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Abstract

High temperature is one of the major abiotic stresses causing huge yield losses in
all crop plants. The challenges posed by global warming are the major antagonis-
tic factors to realize seed yield potential of a genotype. There is a need to generate
allelic variation in the existing gene pool for high-temperature tolerance. Induced
mutagenesis holds great potential to cause lesions ranged from single base pair to
large deletions resulting into development of spectrum of new gene
combinations for high temperature tolerance. Advances in scientific methods,
especially related to quantifying existing thermotolerance at seedling and repro-
ductive stages, understanding the function of each genetic loci and their position
on a chromosome, and deciphering biochemical pathways to analyze the effect of
these genetic loci made it possible to measure genetic value of the mutant genes.
Substantial efforts have been directed to generate variability in cereal crops such
as wheat, rice, maize, and barley in the coded fraction of genome for heat stress
tolerance which was exploited to decipher functional characterization of genetic
loci at morphological, physiological, biochemical, and molecular levels as well as
direct improvement of crop cultivars for warm locations. In wheat; mutations for
stay green, thousand kernel weight, small heat shock protein, and stable meiosis;
in rice; spikelet fertility, characters at seedling and reproductive stage,
chlorophyllide a oxygenase; in maize; EF-Tu factor; in tomato; MAPK gene
and mutations for brassinosteroids in barley have been found useful to develop
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heat-tolerant crop plants. A total of 14 heat-tolerant varieties have been developed
through mutation breeding. Besides, precise mutagenesis techniques such as
TILLING and CRISPR-cas9 have been found to be useful in developing heat-
tolerant crop plants.
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12.1 Introduction

High-temperature stress is one of the penalties of a globally changing climate
severely affecting agricultural productivity. The gradual rise in temperature is
experienced all over the world leading to more warm days and nights with future
prediction of mean temperature exceeding 2�C by the end of the twenty-first century
(IPCC 2014). Under changing climate scenario, the increase in temperature can
cause irreparable damage to plant growth and development resulting into major risk
to food production and security (Christensen and Christensen 2007; Gitz et al. 2016).
Climate change with higher heat stress events will disturb natural habitat of most
agricultural crops across globe (Raza et al. 2019). The noteworthy studies to
understand the effect of heat stress on vegetative and reproductive stage (Chaudhary
et al. 2020; Cohen et al. 2021), potential genes for tolerance (Su et al. 2019), heat
shock factors and proteins involved (Chandel et al. 2013; Guo et al. 2016) and
strategies employed to antagonize the effect of heat stress (Tian et al. 2012) was
carried out in various crop plants. Studies to analyze heat stress tolerance
mechanisms in crop plants are further augmented by genomics, proteomics and
metabolomics to recognize the gene networks involved in the tolerance of this
complex trait. The functional characterization of several genes (TaDmc1, OsCAO1
and SlMAPK3) has been possible due to induced mutations which are either knock
outs of a locus resulting in loss of trait in the derived mutant or disrupt or modify
gene expression to the extent that it could be possible to discern it from its wild type.
Conventional improvement which acts upon natural variability resulted in limited
improvement in recent times due to lack of tolerant genes in usable germplasm of
most crop species (Bhandari et al. 2017; Ahmar et al. 2020; Singer et al. 2021).
However, mutation breeding with a fundamental objective to induce variability in a
trait of interest and to enrich germplasm base of any crop species has been success-
fully used for improvement of almost all traits (Ahloowalia and Maluszynski 2001;
Mba 2013; Oladosu et al. 2016; Holme et al. 2019) and especially traits essential to
contribute adaptability in the era of climate change (Bakshi et al. 2020). Mutation
breeding has proven its role in enriching germplasm of most crop species and their
use in development of varieties with improved traits (Sikora et al. 2011; Wang et al.
2013). It has been documented in IAEA MVD database that a total 3406 mutant



varieties developed in agricultural important crops across world which include
induction of agronomic and botanic traits, nutrition and quality traits, resistance to
biotic and abiotic stresses, yield and contributing traits (http://mvd.iaea.org/). Sub-
stantial efforts were carried out through induced mutagenesis for development of
heat tolerant traits which were analyzed at morphological, biochemical and molecu-
lar levels and a total of 14 heat-tolerant varieties were developed in crop plants.
Mutant varieties contributed to economic benefit to the growers and their economic
impact is reviewed by Ahloowalia et al. (2004). Developments in field of genetics
and molecular biology in understanding transcription factors, gene networks and
biochemical pathways expanded the horizons from arbitrary to precise mutagenesis
and resulted in development of techniques such as TILLING (Tadele 2016; Kumar
et al. 2017) and CRISPR-CAS9 editing (Zaidi et al. 2020). These techniques
supplemented mutation breeding efforts and made it possible to deal with complex
crops like wheat and complex traits such as heat and drought stress governed by
multi-gene families.
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In this review, efforts directed and accomplished in area of induced mutagenesis
for augmenting tolerance to high-temperature stress and its physiological, biochem-
ical and molecular analysis along with advances in precision mutagenesis namely
Targeting Induced Local Lesion in Genome (TILLING) and Clustered Regularly
Interspaced Short Palindromic Repeats (CRISPR) technologies have been
mentioned.

12.2 Induction of Mutations in Crop Plants

Inducing mutations in plants is one of the proven methods for enhancing variability.
Several morphological, physiological and biochemical traits related to heat stress
have been modified with the objective to decipher their function and enrich working
germplasm of crops such as wheat, rice, maize, barley, medicago and tomato using
physical and chemical mutagens (Table 12.1) and crop-wise work has been men-
tioned below.

