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Abstract

Climate change and associated unfavorable abiotic stress conditions, such as
drought, salinity, heavy metals, water logging, extreme temperatures, oxygen
deprivation, etc., influence plant growth and development to a great extent,
eventually disturbing crop yield and quality, finally food security in general.
Plant cells produce oxygen radicals and their derivatives, so-called reactive
oxygen species (ROS), during different processes related with abiotic stress.
Further, the ROS generation is a primary process in higher plants and operates
to transmit signaling information at the cellular level in response to the change in
environmental conditions. One of the most critical outcomes of abiotic stress is
the disruption of the balance between the ROS generation and antioxidant defense
systems inducing the excessive ROS accumulation and thus oxidative stress in
plants. Remarkably, both enzymatic and nonenzymatic antioxidant defense
mechanisms are known to maintain equilibrium between the detoxification and
ROS generation under adverse environmental stresses. Even though this area of
research has been captivated with massive attention, it mostly remains
unfathomed, and our understanding of ROS signaling remains poorly understood.
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In this chapter, we have highlighted the current advancement demonstrating the
detrimental effects of ROS, antioxidant defense systems implicated in ROS
detoxification during various abiotic stresses, and molecular cross-talk with
other key signal molecules such as reactive nitrogen, sulfur, and carbonyl species.
Besides, state-of-the-art molecular strategies of ROS-mediated enhancement in
antioxidant defense under the acclimation process in response to abiotic stresses
in plants have also been covered.
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6.1 Introduction

Environmental stresses, including salinity, drought, extreme temperature, heavy
metals, flooding/waterlogging, etc. are now widespread owing to severe and adverse
climate change (Raza et al. 2019; Hasanuzzaman et al. 2020). The aggravation of
various abiotic stresses has turned out to be a major menace to global crop produc-
tion systems. Besides, numerous detrimental effects cause oxidative stress via the
overaccumulation of reactive ROS including free radicals (superoxide anion, O2

•�;
hydroperoxyl radical, HO2•; alkoxy radical, RO•; and hydroxyl radical, •OH) and
nonradical molecules (hydrogen peroxide, H2O2 and singlet oxygen, 1O2) (Mehla
et al. 2017; Hasanuzzaman et al. 2019a, b). The main ROS generation locations in a
plant cell are apoplast, chloroplasts, mitochondria, peroxisomes, and plasma
membranes (Singh et al. 2019). While ROS are formed in a normal plant cellular
metabolism, overaccumulation as a result of stress severely damages indispensable
cellular ingredients including carbohydrates, lipids, proteins, DNA, etc. on account
of their highly reactive nature (Berwal et al. 2018; Raja et al. 2017). Plants largely
respond to oxidative stress by means of an endogenous defense system comprising
of different enzymatic (superoxide dismutase, SOD; catalase, CAT; ascorbate per-
oxidase, APX; glutathione reductase, GR; monodehydroascorbate reductase,
MDHAR; dehydroascorbate reductase, DHAR; glutathione peroxidase, GPX;
guaiacol peroxidase, GOPX; glutathione S-transferase, GST; Ferritin; nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase-like alternative oxidase, AOX;
peroxiredoxins, PRXs; thioredoxins, TRXs; glutaredoxin, GRX; etc.) and nonenzy-
matic (ascorbic acid, AsA; glutathione, GSH; phenolic acids; alkaloids; flavonoids;
carotenoids; α-tocopherol; nonprotein amino acids; etc.) antioxidants (Gill and
Tuteja 2010; Kumar et al. 2013a, b; Kaur et al. 2019a, b). In plant cells, the
antioxidant defensive mechanism and ROS accumulation maintain steady-state
equilibrium (Hasanuzzaman et al. 2012). Keeping cellular ROS at an optimum
level facilitates accurate redox reactions to take place and the regulation of various
processes necessary for growth and development in plants (Mittler 2017). Such
optimum level is maintained as a result of equilibrium between ROS production



and ROS scavenging (Hasanuzzaman et al. 2019a, b). But, under stress conditions,
over-generation of ROS creates imbalance and instigates cell damage, resulting into
programmed cell death (PCD), thus reducing crop productivity (Raja et al. 2017). In
addition to their damaging activity, ROS are recognized as secondary messengers
and are involved in signal transduction to the nucleus via redox reactions using
mitogen-activated protein kinase (MAPK) pathway in a number of cellular processes
to improve abiotic stress tolerance (Singh et al. 2019). Reactive oxygen species
contribute as key molecules during the acclimation process of plants under environ-
mental stimuli by acting as signal transduction molecules, which direct various
pathways during the acclimation of the plant under stressed state (Choudhury et al.
2017). A number of investigations have demonstrated that ROS are necessary for the
accomplishment of many primary natural processes such as cellular proliferation and
differentiation (Mittler 2017). Also, H2O2 is an important element in regulation of
stress response in plants such as rice (Sohag et al. 2020), wheat (Habib et al. 2020),
maize (Terzi et al. 2014), mung bean (Fariduddin et al. 2014), soybean (Guler and
Pehlivan 2016), cucumber (Sun et al. 2016), sour orange (Tanou et al. 2012),
strawberry (Christou et al. 2014), basil (Gohari et al. 2020), and rapeseed
(Hasanuzzaman et al. 2017a, b). Additionally, it is well-known that in addition to
ROS, reactive nitrogen species (RNS), reactive sulfur species (RSS), and reactive
carbonyl species (RCS) are also involved in signal transduction as well as in a cross-
talk in plant tolerance to abiotic stress (Yamasaki et al. 2019). Thus, ROS play a
central, dual role in plant biology, exhibiting a fascinating research area for plant
biologists. In this chapter, we recapitulate the latest progress of harmful effects of
ROS, antioxidant defensive mechanism implicated in ROS detoxification during
different abiotic stresses, and as well the cross-talk of RNS, RSS, and RCS with
ROS. We also spotlight on development in molecular approaches of ROS-mediated
improvement in plant antioxidant defense during the acclimation process against
abiotic stress.

6 Reactive Oxygen Species: Friend or Foe 131

6.2 ROS Formation and Types

In plants, ROS are generated in many cellular compartments including chloroplasts,
mitochondria, peroxisomes, and plasma membrane (Dmitrieva et al. 2020). In the
chloroplast, light quanta are absorbed by chlorophyll (chl) molecules and are excited
to their triplet state. If this triplet chl is not quenched well, recombination of charge
takes place leading 3O2 to excited

1O2 (Dmitrieva et al. 2020). Though its lifetime is
extremely short (3.1–3.9 μs) and diffusion distance is small (190 nm), 1O2 diffuses
outside the chloroplast to reach the cell wall, targets plasma membrane, tonoplast, or
even cytosolic signaling cascades (Fischer et al. 2013). Furthermore, 3O2 could
receive electrons from electron transport chain or nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase activity generating O2

•� having a half-life of
1–1000 μs (Hasanuzzaman et al. 2019a, b). Additionally, O2

•� reacts with H+
generating HO2

•�, which is far more reactive, stable, and permeable through
biological membranes. Likewise, H2O2 can be generated during the dismutation of



