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Abstract In this expository article we discuss the finite time singularity prob-
lem for the three dimensional incompressible Euler equations. The local in time
well-posedness for the 3D Euler equations for initial data in the Sobolev space
H k(R3), k > 5/2 is well-known. The question of the spontaneous apparition of
singularity(blow-up), however, is a wide-open problem in the mathematical fluid
mechanics. Here we overview some of the previous results on the problem, and
present their recent updates. More specifically, after a brief review of Kato’s classi-
cal local well-posedness result, we present the celebrated Beale, Kato and Majda’s
blow-up criterion, and its recent developments. After that, we review the results
related to the Type I blow-up. Finally, we present recent studies on the singular-
ity problem for the 2D Boussinesq equations, which is regarded as a good model
problem for the axisymmetric 3D Euler equations.

1 Introduction

We consider a fluid flow with mass density ρ = ρ(x, t), (x, t) ∈ R
3 × [0,+∞),

which occupies the whole domain of R
3. The two basic functions describing the

motion of the flow are the fluid velocity u = (u1, u2, u3) = u(x, t) and the pressure
p = p(x, t) The mass conservation principle applied to any fixed domain � ⊂ R

3

during the fluid flows is expressed by the following equation:

d

dt

∫
�

ρ(x, t)dx = −
∫

∂�

ρu · νd S, (1)

where ν is the outward unit normal vector on ∂�. Indeed, the left-hand side of (1)
is the mass increasing rate in time for the fluid occupying �, while the right-hand
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side of (1) represents the total mass per unit time, escaping � through the boundary
∂�, and the equality of (1) is nothing but the mass conservation for fixed domain �.
Applying the Gauss theorem to the right-hand side of (1), we find easily

∫
�

{ρt + ∇ · (ρu)} dx = 0,

which holds for any domain � ⊂ R
3. Therefore, we have the differential form of the

mass conservation law in fluid as follows:

ρt + ∇ · (ρu) = 0. (2)

Next, we apply the momentum balance principle, which is Newton’s second law
of motion, to a fluid in a ball B(x, r) = {y ∈ R

3 | |x − y| < r}. Given t � 0, let
x(t) ∈ be the position of the fluid particle. Then, the velocity of the fluid at t satisfies
dx(t)

dt = u(x(t), t), while the acceleration is given by

d2x(t)

dt2
= d

dt
u(x(t), t) = ∂u

∂t
+ dx(t)

dt
· ∇u(x(t), t)

= ∂u

∂t
+ u · ∇u.

Therefore, the momentum of the fluid per unit volume at (x, t) is given by

ρ(x, t)
d2x(t)

dt2
= ρ

∂u

∂t
+ ρu · ∇u. (3)

The force due to the pressure on the surface ∂B(x, r) is given by

−
∫

∂B(x,r)

p(y, t)νd S, (4)

where we consider only the force resulting from the normal directional contribution
by the pressure. Actually in this consideration we use implicitly the assumption that
the fluid is ideal. In the real physical situation we need to consider also the tangential
part of the contribution of the pressure to the body force.Applying theGauss theorem,
the surface integral of (4) is transformed into

−
∫

B(x,r)

∇ p(y, t)dy.

Hence, the force on the fluid particle at (x, t) per unit volume is given by

− lim
r→0

1

|B(x, r)|
∫

B(x,r)

∇ p(y, t)dy = −∇ p(x, t), (5)
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where we denote by |A| the volume of A ⊂ R
3. The momentum balance principle

ensures the quality of (3) with (5), and we obtain

ρ
∂u

∂t
+ ρu · ∇u = −∇ p. (6)

The system (2) and (6) was derived first in 1755 by E. Euler in [38], and is called the
Euler equations. For simplicitywe further assume the homogeneity of the fluid,which
means that ρ(x, t) ≡ constant = 1. In this case (2) reduces to the incompressibility
condition ∇ · u = 0, and the Euler equations become

(E)

{
ut + u · ∇u = −∇ p,

∇ · u = 0.

This is the homogeneous incompressible Euler equations for the ideal fluid. There
are many nice textbooks and survey papers on the mathematical theories on the Euler
equations [1, 3, 4, 26, 30–32, 46, 49]. In this article after brief studies of some of
the basic properties of the equations, we review some of the classical results, and
then survey recent progress on the singularity problems of the Euler equations.

Let us start by introducing the quantity ω = ∇ × u called the vorticity, which has
an important role in the incompressible fluidmechanics. Using the general vector cal-
culus identity, ∇(u · v) = u · ∇v + u · ∇v + u × (∇ × v) + v × (∇ × u), one can
deduce

u · ∇u = −u × (∇ × u) + 1

2
∇|u|2.

Inserting this into the first equation of (E), we find a different form of the Euler
equations

ut − u × ω = −∇Q, Q = 1

2
|u|2 + p. (7)

The quantity Q above is called the head pressure of the fluid. According to the
Bernoulli theorem (see e.g. [29]) Q is constant along the stream lines. Taking curl of
(7), and using the identity ∇ × (u × ω) = −u · ∇ω − ω · ∇u, which holds for ∇ ·
u = 0,we derive another formof theEuler equations, called the vorticity formulation.

{
ωt + u · ∇ω = ω · ∇u,

∇ · u = 0, ∇ × u = ω.
(8)

The second line of (8) can be viewed as a linear elliptic system for given ω. Formally,
it can be solved as follows. From∇ · u = 0, applying the Poincaré lemma, there exists
a vector field ψ = (ψ1,ψ2,ψ3) such that

u = ∇ × ψ, ∇ · ψ = 0.
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The second equation is imposed to remove extra degree of freedom, which is similar
to the gauge fixing in physics. Hence, we obtain the Poisson equation for ψ

ω = ∇ × (∇ × ψ) = ∇(∇ · ψ) − �ψ = −�ψ. (9)

Assuming sufficiently fast decay of ω at spatial infinity, we can solve (9), using the
Newtonian potential,

ψ = −�−1ψ = 1

4π

∫
R3

ω

|x − y|dy,

from which we obtain the Biot-Savart formula

u(x, t) = −∇ × �−1ω = 1

4π

∫
R3

(x − y) × ω(y, t)

|x − y|3 dy,

which represents the velocity in terms of the vorticity. It is also very important to
see the relation between ∇u and ω. ∇u is a matrix valued singular integral operator,
which can be computed as follows (see [49] for more details). For h ∈ R

3 we have

∇u h = −∇(∇ × �−1ω)h

= −PV
∫
R3

{
ω(y) × h

|x − y|3 + 3

4π

[(x − y) × ω(y)] ⊗ (x − y)

|x − y|3 h

}
dy

+ 1

3
ω(x) × h,

:= PV
∫
R3

K (x − y)ω(y)dyh + 1

3
ω(x) × h, (10)

where PV means the Cauchy principal value integral defined by

PV
∫
Rn

K (x − y) f (y)dy = lim
ε→0

∫
|x−y|>ε

K (x − y) f (y)dy.