12.3 Wheat

High temperature has an impact on wheat productivity in tropical, subtropical, arid
and semi-arid regions of the world. The high-temperature stress influences all wheat
growth stages however, the effect at pre- and post-anthesis stages is more pro-
nounced on grain filling and decides the grain yield of a genotype (Farooq et al.
2011; Prasad and Djanaguiraman 2014; Djanaguiraman et al. 2020). Heat-directed
grain yield loss predictions on a regional or global basis revealed that sustaining
wheat productivity and production needs concerted efforts particularly to breed for
tolerant genotypes. Heat tolerance is a complex trait in plants and is likely to be
under the control of multiple genes (Barnabás et al. 2008). Limited information is

http://mvd.iaea.org/


Variety Mutagen Traits improved References

(continued)
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Table 12.1 Induced mutagenesis for improvement of traits contributing to heat tolerance

Crop

Triticum aestivum
Mutant/
locus
identified

WH147 Gamma rays Higher contents of
phospholipids, higher
content of galactolipid-
bound linolenic acid and
especially Phospholipid-
bound trans-c.-3-
hexfldeeenoic acid

WH147M Behl et al.
(1997)

Guardian Sodium azide
and EMS

Higher light-saturated net
photosynthetic rate (Pmax)

Heat-
tolerant
mutants

Mullarkey
and Jones
(2000)

Trinakria Ethyl
methane
sulphonate

Delayed leaf senescence,
higher seed weight and
higher grain yield per plant

Stay green
mutants

Spano
et al.
(2003)

Kronos &
Cham1
(durum wheat)

EMS
TILLING

Functional characterization
of complex multi-gene
family of sHsp26 and heat
tolerant mutants

Small hsps Comastri
et al.
(2018)

Shi4185 Gamma rays Increased kernel weight Fu4185
(QTkw.cau-
5D)

Cheng
et al.
(2015)

Chinese Spring Gamma rays Chromosome pairing
mutant at 30 �C

TaDmc1 Draeger
et al.
(2020)

Oryza sativa
Hwacheongbyeo N-methyl-N-

nitrosourea
Slower rate of chlorophyll
degradation

Hwacheong-
wx
(sgr(t)gene)

Cha et al.
(2002)

IR64 Ethyl
methane
sulphonate

Expressed ribulose
bisphosphate carboxylase
large chain precursor,
higher pollen viability and
spikelet fertility, higher
tiller number and yield per
plant

NH219 Poli et al.
(2013)

Jao Hom Nil Fast neutrons Higher spikelet fertility and
grain yield

M9962,
M3181 and
M7988

Cheabu
et al.
(2019)

Super Basmati Gamma rays Higher grain yield, higher
panicle fertility, higher cell
membrane
thermo-stability and
antioxidant enzyme levels

HTT-121 Zafar et al.
(2020)



Variety Mutagen Traits improved References

attained regarding the role of individual genes controlling temperature tolerance in
wheat (Mullarkey and Jones 2000).
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Table 12.1 (continued)

Crop

Triticum aestivum
Mutant/
locus
identified

Dongjin CRISPR Play role in chlorophyll b
synthesis and in regulating
photosynthesis, short
narrow flag leaves and pale
green leaves, lower
chlorophyll b and
carotenoid content

OsCAO1 Jung et al.
(2020)

KY131 Sodium azide Increased thiolated tRNA
level

SLG1 Xu et al.
(2020)

Hordeum vulgare
Delisa, Bowman Sodium azide

and N-
methyl-N-
nitrosourea
(MNU)

Higher temperature
tolerance in BR-deficient
and BR-signalling mutants

522DK,
BW084

Rudolphi-
Szydło
et al.
(2020)

Other crops

Medicago truncatula
NF2089 T-DNA

mutant
Maintained green leaves,
green anthers, central
carpels, mature pods, and
seeds, mutants showed
higher chlorophyll content
during senescence and had
increased crude protein
content

Zhou et al.
(2011)

Solanum lycopersicum
Ailsa Craig CRISPR/

Cas9-
mediated
mutagenesis

Knockout of SlMAPK3
showed higher heat
tolerance

SlMAPK3
(Map
kinase)

Yu et al.
(2019)

12.3.1 Induced Mutations for Mitochondrial Functions

Acquired thermotolerance is an adaptive strategy used by crop plants in which
exposure to mild temperature stress induces tolerance to high temperature. The
cell viability assay is based on reduction of 2,3,5-triphenyltetrazolium chloride
(TTC) by electrons from mitochondrial electron transport chain (Towill and Mazur



1974) and determines respiratory enzyme inactivation or mitochondrial dysfunction
under heat stress. Acquired thermotolerance studies using electrolyte leakage and
TTC cell viability assays for quantifying the membrane function temperature toler-
ance of wheat genotypes and their association with yield and yield parameters were
extensively carried out in wheat (Ibrahim and Quick 2001; Blum et al. 2001; Fokar
et al. 1998; Dhanda and Munjal 2006; Dias et al. 2010; Sud and Bhagwat 2010). In
the same study, thermotolerance in the mutants was further confirmed by quantifying
Pmax (light-saturated net photosynthetic rate) for which parents showed a 23%
reduction in Pmax compared to stability of trait in mutants and chlorophyll content
stability in mutants.
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12.3.2 Induced Mutations for Stay Green Genotype

