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Abstract

Rice is stable and principle crop that feeds the maximum world population. Under
the present climatic change scenario, there is a rise in demand for rice production
for sustaining an increasing population as the climatic changes leads to yield
reduction and quality deterioration of rice. In rice, anthesis and grain filling are
considered as very crucial stages, and any changes in the temperature and water
availability cause significant reduction in yield. In this climatic change scenario,
the rise in temperature is the most potent factor, which is responsible for the
reduction of plant growth and yield. It does not only reduce the yield, but also
deteriorates the quality of grains in all agricultural crops. Most of the rice is
currently cultivated in regions where temperatures are above the optimal for
growth (28/22 �C) if there is an increasing temperature above optimal will result
in a reduction in productivity and quality. As the temperature rise caused a
reduction in precipitation, this will lead to drought stress. Because of these
concerning reasons, the demand for tolerant varieties is increasing nowadays.
Physiological and biochemical approaches are proving to be the most important
screening tools for the identification/development of tolerant genotypes in any
crops under high temperature and drought stresses. The chapter was to focus on
identifying the major traits that help in developing the significant adaptive and
resilient rice varieties which can sustain high temperature and drought stress. This
can act as a potential donor or feeding variety to the current population.
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4.1 Introduction

The present climatic change scenario is a challenging act in agriculture that causes a
catastrophic impact on food security to feed the rapidly increasing world population.
The effects of these climatic changes have started showing their impact on the crops’
productivity and nutritional quality of all the produce (Kadam et al. 2014). Cereals,
mainly rice, wheat, and maize, are essential for present food security demands. In all
of these, rice is an important staple crop and a primary source of nutrition to more
than 3.7 billion people across the globe (International Rice Research Institute, 2016
http://ricestat.irri.org:8080/wrsv3/entrypoint.htm, accessed on April 10, 2021).
Demand for food will increase, as the growing population may be reaching nine
billion by 2050 (Godfray et al. 2010), mainly in rice-feeding people living in Africa
and Asia (FAO 2014). Even with high production demand, less available freshwater
and climate change are posing a severe risk to global rice production (Emerick and
Ronald 2019). The projected global temperature will rise by 2.8–4.8 �C by 2100
(IPCC, 2018-19). Repeatedly episode of warmth waves has been reported at the
regional scale in the last ten years and had a disastrous impact on agricultural crop
production across the globe (Kadam et al. 2014). According to the A1B climate
change scenario, approximately 121 million ha of irrigated global rice area is
projected to be vulnerable to a high temperature by 2100 (Teixeira et al. 2013).
Another critical factor that affects the production was the availability of freshwater
crops development and growth. Under these high-temperature scenarios, precipita-
tion levels are also affected, which will ultimately lead to low water. This climate
change impacts the earth’s crust resulting in infrequent and erratic precipitations,
elevated temperatures, and expansion of affected land areas under flood or water
deficit. These adverse conditions contribute to the development of the drought-prone
regions and, consequently, plant growth and crop productivity.

This stress showed significant detrimental effects on the rice reproductive stage.
Rice reproductive stage is considered the most sensitive stage to high stress
(HS) (Wassmann et al. 2009; Jagadish et al. 2008; Yoshida 1981). High temperature
coinciding at the reproductive stage could result in impaired and poor pollen
development, and another dehiscence resulted in high spikelet sterility in rice
(Powell et al. 2012; Jagadish et al. 2010a, b). Bahuguna and Krishna (2015)
suggested that a high temperature beyond 33 �C (physiological optimum) could
affect plant development via alternating molecular and physiological events. Gener-
ation of reactive oxygen species (ROS) content is one of the primary events under
HS, resulting in the peroxidation of lipids and lower plasma membrane integrity. On
the other hand, plants have a robust defense mechanism (antioxidant defense) in
maintaining ROS levels under detrimental limits (Szymańska et al. 2017). High-
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temperature stress also affects the photosynthetic machinery by affecting photo-
chemical reactions in thylakoid lamellae and carbon metabolism within the stroma of
chloroplast (Wise et al. 2004; Wahid 2007). Bahuguna and Krishna (2015)
suggested that the HS at the later stage could affect the reproductive stage, seed
set, and grain filling in rice plants by changing carbon metabolism enzymes and
hormonal regulation. Starch synthesis and accumulation during early to mid-grain
filling stage result in poor grain filling in HS (Bahuguna et al. 2015).
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During flowering, drought stress (DS) on rice has detrimental effects on rice,
which resulted in a loss in viability of pollen, pollination failure, and increased
flower abortion (Westgate and Ladisch 1993). The key reason for these failures was
a reduction in the water potential of floral tissue, i.e., pollen and ovary. Under
drought stress, higher production of ROS at the cellular level resulted in significant
oxidative damage (Mittler et al. 2004). Short-term and prolonged drought exposure
resulted in decreased photosynthesis, leaf development, transpiration, loss of tissue
turgor pressure, and various other physiological processes (Tardieu et al. 2018;
Jongdee et al. 2002). These changes ultimately affected the anthesis and grain filling
stage and resulted in spikelet sterility, and poor grain yield under soil water deficit
environment in rice (Jongdee et al. 2002).

