotionalworld of humans
should never be excluded from academic discussion.
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Almost simultaneously with the spatial turn in social sciences, there happens
the social turn in geography, in which geographers firmly reject positivism and
eagerly embrace social thoughts like post-structuralism, post-modernity, humanism
and feminism (Del Casino &Vincent, 2009).While the spatial turn in social sciences
is looking into massive trends and phenomena in emplaced societies, the social turn
in geography is interested in deep knowledge at the micro-level. The two seem-
ingly contradictory directions in different fields propose an important question to
researchers: Is there a better way to gain knowledge of our lived world? Or in another
enquiringway, how shouldwe academically investigate our livedworld?Considering
the (dis)advantages of different approaches, neither being purely spatial nor being
purely social is sufficient and here we propose a geosocial analytical framework for
a more comprehensive knowledge of our lived societies.

In this initiative, we suggest some fundamental guidelines for conducting geoso-
cial analytics.First, following both the conventions of geography and social sciences,
spatial approaches should be a kind of fundamental, or even instinctive in exagger-
ated rhetoric thinking way, and more than just a simple format of data presentation
and analysis. To put it precisely, geosocial analytics should address both spatio-
temporal situatedness and place embeddedness. The former refers to the venue of
social activities/processes and is related to geo-visualisation, which has been widely
acknowledged in existing spatially integrated social sciences. The latter means a
range of place-specificity like social norms, governance systems and cultures which
powerfully shape human activities and emotions but receive limited attention in
existing geospatial analysis.

Second, geosocial analytics does not advocate the binary between quantitative
and qualitative research in terms of methodology and seeks data diversity and
innovative methods. Quantitative data and analysis are good at disclosing macro
social and geographical trends, while qualitative data and analysis compensate the
weaknesses of quantitative approaches with in-depth detailed evidence. Thus, both
approaches are needed in geosocial analytic and deserve an efficient combination.
Third, geosocial analytical framework should be open to any topic relevant to human
and human societies. Particularly, we encourage scholars to investigate topics that
are relatively unusual in existing spatially integrated social sciences and computa-
tional social sciences, like everyday encounters which seem to be unremarkable but
deliver extraordinary meanings regarding individuals and the whole society. But we
must admit that the investigation of specific topics might require methodological
and conceptual innovations. The last but not least, geosocial analytics should seek
greater collaborations with social theories which are usually explored, verified, and
developed through conventional social approaches while undoubtedly having spatial
implications, like feminismand post-colonialism. It is not easy but definitely deserves
efforts, as it would be an important step to break down the barrier between spatially
integrated social sciences and conventional geography/social sciences, and will help
to integrate the emerging trend into the mainstream of social sciences.

Obviously, geosocial analytics should not be a closed term, but a broad term that
is open to any further rigorous discussion and debates. The above four guidelines can
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be seen as initiatives to open up more possibilities of research under the geosocial
analytical frameworks.

30.4 Potential Challenges

While we firmly believe geosocial analytics would be an inspired approach to further
existing research in social sciences and geography, geosocial analytics still face a
number of challenges. Some challenges have been indicated by social scientists
adopting spatially integrated approaches and some challenges are newly appearing
while the geosocial analytical framework is constructed.

The first challenge is regarding data. Many scholars have indicated that the
problem of data accessibility and sharing might hinder the long-term development of
spatially integrated social sciences (Lazer et al., 2020); in the framework of geosocial
analytics potentially adopting various formats of data (e.g., qualitative interviews,
observations, visual data, statistics, and so on), organisation and integration possibly
bring extra challenge. The second challenge is ethical concerns. Existing research has
reflected that big data may violate people’s privacy and that relying on data collected
fromcyberspace likely causes a biased sampling structure (Giles, 2012;Kwan, 2016).
While geosocial analytics hope to look into both macro trends and micro details,
the ethical issues become emergent concerns for researchers. The third challenge
is the combination of different research approaches and the integration between
spatial methodology and seemingly abstract social theories, which is derived from
the comprehensive nature of geosocial analytics. The challenge cannot be handled
through one-off attempts, but through continuously careful research design.

In this chapter,we have critically reflected on existing literature regarding spatially
integrated social sciences and computational social sciences. Following that, we took
a step further towards geosocial analytics by providing fundamental guidelines and
indicating potential challenges. While our ideas are far from mature, we hope that
the chapter would encourage more geographers and social scientists to explore and
improve the geosocial analytical framework.
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Chapter 31
Defining Computational Urban Science

Xinyue Ye, Ling Wu, Michael Lemke, Pamela Valera, and Joachim Sackey

Abstract Uncovering the multi-dimensional interplay between computation and
urban life’s spatial-social aspects has both theoretical and practical implications for
urban planning and public health science.Many analytical methods have been imple-
mented and applied to deal with high-dimensional, heterogeneous, and unstructured
location-based social data drawn from urban locales. Computational urban science
has four interdependent layers: human dynamics-centered, platform-based, action-
oriented, and convergence-driven. As a research paradigm based on computational
thinking and spatiotemporal synthesis, computational urban science can provide a
needed framework for addressingmanypressing urban sustainability challenges from
a systematic perspective.

Keywords Computational urban science · Human dynamics · Computational
science · Urban science · Community engagement · Convergence

31.1 Introduction

World-wide, unprecedented urban growth has generated fascinating issues for inter-
disciplinary scholarly research. Urban communities in the twenty-first century have
increasingly transitioned into complex systems and systems-of-systems, consisting
of many dynamically interdependent human, environmental, and technical systems
(Bibri, 2021). Simultaneously, advances in Information Communication Technology
have been accompanied by social innovations, which continues to drive the techno-
centric versus human-centric debates (Costales, 2022). In this context, new urban
data involves the life qualities and connections that characterize individuals and/or
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communities in urban areas. Rapid growth in urbanization and intensive urban–
rural interaction enables massive flows of virtual and physical elements, including
people. At the same time, an increasing number of extreme weather-driven urban
hazards are a significant source of biodiversity loss, social disruption, and economic
disparity, threatening progress towards the United Nations’ 17 Sustainable Develop-
ment Goals (Ye et al., 2021a, 2021b). In response, the United States and China have
recalled the Paris Agreement’s aim to address the challenges of the global climate
crisis, pursuing efforts to limit the increase of global average temperature to below
1.5 °C (U.S. Department of State, 2021).

The U.S. National Science Foundation summarized the following key research
questions to address continued and emerging challenges relevant to urban sustain-
ability (NSF, 2020): (1) How can science improve forecasts and make predictions
about the future states of rural, suburban, and urban systems? (2) What theories
explain the structure and function of communities in the twenty-first century and
what are the critical drivers to social change? (3) What aspects and intersections
of social, built, and natural systems influence the resilience and sustainability of
communities and the well-being of the people living in them? (4) How can successful
innovations in one community be transferred to other communities? (5)Howcan inte-
grative research along with community engagement improve the quality of life in
those communities? To address these research questions and enable more resilient
responses to persistent and emerging challenges associated with urban growth (Ye
et al., 2021a, 2021b), a framework of computational urban science (CUS) is needed
in the context of complexity systems. The advantages of incorporating elements
of complex systems (e.g., dynamic complexity, interactions, etc.) shed light on the
aforementioned questions raised. Incorporating computational science into urban
science and vice versa has led to the increasing popularity of CUS (defined as urban
computing in engineering schools or public informatics in public policy schools).
At the same time, CUS should not be limited to either urban science or computa-
tional science; instead, it is a new research paradigm of studying urban phenomena
based on computational thinking and spatiotemporal synthesis. CUS is composed of
four layers: (1) Human dynamics-centered, (2) Platform-based, (3) Action-oriented,
and (4) Convergence-driven. Together, these four layers that constitute CUS can
contribute to urban sustainability in the twenty-first century through the integra-
tion of multidisciplinary and transdisciplinary theory, methodology, analysis, action
planning, and community engagement.

31.2 Human Dynamics-Centered

Human dynamics-centered CUS aims to put humans at the center of technology
driven advances to optimize the human–environment interaction in the built environ-
ment. Understanding human dynamics would facilitate the development of human-
centered CUS towards a trans-disciplinary field of research and practice drawing on
three elements: people, place, and space. To appreciate cities, we must view them
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as systems of networks and flows to better understand an individual by examining
his/her social ties and interactions (Batty, 2013). The growing volume and diversity
of human data in the urban communities further justify the need for human dynamics-
centered CUS. The critical importance of centering human dynamics within CUS is
grounded in historical and contemporary insights. Hägerstrand (1953) argued that
human communication is mainly constrained by geographical social networks, indi-
cating that social actions are spatially organized. Hence, Tuan (1977) pointed out that
a place is a social construction of physical space, with special meaning for each indi-
vidual across time. Nowadays, data logs from individual activities and interactions
are typically collected at a fine-scale spatial and temporal level, thus bringing human-
centered analytics to the frontier of urban science. Barabasi (2005) highlighted the
role of human dynamics from a complex network perspective in revealing the mech-
anisms underlying many complex social, technological, and economic phenomena.
Shaw et al. (2016) emphasized the geographical view of human dynamics research
in the context of the emerging mobile and big data era.

Bringing a humanistic approach to the centre of urban computing helps us revisit
the traditional urban theories and allows us to observe the role of computation shifting
from lab-based academic use by research groups to urban daily use for individuals.
User-generated data is by nature multi-scale and can be harnessed to gain insights
into the urban activity structures (Huang et al., 2021; Steiger et al., 2016). With
growing investments from government and business, the increasing affordability of
technology and infrastructure can enable a revolution in urban management because
decision-makers can more rapidly understand citizens’ feedback and incorporate
this information into policymaking. In this way, research insights derived from CUS
can change our lives and neighbourhoods more instantly. Human dynamics-centered
CUS can also re-orient urban management from the centralized and top-down that
currently represents the status quo to a decentralized and bottom-up perspective,
providing a more democratized decision- and policy-making environment in urban
areas (Batty, 2013).

31.3 Platform-Based

A platform-based system is a process of developing, implementing, and refining a
complex systems-based procedures that can serve as a critical enabler for the empir-
ical study of space–time dynamics within urban environments. Platform-based CUS
is expected to derive knowledge from heterogeneous streams of big urban data.
Furthermore, a platform-based CUS has the added value of being a signaling term
to attract more attention from industry. Computation is the essential methodological
platform for urban data fusion, datamining, and simulation (Kontokosta, 2021).With
fast-evolving disruptive digital technologies, such platforms will trigger new modes
of analytics that could tackle the fine-scale data-rich urban environment and thus
simultaneously advance both computational science and urban and social science.
Gelernter (1993) predicted that software can go beyond codes and tools and towards



296 X. Ye et al.

“crystal balls” where we can observe and deeply understand the urbanworld. In addi-
tion, such “crystal balls” can facilitate computer-aided urban scenario experiments by
leveraging a virtual urban environment workbench integrating “multi-dimensional
visualization, dynamic phenomenon simulation, and public participation” (Lin et al.,
2013; Wan et al., 2021).

Advances in artificial intelligence (AI) present additional opportunities to help
address some of the most pressing and enduring urban challenges. Platform-based
CUS can serve as common ground for the long-term collaborations between AI
researchers and application-domain urban experts. For instance, cutting-edge sensing
technologies are increasingly adept at recording urban mobility patterns in massive
trajectory datasets, such as the movements among humans, taxis, buses, fleets, and
cars. Visualizing and analysing such big dynamic data plays a critical role in knowl-
edge discovery with an appropriate platform for trajectory data management and
interactive visualizations facilitating user engagement (Ye et al., 2021a, 2021b).
A large number of users, including students, teachers, researchers in various urban
domains, and data analysts and software developers from industrial sectors needmore
open-source platforms to utilize big urban datasets better and transform these data
into actionable knowledge. The revolution of computation as a platform for urban
science has further blurred the boundaries of sub-disciplines in urban research. At the
same time, the increasing affordability of computing and the flatter learning curve
has removed long-standing barriers that had previously hindered the proliferation of
computing platforms across disciplines.

One of the novelties involved with CUS is the creation of digital twins of existing
cities for policymaking anddesign,which canweave the four layersmentioned above.
A digital twin is a digital representation of a physical object or system, linked to real-
time data inputs (Li et al., 2021). Such technologies have expanded to include large
items such as buildings, factories, and cities. Digital twin technology has moved
beyond manufacturing and into the merging worlds of AI and big data analytics.
Through such an approach, computer programs take real-world data about a phys-
ical object or system as inputs and produce, as outputs, predications, or simulations
of how that physical object or system will be affected by other inputs. The partic-
ipants will also be afforded the ability to conduct experimental research in built
environments through the use of mobile devices. By linking urban sensors with the
developed digital twin with advanced virtual and augmented reality technologies, we
can provide contextualized, real-time in-situmodelling of cities, which can be used to
dynamically analyse real-time built environments and test scenarios for sustainable
urban growth.

Through software and hardware integration, digital twin can be used for action to
address the built environment challenges. It will enable ubiquitous networked immer-
sion and virtual human teleportation to any location and scale of the built environ-
ment to assist humanity in solving current societal challenges and design needs. For
example, the capabilities to accurately visualize and dynamically update the condi-
tions of underserved and marginalized communities will afford such communities
with the data to create real change in their neighbourhoods and solve existing and
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future racial inequity issues. Simultaneously, the ability to model climate change-
based scenarios and test their impacts on the built environment offer unprecedented
capabilities for altering the projected effects of issues such as sea-level rise. Such
capabilities have tremendous possibilities for flood preparedness and recovery in
coastal communities, which can be applied globally. It would enable a scalable
simulation and interactive visualization platform that reveals the interactions and
dynamics of urban flows, entities, and social phenomena from site/community to
the regional/national scale. For example, a user can trigger a virtual fire, building
collapse, or natural disaster (e.g., flood event, chemical plant explosion, etc.), and/or
observe the predicted behaviour of pedestrians and other inhabitants.We can simulate
howcommunitieswill be transformedbymoving to autonomous vehicles. These plat-
forms would also allow the understanding of existing urban infrastructure conditions
and how to increase its efficacy.

31.4 Action-Oriented

CUS can inform high-impact, sustainable, and citizen-driven action planning, inter-
relationships, and policymaking, thereby empowering the decision-making of indi-
viduals, communities, and other key stakeholders. There are growing interests in
utilizing big urban data for a broader audience in government agencies, practi-
tioners, and citizens. Urban data contains abundant knowledge about a given city
and its citizens. The extracted information through CUS can be utilized in many
important and practical applications to optimize urban planning and improve built
environments in urban settings. Both the Columbia Climate School (established in
2020) and the Climate and Sustainability School at Stanford University (established
in 2022) have identified transdisciplinary initiatives to develop actionable, evidence-
based, and realistic pathways for impacting communities, which is expected to be
highly relevant to urban science. For example, the Envisioning the Neo-traditional
Development by Embracing the Autonomous Vehicles Realm Institute (ENDEAVR
Institute) at TexasA&MUniversity aims to translate emerging urban computing tech-
nologies into action-oriented solutions for small communities (ENDEAVR, 2022).
ENDEAVR Institute also serves as an interdisciplinary project-based learning plat-
form that connects science, technology, engineering, art, andmathematics disciplines
with industries and communities.

The field of public health is focused on improving health and addressing health
inequities of populations, communities, and individuals through prevention, health
promotion and implementing interventions. With recent advances in information
technology, big data, and communication technology, we can collect, analyse, and
store large volumes of real-time data at the population level. The field of information
technology, urban/social science, and public health are converging into the study
of complex environments calling for a comprehensive review of how to achieve
better outcomes and interventions to address those contemporary issues effectively.
An example is how during the COVID-19 pandemic, some testing and vaccination
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centers were overwhelmed whilst others were not. A better understanding and imple-
mentation of CUS could enable health authorities to plan better. Another example is
using geolocation data to estimate physical activity and how people move to access
food. This information could be used to help authorities improve the built environ-
ment and decide where to allocate resources. The Healthy People 2030 also has
several action objectives that can benefit from better integration with CUS, such as
“reduce the number of days people are exposed to unhealthy air”, “increase trips to
work made by mass transit”, and “increase the proportion of adults who walk or bike
to get places”.

31.5 Convergence-Driven

Advancements in location-aware technology, information and communication tech-
nology, and mobile technology during the past two decades have transformed the
focus and need of built environment research. It moves from mostly indoor-based,
community-level, or metropolitan-scaled static assessments to spatial, temporal, and
dynamic relationships that integrate human behaviours across multiple environ-
ments and scales (mixed environmental models now including natural, built, and
virtual elements). Simultaneously, projections show that, globally, more people will
live in areas designated as vulnerable or high-risk relative to contemporary and
future urban issues (e.g., sea level rise, depopulation, natural disasters, etc..), which
suggests that urban communities will experience increases in multi-hazard risks.
Disasters cause significant sources of property loss, social disruption, and inequality.
Communities can reduce vulnerabilitywhile increasing social and physical resilience
through research-driven and evidence-based planning, design, and policy develop-
ment. However, silos within the design, social, and engineering sciences, and gaps
between research and practice have made sustainable and equitable development
difficult.

Given the interconnected systems and systems-of-systems that are inextricably
tied to human dynamics and are ubiquitous within urban environments, complemen-
tary approaches that can embody diverse theories, methodologies, and data types
are necessary. Thus, themes of CUS are increasingly towards the convergence and
synthesis of theories and methods across multiple disciplines, as well as big and
open data, computing technology, and interactive and collaborative environments.
Goodchild (2020) pointed out any single discipline cannot solve pressing social and
environmental challenges, and hence integration across conceptualizations, analyt-
ical methods, and software environments is necessary. From the convergent perspec-
tive, CUS is a human-centric synthesis that is responsive to the rapidly changing
data and computing environment and reflective of the multi-faceted nature of social
complexity. To extract profound insights from the massive amount of urban data,
usersmust conduct iterative and evolving information foraging and sense-making and
guide the process using their domain knowledge. Hence, visualization and iterative
visual exploration are important in this process that relies on the deep integration of
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computational science and urban science. Due to the lack of synthesis, despitemyriad
visualization techniques and systems developed from urban data, there remains a gap
between the demand of urban researchers and the availability of free-accessor open-
source software. Such tools should include interactive visualizations and provide
data curation, management, and logistic functions.

31.6 Promising Outlook and Next Steps

We live in the Urban Millennium. With over three million people estimated to be
moving into areas each week (Perry et al., 2021), the world’s population is expected
to become increasingly concentrated in urban areas, which are projected to grow from
55% to 68% of the world’s population over the next 30 years (WHO, 2022). As these
demographics manifest worldwide, endemic problems associated with increases in
urbanization can be expected to worsen. For example, nearly half of urban growth
occurs in informal settlements, which are noted for their lack of clean water and
proper sanitation and are considered especially vulnerable to adverse health and
safety outcomes (Vojnovic et al., 2019; WHO, 2022). Further, many of those indi-
viduals locating to urban areas have been forcibly displaced, often due to man-
made forces such as climate change (Perry et al., 2021). Additionally, the growth of
urban areas has gone hand-in-hand with social inequality (Loukaitou-Sideris, 2020).
As a result, urbanization—and in particular, unplanned and rapid urbanization—is
connected with a majority of the leading causes of death (WHO, 2022).

Meeting persistent and emerging challenges related to twenty-first century urban-
izationwill require approaches that canmeaningfully embody those complex systems
and systems-of-systems that characterize urban environments. Accordingly, there is
a need to create a paradigm shift to develop a systematic and theoretical frame-
work to proliferate CUS. The CUS framework presented in this chapter can propel
a paradigm shift in the state of urban science through its integration of multidis-
ciplinary and transdisciplinary theory, methodology, analysis, action planning, and
community engagement. Along these lines, the four layers that constitute the CUS
framework delineated herein can contribute to urban sustainability in the twenty-first
century. In particular, with its emphasis on community engagement, this CUS frame-
work can also address longstanding issues in urban research and design, most notably
historical failures of these fields to be fully participatory and inclusive and to account
for justice (Loukaitou-Sideris, 2020). By collaborating with underrepresented and
diverse communities and by increasing communication with these communities, the
field of CUS can enable urban design that can reduce biases and create a shared
language and set of norms to bring a greater understanding of underlying complex
systems and systems-of-systems. As a result, CUS can provide a means for enabling
authentic bottom-up input from marginalized urban communities that can enable
sustainable, equitable, and just urban development moving forward.
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Chapter 32
What Can We Learn from “Deviations”
in Urban Science?