O2
•�/HO2

•� by SOD isoforms, NADPH oxidases, and heme-containing class III
peroxidases (POX) activity (Rejeb et al. 2015; Berwal et al. 2018). Chemically,
H2O2 is a weak acid with high diffusibility and stability, with a life span of <1 s and
can cross the plasma membrane through aquaporins (Mhamdi et al. 2012). Another
in place of one more essential ROS •OH can be generated during the Fenton reaction,
hydroperoxides activity during sunlight, and inner-sphere electron transfer. Further-
more, proteins, for example heme oxygenases, cytochrome P450s, superoxide
reductases, and some photosystem II (PSII) proteins, also generate •OH (Demidchik
2015). The calculated half-life of •HO is about 1 ns and has a short diffusibility of
<1 nm.
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Fig. 6.1 Various types of reactive oxygen species/free radicals generated in plant systems

Cellular ROS constitutes both free radical and non-radicals (Fig. 6.1). Among the
free radicals, O2

•�, •OH, RO•, and peroxyl radical (ROO•) and non-radicals, H2O2,
1O2, and ozone (O3) are very common (Maurya 2020). Nevertheless, some other
non-radicals are also present in plants for example hypochlorous acid (HOCl),
hydroperoxides (ROOH), and excited carbonyls (RO*) (Kapoor et al. 2015). In
addition, reactive oxygen intermediates (ROI) are also categorized as reactive
oxygen molecules generated by incomplete O2 reduction; thus, ROS comprise all
kinds of ROI as well as O3 and

1O2 (Fig. 6.1). Also, some acids like hypobromous
acid (HOBr), hypoiodous acid (HOI), and HOCl and radicals like carbonate radical
(CO3

•�) and semiquinone (SQ•�) are also incorporated into ROS (Waszczak et al.
2018).

Among ROS radicles, O2
•� is a primary reducing agent that forms strong

oxidants. Furthermore, RNSs, RSSs, and RCSs are generated on reaction of O2
•�



with nitric oxide (NO). These compounds further cause oxidative stress, and play a
vital role in “shaping” the intra- and extracellular redox signals (Suzuki et al. 2012).
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6.3 Localization and Processes of the Generation of ROS
in Plant Cells

In plant cells, ROS is mainly generated in chloroplasts, mitochondria, peroxisomes,
plasma membrane, as well as cell wall (Kohli et al. 2019; Kumar et al. 2021).
Consequently, compartmental ROS generation in plants sums to its total production
(Singh et al. 2019). Chloroplasts are the primary spots for ROS generation
depending on the interaction of chl and light, where triplet chl and ETC of PS I
and II play main role in main generation of ROS (Dietz 2016; Kim and Dogra 2019;
Singh et al. 2019). Mitochondria are considered as the main site of ROS generation
in case of nongreen parts of a plant such as roots. In mitochondria, leakage of
electrons from both complex I and III of ETC generates O2

•�, which later on gets
converted into H2O2 by Mn-SOD and CuZn-SOD (Singh et al. 2019). The prime
source of ROS generation in peroxisomes is glycolate oxidase (GOX) (Kerchev et al.
2016). Also, O2

•� and uric acid are produced in peroxisomal matrix by the activity of
xanthine oxidase (XOD), which further dismutates to H2O2 by SOD and urate
oxidase (UO), respectively (Corpas et al. 2019). In addition to β-oxidation of fatty
acids, H2O2 is also generated in peroxisomes due to O2

•� disproportionation and
flavin oxidase activity (Gilroy et al. 2016). In addition, copper amine oxidase,
polyamine oxidase, sulfite oxidase, and sarcosine oxidase enzyme activity also
results in generation of H2O2 in peroxisome (Corpas et al. 2020). Nevertheless,
MDHAR has been established to hydrolyze H2O2 through AsA-GSH cycle and
regenerate AsA in peroxisomes (Lisenbee et al. 2005), while NADPH oxidase, class
III POX, amine and germin-like oxalate oxidases, quinine reductase, and
lipoxygenases (LOX) guide the ROS generation in apoplast (Mittler 2017;
Choudhary et al. 2020). Fatty acid oxidation as well as also GOX and UO activities
produce O2

•� and H2O2 in glyoxysomes (Jeevan Kumar et al. 2015). Furthermore,
XOD and aldehyde oxidase (AO) potentially contribute to ROS production in
cytosol (Jeevan Kumar et al. 2015) (Table 6.1).

6.4 Antioxidant Defense and Plant Abiotic Stress: Recent
Approaches

Plants trigger their antioxidant defense system in order to alleviate the unfavorable
effects of oxidative stress. However, antioxidant defense role differs between plant
species and genotypes, as well as stress types and duration (Table 6.2). Further,
various strategies to improve antioxidant defense in plants have also been revealed
(Table 6.2).
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Table 6.1 Reaction mechanisms of major reactive oxygen species (ROS) scavenging enzymatic
antioxidants

Antioxidants Reactions catalyzed Catalytic reaction sites

Nonenzymatic

Ascorbic acid Scavenges O2
•–, H2O2,

•OH, and 1O2 Chloroplast, peroxisomes,
cytosol, mitochondria,
apoplast

Glutathione Scavenges H2O2,
•OH, and 1O2 Chloroplast, peroxisomes,

cytosol, mitochondria,
apoplast

Tocopherol Scavenges •OH, 1O2, ROO
•, and

ROOH
Thylakoid membrane of
chloroplast

Carotenoids Scavenges mainly 1O2 Chloroplast

Flavonoids Scavenges O2
•–, H2O2, and

1O2 Chloroplast, vacuole

Phenolic acids Scavenges O2
•�, •OH, ROO•, and

ONOO�
Cell wall

Alkaloids Scavenges O2
•–, •OH, H2O2, and

1O2 Vacuole

Nonprotein amino acids Scavenges O2
•–, H2O2, and

1O2 Cytosol, mitochondria,
cell wall

Enzymatic

Superoxide dismutase
(SOD; EC 1.15.1.1)

2O2
•� + 2H+ O2 + H2O2 Chloroplast, peroxisomes,

cytosol, mitochondria,
apoplast

Catalase (CAT; EC
1.11.1.6)

2H2O2 2H2O + O2 Peroxisomes

Peroxidases (POX; EC
1.11.1.7)

2PhOH + H2O2 ! 2PhO• + 2H2O
2PhO• ! cross-linked substances
PhO• + Asc ! PhOH + MDHA
PhO• + MDHA PhOH + DHA

Cell wall, apoplast,
vacuole

Polyphenol oxidase
(PPO; EC 1.14.18.1)

PhOH + O2 ! Catechols +
O2 Q + H2O

Thylakoid membrane of
chloroplast, cytosol,
vacuole

Ascorbate peroxidase
(APX; EC 1.11.1.11)

H2O2 + AsA 2H2O + MDHA Chloroplast, peroxisomes,
cytosol, mitochondria,
apoplast

Monodehydroascorbate
reductase (MDHAR;
EC 1.6.5.4)

MDHA + NAD(P)H ! AsA + NAD
(P)+

Chloroplast, cytosol,
mitochondria

Dehydroascorbate
reductase (DHAR; EC
1.8.5.1)