Various researchers have studied the impact of these stresses individually, but no
reports are available for combined stress effects considered necessary in climatic
change. Under natural field conditions, drought and high-temperature stresses can
occur concurrently and have more detrimental effects (Rang et al. 2011) than
individual stress effects. In Asia, in rice-growing areas, the episode of drought and
heat stress at two crucial stages, i.e., flowering and early grain filling, are much every
day and responsible for the significant detrimental effect on rice growth and produc-
tivity (Wassmann et al. 2009). Other studies documented on various other cereals
(rice, maize, wheat, and barley) suggested that combined stress of drought and high
temperature showed more detrimental effects than individual ones (Zhang et al.
2013). Heat and drought stresses combined to cause more oxidative stress at the
tissue level through overproduction of reactive oxygen species, which damaged
protein functions and membrane integrity.

Agricultural crop production faces significant challenges and is considered vul-
nerable to climatic change like heat spikes, drought spells, increased CO2, and
changing rainfall patterns. Crops productivity was dwindled because of both abiotic
and biotic factors. In the above stresses, high temperature and drought are the
significant constraints that deteriorated productivity and affect the quality of agricul-
tural food crops worldwide (Schleussner et al. 2018). The rising world population
and more demands on agricultural productivity to sustain the world population is a
challenging task. Therefore rise in demand for cultivated stress-tolerant crop pro-
duction to uphold the world population is needed (FAO 2017; Godfray et al. 2010).
Crop plants can sense stress responses; adapting and sustaining these responses was
carried out by alteration in physiological and metabolisms processes. These
advances facilitate us to understate the adaptive strategies of plants in these stress
conditions (Bita and Gerats 2013; Basu et al. 2016). Crop productive and metabolite
process under these stresses was regulated by using certain growth regulators. Due to



these climatic changes variability, plants need to develop adaptive mechanisms,
modify their metabolism, or alter specific metabolites to cope with these stresses.
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4.2 Rice and Its Importance

Cereals play a significant role in human nourishment, contributing to many calories
on a per-day basis. Maize, wheat, and rice contribute 10%, 17%, and 23% calories
worldwide (Khush et al. 2001). Among all cereals, rice (Oryza sativa L.) is a
significant and second most cultivated cereals crop. Rice is grown in flooded
conditions and averagely consuming 24.0–30.0% of total available freshwater
(Bouman et al. 2007) and requires an optimum air temperature of 32/28 �C day
and night temperature. Rice is sensitive to high temperature and drought stress
conditions, and the reproductive stage is considered as the most sensitive stage to
these stresses (Yoshida 1981; Jagadish et al. 2007, 2008; Sarsu et al. 2018; Basu
et al. 2016; Bahuguna et al. 2018). However, the present climate change prediction
model suggests a rise of 2.5–4.8 �C temperature by 2100 (Alexander 2016; Masson-
Delmotte et al. 2018). As the population demand for freshwater consumption
increases and freshwater availability can limit and threaten global rice production
(Kadam et al. 2015). In the rice-growing season, the primary concern of drought and
HS was conceded at the flowering time, which resulted in S.F. and yield penalty
under natural conditions (Matsui and Omasa 2002; Serraj et al. 2011; Liu et al. 2004;
Teixeira et al. 2013; Kadam et al. 2015; Pandey and Shukla 2015). Moreover,
accurate phenotyping and characterizing a diverse set of germplasms in ambient
conditions (field) might give potential tolerant donors which can be utilized in the
breeding programs. Although, very few genotypes in rice have been identified and
characterized for HS-tolerance.

4.3 Effect of High-Temperature Stress on Rice

Rice’s most susceptible stage to high temperature is flowering (anthesis and fertili-
zation) and also some level at micROS porogenesis stage at booting (Yoshida 1981;
Prasad et al. 2006; Jagadish et al. 2008; Farrell et al. 2006). The global climatic
change in air surface temperature rises significantly by “0.15 � 0.05 �C” in 10 years
(Jones et al. 2016). The present climatic change model predicate that the average rise
in air surface temperature will be of “1.4–5.8 �C by 2100” (Corbera et al. 2016).