Fan Zhang and Xiang Ye

Abstract “Deviation” is common in scientific research, referring to the phenomenon
that the output of a process is different from the expected. Deviation may possess
various appearances and definitions, e.g., deviation of an observation from the truth,
the general trend, or the theoretical value under assumptions, etc. Although in many
cases it is perceived by the researcher as unwanted, it may be an inspirer and facili-
tator, leading to new discoveries and insights from innovative pathways. This chapter
initiates a discussion on what and how we can learn from deviations, particularly in
urban science. We use several application examples featuring big data and deep
learning to illustrate our points.

Keywords Deviation · Quantitative analysis · Urban science · Deep learning ·
Street view imagery

32.1 Introduction

“Deviation” is a very common phenomenon in scientific research. In this chapter
we use this term to refer to the difference between what is obtained and what is
referenced. In many cases, a deviation is not favored by the researcher, as it brings
the feeling that something is “wrong”. In this case, a common response is to mitigate,
offset, or eradicate its appearance and effects, as if it was a nuisance to tidy data,
accurate models, correct predictions, and unregretful decisions (Yuan et al., 2020).

However, treating the deviation as a nuisance is not necessarily the only or even
the principal way of dealing with it in scientific research. Depending on objectives,
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viewpoints, contexts, and available options, there is a collection of alternative possi-
bilities to harness the deviation as a tool, an information source, or an innovative
entry point, to answer questions that have been previously left unattended.

With this chapter, we intend to initiate a discussion on deviation, exploring the
diversity of its appearance, meaningfulness (Sect. 32.2), and statistical properties
(Sect. 32.3), as well as a variety of strategies toward it (Sect. 32.4). A selection
of application examples in urban science are demonstrated thereafter (Sect. 32.5),
leading to the conclusion that how deviations can bring us more benefits than
challenges if we take an alternative viewpoint (Sect. 32.6).

32.2 A Variety of Deviations

A general understanding of deviation is “the difference between what is obtained and
what is referenced”. Therefore, what is to be referenced can be used as the benchmark
to define deviations in different contexts.

The most straightforward benchmark is truth (Fig. 32.1a). A deviation from truth
is an error, originated from the limited accuracy and ability to describe the real
world. Rarely do we appreciate this kind of deviation, albeit its existence is almost
inevitable and omnipresent.

Another frequently adopted benchmark is the theoretical extremumof an indicator
(Fig. 32.1b). In fitting and predicting, an indicator is chosen to assess the performance
of the model. While we usually do not expect the indicator to reach the theoretical
extremum, a smaller deviation is always preferred: We like to see a small RMSE,
a large R2, or a confusion matrix with its non-zero elements mostly along the main
diagonal.

A related benchmark is the theoretical expectation under the null hypothesis
(Fig. 32.1c). Contrary to the situation of theoretical extremum, the deviation from
the null hypothesis is usually favored, because only when it is large enough, can we
reject the null hypothesis and claim the usually more interesting alternative.

Meanwhile, a benchmark can be the theoretical output value from a model under
themodel’s assumptions (Fig. 32.1d). Assumptions are pre-set conditions for amodel
to perform as expected. On the one hand, the model itself does not possess any ability
to check if the desired assumptions are honored. On the other hand, failure to meet
these assumptions leads to model misspecification (Hansen, 2021, pp. 213–214), and
the variable of interest may deviate from its theoretical value. The deviation from that
benchmark typically leads to a deeper exploration and refinement of the model: How
should we determine if an assumption is violated? How would the model behave if
a certain assumption is relaxed?

In some situations, existing observations are referenced as a benchmark
(Fig. 32.1e). This is typically the case if the same model is applied to different data
sets. When the model outcomes based on a newer set of data are available, they are
naturally comparedwith the existing ones to see if any deviations appear. In social and
environmental sciences, this deviation is a manifestation of the weak replicability
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Fig. 32.1 Deviations categorized by the benchmark. a The deviation from truth. b The deviation
from the theoretical extremumof an indicator. cThe deviation from the theoretical expectation under
null hypothesis. d The deviation from the theoretical value under assumptions. e The deviation from
existing observations. f The deviation from general trend

(Goodchild & Li, 2021), suggesting a limited adaptability of a model established
based on one dataset when applying to another dataset. Though considered negative
at the first glance, it can help understanding heterogeneity when properly adopted.

Last but not least, the benchmark can be general trend (Fig. 32.1f). General trend
serves as a background for investigating individual cases, during which we care more
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Fig. 32.2 Statistical
properties of deviation

about outliers, i.e., those exhibiting large deviations from the general trend. In this
case, the deviation is not an obstacle of science, but an exciting point of entry to new
findings of heterogeneity and uniqueness.

32.3 Statistical Properties of Deviation

If we observe a deviation only once or a couple of times, we are not confident to make
an affirmative claim, because we are unsure if it is large enough and/or statistically
significant to be treated with extra attention. If we do observe the deviation of the
same kind many times (Fig. 32.2), we may be able to acquire sufficient evidence
to tell the nature of the deviation. In particular, we can quantify its uncertainty with
variance, and determine if it indicates bias bymeasuring its direction andmagnitude.

32.4 Strategies for Dealing with Deviation

The analysis of different types of deviations helps us choose the proper strategy to
deal with them in research. Here we describe four strategies, which form a spectrum
from most avoiding to most welcoming:

Elimination or mitigation. This strategy might be the most intuitive one. Depending
on how well the nature of deviation is understood and how much information is
available, the impacts of deviation will be eliminated or mitigated.

Acceptation and evaluation. We no longer perceive the deviation as a nuisance that
must be eradicated. Instead, we accept it as an inherent property of the real world
or the model we adopt. Then, we would like to evaluate and understand it, through,
e.g., quantifying its magnitude and uncertainty.

Investigation and explanation. With an understanding that an exception (outlier)
typically indicates something that is unknown, surprising, or even exciting, we want
to look into it and give it an explanation.

Exploration and utilization. Finally, we entirely reverse the role of deviation. Instead
of seeing it as an enemy, we see it as an ally that can help us discover new knowledge.
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To achieve this harmony, we need to shift our mind and think outside the box. In the
next section, we will show application examples to demonstrate how deviation can
help urban scientists in an innovative and beneficial way.

32.5 When Deviation Fuels Urban Science

32.5.1 Deviation as Outliers: Exploring Uniqueness of Places

In a study conducted by Zhang et al. (2019a), street view images were used to
estimate the temporal patterns of human mobility on streets in Beijing, China via
machine learning techniques. They employed the hourly volume of taxi trips as a
proxy for the human mobility pattern and assumed that the streetscape depicted in
street-level imagery reflects urban functions. A deep convolutional neural network
(DCNN) was trained to predict the hourly volume of taxi trips based on street view
images. Figure 32.3a shows a plot of the relationship between the actual number of
taxi trips and the corresponding mean absolute error (MAE) of the predictions from
the DCNN model. Generally, the MAE increases steadily with the number of taxi
trips (Pearson’s r = 0.91); however, there are two outliers popping up, shown as the
red dots.

The authors of the study chose to not ignore the two outliers, but instead to
give them a further investigation. They found that for the two outliers, Liuli Bridge
(Fig. 32.3b) and Beijing South Station (Fig. 32.3c), each represents a special local
traffic situation. At Liuli Bridge, the taxi flow was underestimated (1577 actual
vs. 937 predicted), possibly due to the additional taxi traffic brought about by the
coach station that was not reflected in the street view images. At Beijing South
Station, the taxi flow was overestimated (2167 actual vs. 2736 predicted), because
a considerable amount of potential taxi customers got diverted to subway, as this is
where two subway lines intersect. Albeit seemingly frustrating at the beginning from
the perspective of modeling, these deviations from the general trend eventually led
to findings about the place uniqueness and offered insights about Beijing’s traffic
pattern at a local scale.

32.5.2 Deviation as Misclassification: Measuring Visual
Similarity Between Cities

Zhang et al. (2019b) proposed a framework to measure the visual similarity among
(and the distinctiveness of) 18 selected cities based on a confusion matrix (Fig. 32.4).
By feeding millions of geo-tagged photos obtained from social media, a DCNN was
trained to recognize the city from which the photos were taken. To evaluate the
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Fig. 32.3 Estimating the temporal variation of taxi flow on a street based on street view images
using a DCNN. a MAE increases steadily with the number of taxi trips with two outliers. b Image
samples of Liuli Bridge. c Image samples of Beijing South Station. Source Adapted from Zhang
et al. (2019a)

performance of the model, a confusion matrix was generated to record the identifi-
cation results. In Fig. 32.4a, each cell contains the value of ratio Nij/Ni, where Ni is
the number of all photos actually of city i, and Nij is the number of photos in Ni that
were identified as city j by the model.

Commonly, one would simply use this matrix to assess the performance of the
proposed model. Zhang et al. (2019b), however, utilized the deviation information in
thematrix to evaluate visual features of the cities. If a diagonal value of the confusion
matrix considerably deviates from its theoretical extremum, 100%, it means the city
is not easy to be identified visually—the diagonal value actually can be used to
quantify the visual distinctiveness of that city. On the other hand, if an off-diagonal
value considerably deviates from its theoretical extremum, 0%, it indicates a good
chance that a city is to be misclassified to another. If two off-diagonal values at
the symmetrical positions are both high, these two cities are easily to be mutually
misclassified, i.e., they have a high visual similarity (Fig. 32.4b).
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Fig. 32.4 Measuring similarity and distinctiveness of cities using a confusion matrix. a Confusion
matrix. b Similarity matrix. Source Adapted from Zhang et al. (2019b)

32.5.3 Deviation as a Weak Replication: Revealing
the Heterogeneity of the World

Figure 32.5 shows a study of predicting house prices based on Google Street View
imagery using a DCNN model. When both training set and testing set were from the
same city, either Boston or Detroit, the models were able to successfully associate
house price with visual appearance (Fig. 32.5a, b). However, when the model was
trainedwith the data fromDetroit and then applied to Boston, it greatly overestimated
house prices in Boston, andwhat was evenworse, it reversed the actual spatial pattern
of Boston’s house prices between downtown and suburbs.

Fig. 32.5 Revealing the heterogeneity of the real estatemarket byweak replication. aActual spatial
distribution of Boston house prices. b Predicted Boston house prices from the model trained with
the data from Boston. c Predicted Boston house prices from the model trained with the data from
Detroit. Image credit Kang, Yuhao (University of Wisconsin-Madison)
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Obviously, the model trained with the data from Detroit does not work well for
Boston. However, such a deviation unravels the distinctive tastes in the real estate
market of the two cities: the visual quality of a neighborhood is less priced-in in
Boston than in Detroit, while a “downtown-look” is a price booster in Boston but
a price killer in Detroit. In this way, the deviation becomes a valuable information
source.

32.6 Conclusion

There are different types of deviations that can demonstrate different characteristics.
On the one hand, they may cost additional wisdom and endeavors to meet the chal-
lenge they impose to research. On the other hand, they can be valuable information
sources for researchers to uncover more about the phenomenon of interest. Within a
context of urban science, this perspective is opening up new possibilities in changing
the way we perceive and understand cities and in revealing the heterogeneity and
general laws of the world. We hope this chapter can serve as an initiation of further
discussion and exploration on this topic.
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Chapter 33
Variants of Location-Allocation
Problems for Public Service Planning

Yunfeng Kong

Abstract This chapter presents some variants of the location-allocation problems
(LAPs)with additional criteria for service planning such as partial coverage of service
demand, contiguous service areas, and equal service areas. The variants arise in appli-
cations such as the selection of facility sites for the “15-minute city”, the delineation
of public service areas, and the provision of some emergency services in the COVID-
19 pandemic. The criteria are formulated as linear inequalities and thus can be added
to the classical LAP models. It is challenging to solve those variants, since LAPs are
known to be nondeterministic polynomial time hard (NP-hard), and the new criteria
may impose further obstacles to the analytical solution. At the end of the chapter, I
discuss possible methods to solve the variants.

Keywords Location-allocation problem · Partial coverage · Contiguous service
area · Mathematical model · Solution method

33.1 Introduction

The location-allocation problems (LAPs) have been extensively investigated since
1960s. All such problems aim to optimally locate a set of facilities and assign all the
demand to facilities. They have been widely used in both public and private facility
planning, such as schools, healthcare centers, warehouses, and logistic centers. For
problem definition, mathematical formulation, algorithm design, and applications of
the LAPs, please refer to Eiselt and Marianov (2011) and Laporte et al. (2015).

The real-world site selection often requires additional criteria to achieve an effec-
tive and efficient service system. This chapter presents three new criteria for public
service planning: partial coverage of service demand, contiguous service areas, and
equal service areas. The partial coverage means that the model allows a part of the
demand from a demand point to be not covered by the facilities within the specified
impedance threshold. It is a way to balance the service cost and spatial access. Such
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a balance is a major consideration in service planning, e.g., in realizing the so-called
“15-minute city”, which aims to achieve the goal that most human needs and many
desires can be met by facilities located within a travel distance of 15 min (Ministry of
Housing and Urban–Rural Development of the People’s Republic of China, 2018).
The contiguous service areameans that the service area of a facility should be formed
by spatially contiguous areal units. It is one of the essential issues in service plan-
ning (Kong 2021b), and also a necessity to consider service management and related
policy making (Daskin, 2011). The equality of service areas means that the demands
in the service areas are equal, and thus the work tasks can be equally assigned to the
service suppliers. In case of the lockdown in some cities in China over COVID-19
outbreak, a set of facilities with equal and contiguous service areas can be used to
deploy emergency services such as the medicine distribution, the supply of daily
necessities, and the large-scale nucleic acid detection of COVID-19 (Kong, 2021a).
In the following sections, LAPs with these new criteria are mathematically formu-
lated as mixed integer linear programming (MILP) models. The possible solution
methods for the new problems are discussed. Finally, two concluding remarks are
highlighted.

33.2 Variants of Location-Allocation Problems

33.2.1 Classical Location-Allocation Problems

Let I be a set of candidate locations for opening facilities, and J be a set of customers.
Each facility at location i has a fixed cost f i and a maximum service capacity si. Each
customer j has a demand dj. The distance from customer j to the facility located at i
is known, denoted as dij, and the cost for satisfying the demand of customer j from
the facility at i is given, denoted as cij. The classical location-allocation problems
can be formulated by defining deferent decision variables, objective functions, and
constraints as follows (Laporte et al., 2015).

f1 =
∑

i∈I

∑

j∈J

ci j xi j (33.1)

f2 =
∑

i∈I
fi yi +

∑

i∈I

∑

j∈J

ci j xi j (33.2)

f3 =
∑

i∈I
fi yi (33.3)

∑

i∈I
xi j = 1, ∀ j ∈ J (33.4)
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∑

i∈I,di j≤r

yi ≥ 1, ∀ j ∈ J (33.5)

∑

i∈I
yi = P (33.6)

xi j ≤ yi , ∀i ∈ I, j ∈ J (33.7)

∑

j∈J

d j xi j ≤ si yi , ∀i ∈ I (33.8)

xi j = [0, 1], ∀i ∈ I, j ∈ J (33.9)

xi j = {0, 1}, ∀i ∈ I, j ∈ J (33.10)

yi = {0, 1}, ∀i ∈ I (33.11)

The p-median problem (PMP) minimizes the objective function (33.1) subject to
constraints (33.4), (33.6), (33.7), (33.10) and (33.11). The capacitated PMP (CPMP)
minimizes the objective function (33.1) subject to constraints (33.4), (33.6), (33.8),
(33.10) and (33.11).

The uncapacitated facility location problem (UFLP) targets the minimization of
objective function (33.2) subject to constraints (33.4), (33.7), (33.9) and (33.11).
The capacitated version (CFLP) minimizes the objective function (33.2) subject to
constraints (33.4), (33.8), (33.9) and (33.11). In single-source CFLP (SSCFLP),
each customer can only be served by one facility. It targets the minimization of
objective function (33.2) subject to constraints (33.4), (33.8), (33.10) and (33.11).
Since the number of facilities, the facility locations, and the demand allocations must
be considered simultaneously, the SSCFLP might be the hardest problem of LAPs.

Given amaximum service radius r, the location set covering problem (LSCP) aims
to search for a minimum number of locations for opening facilities. It minimizes the
objective function (33.3) subject to constraints (33.5) and (33.11).

33.2.2 Partial Coverage Location-Allocation Problems

Spatial accessibility is one of themost important indicators to evaluate service quality
and equality. In urban planning, the service radius has been widely used to guide the
service design. Deferent service radiuses are recommended by planning authorities
for different public services. Given a maximum service radius r, the constraints
(33.4) can be replaced with constraints (33.12) in PMP, CPMP, UFLP, CFLP and
SSCFLP. In constraints (33.12), each demand can only be covered by a facility with
the service radius r, which will improve the spatial access to services. The LAPs
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with a maximum service radius are denoted as rPMP, rCPMP, rUFLP, rCFLP and
rSSCFLP.

∑

i∈I,di j≤r

xi j = 1, ∀ j ∈ J (33.12)

The location problems with a service radius can effectively improve spatial access
to services. However, under this condition the number of facilities required to cover
all demand will increase dramatically. For example, in a city with a population of
about 0.71 million and a size of 132 km2, a conventional SSCFLP would locate 8
community healthcare centers to cover all service demand, with an average travel
distance of 1.47 km. However, using the rSSCFLP with a maximum service radius
of 2.0 km, 24 centers are required.

It is possible to balance the service quality and service-supply efficiency using
partial coverage of demand. Partial coverage for LSCP, PMP, UFLP has been investi-
gated with case studies (Cordeau et al., 2019; Daskin & Owen, 1999; Nozick, 2001;
Vasko, 2003). Methods such as Lagrangian heuristic and Benders decomposition
were used to solve the partial coverage location problems. Experiments show that the
numbers of required facilities in the partial coverage solutions change dramatically
with different service radiuses and percentages of demand coverage.

A constraint on partial coverage (33.13) can be added in the classical PMP, CPMP,
UFLP, CFLP, and SSCFLP. The parameterμ denotes a percentage of service demand
that must be covered within the service radius r. Thus, the partial coverage LAPs are
denoted as μPMP, μCPMP, μUFLP, μCFLP and μSSCFLP, respectively.

∑

i∈I

∑

j∈J,di j≤r

d j xi j ≥ μ
∑

j∈J

d j (33.13)

Partial coverage LSCP (μLSCP) can be formulated as the minimization of objec-
tive function (33.3) subject to (33.11) and (33.14)–(33.16). The decision variable z j
indicates whether costumer j is covered by at least one facility or not.

∑

i∈I,di j≤r

yi ≥ z j , ∀ j ∈ J (33.14)

∑

j∈J

d j z j ≥ μ
∑

j∈J

d j (33.15)

z j = {0, 1}, ∀ j ∈ J (33.16)

Note that in problems such asμCPMP,μCFLP, andμSSCFLP, all demandmust be
satisfied by conditions (33.4). In these problems, it is a necessity to cover all demand
for public services. Meanwhile, a small part of demand is allowed to be covered
outside the service radius, which will decrease the number of facilities required and
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thus improve the service-supply efficiency.As a result, these variants have application
potentials in service planning toward the “15-minute city”.

