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Abstract The Atomic Force Microscope (AFM) finds widespread applications as 
a tool for nano-scale characterization studies and atomic manipulation. Here, we 
propose the design of a miniaturized AFM scan head for 3-axis nano-positioning. 
The scan head uses parallelogram-based flexures for amplifying displacements in-
plane and a bridge-type displacement amplifier for out-of-plane positioning and 
achieves a displacement range of ±5 µm along X-, Y- and Z-axes. Subsequently, 
a lumped parameter model has been obtained for analysing the quasi-static and 
dynamic characteristics of the different subsystems of the positioner. A comparison 
of the analytical expressions for the displacement gain and eigen frequencies with 
Finite Element (FE) analysis revealed match to within 4%. The bandwidth along 
Z-axis is about 5 kHz, which is much larger than that of a conventional AFM scan 
head. Finally, a feedback control system has been designed to achieve position control 
using model inversion. 

Keywords Compact AFM · Displacement amplifier · Model inversion 

1 Introduction 

An Atomic Force Microscope (AFM) is a type of scanning probe microscope used 
for nano-scale characterization, topography imaging and manipulation of conducting 
and insulating samples, at sub-nanometer resolution. Conventional AFM systems 
possess certain limitations which affect the quality of their measurement results 
such as low speed, small scan area and the effect of actuation nonlinearities. Another 
important limitation arises from its bulky nature. By exploiting the benefits of scaling 
laws, it has long been known that a compact construction can make the AFM system 
immune to these limitations [1].

B. N. Arya (B) · G. R. Jayanth 
Indian Institute of Science, Bangalore 560012, India 
e-mail: aryanair@iisc.ac.in 

G. R. Jayanth 
e-mail: jayanth@iisc.ac.in 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
V. K. Gupta et al. (eds.), Recent Advances in Machines and Mechanisms, Lecture Notes 
in Mechanical Engineering, https://doi.org/10.1007/978-981-19-3716-3_12 

153

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-3716-3_12\&domain=pdf
http://orcid.org/0000-0002-0766-872X
http://orcid.org/0000-0001-7882-8877
mailto:aryanair@iisc.ac.in
mailto:jayanth@iisc.ac.in
https://doi.org/10.1007/978-981-19-3716-3_12


154 B. N. Arya and G. R. Jayanth

The first compact AFM designs featured a single-chip CMOS-based AFM with 
integrated sensing and actuating mechanisms such as piezoresistive sensing, thermal 
bimorph actuators [2] and electrothermal actuators [3], while others used a combi-
nation of electrostatic and electrothermal actuators, along with an integrated piezo-
electric layer for fine positioning along X-, Y- and Z-axes, respectively [4]. Such 
integrated single-chip systems require complex signal routing circuitry. The use of 
electrothermal actuators also poses certain limitations such as reduced scan rates 
due to limited bandwidth, heat dissipation [5] and parasitic resonances. Also, during 
scanning, AFM tips are found to get damaged frequently, necessitating their replace-
ment. This results in having to discard the entire probe, along with its integrated fine 
positioning and deflection sensing mechanisms, even when their function remains 
intact. This contributes to a significantly higher running cost of the instrument. Also, 
single-chip AFM models impose constraints on the stiffness and geometry of the 
probe that they can support, which greatly reduces their flexibility. 

Therefore, here we propose a compact design for the fine positioning mechanism, 
on which a conventional AFM probe can be placed, as opposed to integrating them 
on a consumable such as a cantilever. This enables retaining the high bandwidth and 
compactness without having to discard these systems when the tip gets blunted. The 
designs of the fine positioner are based on flexure-based displacement amplifiers 
actuated by miniature piezo actuators. The use of displacement amplifiers enables a 
compact construction with large motion ranges along X-, Y- and Z-axes, compared 
to in-plane positioners that employ compliant beams for just guiding motion and not 
for amplifying it [6]. Such a compact design also allows the easy integration of any 
deflection measurement technique such as piezoresistive sensors. The quasi-static 
and dynamic models of these structures have been developed. Finally, a feedback 
control system using model inversion technique has been designed for regulating the 
motion of the positioners by actuating the piezo actuators accordingly. 

The rest of the paper is divided as follows. Section 2 discusses the design of 
the positioning mechanisms. Sections 3 and 4 describe quasi-static modelling using 
Pseudo Rigid Body Models (PRBM) and eigen-frequency analysis using Rayleigh’s 
technique, respectively. Section 5 discusses feedback control using model inversion. 
Finally, conclusions are presented in Sect. 6. 

