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Abstract

In recent times, agriculturally important plants face increasing challenges in
maintaining productivity, disease control, and welfare of farmers with changing
climatic conditions. To accomplish this, the generation and analysis of large
volumes of data, especially in the emerging “OMICS” areas of genomics, prote-
omics, and bioinformatics, is imperative for decision-making over large volumes
of data with respect to various crops. Analysis of this large amount of diverged
data needs specific tools and techniques. There are various tools and techniques
available for the analysis of such data. In this chapter, a detailed discussion on
omics data analysis related tools and techniques have been made. This chapter
provides a single platform to help the various researchers working in different
domains of omics research for analyzing the data.
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11.1 Introduction

Various environmental factors like heat, cold, salinity, and drought severely affects
plants growth and development that affects its production and productivity signifi-
cantly. To address the abiotic stresses, defense mechanisms are often triggered by the
plant to mitigate these unfavorable conditions. Understanding the mechanisms of
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plant defense systems at molecular level, there is a need to conduct a comprehensive
study to decode the molecular mechanisms using various bioinformatics tools and
techniques. Advanced DNA sequencing technology has accelerated the pace of
genomics and transcriptomic studies in plants and animals to understand the molec-
ular mechanisms. With the progress in omics approaches (viz. genomics,
transcriptomics, proteomics, metabolomics, and phonemics) and its use in agricul-
ture, a huge amount of data has been generated in molecular and biotechnology labs
which can be used to identify novel genetic and chemical elements controlling
various physiological processes and pathways of plant defense system. However,
using only one approach is not sufficient to understand the complexity of stress
response in plants. Recent development in the field of next generation sequencing
technology (i.e., high-throughput data generation with reduced cost) in OMICS era
generated a huge volume of molecular data. The major omics approaches are
composed of genomics, transcriptomics, proteomics, metabolomics, and phenomics.
These approaches provide a holistic view of molecular pathways at the cellular,
tissue, or organism level. The integration of different omics-based approaches
provides many folds of biological information which resulted in the development
of a new branch of life science known as system biology (Hong et al. 2016;
Chaudhary et al. 2019). However, analysis of high-throughput data from various
omics-based approaches is one of the biggest challenges to interpret the plant
defense mechanism(s). There are several tools, techniques, and databases available
in public domain for various omics-based analyses independently. To handle this
challenge due to generation and availability of multi-omics data, one has to use these
tools in a more judicial and integrated way for deeper and novel biological insights.
This chapter discusses various omics techniques such as genomics, transcriptomics,
proteomics, metabolomics, and phenomics which are used to explore and understand
the defense mechanism of plants at the molecular level to address abiotic stresses.
Moreover, this chapter also provides a list of some important and widely used tools
which can further be used to integrate the results of these omics approaches to draw a
meaningful inferential conclusion.
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11.2 OMICS Approaches to Study Plant Defense Mechanism

11.2.1 Genomics

(i) Whole genome sequencing and resequencing: Genomics deals with the study
of the complete genetic makeup of organisms or individuals. The field of
genomics has grown exponentially in the past 20 years since the announcement
of the first draft human genome in 2001. Further, the reduced sequencing costs
and time accelerated the pace of whole genome sequencing due to the advance-
ment of Next Generation Sequencing (NGS) technologies that have resulted in
flooding of sequencing data (Fig. 11.1). This led to the development of
advanced and efficient bioinformatics tools and techniques to handle such
large-scale sequencing data for deeper and novel biological insights. We can