2GSH + DHA GSSG + AsA Chloroplast, cytosol,
mitochondria

Glutathione reductase
(GR; EC 1.6.4.2)

GSSG + NADPH +
H+ GSH + NADP+

Chloroplast, cytosol,
mitochondria

Glutathione peroxidase
(GPX; EC 1.11.1.9)

H2O2 + GSH H2O + GSSG Cytosol, mitochondria

Glutathione
S-transferase (GST; EC
2.5.1.18)

R-X + GSH GS-R + H-X Chloroplast, cytosol,
mitochondria
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Table 6.1 (continued)

Antioxidants Reactions catalyzed Catalytic reaction sites

Peroxiredoxins (PRX;
EC 1.11.1.15)

H2O2 + PRX-S� ! OH� + PRX-
SOH + GSH ! PRX-SSG + H2O
PRX-SSG + GSH PRX-S� + GSSG

Cytosol, chloroplasts,
mitochondria, nucleus,
extracellular spaces

Thioredoxin (TRX; EC
1.8. 1.9)

TRX-RS2 + NADPH + H+ ! TRX-R
(SH)2 + NADP+

Chloroplast, cytosol,
mitochondria

6.4.1 Antioxidant Defense in Plants Under Salinity

Regulation of antioxidant mechanism improves the salt stress effects in plants, as
delineated in various works (Table 6.2). It has been reported that differential
activities of antioxidant enzymes vary in terms of salinity extent, exposure time,
and the plant developmental stages (Li et al. 2019). Vighi et al. (2017) recorded
differential response in salt-tolerant rice cultivar in contrast to salt-sensitive and
revealed that OsAPX3, OsGR2, OsGR3, and OsSOD3-Cu/Zn genes were the basic
differential markers between tolerant and sensitive rice genotypes. In another study,
wheat (salt-tolerant cv. Suntop and salt-sensitive Sunmate) and barley (salt-tolerant
cv. CM72) cultivars were compared and revealed that higher antioxidant activity
(SOD, peroxidase; POD, APX, GR, and CAT) is strongly associated with the higher
tolerance to salinity demonstrating an apparent antioxidant role in enhancement of
oxidative stress induced by salinity (Zeeshan et al. 2020). In the same way,
Alzahrani et al. (2019) reported higher levels of SOD, CAT, GR, and AsA in
Vicia faba genotypes, when H2O2 concentration increased over 90% during salt
stress, thus validating the antioxidant response regulation under salinity stress and its
mitigation. Antioxidant activity can be regulated by employing either chemical or
natural protectants against salinity has been demonstrated to play vital role in
antioxidant response for ameliorating stresses in plants for example salinity (Zulfiqar
et al. 2019, 2020). Alsahli et al. (2019) reported that a twofold increase in SOD,
CAT, and APX activity resulted into threefold decrease in H2O2 in wheat under
salinity stress on application of salicylic acid (SA) in contrast to control plants. Also,
the application of jasmonic acid (JA) and humic acid together enhanced APX
activity, improving salt tolerance in sorghum (Ali et al. 2020), whereas application
of polyamines exogenously controlled antioxidant responses in sour orange when
grown under high salinity conditions (Tanou et al. 2014).

6.4.2 Role of Antioxidants in Plants Under Water Scarcity
and Drought Stress

Various studies have demonstrated the activity of antioxidant defense system under
drought stress in various plant species (Table 6.2). In a study carried out by Nahar
et al. (2017), decrease in AsA/DHA and GSH/GSSG ratio due to enhanced activities
of APX, GR, GPX, and GST in mung bean seedlings compared to control in
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response to drought stress, which resulted into drought-induced tolerance to oxida-
tive stress. Akram et al. (2018) reported the increase in total phenolics and POD and
CAT activities in the two B. napus cultivars under drought stress (60% FC, 21 days).
A group of researchers studied the two Sorghum bicolor L. cultivars, M-81E
(tolerant) and Roma (sensitive) and observed the increased H2O2 concentration in
both M-81E and Roma, respectively, in contrast to control, when activities of SOD
and APX increased respectively, thus improved tolerance to drought stress (Guo
et al. 2018). Another study conducted by Hassan et al. (2020) reported decreased
CAT activity but increased GPX activity under drought stress in Triticum aestivum
cv. Sakha-94 (Hassan et al. 2020).
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6.4.3 Antioxidant Defense in Plants Under Toxic Metals/Metalloids

Various investigations have demonstrated the positive correlation between tolerance
to metals/metalloids toxicity with improved antioxidant activities for ROS detoxifi-
cation and metal chelation (Table 6.2) (Gratao et al. 2019). Among major
antioxidants, GST assists GSH to reduce toxicity to metals/metalloids on conjuga-
tion with them (Kumar and Trivedi 2018). In addition, GSH functions as a cytosolic
precursor of phytochelatins (PC), binds to metals and allows the transport of
compound into cell vacuole by catalyzing the transport of metal ions and other
xenobiotics (Chakravarthi et al. 2006). Hasanuzzaman et al. (2019a, b) reported an
increase in both the GSH and GSSG in rice seedlings under Ni stress, but under the
application of exogenous Si, GSH content was further enhanced while GSSG level
decreased, indicating the function of Si in upregulating GSH. Ahanger et al. (2020)
reported an enhancement in both GSH and tocopherol content together with SOD,
GST, and DHAR activities with elevated H2O2 and O2

•� concentrations in
V. angularis seedlings under Cd stress, while AsA levels and CAT activity were
found to be reduced. On the contrary, activities of SOD, CAT, POX, and GR were
increased with elevated levels of H2O2 under Cd stress in two Mentha arvensis
genotypes indicating the induction of an antioxidant defense mechanism in response
to Cd toxicity (Zaid et al. 2020). The authors also observed a further upregulation of
antioxidant defense activity after application of gibberellic acid, triacontanol, or SA.

6.4.4 Antioxidant Defense in Plants Under High Temperature

Like other abiotic stress factors, the antioxidant defense mechanism is also activated
to cope with high temperature (HT) stress in plants (Table 6.2) (Ding et al. 2016), but
in general antioxidant activity varies between species as well as tolerant and sensi-
tive genotypes (Hasanuzzaman et al. 2012). According to Kumar et al. (2013a, b),
APX and GR activities were considerably reduced in sensitive chickpea cultivars
with approximately twofold H2O2 increase under high temperature conditions com-
pared to tolerant genotypes. Liu et al. (2019) reported reduced activities of SOD and
CAT with subsequent decreased OsSOD, OsCAT, and OsAPX2 expression, causing



elevated levels of H2O2 in germinating rice seeds in response to high temperature
stress. Sarkar et al. (2016) reported increased activity of CAT and POX in wheat in
response to high temperature stress. In another study, Zandalinas et al. (2017)
reported enhanced GSH and AsA levels in Carrizo citrange under HT stress
(40 �C) with enhanced SOD and CAT activities in Cleopatra mandarin.
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6.5 Plant Antioxidant Defense System