33.2.3 Location-Allocation Problems with Contiguous
Service Areas

The delineation of the service area for a facility is a must in the assessment and/or
planning of some public services. A service area is considered contiguous if one
can travel between any two points in the area without crossing its boundaries. Such
a continuity is a convenience to the management of schools (Caro et al., 2004),
healthcare centers (Emiliano et al., 2017), disaster shelters (Hu et al., 2014), and
many other facilities. LAPs with contiguous service areas aim to simultaneously
locate the facilities, allocate demand units to the facilities, and delineate contiguous
service areas for the facilities.

Let J be a set of spatial units in a geographical area. Let I, a subset of J (I ⊆ J ),
be candidate units for locating facilities. The variables f i, si, dj, dij, and cij have the
samemeanings as defined earlier. The formulas (33.1)–(33.16) can also be applied to
LAPs associated with geographical areas. At the same time, it is possible to extend
the problems by adding contiguity constraints on facility service areas. A flow-
based model was proposed for the p-Regions problem (Duque et al., 2011) and has
been adaptively formulated for service area problem (Kong, 2021b) and districting
problem (Kong, 2021b; Kong et al., 2019). Let a jk indicate whether unit j and k share
a border, and Nj be a set of units that are adjacent to unit j (N j = {k|a jk = 1}). Let
f ijk be decision variables that indicate the flow volume from unit j to unit k in service
area i, and the flow model for SSCFLP can be formulated as follows:

fi jk ≤ |J | ∗ xi j , ∀i ∈ I, j ∈ J, k ∈ N j (33.17)

fi jk ≤ |J | ∗ xik, ∀i ∈ I, j ∈ J, k ∈ N j (33.18)

∑

k∈N j

fi jk −
∑

k∈N j

fik j ≥ xi j , ∀i ∈ I, j ∈ J\i (33.19)

fi jk ≥ 0, ∀i ∈ I, j ∈ J, k ∈ N j (33.20)

In the flow-based model, the service area contiguity is ensured by establishing a
flow route from each spatial unit to its facility unit within its service area. Constraints
(33.17) and (33.18) ensure that a flow may only be passed through neighboring units
in the same district. If unit i does not serve as the center unit, constraints (33.19)
state that one unit of flow must be created from this unit, and finally flows to its
service-supply unit.
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The flow model (33.17)–(33.20) can be added to CPMP, SSCFLP, rCPMP,
rSSCFLP, μCPMP, and μSSCFLP. These problems with contiguous service areas
are denoted as cCPMP, cSSCFLP, crCPMP, crSSCFLP, cμCPMP, and cμSSCFLP,
respectively.

33.2.4 The Equal Districting Problem

The equal districting problem (EDP) arises in applications such as political redis-
tricting, police patrol area delineation, sales territory design and some service systems
design (Kong, 2021a). The EDP is the problem of grouping geographic areas into P
districts that have equal quantities of voters, work tasks, service demands, or other
indicators. The key criteria in the EDP include equality, contiguity, and compactness
(Kalcsics, 2015).

The EDP can be formulated as an equal-capacitated PMPwith contiguous service
areas. Location-allocationmodelswere proposed byHess et al. (1965),Hojati (1996),
and George et al. (1997) for political districting. This approach was further investi-
gated by Kong et al. (2019) and Kong (2021a). The facility locations can be consid-
ered as district centers. As a result, it is convenient to measure district contiguity and
compactness using the district centers (Kalcsics, 2015).

Let J be a set of spatial units in a geographical area, and d j is an attribute of unit j.
Let I be a set of candidate units for locating facilities. If we assume that all the spatial
units can be candidate units, then it is obvious that I = J . Let Q = ∑

i∈J d j/P
be the facility capacity, and then the capacity constraints (33.8) can be replaced by
(33.21). Note that P is the number of districts. Constraints (33.21) confirm that the
demands allocated to facilities are almost equal with a predefined error ε, e.g. ε =
5%. The equal-capacitated PMP minimizes the objective function (33.1) subject to
(33.4), (33.6), (33.8), (33.10), (33.11), and (33.21). The equal-capacitated PMPwith
contiguous service areas minimizes the objective function (33.1) subject to (33.4),
(33.6), (33.8), (33.10), (33.11), and (33.17)–(33.21).

(1 − ε)Qyi ≤
∑

j∈J

d j xi j ≤ (1 + ε)Qyi , ∀i ∈ I (33.21)

Using the location-allocation method, the criteria for EDP, such as the district
equality, compactness, and contiguity, are satisfied by the constraints (33.21), the
objective function (33.1), and the flow model (33.17)–(33.20), respectively. In
addition, the facility locations serve as the centers of districts.
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33.2.5 Problem Properties

The solutions of a partial coverage LAP may change significantly from case to case
due to different settings for parameters r and μ (Daskin & Owen, 1999; Nozick,
2001). Given a p-median problem instance, its optimal objectives satisfy the inequal-
ities (33.22), (33.23), and (33.24). The CPMP, SSCFLP, and their variants share the
same properties.

fPMP = fr PMP(r=∞) ≤ fμPMP(r,μ) ≤ fμPMP(r,μ=100%) = fr PMP(r) (33.22)

fμPMP(r1,μ) ≤ fμPMP(r2,μ), ∀r1 > r2 (33.23)

fμPMP(r,μ1) ≤ fμPMP(r,μ2), ∀μ1 < μ2 (33.24)

fC PMP = frC PMP(r=∞) ≤ fμCPMP(r,μ) ≤ fμCPMP(r,μ=100%) = frC PMP(r)

(33.25)

fμCPMP(r1,μ) ≤ fμCPMP(r2,μ), ∀r1 > r2 (33.26)

fμCPMP(r,μ1) ≤ fμCPMP(r,μ2), ∀μ1 < μ2 (33.27)

fSSCFLP = fr SSCFLP(r=∞) ≤ fμSSCFLP(r,μ) ≤ fμSSCFLP(r,μ=100%) = fr SSCFLP(r)

(33.28)

fμSSCFLP(r1,μ) ≤ fμSSCFLP(r2,μ), ∀r1 > r2 (33.29)

fμSSCFLP(r,μ1) ≤ fμSSCFLP(r,μ2), ∀μ1 < μ2 (33.30)

For the μLSCP, μPMP, μCPMP and μSSCFLP, the service quality and service
efficiency are controlled by the two parameters: r and μ. The PMP, CPMP and
SSCFLP (r = ∞ andμ = 0%) emphasize the solution efficiency. The service quality
in terms of spatial access is considered in LSCP, rPMP, rCPMP, and rSSCFLP (μ
= 100%). However, if a small r value is given, an instance of the problem may
be infeasible, or its objective may be very high. In real-world service planning, a
satisfactory solution may be obtained by tuning r and μ.

An LAP with contiguous service areas may have its objective raised, and also
have the facility locations changed.
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33.3 Possible Approaches to Solving the Models

It is challenging to solve the LAPs, since they are known to be nondeterministic
polynomial time hard (NP-hard). In the past 60 years, countless algorithms have
been proposed for the LAPs (Turkoglu & Genevois, 2020). The solution methods
can be classified into four categories: exact methods, Lagrangian relaxation-based
heuristics (LHs), local search based or evolutionary based heuristics/metaheuristics,
and hybrid algorithms. Most existing algorithms for LAPs can be adapted to solve
the new problems discussed in this chapter. Nevertheless, for the hardest problems
such as μSSCFLP, it is still challenging to solve large instances.

The general set covering problem (SCP) and the specific LSCP have been
extensively investigated since 1960s (Farahani et al., 2012). The general-purpose
MIP solvers like CPLEX are competitive for solving small and some large LSCP
instances (Caprara et al., 2000). The author’s experiments show that many real-world
LSCP/μLSCP instances can be effectively solved byGurobiOptimizer 9 on a desktop
computer. For very large LSCP/μLSCP instances, it is necessary to design an LH,
metaheuristic, or hybrid algorithm.

The fast implementation (Resende & Werneck, 2007) of the interchange method
(Teitz & Bart, 1968) might be the best choice for solving PMP. The metaheuristics
based on variable depth neighborhood structure or interchange method are more
effective in a reasonable computational time. The sampling technique is helpful to
solve very large PMP instances (Mu & Tong, 2020). These existing methods might
be useful for rPMP and μPMP, but their performance remains uninvestigated.

Various Lagrangian relaxation-based heuristics (LHs) for PMP, CPMP, UFLP,
CFLP, and SSCFLP have been proposed since 1970s. LHs are usually simple, and
also have an advantage of providing a lower bound to evaluate the incumbent solution.
As a result, LHs are widely used to generate initial solutions for metaheuristics. It is
worth to explore the Lagrangian relaxation techniques for μLSCP μCPMP μCFLP,
and μSSCFLP.

Exactmethods such as branch-and-bound, branch-and-cut, columngeneration and
Benders decomposition have been widely used to solve various LAPs. Along with
the rapid progress in mixed integer linear programming, it is an easy way to solve
LAP instances by commercial or open-source mixed-integer programming (MIP)
solvers. Existing experiments show that many location problem instances could be
exactly solved in a reasonable time by CPLEX Optimizer or Gurobi Optimizer.

Table 33.1 shows some problem solutions obtained by Gurobi 9.1.2 on a desktop
computer with Intel Core I7-6700 CPU 3.40-GHz, and 8-GB RAM. The instances
were created by the author based on rural and urban geographic data. The solution
quality in terms of MIPGap and computational time show that the optimal or near-
optimal solutions could be found by commercial MIP solvers. Experiments also
show that the performance of MIP solver depends on the problem type, instance
size, and problem parameters. The instance complexity also depends on supply–
demand ratio and the cost structure. Since the techniques from metaheuristics have
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Table 33.1 Selected problem instances and their solutions found by Gurobi optimizer

Problem Instance size (|I| * |J|) Problem parameters MIPGap Time (s)

LSCP 2214 * 2214 r = 1.0 km 4.70% 7200.00

μLSCP 2214 * 2214 r = 1.0 km, μ = 90% Optimal 146.11

PMP 1276 * 1276 P = 50 Optimal 377.10

rPMP 1276 * 1276 r = 3.0 km, P = 50 Optimal 2036.67

μPMP 1276 * 1276 r = 3.0 km, μ = 80%, P = 50 Optimal 4068.82

cPMP 324 * 324 P = 20 Optimal 3390.67

CPMP 146 * 2999 P = 25 Optimal 4973.70

rCPMP 146 * 2999 r = 2.0 km, P = 25 Optimal 1039.75

μCPMP 146 * 2999 r = 1.0 km, μ = 80%, P = 25 Optimal 6695.39

cCPMP 33 * 1276 P = 20 Optimal 2564.45

cμCPMP 297 * 297 r = 4.0 km, μ = 80%, P = 20 Optimal 6648.62

SSCFLP 33 * 1276 – 0.01% 7200.00

cSSCFLP 33 * 1276 – 0.16% 7200.00

rSSCFLP 198 * 2999 r = 1.5 km Optimal 1605.55

μSSCFLP 146 * 2999 r = 1.0 km, μ = 80% 1.84% 7200.00

μcSSCFLP 297 * 297 r = 4.0 km, μ = 80% 14.71% 7200.00

EDP 324 * 324 ε = 5%, P = 15 Optimal 4973.77

been incorporated in the MIP solvers, the state-of-the-art solvers might be a good
choice for solving many real-world problems.

A large LAP instance is hard to solve; however, it could be solved by repeat-
edly searching for small parts of the instance. Accordingly, the matheuristic, which
explores large neighborhoods by a MIP solver, may be a promising method for
high-complexity problems such as CPMP, SSCFLP and their variants.

33.4 Concluding Remarks

Novel variants of classical LAPs are valuable for modern public service planning.
First, the service cost and spatial access of service can be balanced by the two
parameters in partial coverage location problems. Second, the location-allocation
method for equal districting is effective to design some service systems.

Most variants of the classical LAPs are difficult to solve. The current competitive
solutionmethods for LAPs should be reinvestigated and adapted to solve the variants.
The matheuristic might be an efficient way to solve the new problems. In addition,
application-oriented GIS tools should be developed for planning practitioners.

Acknowledgements Research partially supported by the National Natural Science Foundation of
China (No. 41871307).
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Chapter 34
Smart, Sustainable, and Resilient
Transportation System

Zhong-Ren Peng, Wei Zhai, and Kaifa Lu

Abstract The transportation system, particularly the surface transportation system,
has been evolving, albeit slowly. But that evolution has been exacerbated recently
toward a smarter, more sustainable, and more resilient system. Connected and auto-
mated technologies enable vehicles smarter; electrical vehicles, and shared mobility,
particularly shared micromobility and microtransit system make the transportation
systems more sustainable; adaptive and resilient infrastructure planning and design
makes the transportation infrastructure system more resilient. These changes repre-
sent the future of transportation system, a smarter, more sustainable, and more
resilient system, with mobility on demand.

Keywords Transportation system · Smart · Sustainability · Resilience · Equity

34.1 Introduction

Transportation system plays a vital role to meet the travel needs of society and is
an indispensable component in the urban fabric. Generally, the evolution of trans-
portation system could be a good manifestation of urban development at different
stages. Modern cities are embracing a smarter future but also facing more serious
external challenges, i.e., climatic threats, equity issues and sustainability concerns.
This naturally puts forward new requirements of future mobility options towards a
smarter, more sustainable, and more resilient transportation system to combat these
challenges. Meanwhile, technological development and innovations provide more
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potential solutions, such as the emergence of automated vehicles, electric vehicles,
and shared micro-mobility that could offer full mobility of demand. The rest of this
chapter aims to present some visions of future transportation systems and innovative
ideas on how to promote a smarter, sustainable, and resilient transportation system
to adapt to future technology innovations, urban development, and climate change.

34.2 Smarter and More Intelligent

Intelligent Transportation System (ITS) has experienced rapid development over the
last decades that can help improve mobility, enhance safety, and promote sustain-
ability (Lin et al., 2017). As a typical product of ITS, the connected and automated
vehicle (CAV) system is a transformative technology that consists of interconnected
and automated vehicles through vehicle to X (V2X) technologies.

34.2.1 Automated Vehicles

The rapid evolution of autonomous technology in the field of automotive and
computer vision has made it possible to use automated vehicles for passenger and
freight transportation.As a result, automated vehicles have attractedworldwide atten-
tion for their huge potentials in reducing traffic congestion, enhancing road safety,
and promoting equity for people who are not able to drive. Autonomy characteris-
tics of automated vehicles are generally categorized into six levels (Iclodean et al.,
2020), no automation (L0), driver assistance (L1), partial automation (L2), condi-
tional automation (L3), high automation (L4) and full automation (L5). Current
automated vehicles serving public roads have reached the Level 3 and 4 of automa-
tion, including Apollo Baidu in China, EasyMile EZ10 and Navya Arma in France,
and Olli Local Motors in USA (Iclodean et al., 2020). However, the vast majority
of these automated vehicles emerge from startups, and there is still a long way to
go towards full automation and implementation. The issues are not just limited to
autonomy technologies. There are challenges associated with ethnic and legislation
issues as well. Nevertheless, full autonomous vehicles will be the future even though
there is a bumpy road ahead.

34.2.2 Connected Vehicles and V2X Technologies

V2X technologies refer to a number of different communication technologies serving
for vehicles to communicate with other on-road vehicles (connected vehicles) (V2V)
and roadside infrastructures (V2I), pedestrians (V2P), etc. V2I captures vehicle-
generated traffic data, advisories from infrastructures to the vehicle that inform the
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driver of safety, mobility, or environment-related conditions. Furthermore, future
deployment of V2I infrastructures would be more likely located alongside or inte-
grated with existing ITS equipment (U.S. DOT, 2021). V2V enables the connected
vehicles to wirelessly exchange information about speed, location, and heading of
each vehicle. The advancement of V2V technologies allows truly connected vehi-
cles, such as receiving omni-directional messages up to 10 times per second, creating
a 360° “awareness” of other vehicles in proximity, and detecting dangers within a
range of more than 300 m (U.S. DOT, 2021). V2P encompasses the interactions on
a broad set of road users including pedestrians, cyclists, children in strollers, people
using wheelchairs, passengers onboarding and offboarding buses, etc. (U.S. DOT,
2021). V2P will transmit these interactions to the connected vehicles in real time
for rapid response and safe driving. These technology innovations will make vehi-
cles connected and smarter, and they will significantly reduce or even eventually
eliminate vehicle crashes.

34.3 More Sustainable

In addition to increasedmobility, future development of transportation system should
consider longer-term impacts such as climate change to reduce vehicle emissions,
decarbonize mobility and promote sustainability while maintaining a normal level
of services for citizens. Generally, sustainable transportation can make a positive
contribution to the environmental, social, and economic sustainability of the cities
and communities they serve. Many efforts have been taken to emphasize the neces-
sity of making transport more sustainable, ranging from electric vehicles, shared
mobility (i.e., micromobility and microtransit), sustainable transportation, and land
use planning.

34.3.1 Electric Vehicles

Electric vehicles (EVs) are gaining increasing interests and will become the majority
of vehicles on the road in the near future as amore sustainable mode of transportation
with less greenhouse gas emissions than traditional vehicles. As revealed by Farid
et al. (2021), EVs consume less energy per unit distance, emit less carbon dioxide
into the atmosphere and could even shift the emissions to generate new power for
EV themselves. There are lots of mature EV companies that produce a significant
number of EVs, such as Tesla and Chevrolet in USA, Toyota in Japan, NIO, XPeng
Motors and BYD in China (Shao et al., 2021). However, the wide adoption of EVs
highly relies on the development level of the supporting EV infrastructures, i.e.,
the spatial distribution of charging stations in cities. Therefore, how to accelerate
the deployment of EV infrastructures is becoming the biggest barrier in promoting
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the usage of EVs. This requires joint efforts of different stakeholders including EV
companies, federal, state, and local governments, as well as residents.

34.3.2 Microtransit

Microtransit is a form of demand-responsive transportation mode, especially serving
for the first- or last-mile transit demands. Microtransit service offers a highly flex-
ible route and schedule of minibus vehicles (e.g., autonomous vehicles, connectors,
circulators, and dial-a-ride, etc.) usually shared with other passengers (Abduljabbar
et al., 2021). The emergence of microtransit greatly extends the efficiency and acces-
sibility of the existing transit system by satisfying people’s travel demand for the first
or last mile that traditional transit cannot cover. Furthermore, an efficientmicrotransit
service may substitute many traditional public transit services, particularly in areas
with an imbalance of supply and demand (Driverseat, 2021). According to Hazan
et al. (2019), microtransit contributes to a 15%–30% decrease in traffic and carbon
emissions. Another important goal of microtransit is to further expand the existing
transit network’s geographic and demographic reach towards more equity, usually
serving populations in low-density areas, in the socioeconomically disadvantageous
segments, and the elderlies who lack other reliable transportation options. Micro-
transit service required changes and support of current transportation policies, but
once approved, it is much easier to implement without requiring extra transportation
facilities. Frost and Sullivan’s research (Driverseat, 2021) shows that themicrotransit
market is growing enormously, estimated from $2.8 billion in 2017 to $551.61 billion
in 2030. That is almost 200% growth in the market.

34.3.3 Micromobility

Micromobility is another new sustainable transportation mode to satisfy people’s
travel demands on the first and last mile (Abduljabbar et al., 2021). Micromobility
usually refers to a wide range of small and lightweight vehicles operating at speeds
typically below 15 mph (~24 km/h) and driven by users personally, which is in
contrast with microtransit that relies on drivers of vehicles or minivans to transport
passengers, at least before the autonomous vehicles are fully adopted. Micromobility
devices include bicycles, e-bikes, electric scooters, electric skateboards, shared bicy-
cles, and electric pedal-assisted bicycles, etc., which are widely available in many
cities across the globe. Micromobility not only enhances accessibility to the public
transportation system and leads to possible modal shifts away from private vehicles,
but also changes urban mobility patterns and travel behaviors. The wide emergence
of micromobility accelerates the transition from the existing transportation system
into a more sustainable one due to fewer carbon emissions brought by micromo-
bility devices (Oeschger et al., 2020). Since the micromobility devices are all road
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vehicles, existing road infrastructures can still be used without further investment
except extra addition of some basic cycle lanes, ramps, and docking stations. It is
worth mentioning that the eruption of pandemic further stimulates the micromobility
market due to its fewer points of contact and ease of maintaining physical distancing,
which is considered as less risky than other mobility options (McKinsey&Company,
2020). This will also be an important trend of shared mobility in the post-pandemic
period.