consider mainly two groups of genomics, i.e., structural genomics and func-
tional genomics. Structural genomics deals with locating the mapped genes and
markers to individual chromosomes which results in producing physical map of
the genome whereas functional genomics focuses on relating genome
sequences with its transcriptome and proteome (encoded proteins) to describe
gene functions and interactions. The most efficient way to study molecular
mechanisms in plants is to decode the whole genome sequence. In plants,
Arabidopsis was the first genome to be sequenced by an international consor-
tium (Berardini et al. 2015). Plant genome sequence helps to explain the
organization, regulation, and evolution of studied genomes. The advent of
next generation sequencing (NGS) technologies allows millions of molecules
to be sequenced simultaneously and whole genome sequencing has become
substantially cheaper and faster than traditional sequencing methods (Goodwin
et al. 2016). Availability of high-quality whole genome sequence data and a
well-annotated reference genome is very crucial for genomics and
transcriptomic-based research. The catalogue of annotated gene models,
genome organization, and synteny-based knowledge, repeats, and most notably
the basis for distinguishing genetic variants are more apparent advantages
acquired from genome sequencing. The reference genome is also used as the
basis for the annotation of other genomes of closely related species. However,
sequencing of the whole genome (i.e., resequencing) is faster and cost-effective
for the species which have already sequenced high-quality reference genomes.
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Fig. 11.1 Workflow diagram of omics approaches for study of plant defense mechanism
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There are several Bioinformatics tools for assembling the reads of sequenced
genome like Bowtie, Soap2, MIRA, Abyss, SOAPdenovo, and velvet (Wee
et al. 2019).

(ii) Identification of Molecular markers: The whole genome sequences can be
extensively studied in discovering the molecular markers. One of the promising
marker systems suitable for laboratories is microsatellites or simple sequence
repeats (SSRs). A valuable resource for upcoming breeding programs are being
developed for genome-wide identification of microsatellites and subsequently
helps in markers development. MISA and GMATA are two most popular and
widely used bioinformatics tools for identification of SSRs in the genomic data.
But nowadays, SNP genotyping approaches are gaining mainstream acceptance
with the introduction of cost-efficient and high-throughput genotyping
techniques. SAM tools, GATK, Picard, etc. are some variant calling tools
that are used to identify SNPs from the whole genome sequence assembly.
The genotyping by sequencing (GBS) approach is an extremely multiplexed
framework for building RRL (reduced representation libraries), finding molec-
ular markers, and genotyping for crop improvement among the various other
SNP-based genotyping approaches (Eltaher et al. 2018; Elbasyoni et al. 2018).
GBS has been applied to many crop varieties as a result of low cost and
innovative technology (Poland and Rife 2012; Kim et al. 2016). For example,
a tomato GBS study led to the discovery of 8784 SNPs based on an approach to
NGS and 88 percent of these SNPs are commonly found in tomato germplasm,
(Sim et al. 2012). GBS is simple and cost-effective solution but use is still
limited because it requires specialized skills in computational and data analy-
sis. In the future, it can be a commonly used approach with the availability of
easy-to-use computational packages and pipelines.

(iii) QTL mapping and GWAS: Linkage mapping (LM) and association mapping
(AM) by identifying marker–trait associations have contributed to the identifi-
cation of QTL (Cockram and Mackay 2018). In many plant species, the
importance has been given to mapping QTLs for many abiotic stresses, such
as heat, salinity, drought, and cold. QTLs controlling seed germination under
various stress conditions have been identified using QTL experiments. QTL
mapping experiments are conducted to identify loci regulating stress resistance
in particular, advancements in genomics have encouraged more complex
approaches involving multi-parental populations such as nested association
mapping (NAM) and Multi-parent advanced generation inter-cross (MAGIC).
A Genome-wide association studies (GWAS) approach, on the other hand, has
an advantage over linkage mapping (Linkage Disequilibrium, i.e., LD) as it
examines the genetic variation and recombination events in germplasm
collections and also offers higher precision mapping (Fukushima et al. 2009).
This set is designed to capture the genetic variability for the trait of interest and
represents the products of hundreds of historic recombination cycles, providing
higher resolution during QTL mapping (Mackay et al. 2009). GWAS is sys-
tematically used to detect SNPs for agronomic characteristics in a germplasm
collection (Pasam et al. 2012). However, associations detected in AM are often
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spurious because associations are based on LD, which not only depends on
linkage but also on population stratification and relatedness among individuals.
Nowadays, efforts have also been made to combine linkage-based QTL
mapping with LD-based AM, and conduct joint linkage association mapping
(JLAM) to overcome the limitations and exploit the benefits associated with
each of the two approaches, i.e., linkage and LD.