2 Design of Fine Positioner of the Miniaturized AFM 

Figure 1a shows the geometric model of the fine positioner for a miniaturized AFM 
system. It consists of flexure-based amplifiers which employs parallel kinematics 
for achieving nano-scale displacements along X-, Y- and Z-axes. In particular, it 
consists of three main components, namely the in-plane positioner, which is designed 
for motion along X- and Y-axes, the out-of-plane positioner which is designed for 
motion along Z-axis and a decoupling stage in between the two, for decoupling the 
motion between the in-plane and out-of-plane positioner.
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Fig. 1 Computer-Aided Design (CAD) model of a fine positioner, b in-plane positioner, c 
decoupling stage, d out-of-plane positioner 

The in-plane positioner consists of parallelogram flexures (Beam 1 and Beam 2 
in Fig. 1b) with circular flexure hinges at either ends of the beam, connected to an 
output beam (Beam 3 in Fig. 1b). They constitute a lever-based amplifier design and 
achieve amplified motion along X- and Y-axes. The motion between the two axes is 
decoupled by using thin flexure guided beams, which connect the output beam of 
the amplifier to a stage block. Shear chip piezo actuators are chosen for actuating the 
in-plane positioners. To decouple the angular motion of the parallelogram flexure 
from the motion of the shear piezo actuator, a circular flexure hinge-based piezo 
mount with a pair of guided beams is used to connect the two. The guided beams are 
employed to decouple transverse motion of the parallelogram flexure at its point of 
connection to the circular hinge from the motion of the piezo actuator (Fig. 1b). 

The decoupling stage serves the purpose of decoupling the in-plane motion of 
the in-plane positioner, from that of the out-of-plane positioner while coupling the 
out-of-plane motion of the positioner to that of the stage. The decoupling stage is 
composed of a central platform around which 4 L-shaped flexure links are positioned 
symmetrically (Fig. 1c). This structure is then connected to an outer frame. The 
central platform connects to the stage of the in-plane positioner while the outer frame 
connects to the out-of-plane positioner. The interconnecting flexures are designed to 
achieve high compliance along X- and Y- axes and high stiffness along the Z-axis. 

The out-of-plane positioning mechanism consists of a bridge-type displacement 
amplifier. The mechanism comprises 3 nearly rigid tilted beams connected by circular
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Table 1 Dimensions for the different elements of the fine positioner 

Parameter Dimension (mm) Parameter Dimension (mm) 

In-plane positioner l p 3.5 th 0.1 

wp1 1.25 rh 0.2 

wp2 0.5 l pg 0.05 

l p3 0.5 wpg 1.5 

wp3 2 l ps = wps 2.5 

thm 0.05 rhm 0.05 

Decoupling stage ld 1.3 wd 0.05 

Out-of-plane positioner lb 1.1 lbs=wbs 3.4 

wb=db 0.4 dbs 0.75 

flexure hinges (Fig. 1d). The two tilted beams are identical in length and are tilted by 
the same angle to the horizontal. When an input displacement is provided along X-
direction by means of shear chip piezo actuators, an amplified output is obtained along 
Z-axis. Here, the displacement gain is only dependent on the angle of inclination of 
the beam and hence provides greater flexibility in design for higher amplification 
ratios, without taking up additional space. 

The dimensions of the different elements in the positioners are shown in Table 1. 
The depth of all the elements was taken as 0.5 mm, unless specified otherwise. 

3 Quasi-Static Modelling and Analysis of the Fine 
Positioners 

Quasi-static modelling involves developing lumped parameter models for the 
constituent compliant elements of the positioner. In all cases where bending defor-
mations are involved, Euler–Bernoulli beam theory [7] has been employed to analyse 
the deformations. 

3.1 In-Plane Positioner 

The model of the parallelogram flexure consists of two beams (Beam 1 and Beam 2) 
that form the sides of the parallelogram, connected by circular flexure hinges to an 
output beam (Beam 3) (Fig. 1b). Beams 1 and 2 are both modelled as elastic beams, 
and Beam 3 is assumed to be nearly rigid. The length of the beams is denoted by 
l p, and their width is denoted by wp1 and wp2 for Beam 1 and Beam 2, respectively. 
The circular flexures are modelled as torsional hinges with torsional stiffness kθp .
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Fig. 2 Lumped parameter model of a in-plane positioner, b decoupling stage, c out-of-plane 
positioner 

The angular displacement of the i th  hinges (i = 1 . . .  4) is given by the variables θpi 
(Fig. 2a). 