34.4 More Resilient

34.4.1 Definition of Resilient Transportation

The current transportation system is plagued by disruptions, both natural and man-
made, including extreme weather events, major accidents, and equipment or infras-
tructure failures, which significantly impact the normal operation of the system and
cause tremendous infrastructure damages and economic costs. Fortunately, efforts
are being made to enhance the resilience of the transportation system in the full
life cycle of transportation planning, design, construction, and operations. A more
resilient transportation system represents the ability of a transportation system to
move people around in the face of one or more major obstacles with minimal distur-
bance, or the system can fully and quickly recover from disturbance with minimal
function reduction and economic costs.

Vulnerable transportation assets. Roads, bridges, tunnels, rails, airports, and other
transportation facilities, in inland locations as well as in coastal communities, can be
vulnerable to climate-related events. For example, storm-related flooding—exacer-
bated by rising sea levels in coastal cities—can close tunnels, subway stations, low-
lying roads, and marine cargo facilities, either temporarily or permanently. Flooding
from increasingly frequent heavy downpours can disrupt traffic, damage culverts, and
reduce the service life of stormwater infrastructure. High temperatures can accelerate
the deterioration of pavement on roads and runways, and cause failures of railroad
and subway tracks.

Planning for transportation resilient systems. As transportation infrastructure is
usually intended to last 50 years or longer, today’s transportation planners may be
able to save time,money, and traffic-induced headaches in the long run by anticipating
and planning for future conditions. Unless decision makers address the resilience of
transportation infrastructure and operations in a changing climate, new conditions
are likely to mean higher costs, greater disruption, and more damage to transporta-
tion infrastructure in urban communities. While existing transportation infrastruc-
ture was designed to handle a broad range of conditions based on historic climate,
the frequency and intensity of some extreme weather events are increasing. Trans-
portation planners are likely to face difficult choices about how and where to invest
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resources to bolster or replace existing infrastructure. Strategies that transportation
departments might use in adapting to climate change include: (1) Integrate climate
change considerations into asset management. (2) Strengthen or abandon infrastruc-
ture that is vulnerable to flooding. (3) Raise standards for the resilience of new infras-
tructure. (4) Add redundant infrastructure to increase system resiliency. (5) Promote
zoning, insurance, and disaster recovery policies that discourage development in
vulnerable areas.

34.4.2 Resilient Transportation System

The transportation system is traditionally designed to function in regular weather
conditions, while extreme weather threats were only considered to a limited extent.
As a result, extreme weather events such as snowstorms, hurricanes, and tornadoes,
can degrade transportation system performance significantly. Considering that the
transportation system is one of the most important critical infrastructure systems,
its failure could lead to cascading consequences in economic, social, and financial
systems. Many of these events are unforeseeable, making it much difficult for prac-
titioners to protect the transportation infrastructure. Extreme weather is projected to
grow more frequently as climate change continues, and its consequences on trans-
portation will become more severe (Koetsee and Rietveld, 2009). Deliberate attacks
such as sabotage, terrorism, and acts of war are also examples of external stressors.
Unfortunately, terrorist attacks tookplaceonpractically everymodeof transportation.

As a result, policymakers and researchers are paying more attention to the effects
of disasters on transportation infrastructures. Disaster responses, such as evacua-
tion operations during disasters, are all dependent on the transportation system’s
effectiveness. The inherent strength of the transportation system to recover from
detrimental consequences is referred to as resilience. Some emerging studies have
developed resilience quantification frameworks and strategic mitigation methodolo-
gies to quantify a transportation system’s resilience to meet this need. These efforts
also attempt to improve system resilience and shorten the time it takes to recover
from a disaster (Faturechi & Miller-Hooks, 2015).

In traditional transportation systems, the deployment of intelligent transportation
system elements such as connected and autonomous vehicles (CAVs) and adap-
tive safety solutions might affect the resilience phenomena and system performance
metrics. CAV technologies have advanced significantly in recent years, with deploy-
ment predicted within the next decade. Many studies have quantified the robustness
of the conventional transportation system (i.e., a system that does not use CAVs)
(Chen & Miller-Hooks, 2012; Faturechi & Miller-Hooks, 2014). In addition, some
recent studies have looked at how CAVs operate in natural catastrophe situations and
in mixed-traffic environments (Zhu & Ukkusuri, 2016).
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34.4.3 Interconnections Between Automated Vehicles
and Resilience

As introduced above, smart transportation systems, such as connected and automated
vehicles, will transform urban development and lead to innovative governance of
cities. But what happens when things become completely chaotic, like during or after
an earthquake or other natural disaster when traffic lights are out, other drivers are
panicked, debris is everywhere, andpeople are running aroundhysterically. It requires
future researchers to take steps to prepare for that kind of scenario, by simulating
what human drivers will do in those situations. In practice, the automated fleet has
already encountered bits and pieces ofwhat the carsmight experience during a natural
disaster, even though the problems would be amplified in an actual emergency. For
example, cars frequently encounter broken traffic lights. In construction zones and
during accidents, there are changes in the road conditions that may not show up on
maps. The safety of automated vehicles was called into deeper question in 2020 after
an autonomous vehicle from Uber, which had a human operator in the driver seat,
killed a pedestrian in Tempe, Arizona. The victim was walking with her bike at night
outside of a crosswalk (Kohli and Chadha, 2019). In a natural disaster, conditions
would become even more unpredictable. It requires automated vehicles to reason
through new situations in real-time.

Automated vehicles will be used in areas that may be prone to earthquakes, floods,
and blizzards in the future. The cars’ ability to assess such threats and adapt to
changes in the environment will be critical in keeping passengers safe during an
emergency. Automakers should also be working on safety guidelines that define how
automated vehicles react in the face of natural disasters and mayhem. Is the car going
to slow down? Or will it seek alternate paths to avoid further disruptions? It requires
researchers to dig into these uncertainties in their research.

34.5 Look into the Future

Future smart and sustainable transportation system. To combat the serious chal-
lenges brought by population growth and ongoing urbanization, the surface trans-
portation system is evolving into a smarter and more sustainable one. This could
be jointly reflected by future development of road traffic and rail traffic: (1) Highly
autonomous vehicleswill bemore available on the roadswith the support of improved
vehicle automation technologies and information exchange between vehicle and
infrastructure. (2)More shared transportation systems based onMobility on Demand
(MOD) will be promptly developed (U.S. DOT, 2021), which is also usually accom-
panied by fewer vehicle ownerships. These trends of road traffic suggest that the
prevalence of autonomous vehicles, microtransit and micromobility options will
reduce vehicle ownerships so that people can call them at any time when needed.
Now some cities, like Tampa’s Downtowner system (Smith et al., 2018), have started
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to promote and implement the Mobility on Demand services. (3) An increase of
high-speed rail roads and trains will be another prevailing trend in the future surface
transportation system due to the demands for increased mobility and accessibility
between cities, the desire for less carbon emissions per capita.

Future resilient transportation system. First, vehicles will become smarter. It can
automatically sense, identify hazardous environment, and automatically control the
vehicle movement to adapt for the changing environments. When faced with natural
disasters, we believe future automated vehicles will take defensive and precautionary
behaviors. Instead of attempting to promptly calculate a safe route through icy roads
or floods, the smart vehicle may first identify the potential risk and redirect itself or
pause to find the best solutions to this emergency. Second, there will be sensors on the
road and through roadside devices, to collect real time information about flooding,
ice, extreme heat, extreme precipitation, and to create automatic alerts which will
be sent to vehicles through V2X technologies. An automated fleet will constantly
learn about its surroundings, keep an eye out for developments that could make
driving extremely dangerous. Furthermore, real-time notifications through connected
networks can be used to send information to surrounding automobiles, which is very
beneficial for avoiding unexpected road closures, municipal events, crashes, and
other hazards. External gear in automated cars will be capable of closely monitoring
changes in the car’s surroundings. Every unit, for example, would include many
LIDAR sensors, which could improve 3D visibility in both low-light (dark) and
extremely bright settings. Radar may also be used by automated cars to detect objects
in foggy or snowy situations. The environment and road are captured clearly by
cameras mounted all around the car. Virtual testing software could be another viable
option for preparing automated vehicles for different disasters. Third, the adaptive
planning, design, construction, and operation of transportation infrastructure will
make the transportation system more resilience.

Future 3-D transportation system. In addition to surface transportation systems
discussed above, future transportation system should also involve both aerial and
underground transportation system, e.g., airbus and large scale underground tunnel:
(1) Airbus delivers innovative solutions to pioneer transportation mode in the
aerospace, spanning aircraft and unmanned helicopter, which can make a positive
contribution tomore convenient and sustainablemultimodal mobility system, though
it is currently largely a conceptual product (Petrescu et al., 2017). The Lilium Lake
Nona Vertiport, which provide an experimental hub for an all-electric, vertical take-
off and landing aircraft in Florida, offers a glimpse of this exciting future (TAVIS-
TOCK, 2021). Generally, urban air mobility network leverages the sky to provide
more flexible travel services for city dwellers from any possible origins to destina-
tions over larger geographical areas than the existing public transportation system.
(2) Another future transportation system would be the adoption of the underground
tunnel with the vision of improving mobility and reducing surface traffic congestion.
Boston’s Big Dig provides an early example that brought a significant drop (62%) in
the total vehicle hours from 1995 to 2003 and is now providing around $168 million
per year in time and cost savings to travelers (MDOT, 2021). With significant cost



34 Smart, Sustainable, and Resilient Transportation System 327

reduction in tunnel building, underground tunnel system may be another important
development trend in the future 3-D transportation system.

34.6 Conclusions

This chapter presents some thoughts about how future transportation system evolves
into smarter, more sustainable, and more resilient one. Accordingly, we attempt
to put forward several potential requirements about the supporting infrastructures
against different modes of transportation to better adapt to future urban development,
particularly under the adverse impacts of climate change. Connected and automated
vehicles, electric vehicles, microtransit vehicles and micromobility devices, as well
as airbus and underground transportation system, all have exhibited huge potentials in
pursuing sustainable and resilient urban transportation system and provide Mobility
of Demand services. The most important thing at present is how to develop and
achieve the technologies needed for future transportation system and how to increase
people’s awareness and adoption of these smart and sustainable future modes of
transportation. Undoubtedly, there is still a long way to go, for example, how to
upgrade feasible automation technologies, how to design and plan sustainable and
resilient supporting infrastructures, how to address equity and policy issues are some
of the challenges in urgent need for solutions to enable the development of a smarter,
more sustainable, and more resilient future transportation system.
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Chapter 35
The “Here and Now” of HD Mapping
for Connected Autonomous Driving

Liqiu Meng

Abstract This chapter is dedicated to the concept, characteristics, components,
and structures of high-definition (HD) maps and their state of development for
autonomous driving. The self-driving vehicle is essentially a rolling supercomputer,
controlledmore by its software than its hardware. HDmaps assume a decisive control
role in guiding such a vehicle safely and efficiently through a dynamic environment.
Compared to standard maps, HDmaps are fundamentally different in terms of gener-
ation procedure, map content, map scale and target users. HDmapping is analytically
composed of three elements—the “here” mapping, the “now” mapping and the inte-
grated “here” and “now” mapping. The main tasks associated with each element are
demonstrated with best practice examples. Key research challenges include extrac-
tion of meaningful driving scenarios, edge-case modeling in the absence of training
data, predicting contextual human behavior, and safety-first decisionmaking inmoral
dilemmas.

Keywords HD mapping · Causal relationship · Edge-case modeling · Embodied
cognition · Safety-first decision making

35.1 Autonomous Driving as a Connected Supercomputer

Research of autonomous driving began in the 1980s and led to the design of first
driverless cars such as Navlab from Carnegie Mellon University (1986), and VaMP
fromMunich University of the Federal Armed Forces in cooperation withMercedes-
Benz in the EUREKA-PROMETHEUS project (1987–1995). These pioneering
prototypes relied on computer vision to travel long distances with little human inter-
vention. However, the performance and computational power required in real-world
scenarios make them too expensive and cumbersome for commercial production,
apart from the fact that traffic regulations were not ready for self-driving vehicles
back then.
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Thanks to rapid improvements in computational efficiency, steady advances in
sensor technology and machine learning algorithms, and growing data in the last
decade, research in this field has experienced a new surge and resulted in numerous
powerful models of self-driving cars as demonstrated by Google, Tesla, and Uber
and so on. The new approach embraces disruptive innovations and is dominated by
Silicon Valley automakers.

A self-driving vehicle is essentially a supercomputer on wheels embedded in a
dynamic living environment and confined to the road infrastructure. Its physical archi-
tecture and wiring harness bring together thousands of components related to sensors
and actuators, braking systems or engine control. In addition to built-in components
that work together to move the wheels, and ergonomically designed components for
bodily comfort, a self-driving vehicle is typically equipped with sensors all around
the vehicle, e.g. cameras, Radar, LiDAR, Ultrasonic, Global Navigation Satellite
System (GNSS) and Inertial Measurement Unit (IMU), to record the motion and
provide a 360° view of the environment.

More radical changes in autonomous driving have occurred on the software side.
AdvancedDriverAssistance Systems (ADAS) offer a range of standard services from
navigation guide, congestion information, lane departure warning, distance control
to parking aids. Together with value-added services including infotainment, telem-
atics, and infrastructure networking, they provide users with a high level of satis-
faction. New features of self-driving vehicles related to safety, security, and global
climate change goals push further software proliferation for internal and external
communications (Charette, 2021).

Depending on the sensor setup, a self-driving vehicle generates data streams
of more than a gigabyte per minute for the supercomputer to learn while driving.
The learning is guided by high-definition maps or HD maps. With some analog to
high-definition television (HDTV) representing a set of television standards with
higher vertical, horizontal, or temporal resolution over Standard Definition Televi-
sion (SDTV), HD maps refer to maps with much higher resolutions than standard
maps, in-car navigation maps or smartphone maps.

35.2 Characteristics of HD Maps

HDmaps have revolutionized standard maps in multiple ways. First of all, HD maps
sense and make sense at the same time and in real time. Second, their contents
are sharply focused on “here and now” and connected with a living environment.
Third, they are ground truth models at a scale of nearly 1:1. Finally, they are made by
machines for machines. The HDmapping procedure can be analytically decomposed
into three elements—the “here” mapping, the “now” mapping and the integrated
“here and now” mapping.
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35.2.1 The “Here” Mapping

The “here”mapping deals with the positioning of the vehicle and the interpretation of
its local environment in centimeter-level resolution.Main tasks are spatial data fusion,
annotation, and AI-supported understanding. Spatial data fusion aims to construct
3D local environments. The data sources to be fused include street view images, point
clouds, signals fromGNSS and/or IMU, remote sensing images, and street mapswith
details about road surface, lane placement, road boundaries, and roadside features.
Annotation is a time-intensive preparation. A large number of ground features such
as navigationmarks, traffic signs, barriers, construction sites etc., andmobile features
including vehicles, humans and other fine-grained moving objects that may occur
in driving environments should be manually labelled. AI-supported understanding
relies on deep-learning algorithms, annotated training data, and expert knowledge
to identify all safety-relevant features, their locations and topological relationships.
Figures 35.1 and 35.2 show some examples of “here” maps.

The data sources for the “here” mapping are unevenly distributed. Street maps at
coarse scales are being repeatedly collected and cross-verified by government agen-
cies, private vendors, and volunteers. With increasing resolutions, road and naviga-
tion information becomes more valuable, but also more scarce and harder to access
for technical and data policy reasons. Close collaboration between automakers,
research institutions and lawmakers in different world regions is needed to promote
the creation and shared accessibility of centimeter-level global “here” maps.

Fig. 35.1 A “here” map of varying granularity from Woven Planet Level 5. https://medium.
com/wovenplanetlevel5/https-medium-com-lyftlevel5-rethinking-maps-for-self-driving-a147c2
4758d6, date of access: 2022.06.09

https://medium.com/wovenplanetlevel5/https-medium-com-lyftlevel5-rethinking-maps-for-self-driving-a147c24758d6
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Fig. 35.2 A “here” map with labelled features by Mobileye

35.2.2 The “Now” Mapping

The “now” mapping aims to capture the dynamic characteristics of moving vehicles
at a temporal resolution between 10 ms and 100 ms, involving tasks of temporal data
modeling and understanding. First of all, temporal data fromconnected sensors in and
around the vehicle and in the road infrastructure should be fused to derive accurate
time stamps for all possible vehicle operations situated in driving scenarios. Other
digital documents containing time-dependent statistical data about traffic volume,
population flow, weather condition, air quality etc. can be deployed to supplement
the temporal modeling. Moving conditions for the next seconds or minutes may be
estimated by prefetching data from standardmaps, digital landscapemodels, weather
forecast models and other connected vehicles. Second, each vehicle operation such
as lane switching, braking, accelerating, highway entry and exit, cut-in etc. should
be explicitly modelled as an event indicating changes in position and topological
relationships with other road features. Finally, AI-supported methods are applied to
detect events and their meanings.

A showcase of modeling and understanding the “cut-in” event is illustrated in
Figs. 35.3 and 35.4. Figure 35.3a demonstrates how a vehicle CV deviates from its
longitudinal direction at time T 0 with an angleΩ and starts to cut in at the velocityVi

between the ego vehicle EV and the leading vehicle LV. It leaves footprints at three
consecutive time points. The test data containing cut-ins is captured in real traffic
by running a vehicle from LiangDao GmbH at different times along different streets
as shown in Fig. 3b. The possible causes for cut-ins are categorized and represented
as a knowledge graph in Fig. 35.4. By detecting various cut-in events in test data, a
model is built to predict where and when a cut-in is most likely to occur and what
causes with which relative weights may trigger the event.

The data sources for the “now” mapping are sparse and dispersed. The finer the
temporal resolution, themore valuable the data source, which is also technicallymore
difficult to obtain and maintain. Nonetheless, it is possible to create test scenarios
with limited scopes and to share the experiences and lessons learnt.
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Fig. 35.3 a a typical scenario with cut-in operation; b the vehicle used by LiangDao GmbH to
capture scenario data (Deng, 2021)

Fig. 35.4 A knowledge graph of causes for the cut-in operation (Deng, 2021)

35.2.3 The Integrated “Here and Now” Mapping

The integrated “here and now” mapping aims to represent driving scenarios at the
highest spatio-temporal resolution and link them to traffic rules. Figure 35.5 demon-
strates Tesla’s “Fully Self-Driving Beta” in a safety–critical operation guided by the
HD map. The synchronized “here” and “now” mapping can be achieved by accu-
mulating test data in real traffic with controlled settings corresponding to Level 4,
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Fig. 35.5 Tesla’s “Full Self-Driving Beta” guided by the HD map during a left turn in real traffic
(https://youtu.be/uClWlVCwHsI from 2021.04.11)

i.e. the second highest level on the automation scale from Level 0–5 defined by the
Society of Automotive Engineers (SAE). A large number of automakers and special-
ized technology companies are committed to data collection, following different
strategies.

BMW launched in partnership with DXC a platform 2019 to collect data by its test
and customer fleet. More than 500 million km in test areas in Munich and Shanghai
were completed in 2021. Volkswagen couple with Microsoft is massively expanding
its fleet’s mileage and environmental data, taking advantage of more than 10 million
newvehicles per year (Tiedemann&Nagel, 2021). TomTom’sfleet acrossEurope, the
US, Japan, and South Korea, generated more than 400,000 km of HD map coverage
in 2019, when TomTom started to use Volvo’s test vehicles with multiple sensors to
update and extend HD maps (Kayla, 2019). Similarly, CARMERA was teamed up
with Toyota to first map downtown Tokyo and then expand to other complex urban
environments, such as New York City (Billington, 2019).