(iv) Genomic Selection: The declining cost of SNP assays has made it possible to
genotype vast numbers of experimental lines in stress-tolerant crop breeding
programs to introduce the Genomic Selection (GS) method. The GS method is
successful in simultaneously controlling all the loci that lead to the growth of
the trait, regardless of the magnitude of their individual impact. The GS
solution overcomes the disadvantage of QTL mapping-based breeding where
it is difficult to track/identify small-effect QTLs. Importantly, the small effects
of QTLs can collectively have greater effects on abiotic traits of economic
significance. Due to epistatic interactions, the most economically significant
traits are complex and influenced by unexpected trait expressions (Deshmukh
et al. 2014). Therefore, by using all available molecular markers in conjunction
with the phenotypic data of a training population, GS is the best way to predict
genetic values for selection. A model has been developed to classify and
analyze genotypic and phenotypic data to evaluate the phenotypic variation
based on their genotypes of their whole genomes (genetic composition) (Yan
et al. 2009). To estimate breeding values, different GS models like nonlinear
regressions (RKHS and RF), Bayesian approaches (Bayes A and B), and
penalized regressions (RR, LASSO, and EN) have been used in many studies.

11.2.2 Transcriptomics

For the efficient management of abiotic stress, understanding the gene regulatory
cascades for stress responses is very important. The best strategy for investigating
plant response regulation and identifying genes involved in mechanisms of stress
tolerance is to collect and compare the transcriptome of different tissue types at
various developmental stages. Thus, understanding the transcriptome of different
tissues at developmental stages will lead to better understand the associated pheno-
typic variation. Several tools and techniques are available to obtain expression
profiling for assessment of transcriptomic results both gene-by-gene and collectively
for several genes at a time.

(i) Microarray
Microarray technology is based on hybridization between the target DNA and
probe DNA designed with known sequences. It is capable of covering tens of
thousands of genes at a time, it has made a significant contribution to research.
It is well developed and is still being used as a major platform for transcriptome
analysis of sequenced species, despite its shortcomings in the variety of target
transcripts in the dynamic spectrum of quantification compared with
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NGS-based RNA-seq technology (Wang et al. 2009; Jazayeri et al. 2014).
Microarray is used to identify the differentially expressed genes in response
to abiotic stresses, including salinity, heat, cold, drought, and oxidative stress.
Numerous studies have been conducted in several plant species using
microarray approaches to identify genes having significant roles in stress
tolerance mechanisms as well as for the understanding of diverse molecular
mechanisms (Kumar et al. 2018, 2019; Nagaraju et al. 2019, 2020).

(ii) RNAseq
This approach is based on high-throughput Next Generation Sequencing.
RNAseq relies on high-speed sequencing of short cDNA fragments (typically
30–400 bp) reverse-transcribed from mRNAs. Further, number of cDNA
fragments aligned to the reference sequence indicates the abundance of the
mRNA. RNA sequencing (RNAseq) has become the most cost-effective,
reliable, and high-throughput transcriptomic technology with the quick
advancement of next generation sequencing. In contrary to microarray, the
RNAseq approach is not only confined to comparing the transcripts levels,
but also it is useful in discovery of novel genes and spliced forms, especially in
non-model plants. Numerous reports on the application of RNAseq technology
in case of plants are available (Ye et al. 2017; Xiong et al. 2017; Guan et al.
2019). RNAseq technology has also been applied to unsequenced organisms
(Ekblom and Galindo 2010) as several computational tools enable de novo
assembly of the reads without the availability of a reference genome (Oshlack
et al. 2010; Grabherr et al. 2011). Although management of the huge data sets
generated poses many challenges and this technology is becoming a main-
stream of transcriptome analysis.

(iii) HiCEP
High-coverage gene expression profiling (HiCEP) is based on the amplified-
fragment-length polymorphism technique. This approach can detect changes in
transcript expression with high coverage (Fukumura et al. 2003). Amplified
DNA fragments are first derived from mRNA followed by capillary electro-
phoresis. Their abundances are estimated by the peak observed through elec-
tropherogram. The relevant peaks are then fractionated and sequenced.