The optimum temperature that’s required for proper rice growth is 32/28 �C
day/night temperature. It has been suggested that high temperature at the flowering
and grain filling stage was more detrimental in rice (Yang et al. 2007). Peng et al.
(2004) revealed the rise in average nighttime temperature by 1.13 �C over 25 years in
these stages caused severe damage to growth and yield in rice. It resulted in the
sterility of spikelet and decline in yield per plant (Nakagawa et al. 2003). The
negative effect of short HS spells has been demonstrated at the flowering stage,
resulting in a significantly reduced yield in past decades in China (Welch et al. 2010;



Yang et al. 2004; Zou et al. 2009). Hasegawa et al. (2009) suggested that high
temperatures at the flowering stage result in the reduction of rice productivity. Shi
and Chan (2014) investigated popular rice cultivars grown in the high-temperature
sensitive region and found much more prone to HS at the flowering stage. For this
problem, there is a need to identify true tolerant and high-yielding varieties that did
not only sustain but also get yield under HS conditions (Battisti and Naylor 2009;
Lobell and Burke 2008). It was reported earlier that N-22 and NL-44 are high-
temperature stress tolerance donors at the vegetative and flowering stages by
maintaining higher biomass (Bahuguna et al. 2015; Jagadish et al. 2007). Moreover,
precise high-temperature phenotyping is needed to characterize germplasms set
under natural and field conditions to identify potential donors used in the future
breeding program (Fig. 4.1).
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Fig. 4.1 Physiochemical markers to illustrate the effect of high-temperature stress in rice

4.4 Effect of Drought Stress on Rice

Another major constraint responsible for decreased agricultural productivity is
drought or water deficit stress (Sharp et al. 2004; Saini and Westgate 2000). Rice
is an irrigated crop and is highly vulnerable to drought (Cabuslay et al. 2002).
Around ~23 million ha Oryza Sativa L. production is affected by water deficit across
the globe (Serraj et al. 2011; Pandey and Shukla 2015). Moreover, its impact is more
pronounced because of increased unnatural climatic conditions, which promote
drought stress events (Pachauri et al. 2014). As per the climatic model, the frequency
of drought spells shortly can be more coinciding with acute stages and results in
losses to rice productivity (Kumar et al. 2014). O’toole (1982) reported that drought
stress at the vegetative stage result in a lesser reduction in productivity, while the



same treatment at meiosis and fertilization results in more considerable yield reduc-
tion. At flowering, water deficit resulted in the decline of the grain yield by 30–69%
under natural conditions (Cabuslay et al. 2002; Garrity and O’Toole 1994; Sheoran
and Saini 1996). Water deficit resulted in stomatal closure and limited carbon
accumulation in plants. Leaf water potential was also affected, which diminished
turgor pressure in leaf and inhibited stomatal activity and another metabolism (Jaleel
et al. 2008). Under drought stress, various plant physiological and biochemical
processes were hindered such as membrane integrity, plant water relation, gas
exchange, osmolytes content, nutrient management, source-sink association, and
growth (Farooq et al. 2008; Benjamin and Nielsen 2006; Jaleel et al. 2008; Razmjoo
et al. 2008). Breeding efforts for developing drought resistance rice cultivar that will
perform under these predicated climatic change scenarios, but the drought resistance
mechanism is poorly understood at the flowering stage (Cabuslay et al. 2002;
Condon et al. 2004).
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4.5 Effect of High Temperature on Rice Grain Yield, Pollen
Viability, and Spikelet Fertility

The flowering stage in rice is most prone to HS and D.S. concerning the vegetative
stage (Yoshida 1981). At flowering or anthesis, pollen containing anthers further
followed to micro-gametogenesis is the most sensitive tissue to HS and drought
stress (Satake and Yoshida 1978; Sheoran and Saini 1996; Nakagawa et al. 2003).
The previous report from Yoshida (1981) suggested that manual pollen shaded from
non-stress plants to stress stigma showed an ability to fertilize at 41 �C in rice.
Therefore pollen grains in the reproductive organ are responsible for lesser S.F. and
grain yield in Oryza Sativa L. (Wassmann et al. 2009). A study performed in rice at
35 �C for 5 days during panicle development to anthesis suggested a 35% decline of
spikelet fertility (Yoshida 1981). A similar response has been conformed in wheat
under high temperatures (Saini and Aspinall 1982).

High-temperature tolerance is mainly associated with three primary mechanisms,
i.e., avoiding, escaping, and withstand adverse weather conditions. In avoiding high
temperature, stress plant adjusts its tissue temperature by maintaining transpiration
rate (Weerakoon et al. 2008). Escaping was associated with early morning flowering
and avoiding during peak hours (Ishimaru et al. 2010). Another process is to
withstand the adverse climatic conditions with resilient developing reproductive
physiology (Jagadish et al. 2010a, b). Based on a field study, Prasad et al. (2006)
demonstrated that a rise in 5 �C above ambient temperature significantly reduces
spikelet fertility, grain yield, and reduction in harvest index, in various rice cultivars
was mainly genotype-dependent. They have also shown a strong positive correlation
between S.F. and pollen receptivity and pollen production. A similar response is
reported in Japanese cultivars by Matsui et al. (2001) and attributed mainly because
of the lower pollen count and poor anther dehiscence on the stigma surface. Jagadish
et al. (2007) conducted a controlled environment study in rice and reported that at
flowering <1 h, high-temperature exposure was sufficient to decline spikelet