Stay green genotype is one of the key germplasm resources for breeding high-
temperature stress genotypes. However, only functional stay green mutants those
delayed the onset of senescence along with maintained photosynthetic capacity
(Thomas and Howarth 2000) with improved translocation of photosynthates from
source to sink are desirable (Rivero et al. 2007). Stay green traits in wheat has been
found to contribute resistance to diseases by Joshi et al. 1997 and tolerance to heat,
drought, cold stress in many other crops (Thomas and Smart 1993; Gregersen et al.
2013; Thomas and Ougham 2014). Stay green trait in the genotypes has been found
significantly associated with high chlorophyll content, normalized difference vege-
tative index, grain yield, biological yield, kernel weight, and low canopy temperature
in the heat stress compared to control (Latif et al. 2020). In a durum wheat
mutagenesis initiative, delayed leaf senescence and functionally green mutants
were isolated with higher net photosynthetic rate, efficient photosystem II and higher
chlorophyll concentration in maturation phase and senescence of the flag leaves
(Spano et al. 2003). These functionally “stay green” mutants had higher seed weight
and grain yield per plant than the parental genotype. Molecular analysis of photo-
synthetic genes showed upregulation of rubisco activase, soluble starch synthase and
a glycine decarboxylase in these mutants and this provides a novel source of
characterized germplasm for improving the yield of bread and durum wheat
genotypes, especially under unfavourable environmental conditions (Rampino
et al. 2006). Stay green mutant (tasg1) has been developed through chemical
mutagenesis of bread wheat variety HeSheng2 using ethyl methane sulfonate (Tian
et al. 2012). The mutant tasg1 has been found to have delayed leaf senescence under
normal and drought stress conditions. The tasg1mutants maintained more integrated
chloroplasts and thylakoid ultrastructure, lower malondialdehyde content and higher
antioxidative enzyme activities. The tasg1 has a competent antioxidant enzyme
defence system as revealed by lower malondialdehyde and the hydrogen peroxide
content during natural senescence and methyl viologen-induced oxidative stress
(Hui et al. 2012). Tian et al. (2013) observed that tasg1 plants could maintain higher
hill activity, actual PSII efficiency (ΦPSII), maximal photochemical efficiency of
PSII (Fv/Fm) and Ca2+-ATPase and Mg2+-ATPase activities, increased number of



polypeptides in thylakoid membranes and upregulation of two genes encoding
pigment-binding proteins TaLhcb4 and TaLhcb6 under drought stress. Wang et al.
(2015) investigated the cytokinin metabolism (CK) of tasg1 mutant and
substantiated that stay green mutants had higher CK content, increased transcript
levels of CK metabolic genes and higher sensitivity to the CK inhibitor lovastatin.
This confirmed that stay green mutant showed delayed leaf senescence and stable
thylakoid membrane and high antioxidant competence due to altered CK level.
Wang et al. (2016a, b) showed that cytokinin metabolism appeared to be involved
in the regulation of stay green phenotype through the invertase activity and resulted
in sucrose remobilization and ineffective conversion of soluble sugars into starch
ended in smaller grain size in tasg1. The molecular basis of stay green trait revealed
differential expression of cisZOGT1 (catalytic O-glucosylation in cis-zeatin) genes
associated with CK and N metabolism for delayed flag leaf senescence in a feedback
pattern in a durum wheat mutant (Wang et al. 2019a, b).
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12.3.3 Induced Mutations for Thousand Kernel Weight

Inducing mutations is a proven and effective way to create novel genetic variations
for agronomical traits in wheat. Grain yield in wheat is determined by productive
spikes per unit area, grain number per spike and kernel weight. Among these yield
traits, kernel weight is found to be highly heritable, however, quantitatively con-
trolled trait (Peng et al. 2003). A thousand kernel weight (TKW) mutant Fu4185 has
been developed through gamma irradiation of parent variety Shi4185. The mutant
has been found highly stable and maintains a higher grain weight ranging from 36.6
to 42.8 g compared to parent 29.9–36.0 g across five locations experiencing heat
stress. Polymorphism in the mutant and parent based on simple sequence repeats
(SSRs) showed that 30% polymorphic marker loci located on D-genome and this
indicated that gamma ray-induced mutations could augment genetic diversity of
conserved genomes. In the same study, environmentally stable QTL (QTkw.cau-5D)
at 5DL for grain weight is identified and this could serve as a potential source of
favourable alleles for grain size in high-temperature stress.

12.3.4 Induced Mutations for Small Heat-Shock Proteins

The heat-shock proteins (HSPs) are pervasive molecules in plants that are rapidly
induced by heat stress (Basha et al. 2012). Six types of HSPs namely HSP100,
HSP90, HSP70, HSP60, HSP40 and small HSPs (sHSPs) have been found in higher
plants. The small HSPs with a molecular mass ranging from 12 to 42 KDa showed
ubiquitous occurrence in kingdoms of life (Haslbeck et al. 2005). The sHSPs act as
molecular chaperones which negatively affect unwanted protein–protein interactions
and assist in refolding of denatured proteins (Gupta et al. 2010). The sHSPs are
found to be located in the cytosol or nucleus, mitochondria, plastids, endoplasmic
reticulum and peroxisomes in the cell. The genes which encode for sHSP in wheat



have been isolated (Rampino et al. 2012; Pandey et al. 2015) and especially genes
for the chloroplast-localized sHSP26 proteins found ubiquitously in plants (Haq
et al. 2013). sHSP26 is the most thermosensitive component of photosynthetic
machinery (Joshi et al. 1997) and found to interact with photosystem II (Zhang
et al. 2014a, b; Hu et al. 2015). TILLING was used to study the variation at sHSP26
loci and their effect on heat stress was confirmed in Triticum durum (Comastri et al.
2018). It has been found that TdHsp26-A1 showed highest upregulation after direct
heat stress whereas TdHsp26-B1 showed the highest upregulation to heat stress
applied after acclimation. This confirms different levels of thermotolerance of same
sHSP family. A total of 50 mutants in these sHSP26 loci differing in their heat
tolerance were identified and to follow these specific mutations competitive allele-
specific PCR markers were developed to characterize these mutations and for
marker-assisted selection in breeding programmes.
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12.3.5 Induced Mutations for Stable Meiosis at High Temperature