Antioxidants have been shown to either directly or indirectly scavenge reactive
oxygen species (ROS) and/or inhibit ROS generation (Carocho and Ferreira 2013).
Nonenzymatic antioxidants such as tocopherols, phenolic compounds (PhOH),
flavonoids, alkaloids, AsA, GSH as well as several nonprotein amino acids make
up the plant antioxidant defense system (Hasanuzzaman et al. 2019a, b). In order to
limit the ROS production, the nonenzymatic antioxidants operate in a coordinated
approach with antioxidant enzymes such as SOD, POX, CAT, APX, MDHAR,
DHAR, GR, GPX. TRX, GST, PRX, and polyphenol oxidase (PPO) (Fig. 6.2)
(Laxa et al. 2019). In plant defense system, the catalytic reactions occur in the
cellular organs and between enzymatic and nonenzymatic antioxidants as
represented in Table 6.1. In plants, the SOD enzyme plays a crucial role linked
directly to the stress tolerance and has been considered as first line of defense by
converting O2 into H2O2 (Table 6.1) (Del Río et al. 2018). This generated H2O2

further converts into H2O with the help of enzymes such as CAT, GPX, and APX or
it can be catalyzed in the AsA-GSH cycle. The AsA-GSH cycle, also known as the
Asada-Halliwell cycle, considered as a major antioxidant defense system in plants
and plays a crucial role to catalyze H2O2. The cycle consists of four antioxidant key
enzymes such as APX, MDHAR, DHAR, and GR as well as low molecular weight
nonenzymatic antioxidants like AsA and GSH. In plants, the AsA-GSH cycle plays
critical function in the antioxidant defense system by minimizing H2O2 concentra-
tion and maintaining the redox homeostasis (Fotopoulos et al. 2010). Furthermore,
detoxification of H2O2 and xenobiotics requires two vital enzymes such as GPX and
GST (Fig. 6.2) (Hasanuzzaman et al. 2018a, b). Among the nonenzymatic
antioxidants, AsA and GSH are the most abundant soluble antioxidants in the higher
plants (Foyer and Noctor 2011). These play an important role as electron donors and
actively scavenge ROS via the AsA-GSH cycle (Hasanuzzaman et al. 2019a, b). In
addition, the concentration of cellular ROS lowers by interaction of beta-carotene
with OH, O2, and ROOH (Kapoor et al. 2019).

6.5.1 Nonenzymatic Antioxidants

In plants, there are a number of nonenzymatic antioxidants playing an important role
in the ROS scavenging. Among the nonenzymatic antioxidants, ascorbate
contributes momentous role to scavenge ROS molecules through AsA-GSH cycle
by donating electrons and endures stability due to delocalization of electrons caused
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Fig. 6.2 Overview of plant antioxidant defense system: (a) types of antioxidants and (b) combined
mechanisms of enzymatic and nonenzymatic antioxidants. See the text for a more detailed descrip-
tion. APX, ascorbate peroxidase; AsA, ascorbate; CAT, catalase; DHA, dehydroascorbate; DHAR,
dehydroascorbate reductase; GPX, glutathione peroxidase; GR, glutathione reductase; GSH,
reduced glutathione; GSSG, oxidized glutathione; GST, glutathione S-transferase; H2O2, hydrogen
peroxide; MDHA, monodehydroascorbate; MDHAR, monodehydroascorbate reductase; NADPH,
nicotinamide adenine dinucleotide phosphate; O2

•�, superoxide anion; POX, peroxidases; PRX,
peroxiredoxins; R, aliphatic, aromatic, or heterocyclic group; ROOH, hydroperoxides; –SH,
thiolate; SOD, superoxide dismutase; –SOH, sulfenic acid; TRX, thioredoxin; X, sulfate, nitrite,
or halide group

by the resonance phenomenon between the two forms (Hasanuzzaman et al.
2019a, b). AsA regenerates α-tocopherol (Vitamin-E) from tocopheroxyl radical
by scavenging •OH and O •

2
� radicals and also regulates a number of phytochrome

biosynthesis production pathways (Naz et al. 2016). Another important nonenzy-
matic antioxidant such as GSH also scavenges ROS molecules and maintains
homeostasis (Hasanuzzaman et al. 2019a, b). Tocopherol, on the other hand, is an
important component of the antioxidant defense system that protects the chloroplast
and keeps photosynthesis by scavenging ROS, mainly O •

2
� and •OH (Kumar et al.

2013a, b). Another group of nonantioxidant molecules called carotenoids also play
an important role to protect light harvesting complex proteins and thylakoid mem-
brane integrity by scavenging free radicals (Terzi et al. 2014). Some other low
molecular compounds such as flavonoids, particularly dihydroxy B-ring substituted
flavones and flavanols, also play a promising role for scavenging ROS free



molecules and reducing lipid peroxidation and induced cell damage (Tiong et al.
2013). Furthermore, abiotic stressors increase the expression of genes which are
involved in activated antioxidant defense system and production of flavonoids
(Mehla et al. 2017). One more important group of nonenzymatic antioxidants called
phenolic acids are made up of hydroxybenzoic and hydroxycinnamic acids, which
function as chelators and scavengers of free radicals, particularly O2

•, •OH, ROOH,
and ONOO� (Carocho and Ferreira 2013). As free radical scavengers, alkaloids also
decrease H2O2 in the cells and induce oxidation in the plants (Tiong et al. 2013).
Nonprotein amino acids (gamma-aminobutyric acid, ornithine, and citrulline) are
also thought to be nonenzymatic antioxidants (Vranova et al. 2011).
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6.5.2 Antioxidant Enzymes

Antioxidant enzymes are a group of enzymes which scavenge ROS molecules in
plants. Among these the most critical antioxidant enzyme called SOD (EC 1.15.1.1)
is characterized into three types, namely Cu/Zn-SOD, Fe-SOD, and Mn-SOD, which
lead the frontline defense enzyme in the antioxidant defense system in plants
(Berwal and Ram 2018; Rai et al. 2017). This enzyme dismutates the O2

• free radical
into H2O2 and prevents the production of •OH (Gill et al. 2015; Rai et al. 2018).
Another important antioxidant enzyme known as catalase (EC 1.11.1.6) is a tetra-
meric heme-containing enzyme for ROS detoxification in the antioxidant defense
system. A research study concluded that this enzyme can catalyze 26 million H2O2

molecules into H2O in one minute (Mehla et al. 2017). Peroxidase (EC 1.11.1.7)
primarily oxidizes PhOH to produce phenoxyl radical (PhO•), also known as QA, in
which H2O2 takes an electron and is transformed to H2O. Phenoxyl radical (PhO•)
cross-interacts producing suberin, lignin, and quinines in the absence of AsA but in
the presence of AsA, PhO• reacts with AsA, resulting in monodehydroascorbate
(MDHA) and, eventually, DHA (Fig. 6.2 and Table 6.2) (Jovanovic et al. 2018).