The expression for output displacement of the parallelogram flexure was derived 
by considering a force Fp applied at a distance a from the point of rotation of the 
fixed hinges to Beam 1. If f p is the reaction force that Beam 3 applies on Beam 1, and 
yp1(x) and yp2(x) represent the deformation profiles of the Beams 1 and 2, then the 

boundary conditions are given by yp1
(
l p

) = yp2
(
l p

)
,
(
dyp1 
dx

)

x=0 
= θp1,

(
dyp1 
dx

)

x=l p 
= 

θp2,
(
dyp2 
dx

)

x=l p 
= θp3,

(
dyp2 
dx

)

x=0 
= θp4. Also, by moment balance it can be seen 

that
(
Fp − f p

) = kθ p 
a

(
θp1 + θp2

)
and f p = kθ p 

a

(
θp3 + θp4

)
. The value of kθp was 

estimated from the Paros–Weisbord equations [8] and is dependent on rh , the radius 
of curvature, and th , the thickness of the hinge (Fig. 1b). 

By applying these boundary conditions and using Euler–Bernoulli beam theory, 
yp1(x) and yp2(x) were obtained to be 

yp1(x) = 

⎧ 
⎨ 

⎩

(
f p−Fp 

6E Ip1

)
x3 +

(
Fpa− f pl p−kθ p θp2 

2E Ip1

)
x2 + θp1x for x ⩽ a

(
f p 

6E Ip1

)
x3 −

(
f pl p+kθ p θp2 

2E Ip1

)
x2 +

(
Fpa2 

2E Ip1 
+ θp1

)
x − Fpa3 

6E Ip1 
for x ⩾ a 

(1) 

yp2(x) =
( − f p 
6E Ip2

)
x3 −

(
f pl p − k

θp 
θp3 

2E Ip2

)

x2 + θp4x (2) 

where x is the distance from the fixed end of the beam, Ip1 and Ip2 are the area 
moments of inertia of Beams 1 and 2, respectively, and E is the Young’s modulus. 
By applying the boundary conditions, all the variables can be obtained in terms of the 

input force Fp. Normalizing the reaction force, f p, and input force, Fp as 
∼ 
f p= f p 

kθ p 
a 

and 
∼ 
Fp= Fp 

kθ p 
a, the angles and the normalized reaction force can be obtained by 

solving the following equation:
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To validate these results, the deformation profile yp1(x) of Beam 1 has been plotted 
for three different values of beam width, namely wp1 = 0.1, 0.15, 0.2 mm (Fig. 3) 
and the results have been compared with those of Finite Element (FE) analysis. 

The percentage error between analytical and FE results is only 6% for wp1 = 
0.2 mm  and is less than 30% for slender beams, for an input force of Fp = 1 mN. 
The greater mismatch between the two plots for slender beams suggests incorrect 
assumption in modelling the flexure hinges as torsional springs for the case of slender 
beams. However, since wider and stiffer parallelogram beams are preferred for ampli-
fied in-plane displacement, the effect of the mismatch is not significant from the point 
of view of design. 

3.2 Decoupling Stage 

The decoupling stage consists of 4 L-shaped flexure links connected to a central plat-
form. Each of these flexures is modelled as linear springs of stiffness kd (Fig. 2b), 
placed symmetrically around a rigid central platform. During in-plane motion, the 
longitudinal element of the flexures undergoes axial deformation, and the lateral 
element undergoes transverse deformation. Thus, the single flexure link can be 
modelled as a series combination of two linear springs with effective stiffness kdeff 
given by
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Table 2 Comparison of 
analytical and FEM results 
for effective stiffness of 
decoupling stage and 
out-of-plane fine positioner 

Parameter Theory FEM Error (%) 

kdeff (kN/m) 8.95 9.79 8.58 

kbeff (kN/m) 43.03 42.49 −1.27 

kd = kd axkd tr 
kd ax + kd ax) 

(4) 

where kd tr = 12E Id 
l3 d 

is the transverse stiffness and kd ax = E Ad 
ld 

is the axial stiffness 
of the flexure link. Here, Id , Ad and ld are the area moment of inertia, area of cross 
section and length of the flexure link, respectively. Since all the 4-flexure links have 
similar dimensions and undergo same amount of deformation, the total effective 
stiffness is given by kdeff = 4kd . Due to the symmetric nature of the geometry, 
estimating the displacement profile along either X- or  Y-axis is sufficient. Thus, 
considering an input force Fd applied along X-axis, the output displacement δxd, is  
given by 

δxd = 
Fd 

kdeff 
= 

Fd 

4kd 
(5) 

For an input force of Fd = 0.1 N, the comparison between Finite Element Method 
(FEM) and analytical results for the effective in-plane stiffness shows a match of 8.6% 
(Table 2). 