The kernel K (·) in (10) is typical of the integral kernels defining singular integral
operator of the Calderon-Zygmund type, which have important roles in the harmonic
analysis (see e.g. [53]). We can therefore obtain the following closed form of the
vorticity formulation of the Euler equations

⎧⎨
⎩

ωt + u · ∇ω = ω · ∇u,

u(x, t) = 1

4π

∫
R3

(x − y) × ω(y, t)

|x − y|3 dy.
(11)

Now we discuss the Lagrangian formulation of the Euler equations. Given α ∈ R
3

and a smooth vector field u = u(x, t), let X (α, t) be the solution of the following
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ordinary differential equations:

⎧⎨
⎩

∂X (α, t)

∂t
= u(X (α, t), t), t > 0

X (α, 0) = α

(12)

The parametrized mapping α 	→ X (α, t) is called the particle trajectory mapping
generated by u = u(x, t). When u is the velocity field, which is a solution of (E), we
say the associated X (α, t) the Lagrangian coordinate, and describing the dynamics
of the fluid flows in terms of X (α, t) is called the Lagrangian description. Roughly
speaking, it is a coordinate transform from a stationary observer to amoving observer
following the flows. In terms of the Lagrangian coordinate one finds immediately
that the evolution equation of (E) is written as

∂2X (α, t)

∂t2
= −∇ p(X (α, t), t). (13)

Another important equation associated with the Lagrangian coordinates is the fol-
lowing Cauchy’s formula,

ω(X (α, t), t) = ω0(α) · ∇ X (α, t), (14)

where ω0(α) = ω(α, 0) is the initial vorticity. One can regard (14) as a translation
of the first equation of (11) into the Lagrangian coordinates. For the details of the
proof of (14) we refer [49].

Let us consider a closed curve C0 = {γ(s) ∈ R
3 : s ∈ [0, 1], γ(0) = γ(1)}. For a

solution (u, p) of (E) and the particle trajectory mapping generated by u we define

Ct = X (C0, t) = {X (γ(s), t) : s ∈ [0, 1], γ(0) = γ(1)}.

Then, from (12) and (13) we find

d

dt

∮
Ct

u · d� = d

dt

∫ 1

0

∂X (γ(s), t)

∂t
· ∂X (γ(s), t)

∂s
ds

=
∫ 1

0

∂2X (γ(s), t), t)

∂t2
· ∂X (γ(s), t)

∂s
ds +

∫ 1

0

∂X (γ(s), t), t)

∂t
· ∂2X (γ(s), t)

∂t∂s
ds

= −
∫ 1

0
∇ p(X (γ(s), t), t) · ∂X (γ(s), t)

∂s
ds + 1

2

∫ 1

0

∂

∂s

∣∣∣∣∂X (γ(s), t)

∂t

∣∣∣∣
2

ds

= −
∫ 1

0

∂

∂s

(
p(X (γ(s), t), t) − 1

2

∣∣∣∣∂X (γ(s), t)

∂t

∣∣∣∣
2
)

ds = 0.

Therefore, we obtain the following Kelvin circulation theorem:
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∮
Ct

u · d� =
∮
C0

u · d� ∀t > 0. (15)

Let C0 be a vortex line of the initial vorticity ω0 = ω(·, 0), defined by

C0 =
{
γ(s) ∈ R

3 : d

ds
γ(s) = λ(s)ω0(γ(s)), s ∈ [0, 1],

}

for a real valued function function λ(s) > 0 for s ∈ [0, 1]. By reparametrization
we may assume without the loss of generality that λ(s) ≡ 1. Then, we first claim
Ct = X (C0, t) = {X (γ(s), t) : s ∈ [0, 1]} is a vortex line at t > 0. Indeed, from (14)
we have

∂X (γ(s), t)

∂s
= dγ(s)

ds
· ∇ X (γ(s), t)

= ω0(γ(s)) · ∇ X (γ(s), t)

= ω(X (γ(s), t), t), (16)

and the claim is proved. Using (11), (13) and (16), we deduce

d

dt

∫ 1

0
u(X (γ(s), t), t) · ω(X (γ(s), t), t)ds

= −
∫ 1

0
∇ p(X (γ(s), t), t) · ω(X (γ(s), t), t)ds

+
∫ 1

0
u(X (γ(s), t), t) · (ω(X (γ(s), t), t) · ∇) u(X (γ(s), t), t)ds

= −
∫ 1

0

∂

∂s

(
p(X (γ(s), t), t) − 1

2
|u(X (γ(s), t), t)|2

)
ds = 0. (17)

Therefore, we obtain the following helicity conservation along each closed vortex
line

∫ 1

0
u(X (γ(s), t), t) · ω(X (γ(s), t), t)ds =

∫ 1

0
u0(γ(s)) · ω0(γ(s))ds (18)

for all t > 0. This can be viewed as a localized version of the following helicity
conservation law,

H =
∫
R3

u(x, t) · ω(x, t)dx =
∫
R3

u0(x) · ω0(x)dx ∀t > 0. (19)

The proof of (19) follows easily by taking d H
dt , and using (E), (11), and integrating

by parts. The most important conservation law in the study of the Euler equation is
the following energy conservation
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E = 1

2

∫
R3

|u(x, t)|2dx = 1

2

∫
R3

|u0|2dx ∀t > 0. (20)

This can be shown bymultiplying (7) by u, and integrating it overR
3, and integrating

by parts. The reasonwhy the energy is important in themathematical fluidmechanics
is that it is positive definite, while all the other conserved quantities in the 3D Euler
equations have no definite signs.

2 The Local in Time Well-Posedness

In this section we briefly review the studies on the Cauchy problem of (E). For this
we recall the notions of the Sobolev spaces. Let � ⊂ R

n be a measurable subset of
R

n , and f be a measurable function on �. We denote |A| = Lebesgue measure of
A ⊂ R

n . Let us define the Lq -norm by

‖ f ‖Lq =

⎧⎪⎨
⎪⎩

(∫
�

| f |qdx

) 1
q

, if 1 � q < +∞,

inf{m : |{x ∈ R
n | | f (x)| > m}| = 0}, if q = +∞.