fertility. It is related to the fertilization and anther dehiscence in a genotypically
dependent manner. Other reports suggested that flowering patterns or early flowering
attributes under high temperature can be an essential adaptive trait associated with
HS (Jones et al. 1997; Ishimaru et al. 2010).
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A comparative study by Fu et al. (2008) reported that HS under field and
greenhouse recommended that rise in daily mean temperature was responsible for
the reduction of spikelet fertility (6–16%) and grain yield and one thousand grain
weight in sensitive genotype more as compared to a tolerant hybrid. Jagadish et al.
(2008) reported that 6-h exposure to high temperatures at 33.7 �C and 36.2 �C
showed a reduction in spikelet fertility and affected the flowering pattern of rice
genotypes. Similarly, Cao et al. (2009) suggested that high temperature from the
heading resulted in a more considerable yield reduction in temperature-sensitive
genotypes due to poor fertilization and low-speed setting. In contrast, the minimal
effect was observed on female reproductive organs in rice. Spikelet fertility reduced
significantly in sensitive genotypes, and this reduction was closely associated with
germinating pollen on stigma and pollen tube length to the ovary (Jagadish et al.
2010a, b). A study performed by Nagarajan et al. (2010) in rice (basmati and
non-basmati genotypes) under high temperature recorded a reduction of S.F. and
yield/plant. Bahuguna et al. (2015) identified Nerica L44 (NL-44) for reproductive
resilience, with better ROS managing ability, robust antioxidant enzyme system, and
high spikelet fertility and grain yield in HS at flowering and vegetative stages.

4.6 Effect of Stress on Rice Grain Yield, Spikelet Fertility,
and Pollen Viability

The HS stress is not the only factor responsible for reducing S.F., P.V., and grain
yield; drought stress may be responsible for the decline. Mild drought at flowering
resulted in a 70% reduction in secondary branching and decreased by 40% in
spikelet fertility and panicle number (Kato et al. 2008). In maize, prolonged drought
results in reduced sink size and grains number (Bahuguna et al. 2018; Barnabás et al.
2008; Aslam et al. 2013). Drought stress at anthesis results in increased improper
anther dehiscence, ovary and pollen abortion, panicle exertion, lower spikelet
fertility in rice maize and wheat (Rang et al. 2011; Powell et al. 2012; Praba et al.
2009; Aslam et al. 2013). Drought at pre-anthesis results in asynchronous flowering,
or delayed flowering was recorded in wheat (Cattivelli et al. 2008; Foulkes et al.
2007).

The drought stress can affect panicle exertion and cause a reduction in spikelet
fertility and grain yield in rice. O’Toole and Namuco (1983) reported that decline in
spikelet fertility related to failure in panicle exertion from leaf sheath and matrix
water potential of the flag leaf. Selote and Khanna-Chopra (2004) suggested that
water stress can decrease spikelet fertility in sensitive rice high-yielding genotypes
compared to N22 (tolerant). Various studies indicate that the reproductive stage
comprises the microsporangium process for developing functional and viable pollen
grains for fertilization and is most critical to stress. Under drought stress, structural



and functional disparities create and lead to improper fertilization and seed setting
(Saini andWestgate 2000). Pollen development processes like anther dehiscence and
pollen shedding are also affected by drought stress (Ekanayake et al. 1990; Satake
and Yoshida 1978). It suggested that in DS, sucrose transport to pollen represses,
which results in lower P.V. in rice and other cereals (Powell et al. 2012). A similar
drought result suggested that drought affects pollen viability during the pollen
development stage (Kato et al. 2008; Dolferus et al. 2011). Lilley et al. (1996) and
Ekanayake et al. (1993) also suggested that upland rice was more adapted to the
water conserved mechanisms than others during drought spells. A greenhouse study
performed by Rang et al. (2011) tested five genotypes to drought, found a significant
decline in pollen count (52 to 70%), pollen on stigma (59%), and spikelet fertility by
81% in sensitivity genotypes, whereas tolerant (N22) have a lesser reduction in all
above traits.
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Sharma et al. (2018) performed a pot study in rice and phenotyped 15 rice
cultivars by withholding irrigation at anthesis and drought were maintained at
~70 kPa and reported that P.V. (50%), S.F. (48%), and grain yield per plant and
1000 grain weight significantly affected under drought as compared to well-watered
conditions. Bahuguna et al. (2018) reported that drought at flowering reduces
spikelet fertility and grain yield/plant. They also recommended that priming at the
critical stage helps in kick-start stress signaling and helps in developing acclimatize
response against stress. The genetic diversity analysis performed on 296 Indica rice
panels under drought stress also significantly reduced grain yield, spikelet fertility,
1000 grain weight, and spikelet number per panicle at 64 kPa and 45 kPa, respec-
tively (Kadam et al. 2018).

4.7 Effect of High Temperature on Rice Grain Yield, Spikelet
Fertility, and Pollen Viability

Some studies have reported combined effects of drought and high-temperatures
stress and suggested that combined stress was much more detrimental than individ-
ual ones. Rang et al. (2011) indicated a decline in S.F. concerning particular stress
and normal conditions. Lawas et al. (2019) reported a reduction of 73% yield due to
combined high temperature and drought stress in sensitive genotypes compared to
control ones.