With the aim to reach a seamless global coverage of HD maps, HERE created
the OneMapAlliance (Ellis, 2019). Crowdsourced data from cell phones and produc-
tion vehicles from various automotive companies are combined with high-end
sensory data from industrial surveying, leading to improved spatiotemporal accu-
racy of HD maps. Atlatec creates HD maps by driving its vehicle on every lane
of a road multiple times and then extracting consistent global positions with an
absolute accuracy of 3 cm for 95% of the roads covered. Meanwhile, 3D models
are constructed from driving environments for simulation purposes, focusing on the
relative positional accuracy of the vehicle (Dahlström, 2020).

Mobileye developed a low-cost crowdsourcing approach called Road Experience
Management (REM). Its self-driving cars equipped with cameras run in different
environments, different countries and different continents and send data to the cloud
in small packets—less than 10 kilobytes per kilometer—corresponding to a small

https://youtu.be/uClWlVCwHsI
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Fig. 35.6 Mobileye’s HD-mapping with hands-free driving vehicle in Munich: in the urban area
at 41 km/h (left) and on a highway at 124 km/h (right)

footprint around the vehicle. As shown in Fig. 35.6, this approach allows a continuous
update of its RoadBook—a scalable database of HD maps with high local accuracy
and rich semantic layer of driving culture and traffic rules.

Processing real-time data streams for HDmapping requires enormous computing
power. No wonder, Tesla presented on its “AI Day 2021” a Dojo supercomputer
with a performance of around 1.1 exaflops (Romero, 2021). Research is also being
conducted on data compression, filtering, and classification. Based on training data
from test drives in public areas and from closed-vehicle-in-the-loop simulations, the
project “KIsSME” at Karlsruhe Institute of Technology aims to create AI-models and
selectors that may help reduce data amount and expand the scenario catalog. The
BertrandtGroup is developing a labeling tool “BertrandtData Labeler”, which allows
marking the most relevant objects and identifying meaningful driving scenarios as
training data for AI-supported HD mapping (Tiedemann & Nagel, 2021).

The HD mapping procedure usually consists of the following steps:

• preprocessing of 3D point cloud and camera images to create a precise trajectory
of the vehicle, an aligned 3D point cloud, and a coarse 3D model, e.g., using
simultaneous localization and mapping (SLAM) algorithms;

• segmentation of preprocessed data to derive the ground surface, and distinctive
2D and 3D geometries in the driving environment;

• recognition of meaningful 2D and 3D ground features, e.g., using trained AI
models;

• semantic enrichment of recognized features with traffic rules for safe mobility;
and

• integration of real-time information, human behavior models and domain knowl-
edge.
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HD maps can be divided into tiles of a uniform size to fit the driving environment
(Kayla, 2019). The features of each tile can be structured in layers (Chellapilla, 2018),
depending on how often they are updated, how important they are for safe driving,
whether they need to be sharedwith other vehicles, etc.ManyHDmapping platforms
conduct edge computing locally while data is being collected. This helps enhance
driving robustness in all situations at Level 3, even without a network connection
(Tiedemann & Nagel, 2021).

35.3 Research Challenges of HD Mapping

Statistics on the number of hands-freemileage and the number of disengagements per
driving kilometer of a vehicle can be used to evaluate the self-driving performance
and to encourage the transparent release of official “test mileage and disengagement”
reports,whichmay improve public trust in autonomous driving.Nevertheless, current
HD mapping platforms suffer from a common bottleneck of insufficient data for
safety–critical scenarios despite billions of kilometers driven. The number of traffic
rules is quite limited, but their contextual combinations may become innumerable.
Each specific scenario faced by a self-driving vehicle is literally a socio-technical
system in which other vehicles, cyclists, pedestrians, and obstacles exhibit varying
degrees of agility and accountability.

35.3.1 Edge-Case Modeling

In the recent decade, AI technologies have made breath-taking advantages in image
understanding, language translation, speech generation for chat bots, game playing,
protein folding and more. Self-driving cars are getting smarter too, but at a much
slower development pace in the final stage when the responsibility shifts entirely
from the humandriver to themachine (Piper, 2020).Unlike technologies developed in
closed labs before being released to the world, self-driving vehicles are experimented
on public roads. Each collision disturbs the public perception. Although crashes with
serious injuries are rare and the causes for each fatal accident are quickly identified
(Walker, 2020), there is no practical way to determine a statistically convincing
crash rate. Testing edge cases involving accidents and extreme behavior of traffic
participants on public streets is both dangerous and unethical.

The lack of training data for machine learning can be mitigated by simulations
based on small samples from real traffic in combinationwith traffic rules. Simulations
can also serve as training tools for the public and legislators to gain insight into self-
driving technologies and their rules for different stakeholders and different purposes.

The Association for Standardization of Automation and Measuring Systems
(ASAM) issued a number of Open Standards in 2018 as shown in Fig. 35.7. Being
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Fig. 35.7 OpenX Standards by ASAM for simulation

based on other public standards such as UML, XML and CORBA, ASAM stan-
dards are platform neutral and can be used to create virtual driving environments and
validate automated driving functions. The free sample datasets are now increasingly
provided in ASAM format for simulation purposes (Dahlström, 2020).

Microsoft introduced CausalCity—a simulation environment for complex driving
scenarios, as shown inFig. 35.8 (McDuff et al., 2021).Volunteers canuse the provided
Python code and baseline code to generate complex scenarios and explore the causal
relationships.

Woven Planet Level 5 developed an agent-based simulation platform to predict the
behavior of traffic agents, i.e. other vehicles around a self-driving vehicle. An open
dataset containing motion data of traffic agents, the movement logs and annotations
from cars, cyclists, pedestrians, and other traffic agents is used to train the algorithm.
Figure 35.9 illustrates the detected traffic agents and their predicted behavior at the
next moment.

Fig. 35.8 CausalCity for the simulation of complex driving scenarios. https://www.microsoft.
com/en-us/research/blog/causalcity-introducing-a-high-fidelity-simulation-with-agency-for-adv
ancing-causal-reasoning-in-machine-learning, date of access: 2022.06.09

https://www.microsoft.com/en-us/research/blog/causalcity-introducing-a-high-fidelity-simulation-with-agency-for-advancing-causal-reasoning-in-machine-learning
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Fig. 35.9 The dynamic environment of a self-driving car marked in purple: detected traffic agents
as small rectangles (left), predicted motion marked by arrows (right) (https://level-5.global/data/
prediction), date of access: 2022.06.09

35.3.2 Decision Making for Safety-First Driving

By training on real and simulated driving scenarios,machine-learning algorithmswill
be able to discover a growing number ofmeaningful events including their occurrence
patterns, thus enhancing the intelligence of HD maps. Nevertheless, machines are
not yet good at imitating humans to make sound decisions in emergency. Humans are
capable of avoiding fatal accidents even without thinking and learning experience.
In the absence of information, humans rely on instinct and subconscious intuition
to survive in seemingly desperate situations. This innate human decision-making
mechanism cannot yet be fully replaced by HDmaps generated from learning-based
algorithms. Although self-driving vehicles guided by HD maps have increasingly
taken on human traits, can reliably operate in normal traffic and avoid most types
of collisions, they still miss humans’ gut feeling. This remaining gap has sparked
heated debates related to the trustworthiness of AI.

Human driving in real traffic requires embodied cognition of the environment with
mind–body coordination. It involves emotions, desires, sense of self and its relation
with other participants. Human driver “is inescapably affected by the immediatewho,
what, where, when, and perhaps why” (Tversky, 2012). Driving past a place can
be a reminder of the representative mindsets and landmarks. The verbal comments,
gestures, or even facial expressions of the participants in- and outside the vehiclemay
all influence the driving experience. Likewise, the living environment of a self-driving
vehicle is not just about the changing geometries, but also about communications
with other road features and connected vehicles in and beyond the field of view. The
affordances of the tangible body of the vehicle and its sensors change with the real
traffic.

Current simulation platforms focusmore onmodeling relationships between vehi-
cles than on understanding contextual human behavior. Due to inadequate informa-
tion about this latter part, the extent to which self-driving vehicles can learn to

https://level-5.global/data/prediction
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behave like humans, including obeying and violating traffic rules, remains unknown.
It becomes difficult when self-driving vehicles must weigh options involving risks
to human lives. A number of empirical studies attempt to address this problem with
emphasis on safety-first decision making.

Human opinions on how machines should make decisions in moral dilemmas
outside the legal realm, as well as discussions of potential consequence scenarios
have been crowdsourced in a project called “The Moral Machine”1. Aptiv issued
Rulebooks (Censi et al., 2019) as a pre-ordered set of rules to guide the behavior
of self-driving cars. These rules are derived from behavior learning including rare
edge cases. Rules that ensure human safety are the highest priority, while those
related to comfort and progresses come last. Such a hierarchy may also support the
development of (inter)national regulations and serve the informed public discourse.
NVIDIA released in 2019 the Safety Force Field (SFF) as an augmented element
for collision-avoidance validation and verification on its self-driving platform. Using
sensor data and simulations of highway and urban driving scenarios, SFF focuses
on braking and steering constraints and determines actions of eliminating collisions
to keep vehicles and other road participants in safety. Mobileye introduced a model
of Responsibility-Sensitive-Safety (RSS). Usually, the self-driving vehicle obeys
traffic rules and maintains a balance between safety and utility. But the RSS can also
guide the vehicle to protect itself from the unpredictable human behavior, and avoid
accidents by violating one or more traffic rules, provided this does not cause another
collision.

Stilgoe (2021) compared two approaches: safety-in-numbers and safety-by-
design. The approach of safety-in-numbers regards safety as a technical goal with a
measurable property, e.g. mileage statistics without serious injury. The approach of
safety-by-design treats the autonomous driving as a safety–critical system with the
vehicle as one of many related components. It provides a starting point to design. It
may “geo-fence” vehicles to prevent them from straying into overly unpredictable
spaces in real traffic, or it may change system settings to ensure safe driving, for
example, by restricting the actions of other road participants or upgrading road infras-
tructure. Given the two approaches, HDmaps are anticipated to guide the safety-first
decision making as a journey between the starting point and the goal.

35.4 Concluding Remarks

Connected autonomousdriving is a cutting-edgeAI technology that takes public areas
as its testing ground and therefore must meet extremely high safety requirements in
order to be accepted by the public. While the shift from Level 0, 1, 2, 3 to 4 on
the SAE scale of automation has been incrementally realized, the final shift from
Level 4–5 is a disruptive one, with the entire responsibility falling on the self-driving
vehicle. A safe, secure, liable, environmentally friendly and enjoyable autonomous

1 www.moralmachine.net, date of access: 2022.06.09.

http://www.moralmachine.net
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mobilitywithin a legal and ethical frameworkwill claimyears of globally coordinated
research and development by legislators, automakers, HD-mapmakers, providers of
computing platforms and the public.With increasingly gained knowledge from edge-
case modeling, contextual human behavior, and safety-first decision making, and its
integration into HD maps, humans will remain in the loop, but more as interactive
passengers and road participants than supervisors.
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Chapter 36
Modelling Teleconnections in Land Use
Change

Yimin Chen and Xia Li

Abstract Land teleconnections refer to the supply–demand relationship of land
between distant countries/regions and its socio-environmental impacts. Modeling
land teleconnections is critical for understanding the environmental and social conse-
quences arising from land use and consumption. In this chapter, we first explain a
widely used analytical tool for the quantification of land teleconnections, and briefly
describe several data sources of global/national trade. We then discuss three poten-
tial research themes of land teleconnections for future work, such as identifying the
functional characteristics of land use, evaluating the land-related impacts of changing
consumption patterns, and associating land teleconnections with sustainability.

Keywords Land teleconnections ·MRIO model · Land use change · Sustainability

36.1 Introduction

Despite the scarcity of land resources, modern economic developments can match
land supply and demand through interregional exchanges and trade. Land resources
in one region can be consumed by another region (Meyfroidt & Lambin, 2009). As a
result, the consumption pattern or policy change in one region can exert significant
impacts on the land use in other (distant) regions (Meyfroidt et al., 2013). This
phenomenon has been called “teleconnection”, a term originally used to refer to
climate phenomena correlated over large geographic distances (Seto et al., 2012).

Modeling land teleconnections is critical for understanding the environmental
and social consequences arising from land use and consumption. In an increasingly
globalized world, land use change is driven not only by local factors but also by
demands for goods and services in remote areas. Some regions export goods and
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services if a comparative advantage exists in local production, while other regions
import commodities that would otherwise incur a greater opportunity costs if they
are produced in the regions of consumption (Yu et al., 2013). Although such trading
allows efficient use of land, a potential consequence is the inequity in the interre-
gional trade. For instance, wealthy countries usually have large amounts of land-
related goods and services to import from other countries (Weinzettel et al., 2013).
However, the production of such goods and services often aggravates the environ-
mental problems in less-developed regions, such as deforestation (DeFries et al.,
2010), air pollution (Lin et al., 2014), water shortage (White et al., 2018), and food
insecurity (Marselis et al., 2017). Such inequity is a major concern in achieving the
17 Sustainable Development Goals (SDGs) proposed by the United Nations (2015).

In this chapter, we first explain a widely used analytical tool for the quantification
of land teleconnections, and briefly describe several data sources of global/national
trade. We then discuss three potential research themes of land teleconnections for
future work, such as identifying the functional characteristics of land use, evaluating
the land-related impacts of changing consumption patterns, and associating land
teleconnections with sustainability.

36.2 Quantification of Land Teleconnections

A useful analytical tool to quantify land teleconnections is the multiregional input–
output (MRIO) model (Miller & Blair, 2009). The core of the MRIO model is the
interregional tradematrices that depict the from-to flows of goods and services among
different economic sectors and among the interlinked geographic regions.With these
matrices, modelers can track the land resources that are embodied in inter-regional
trades. In this section, we first explain the basics of the MRIO model, and then
demonstrate how to extend theMRIOmodel to quantify the embodied land resources
in inter-regional trade.

Assuming a system that consists of m interlinked regions with n sectors, the total
output of sector i in region r is:

xr
i =

m∑

s=1

n∑

j=1

zrs
i j +

m∑

s=1

yrs
i + er

i (36.1)

where xr
i is the total output of sector i in region r in a monetary unit. From the

perspective of production and consumption, xr
i is used in three ways. A part of xr

i
is used as the direct input to support the production of goods and services in other
sectors, represented by

∑m
s=1

∑n
j=1 zrs

i j . Here zrs
i j represents the direct input in sector j

in region s derived from sector i in region r. Another part of xr
i is directly consumed,

represented by
∑m

s=1 yrs
i . Here yrs

i represents the final consumption of sector i in
region s supplied by region r. Finally, er

i represents the flow toward foreign countries,
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i.e., the amount of the output of sector i in region r exporting to other countries in
the world.

To facilitate the calculation, a direct input coefficient is further defined to represent
the amount of input from sector i in region r required to produce one monetary unit
output of sector j in region s:

ars
i j = zrs

i j

xs
j

(36.2)

Equation (36.1) can be rewritten as:

xr
i =

m∑

s=1

n∑

j=1
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i j xs

j +
m∑

s=1

yrs
i + er

i (36.3)

The above equation can be transformed to a matrix to describe the entire input–

output system. With X∗ = [
xr

i

]
and A∗ =

[
ars

i j

]
,
∑m

s=1

∑n
j=1 ars

i j xs
j becomes A*X*.

Furthermore, if Y ∗ = [
yrs

i , er
i

]
, Eq. (36.3) can be rewritten as:

X∗ = A∗ X∗ + Y ∗ (36.4)

Here X*, A*, and Y * represent the matrices of the output, direct input coefficients,
and final demand, respectively. Assuming that A* is constant, Eq. (36.4) can be
changed to:

X∗ = (
I − A∗)−1

Y ∗ (36.5)

where I is an identity matrix, and (I − A∗)−1 is known as the Leontief inverse matrix
(Loentief, 1936), which reveals the amount of direct and indirect inputs needed to
satisfy one unit of final demand inmonetary values. Therefore, Eq. (36.5) can be used
to calculate the changes in sectoral outputs driven by changes in the final demand.

To explore the embodied land used for the production of goods and services,
Eq. (36.5) can be further extended with a land use coefficient matrix:

L∗
k = l∗k

(
I − A∗)−1

Y ∗ (36.6)

where L∗
k is the matrix representing the total area of the land use k for each region,

and l∗k represents the amount of direct land use k to produce one monetary unit of
sectoral output. In the matrix L∗

k , the elements Lrs
k represent the required total area

of land use k in region r to satisfy the consumption in region s. The total area of land
use k in region r can be further disaggregated to:

Lr ·
k = Lrr

k +
∑

r �=s

Lrs
k + L E

k (36.7)
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where Lrr
k represents the local consumption of land use k in region r, while

∑
r �=s Lrs

k
represents the total area (i.e., outflow) of land use k in region r used to satisfy the
consumption in other regions. L E

k is the amount of land use k in region r exported
to foreign countries/regions. Similarly, the total area of land use k to satisfy the
consumption in region r can be expressed as

L ·r
k = Lrr

k +
∑

r �=s

Lsr
k (36.8)

where
∑

r �=s Lsr
k represents the inflow of land use k from other regions used for

satisfying the consumption in region r.
Themain data for land-basedMRIO analysis include global/nationalMRIO tables

and land use maps. Data sources of global MRIO tables include, for examples, the
Global Trade Analysis Project (GTAP) database and the Globally Environmentally
Extended Multiregional Input–output Tables (EXIOBASE). The most recent GTAP
database (version 10) contains data of global bilateral trades between 121 countries
and 65 sectors for the reference years of 2004, 2007, 2011, and 2014 (Aguiar et al.,
2019). The EXIOBASE database provides two forms of data, namely the monetary
form and the hybrid form (usingmass or energy units) (Merciai&Schmidt, 2018).An
important feature of the EXIOBASE database is the wide environmental extensions,
including 417 emission categories. Themost recent reference year in the EXIOBASE
database is 2011. For China, data that can be used to construct the MRIO model are
available for the years 2002, 2007, 2010, 2012, 2015, and 2017 (Liu et al., 2014;
Zheng et al., 2021).

36.3 Potential Research Themes in Study of Land
Teleconnection

36.3.1 Identifying the Functional Characteristics of Land
Use

An important issue in land-based MRIO analysis is that the current classification
schemes of land use are not fully compatible with the classification of economic
sectors in the interregional trade data required by MRIO. Large-scale land use maps
derived from remotely sensed images often use the classification schemes defined
by, for examples, IGBP, FAO, USGS and other organizations/institutions. These
classification schemes focus mainly on the physical characteristics of land units.
These land use maps also hold a rural–urban dichotomy, lumping urban areas into a
single class (e.g., ‘impervious surface’, ‘artificial surface’, or ‘urban’), ignoring the
complicated functional characteristics of the land in urban areas (Seto et al., 2012).
TheMRIOmatrices, however, are about goods and services flows fromone economic
sector to another (e.g., from the textile sector to the clothing sector). Land use maps
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with only a single ‘urban’ class do not tell where activities of different economic
sectors (e.g., textile, clothing, machinery manufacturing, etc.) take place, and thus
cannot support land-based MRIO modeling. To solve this problem, researchers have
tried to disaggregate the single-class urban land area using proxy information, such
as employment data (Chen et al., 2019) or referring to the urban land survey data for
a representative area (Yu et al., 2013). However, such disaggregation may contain
considerable uncertainty and bias.

Recent advance in urban remote sensing may help bridge the gap between the
lack of details of (urban) land use maps and the need of functional characterization
of MRIO. Unlike traditional land cover mapping that depends mainly on remotely
sensed images, many recent studies of urban land use mapping have incorporated
information from the so-called social sensing data (e.g., Points-of-Interests or POI).
Based on these two data sources, machine learning methods can be developed to
infer the actual use of urban land. For instance, Gong et al. (2020) and Chen et al.
(2021) integrated multiple sources of social sensing data, such as social media data,
mobile device data, and volunteered geographic information, with several types of
remotely sensed images to infer urban land use types, and have provided an open
access China urban land use map. Nevertheless, further research is still required to
have the land use classification to be fully compatible with the economic sectors.