11.2.3 Proteomics

Proteomics is the large-scale study of proteins in a studied organism or system. The
proteome represents a complete set of proteins that are produced by an underlying
organism or system. Proteomics has enabled us to identify and validate the ever-
increasing numbers of proteins. Proteins are important for living organisms as they
produce a variety of functions. Modern proteomic technologies have made it possi-
ble to detect vast number of proteins in plant samples easily and simultaneously
(Vanderschuren et al. 2013). Over the last few years in plant science, high-
throughput quantitative proteomics studies gained considerable significance in
characterizing proteomes and their differential regulation during plant growth, biotic



and abiotic stresses. Proteomics experiments often found that many insect attack-
responsive proteins were associated with the cycle of tricarboxylic acid (TCA) and
also involved in carbon metabolism, which suggested that carbon metabolism was
altered during insect attack for defense. High abundance of proteins such as ribulose-
1,5-bisphosphate carboxylase oxygenase (Rubisco) creates considerable difficulties
using shotgun plant proteomics for the whole proteome characterization. To under-
stand the defense mechanisms during plant–insect interactions, an enhanced
proteomic system, called Polyethyleneimine Assisted Rubisco Cleanup (PARC)
was used (Zhang et al. 2013). George et al. (2011) reported the differential protein
expression in maize (Zea mays L.) in response to infestation of a chewing
(Spodoptera littoralis) and a boring insect (Busseola fusca).
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(i) Gel-Based Electrophoresis:
In the first dimension, proteins are isolated either by an immobilized pH gradient
strip or by an isoelectric focusing tube, and then followed by SDS polyacryl-
amide gel electrophoresis in the second dimension (Komatsu et al. 2007, 2012,
2013a, b, 2015). Protein spots are extracted from the gel after staining, reduced
by dithiothreitol, alkylated with iodoacetamide, and digested with trypsin. A
form of Mass Spectrometry (MS), such as nano-liquid chromatography
(LC) tandem MS or nano-LC MS/MS, will then analyze the peptide mixtures.
While 2D gel-based methods offer a visual description of proteins including
intact protein profiles and they are not sufficient for the detection and identifica-
tion of proteins with low abundance or with extreme molecular weights, iso-
electric points, or hydrophobicity.

(ii) Gel-free proteomics:
Gel-free proteomics includes both label-free and labeling methods. In case of
label-free method, protein samples are purified by chloroform-methanol extrac-
tion and reduced with dithiothreitol, alkylated with iodoacetamide, and digested
with trypsin and lysyl endopeptidase. They are analyzed by nano-LC MS/MS
(Komatsu et al. 2013b). Differentially expressed proteins are identified from the
spectrum obtained by scanning with MASCOT Daemon client software against
a peptide database. For identification and annotation of homologous proteins,
positive matches are searched against protein databases available at NCBI
(www.ncbi.nlm.nih.gov) through BLASTP. It is now a commonly used tech-
nology in proteomics, since its protocol is simple and helpful in identifying
proteins in a large scale.

11.2.4 Metabolomics

Metabolomics is a promising approach that provides a biochemical snapshot of
phenotype of an organism. Metabolomics makes it possible to systematically clas-
sify and measure low-molecular weight molecules which are closely related to
essential toxicological and nutritional features. Information on genes, proteins, and
transcriptomes are not adequate to thoroughly classify a cell but the broad variety of