4.8 Heat Susceptibility Index and Cumulative Stress
Response Index

Fischer and Maurer (1978) categorized wheat genotypes in water deficit based on
yield; they performed under drought stress and identified them according to their
susceptibility index. In brief, the rate of change in yield between two environments
relatively means a shift in overall genotypes. Later, Dai et al. (1994) and Koti et al.
(2007) suggested the cumulative stress response index, all the sum of individual



relative components response of treatment was the best way to identify the actual
response of cultivars in any stress conditions.
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4.9 Effect of High Temperature on Rice Seed Quality

Studying the HS effect on rice quality is essential for rice productivity and market-
ability. Rice’s appearance, cooking, and texture are the main quality traits that are
major concerns of consumers (Okabe 1979; Rousset et al. 1999). Various studies
have suggested rice grain quality can be a more concerning issue in HS (Madan et al.
2012; Lyman et al. 2013). Most reports are available on control conditions studies
(Fitzgerald and Resurreccion 2009; Lisle et al. 2000), and very few studies carried in
field conditions. Heat stress at the grain filling and flowering stage can make an
abnormal change in color and grain texture due to insufficient starch accumulation
(Tsukaguchi and Iida 2008). The grain chalkiness was the major component in
determining the rice price and quality.

Yoshioka et al. (2007) characterized conventionally chalky grains using image-
based techniques in the white core, milky white, white back, and white belly rice.
High temperature deteriorated quality traits like grain appearance hulling, milling
yield, high chalkiness percentage, head rice recovery, amylose content which can
affect market values of rice (Inatsu 1979; Cock et al. 1976). It may result from
changes in the activity starch biosynthesis pathway and alteration in granules
packing in rice grains (Tetlow and Emes 2014; Dai et al. 2005).

Head rice recovery is an essential trait for rice selection in West Africa (Sakurai
et al. 2006). The study suggested that head recovery is affected by high air tempera-
ture and relative humidity (Cnossen et al. 2003; Schluterman and Siebenmorgen
2007). Cooper et al. (2008) suggested that high night temperature was also respon-
sible for significantly reducing head rice yields. Nagata et al. (2004) indicated under
high temperature at early grain filling and post-flowering was primarily accountable
for rice grain fissuring, which resulted in the reduction of head rice yield. Under
high-temperature stress, sink capacity is altered, resulting in lower starch synthesis
activity and 1000 grain weight (Jeng et al. 2003; Oh-e et al. 2007). Grain chalkiness
is another essential trait that determines rice quality and price in the international
market. The high temperature at early grain filling and post-flowering affects the
packing of starch granules and created air spaces. As a result, in grains chalky
regions developed at maturity (Tashiro and Wardlaw 1991; Zakaria et al. 2002).
These loose packing of amyloplasts in kernels results in the formation of chalky
grain and differs from translucent grains (Lisle et al. 2000).

Rice grain mainly consists of two types of starch, i.e., amylopectin and amylose.
Under normal conditions, amylose concerning amylopectin is responsible for the
firmness of cooking grain (Juliano 1992; Blakeney et al. 1994). Under high-
temperature reduction of amylose content increases amylopectin in rice grains
(Umemoto et al. 2002; Asaoka et al. 1989; Umemoto and Terashima 2002). These
changes in amylose content led to sticky rice after cooking (Sakurai et al. 2006) and
are not favorable for consumption (Sakurai et al. 2006).
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4.10 High Temperature Effect on Gaseous Exchange and Tissue
Temperature

Photosynthesis rate (i.e., CO2 uptake) and transpiration rate (i.e., H2O loss) are
regulated through the stomatal behavior of the plants. This stomatal pore opening
and closing maintain the tissue temperature and moment of metabolites or signaling
compounds in plants (Brownlee 2001; Lake et al. 2001).

Pn “(rate of photosynthesis)” is affected under high temperature and drought
(Hassan 2006; Yordanov et al. 1999). The limitation in the rate of photosynthesis in
DS and HS can occur either due to nonstomatal or stomatal attributes (Shangguan
et al. 1999; Ort et al. 1994). Whichever limitation in gas exchange might limit plant
growth and development in various stresses. Various researchers recommended that
in high temperature and drought individually or in combination rate of photosynthe-
sis and transpiration decline (Zandalinas et al. 2016; Arbona et al. 2013). In high
temperatures, the reduction in yield in cereals is associated with carbon assimilation
(photosynthesis and transpiration) (Stone 2001). High temperature resulted in a
lower rate of photosynthesis because of (1) inactivation of Rubisco enzyme activity
(Prasad et al. 2004) and (2) destruction of Photosystem II (PSII) (3) by the decreased
rate of consumption of CO2/O2 and/or increased photorespiration in mesophyll cells
(Leegood and Lea 1999). PSII is the most prominent high-temperature sensitive
component (Gombos et al. 1994). Wise et al. (2004) recorded that HS stress carbon
metabolism in the stroma and photochemical reaction in thylakoid lamella of the
chloroplast are affected.