36.3.2 Evaluating the Impact of Changing Consumption
Patterns on Land Use

Several studies have applied theMRIOanalysis to the quantificationof land embodied
in inter-regional trades. For instances, Yu et al. (2013) revealed that developed coun-
tries have large shares of their total land use for consumption purposes displaced to
other countries, especially the land for non-agricultural products. By contrasts, devel-
oping countries appropriate less global land used for the exports of non-agricultural
products, but in turn use much of their land to satisfy the demand of agricultural
products in foreign countries. Marselis et al (2017) found that despite the low land
availability in regions suffering undernourishment, they export large amounts of
embodied agricultural land to regions not suffering undernourishment. Our previous
work (Chen et al., 2019) summarized the pattern of embodied land in China’s
domestic interregional trades. We found that the west-to-east and north-to-south
“flows” of embodied agricultural land are prevalent, and the regions of Northeast
and Northwest China are the primary exporters of agricultural land. These anal-
yses, which focus on the intensity and direction of ‘land flows’, are fundamental to
comprehensively evaluate the impacts of changing consumption patterns.

Among the land-related impacts, those that are caused by food consumption have
received wide attentions. A considerable proportion of the output of the worldwide
agricultural land is exchanged through international trade, forming a global food
system. Therefore, dietary changes in food-importing countries will inevitably exert
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environmental impacts in food-exporting countries. Through MRIO analysis one
can explore how to improve the environment in the food-exporting countries by
encouraging more environment-friendly diets in the food-importing countries. In a
recent research, Osei-Owusu et al. (2022) applied the MRIO analysis to evaluate
the impacts of different food consumption scenarios and suggested a dietary change
toward less meat and dairy diets to achieve a significant reduction in agricultural
land footprint and greenhouse gas emissions. With the ever-growing population and
rapid urbanization in global south, the trade-off between the food consumption and
the environment degradation becomes a rising concern in many countries, for which
the scenario-based MRIO analysis can be helpful in seeking solutions.

36.3.3 Associating Land Teleconnections with Sustainability

The sustainability requires a balance among the environment, society, and economy.
In an increasingly globalized world, achieving the Sustainable Development Goals
(SDGs, reference) should explicitly take into account the processes that link distant
regions rather than seeing individual regions separately. In particular, asymmetric
transfers of resources (including virtual “land exportation”) in international trade
often increase environmental burden in poor countries and hamper their socio-
environmental sustainability. This has been explained by the theory of unequal
ecological exchange and confirmed by empirical evidences (Dorninger et al., 2021).
An important research theme regarding the unequal ecological exchange is the
impact of international trade on sustainable development. Xu et al. (2020) found
that, according to the data of 1995–2009, although international trade had posi-
tively affected global sustainable development, gains in sustainability took place
mainly in developed countries rather than developing countries. Without interna-
tional trade, however, developed countries would reach lower levels of sustainability
compared with developing countries. These findings imply the greater responsibility
of developed countries in the global sustainability transformation, and the change
toward more sustainable lifestyles is a feasible approach. In this sense, research
regarding teleconnections can help identify environmentally sound and socially
accepted lifestyles to reduce land and other material footprints.

Another research topic is to develop policy formulation and assessment tools for
exploring the strategy to achieve the goal of sustainable development. Wang et al.
(2020) have proposed a model by integrating linear programming and MRIO anal-
ysis. This model can generate the pathways of industrial restructuring that aims at
achieving multiple, conflicting goals in the sustainable development, such as maxi-
mizing employment, minimizing resources use (e.g., energy, water, land, etc.), and
minimizing emissions/pollutions. These goals cover the dimensions of environment,
society, and economy, and the proposed model is to find the optimal solution to
balance these goals. The model has a great potential in examining sustainability
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policy interactions between different countries and different dimensions (e.g., envi-
ronment, society, and economy). Particularly, for China’s recent commitment on real-
izing the carbon–neutral in 2060, the model can be used to take land teleconnections
into account in the policy implementation.

36.4 Concluding Remarks

In this chapter, we explain the concept of land teleconnections, which refers to the
supply–demand relationship of land between distant countries/regions and its socio-
environmental impacts. One of the useful tools for studying land teleconnections
is the land-based MRIO model. Analysis using land-MRIO model allows tracing
the land-related impacts along the supply chain that often involves multiple sectors
and multiple distant countries/regions. With this method, several important research
themes of land teleconnections can be explored. We identify three of them, including
identifying the functional characteristics of land use, evaluating the land-related
impacts of changing consumption patterns, and associating land teleconnections
with sustainability. They cover several fields such as scientific data production, food
consumption, scenario analysis, land-driven carbon-neutrality, and policy evaluation,
which are fundamental to the progress toward global sustainable development.
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Chapter 37
Progresses and Challenges of Crime
Geography and Crime Analysis

Lin Liu

Abstract Crime Geography and spatial analysis of crime has gained great
momentum lately, coupled with the advancement of geographic information science
(GIScience) and big data in human mobility. According to (Liu in Oxford Bibli-
ographies in Geogr 2021), crime geography and crime analysis normally cover
spatio-temporal crime pattern detection, crime explanation, crime prediction, crime
prevention and crime intervention assessment. The acronym of DEPPA captures
these five elements. Pattern detection uncovers spatio-temporal patterns of crime
distribution, such as crime hotspots. Crime explanation aims to discern major
contributing factors based onmultivariate regressionmodeling andmachine learning.
Crime prediction forecasts future crime patterns using machine learning and other
predictivemethods. Crime prevention devises targeted intervention strategies such as
hot spot policing, based on historical and future crime patterns. Assessment examines
the effectiveness of crime prevention, to find out if crime is reduced in the targeted
area and whether the nearby areas are affected by the intervention. This chapter
summarizes some of the latest progresses and challenges of crime geography and
crime analysis along the issues of the unit of analysis and spatial scale, compar-
ison analysis, new data and new variables, crime prevention and assessment, and the
spatio-temporal mismatch problem.

Keywords Crime analysis · Big data · GIS · Crime prevention · Ambient
population

37.1 Unit of Analysis and Spatial Scale

The spatial units of analysis vary by country. Census block, census block group,
census tract, and neighborhood areas are the typical spatial units of analysis in
America. European countries tend to use units similar to those of America. Commu-
nities (Juwei, or Shequ), Jiedao or Paichusuo are the typical units in China. A Jiedao
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typically has a Paichusuo, the smallest official police unit, and covers multiple
communities. It should be noted that a unit in China has much higher population
than its counterpart in America. An alternative to the census units is the use of grids
for crime analysis. The dimension of these grids typically ranges from 100 to 1000m
or even larger.

Several recent trends have emerged.One is the shift to finer units such as individual
street address location, taking advantage of street view images (Zhou et al., 2021).
These studies are closely related to the literature on Crime Prevention Through Envi-
ronmental Design (CPTED). Another trend is the expansion of the unit of analysis
to an entire city, to examine crime distribution at the provincial or national levels.
The challenge of such large-scale studies is the lack of theoretical support, as most
of the environmental criminology theories are aimed at the city level. Still another
is the multiple level modeling that considers variables from more than one level of
spatial units. For example, a model based on census block group combines variables
at the block group level and the larger neighborhood level.

There have been limited studies related to the modifiable area unit problem in
crime geography and crime analysis. For example, Steenbeek and Weisburd (2016)
examined the variability of crime across different spatial units in The Hague, 2001–
2009. So far, no major breakthroughs have been reported. Preliminary results have
shown that perception variables derived from street view images, such as safety
and liveliness, are only applicable to small units such as block or block group but
not larger units such as tracts or neighborhoods, because within unit variation may
surpass between unit variation for larger units.

In addition to spatial units, temporal units also play an important role in crime
geography and crime analysis. Similar to the aggregation of crime events to areal
units, crime events are typically aggregated to longer time intervals. Most studies
are based on the count of the crime events in a whole year or even multiple years.
Some use seasonal data, to reveal seasonable changes in crime.More andmore recent
studies distinguish between day and night, weekday and weekend.

A fundamental guideline for choosing the appropriate unit of analysis in space
and time is to ensure that the between unit variation is larger than the within unit
variation. This guideline is applicable to both the crime data itself and the explanatory
data.

37.2 Comparison Analysis

Most crime studies are conductedwithin a single city, by focusing on one or two crime
types. Lately much more attention has been directed to the comparison of multiple
crime types in a single city, comparison of crime in time, and comparison across
multiple cities (Weisburd, 2015). On the comparison of spatial patterns of crime, it
is possible that one place is a hotspot for one crime type but a cold spot for another.
Multiple crime typesmaycoexist in the sameareas. These spatial patternsmaychange
over time. The other is the comparison of contributing factors. Different crime types
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mayhave different contributing factors. For example, ambient population drives theft,
but not assault. Likewise, contributing factors may vary across cities. For example,
the impact of high schools and bars on crime is very different between Chinese
cities and American cities. High schools in China tend to be under strict surveillance
and thus do not generate much crime. Bars in china are typically located in affluent
neighborhoods and they do not attract as much crime as the bars in American cities.
These comparisons are typically based onmulti-variate regression analysis, although
the latest machine learning tools may also have some explanatory power.

Comparison analyses haveyielded some interesting results. Existing theories seem
to be applicable to all nations, although some explanatory variables may have to be
replaced or adjusted. For example, the variable of racial heterogeneity is widely used
in America, but it is not applicable to China, as the Chinese population is dominated
by the Hans. As an alternative, the makeup of migrant workers is often used in
China. Unfortunately, there exists few evidence that the comparison analysis has
made fundamental theoretical contributions.

37.3 New Data and New Variables

Many new data sources have become available during the past ten years. The most
notable ones include trajectory data, mobility data from smart phones, geotagged
social media data, surveillance cameras, street view images, and nightlight satellite
images. These data are often considered part of the big data. Trajectory data can be
generated from GPS tracking and communications between cell phones to nearby
signal towers (Song et al., 2018). The former would have a higher locational preci-
sion than the latter. Many smart phone APPs, especially those on Android phones,
track the locations of the phones. Specialty companies would collect and compile
mobility data. Examples of such include Safegraph in America and Unicom Smart
Footprint data in China. Social media data may have geotags. For example, about 3%
to 5% of tweets are geotagged with precise coordinates, a place, or a bounding box.
Surveillance cameras can be used to count people or even track individual suspects.
Street view images can reveal detailed physical features for environmental auditing
and people counting. Night light images can show lights at night, revealing economic
activities and ambient populations (Liu et al., 2021).

These new data have been used to represent ambient population, which include
both residents and visitors. Ambient population has been proven to be a superior
representation of potential victims of theft, in comparison with census population.
Some of the data above can generate people’s movement trajectories, representing
the activities of the individuals or groups. This has led to a major advancement in
operationalizing the routine activity theory, awell-known environmental criminology
theory.

While the benefits of these new data and new variables are obvious, the potential
downsides need to drawour attention aswell. One is individual’s privacy. Individual’s
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trajectory should not be revealed. Most of the recent publications are based on aggre-
gated group data, to protect individual’s privacy. The other pertains to confidentiality.
A confidentiality agreement is typically signed with the data provider and must be
honored in research practice.

37.4 Crime Prevention and Assessment

Results of crime analysis can potentially serve as a guidance for developing targeted
crimeprevention strategies. For example, spatio-temporal patterns of crime can reveal
hotspots and hot time periods, which can be used to guide hot spot policing, by
directingmore police resources to the hotspots and hot time periods. Results ofmulti-
variate regression models tell the relative importance of individual factors to crime.
More attention could be given to the most important factors. Ideally intervention
should be directed to the factors that cause crime. However, conventional regression
analysis cannot truly reveal causal effects. Causal analyses in crime are rare and
conducted in virtual environments, although difference in differences and propensity
score matching have been applied to study the effect of a natural intervention, such as
the opening of new subway line and bus stops (Liu et al., 2020). More attention and
effort are needed for causal crime analysis in the future. Scholars should be cognizant
that not all factors can be intervened. To make crime analysis more applicable in
practice, collaboration with the practitioners is needed at onset of the research design
to identify intervenable factors.

Targeted intervention usually reduces crime in the target area. It may also reduce
the crime in the neighboring areas. Conversely, it may push crime to the neighboring
areas. The former is termed diffusion of benefits, and the latter displacement of crime.
In addition to spatial displacement, crime can displace in crime type, victims, and
approach to crime, etc. All these need to be examined wholistically in assessing the
overall effectiveness of the crime prevention strategies.

37.5 The Spatio-temporal Mismatch Problem

Most crime events have precise location and time, but explanatory data are typically
available in relatively large spatial units and not updated often. This leads to an
inherent mismatch between the high spatio-temporal resolutions of crime variables
and the low resolutions of explanatory variables. Traditional approaches would typi-
cally reduce the higher resolutions of crime data to match the lower resolution of
data on social and built environments. For example, individual crime events could
be aggregated annually to the census tract, to match those of the census variables.

Fortunately, the advancement of big data has brought opportunities of developing
solutions to the spatio-temporal mismatch problem. The aforementioned big data
are capable of generating high resolution data in both space and time, which can
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help explain crime in greater granularities. Therefore, we do not have to reduce the
resolutions of the crime data anymore. Recent studies have developed crime models
for three-hour time periods of a day (Song et al., 2018), and crime models based on
150 m x 150 m grids and address locations (Zhou et al., 2021). These high-resolution
crime models have generated new findings and could potentially add to the existing
theories.

37.6 Conclusion

This chapter serves as a summary on progresses and challenges of crime geography
and crime analysis. An appropriate unit of analysis in crime analysis should ensure
that the between unit variation is larger than the within unit variation. While the
spatio-temporal mismatch problem is inevitable, recent advancement in big data has
been able to generate variables in fine spatio-temporal resolutions that better match
those of the crime data. To make crime analysis more applicable, scholars need to
pay more attention to the causal and intervenable factors that drive crime. While the
chapter is aimed at crime geography and crime analysis, it can also shed lights on
related fields such as public health that also analyzes point-based event data.
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Chapter 38
GIS Empowered Urban Crime Research

Yijing Li and Robert Haining

Abstract The chapter looks at the contribution Geographical Information Systems
(GIS) havemade to research into the spatial and temporal patterns of urban crime and
criminality, indicating areas of possible growth in the future and sketching the policy
relevance of these developments for practical policing and research. It discusses four
main GIS empowered crime research elements using a “3W1H” framework to help
organize ideas: “Who (2P: Police and Public)”, “What (2C: Crime and Context)”,
“Why (2W: When and Where)” and “How (2D: Data and Design)”. We highlight
how interactive data visualisation leads to better public communication, essential for
successful policing, as well as contributing to research agendas.

Keywords GIS · Urban crime · Spatial and temporal patterns · Crime mapping ·
Data-driven

38.1 Introduction

Study into urban crime can be dated back to at least the nineteenth Century but this
field gathered particular momentum in the 1920s and 1930s when links between
neighbourhood social conditions and crime and criminality were systematically
investigated by what is referred to as the “Chicago School” (see for example Shaw&
McKay, 1931). This early work was undertaken within the discipline of sociology
but in the years since, the study of crime and criminality has attracted interest from
many other disciplines including geography, psychology, public health, behavioural
science, and economics whilst also establishing itself as a field of study (crimi-
nology) in its own right (Becker, 1968; George, 1978; Hakim and Rengert, 1981;
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Sorenson and Pilgrim, 2000). For extensive and recent reviews of the field see the
various Oxford Handbooks of Criminology series (2012, 2017, 2018). The technical
challenges associated with crime research has also attracted interest from computer
scientists, with GIS assuming an important place in the handling and displaying
of geographically referenced crime data, data that are routinely collected and digi-
tized by local police forces (Li, 2015). Ever since the widespread utilisation of GIS
packages and relevant computational techniques in the 1990s (Wortley &Mazerolle,
2008), researchers have been able to rapidly map and query crime data, illuminating
geographical (spatial and territorial) and spatial–temporal patterns and trends often
in near real-time limited only by the speed with which crime-site data can be input
into computer systems (Spencer and Ratcliffe, 2005). The “marriage” of cutting-
edge machine learning and data visualisation techniques in recent decades has added
further impetus to the field.

Such advances in urban crime data analysis (both the interpretation and presen-
tation of crime data) have enabled wider and better communication between police
forces and the general public, drawn the public’s attention to local safety issues,
disseminated knowledge about local police services and provided up-to-date infor-
mation on progress, facilitated the promotion of crime prevention strategies and
improved the efficiency of routine policing practices. In light of these, this chapter
will illustrate “GIS-empowered” urban crime research using a 3W1H donut-gram
(Fig. 38.1) to indicate the broad classes of questions that are of interest:

1. What: what is the potential for urban crime research and what are the future
directions for the subject? This strand can be streamed into:

Fig. 38.1 Urban Crime
Research: the 3W1H
Donut-gram

GIS 
+ 

Crime 
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• Crime: evolution of long-standing crime research agendas into, for example,
offender behaviors and victimization in geographical space and time and
changes due to structural shifts associated with post-pandemic economies,
such as changes to working practices (more home working and less
commuting), and linked to

• Context: contextual (e.g., environmental) influences on crime and criminality
in urban areas. Changes in urban structure and how this will impact on crime
and criminality.

2. Why: Why is it important to empower urban crime research with GIS tech-
niques? In particular it contributes to work into spatio-temporal crime patterns
research:

• When: the crime-peak hour(s) of the day, days of the week, seasonal and
temporal trends in crime incidents in urban areas.

• Where: the detection of hot spots and “crime streets” (micro-spaces associ-
ated with specific street segments that have very high levels of crime and
criminality) in urban spaces for the purpose of directly targeting police
resources.

3. Who: Who would such research benefit? Beneficiaries will include not only
policy practitioners like police agencies, but also ordinary citizens.

• Police: evidence-based policing strategies as well as space and time specific
crime-combating measures.

• Public: transparent information communication and interaction.

4. How: How GIS will better empower urban crime research in the coming
decades?

• Data: emerging big data and multiple new sources of data (e.g., from social
media, smart phones, remotely sensed images, etc.)

• Design: innovative methodologies, augmenting traditional spatial statistical
techniques such as regression and cluster detection methods, for instance
machine learning and artificial intelligence.

38.2 Urban Crime Literature

We start by considering the first “W” (What) of the urban crime research donut-gram,
and its two streams crime and context, and the second “W” (Why) and its two streams
identifying crime patterns over place and time. There is a well-developed literature
investigating the consequences of urban development on crime and criminality, ever
since Durkheim (1897) coined the term “anomie” to describe social alienation, and
the Chicago School’s research into social disorganisation and its influence on urban
criminality (Messner and Rosenfeld, 1997; Chamlin and Cochran, 1995; Savolainen,
2000; Bernburg, 2002; Kim and Pridemore, 2005).
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38.2.1 Crime Embedded in the Urban Context

In the course of exploring urban crime influences and changes in those influences
over time, the majority of criminological or sociological theories have focused on
changes in the amount and types of crime and the importance of such variables
(varying over time and between places) as poverty, changes in economic inequality,
criminal opportunities, cultural conflicts, weakened social control and social disor-
ganization (Durkheim, 1897, Cloward and Ohlin, 1960, Kim and Pridemore, 2005).
Theories that include institutional anomie theory (Messner and Rosenfeld, 1997) and
social capital theory (Coleman, 1988; Sampson et al., 1999), place emphasis on the
mediating role of social cohesion and the strength of cultural values that do not equate
“success” with “money”. They are consistent with viewpoints from Chicago School
theorists in emphasising neighborhood structure and its links to levels of crime. For
example, Shaw and McKay (1931) were most concerned with the deleterious effects
of racial and ethnic heterogeneity, residential mobility, and low socioeconomic status
on an area’s ability to prevent crime. Togetherwith other factors like family disruption
(Sampson and Groves, 1989), relative poverty (Messner, 1982), and racial segrega-
tion (Krivo and Peterson, 1996), these theories work together to provide a basis for
examining changing crime patterns in urban areas.