Then, the Lebesgue space for q ∈ [1,∞] is

Lq(�) = { f measureable on � : ‖ f ‖Lq < +∞} ,

Let α = (α1, · · · ,αn) ∈ (N ∪ {0})n be a multi-index with |α| = α1 + · · · + αn .
Then, the Sobolev space W k,q(�) on � ⊂ R

n for k ∈ N, 1 � q < +∞ is defined as

W k,q(�) =

⎧⎪⎨
⎪⎩ f ∈ Lq(�) :

⎛
⎝∑

|α|�k

‖Dα f ‖q
Lq (�)

⎞
⎠

1
q

:= ‖ f ‖W k,q (�) < +∞

⎫⎪⎬
⎪⎭ ,

where the derivative Dα is in the sense of distribution. In the case q = 2 we also
denote W k,2(�) = H k(�). In the case� = R

n we have an equivalent Sobolev norm
in H k(Rn) defined by the Fourier transform. Let f̂ be the Fourier transform of f
defined by

f̂ (ξ) = 1

(2π)
n
2

∫
Rn

f (x)e−i x ·ξdx, (21)

where i = √−1. The function f is recovered from f̂ by the inverse Fourier transform
defined by

f (x) = 1

(2π)
n
2

∫
Rn

f̂ (ξ)eix ·ξdx . (22)
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Then, f ∈ H k(Rn) if and only if

(∫
Rn

(1 + |ξ|2)k | f̂ (ξ)|2dξ

) 1
2

:= ‖ f ‖H k < +∞.

Using this equivalent norm, one can prove the following Sobolev inequality

‖ f ‖L∞ � Ck‖ f ‖H k ∀k >
n

2
, (23)

by a simple argument as follows.

Proof of (23): From (22) we find

| f (x)| �
∫
Rn

| f̂ (ξ)|dξ =
∫
Rn

(1 + |ξ|2) k
2 | f̂ (ξ)|(1 + |ξ|2)− k

2 |dξ

�
(∫

Rn

(1 + |ξ|2)k | f̂ (ξ)|2dξ

) 1
2
(∫

Rn

1

(1 + |ξ|2)k
dξ

) 1
2

� Ck‖ f ‖H k , (24)

where we use the fact that for k > n
2 the following holds

∫
Rn

1

(1 + |ξ|2)k
dξ � C

∫ ∞

0

rn−1

(1 + r2)k
dr < +∞.

Taking the supremum of (24) over x ∈ R
n , we obtain (23). �

A fundamental local in time well-posedness result for the Cauchy problem of (E) is
the following theorem due to Kato [40].

Theorem 2.1 Let u0 ∈ H k(R3), k > 5
2 . Then, there exists T = T (‖u0‖H k ) such

that a unique solution u ∈ C([0, T ); H k(R3)) ∩ AC(0, T ; H k−1(R3)) exists with
u(·, 0+) = u0, where AC(a, b; X) denotes the class of X-valued functions u such
that t 	→ u(t) is absolutely continuous.

(Sketch of the proof) Let α = (α1,α2,α3) a multi-index. We operate Dα on (E), and
take L2(R3) inner product it with Dαu. Then, summing over |α| � k we obtain

1

2

d

dt
‖u‖2H k = −

∑
|α|�k

∫
R3

{Dα(u · ∇u) − (u · ∇)Dαu} · Dαudx

−
∑
|α|�k

∫
R3

(u · ∇)Dαu · Dαudx −
∑
|α|�k

∫
R3

Dαu · ∇Dα pdx

:= I1 + I2 + I3. (25)
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For I3 we apply the integration by parts to have

I3 = −
∑
|α|�k

∫
R3

Dα(∇ · u)Dα pdx = 0. (26)

Similarly, we also have for I2,

I2 = −1

2

∑
|α|�k

∫
R3

(u · ∇)|Dαu|2dx = 1

2

∑
|α|�k

∫
R3

(∇ · u)|Dαu|2dx = 0. (27)

In order to estimate I1 we recall the following commutator estimate due toKlainerman
and Majda [43]

∑
|α|�k

‖Dα( f g) − f Dαg‖L2

� Ck
{‖∇ f ‖L∞‖Dk−1g‖L2 + ‖Dk f ‖L2‖g‖L∞

}
. (28)

Applying (28) to I1 with f = Dαu, g = ∇u, we obtain, using the Cauchy-Schwartz
inequality

I1 �
∑
|α|�k

‖Dα(u · ∇u) − (u · ∇)Dαu‖L2‖Dαu‖L2

� C‖∇u‖L∞‖u‖2H k . (29)

Combining (26), (27) and (29), using (23) for k > 5
2 , we find

d

dt
‖u‖H k � C‖∇u‖L∞‖u‖H k � C‖u‖2H k . (30)

From this differential inequality we find that

‖u(t)‖H k � ‖u0‖H k

1 − C0‖u0‖H k t
, (31)

and hence

sup
0<t<T

‖u(t)‖H k � 2‖u0‖H k where T = 1

2C0‖u0‖H k
. (32)

From (E) we have

∥∥∥∥∂u

∂t

∥∥∥∥
H k−1

� ‖u · ∇u‖H k−1 + ‖∇ p‖H k−1 := J1 + J2. (33)
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In order to estimate J1 we recall the following product estimate of the Sobolev spaces
H m(Rn) (see e.g. [49]).

‖ f g‖H m � Cm(‖ f ‖L∞‖g‖H m + ‖g‖L∞‖ f ‖H m ) ∀m >
n

2
. (34)

Applying this to J1, we find

J1 � ‖u‖L∞‖u‖H k + ‖∇u‖L∞‖u‖H k−1 � C‖u‖2H k � C‖u0‖2H k , (35)

where we use the Sobolev inequality (23) for k > 5
2 and (32). In order to estimate

J2 we recall the method of estimating the pressure. Taking divergence of the first
equation of (E), and using the second equation of the divergence free condition, we
find

�p = −
3∑

i, j=1

∂i∂ j (ui u j ),

and

p = −
3∑

i, j=1

�−1∂i∂ j (ui u j ) =
3∑

i, j=1

Ri R j (ui u j ), (36)

where R j , j = 1, 2, 3, is the Riesz transform on R
3. The definition of R j is easily

understood via its Fourier transform,

R̂ j ( f )(ξ) = i
ξ j

|ξ| f̂ (ξ),

where i = √−1. The following Calderon-Zygmund type estimate [53] holds for the
Riesz transform

‖R j f ‖H m � C‖ f ‖H m ∀m � 0. (37)

Applying (37) to J2, we estimate

J2 � ‖p‖H k �
3∑

i, j=1

‖Ri R j (ui u j )‖H k � C‖u ⊗ u‖H k

� C‖u‖L∞‖u‖H k � C‖u‖2H k � C‖u0‖2H k , (38)

where we use (34) and (32). Combining (35) and (38) with (33), we obtain

∥∥∥∥∂u

∂t

∥∥∥∥
H k−1

� C‖u0‖2H k ∀t ∈ [0, T ],

from which we have
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‖u(t2) − u(t1)‖H k−1 �
∫ t2

t1

∥∥∥∥∂u(s)

∂s

∥∥∥∥
H k−1

ds

� C‖u0‖2H k (t2 − t1) ∀0 < t1 < t2 < T .