Polyphenol oxidase (EC 1.14.18.1) is one more antioxidant enzyme to scavenge
ROS molecules. The enzyme is predominantly located in the chloroplast’s thylakoid
membrane and can directly affect the photosynthesis process. In the ROS scavenging
reaction, the enzyme polyphenol oxidase may interact with the peroxidase or water-
water cycle. Another important function of PPO is that it oxidizes PhOH to QA and
H2O using available O2 (Boeckx et al. 2015). Plant cells contain one more antioxi-
dant enzyme known as AsA-dependent APX (EC 1.11.1.1) which is present in
various isoforms (mitochondrial APX (mtAPX), chloroplastic APX (chlAPX), and
cytosolic APX (cAPX)).The APX is the only enzyme capable of scavenging H2O2 in
the chloroplasts of plants because CAT enzyme is absent and peroxisomal/
glyoxysomal APX (including mAPX) and other H2O2 help to produce
monodehydroascorbate (MDHA) through AsA-GSH cycle in plants (Pandey et al.
2017). In plants, the produced MDHAR (EC 1.6.5.4), a NADPH-dependent flavin
adenine dinucleotide enzyme found in two isoforms found in diverse cellular sites
(Hasanuzzaman et al. 2019a, b). The enzyme plays an important role in plant life by
converting MDHA to AsA. By phenoxyl radical reduction, monodehydroascorbate



reductase enzyme contains a thiol group which regenarates AsA (García-Caparrós
et al. 2019). Monodehydroascorbate reductase is further reduced to DHA
nonenzymatically, which is then recycled to AsA by the activity of
GSH-dependent DHAR (EC 1.8.5.1) (García-Caparrós et al. 2019). Furthermore,
GSH is oxidized to GSSH, which is then reduced to GSH by the NADPH-dependent
GR (EC1.6.4.2) enzyme, which is also an important enzyme for redox homeostasis
regulation (Couto et al. 2016).
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In plants, GPX (EC 1.11.1.9) is a nonheme-containing POX family antioxidant
enzyme with a highly reactive thiol group that scavenges H2O2, reducing lipids, and
organic acids via GSH and TRXs (Bela et al. 2015). GST (EC 2.5.1.18) metabolizes
xenobiotics (particularly herbicides and other pharmaceutically active compounds)
and transports them into plant vacuoles by conjugating GSH and electrophilic
substrates at its active sites (Xu et al. 2015; Christou et al. 2016). GST enzyme
also plays an important role in peroxide breakdown, hormone production and stress
signaling as well as GPX activity acceleration (Nianiou-Obeidat et al. 2017).
Another critical antioxidant enzyme in plants which plays an important role in
ROS scavenging is TRX (EC 1.8.1.9). The enzyme has different isoforms (f, m, h,
o, y, and z) and contains an enzyme active redox site known as (WCG/PPC). This
enzyme reduces disulfide bonds into dithiol by H2O2 and regulated target proteins
quicker than GSH enzyme or dithiothreitol (Calderón et al. 2018). In chloroplast
organelle of plants, the two isoforms of TRX enzyme (TRXx and TRXy) regulates
the redox homeostasis by reducing 2-Cysteine (Cys) PRX, whereas TRXo1 activates
antioxidant defense in mitochondria by interacting with PRX and sulfiredoxin
(Sevilla et al. 2015).

Another thiol-based PRX enzyme (EC 1.11.1.15), a POX-like antioxidant
enzyme in plant cells, neutralizes peroxides (H2O2 and ROOH) in the cytosol,
chloroplasts, mitochondria, and nucleus (Liebthal et al. 2018). PRXs enzymes are
thiol-dependent (GSH or any other thiol group) and have ability to reduce diverse
organic and inorganic peroxides and also play an important role in regulation of ROS
molecules (Fig. 6.2 and Table 6.1) (Hasanuzzaman et al. 2017a, b).

6.6 Reactive Oxygen Species Signaling in Plant Defense

Excess ROS are generated in response to various abiotic stresses as a result of the
disturbance of various metabolic activities and physiological disorders (Choudhury
et al. 2017). The antioxidant defense pathways for example, AsA-GSH pathway uses
energy in the form of NADPH, and once this energy is used up, these pathways
would be unable of evading ROS toxicity (Choudhury et al. 2017). Though, the
functions of ROS (especially H2O2) in plant stress biology came into the attention at
the end of the twentieth and the beginning of the twenty-first century. Few scientific
groups identified H2O2 as a signaling molecule, which induces acclimation pro-
cesses and increases tolerance to various environmental stresses (Neill et al. 2002).
Reactive oxygen species evolved in the chloroplast under stress may divert electrons
from the photosynthetic apparatus inhibiting overload of the antenna and consequent



damage. Reactive oxygen species also guard mitochondria in a same way (Asada
2006). Cell wall peroxidase may contribute to generation of ROS in relation to
signaling where H2O2 uses Ca2+ and MAPK pathway as a downstream signaling
cascade. In addition, phytohormones, particularly ethylene (ET) and abscisic acid
(ABA), are implicated in various responses to different environmental stresses via
cross-talk with ROS and thus augment stress tolerance, which indicates the dual role
of ROS under various stresses (Kar 2011). Apart from signal transduction and
communication with hormones, ROS can also involve in metabolic fluxes under
abiotic stresses, which mutually direct plant acclimation processes where redox
reactions check transcription and translation of proteins and enzymes related to
stress adaptation, eventually defending plant cells from injury (Choudhury et al.
2017). Moreover, H2O2 controls NO and Ca2+ signaling pathways, which manage
plant growth and development, and other cellular and physiological responses under
varied abiotic stresses (Janicka et al. 2019). Since endogenous H2O2 plays pivotal
role in enhancing abiotic stress tolerance, exogenous application of H2O2 is gaining
interest and has proved its efficiency at a large scale (Savvides et al. 2016;
Hasanuzzaman et al. 2017a, b). In Table 6.3, we have mentioned some key findings
highlighting the effect of H2O2 treatment in response to various abiotic stress
conditions. Furthermore, ROS interact with RNS, RSS, and RCS under stress and
collaborate in signal transduction pathways (Kaur et al. 2019a, b). Antioxidant levels
in the cell may vary in order to alter generation of ROS and play a specific role to
signaling (Hancock and Whiteman 2016). In contrast, RSS affect the generation,
perception, and further signaling of ROS and RNS (Kaur et al. 2019a, b), whereas
RCS act downstream of ROS as signal mediators in response to a variety of stresses
(Biswas et al. 2019).
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6.7 Cross-talk of Reactive Nitrogen, Sulfur, and Carbonyl
Species with ROS

Apart from ROS, other reactive species are produced in plant cells during adverse
environmental conditions, including RNS, RSS, and RCS (Fig. 6.3) (Nawaz et al.
2019). All these reactive species are involved in a molecular cross-talk and have a
particular role in cellular signaling cascades [23]. Therefore, the following
subsections discuss the intimate relationship among ROS, RNS, RSS, and RCS.
Cross-Talk of Reactive Nitrogen, Sulfur, and Carbonyl Species with ROS. Apart
from ROS, other reactive species are produced in plant cells during adverse environ-
mental conditions, including RNS, RSS, and RCS (Fig. 6.3) (Nawaz et al. 2019). All
these reactive species are involved in a molecular cross-talk and have a particular
role in cellular signaling cascades. Therefore, the following subsections discuss the
intimate relationship among ROS and RNS.
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Fig. 6.3 Cross-talk among vital ROS (H2O2), RNS (NO), RSS (H2S), and RCS (MG) in plant cells
for oxidative stress and defense response in plants. APX, ascorbate peroxidase; AUX, auxin; ET,
ethylene; ABA, abscisic acid; ROS, reactive oxygen species; GSH, reduced glutathione; JA,
jasmonates; MAPKs, mitogen-activated protein kinases; SA, salicylic acid; AEGs, advanced
glycation end products; PAs, polyamines; MG, methylglyoxal; NO, nitric oxide; H2S, hydrogen
sulfide. Dotted lines represent activation/enhancement