Assessment of heat stress consequences on wheat confirmed that the heat stress has
more pronounced negative effects on reproductive phase over vegetative phase
(Fischer and Maurer 1976; Fischer 1985; Wardlaw et al. 1989) and exposure of
20–24 hours at 30 �C during meiosis can reduce grain number (Saini and Aspinall
1982; Draeger and Moore 2017). The process of meiosis for gamete formation is
crucial for sexually reproducing organisms. Any disturbance in meiosis could lead to
chromosomal aberrations like aneuploidy and result in loss of fertility. Temperatures
lower or higher than optimum for a crop species can induce a variety of meiotic
abnormalities including changes in the frequency of chiasma formation (Elliott
1955; Dowrick 1957; Bayliss and Riley 1972; Higgins et al. 2012). The meiotic
irregularities such as reduction in chiasmata formation are due to the effect on
chromosome synapsis and temperature at which meiosis fails varies in different
crop species (Bomblies et al. 2015). Chinese Spring is a known heat-sensitive wheat
cultivar (Qin et al. 2008) and reduced chiasma frequencies found in N5DT5B plants
at low temperatures. This chromosome asynapsis is due to low-temperature pairing
locus (Ltp) by Hayter and Riley (1967). Ltp was located on 5DL (Hayter 1969) and
the locus was later known as Ltp1 (Queiroz et al. 1991). Chiasma formation at 30 �C
and above showed reduction in N5DT5B plants (Bayliss and Riley 1972)
demonstrating that chromosome 5D has been associated with high-temperature
tolerance. These 5D nullisomic plants showed a reduction in grain number after
treatment at 30 �C during premeiosis and leptotene (Draeger and Moore 2017).
Mutant lines developed in Chinese Spring using gamma ray treatment and used for
deletion mapping of 5DL region using KASP markers (Draeger et al. 2020). The
ttmei1 mutant showed a deletion of 4-Mb of the long arm of 5D and this deletion
segment has 41 genes of which 18 show expression at meiosis. Among these
meiosis-specific genes, TaDmc1-D1 is the strongest candidate for the
low-temperature pairing phenotype and known to be involved in initiation of
synapsis at early prophase I in wheat (Martín et al. 2017). The deletion of Dmc1



locus in the diploid plant species namely, Arabidopsis thaliana, Oryza sativa,
Hordeum vulgare with abnormal synapsis, multiple univalents and chromosome
mis-segregation has been reported (Couteau et al. 1999; Wang et al. 2016a, b; Colas
et al. 2019; Szurman-Zubrzycka et al. 2019). The functional understanding of
TaDmc1 as a candidate gene for stabilizing chromosome synapsis against extremes
of temperature has supplemented information to wheat breeders which would assist
in identification of wheat genotypes with temperature tolerant alleles at this locus.
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12.4 Rice

Rice is the staple food for sustaining lives of more than half of the world’s popula-
tion. Optimum temperature range for growth and development ranged from 27 to
32 �C without economic loss of grain yields (Yin et al. 1996). However, further rise
in temperature beyond 32 �C caused a substantial effect on plant growth and
development at all stages (Aghamolki et al. 2014). Feng et al. (2019) reported that
a temperature increase of about 35 �C or higher in the field has irreparable damage to
growth and reproduction. Studies on thermotolerance in rice have primarily focused
on the reproductive stage which is highly sensitive and showed association with
grain yield under heat (Jagadish et al. 2012; Wang et al. 2019a, b; Takai et al. 2020;
Xu et al. 2020).

12.4.1 Induced Mutations for Improved Spikelet Fertility

Cheabu et al. (2019) induced mutations with different levels of spikelet fertility at
high temperature using fast neutron irradiation. In the wild type and sensitive
mutants, high temperatures of 40–45 �C at the reproductive stage decreased rice
yield by decreasing spikelet fertility, hundred grain weight and panicle weight. The
reduction in spikelet fertility and the differential response of cultivars at high
temperatures was mainly associated with impaired pollen viability and pollen ger-
mination. Heat tolerant mutant namely M9962 exhibited a minimum reduction in
spikelet fertility and grain yield at higher temperatures. Whereas, susceptible
cultivars namely; Sinlek, RD13 and RD33 had a heavy reduction in spikelet fertility
and grain yield. Malumpong et al. (2020) developed four back cross derived high
yielding and heat-tolerant lines exploiting higher spikelet fertility of fast neutron
mutant M9962 as donor and higher yield of recurrent parent, Phisanulok 2 (PSL2).

12.4.2 Induced Mutations for Heat Tolerance at Seedling
and Reproductive Stage

The reservoir of mutants with differential tolerance to heat is a valuable source for
understanding the function of gene(s) governing susceptibility or tolerance to heat in
any crop species. Zafar et al. (2020) evaluated 39 mutants of cv. Super Basmati