Namely,
‖u‖Lip(0,T ;H k−1) � C‖u0‖2H k . (39)

Once the a priori estimates (32) and (39) are obtained, the existence proof of a local in
time solution is rather straightforward. We construct a sequence of the approximate
solutions {um}m∈N by mollification of (E) or by the Galerkin approximation. The
sequence will be shown to satisfy the uniform estimate

sup
m∈N

‖um‖L∞(0,T ;H k (R3))∩Lip(0,T ;H k−1(R3)) � C‖u0‖2H k .

Applying the Lions-Aubin type compactness lemma (see e.g. [49]), there exist a
subsequence um j and the limit u ∈ L∞(0, T ; H k(R3)) ∩ Lip(0, T ; H k−1(R3)) such
that um j → u in L∞(0, T ; H k−ε

loc (R3)) for all ε > 0. Using this strong convergence,
we find that the limit u ∈ L∞(0, T ; H k(R3)) ∩ Lip(0, T ; H k−1(R3)) satisfies (E).
We now show the uniqueness. Let u1, u2 ∈ L∞(0, T ; H k(R3)) satisfy (E) with the
pressure p1 and p2 and the initial datau1,0, u2,0 ∈ H k(R3), respectively. Then, setting
u = u1 − u2, p = p1 − p2, and subtracting the equation for u2 from the one for u1,
we find that u satisfies

ut + u1 · ∇u + u · ∇u2 = −∇ p. (40)

Taking L2 inner product of (40) by u, and integrating by parts we obtain,

1

2

d

dt
‖u‖2L2 = −

∫
R3

(u · ∇)u2 · udx

� ‖∇u2‖L∞‖u‖2L2 ,

from which we deduce

‖u(t)‖L2 � ‖u0‖L2 exp

(
1

2

∫ t

0
‖∇u2(s)‖L∞ds

)

� ‖u0‖L2 exp

(
C
∫ t

0
‖u2(s)‖H k ds

)

� ‖u0‖L2 exp
(
CT ‖u2,0‖H k ds

)
, (41)

which shows that u1 ≡ u2 on R
3 × [0, T ] if u1,0 = u2,0. �

After the above results Kato and Ponce proved the local well-posedness in more
general Sobolev spaces W s,p(Rn), s > n

p + 1 [41]. This local well-posedness can be
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extended to exotic spaces such as the Besov space [12], and Triebel-Lizorkin spaces
[13, 28]. Recently, the spatial decay conditions of such function class have been
relaxed to allow linear growth of the velocities [20].

3 The BKM Type Blow-Up Criterion

Let u ∈ C([0, T ); H k(R3)), k > 5
2 , be a smooth solution to (E). We say that solution

blows up at t = T if
lim sup

t→T
‖u(t)‖H k = +∞. (42)

The question of finite time blow-up for (E) for a smooth initial data u0 ∈ H k(R3)

with k > 5
2 is an outstanding open problem in the mathematical fluid mechanics.

There are many survey papers [1, 4, 32], and numerical results [42, 47, 48] devoted
to this problem. We also mention that in the case where the domain of the fluid has a
singular boundary finite time blow-up is shown in [36]. Also in [27] authors proved
apparition of singularity of (E) on the boundary of a cylinder. Our main concern here
is the possibility of interior singularity in the whole domain for smooth initial data
belonging to the above Sobolev space. In this direction one of the most celebrated
results is the following theorem by Beale, Kato and Majda [2].

Theorem 3.1 (BKM criterion) Let u ∈ C([0, T ); H k(R3)), k > 5
2 , be a local in

time smooth solution to (E). Then, the solution blows at t = T if and only if∫ T
0 ‖ω(t)‖L∞dt = +∞.

This theorem was later refined by Kozono and Taniuchi [45], replacing the L∞
norm of ω by the BMO norm. See also a geometric type blow-up criterion [33, 35],
controlling the blow-up in terms of the direction field ξ = ω/|ω| of the vorticity. We
recall the notion of BMO, the class of functions with bounded mean oscillations,
which is first introduced by John and Nirenberg [39]. For f ∈ L1

loc(R
n) let us set

fx,r = 1

|B(x, r)|
∫

B(x,r)

f (y)dy.

Then, BMO is defined by

B M O =
{

f ∈ L1
loc(R

n) : sup
x∈Rn ,r>0

1

|B(x, r)|
∫

B(x,r)

| f (y) − fx,r |dy =: ‖ f ‖B M O < +∞
}

.

We observe the obvious inequality, immediately from the definition

‖ f ‖B M O � 2‖ f ‖L∞ . (43)
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It iswell-known thatBMOis boundedby themappingof the singular integral operator
P of the Calderon-Zygmund type

‖P( f )‖B M O � C‖ f ‖B M O . (44)

In particular we have
‖∇u‖B M O � C‖ω‖B M O (45)

(see (10)). A refined version of Theorem 3.1 due to Kozono and Taniuchi [45] is the
following.

Theorem 3.2 Let u ∈ C([0, T ); H k(R3)), k > 5
2 , be a local in time smooth solution

to (E). Then, the solution blows at t = T if and only if
∫ T
0 ‖ω(t)‖B M Odt = +∞.

(Sketch of the proof) We recall the following version of the logarithmic Sobolev
inequality in R

n , which is the key inequality of the proof.

‖ f ‖L∞ � C(1 + ‖ f ‖B M O) log(e + ‖ f ‖H m ) ∀m >
n

2
. (46)

Applying (45) and (46) to the first part of the estimate (30), we find

d

dt
‖u‖H k � C‖∇u‖L∞‖u‖H k

� C(1 + ‖∇u‖B M O) log(e + ‖u‖H k )‖u‖H k

� C(1 + ‖ω‖B M O) log(e + ‖u‖H k )‖u‖H k .

Therefore, setting a(t) = 1 + ‖ω(t)‖B M O , y(t) = e + ‖u(t)‖H k , we obtain the dif-
ferential inequality

dy

dt
� Ca(t)y log y.

This can be solved to lead us to

y(t) � y
exp(C

∫ t
0 a(s)ds)

0 .

Hence,
e + ‖u(t)‖H k � (e + ‖u0‖H k )exp(C

∫ t
0 (1+‖ω(s)‖B M O )ds).

This shows that

lim sup
t→T

‖u(t)‖H k = +∞ ⇒
∫ T

0
‖ω(t)‖B M Odt = +∞.

On the other hand, the following inequalities
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∫ T

0
‖ω(t)‖B M O dt � 2

∫ T

0
‖ω(t)‖L∞ dt � 2T sup

0<t<T
‖∇u(t)‖L∞ � CT sup

0<t<T
‖u(t)‖Hk ,

where we use the Sobolev inequality (23) in the last step, show that

∫ T

0
‖ω(t)‖B M Odt = +∞ ⇒ lim sup

t→T
‖u(t)‖H k = +∞.