Since the 1970s, urban crime research has evolved becoming no longer the
preserve of criminologists, sociologists, andpolice practitioners, but has also received
interdisciplinary input from geographers and computer scientists who have paid
particular attention to crime influences emanating from the urban contextual envi-
ronment. For instance, Storch (1979) reviewed Gurr’s (1977) work on evaluating
urban crimes in London, Stockholm, and Sydney since 1930 using statistical records
to derive associations between increases in crime and civil order and trying to uncover
the influences of institutional and political factors. Research had shown that crime
intensities, changes, complexities, and dynamics have been significantly affected by
the particular urban contexts, as do the corresponding crime-counteringmeasures and
policies, which require account to be taken of local contexts and specific local crime
trajectories. A question of particular interest currently is how social and economic
changes, set in motion by the covid pandemic will play out in terms of urban crime
patterns (Ceccato et al. 2021).

38.2.2 Crime Patterns

Urban crime is not a collection of random incidents in space and time, and for this
reasonhas attracted increasingnumbers of researchers andpractitioners to explore the
observed patterns in time and space, with the aims of gaining a better understanding
of the dynamics of crimes, and to prepare more accurate crime forecasts in order to
devise preventive strategies and measures.
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Time-series analysis and various related methods had been employed by statisti-
cians, sociologists and mathematicians amongst others to describe the crime trends
in target urban areas, by year, by season, by week as well as daily, hourly, or even
every 15 min (Lauritsen andWhite, 2014; Andresen andMalleson, 2015; Felson and
Poulsen, 2003; OJJDP, 2016; Williams and Coupe, 2017), for not only descriptive
and exploratory purposes, but also looking into the temporal predictions to support
policing and patrolling assignments.

GIS and spatial analysis techniques are proving to be essential for studying crim-
inal activity, especially in detecting crime hot spots (Chainey, 2020) or hot street
(micro) segments (Tom-Jack et al., 2019) in different urban contexts. Recently,
Murray et al. (2001) highlighted the novel capability of GIS and spatial analysis
approaches for examining crime in urban regions using a case study in Brisbane,
Australia; Ratcliffe (2010) noted that mainstream research in spatial criminology
lies in the study of spatial and temporal crime patterning, and prediction; Chainey
(2020: p43) mapped the high crime concentration micro-places in New York City
(USA), Montevideo (Uruguay) and Rio de Janeiro (Brazil). Intensive case studies
have enriched our understanding of urban crime and its context (What), the identifi-
cation of crime patterns in place and time (Why), and the development of urban crime
research, drawing on more diversified data sources and evolved GIS methodologies
(How), in the expectation of empowering crime research towards better police service
practices to facilitate crime reduction and prevention (Who).

38.3 GIS Empowered Crime Research and Practice

Ever-evolving GISmethodologies have empowered the realisation (“How”) of crime
research and practice. The use of GIS in crime research has strong roots in prac-
tical policing challenges in the 1990s most notably when the New York City Police
Department (Harris, 1999) started to replace traditional but cumbersome pinpoint
maps with a computerised crime mapping system. However, the intellectual root for
using spatial technology goes further back. For example, in the 1960s, Jacobs (1961)
“eyes on the street” theory drew attention to the importance of the physical envi-
ronment on some forms of criminal behaviour. City planners, by paying attention to
small scale urban layout could facilitate informal surveillance which would in turn
discourage the motivated offender. Urban renewal in the 1950s and 1960s had not,
in Jacob’s view, paid sufficient attention to how urban layout might have an impact
on a range of crimes from burglary to street crime. Good environmental (structural)
urban design will enhance the public’s community guardianship role and play an
important part in responding to rising crime levels. GIS with its ability to manage
spatial (i.e., land use, census, and transportation) databases clearly had a role to play
in developing “safer urban spaces” as well as play an important role in crime pattern
detection (section 38.2.2) and crime mapping in space and time. There is potential
to link these two roles as part of a spatial decision support system to monitor the
consequences of urban re-design on crime patterns.
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38.3.1 Crime Mapping for Police Services

Digital crime mapping, for example the widely acknowledged COMPSTAT model
(McDonald, 2002), was initially employed to support police decision making,
manage patrol operations (Chainey andRatcliff, 2013), andmake significant progress
in improving and making more efficient police services in the face of increasing
‘demand’ and spiralling costs (Craglia et al., 2000). COMPSTAT was credited with
having played an important role in reducing crime levels in New York City, evolving
into a prospective crimemapping tool (Hart et al., 2020) to support predictive policing
often based on the use of spatial analytical techniques, for example Kernel Density
Estimation (KDE) (Bailey and Gatrell, 1995) and Risk Terrain Modelling (RTM)
(Caplan and Kennedy, 2010).

Computer-assisted crime mapping has improved the efficiency of police services
significantly. For instance,Reaves (2010) compared the percent of local police depart-
ments using computers by 2007 and found that police departments in urban areas
especially serving populations of over 250,000, had utilised GIS 100% for crime
analysis and crime mapping. Besides, the use of GIS combined with spatial anal-
ysis tools has contributed to the development of various crime mapping applications
which assisted with patrol dispatching, community policing and resource planning.

38.3.2 Crime Mapping for Public Engagement

In the twenty-first Century, driven by advances in computer science and data
(geo)visualisation techniques, crimemapping has becomemore supportive for public
sectors enabling the provision of information quickly to citizens (e.g., crime dash-
board in the city of London) supporting fulfilling the goal of transparent communi-
cation as a key element of open government promises. For example, Chainey and
Tompson (2012) affirmed the policy impacts from UK police forces’ adoption of
an online crime mapping tool in 2008, with the fruits of it improving engagement
with and empowerment and promotion of public service transparency and account-
ability. However, such interactive communication normally places high requirements
on the citizens’ ability to interpret the data. This in turn necessitates careful carto-
graphic visualisation of the information to be communicated to reduce the risk of
any confusion arising because of the lack of direct human interaction. It proposed
the integration of crime mapping systems with social media to facilitate instant and
prompt communication of local crime issues for the benefit of citizens. However as
has been remarked, involving social media is not without its challenges and potential
for misinformation.
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38.4 What Next?

The digital era is ushering in a period where very large and complex data sets are
available, providing new opportunities andmotivation to develop new and innovative
ways for conducting urban crime research (Hart et al., 2020) and supporting policing
services utilizing emerging data & state-of-the-art methods (How).

38.4.1 Emerging Data

The linked development of both emerging new sources of fine-grained urban crime
and other relevant data and data mining techniques have together contributed to
enhanced understanding of urban crime (Zhao and Tang, 2018). Here are some
examples:

1. Internet-of-Things (IoT) data: social media for example geo-located Twitter
sentiment data and Foursquare data have been utilised together with other types
of data including weather data for example, to make crime predictions (Wang
andLi, 2021;Wang et al., 2012;Chen et al., 2015). Themobile data being used to
simulate the mobile population has becomemore widely deployed (Bogomolov
et al., 2014; Rosés et al., 2021). There are also many open-source databases
that have been made available for researchers to explore spatial–temporal crime
patterns froma comparative perspective, e.g., theCrimeOpenDatabase (CODE)
recording 10 largest US cities’ crimes over 11 years by type (Ashby, 2019), and
the multiple sources of UK crime datasets (Tompson et al., 2015).

2. Tracking data:GPSdata has beenused to simulate populations at risk fromcrime
(Kikuchi et al., 2012) in micro-places, or record police patrols and micro-place-
based intervention effects (Hutt et al., 2021), with the latter accompanied by
GPS and BodyWorn Recorder video data (BWV). Other locational tracing data
such as that provided by taxi data (Vomfell et al., 2018), cell phone tracking
(Song et al., 2019) and Google location data (Valentino-DeVries, 2019) are
potentially valuable data sources in this context.

3. Image data: recently remotely sensed data have attracted interest as inputs into
crime and policing research as a way of avoiding the high costs of manual
data collection, because of its increasing abundance and accessibility at high
resolution. Najjar et al. (2018) investigated the use of deep learning to predict
crime rates from raw satellite imagery for the purpose of promoting urban safety.
Wu et al. (2018) trained both street view and satellite images with crime data in
San Francisco, to predict the relative crime risks at different locations. Patino
et al. (2014) used urban fabric descriptors computed from very high spatial
resolution imagery to assess whether neighbourhood design and condition has a
quantifiable imprint, as suggested it should by “broken windows” theory. They
analysed the relationships between land cover, structure, texture descriptors
and intra-urban homicide rates in Medellin, Colombia. Other work, such as that
by Wolfe and Mennis (2012), Woodworth et al. (2014) and Liu et al. (2020),
have used satellite imagery to estimate burglary density, assess the effect of
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vegetation cover and nightlight respectively, on urban crime; Ceccato (2021)
and colleagues are exploring the use of built form and other indexes derived
from remotely sensed imagery together with artificial intelligence to predict
crime patterns in Stockholm (an ongoing project funded by FORMAS).

4. Video footage data: Ashby (2017) used data from the British railway network
to show that CCTV is a powerful investigative tool for many types of crime, and
this finding was further endorsed by Lindegaard and Bernasco’s (2018) work on
suggesting the value of camera recordings as part of the investigative and crim-
inological tool kit. Thomas et al. (2021) reviewed 162 CCTV schemes on crime
prevention cases systematically across 15 countries over the past five decades
illustrating the global expansion and internationalization of these technologies.

However, such emerging data have been exposed to challenges in terms of
their accessibility, accountability, comparability, reliability, generalisability, inter-
pretability, and representativeness. Such data need linking to advanced computa-
tional methods if they are to be “distilled” into useful information and knowledge
and then communicated to stakeholders (including the public where relevant) in
easy-to-understand language.

38.4.2 State-Of-The-Art Methods

Whilst GIS is an important part of the enabling technology for “spatial thinking”,
which is an essential underpinning to urban crime research and police response given
the territorial as well as temporal nature of policing, it is important to recognize that
GIS can support work with spatially referenced data in at least three distinct ways
(Burrough & McDonnell, 1998): (1) as a powerful set of digital “tools”: “…for
collecting, storing, retrieving at will, transforming and displaying spatial data from
the real world for a particular set of purposes” (p. 11); (2) as a database manage-
ment system: “a computer based set of procedures used to store and manipulate
geographically referenced data”. (p. 11). Arguably these are the two main uses of
GIS in crime research and policing practice up to the current time where sometimes
advanced spatial statistical methods and geo-visualization have been integrated into
the GIS for such activities as crime hotspot detection and geographic profiling.When
a deeper understanding of crime patterns is needed, researchers have often made use
of advanced statistical techniques such as spatial regression models (Anselin, 2009),
geographicallyweighted regression (Cahill andMulligan, 2007) andSpatio-temporal
Bayesian modeling (Hu et al., 2018, Haining and Li 2020; Law et al. 2020).

A third and relatively under-developed (to date) use of GIS is as (3) a spatial
decision support system (SDSS) which involves the integration of spatially refer-
enced data in a problem-solving environment. This may involve inputting crime
data, a range of urban data including socio-economic, physical infrastructure and
police activity data, in order to evaluate different policing strategies in terms of
efficiencies and outcomes [e.g., crime reduction currently of concern to society;
elimination of hotspots; evaluation of a crime reduction programme (Li et al. 2013)].
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In face of the ever-increasing urban data volumes and diverse sources, state-of-the-
art interdisciplinary methodologies have been increasingly adopted by urban crime
researchers.

Machine learning and AI techniques (“deep learning”) have in recent decades
been widely utilised to (1) detect crime hotspots (Kounadi et al., 2020; Nair and
Gopi, 2020) together with spatial analytical techniques such as, adaptive kernel
density estimation methods; (2) predict crime incident locations using for example
Convolutional Neural Network (CNN) to train millions of imagery datasets (Najjar
et al., 2018; Wu et al., 2018); and (3) optimise police patrol routing (PPR) using
a (hybrid) Genetic Algorithm (GA), linear programming, local search and routing
policies (Dewinter et al., 2020). Cichosz (2020) has summarised how algorithms like
correlation analysis, random forest, linear regression, negative binomial regression,
logistic regression, naive Bayes classifiers, SVM, neural network, decision trees, k-
NN, polynomial regression, autoregression, clustered continuous conditional random
field, and gradient boosting have been adapted by different cities in their policing
efforts.

However, returning to the “3W1H” framework with which we began, such
emerging data and state-of-the-art algorithms (including data visualization tech-
niques and interactive dashboard platforms) which will certainly feature in next
generation urban crime research and associated policy initiatives, will not be, in
themselves, sufficient to serve future needs and expectations. Rather a key feature
of that future must involve comprehensive, open, and transparent public partici-
pation and communication between stakeholders. This will in turn require a more
comprehensive and systematic integration ofGIS into urban crime research and urban
policing. In summary, urban crime research in the coming decades will engage with
wider aspects of the social and economic ecosystem. The aim must be to respond to
the public’s concerns and progress a whole society urban safety agenda that recog-
nizes the needs of different groups defined by, for example, their ethnicity or their
gender. This can only be taken forward through joint efforts involving academics,
police agencies, private sector entrepreneurs and governance policymakers. It will
be essential to communicate with all stakeholders, listening and responding to their
fears and concerns in flexible ways and in language that they can understand.
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Chapter 39
GIS in Building Public Health
Infrastructure

Ge Lin

Abstract This chapter recounts personal anecdotes of augmenting public health
infrastructure using GIS. I start with what motivated me to work primarily on real
world problems in public health data integration and disease surveillance. In the
process of enhancing spatial data capacity andGIS solutions, a key to success is being
flexible while working with public health programs for their other needs. Enabling
visualization of multiple disease maps for multiple programs is a good starting point
from maps to mechanisms. We must continuously build other community health
datasets to snowball programs’ inquiries. Expanding GIS capabilities in disease
cluster detection is technologically easy, but organizationally challenging, which
requires domain knowledge and design thinking. In the Big Data era, GIS bridges
precision neighborhood health with precision medicine to improve population health
at both individual and neighborhood levels.

Keywords Data infrastructure · Disease detection · Geocoding · Neighborhood ·
Precision · Spatial cluster

39.1 Introduction

Medicine treats individual patients, whereas public health treats people and their
communities as ‘patients’. A physician diagnoses a patient’s illness by observing,
questioning, and lab testing. A set of data points from these inquires generates a
differential diagnosis. Sometimes, many patients with similar disease symptoms
keep coming from a few neighborhoods, but most physicians can hardly relate their
residential locations. Noticing this deficiency, Dr. Stephen Spann, the former Chair of
the Department of Family and Community Medicine at Baylor College of Medicine
asked me to make some census data maps for resident doctors and tutor them on
how to download and interpret the 2000 US Census tract data. That was 2004 when
I first anecdotally experienced neighborhood health while interacting with resident
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doctors. Dr. Spann told me that he normally would have an image of his patient and
the family, but he wished to have a mirror image of the patient community during
diagnosis and treatment.

Public health data at the community level is a mirror of community health. GIS
not only bridges data to the mirror, but also feeds images to it. Just like a person
routinely looks at a mirror before going to work, people should periodically check
their neighborhood health mirror that may consist of (1) aggregated behavior risk
and disease prevalence and incidence, (2) access to health and community health
assets, (3) community or neighborhood socioeconomic status (SES). Even though I
applied GIS in all these areas in the late 1990s, I rarely engaged in frontline practice
during the first 10 years on the geography faculty.

Nobel prize winners are top scientists, the Nobel committee, however, judges
them not only on the scientific merit of their discoveries, but also on the benefit they
confer to humankind. One day in 1992, I showed my advisor that I had extended his
Buffon’s needle paper (Rogerson, 1990) from one-dimension migration distance to
two-dimension migration area (he did one integral in calculus, and I did two). He
glanced at my derivations and said: there are many societal problems. You would
get more mileage if you spent your energy on solving real world problems. That
comment sowed the seed of benefiting society in my heart. Now, 30 years from
that conversation, I still draw satisfaction from working on real world problems.
In the following, I share a success story about integrating spatial data with public
health data. I then provide case lessons from implementing disease cluster detections.
Finally, I offer some thoughts about how to put GIS into public health infrastructure
for precision neighborhood health.

39.2 Integrating Geocoding and GIS into Public Health
Data Infrastructure

State public health program data are mostly based on personal records, some from
program participants and some from registries, such as birth, death, cancer, trauma.
To place individuals into their communities, we need to geocode their addresses
into geographic point locations (latitude and longitude). When geocoded location
information is linked to census tract data for at-risk populations, SES, and other
neighborhood variables, program specialists can assess place-based social deter-
minants of health–potentially preventable differences in health by systematically
placing socially disadvantaged groups at a further disadvantage on health.

Geocoding in the 2000s, however, was not as streamlined as it is today. When
we geocoded multiple program data with millions of records, we opted to link all
program data and generate a large address dataset with deduplicated address records.
In this process, we also set up a federated data warehouse consisting of program data
marts: each program owns its data and programs communicate the same patient
records via a master patient index. To safeguard person-level data, we only let one
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person access all programs’ identifiable information. This operation was sustained
for many years (until the COVID-19 pause).

The linked data marts greatly eased inter-program data queries. In the old days, a
program coordinator would write down the name of the participant of interest and go
to another program to find out more. The data warehouse made this process seam-
less. Two programs can simultaneously look into many participants and many health
conditions. In a conventional public health program inquiry, a map of obesity may
be displayed as a result of an ‘obesity geocoding project’. Our enterprise approach
is to geocode all program data. Occasionally, multiple programs come to meet us
requesting census tract data maps for many chronic conditions. Each map is consis-
tently classified according to an age-adjusted rate. If a program is interested in a hot
spot, it can ask relevant programs to see if the hot spot is collocated with other disease
conditions. It is often that one program’s influence on a policy intervention is small,
but multiple programs’ influences are much stronger. In addition, when programs
and community stakeholders see these maps, they often deepen their assessments
from maps to mechanisms. They ask for more maps, such as SES and health asset
deficits (e.g. grocery store ratings, food deserts. street safety, primary care clinics).
While providing poverty or other SES indicators are instantaneous, most community
health asset data need to be added separately.

It may appear that we did this for efficiency, but our goal from the very begin-
ning was to enhance programs’ missions: improving the health of people and their
communities. That is why we were flexible. What started with a multi-program
geocoding project, ended up in expanding data linkage among programs. In fact, for
most GISers, database manipulation and data linkage are routine. This skill allows
us to link non-geographic data with a gentle learning curve. In addition, information
technology changes relatively fast for efficiency or cost-saving, whereas programs’
missions normally do not change much. If we are flexible to help programs achieve
their missions, programs would work iteratively with us to deepen the inquiry.

39.3 Disease Cluster Detection in Disease Surveillance

In this section, I present three cases progressively to show that we could expand
spatial disease detection to aspatial to meet program needs.

Case 1, Cluster detection needs a good framing question. After I moved to the
School of Public Health in Nebraska in 2008, I was excited about opportunities to
apply spatial statisticalmethods in disease cluster detections. Over the years, I carried
out about 8–10 cancer cluster detection tasks for the state cancer registry. I detected
at least a half dozen site-specific cancer clusters (breast, colorectal, and thyroid
cancers, etc.). When brief detection reports were turned to the cancer surveillance
program, none of the detected clusters resulted in further epidemiological investiga-
tions. Sometimes, a detected cluster area was too big. Sometimes an age-adjusted
risk might not be sufficient. For example, when detecting a disease cluster from a
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municipal waste landfill, those in proximity to it tend to be in low SES too. Perhaps
most importantly, we—GISers or biostatisticians–are normally handed with data for
a narrowly defined analytical question; after the analysis, we hand the result back.
Although each transaction has a meeting, the lack of domain knowledge intimidates
us to speak. A statistically significant test result without a good framing question
would not make us feel rewarding. Domain knowledge helps us to reframe questions
either for further inquiries or for methodological developments.