along with IR-64 as a check under normal and heat-stress conditions to identify
mutants with heat tolerance at seedling and reproductive stages based on agronomic,
physiological and molecular indices. This study reported four heat-tolerant mutants
namely HTT-121, HTT-112, HTT-101 and HTT-102. The most heat-tolerant mutant
HTT121 had higher grain yield, panicle fertility, cell membrane thermo-stability
(CMTS) and antioxidant enzyme levels under heat stress. On the contrary heat
sensitive nutants have been found to ccumulate reactive oxygen species, reduced
catalase activity and upregulated OsSRFP1 expression under heat stress.
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Panigrahy et al. (2011) screened mutants of cultivar N22 developed from treat-
ment of ethyl methane sulphonate (EMS) under prolonged drought and high-
temperature stress conditions and found four mutants N22-H-dgl56, N22-H-
dgl101, N22-H-dgl162 and N22-H-dgl219 with higher chlorophyll and carotenoid
contents, improved photochemical efficiency of PSII and less accumulation of
reactive oxygen. Heat resilience of mutant NH219 was revealed by improved
morphological and physiological traits including plant height, tiller number, number
of panicles, panicle length, yield/plant, pollen viability, spikelet fertility, chlorophyll
a/b ratio (chl a/b), relative water content (RWC), electron transport rate (ETR) and
photochemical efficiency (Fv/Fm). Leaf proteome analysis showed constitutive
expression of ribulose bisphosphate carboxylase large chain precursor in mutant
NH219 under ambient growth condition. Mutant genotype NH219 had a grain yield
advantage over N22 parent under heat stress. Molecular marker analysis showed an
association of RM1089, RM423, RM584 and RM229 with number of tillers and
yield per plant, leaf senescence, leaf width and yield per plant, respectively, in F2
mapping population of IR64 and NH219 (Poli et al. 2013).

12.4.3 Induced Mutations for Chlorophyllide a Oxygenase for Heat
Stress

Photosynthesis is the key process for plant growth and provides the energy for
synthesis of organic compounds (Krause and Weis 1991). Chlorophyll is the most
important pigment for photosynthesis for harvesting light energy and converting it to
chemical energy (Fromme et al. 2003). Improvement in chlorophyll content in rice is
observed as an approach for better photosynthesis rate (Huang et al. 2013)
contributing to higher yield. Chlorophyllide a oxygenase (CAO1) has a direct role
in chlorophyll b synthesis as evident from T-DNA insertional mutants and RNAi
mutated lines (Abe et al. 2012; Lee et al. 2005). CRISPR edited mutant lines of rice
with knockout of OsCAO1 demonstrated short narrow flag leaves and pale green
leaves with a significant reduction of chlorophyll content and poor chloroplast
development and photosynthesis (Jung et al. 2020). CRISPR/CAS9 edited lines
exhibited poor photosynthetic efficiency, lesser biomass, lower grain yield and
grain quality due to lack of chlorophyll b resulting in insufficient supply
of photoassimilates at grain filling stage. Differential gene expression analysis of
CRISPR edited knockouts established thatOsCAO1 controls the expression of genes
related to responses to oxidation–reduction, protein phosphorylation, carbohydrate



metabolic process, oxidoreductase activity and thus an important locus for response
to environmental stress.
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12.5 Mutation Breeding in Maize and Barley

12.5.1 Maize

Maize is the third most important cereal crop and is cultivated over diverse
agroclimatic conditions world over (Tiwari and Yadav 2019). The optimum temper-
ature for achieving maximum grain yield for maize is 33–38�C and temperatures
more than 38 �C considerably influence economic yield (Koirala et al. 2017).
Temperature over optimum limits have a constraint for both vegetative and repro-
ductive growth, nevertheless, anthesis, silking, grain filling and seed set are the most
sensitive to heat stress and may lead to total sterility and kernel loss (Lizaso et al.
2018). Induced mutations have contributed extensively to assigning function to
individual loci coding for abiotic stress tolerance in many crop plants (Bahuguna
et al. 2018; Singh et al. 2018) and similar strategies have been exploited (Ristic et al.
2004) to investigate the role of EF-Tu factor for heat tolerance in maize mutants
using a reverse genetic approach. Chloroplast protein synthesis factor, EF-Tu is a
member of a highly conserved, nuclear-encoded multigene family (Lee et al. 1997;
Sugita et al. 1994) and has a molecular mass of 45–46 kD (Bhadula et al. 2001).
EF-Tu factor is involved in GTP-dependent binding of aminoacyl-tRNA to the A site
of the ribosome (Riis et al. 1990). Bhadula et al. (2001) reported in a heat-tolerant
maize line, ZPBL 1304 that synthesizes and accumulates increased amounts of
EF-Tu in response to heat stress. It was confirmed that Ef-Tu function as a molecular
chaperone and guards chloroplast proteins from thermal aggregation and inactiva-
tion. The involvement of EF-Tu in heat tolerance in maize is confirmed by many
studies (Momcilovic and Ristic 2004; Rao et al. 2004; Momcilovic and Ristic 2007).
In a study by Ristic et al. (2004) involving maize mutants having MuDR insertion
(4.94 kb) with reduced capacity to accumulate EF-Tu under heat stress was
evaluated by analyzing heat stability of photosynthetic membranes (thylakoids),
thermal aggregation of chloroplast stromal proteins, and plant growth at seedling
stage after exposure to stress. The outcome from the analysis of mutant with reduced
EF-Tu accumulation showed that EF-Tu factor function as a molecular chaperone
and prevent thermal aggregation of stromal proteins in chloroplast.

12.6 Barley

Panicle development and pollen formation are most sensitive to high temperature
and may cause complete sterility in Barley (Sakata et al. 2000). Short intervals of
heat shock (�35� C) in the post-anthesis period can significantly reduce grain weight
in barley (Wardlaw andWrigley 1994) and decrease grain quality (Savin et al. 1996).
Therefore, heat stress is considered important abiotic stress that causes a significant



reduction in yield. Developing mutant resources for heat stress contributing traits in
barley would help to assign function to individual loci and advance their usage in
barley improvement.
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12.6.1 Induced Mutations for Brassinosteroids for Improved Heat
Tolerance