�

Theorem 3.1 has been localized recently in [19]. To state the result we recall the
notion of the local BMO space. For r > 0 and x ∈ R

n we denote B(x, r) = {y ∈
R

n | |x − y| < r}, and B(r) = B(0, r) below. By B M O(B(r)) we denote the space
of all u ∈ L1(B(r)) such that

|u|B M O(B(r)) = sup
z∈B(r)
0<ρ�2r

1

|B(z, ρ) ∩ B(r)|
∫

B(z,ρ)∩B(r)

|u − uB(z,ρ)∩B(r)|dy < +∞,

where we use the following notation for the average of u over � ⊂ R
n .

u� = 1

|�|
∫

�

udx .

The space B M O(B(r)) will be equipped with the norm

‖u‖B M O(B(r)) = |u|B M O(B(r)) + r−n‖u‖L1(B(r)).

Note that B M O(B(r)) is continuously embedded into Lq(B(r)) for all 1 � q <

+∞, and it holds
‖u‖Lq (B(r)) � cr

n
q ‖u‖B M O(B(r)).

The following is the localized version of Theorem 3.1.

Theorem 3.3 Let u ∈ C1(B(ρ) × (T − ρ, T )) be a solution to (E) such that u ∈
C([T − ρ, T ); W 2, q(B(ρ))) ∩ L∞(T − ρ, T ; L2(B(ρ))) for some q ∈ (3,+∞). If
u satisfies

T∫

T −ρ

|ω(s)|B M O(B(ρ))ds < +∞, (47)

then there exists no blow-up in B(ρ) × {t = T }, namely

lim sup
t→T

‖u(t)‖W 2, q (B(r)) < +∞ ∀r ∈ (0, ρ).
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(Idea of the Proof ) There are three key ingredients of the proof of Theorem 3.3. The
first one is the following local version of the logarithmic Sobolev inequality.

Lemma 3.4 Let B(r) be a ball in R
n with the radius r > 0. For every u ∈

W 1, q(B(r)), n < q < +∞, the following inequality holds true

‖u‖L∞(B(r)) � C(1 + ‖u‖B M O(B(r))) log
(

e + c‖∇u‖Lq (B(r)) + Cr−1+ n
q − n

2 ‖u‖L2(B(r))

)
(48)

with a constant C > 0 depending only on n and q.

The second key ingredient in the proof of Theorem 3.3 is the following localized
version of the Kozono-Taniuchi inequality (see [44] for the global version).

Lemma 3.5 Let f, g ∈ B M O(B(r)) ∩ Lq(B(r)), 1 < q < +∞. Then f · g ∈ Lq

(B(r)) and it holds

‖ f · g‖Lq (B(r)) � C
(
| f |B M O(B(r))‖g‖Lq (B(r)) + |g|B M O(B(r))‖ f ‖Lq (B(r))

)

+ Cr− 3
q ‖ f ‖Lq (B(r))‖g‖Lq (B(r)), (49)

where the constant C > 0 depends on q only.

Using suitable sequence of cut-off functions, and using the above two lemmas one
can have an iterative sequence of infinite inequalities for derivatives of the vorticity.
In order to close this sequence of inequalities we establish the following Gronwall
type iteration lemma.

Lemma 3.6 (Iteration lemma) Let a(t) � 0 and βm : [t0, t1] → R be a sequences
of bounded functions. Suppose there exists K (t) such that

|βm(t)| < K (t)m ∀t ∈ [t0, t1),∀m ∈ N.

Suppose

βm(t) � Cm +
t∫

t0

a(s)βm+1(s)ds, m ∈ N ∪ {0}.

Then the following inequality holds true for all t ∈ [t0, t1]

β0(t) � C

t∫

t0

a(s)ds e

t∫
t0

a(s)ds

.

�
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We can also establish the similar continuation criterion for solutions belonging to
the Hölder spaces [21]. For the precise statement of this result let us define the
space Cα(�), 0 < α � 1, containing all Hölder continuous and bounded functions
f : � → R, n ∈ N, such that

[ f ]α,� := sup
x,y∈�
x �=y

| f (x) − f (y)|
|x − y|α < +∞.

The space Cα(�) equipped by the norm ‖ f ‖Cα(�̄) = ‖ f ‖L∞(�) + [ f ]α,� becomes a
Banach space. Furthermore, by C1,α(�) we denote the space of all f ∈ C1(�) with
∇ f ∈ Cα(�).

Theorem 3.7 Let � ⊂ R
3 be an open set. Let u ∈ L∞

loc([0, T ); C1,α(�) ∩ L∞(0, T ;
L2(�)) be a local solution to the Euler equations. We assume that for every ball
B ⊂ �

T∫

0

‖ω(s)‖B M O(B)ds < +∞. (50)

Then, u ∈ L∞([0, T ]; C1,α(K )) for every compact K ⊂ �.

The proof is more technical than that of Theorem 3.3.
In all of the above theoremson the blow-up criterion basically the vorticity controls

the finite time blow-up for the smooth solutions. In the followings we introduce a
different type of criterion, which controls the blow-up of solutions in terms of the
Hessian of the pressure. These are recent results by Chae and Constantin [14, 15].

Theorem 3.8 Let (u, p) ∈ C1(R3 × (0, T )) be a solution of the Euler equation (E)
with u ∈ C([0, T ); W 2,q(R3)), for some q > 3. If

∫ T

0
exp

(∫ t

0

∫ s

0
‖D2 p(τ )‖L∞dτds

)
dt < +∞, (51)

then lim supt→T ‖u(t)‖W 2,q < +∞.

(Sketch of the proof ) By direct computation we derive the following equation from
the vorticity formulation of the Euler equations.

D2ω

Dt2
= −(ω · ∇)∇ p, where

D f

Dt
= ∂ f

∂t
+ u · ∇ f. (52)

Integrating twice the above along the particle trajectory, we have

|ω(X (α, t), t)| � |ω0(α)| + |ω0(α) · ∇u0(α)|t
+
∫ t

0

∫ s

0
|ω(X (a, τ ), τ )||D2 p(X (α, τ ), τ )|dτds, (53)
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where we use the fact

∂

∂t
ω(X (α, t), t)

∣∣∣
t=0

= ω(X (α, t), t) · ∇u(X (α, t), t)
∣∣∣
t=0

= ω0(α) · ∇u0(α).

Then, we establish the following Gronwall type lemma for the double integral
inequality [15].

Lemma 3.9 Let α = α(t) be a non-decreasing function, and β = β(t) � 0 on
[a, b]. Suppose y(t) � 0 on [a, b],and satisfies

y(t) � α(t) +
∫ t

a

∫ s

a
β(τ )y(τ )dτds ∀t ∈ [a, b].

Then, for all t ∈ (a, b] we have

y(t) � α(t) exp

(∫ t

a

∫ s

a
β(τ )dτds

)
.