3.3 Out-of-Plane Positioner 

The bridge displacement amplifier consists of two tilted beams, attached to a cuboidal 
platform through circular flexure hinges. The tilted beams are modelled as elastic 
beams of length lb, and the circular flexures are modelled as torsional hinges of 
stiffness kθb . When an external input force Fb is applied along X-axis at the ends of 
the tilted beams, they undergo compression by an amount δlb and the circular hinges 
undergo rotation by an amount δθb, resulting in an output displacement, δzb, of the  
cuboidal platform along Z-axis (Fig. 2c). 

The effective stiffness of the bridge amplifier along Z-axis is then estimated by 
equating the total potential energy of the amplifier to the potential energy stored in 
an equivalent lumped model with an effective stiffness kbeff as, 

4

(
1 

2 
kθb δθ 2 b

)
+ 2

(
1 

2 
kbx δl

2 
b

)
= 

1 

2 
kbeff δz

2 
b (6) 

where kbx is the effective longitudinal stiffness of the elastic beam, comprising of the 
series combination of the longitudinal stiffness of the 2 circular hinges [7] and the
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tilted flexure beams. Simplifying Eq. (6) and using moment balance equations for a 
force component acting along the length of the tilted beam, the output displacement, 
δzb, can be written as: 

zb = Fbsin2θb

(
kbx l

2 
b − 2kθb 

4kθb kbx

)
(7) 

For an input force of Fb = 1 µN, the comparison between FEM and analytical 
results for the effective Z-axis stiffness shows a match of 1.3% (Table 2). 

By incorporating the above design considerations, the individual elements of the 
fine positioner, namely the in-plane positioner, decoupling stage and the out-of-plane 
positioner, were assembled along with the piezo actuators and their motion along 
X-, Y- and Z-axes was studied. The stiffness along the in-plane and out-of-plane 
directions for each of them was also estimated in FEM by applying a point load of 
1 µN. The in-plane positioner offers much lower stiffness along Z-axis (2.21 kN/m) 
than along X- and Y-axes (46.02 kN/m). The X–Y stiffness is itself much smaller 
than that of the driving piezo actuators, thereby ensuring that the displacement of the 
actuators is transmitted almost completely to the stage. 

The stiffness of the decoupling stage along X- and Y-axes (9.78 kN/m) is almost 
5 times less than that of the in-plane positioner. The decoupling stage has a Z-axis 
stiffness (94.72 kN/m) which is almost 43 times higher than that of the in-plane 
positioner, in accordance with the requirement to couple the out-of-plane motion of 
the Z-positioner placed below it to the sample stage. The Z-axis stiffness of the out-of-
plane positioner is 37.70 kN/m, which is much higher than the out-of-plane stiffness 
of the in-plane positioner but lower than that of the decoupling stage. Therefore, the 
Z-positioner would couple its displacement to the sample stage, with an attenuation 
of about 28%. 

To verify parasitic motion, the percentage of cross-axis displacements of the fine 
positioner has been estimated along all the 3 axes and shown in Fig. 4. For  X-axis 
positioning (Fig. 4a), for a maximum output displacement of 23 µm, the percentage
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displacement for Z-axis positioning, for an input displacement of 5 µm
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of Y- and Z-axis cross-axis displacement is 0.02 and 1.08%, respectively. Similar 
results have also been obtained for Y-axis positioning owing to the symmetry of the 
in-plane positioner. Similarly, for Z-axis motion, the percentage of X- and Y-axis 
cross-coupling is 4 and 17%, respectively (Fig. 4b).

4 Eigen-Frequency Analysis of the Fine Positioners 

The fundamental eigen frequencies of the different components of the fine positioner 
were obtained by using the Rayleigh Quotient method [7]. In this method, the first step 
is to assume an approximate mode shape function, to replicate the first eigen mode, 
followed by determining the Rayleigh Quotient by equating the maximum kinetic 
and potential energies of the system. Here, the quasi-static deformation profiles 
obtained by utilizing the expressions derived in the previous section are employed 
as the approximate mode shapes; the eigen frequencies of the different positioners 
are estimated. 