Case 2, Proactive in occupational health riskdetection. Then it came toCOVID-19
daily surveillance back in March and April of 2020 when I took the task of providing
early warnings for COVID-19 outbreaks in counties adjacent to Nebraska. Around
April 9, 2020, I found that Greeley, Morgan County in Colorado had an outbreak
attributable to a meat processing plant. I sent an alert to the state occupational health
coordinator, who was curious about how I found out. Anyhow, everyone was too
busy to act on the tip. Two weeks later, a state wide COVID-19 outbreak occurred
among meatpacking plants, and I was asked to assist outbreak investigations over
the weekend. This experience taught me that detections without instigation criteria
already in place would hardly draw attention. Certainly, it was not the first time
I assessed occupational risk in Nebraska, but it was the closest to having some
impact on COVID-19 prevention among meat processing workers. Previously, I was
peripherally involved in an elevated cancer investigation among individuals working
for the same unit of an institution. It was found that with just one additional case, the
risk would be statistically significant. Since the inquiry was sensitive to the media,
the investigation was limited to a very small circle and was tabled for not significant.
However, it is risky to continue business as usual for that work unit, and the institution
should proactively address potential exposures, rather than waiting for the bomb to
drop.

Case 3, GIS-based disease detection needs to extend to network-based data. A
final case is what I witnessed closely in Clark County Nevada (Las Vegas) about
an outbreak of acute non-viral hepatitis of unknown etiology in November and
December of 2020. Five previously healthy children aged 7 months–5 years were
hospitalized and then transferred to Utah for acute liver failure liver transplantation.
Acute liver failure among young children is rare in the United States, and acute non-
viral hepatitis of unknown etiology is extremely rare. Hence two such cases in the
time span would be unusual, let alone five. Could the current space–time surveillance
system alert health authorities earlier? The answer is no, as cases spread all over the
metro area. Even if it did signal clustering along the time dimension, it would not
be able to timely pin down the source. It turned out that a Utah hospital surgeon
alerted Clark County at transfer number 3. A follow-up investigation found that a
brand of alkaline bottled water was linked to this outbreak investigation 4 months
later (Ruff et al., 2021). If the water supply information were in the system, and the
geographic surveillance could be extended to the supply network, the system could
potentially spot and source track the outbreak earlier. This case is not unique, as
supply chain-based toxic exposures and food poisoning are mostly source-tracked
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after the events. Asmore andmore goods are delivered at homes, flow-based network
cluster detection will likely become more prominent.

The above cases suggest that we need to implement scientific knowledge in
public health surveillance by educating ourselves (GISers) and decision makers,
so that disease cluster detection is a collective decision process rather than a relay
process. John Snow, the father of epidemiology, believed that cholera was water-
borne even before the 1854 Cholera Outbreak in London. He used a dot map to
show that the water pump on Broad Street was the source of infection. With his early
belief, reaching perhaps a half number of dots on the map would be convincing.
However, shutting off the pump and convincing the local health authority was not
timely. It required the help of a local priest, and Snow’s cholera etiology was recog-
nized years later. Ignaz Semmelweis, the father of hand hygiene, found that post-
delivery mortality was substantially higher from physician-deliveries than midwife-
deliveries. He attributed this to a lack of handwashing among physicians. However,
his recommended handwashing was branded crazy, only to be recognized 20 years
later. On the flip side, when we (GISers) find something unusual in surveillance, we
are often not sure of its importance due to a lack of disease-specific knowledge. If
we systematically put specific disease risks into the surveillance system rather than
waiting for convinced decision makers, some disease outbreaks could be amelio-
rated. Scaling up technology is relatively easy, but implementing science or putting
alert triggering criteria (for investigation) requires consensus among public health
practitioners (domain experts), IT experts (GISers in this context), decision-makers,
and often stakeholders. This calls for design thinking, and the bar is very high, as we
are dealing with automatic instigations against false alarms.

While stressing the importance of extending our skill to non-geography prob-
lems, we should also be open-minded about stretching existing GIS functionali-
ties to uncomfortable zones of non-geographic disease surveillance. Most people in
academics are now convinced where people live determines, in many ways, their
health, thus the health of their communities. Life expectancies from two neighbor-
hoods just a mile apart can differ between 15 and 20 years. The wide acceptance of
this fact has taken at least 30 years in contemporary public health history, and GIS
has contributed significantly to this recognition. Social physics used to rely purely
on the physical distance to predict people’s interaction. As modern communication
technologies penetrate every corner of society, people’s social networks, regardless
of physical distance, can predict their interaction, health, and purchasing behaviors.
Marketing professionals jumped on this wagon really quick, perhaps around 2000,
whereas public health professionals are slower to act. Rather, they rarely implement
network-based prevention and intervention programs. In many situations, both tech-
nology and scientific knowledge are available, and what is missing is the value of
disease detection and prevention in the public health ‘market’. Just like marketing,
we have to value life proactively rather than post-outbreak investigations and puni-
tive lawsuits. When the value has not been placed in the public health system, a
bottom-up approach leveraging GIS for network-based surveillance is low-hanging
fruit.
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As a graduate student in Buffalo, I remember in a GIS advisory meeting, Jack
Dangermond (ESRI president) said that GIS is infrastructure, and it needs to be built
both from the ground up and the top. Then he said that ESRI had a lot of people
working in the field to build GIS functionalities for industry and government sectors.
When a function is common, ESRI then incorporates it into its system. I now realize
that it was bottom-up GIS system building. At the time though, I had to check a
dictionary to get the meaning of infrastructure. Nowadays, food labels and supply
chain information in public health are for post-outbreak product tracing and recalls.
This post-event paradigm could be shifted to an in-event paradigm using network
distance. It is relatively easy to implement in the current GIS methodologically,
but it is difficult to deploy necessary data. In addition, we need to organize our
education frommostly Ford’s assembly line teaching that stresses knowledge division
to adaptive design learning that stresses pulling various knowledge together and
adapting in time. In Case 2 above, if a point source is not directly in reference to
geography, a clear knowledge division would not lead to a spatial analysis request. In
Case 3, a space–time disease detection would be powerless unless we know the water
supplier. However, such information is proprietary. If the public health agency could
treat such data confidentially, food, and water supply companies may be willing to
share. This brings to my concluding proposition in the realm of Big Data.

39.4 From Precision Medicine to Precision Neighborhood
Health

In recent years, precision medicine has advanced biomedical science rapidly, where
specific genes contributing to a disease can be identified and then modified through
medication. Different genetic-basedmedications can then be administered to patients
A and B as opposed to the same conventional medication to all patients. Likewise,
if we want to implement precision neighborhood health, neighborhood residents,
housing, health assets, transportation, and build environment would be neighborhood
genes; their interaction with the outside (e.g., workplace, shopping) would be akin to
gene-environment interaction. A major challenge is how to define, access, inventory,
and update ‘neighborhood genes’. In addition, people are mobile with wearables and
other devices constantly generating data. They together with IOT sensor- and social
media data become increasingly accessible forming cyber-neighborhood data.

Just like genomic sequencing of an individual, we can sequence the ‘genomes’ of
a neighborhood. Different from human genomes, neighborhood genomes are more
dynamic as residents move in and out frequently. In addition, we can treat neigh-
borhood health assets from a disease genome perspective just like viral genome
sequencing. For instance, the HIV virus had only three genes and they were fully
sequenced. Their mutations and ability to resist antiviral therapy could be under-
stood. If we identify a handful of neighborhood disease triggering ‘genes’ for group
A patients, and another few for group B patients, we can tailor treatments to patient
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groups A and Bmore precisely. Here, we have to build from the bottom-up thousands
of neighborhood solutions. GIS would serve spatial data infrastructure to inventory,
update and analyze all aspects of neighborhood health. GIS would help neighbor-
hood matching so that similar neighborhoods, regardless of geographic distance, can
share effective interventions and lessons learned. GIS would provide neighborhood
health images according to health providers’ needs. Some of the functions might
have been applied for specific diseases with specific neighborhood factors, but we
are talking about enterprise and infrastructure level implementation.

Precisionmedicine is a buzzword, but its contribution to the health impact pyramid
is relatively small (Frieden, 2010). The greatest impact is at the base—socioeco-
nomic factors. Most of them can be sequenced and intervened at individual and
neighborhood levels leading to precision neighborhood health. Human genes have
evolved almost to a standstill for the last 50,000 years, while human environments
are changing fast, which suppress, evoke, amplify, and mutate human genes. Both
precision medicine and precision neighborhood health share computation and AI
challenges in Big Data Science. GIS bridges precision medicine and precision neigh-
borhood health so that both could be ‘sequenced’ together to treat disease etiology
at both levels.
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Chapter 40
Challenging Issues in Applying GIS
to Environmental Geochemistry
and Health Studies

Chaosheng Zhang, Xueqi Xia, Qingfeng Guan, and Yilan Liao

Abstract GIS has been widely used in geochemistry-related environmental health
studies and practices to map and analyze sampling locations and spatial distribution
of geochemical features and health information. In the big data era, the focus is
shifting towards revealing the hidden patterns and features. This chapter explores
the challenging issues of spatial analysis, machine learning, and uncertainty in such
studies and practices. Spatial analysis needs to focus more on hot spot analysis and
identification of spatial outliers, as well as exploration of spatially varying relation-
ships. Machine learning can be adopted to conduct deep learning with a focus on
non-linear features and their links with causal effects. The field and laboratory uncer-
tainty of environmental geochemistry should be incorporated in GIS analysis. The
analyses of the association between environment and health need to be more intelli-
gent and accurate. GIS continues to provide useful tools to make novel findings in
environmental geochemistry and health from the spatial aspect.
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40.1 Introduction

Environmental geochemistry focuses on the sources and distribution of chemical
elements on the Earth’s surface and their relationships with plants, animals, and
human health (Eby, 2016). It plays an increasingly vital role in mineral exploration,
environmental management, agricultural practices, and human health. Analyses of
geochemical data can help to: (1) reveal the geochemical patterns, (2) explore the rela-
tionships between these patterns and influencing factors, and (3) map environmental
and health risks. With the development of geochemical mapping, massive geochem-
ical databases have been established and environmental geochemistry has entered the
era of big data. It is increasingly critical to break away from conventional methods
that rely excessively on expert judgment, and instead to develop efficient methods
to reveal useful information and patterns hidden in large geochemical databases and
establish associations between environment and health.

40.2 Spatial Analysis of Environmental Geochemistry

Themost popular applications of GIS in environmental geochemistry are mapping of
sampling locations based on sample coordinates and mapping of spatial distribution
of environmental parameters based on spatial interpolation. In the past, it was not
easy to produce spatial distribution maps of high quality based on a limited number
of samples. However, with the growing volume of data, the current focus is shifting
towards revealing hidden information in the data. Meanwhile, spatial heterogeneity
of environmental geochemistry makes it a challenging task to identify the hidden
patterns of environmental variables and their influencing factors. Spatial statistical
techniques have been applied tomeasure the spatial autocorrelation and spatial struc-
ture, with an aim to provide foundations for spatial interpolation. The current trend
is moving towards the challenging issues of hot spot analysis and spatial outlier
identification, as well as spatially varying relationships.

The analyses of hot spots and spatial outliers can provide an effective way to
identify areas requiring attention, e.g., potential pollution or mineralization. The
techniques for hot spot analysis include local index of spatial association (LISA)
(Anselin, 1995), Getis Ord Gi

* (Getis & Ord, 1992), and others. At the regional
scale, the LISAmethod was applied by Zhang et al (2008) to identify spatial clusters
of lead in soils of Galway City and the clusters were associated with traffic. At the
continental scale, Xu et al. (2019) found that the co-existence of cool spots of soil
organic carbon and pH value in central eastern Europe was related to the coarse
parent materials of the last glacier deposit. More hidden patterns of spatial clusters
and spatial outliers in environmental geochemistry should be revealed so that their
influencing factors can be better identified.
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The conventional correlation analysis assumes that the relationships between vari-
ables are constant across the whole study area. This assumption has ignored the
spatial heterogeneity of such relationships. The geographically weighted regression
(GWR) offers a way to explore the complex spatially varying relationships between
environmental variables. Yuan et al. (2020) found that anthropogenic factors weak-
ened the relationships between Pb and Al in soils of central London, while large
parks and greenspaces reserved their positive relationships. Following the discovery
of both cool spots of soil organic carbon and pH in the central-eastern Europe, a
further study revealed their positive relationships in this area (Xu & Zhang, 2021).
Further studies should be carried out to reveal the spatially varying relationships in
environmental geochemistry in order to explore more details of hidden information.

40.3 Machine Learning in Environmental Geochemistry

As a data analytical technology in the artificial intelligence area, machine learning
can help intelligently discover patterns and features hidden in data and derive deci-
sions or predictions for new data (Mahesh, 2020). In recent years, machine learning
methods, such as artificial neural networks, support vector machines, logistic regres-
sion, K-means clustering, and autoencoder have been applied in geochemical anal-
ysis to model nonlinear systems and capture complex multi-phase geological events
(Zhang et al., 2021; Zuo & Xiong, 2018). There are three main challenges in appli-
cations of machine learning and its potential future development in environmental
geochemistry.

1. Most studies use shallow structured machine learning methods, which have
limited ability to represent complex functions and suffer limited capability of
feature extraction. Feature learning within deep learning has attracted consider-
able attention in the field of machine learning. Deep learning networks enhance
feature learning by deepening themodel structure to achieve a complex function
approximation, demonstrating a powerful ability to learn the essential features
of a dataset from a small sample set (LeCun et al., 2015). More deep learning
methods can be adopted in environmental geochemistry to further enhance
feature extraction and relationship modeling capabilities.

2. Spatial patterns have been the focus of environmental geochemical analysis.
Although methods such as geographically weighted regression, Moran’s I, and
hot spot analysis have been developed and applied to quantify patterns in envi-
ronmental geochemistry, their model design relies more on a priori relation-
ships. For example, the spatial weights representing the spatial relationships
between samples in these models often rely on predetermined formulas (e.g.,
inverse distanceweighting formulas based on Tobler’s First Law ofGeography),
resulting in these captured relationships to be relatively simplified and possibly
insufficient for complex spatial patterns. Convolutional neural networks (CNN,
Gu et al., 2018) and graph neural networks (GNN,Wu et al., 2020), as extended
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models of deep learning with the ability to mine local spatial structure features,
have been widely used in face recognition, anomaly detection, and relationship
mining. The spatial structures and relationships of geochemical elements can
be intelligently extracted using CNN and GNN to provide more essential infor-
mation for the relationship extraction between geochemical spatial patterns and
human health.

3. Many machine-learning (especially deep learning) methods are mostly “black-
box” models. Although the prediction and classification results obtained by
machine learning are highly accurate, they often lack interpretability of the
internal principles. Moreover, most of the studies use data-driven machine
learning models, and the feature relationships mined are mostly correlation
rather than causation. The mining results are mostly related to the regions of
the collected data, and the generalization is relatively weak (Altman & Krzy-
winski, 2015). Therefore, causal interpretation by experts is also required after
the results are obtained, which limits the application of machine learning in
environmental geochemistry. Constructing environmental geochemical knowl-
edge graphs and using knowledge-driven models to automatically extract and
reveal the existence of causations between geochemistry and the environment
should be one of the key future directions (Wang et al., 2017)

40.4 Uncertainty in Environmental Geochemistry and GIS

Uncertainty from spatial prediction has been considered in GIS, and it has been
well handled by the kriging theory. The kriging method of interpolation can produce
the prediction map of attribute values with a map of the prediction uncertainty.
But this uncertainty is only the part caused by the model, which is the so-called
model uncertainty (Krivoruchko, 2011). In the traditional GIS methods, input values
are assumed to be deterministic. But in environmental geochemistry, each observed
value is not a true one, but a measured value with a certain error. This is not fully
considered in GIS at present.

Data for the environmental variables are either measured in situ or sampled from
the field and then sent to laboratory for analysis. In either case, the measured value
is not the true one. The true value cannot be exactly obtained because the error
of measurement always exists. The uncertainty is usually evaluated by repeated
sampling and testing. But samples cannot be collected repeatedly at the exact same
location, but are collected at locations near the precursor. In this case, the uncertainty,
typically measured by standard deviation of the repeated measurements, is induced
from two sources: laboratory measurements and microscale variation of the variable.

The uncertainty is determined by (1) the magnitude, or the scale of the measured
data, and (2) the spatial characteristics of the variable. The former is determined
mainly by the method or instrument of analysis. There is a range of “good” perfor-
mance for most analytical methods. If the measured value is in this range, the uncer-
tainty caused by testing is relatively small. But when the measured value is near or
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even lower than the detection limit, the uncertainty increases. This is also the case
when the measured value is high enough relative to the upper boundary of the range.
Another factor influencing the measured uncertainty is the spatial distribution of the
variable and the location of the repeated sampling. In areas of high values, e.g., those
related to anthropogenic pollution, the microscale variation of the element or pollu-
tants is usually large, and large uncertainty is induced during repeated sampling. In
area of low value background, the uncertainty caused by repeated sampling is small.
To sum up, the uncertainty of a measured value varies according to its magnitude
and its spatial location due to spatial heterogeneity.

However, the spatial and magnitude dependence of the uncertainty frommeasure-
ment is neglected in traditionalGIS.There are twopossible solutions to include uncer-
tainty in environmental geochemistry with GIS. (1) A model can be constructed to
describe the spatial and magnitude dependence of the measurement uncertainty. In
the future, the GIS system can accept repeatedly measured values at one location
as the input for the model, including repeatedly tested values in the laboratory and
the data of repeatedly collected samples from the field. (2) The uncertainty of input
values can be incorporated into spatial modeling. In this way, the spatial predictions
will take into account the uncertainty caused by both the measurement and spatial
prediction.Also, the result of spatial statistics, e.g., the arealmean fromblock kriging,
should also be accompanied by the standard error with the measurement uncertainty.

40.5 Environmental Health and GIS

Humans and animals have always been exposed to chemicals in the environment.
The dramatic increases in industrialization over the past three centuries have changed
both the quality and the quantity of both natural and synthetic chemicals humans
expose to (Birnbaum, 2008). Human health hazards caused by chemicals include
endemic diseases resulted from the deficiency or surplus of natural chemicals in
local environment and health issues due to environmental pollution (Wang et al.,
2002). Therefore, risk assessment of environmental chemicals aims to identify the
potential hazards to human health and understand how serious such problems may
be. It is composed of four components: exposure assessment, hazard identification,
dose/response assessment, and risk characterization and control (Birnbaum, 2008).

The applications of GIS in studying health effects of environmental chemicals
include: (1) efficient integration, manipulation, and processing of environmental
health data frommulti-sources; (2) flexible implementation of spatial–temporal func-
tions for transforming, aggregating, and analyzing the data in health risk assessment;
(3) effective simulation and display of effects of various prevention and control
measures.

GIS provides the tools such as the Geodetector method for combining mortality
and morbidity data with environmental chemical data to present a coherent picture
of the role of chemicals in determining human health status (Wang et al., 2010).
By explicitly linking human health outcomes to chemicals and other environmental
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variables, GIS allows a reorientation towardmore direct, population-based, and insti-
tutional explanations for health differentials. Moreover, GIS enables a wide range
of relevant non-spatial data to be integrated into a consistent framework to facilitate
analysis of the geographical distributions of diseases (Tim, 1995).

However, there are some key impediments in applying GIS to studying health
effects of environmental chemicals. The huge volumes of surveillance data and the
rapid rise in the creation and expansion of environmental health data require GIS to
analyze and display research findings more quickly and accurately. There is a chal-
lenge to couple GIS with advanced techniques such as high-performance computing
and artificial intelligence algorithms. In addition, more efforts are needed to take
into account the dynamic factors such as the extent of pollution and the nature of the
pollutant.
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