Applying this lemma, we obtain

|ω(X (α, t), t)| � (|ω0(α)| + |ω0(α) · ∇u0(α)|t) exp
(∫ t

0

∫ s

0
|D2 p(X (α, τ ), τ )|dτds

)
,

and taking the supremum over α ∈ R
3, and integrating it over [0, T ], we find

∫ T

0
‖ω(t)‖L∞ dt � (‖ω0‖L∞ + T ‖ω0(α) · ∇u0(α)‖L∞ )

∫ T

0
exp

(∫ t

0

∫ s

0
‖D2 p(τ )‖L∞ dτds

)
dt.

Applying the BKM criterion, we complete the proof. �

The following is a localized version of the above theorem.

Theorem 3.10 Let (u, p) ∈ C1(B(x0, ρ) × (T − ρ, T )) be a solution to (E) with
u ∈ C([T − ρ, T ); W 2,q(B(x0, ρ))) ∩ L∞(T − ρ, T ; L2(B(x0, ρ))) for some q ∈
(3,∞). If ∫ T

T −ρ

‖u(t)‖L∞(B(x0,ρ))dt < +∞ (54)

and ∫ T

T −ρ

exp

(∫ t

T −ρ

∫ s

T −ρ

‖D2 p(τ )‖L∞(B(x0,ρ))dτds

)
dt < +∞, (55)

then for all r ∈ (0, ρ)
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lim sup
t→T

‖u(t)‖W 2,q (B(x0,r)) < +∞. (56)

The above two theorems are refined, using new kinematic relations between var-
ious quantities in the fluid mechanics. We associate to a solution (u, p) of the Euler
system (E) the R

3×3-valued functions S = (Si j ) and P = (Pi j ), where

Si j = 1

2
(∂i u j + ∂ j ui ), Pi j = ∂i∂ j p.

For the vorticity ω = ∇ × u we define the direction vectors

ξ = ω/|ω|, ζ = Sξ/|Sξ|,

In the case ω(x, t) = 0 we set α(x, t) = ρ(x, t) = 0. Note that ξ is the vorticity
direction vector, while ζ is the vorticity stretching direction vector. Then, we can
show that the following kinematic relations hold.

Proposition 3.11 Let (u, p) be a solution of (E), which belongs to C1(R3 × (0, T )).
Then, the followings hold true on R

3 × (0, T ).

Dt |Sω| = −ζ · Pω.

Using the above proposition, we can improve Theorem 3.7 as follows. Below we
also use the notations [ f ]+ = max{ f, 0} and [ f ]− = max{− f, 0}.
Theorem 3.12 Let (u, p) ∈ C1(R3 × (0, T )) be a solution of the Euler equation
(E) with u ∈ C([0, T ); W 2,q(R3)), for some q > 3. If

∫ T

0
exp

(∫ t

0

∫ s

0
‖[ζ · Pξ]−(τ )‖L∞dτds

)
dt < +∞, (57)

then lim supt→T ‖u(t)‖W 2,q < +∞.

Comparing the above theorem with Theorem 3.8, observing the pointwise
inequality|[ζ · Pξ]−| � |P| the above theorem (and its localized version below)
improve the result of Theorem 3.8. Furthermore, the above theorem implies that the
dynamical changes of the signs of the scalar quantities ζ · Pξ and |Sξ|2 − 2α2 − ρ
are important in the phenomena of blow-up/regularity of the solutions to (E).

The following is a localized version of the above theorem.

Theorem 3.13 Let (u, p) ∈ C1(B(x0, r) × (T − r, T )) be a solution to (E) with u ∈
C([T − r, T ); W 2,q(B(x0, r))) ∩ L∞(T − r, T ; L2(B(x0, r))) for some q ∈ (3,∞).
We suppose ∫ T

T −r
‖u(t)‖L∞(B(x0,r))dt < +∞,

and the following holds. Suppose
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∫ T

T −r
exp

(∫ t

0

∫ s

0
‖[ζ · Pξ]−(τ )‖L∞(B(x0,r))dτds

)
dt < +∞,

Then for all ε ∈ (0, r) lim supt→T ‖u(t)‖W 2,q (B(x0,ε)) < +∞.

In the case of the Euler equations having axial symmetry there still exists the pos-
sibility of finite time blow-up. The finite time blow-up/global regularity in this case
is also a wide-open question, and there are many interesting numerical results (see
[47], and the references therein). Therefore, establishing a sharp blow-up criterion
for this special case is also important.

Let u be an axisymmetric solution of the Euler equations if u solves (E), and can
be written as

u = ur (r, x3, t)er + uθ(r, x3, t)eθ + u3(r, x3, t)e3,

where

er = (
x1
r

,
x2
r

, 0), eθ = (
x2
r

,
−x1

r
, 0), e3 = (0, 0, 1), r =

√
x2
1 + x2

2

are the canonical basis of the cylindrical coordinate system. The Euler equations for
an axisymmetric solution turn into the following equations

∂t u
r + ur∂r ur + u3∂3u

r = −∂r p + (uθ)2

r
, (58)

∂t u
θ + ur∂r uθ + u3∂3u

θ = −ur uθ

r
, (59)

∂t u
3 + ur∂r u3 + u3∂3u

3 = −∂3 p, (60)

∂r (rur ) + ∂3(ru3) = 0. (61)

Multiplying (59) by r , we see that ruθ satisfies the transport equation

∂t (ruθ) + ur∂r (ruθ) + u3∂3(ruθ) = 0. (62)

For the vorticity ω we get

ω = ωr er + ωθeθ + ω3e3,

where

ωr = −∂3uθ, ωθ = ∂3ur − ∂r u3, ω3 = uθ

r
+ ∂r uθ.

Applying ∂3 to (58) and applying ∂r to (60), and taking the difference of the two
equations, we obtain the following equation for ωθ
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∂tω
θ + ur∂rω

θ + u3∂3ω
θ = urωθ

r
+ ∂3

(uθ)2

r
. (63)

This leads to the equation

∂t
(ωθ

r

) + ur∂r
(ωθ

r

) + u3∂3
(ωθ

r

) = ∂3(uθ)2

r2
. (64)

In the region off the axis we can have substantial improvement of the BKM criterion
as follows [23].

Theorem 3.14 Let u ∈ C([0, T ); W 2, q(R3)) ∩ L∞(0, T ; L2(R3)), 3 < q < +∞,

be an axisymmetric solution to (E) in R
3 × (0, T ). If the following condition is

fulfilled
T∫

0

(T − t)‖ω(t)‖L∞(B(x∗,R0))dt < +∞, (65)

for some ball B(x∗, R0) ⊂ {x ∈ R
3 | x2

1 + x2
2 > 0}, where ω = ∇ × v, then for all

0 < R < R0 it holds u ∈ C([0, T ], W 2, q(B(x∗, R))). In particular, this implies u ∈
C([0, T ], W 2, q(T(x∗, R))). Here, T(x∗, R) stands for the torus generated by rotation
of B(x∗, R0) around the axis, i.e.