Brassinosteroids (BR) play a major role as regulators of plant growth and develop-
ment and have been found to guard plants against various types of stress including
extreme temperatures (Tian et al. 2018; Tong et al. 2014; Small and Degenhardt
2018). BR antagonize the effect of both high and low temperatures at cellular and
molecular levels which is translated to better growth, biomass synthesis and
increased plant survival (Sadura and Janeczko 2018). Sadura et al. (2019) evaluated
Barley mutants to understand the role of BR phytohormones in regulating their
acclimatization to high temperature. The study included three mutants of which
522DK and BW084 are the BR-deficient mutant developed from Delisa and Bow-
man and a BR signalling mutant isolated from Bowman to study the effect on
efficiency of photosystem II, membrane permeability and damage on leaf blade in
high-temperature conditions and showed higher tolerance of mutants to high tem-
perature. It has been reported that exposure to 38 �C showed no damage to leaf blade
damage, membrane permeability and retained photosystem II efficiency in mutants.
Further, exposure to higher temperature of 45 �C showed 74% lower leaf blade
damage in mutant 522DK, no damage in BW084 and less damage in BW312
compared to parent. Membrane permeability values were ranged from 30 to 70%
lesser at 45�C in mutant genotypes. Further, molecular studies revealed that mutant
522DK carried G>A substitution at position 1130 of theHvDWARF gene transcript
(Gruszka et al. 2011) at position 3031 in the gene sequence (Gruszka et al. 2016b)
and was responsible for the conversion of valine-341 residue into isoleucine. The
HvDWARF locus is reported to translate brassinosteroid C6-oxidase and is
involved in synthesis of castasterone in BR biosynthesis however, the mutant
showed a reduced castasterone production (Gruszka et al. 2016a). Other
BR-deficient mutant BW084 (brh13.p) carried a missense mutation in the HvCPD
gene. The HvCPD codes the C-23α-hydroxylase cytochrome P45090A1 that has
function in the early stages of BR biosynthesis. The C2562T transition causes a
substitution of the highly conserved amino acid residue (Pro-445 to Leu) of heme-
binding site in the C-terminal domain of the HvCPD enzyme (Dockter et al. 2014).
The BW312 (ert-ii.79) has an anomaly in BR perception resulting from substitutions
in the BR receptor kinase-BRI1. The mutant had two substitutions and substituted
amino acid residue (Thr-573 to Lys) is positioned in the steroid-binding site of the
BR receptor and accountable to prevent the binding of the BR molecules (Dockter
et al. 2014). The presumed certainty based on existing evidences about BR pathway
was that BR-deficient and BR-signalling mutants would be less tolerant to high
temperatures compared to their wild type, however, the obtained results of higher
temperature tolerance of BR-mutants in the study could be accounted for by their



semi-dwarf habit which resulted in reduced aerial parts of mutants and hence, lesser
transpiration which consequently resulted into better physiological performance.
These heat-tolerant Barley mutants could be used to develop climate-resilient
cultivars.
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12.6.2 Regulation of Heat-Shock Protein in Brassinosteroids
Mutants

Sadura et al. (2020) investigated the role of steroid hormones “brassinosteroids
(BR)” in the regulation of heat-shock protein expression in BR-deficient (mutated
HvDWARF or HvCPD) and BR signalling (mutated HvBRI1) mutants.
Brassinosteroids have been found as positive regulators of heat shock expression
from the response of BR signalling mutants which accumulated heat-shock protein
transcripts and HS proteins irrespective of the considered plant growth and acclima-
tion temperature. Whereas, BR-deficient mutants also confirm that BRs regulate the
expression of HSPs, however, the relation of the level of BRs is not directly
corresponding with HSPs expression rather genetic background of parent cultivars
influence their expression.

12.7 Tomato (Solanum lycopersicum)

Tomato (Solanum lycopersicum) is highly sensitive to heat stress. Vegetative and
reproductive growth of tomato occurs best at a temperature range of 18.5–29.5 �C
(Jones 2008). A degree rise in temperature above the mean daily temperature of
25 �C (Peet et al. 1997) inhibits growth of reproductive organs, pollen viability and
female fertility resulting in either severe decline or no fruit setting (Sato et al. 2000;
Firon et al. 2006). Enhanced sensitivity to varied environmental stresses made
tomato a model plant species to study effect of genes and transcription factors
under stress conditions (Yu et al. 2019). The mitogen-activated protein kinase
(MAPK) function has been studied in many plant species and reported to be involved
in signal transduction for regulating expression of genes and protein functions and
influencing plant development, hormone regulation, disease resistance and various
abiotic stresses (Raja et al. 2017; Ding et al. 2018). The expression of MAPK genes
has been found to be induced in response to heat treatment in Arabidopsis thaliana,
maize, tobacco and tomato (Evrard et al. 2013; Wu et al. 2015; Mansour et al. 2008;
Liu et al. 2017). Studies in tomato earlier evidenced that knockout mutants of
SlMAPK3 have reduced drought tolerance and decreased disease resistance to
Botrytis cinerea (Wang et al. 2017a, b; Zhang et al. 2018a, b). Yu et al. (2019)
found that CRISPR/Cas9-mediated simapk3 mutant lines are involved in elevating
heat tolerance, reducing ROS accumulation and upregulating several heat-shock
protein and heat-shock factor genes expression and substantiated that SlMAPK3
served as a negative regulator of defence response to heat stress in tomato.
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12.8 Heat-Tolerant Varieties Released Through Mutation
Breeding