4.1 In-Plane Positioner 

Due to the high lateral stiffness of the parallelogram flexures (for the dimensions 
mentioned in Table 1), their contribution to the elastic potential energy is negli-
gible. Hence, only the elastic potential energy of the torsional springs is considered. 
Therefore, the potential energy, Upmax, of the in-plane positioner is given by 

Upmax = 0.5kθ p 

4⎲

i=1 

θ 2 pi (8) 

The kinetic energy associated with motion of the hinges is negligible in compar-
ison to the beams, and hence, their effects can be ignored. The total kinematic energy 
would be due to displacements of Beam 1 and Beam 2 which are assumed to be given 
approximately by Eqs. (1) and (2). 

Therefore, the overall maximum kinetic energy Tpmax is given by 

Tpmax = 

⎡ 

⎢ 
⎣ 

ρ 
2 

⎧ 
⎪⎨ 

⎪⎩ 

l p∫

0

(
Ap1y

2 
p1(x) + Ap2 y

2 
p2(x)

)
dx + 

3rh+l p+0.5l p3∫

0 

Ap3 y
2 
p3(x)dx 

⎫ 
⎪⎬ 

⎪⎭ 

⎤ 

⎥ 
⎦ω2 

p 

(9) 

where ωp is the eigen frequency of the in-plane positioner, ρ is the density of the 
material used (aluminium), l p3 is the width of Beam 3, Ap1, Ap2 and Ap3 are the
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Table 3 Comparison of 
analytical and FEM results for 
eigen frequencies of different 
elements of the fine positioner 

Theory (kHz) FEM (kHz) Error (%) 

In-plane 
positioner 

2.63 2.62 −0.38 

Decoupling 
stage 

5.18 5.28 1.89 

Out-of-plane 
positioner 

6.40 6.71 4.62 

area of cross sections, and yp1, yp2 and yp3 are the maximum modal displacement 
vectors of Beams 1, 2 and 3, respectively. By writing Tpmax = (t pmaxω

2 
p), we can 

obtain the approximate eigen frequency from Eqs. (8) and (9) as  ω2 
p = Up max 

tp max 
. 

The comparison of results for FEM and analytical expression shows an error of 
approximately 0.4% (Table 3). 

4.2 Decoupling Stage 

The dynamic model of the decoupling stage is obtained by assuming the potential 
energy of the flexure links alone, owing to their slender geometry as compared to the 
central platform (Table 1). However, for estimating the kinetic energy, the central 
stage alone is assumed to contribute, since its mass is significantly higher than that 
of the flexures. Similar to the method described in Sect. 4.1, Rayleigh technique is 
used to compute the maximum potential energy of the decoupling stage, Ud max, as  

Ud max = 0.5kdeff δx2 d (10) 

and kinetic energy, Tdmax, 

Td max 
= 0.5md δx

2 
d ω

2 
d (11) 

where md and ωd are the mass and eigen frequency of the decoupling stage, respec-
tively . Here, δxd and kdeff are taken from Eq. (5). The comparison of results for FEM 
and analytical expression shows an error of approximately 2% (Table 3). 

4.3 Out-of-Plane Positioner 

Here, the potential energy of the model is the combination of the potential energy 
stored in the 4 circular flexure hinges and the 2 rigid beams. The total kinetic energy 
is considered to be primarily due to the motion of the central block and the two
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beams. Thus, the maximum potential energy Ubmax is 

Ubmax = 4
(
1 

2 
kθb δθ 2 b

)
+ 2

(
1 

2 
kbx δl

2 
b

)
(12) 

and the maximum kinetic energy Tbmax is 

Tbmax = 0.5(2mb + mbs)δz
2 
bω

2 
b, (13) 

where mb and mbs are the masses of the tilted beams and the central stage platform, 
respectively, and ωb is the eigen frequency of the bridge amplifier. Here, δzb and kbx 
are taken from Eq. (7). The comparison of results for FEM and analytical expression 
shows an error of approximately 5% (Table 3). 