Various studies have suggested that high-temperature stress can cause degrada-
tion of chlorophyll a and b in the leaf of different crop species (Karim et al. 1999). In
Solanum Lycopersicum and Saccharum officinarum, HS increased the chlorophyll a:
b ratio and decreased chlorophyll:carotenoids ratio in the least susceptible genotypes
(Camejo et al. 2005; Wahid and Ghazanfar 2006). Such chlorophyll degradation or
photosynthesis apparatus has been associated with ROS production (Guo et al.
2006). The rate of photosynthesis is affected under high temperatures due to
disruption of the thylakoid membrane or inhibiting membrane-associated electron
carriers and enzymes (Rexroth et al. 2011). More than 35 �C decreased the activity of
Rubisco and can limit the photosynthesis system in various plants (Griffin et al.
2004). Zhang et al. (2018) reported lower photosynthetic rate (P.N.) insensitive rice
genotypes as compared to N22 under heat stress. Similarly, reduction in Rubisco
activity in rice and wheat study has been suggested as a cause of lower P.N. in HS
(Perdomo et al. 2017)

In drought stress, stomatal conductance decreases and ultimately reduces CO2

flow in mesophyll cells. Similarly, reduction in the activity of RuBP (Ribulose
biphosphate) (Parry et al. 2002) or Rubisco content (Bota et al. 2004) can affect
the rate of photosynthesis under drought stress. Speer et al. (1988) reported that
drought stress caused instability to the photosynthesis membrane via dehydration in
later stages on the plasma membrane. Chaves et al. (2011) suggested that under
severe DS, de novo synthesis of photosynthesis proteins slows down, which
adversely affects the photosynthesis capacity and enhanced leaf senescence.
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4.11 Effect of High Temperature on Relative Water Content
(R.W.C.)

Relative water content (R.W.C.) is a critical trait that showed the degree of hydration
in tissue and cell and is an essential feature in better growth and physiological
functioning (Silva et al. 2007). Blokhina et al. (2003) suggested that plasma mem-
brane permeability and suitability decreased due to dehydration under drought stress.
Vendruscolo et al. (2007) indicated that tolerant varieties maintain
R.W.C. concerning sensitive ones under water deficit environments. Those varieties
keep relative water content-maintained protoplasm under water stress and ensure
yield in rice (Sikuku et al. 2012).

4.12 Effect of High Temperature on Membrane Stability Index
(MSI)

The membrane integrity defines the permeability or integrity of the plasma mem-
brane (Blokhina et al. 2003). Under stress conditions, plasma membrane permeabil-
ity increases and increases “electrolytes leakage” from the stress-imposed tissue
(Chaturvedi et al. 2012). This electrolytic leakage can be addressed as electrolytic
conductance (Agarie et al. 1995). Swapna and Shylaraj (2017) suggested that
tolerant varieties have better MSI under drought stress conditions as compared to
sensitive ones.