T(x∗, R) =
{

x ∈ R
3 :

(√
x2
1 + x2

2 − ρ∗
)2 + (x3 − x3,∗)2 < R2

}
,

where ρ∗ =
√

x2
1,∗ + x2

2,∗.

The main idea in the proof of this theorem is that the Eqs. (64) and (62) have a sim-
ilar structure to the 2D Boussinesq equations (see Sect. 6 below for more concrete
correspondence relations), which has a different scaling properties than the 3D Euler
equations.

As an immediate consequence of the above theoremwe have substantial improve-
ment for the condition of the blow-up rate of the vorticity near the possible blow-up
time as follows [23].

Theorem 3.15 Let u ∈ C([0, T ); W 2, q(R3)) ∩ L∞(0, T ; L2(R3)), 3 < q < +∞,

be an axisymmetric solution to (E) in R
3 × (0, T ). Suppose the following vorticity

blow-up rate condition holds

sup
t∈(0,T )

(T − t)2
∣∣∣∣log

(
1

T − t

)∣∣∣∣
α

‖ω(t)‖L∞(B(x∗,R0)) < +∞ (66)

for some α > 1 and some ball B(x∗, R0) ⊂ {x ∈ R
3 : x2

1 + x2
2 > 0}. Then u ∈

C([0, T ]; W 2, q(T(x∗, R)) for all 0 < R < R0.
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In particular, Theorem 3.14 says that there exists no singularity at t = T in the off
the axis region if the vorticity blow-up rate satisfies

‖ω(t)‖L∞(R3) = O

(
1

(T − t)γ

)
, (67)

as t → T if 1 � γ < 2. Due to the global BKM criterion, however, the singularity
in this case should happen only on the axis. It would be interesting to compare this
result with Tao’s construction of a singular solution (see [54, Fig. 3, p.18]) for a
modified Euler system, where γ = 1 and the set of singularity is a circle around the
axis.

4 On the Type I Blow-Up

We observe that Euler system (E) has scaling property that if (u, p) is a solution,
then for any λ > 0 and α ∈ R the functions

uλ,α(x, t) = λαu(λx,λα+1t), pλ,α(x, t) = λ2α p(λx,λα+1t) (68)

are also solutions with the initial data uλ,α
0 (x) = λαu0(λx).

The case α = 3
2 is important for our analysis, since in this case the energy is

scaling invariant. Indeed, by the energy conservation we have for uλ = uλ, 32 ,

‖uλ(t)‖L2 = ‖u(λ
5
2 t)‖L2 = ‖u(t)‖L2 .

Hereafter, we consider (E) in R
3 × (−1, 0) and t = 0 is the possible first blow-up

time.

Definition 4.1 One says that a solution u of (E) is self-similar (SS) with respect to
(0, 0) if there exists α > −1 such that u(x, t) = λαu(λx,λα+1t) for all λ > 1.

Definition 4.2 A solution u is discretely self-similar (DSS) with respect to (0, 0) if
there exists α > −1 such that u(x, t) = λαu(λx,λα+1t) for some λ > 1. For more
specification we also say u is (λ,α)-DSS.

Definition 4.3 We say u blows up at t = 0 with Type I if

lim sup
t→0

(−t)‖∇u(t)‖L∞ < +∞. (69)

If lim supt→0(−t)‖∇u(t)‖L∞ = +∞, then we say it is of Type II.

In order to study self-similar solutions it is convenient to make self-similar transform
from u on R

3 × (−1, 0) to U on R
3 × (0,+∞) defined by
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u(x, t) = 1

(−t)
α

α+1
U (y, s) (70)

where
y = x

(−t)
1

α+1

, s = − log (−t) .

U is called the profile. Then, (E) is transformed into equations for the profile

(SSE)

⎧⎨
⎩

Us + α

α + 1
U + 1

α + 1
(y · ∇)U + (U · ∇)U = −∇ P,

∇ · U = 0.

Note that a SS solution of (E) is a stationary solution of (SSE), while a DSS solution
of (E) is a time-periodic solution of (SSE),

U (y, s) = U (y, s + S0), S0 = (α + 1) logλ.

A Type I solution of (E) is a global solution U of (SSE) with

lim sup
t→0

(−t)‖∇u(t)‖L∞ = lim sup
s→+∞

‖∇U (s)‖L∞ < +∞.

SS and DSS obviously satisfy the above condition. Therefore, Type I blow-up sce-
nario is a natural generalization of SS or DSS blow-up. There are many previous
studies excluding SS or DSS blow-up (e.g. [5, 6, 9, 18]). Also, for the periodic solu-
tion of (SSE) one can show unique continuation type result [7].

In the case of DSS function having one point singularity one can have strong
restriction to the spatial decay of the profile function, independent of the equations.
We present it here.

Proposition 4.4 Let be a (λ,α)−DSS function with λ > 1, α ∈ R \ {−1} having
one point singularity. Then

(i)

| f (x, t)| � C

(|x | + |t | 1
α+1 )α

∀(x, t) ∈ R
n × (−∞, 0] \ {(0, 0)},

where C = C(λ,α).
(ii) Moreover, if

| f (x, t)|(|x | + |t | 1
α+1 )α = o(1),

as either |x | + |t | 1
α+1 → +∞ or |x | + |t | 1

α+1 → 0, which means

lim
r→±∞ sup

er <|x |+|t | 1
α+1 <λ2er

| f (x, t)|(|x | + |t | 1
α+1 )α = 0,
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then
f = 0 on R

n × (−∞, 0].

Therefore, if f �≡ 0 non trivial DSS function, then there exist {(xk, tk)},
{(x̄k, t̄k)} ∈ R

n × (−∞, 0] \ {(0, 0)} with (xk, tk) → +∞ and (x̄k, t̄k) → (0, 0)
as k → +∞ such that

lim sup
k→∞

(|xk | + |tk | 1
α+1 )α| f (xk, tk)| > 0,

and
lim sup

k→0
(|x̄k | + |t̄k | 1

α+1 )α| f (x̄k, t̄k)| > 0.

(Proof) Let us define Q1 = B(0,λ) × (−λα+1, 0) and Q0 = B(0, 1) × (−1, 0), and
set A1 = Q1 − Q0. For each (x, t) ∈ R

n × (−∞, 0] \ {(0, 0)} there exist an integer
k ∈ Z and (z, τ ) ∈ A1 such that x = λk z, t = λ(α+1)kτ . Then, by the DSS property
of f we have

(|x | + |t | 1
α+1 )α f (x, t) = (|z| + |τ | 1

α+1 )αλαk f (λk z,λ(α+1)kτ )

= (|z| + |τ | 1
α+1 )α f (z, τ ). (71)

For (i) we observe

| f (x, t)| =
(

|z| + |τ | 1
α+1

|x | + |t | 1
α+1

)α

| f (z, τ )| � C1

(|x | + |t | 1
α+1 )α

for all (x, t) ∈ R
n × (−∞, 0] \ {(0, 0)}, where we set

C1 = ess sup
(z,τ )∈A1

{
(|z| + |τ | 1

α+1 )α| f (z, τ )|
}

.