Mutation breeding provides twin opportunities either to use induced thermotolerant
mutant directly as new variety or involve heat-tolerant mutant into crossing
programme to augment trait lacking in the working germplasm. Mutation breeding
has been used extensively for last nine decades since its inception in 1928 when
Lewis Stadler first used X-rays on maize and barley plants and initiated a new era of
inducing lesions in DNA of crop species. Since then, crop scientists adopted this
technology across the world and resulted in release of 3402 improved mutant
varieties with traits altered in all crop plants. Efforts in direction of development
of climate-resilient varieties can be gauged well from release of 248 mutant varieties
tolerant to all abiotic stresses in the world. However, progress in development of
thermotolerant mutant varieties is limited to a few crops. A total of 14 heat-tolerant
high-yielding varieties have been developed through mutation breeding programme
(Table 12.2). Among them, four are in Gossypium spp., three in Oryza sativa, two
each in Solanum lycopersicum, Lathyrus sativus and one each in Lactuca sativa,
Glycine max and Agrostis sp. employing mostly physical mutagens except one
variety of rice namely, José LP-20 which is developed through chemical mutagene-
sis. The thermotolerant mutant varieties developed in rice showed improvement in
additional traits such as large panicle, better grain quality, high yield, short maturity
duration, photo insensitive and drought tolerance. Other additional traits improved in
cotton involved early maturity, higher yield, good fibre quality and salinity tolerance
and virus disease resistance. Likewise, there are several traits other than high-
temperature stress that is improved in crops such as tomato, soybean, lettuce, grass
pea and creeping bent grass and benefit the improvement in specific crop species.
The efforts for development of heat stress-tolerant mutant varieties may improve
with availability of functionally characterized genetic loci through techniques of
reverse genetics, especially for traits conferring heat tolerance.

12.9 Targeting Induced Local Lesions in Genome (TILLING)
for Heat Tolerance

Targeting Induced Local Lesions in Genome (TILLING) is a reverse genetics
technique that combines chemical mutagenesis with high-throughput screening of
induced allelic variation in the gene of interest. Chemical mutagenesis creates a large
number of non-sense, splice site and missense mutations throughout the genome and
generate multiple alleles of a specific gene in small populations of crop species (Till
et al. 2007; Sabetta et al. 2011). It is a non-transgenic method and can be applied to
any crop species and ploidy level, however, the sequence of gene to be targeted for
inducing lesions needs to be known. TILLING has been proved as one of the
beneficial techniques to gain information about the function of structural genes
and transcription factors, especially those involved in heat stress tolerance (Marko
et al. 2019). Point mutants have been induced using ethyl methane sulphonate
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(EMS) and TILLING mutant population was developed in cultivar Red Setter of
tomato. The binding protein namely HSBP in tomato is one of the negative
regulators of heat stress response and represses the activity of HS transcription
factors. Tomato mutant genotype carrying a missense mutation in SlHSBP1 gene
displayed increased thermotolerance. The methionine-to-isoleucine mutation in the
central heptad repeats of HSBP1 caused partial loss of protein function, thereby
reducing the inhibitory effect on Hsf activity. Tomato plants with a mutation in
binding protein reported to have no inhibitory effect on development and therefore,
this mutant line may serve as a potential donor source for contributing to heat
tolerance in tomato improvement programme.

12 Induced Mutagenesis for High-Temperature Tolerance in Crop Plants 267

In durum wheat, it has been reported that small heat shock protein HSP26 played
a significant function to prevent the irreparable aggregation of misfolded proteins
and protect the photosynthetic machinery from heat-induced damage (Khurana et al.
2013). This protein family has four functional genes of which three are mapped on A
genome and rest left single functional gene on B genome. Comastri et al. (2018)
applied in vivo and in silico TILLING approaches for the identification of new
alleles in HSP26 family and reported 50 TILLING mutant lines. These generated
mutant lines have been characterized for their thermotolerance and KASP
(Kompetitive Allele Specific PCR) markers which will be used to follow the specific
mutations in marker-assisted selection.

In upland rice, mutant lines were induced by gamma rays and analyzed to
discover alleles in heat-shock protein genes (Yona 2015). The rice mutant lines
showed induced mutations with base pair substitutions and InDels included 50% and
41% in HSP90-1 gene and 23% and 35% in HSP17.9 gene, respectively. The
developed TILLING mutant lines were evaluated for growth, yield and yield
components and eight mutant lines produced higher yields under heat and drought
stress.

12.10 CRISPR-Cas Technology for Development of Abiotic
Stress-Tolerant Crop

Abiotic stresses like drought, heat and salinity are key threatening factors to food
security (Pereira 2016). Development of crop varieties with improved tolerance to
abiotic stresses is the only option left. Availability of desired variability and its
utilization in cop improvement programme are the key factors to achieving the
target. Conventional crop breeding methods are highly successful so far. In addition,
induced mutagenesis has played a pivotal role to strengthen the desirable variability
and development of high-yielding varieties. However, the process of induced muta-
genesis is random but standard screening techniques assure the selection of desirable
target trait (Bakshi et al. 2020). Development of high-yielding varieties resilient to
climate change in shortest possible time needs precise manipulation in the genome
(Osakabe et al. 2016; Osakabe and Osakabe 2017). This has led to the emergence of
site-specific genome editing as an alternative to conventional plant breeding and
transgenic strategies (Osakabe and Osakabe 2015).
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Genome manipulation through CRISPR-Cas9 technology needs precise targets/
genes. Various abiotic stresses disrupt plant growth and development by causing
oxidative stress, osmotic stress, hormonal imbalance and alternation in nutrient
uptake and accumulation. Targets to abiotic stresses are linked to various morpho-
logical, physiological (Fang and Xiong 2015; Shi et al. 2017; Lou et al. 2017) and
metabolic imbalances by abolishing the activity of enzymes, protein metabolism and
lead to the production of reactive oxygen species (ROS) resulting in programmed
cell death (PCD) (Van Breusegem and Dat 2006; Huang et al. 2019). In plants, PCD
is prevented by scavenging ROS by antioxidant enzymes like glutathione-S-trans-
ferase (GST), ascorbate peroxidase (APX), glutathione reductase (GR), catalase
(CAT) and superoxide dismutase (SOD) (You and Chan 2015; Driedonks et al.
2015). Besides, various transcription factors like NAC, DREB, bZIP, MYB, TCP
and WRKY confer abiotic stress tolerance, including drought in plants (Erpen et al.
2018). Heat stress tolerance, like other abiotic stresses, is controlled by complex
molecular networks which include several transcription factors, heat-shock factors
and HSPs genes and genes involved in the biosynthesis of complex metabolome.
Nevertheless, the CRISPR edited knockout of SlMAPK3, a map kinase gene in
tomato activated several pathways which included reduced contents of H2O2 and
O2