4.13 Effect of High Temperature on Reactive Oxygen Species
and Antioxidant System

Under adverse environmental stress conditions, plants activate various types of
defense mechanisms in genes, proteins, and signaling cascades to confer tolerance.
These stress conditions are liable for the generation of ROS in the organism. ROS act
as double-edged sword nature molecules in lower concentration by acting as signal-
ing compounds, whereas in higher it was malevolent nature (Noctor et al. 2014;
Baxter et al. 2014). A report summarized ROS as harmful molecules which were
highly reactive to nucleic acid, proteins, lipids, and other metabolites (Gill and
Tuteja 2010a, b). These ROS molecules comprise various molecules, namely
H2O2 oxide radicals (O•2�, OH•, singlet oxygen, and many others). Many reports
have suggested that ROS overproduction caused toxicity to nucleic acid, protein, and
other metabolites, resulting in cell death and damage (Gill and Tuteja 2010a, b).
Under natural conditions balance of ROS and the scavenging mechanism is there,
but under stress conditions, this balance gets disturbed and caused cellular damage
(Das and Roychoudhury 2014). Szymańska et al. (2017) proposed a robust defense
mechanism (antioxidant defense) in maintaining ROS levels under detrimental
limits. As ROS activity increased, during HS and D.S., which will possibly affect
in peroxidation of lipids and disturbing the integrity of the plasma membrane.
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The ROS scavenging components are presented in both enzymatic and
non-enzymatic forms. Researchers reported that under drought stress conditions,
the expression of enzymatic antioxidants increased in rice (Fahramand et al. 2014)
which include S.O.D. (superoxide dismutase), C.A.T. (catalase), A.P.X. (ascorbate
peroxidase), G.P.X. (guaiacol peroxidase), G.R. (glutathione reductase), and others
(Sahebi et al. 2018), while non-enzymatic are A.A. (ascorbic Acid), G.S.H. (reduced
glutathione), α-tocopherol, carotenoids, flavonoids, and proline (Boukar et al. 2019).
Abiko et al. (2005) suggested that tolerant plants protect themselves from the
harmful effect of ROS by synthesizing antioxidants components. These antioxidants
are located at various organs of cells and collaborate to detoxify reactive oxygen
species. You and Chan (2015) suggested that in all the enzymatic antioxidants,
S.O.D. are the primary defense line of defense which convert O2•- into H2O2 then C.
A.T., G.P.X., and A.P.X. play key role in detoxification of H2O2 (You and Chan
2015). It has been shown that ascorbic acid is required for A.P.X. activity while
glycol for G.P.X. (Noctor et al. 2014; Dietz et al. 2006; Meyer et al. 2012). Several
studies reported that in the rice genome, eight S.O.D. genes encoded viz. one
Mn-SOD (manganese S.O.D.), CuZn-SOD (plastidial S.O.D.), CuZn-SOD-L (puta-
tive CuZnSOD-like) and 2 copper-zinc S.O.D, cytosolic (cCuZn-SOD1 and cCuZn-
SOD2) and iron S.O.D.s (Fe-SOD2 and Fe-SOD3) (Nath et al. 2014). Sharma and
Dubey (2005) demonstrated an upregulated activity of S.O.D. in Oryza Sativa L. in
water deficit stress. Bahuguna et al. (2015) demonstrated a rise in activity S.O.D., A.
P.X., and G.P.X. of tolerant genotypes under high temperature in rice in both
vegetative and spikelets and helped minimize high-temperature stress levels. The
various transgenic approaches also justified that under-stress overexpression of
Mn-SOD1 reduces stress induction (Li et al. 2013). Teixeira et al. (2004, 2006)
reported 8 APX genes in rice. Two mitochondrial A.P.X.s (OsAPX5 and OsAPX6),
two peroxisomal A.P.X.s (OsAPX3 and OsAPX4), two cytosolic A.P.X.s (OsAPX1
and OsAPX2), and two chloroplastic A.P.X.s (OsAPX7 and OsAPX8) and two
cytosolic A.P.X. genes have a crucial role in abiotic stress tolerance (Zhang et al.
2013; Sato et al. 2011) rice. Several researchers proposed under high-temperature
stress condition ROS like H2O2, hydroxyl radicals produces at PSII system was
scavenge by antioxidant including S.O.D. In signal transduction, the involvement
of ROS implies the intensity of stress and to maintain ROS at nontoxic levels, there
must be a synchronized function of the regulatory network in balancing ROS
production.

Hussain et al. (2019) suggested that in combined HS and DS conditions,
metabolites accumulation and enzymatic and non-enzymatic antioxidants increased
to prevent oxidative damage in maize. Zhang et al. (2018) suggested similar in rice
anthers under high temperature.
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4.14 Osmolytes Accumulations in High Temperature
and Drought

The critical adaptation for many kinds of cereal under abiotic stress, i.e., heat and
drought, is the accumulation of specific low molecular mass organic molecules
called osmolytes. Under stress conditions, these osmolytes are accumulated in plants
to regulate stress tolerance. Common examples of these osmolytes are sugar, proline,
glycine betaine, tertiary and quaternary ammonium compounds, and tertiary sulfo-
nium compounds.

Amphoteric quaternary amine, glycine betaine (G.B.), has a vital role as compati-
ble solutes in various plant abiotic stresses, especially in high temperatures and
drought. The glycine betaine content varied from species to species under stress
conditions. In maize, it has been reported that more accumulation of G.B. enhances
the stress levels under high temperature and drought stress conditions. It was
previously reported that it helps improve photosynthesis rate in individual heat and
drought and combine stress in wheat. Under water scarcity, it has been reported rise
in the level of G.B. in maize and sugarcane (Wahid 2007). It has also been suggested
that a rise in temperature by 4–5 �C PSII efficiency inhibited and leads to the
accumulation of G.B., which was reported to protect the PSII system from
photoinhibition in high-temperature stress. In high-temperature stress, CO2 fixation
was affected, resulting in the generation of ROS, G.B. stabilized the Rubisco,
resulting in a reduction in ROS generation in crops.

Like glycine, proline is also a critical osmolyte, which accumulates in large
quantities under environmental stress conditions. Proline is synthesized from gluta-
mate by the action of two enzymes, Δ1-pyrroline-5-carboxylate synthetase and Δ1-
pyrroline-5-carboxylate reductase. It was known that proline also regulates the
cellular redox potential under stress environments, exceptionally high temperature,
and drought stresses. It also has various functions, such as signaling molecule, a
metal chelator, and antioxidant defense. High temperature showed its first presence
at the cellular level, especially at the plasma membrane, affecting biochemical
events. Kumar et al. (2016) suggested that under high temperature rise in proline
content was noted. Under high temperatures, fruit set in tomato plants failed due to
disrupting sugar metabolism and proline transport during the narrow window of
male reproductive development. Hexose sensing in transgenic plants engineered to
produce trehalose, fructans, or mannitol may significantly contribute to the stress-
tolerant phenotypes.