6.8 Transgenic Approach in Enhancing Antioxidant Defense
in Plants

From the last 20 years, transgenics have been extensively used to improve plants
under oxidative stress. Therefore, transgenic plants can be engineered to improve
abiotic stress tolerance and the antioxidant enzyme defense mechanism activity.
Here, we have highlighted transgenic plants with enhanced responses of antioxidant
defense systems under several stresses which are presented in Table 6.4. Kiranmai
et al. (2018) observed lower concentrations of MDA, H2O2, and O2

•� and increased
activities of SOD and APX in groundnut due to overexpression of MuWRKY3 gene
under drought stress. Another study conducted by Sun et al. (2018) demonstrated the
enhanced drought stress tolerance and activities of CAT and POD in transgenic
apple cultivars due to overexpression of MdATG18a. Results also denoted that
tolerance to stress was improved because of a high frequency of autophagy and
inhibition of oxidative damage. Kumar et al. (2020) demonstrated that chickpea



150 G. K. Rai et al.

Ta
b
le

6.
4

A
nt
io
xi
da
nt

de
fe
ns
e
sy
st
em

s
an
d
th
ei
r
ex
pr
es
si
on

pa
tte
rn

in
cr
op

pl
an
ts

S
tr
es
s
co
nd

iti
on

an
d
du

ra
tio

n
P
la
nt

sy
st
em

S
ou

rc
e
pl
an
t

G
en
e

Im
pa
ct
on

an
tio

xi
da
nt

de
fe
ns
e
sy
st
em

s
R
ef
er
en
ce
s

Sa
lin

ity

0,
50

,1
00

,a
nd

15
0
m
m

N
ac
l;
7
an
d
15

da
ys

So
la
nu

m
tu
be
ro
su
m

P
ot
en
til
la

at
ro
sa
ng

ui
ne
a
an
d

R
he
um

au
st
ra
le

P
aS
O
D

an
d

R
aA

P
X

E
nz
ym

e
ac
tiv

iti
es

ar
e
en
ha
nc
ed

in
tr
an
sg
en
ic
pl
an
ts
as

of
S
O
D
by

tw
o-

to
si
xf
ol
d
in

P
aS
O
D
an
d
on

e-
to

th
re
ef
ol
d
in

do
ub

le
tr
an
sg
en
ic
pl
an
ts
(D

T
P
);
A
P
X
by

5-
fo
ld

to
11

-f
ol
d
in

A
P
X

an
d
fo
ur
-
to

ei
gh

tf
ol
d
in

D
T
P

S
ha
fi
et
al
.

(2
01

7)

10
0,

20
0,

40
0
m
m
;1

,5
,1

0,
15

da
ys

C
hr
ys
an

th
em

um
D
en
dr
an

th
em

a
gr
an

di
fl
or
um

D
gN

A
C
1

E
nz
ym

e
ac
tiv

iti
es

ar
e
en
ha
nc
ed

in
tr
an
sg
en
ic
pl
an
ts
as

of
S
O
D
by

tw
o-
,

C
A
T
by

tw
o-
,a
nd

P
O
D

by
th
re
ef
ol
d

W
an
g

et
al
.

(2
01

7)

15
0
m
M

N
aC

l;
3,

6,
9,

12
,a
nd

24
h

A
ra
bi
do

ps
is

th
al
ia
na

V
iti
s
vi
ni
fe
ra

V
vW

R
K
Y
30

E
nz
ym

e
ac
tiv

iti
es

ar
e
si
gn

ifi
ca
nt
ly

en
ha
nc
ed

in
tr
an
sg
en
ic
pl
an
ts
,i
.e
.,
P
O
D
,

C
A
T
,a
nd

S
O
D

Z
hu

et
al
.

(2
01

9)

15
0
or

20
0
m
M

N
aC

l,
til
l
ge
rm

in
at
io
n

G
ly
ci
ne

m
ax

G
ly
ci
ne

m
ax

G
m
M
Y
B
84

E
nz
ym

e
ac
tiv

iti
es

ar
e
si
gn

ifi
ca
nt
ly

en
ha
nc
ed

in
tr
an
sg
en
ic
pl
an
ts
,i
.e
.,
S
O
D
,

P
O
D
,a
nd

C
A
T

Z
ha
ng

et
al
.

(2
02

0a
,b

)

W
at
er

de
fi
ci
t
an

d
si
m
ul
at
ed

dr
ou

gh
t

O
sm

ot
ic
st
re
ss

(2
0%

P
E
G
);
1,

3,
6
12

,
24

,a
nd

48
h

N
ic
ot
ia
na

ta
ba

cu
m

Sp
in
ac
ia

ol
er
ac
ea

So
C
Y
P
85

A
1

O
ve
re
xp

re
ss
ed

lin
es

im
pr
ov

e
th
e
ac
tiv

ity
of

P
O
D

by
1.
3–
1.
5
an
d
S
O
D

by
1.
36
–

1.
39

-f
ol
d

D
ua
n
et
al
.

(2
01

7)

W
ith

ho
ld
in
g
w
at
er

fo
r
14

an
d
21

da
ys

M
al
us

do
m
es
tic
a

M
al
us

do
m
es
tic
a

M
dA

T
G
18

a
E
nz
ym

e
ac
tiv

iti
es

ar
e
en
ha
nc
ed

in
tr
an
sg
en
ic
pl
an
ts
as

of
C
A
T
an
d
P
O
D
by

1.
57
–
2.
05

-f
ol
d
in

ov
er
ex
pr
es
se
d
lin

es

S
un

et
al
.

(2
01

8)

W
ith

ho
ld
in
g
w
at
er

til
lt
he

w
ilt
in
g
st
ag
e

A
ra
ch
is

hy
po

ga
ea

M
ac
ro
ty
lo
m
a

un
ifl
or
um

L
am

.
V
er
dc
.

M
uW

R
K
Y
3

E
nz
ym

e
ac
tiv

iti
es

ar
e
en
ha
nc
ed

in
tr
an
sg
en
ic
pl
an
ts
as

of
S
O
D
by

th
re
e-

to
fi
ve
-
an
d
A
P
X

by
th
re
e-

to
se
ve
nf
ol
d

K
ir
an
m
ai

et
al
.

(2
01

8)

O
sm

ot
ic
st
re
ss

(1
5%

P
E
G
);
60

da
ys

N
.t
ab

ac
um

Z
ea

m
ay
s

Z
m
SO

O
ve
re
xp

re
ss
ed

lin
es

in
cr
ea
se

th
e
ac
tiv

ity
of

G
S
H

64
%

an
d
88

%
X
ia
et
al
.