5 Feedback Control 

The 3-axis positioning mechanism needs to be operated in a feedback control loop to 
compensate for the nonlinearities introduced by the piezoelectric actuators, such as 
hysteresis and creep. For this purpose, firstly the transfer function of the positioner 
is obtained from the frequency responses, relating their displacements to the applied 
voltage inputs along the respective directions, namely X-, Y- and Z-axes. Here, the 
frequency response plots for motion along Z-axis alone are considered, and the 
exact same steps can be repeated along X- and Y-axes. The Bode displacement plots 
are obtained in COMSOL, by providing a frequency sweep of amplitude 2500 V 
and frequency range of 0–50 kHz, with a step size of 0.5 kHz, to the shear piezo 
actuators of the bridge amplifier. The resultant transfer function, P(s), obtained 
by using MATLAB function for model identification, namely Identified Frequency 
Response Data (idfrd), is given by 

P(s) = M1s5 + M2s4 + M3s3 + M4s2 + M5s + M6 

s6 + N1s5 + N2s4 + N3s3 + N4s2 + N5s + N6 
(14) 

where M1 =−2710, M2 = 1.454×109 , M3 =−5.097×1012 , M4 = 4.315×1018 , M5 

= −1.24 × 1021 , M6 = 2.718 × 1027 and N1 = 2619, N2 = 4.267 × 109 , N3 = 
7.221 × 1012 , N4 = 5.699 × 1018 , N5 = 4.71 × 1021 and N6 = 2.401 × 1027 . 

The Bode plot of the derived transfer function is superimposed with the frequency 
response obtained from FEM analysis and is seen to match to a good degree, as shown 
in Fig. 5a. In view of the poorly damped open-loop dynamics of the positioner, model 
inversion technique is used to cancel the under-damped poles of the plant transfer 
function and replace them with critically damped or over damped poles. This method 
helps in achieving a higher closed loop bandwidth, than what is possible by adopting 
a conventional controller design.
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Fig. 5 a Model fitting for Z-axis positioning, b frequency response plot for Z-axis open-loop gain, 
c step response plot for Z-axis positioning with model inversion, d step response plot for Z-axis 
positioning without model inversion 

In this technique, the under-damped minimum-phase poles of the plant, of the form 
pi α ± j piβ (i = 1, 2, 3), are cancelled by the controller zeros and are replaced by 
critically damped poles with corner frequencies at

/
p2 iα + p2 iβ , i = 1, 2, 3. Likewise, 

the minimum-phase zeros are also cancelled. In other words, for the plant transfer 
function, 

P(s) =
∏m 

i=1

(
s 
zi 

+ 1
)

∏n 
j=1

(
s 
p j 

+ 1
) (15) 

the transfer function of the model inversion block, M(s) can be written as
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M(s) =
∏n 

j=1

(
s 
p j 

+ 1
)

∏m 
i=1

(
s 
zi 

+ 1
)(

s √
p2 i α+p2 iβ 

+ 1
) (16) 

where zi and p j denote the zeros and poles of the plant and m and n are the total 
number of zeros and poles of the plant, respectively. Subsequently, a PID controller 
is designed to achieve a phase margin of 40◦, with proportional (P), integral (I) and 
derivative (D) gains being P = 1.89, I = 12,600, D = 8 × 10−5 , respectively. 

The Bode plot of the overall open-loop system, consisting of the cascade of the 
plant P(s), the model inversion block M(s) and the compensator or the controller, 
shows a closed loop bandwidth of 4 × 104 rad/s (Fig. 5b). The closed loop step 
response of the model shows a settling time of 0.42 ms and rise time of 32.82 µs 
(Fig. 5c). In comparison, the settling time for the system without model inversion is 
about 100 times larger (Fig. 5d). In addition, the response also shows unmodelled 
oscillations. Therefore, the performance of the system is drastically improved by 
incorporating a model inversion function into the feedback loop for closed loop 
position control. 

6 Conclusion 

This paper presented the design and analysis of a miniaturized AFM scan head, that 
can achieve fine positioning in three dimensions. For fine positioning along the in-
plane directions, a parallelogram flexure-based displacement amplifier with circular 
flexure hinges was used. A bridge-type displacement amplifier was designed for 
out-of-plane fine positioning. A decoupling stage with flexure links was then used to 
decouple the motion of the in-plane positioner from that of the out-of-plane positioner 
along the in-plane axes and to couple the motion of the latter to the former along the 
Z-axis. The volume of the proposed compact design of the fine positioner was 1.2 × 
1.2 × 0.3 cm3. 

Subsequently, the proposed designs were modelled to study their quasi-static and 
dynamic behaviour and the theoretically estimated values were found to match with 
the FEM simulation results with an average error of approximately 4%. Finally, the 
analytical models of the fine positioners were used to design a feedback control 
loop using PID control cascaded with model inversion, to enable closed loop posi-
tion control, with significant improvement over conventional control without model 
inversion.
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