Trehalose is a non-reducing disaccharide of glucose that functions as a compati-
ble solute in stabilizing biological structures under abiotic stress in bacteria, fungi,
and invertebrates. Trehalose also acts as a storage carbohydrate, and it possesses the
unique feature of reversible water absorption capacity to protect biological structures
from damage during drought and high temperatures. When water dissipates from the
shell of macromolecules (such as protein) during severe dehydration, trehalose can
act as a water substitute on the surface of the dried protein. Thus, proteins’ native
folding and biological activity are maintained, and denaturation and aggregation are
prevented. A study revealed that upregulation of trehalose biosynthetic genes in rice



has considerable potential for improving abiotic stress tolerance and, at the same
time, augmenting productivity under both stress and non-stress conditions. It
suggested that from overexpression of trehalose in a higher capacity for photosyn-
thesis and a concomitant decrease in the extent of photo-oxidative damage during
stress. In addition, trehalose must be interacting with other physiological processes
to account for changes in ion uptake and partitioning during salt stress. Because
other cereal crops, like rice, are also sensitive to abiotic stresses, likely,
overexpression of trehalose biosynthetic genes in maize and wheat may also confer
high levels of abiotic stress tolerance.
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4.15 Hormone Metabolism in High-Temperature Stress

Crops are very susceptible to these changing environmental conditions. To over-
come these harmful and adverse conditions, phytohormone, plays a key role, whose
signaling helps the plants to adapt and survive under these stress conditions. These
are part of key metabolic pathways that help sustain plants and control the yield
components (Peleg and Blumwald 2011). Some basic phytohormones are classified
into five standard groups viz. ethylene (E.T.), Abscisic acid (A.B.A.), auxin (I.A.A.),
gibberellins (G.A.), and cytokinins (C.K.) were mainly present.

Under abiotic stress, crosstalk between hormones develops synergetic or antago-
nistic relations, which plays a pivotal role in plant development processes. Previous
research suggested that auxin (I.A.A.), cytokinin (C.K.), and gibberellic acid (G.A.)
are involved in plant development and regulate the response to stress environments
(Eyidogan et al. 2012). Zhang et al. (2009) suggested that auxin regulation in
modulating the drought response. Likewise, A.B.A. is involved in regulating stoma-
tal closure to prevent water loss to minimize transpiration and decrease growth under
drought stress (Schroeder et al. 2001). Xue-Xuan et al. (2010) reported that
A.B.A. signaling plays an essential role in developing plants’ drought and cold
stress tolerance. E.T. is a gaseous hormone regulating process involving various
stages of growth phases, viz. leaf, petals abscission, flower senescence, and fruit
ripening and developed in abiotic stress response (Abeles et al. 2012).

Another newly identified group of chemical groups are nitric oxide (NO),
salicylic acid (S.A.), strigolactone (S.L.), brassinosteroids (B.R.), jasmonate (J.A.),
and polyamines (PAs). In all above, PAs (polyamine) are newly class molecules that
play a crucial role in plant development and response under abiotic stresses
conditions (Minocha et al. 2014). In various observations, PAs different
concentrations were noted during “plant growth and development” and were
correlated to “different stresses at cellular levels.” The polyamines are reported for
various adaptation and acclimation mechanisms to cope with different stress
conditions (Pál et al. 2015; Karwa et al. 2020). Liu et al. (2007) suggested that
polyamines act as a secondary messenger in a common signal transduction pathway
in Arabidopsis thaliana. Various early and recent work told that PAs have crosstalk
with various other hormones viz. gibberellins, auxin, and ethylene for maintaining
different processes, but their pronounced relation is not establishing the interaction



and mechanism of such crosstalks (Kusano et al. 2008; Alcázar et al. 2010; Bitrián
et al. 2012; Xu et al. 2014).
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4.16 Conclusion

As the rice is the source of nutrition to the large population of the world, the
increasing high-temperature spikes and drought spell the demand for resilient rice
varieties rises. Lack of knowledge, how plants can sense and cope up these harsh
environments, physiological and biochemical traits which at par correlate with yield
and quality traits that can also help us to identify the most important one under these
stresses. Under the stress condition, plant either showed tolerant, escape, or avoiding
the mechanism for which either it regulates the tissue temperature or by early
flowering traits it avoids the high temperature and drought spells. There are various
noticeable effects of high temperature and drought is observed on pollen viability,
affected grain filling, structural changes of cell organelles, oxidative stress, lipid
peroxidation of cell membranes, disruption of leaf water relations, and reduction in
photosynthesis. All these effects regulate the water potential, membrane permeabil-
ity, and osmolytes regulation, which can help in restricting the water losses under
stress conditions. Hormone regulation helps in generating the systemic signaling
pathway which regulates the H2O2 content and HSPs that help in proper regulation
of photosynthesis and transpiration process under stress conditions.

In the future, efforts are needed to phenotype large genotypic variability on the
basis of early flowers opening traits and by maintaining spikelet fertility, cell
membrane thermostability, photosynthesis, transpiration, HSPs, and maintaining a
greater non-structural carbohydrate pool under high temperature and drought stress.
A challenge for the future is to achieve the robust tolerant mechanism that can help
the plant to sustain high temperature and drought stress environments in climatic
change scenarios.
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