http://www.ncbi.nlm.nih.gov


primary and secondary metabolites found in a cell must also be examined. Numerous
studies have been done to explain the function of metabolites in plants under
conditions of biotic and abiotic stresses. Plant chemical compounds that are not
active in photosynthetic and core metabolic processes are linked to the evolution of
the chemical defense mechanism against stress in plants (Mithöfer and Boland 2012;
Gjindali et al. 2021). These compounds are classified as secondary metabolites that
do not play any significant role in the plant’s growth, development, or reproduction
rather these compounds serve as signaling molecules or direct defense chemicals and
include alkaloids, terpenoids, cyanogenic glycosides, glucosinolates, and phenolics
(Bennett and Wallsgrove 1994; Zebelo and Maffei 2012). To study the chemicals
involved in the interactions of living organisms, including the chemical defense
system during plant–insect contact, a special area called “chemical ecology” is
developed (Mithöfer and Boland 2012). Plants have to sacrifice some of the central
metabolism by allocating energy to this defense while activating the defense
response mechanism controlled by the secondary metabolites against insect attack.
Along with secondary metabolism, during an insect or pathogen attack, the primary
metabolism of a plant is often differentially influenced (Barah et al. 2013). It has
been in use for the past decades to study the selective control of primary or secondary
metabolites during plant–insect activity (Salem et al. 2020).
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Recent developments in high-throughput metabolite profiling methods and
advanced combinatorial protocols available in plant metabolomics are liquid
chromatography–mass spectrometry (LC-MS), gas chromatography–mass spec-
trometry (GC-MS), Fourier transform ion cyclotron resonance mass spectrometry
(FT-ICR-MS), ultra-performance liquid chromatography tandem mass spectrometry
(UPLC-MS), flow-injection electrospray ionization mass spectrometry (FI-ESI-MS)
and nuclear magnetic resonance (NMR). However, it is computationally difficult to
analyze the enormously diversified plant metabolites produced using these methods
(Allwood et al. 2008; Ernst et al. 2014). Hence in analyzing and processing highly
complex biological data, the role of bioinformatics is very crucial.

11.2.5 Phenomics

Phenomics is the study of high-throughput phenotypic variation analysis, which is a
complex web of genotype, phenotype, and environment interactions. Phenome
represents a set of phenotypes. Studies of the genome and phenome with individuals
or large populations are complementary to each other (Yasunori and Sinha 2014).
Plants with stable phenotypes are strong genomic tools and are also a target to
identify the alleles by high-throughput sequencing. Advances in sequencing tech-
nology have increased genotyping efficiencies, while phenotypic characterization
has progressed more slowly over the past decade, restricting the characterization of
quantitative characteristics, especially those associated with stress tolerance (White
et al. 2012). There are recent developments in phenotyping methods which allow the
identification of specific characteristics. Phenomics technology requires advanced
imaging systems, sensors, automations, and computational resources for the



phenotyping in plants. These make phenomics a high-throughput approach that is
capable of handling thousands of genotypes for the evaluation of hundreds of
phenotypic parameters simultaneously (White et al. 2012; Ubbens and Stavness
2017; Tardieu et al. 2017). There are various phenomics platforms available to
investigate physiological parameters in plants under different stress conditions,
e.g., one such tool is scan analyzer 3D. As phenomic data collection is an expensive
and time-consuming method, integrated technological developments would help to
minimize the associated costs and increase phenomic throughput.
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11.3 Bioinformatics Tools and Techniques for Integration
of Multi-OMICS Data

Due to availability of large-scale multi-omics data and their availability in public
domain, e.g., in the form of various databases and repositories, poses a major
challenge for bioinformatics community for integrating different tools and
techniques so that one can draw biologically useful inferences because the use
of only one approach at a time cannot lead to understand the defense mechanism
robustly. Even after having lots of development in this area, integration of heteroge-
neous omics data to draw meaningful biological inferences is a major challenge
(Keurentjes et al. 2011). However, to develop ultimate products like climate-smart
cultivars, efficient integration of different tools, techniques, and approaches appears
to be a promising strategy. For example, GWAS and QTL mapping both identify a
genomic region or marker that is associated with underlying trait of interest and
further in discovering the candidate genes. As the use of RNAseq data with gene
expression profiles gives an idea about the functions of unknown genes. So, relating
GWAS and QTL with their respective transcriptome will give the clue to identify
differentially expressed candidate genes.

There are large number of user-friendly computational platforms are developed
for the integration of multi-omics data (Table 11.1). Details of such few tools and
software are given in Table 11.1.