•� species, downregulation of SlRBOH1 relative expression and upregulated
expression of SOD, POD, APX and CAT genes and increased transcript levels of
several HSPs namely SlHSP70, SlHSP90, SlHSP100 and SlHSFA1a, SlHSFA2 and
SlHSFA3 and responsible for heat tolerance. In another study, CRISPR-Cas9 system
has been used to knockout OsNAC006 in rice and the mutant lines showed increased
drought and heat sensitivity.

Development of abiotic stress-tolerant plants via CRISPR/Cas9- or Cas12-
mediated genome editing has not only been reported in Arabidopsis thaliana (Liu
et al. 2019) but also in T. aestivum, O. sativa, Z. mays, Solanum lycopersicum,
G. max, Hordeum vulgare and Sorghum bicolor (Sánchez-León et al. 2018; Wang
et al. 2017a, b; Liang et al. 2014; Tran et al. 2020; Li et al. 2020; Lawrenson and
Harwood 2019; Gobena et al. 2017). Plants modified through CRISPR-cas9 tech-
nology with improved abiotic stress tolerance have been listed in Table 12.3.

12.11 Summary

Induced mutagenesis is one of the crop improvement methods which contributed
enormously to world food security and economic benefit to the farmers. However,
improving the tolerance of crops to heat stress is dauting task due to changing
climate. Climate change needs enrichment of germplasm with the traits that provide
buffering against rising temperatures and more dry spells or water shortages in
future. Therefore, to develop climate-resilient crops need the knowledge of well-
characterized genetic loci with their functions deciphered and induced mutagenesis
is the most advantageous technology at hand. The mutants developed in wheat crops
involved deciphering many complex traits such as oxidative damage to mitochondria
and stability of meiosis in response to increased temperature. Besides, trait



discernible mutants assisted to understand the multi-gene controlled traits such as
thousand kernel weight, senescence mechanism and heat-shock protein under high-
temperature stress. Induced mutagenesis efforts in rice generated variation for both
vegetative and reproductive traits which included plant height, tiller number, number
of panicles, panicle length, pollen viability, panicle fertility and grain yield. Rice
mutants with improved physiological traits such as chlorophyll a/b ratio, photosyn-
thetic rate and improvement in biochemical traits, e.g. membrane thermo-stability,
antioxidant enzyme activity, relative water content, electron transport rate and
photochemical efficiency. In maize, mutation for Ef-Tu factor exposed its function
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Table 12.3 Improved crop plants for abiotic stress tolerance through CRISPR technology by
editing specific gene

Crop Edited gene Improved trait References

Arabidopsis OST2 Stomatal response for
drought tolerance

Oladosu et al.
(2016)

AREB1 ABA signalling-mediated
drought tolerance

Roca Paixão et al.
(2019)

MIR169a Drought tolerance Zhao et al. (2016)

S1HYPRP1 Salinity stress Tran et al. (2020)

SIMAPK3 ABA-dependent kinase
signalling for drought
tolerance

Wang et al.
(2017a, b)

SINPR1 Drought tolerance Li et al. (2019)

SICBF Chilling tolerance Li et al. (2018)

Rice OsRR22 Salinity stress Zhang et al. (2019)

OsMPK5 Various abiotic stresses Xie and Yang
(2013)

OsPDS, OsMPK2,
OsBADH2

Various abiotic stress
tolerance

Shan et al. (2013)

OsDERF1, OsPMS3,
OsEPSPS, OsMSH1,
OsMYB5

Drought tolerance Zhang et al.
(2014a, b)

OsAOX1a, OsAOX1b,
OsAOX1c, OsBEL

Various abiotic stress
tolerance

Xu et al. (2015)

OsSAPK2 ABA signalling-mediated
drought tolerance

Lou et al. (2017)

OsSRL1, OsSRL2 Leaf rolling for drought
tolerance

Liao et al. (2019)

OsAnn3 Cold tolerance Shen et al. (2017)

OsRR22 Salt tolerance Zhang et al. (2019)

OsNAC006 Heat and drought tolerance Wang et al. (2020)

OsCAO1 Natural and induced
senescence

Jung et al. (2020)

Wheat TaDREB2 and TaERF3 Drought resistant Kim et al. (2018)

Maize ARGOS8 Drought tolerance Shi et al. (2017)

Tomato SIMAPK3 Heat stress Yu et al. (2019)



as molecular chaperone and antagonize aggregation of stromal proteins in chloro-
plast in response to high temperature. BR-deficient and BR-signalling barley
mutants exhibited unanticipated increased tolerance to heat stress and were used to
discover brassinosteroids regulated heat shock protein synthesis in high-temperature
stress. Advances in mutation breeding have led to the development of precision-
indued mutagenesis like TILLING and CRISPR-cas 9 system which are found to be
useful in the development of heat-tolerant crop plants. Mutations have been induced
for heat-shock factors in tomato and heat-shock protein genes in durum wheat and
rice. The variability induced and discovered through the use of mutations for several
traits conferring high-temperature tolerance will serve as a buffer towards food
insecurity threats posed by rising temperature.
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