(2
01

8)



O
sm

ot
ic
st
re
ss

(1
5%

an
d
25

%
P
E
G
);

7
da
ys

(c
on

tin
ue
d)

A
.t
ha

lia
na

C
ic
er

ar
ie
tin

um
C
aM

T
E
nz
ym

e
ac
tiv

iti
es

ar
e
en
ha
nc
ed

in
tr
an
sg
en
ic
pl
an
ts
as

of
A
P
X
48

8%
,P

O
D

13
5%

,G
P
X

13
4%

,a
nd

G
R
X
18

6%

D
ub

ey
et
al
.

(2
01

9)

W
ith

ho
ld
in
g
w
at
er

fo
r
12

da
ys

A
.t
ha

lia
na

M
al
us

pr
un

ifo
lia

M
pD

G
K
2

E
nz
ym

e
ac
tiv

iti
es

ar
e
en
ha
nc
ed

in
tr
an
sg
en
ic
pl
an
ts
,i
.e
.,
C
A
T
,A

P
X
,a
nd

P
O
D

T
an

et
al
.

(2
02

0)

D
ro
ug

ht
st
re
ss

So
la
nu

m
L
yc
op

er
si
co
n

T
om

at
o

A
nt
io
xi
da

nt
ge
ne

E
nh

an
ce
d
th
e
S
O
D
,A

P
X
ge
ne

ex
pr
es
si
on

R
ai
et
al
.

(2
01

8)

T
ox
ic
m
et
al
s/
m
et
al
lo
id
s

A
s(
II
I)
[5

an
d
10

μM
(N

aA
sO

2
)]
,A

s(
V
)

[5
0
an
d
10

0
μM

(N
a 2
H
A
sO

4
)]
,C

d
[3
0

an
d
50

μM
(C
dC

l 2
)]
an
d
C
r(
K
2
C
r 2
O
7
)

A
.t
ha

lia
na

O
ry
za

sa
tiv
a

O
sS
ul
tr
1;
1

E
nz
ym

e
ac
tiv

ity
is
en
ha
nc
ed

in
tr
an
sg
en
ic

pl
an
ts
,i
.e
.,
G
S
H

w
ith

A
s(
II
I)
to
xi
ci
ty

K
um

ar
et
al
.

(2
01

9)

30
0
μM

C
dC

l 2
an
d
30

0
μM

N
iC
l 2
�

6H
2
O
;
1,

12
,2

4,
an
d
48

h
N
.t
ab

ac
um

Sa
lic
or
ni
a

br
ac
hi
at
e

Sb
M
Y
B
15

E
nz
ym

e
ac
tiv

iti
es

ar
e
en
ha
nc
ed

in
tr
an
sg
en
ic
pl
an
ts
as

of
C
A
T
an
d
S
O
D
an
d

al
so

in
cr
ea
se

th
e
ex
pr
es
si
on

of
M
n-
S
O
D

at
10

0
μM

(1
.6
9-
fo
ld
)
an
d
30

0
μM

(3
.2
-

fo
ld
)
of

C
dC

l2
an
d
C
A
T
1
by

62
.1
9-

an
d

9.
8-
fo
ld

at
10

0
an
d
30

0
μM

S
ap
ar
a

et
al
.

(2
01

9)

E
xt
re
m
e
te
m
pe
ra
tu
re

45
� C

;0
.5
,1

,2
,3

,6
,9

,1
2,

an
d
24

h
N
.t
ab

ac
um

T
ri
tic
um

ae
st
iv
um

T
aF

B
A
1

E
nz
ym

e
ac
tiv

iti
es

ar
e
en
ha
nc
ed

in
tr
an
sg
en
ic
pl
an
ts
,i
.e
.,
S
O
D
,P

O
D
,a
nd

A
P
X
,w

hi
le
C
A
T
ac
tiv

ity
w
as

de
cr
ea
se
d

un
de
r
he
at
st
re
ss

L
ie
t
al
.

(2
01

8)

48
� C

;6
h

M
.d

om
es
tic
a

M
.d

om
es
tic
a

M
dA

T
G
18

a
E
nz
ym

e
ac
tiv

iti
es

ar
e
en
ha
nc
ed

in
tr
an
sg
en
ic
pl
an
ts
,i
.e
.,
S
O
D
,P

O
D
,C

A
T
,

A
sA

,a
nd

G
S
H
,w

he
re
as

a
de
cr
ea
se
d
ra
tio

of
G
S
H
/G
S
S
G

w
as

re
po

rt
ed

H
uo

et
al
.

(2
02

0)

6 Reactive Oxygen Species: Friend or Foe 151



Ta
b
le

6.
4

(c
on

tin
ue
d)

S
tr
es
s
co
nd

iti
on

an
d
du

ra
tio

n
P
la
nt

sy
st
em

S
ou

rc
e
pl
an
t

G
en
e

Im
pa
ct
on

an
tio

xi
da
nt

de
fe
ns
e
sy
st
em

s
R
ef
er
en
ce
s

4
� C

;
5
da
ys

So
la
nu

m
ly
co
pe
rs
ic
um

A
. t
ha

lia
na

A
tD
R
E
B
1A

E
nz
ym

e
ac
tiv

iti
es

ar
e
en
ha
nc
ed

in
tr
an
sg
en
ic
pl
an
ts
as

of
S
O
D
by

29
.4
9%

an
d
C
A
T
by

21
.3
4%

K
ar
ku

te
e t
al
.

(2
01

9)

4
� C

;
6,

12
,2

4,
36

,a
nd

48
h

S.
tu
be
ro
su
m

S.
tu
be
ro
su
m

St
SO

D
1

E
nz
ym

e
ac
tiv

iti
es

ar
e
en
ha
nc
ed

in
tr
an
sg
en
ic
pl
an
ts
as

of
S
O
D
by

1.
38

-,
P
O
D

by
1.
24

-,
an
d
C
A
T
by

1.
37

-f
ol
d

C
he

et
al
.

(2
02

0)

W
at
er
lo
gg

in
g

2
cm

w
at
er
lo
gg

in
g;

3,
6,
12

,2
4,
an
d
72

h
A
.t
ha

lia
na

B
ra
ss
ic
a
na

pu
s

B
nE

R
F
2.
4

E
nz
ym

e
ac
tiv

iti
es

ar
e
en
ha
nc
ed

in
tr
an
sg
en
ic
pl
an
ts
,i
.e
.,
S
O
D
,P

O
D
,a
nd

C
A
T

L
v
et
al
.

(2
01

6)

S
oi
l–
at
m
os
ph

er
e
in
te
rf
ac
e
fo
r
1
w
ee
ks

A
.t
ha

lia
na

M
en
th
a
ar
ve
ns
is

M
aR

A
P
2–

4
E
nz
ym

e
ac
tiv

iti
es

ar
e
en
ha
nc
ed

in
tr
an
sg
en
ic
pl
an
ts
,i
.e
.,
C
A
T
,G

P
X
,a
nd

S
O
D

P
hu

ka
n

et
al
.