11.4 Concluding Remarks

The recent developments in modern high-throughput sequencing technologies have
flooded the web with the availability of biological data from various platforms.
Recent efforts for development in integrating omics data are not sufficient in
understanding such vast biological data. However, the integrative system-based
approach, i.e., integrating multi-omics data generated from heterogeneous platforms,
using various bioinformatics tools, techniques, and approaches, is the only solution
to this problem of understanding and finding meaningful biological conclusions.
Although efficient adaptation of bioinformatics tools and techniques depends on
their availability and user-friendly manner. So, there is a need to develop more user-
friendly and easy-to-use bioinformatics tools and pipelines for end users, such as
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Table 11.1 Computational platforms used for the integration of multi-omics data

Tools/Software Function Availability References

Weighted gene
Coexpression
network analysis
(WGCNA): R
Package

Inclusive of R functions for
performing various aspects
of weighted correlation
network analysis

https://horvath.genetics.
ucla.edu/html/
CoexpressionNetwork/
Rpackages/WGCNA/

Langfelder
and
Horvath
(2008)

IntegrOmics: R
Package

It implements integrative
analyses of two types of
omics variables measured on
the same samples or
conditions

http://math.univ-
toulouse.fr/biostat

Lê Cao
et al.
(2009)

iCluster: R Package Integrative clustering of
multi-type genomic data

https://www.mskcc.org/
departments/
epidemiology-
biostatistics/biostatistics/
icluster

Shen et al.
(2009)

VirtualPlant Integrates genomic data and
provides visualization and
analysis tools to further
explore and understand
genomic data

http://virtualplant.bio.
nyu.edu

Katari et al.
(2010)

Babelomics Platform for the integrative
analysis of genomic,
transcriptomic, and
proteomic data with
advanced functional
profiling

http://www.babelomics.
org

Medina
et al.
(2010)

PLAZA Integrates comparative
genomics data for both
computational and
experimental plant biologists

https://bioinformatics.
psb.ugent.be/plaza

Van Bel
et al.
(2012)

TraitCapture Platform for genomic and
environment modelling of
plant phenomic data

https://traitcapture.org Brown
et al.
(2014)

MixOmics: R
Package

Statistical multivariate
methods for data exploration,
integration, dimension
reduction, and visualization

http://mixomics.org/ Rohart
et al.
(2017)

Miodin: R Package Vertical and horizontal
integration of multi-omics
data

https://gitlab.com/
algoromics/miodin

Ulfenborg
(2019)

STATegra: R
Bioconductor
Package

Based on machine learning,
non-parametric data
combination, and a multi-
omics exploratory analysis

https://bioconductor.org/
packages/STATegRa/

Planell
et al.
(2021)

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
http://math.univ-toulouse.fr/biostat
http://math.univ-toulouse.fr/biostat
https://www.mskcc.org/departments/epidemiology-biostatistics/biostatistics/icluster
https://www.mskcc.org/departments/epidemiology-biostatistics/biostatistics/icluster
https://www.mskcc.org/departments/epidemiology-biostatistics/biostatistics/icluster
https://www.mskcc.org/departments/epidemiology-biostatistics/biostatistics/icluster
https://www.mskcc.org/departments/epidemiology-biostatistics/biostatistics/icluster
http://virtualplant.bio.nyu.edu
http://virtualplant.bio.nyu.edu
http://www.babelomics.org/
http://www.babelomics.org/
https://bioinformatics.psb.ugent.be/plaza
https://bioinformatics.psb.ugent.be/plaza
https://traitcapture.org
http://mixomics.org/
https://gitlab.com/algoromics/miodin
https://gitlab.com/algoromics/miodin
https://bioconductor.org/packages/STATegRa/
https://bioconductor.org/packages/STATegRa/


accessibility, easy to use tutorials and manuals, and interactive options to analyze
multi-platform data. This will help the researchers to understand the biological
system in a more realistic way, and will definitely help to translate this understanding
to develop better crop varieties with improved defense mechanisms.
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