(2
01

8)

5
cm

w
at
er
lo
gg

in
g;

24
an
d
48

h
A
.t
ha

lia
na

D
io
sc
or
ea

al
at
a

D
aA

P
X

E
nz
ym

e
ac
tiv

ity
is
en
ha
nc
ed

in
tr
an
sg
en
ic

pl
an
ts
,i
.e
.,
A
P
X

bu
t
no

si
gn

ifi
ca
nt

ef
fe
ct

on
C
A
T

C
he
n
et
al
.

(2
01

9)

3
cm

st
an
di
ng

w
at
er
;
14

da
ys

C
hr
ys
an

th
em

um
m
or
ifo

liu
m

C
hr
ys
an

th
em

um
m
or
ifo

liu
m

C
m
SO

S1
O
ve
re
xp

re
ss
ed

pl
an
ts
en
ha
nc
e
th
e

ac
tiv

iti
es

of
S
O
D

an
d
C
A
T
by

17
1%

W
an
g

et
al
.

(2
01

9)

O
ve
re
xp

re
ss
ed

pl
an
ts
en
ha
nc
e
th
e

ac
tiv

iti
es

of
S
O
D

an
d
C
A
T
by

17
1%

A
.t
ha

lia
na

H
or
de
um

vu
lg
ar
e

H
vE

R
F
2.
11

E
nz
ym

e
ac
tiv

iti
es

ar
e
en
ha
nc
ed

in
tr
an
sg
en
ic
pl
an
ts
as

of
S
O
D
by

55
%
,

48
%
,a
nd

45
%
,P

O
D

by
64

%
,6

5%
,a
nd

70
%
,C

A
T
by

2.
2%

,2
.1
%
,a
nd

2.
1%

,
al
co
ho

ld
eh
yd

ro
ge
na
se
s
by

2.
1-
,2
.3
-,
an
d

1.
9-
fo
ld

in
th
re
e
tr
an
sg
en
ic
lin

es
,

re
sp
ec
tiv

el
y

L
ua
n
et
al
.

(2
01

8)

152 G. K. Rai et al.



CaGrx gene was overexpressed in A. thaliana with maximal activities of GRX, GR,
GPX, GST, and APX under heavy metal stress in comparison to controls, while
activities of CAT, SOD, and MDHAR were also considerably enhanced. Authors
recommended that CaGrx can be an appropriate candidate gene to surmount metal
stresses in other crops as well (Kumar et al. 2020). Karkute et al. (2019) reported the
increased activities of SOD, CAT, and POD and in turn tolerance to chilling stress
due to overexpression of A. thaliana AtDREB1A gene in tomato. They observed 29%
and 21% increase in activities of SOD and CAT respectively in transgenic plants,
demonstrating better chilling stress tolerance. Che et al. (2020) showed that the
activities of SOD, POD, and CAT were enhanced on overexpression of the potato
StSOD1 gene during cold stress and enhanced cold tolerance in transgenic potato
plants. Similarly, Wang et al. (2019) revealed the overexpression of CmSOS1 gene
increases SOD and CAT by 171% in transgenic Chrysanthemum plants under
waterlogging conditions.

6 Reactive Oxygen Species: Friend or Foe 153

6.9 Conclusions and Future Perspectives

Abiotic stresses are major limiting factors that affect growth and development of
plants all over the globe. Consequently, there is a need to decipher the physiological,
biochemical, molecular, and cellular abiotic stress response mechanisms and toler-
ance and to establish potential mitigation approaches that would lead to global food
and agricultural sustainability. Abiotic stresses cause ROS accumulation, which
leads to oxidative injury in plants. In the beginning, ROS were believed to cause
toxicity and considered as outcome of aerobic metabolism, present in some subcel-
lular compartments. The ROS metabolism is essential in growth, development, and
adaptation of crop plants under various environmental stresses. The generation and
scavenging of ROS are of utmost importance to plant defense processes. In order to
enhance resistance to various abiotic stresses, modulation and overexpression of
candidate genes governing production of various ROS-detoxifying enzymes are
extensively used. Nonenzymatic antioxidant systems are known to play dynamic
role in maintaining equilibrium between detoxification and ROS generation in plants
under stressful conditions. Remarkably, ROS are well-known to play a dual part in
plant biology owing to molecular cross-talk with other signaling molecules for
example RNS, RSS, and RCS. On the basis of previous works, ROS is incredibly
essential player for different biological mechanisms and are well-known for its
signaling role at low concentrations. On the other hand, ROS toxicity explicitly
destroys cells via oxidative stress as a result of ROS-activated machinery account-
able for cellular degradation. Besides, there exists a correlation between ROS, RCS,
RSS, and RNS and metabolic activities in normal and stressed conditions; neverthe-
less, a few reports have addressed these interactions. Both ROS and RNS can
generate oxidative and nitrosative stress exclusively or in concert cause nitro-
oxidative stress although both are also involved in signaling cascade of higher
plant species principally under harsh environment. Alternatively, both ROS and
RSS signaling pathways are indistinguishable and signal via interaction with Cys,



but the RSS signaling seems to be more widespread in comparison to ROS signaling.
On the contrary, RCS can maintain metabolism of ROS as these molecules are direct
outcome of oxidative stress and have the capability to operate as its sensors. Thus,
these four reactive molecules possibly will be the novel gateway of attention for the
plant scientists. Even though amassing of information regarding signaling pathways
of such reactive molecules has been accelerated over the period of time, more
comprehensive research is desirable to illuminate their roles in plant stress biology.
With the latest advances in molecular and genetic techniques, considerable advance-
ment has been made in enhancing plant stress tolerance through transgenics with
improved activities of antioxidant enzymes. Based on the available literature, there is
a need to identify and report candidate genes that can considerably enhance the
tolerance and yield of transgenic plants under stressful environments. Additionally,
chemical priming is a smart way to genetic engineering so as to accomplish similar
targets, often through the regulation of the antioxidant defense apparatus. At some
point, systems biology approaches such as genomics, transcriptomics, proteomics,
and metabolomics may possibly help introducing novel alternatives for the improv-
ing plant stress tolerance. Integrating abovementioned approaches can be employed
to identify key and stress-related regulators, genes, proteins, and metabolites. More-
over, identification and exploitation of pathways related to ROS-detoxifying
regulators could be improved to produce genotypes tolerant to abiotic stresses. As
we know, plants undergo a wide range of stresses simultaneously; therefore, identi-
fication of genes that can confer multiple abiotic stress tolerance is of utmost
importance. Also, state-of-the-art genome-editing technologies such as CRISPR/
Cas system could modify the plant genome through the development of mutants with
single or multiple genes, e.g., ROS-detoxifying regulators for sustainable growth
and development in plants and to improve the antioxidant defense mechanisms.
Recently, speed breeding has also come to light as a powerful means to enhance the
plant growth and development under desired circumstances. Thus, in order to save
time plant genome editing could be integrated with speed breeding to generate
transgenic plants with induced antioxidant potential that are tolerant to different
stresses and will thus contribute to feed ever-growing population and to guarantee
global food security.
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