In order to show (ii) we see that (71) implies also

sup
λer <|x |+|t | 1

α+1 <λ2er

(|x | + |t | 1
α+1 )α| f (x, t)| = sup

(z,τ )∈A1

{
(|z| + |τ | 1

α+1 )α| f (z, τ )|
}

,

from which, passing r → ±∞, we obtain f = 0. �

Let us consider the profile F = F(y, s) of f (x, t) defined by

f (x, t) = 1

(−t)
α

α+1
F (y, s) with y = x

(−t)
1

α+1

, s = − log(−t). (72)

Then, by the similar argument to the above proof one can show the following:
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sup
t∈(−∞,0)

|Dm f (x, t)|(|x | + |t | 1
α+1 )m+α = sup

s∈R
|Dm F(y, s)|(|y| + 1)m+α (73)

for all m ∈ N ∪ {0}. Following the same argument as the above proposition we have
the following.

Corollary 4.5 Let f be a (λ,α)-DSS function, having one point singularity, and let
F be its profile defined by (72). Then, there exists a constant C > 0 such that

sup
s∈R

|Dm F(y, s)| � C

(|y| + 1)m+α
∀y ∈ R

n. (74)

At this moment we could not exclude general Type I blow-up scenario for the
solution of (E). Aswe shall observe below, however, under some smallness condition,
we can remove theType I blow-up. In this direction the following result is first derived
in [8].

Theorem 4.6 Let u ∈ C([−1, 0); H m(R3)), m > 5/2, be a solution to the Euler
equations. Suppose u satisfies the following “small Type I condition”

lim sup
t→0

(−t)‖∇u(t)‖L∞ < 1. (75)

Then,
lim sup

t→0
‖u(t)‖H m < +∞. (76)

In other words, there exist no small Type I blow-up.

(Proof) The condition (75) implies that there exists t0 ∈ (−1, 0) and 0 < C0 < 1
such that

sup
t0<s<0

(−s)‖∇u(s)‖L∞ � C0.

We consider the particle trajectory X (a, t) generated by u = u(x, t), i.e.

∂t X (a, t) = u(X (a, t), t), X (a, 0) = a.

The vorticity form of the Euler equations

∂tω + u · ∇ω = ω · ∇u

can be written as an equation along the particle trajectory

∂t {ω(X (a, t), t)} = (ω · ∇u)(X (a, t), t).

Integrating |ω(X (a, t), t)| over [t0, t] along the particle trajectory, we obtain
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|ω(X (a, t), t)| � |ω(X (a, t0), t0)| exp
(∫ t

t0

|∇u(X (a, s), s)|ds

)
.

From this we estimate

‖ω(t)‖L∞ � ‖ω(t0)‖L∞ exp

(∫ t

t0

‖∇v(s)‖L∞ds

)

� ‖ω(t0)‖L∞ exp

(
C0

∫ t

t0

(−s)−1ds

)

= ‖ω(t0)‖L∞

(
t0
t

)C0

∀t ∈ (t0, 0).

Since 0 < C0 < 1, we have
∫ T

t0
‖ω(t)‖L∞dt < +∞, and by the BKMcriterion above

there exists no blow-up at T . �

The above theorem has been localized in [24] as follows.

Theorem 4.7 Let u ∈ L∞(−1, 0; L2(B(r))) ∩ C([−1, 0); W 2,q(B(r))) be a solu-
tion to (E) for some 3 < q < +∞. Suppose there exists r0 ∈ (0, r) such that

lim sup
t→0

(−t)‖∇u(t)‖L∞(B(r0)) < 1.

Then, lim supt→0 ‖u(t)‖W 2,q (B(ρ)) < +∞ for all ρ ∈ (0, r0).

In a recent paper [14] the Type I condition of the above theorems is replaced by the
condition involving the Hessian of the pressure as follows.

Theorem 4.8 Let (u, p) ∈ C1(R3 × (−1, 0)) be a solution of the Euler equation
(E) with u ∈ C([−1, 0); W 2,q(R3)), for some q > 3. If

lim sup
t→0

(−t)2‖D2 p(t)‖L∞ < 1,

then lim supt→0 ‖u(t)‖W 2,q < +∞.

This is also localized in the same paper [14].

Theorem 4.9 Let (u, p) ∈ C1(B(x0, ρ) × (−ρ, 0)) be a solution to (E) with u ∈
C([−ρ, 0); W 2,q(B(x0, ρ))) ∩ L∞(0 − ρ, 0; L2(B(x0, ρ))) for some q ∈ (3,∞). If

∫ 0

−ρ

‖u(t)‖L∞(B(x0,ρ))dt < +∞

and
lim sup

t→0
(−t)2‖D2 p(t)‖L∞(B(x0,ρ)) < 1,
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then for all r ∈ (0, ρ) we have

lim sup
t→0

‖u(t)‖W 2,q (B(x0,r)) < +∞.

The following is a refined version of the above theorems [10, 15], considering
also the sign condition for the Hessian of the pressure. We use the same notations as
Proposition 3.11.

Theorem 4.10 Let (u, p) ∈ C1(R3 × (−1, 0)) be a solution of the Euler equation
(E) with u ∈ C([−1, 0); W 2,q(R3)), for some q > 3. Suppose the following holds. If
either

lim sup
t→0

(−t)2‖[ζ · Pξ]−(t)‖L∞ < 1,

or
lim sup

t→0
(−t)2‖[|Sξ|2 − 2α2 − ρ]+(t)‖L∞ < 1,

then lim supt→0 ‖u(t)‖W 2,q < +∞.

The following is a localized version of the above theorem.

Theorem 4.11 Let (u, p) ∈ C1(B(x0, r) × (−r, 0)) be a solution to (E) with u ∈
C([−r, 0); W 2,q(B(x0, r))) ∩ L∞(−r, 0; L2(B(x0, r))) for some q ∈ (3,∞). We
suppose ∫ 0

−r
‖u(t)‖L∞(B(x0,r))dt < +∞.

If either
lim sup

t→0
(−t)2‖[ζ · Pξ]−(t)‖L∞(B(x0,r)) < 1,

or
lim sup

t→0
(−t)2‖[|Sξ|2 − 2α2 − ρ]+(t)‖L∞(B(x0,r)) < 1,

then for all ε ∈ (0, r) lim supt→0 ‖u(t)‖W 2,q (B(x0,ε)) < +∞.

5 Type I Blow-Up and the Energy Concentrations

Although we cannot exclude the possibility of Type I blow-up, we shall show in this
section that under Type I condition the energy concentration in the form of atomic
measure cannot happen at the blow-up time. Energy concentration in atomic form
means that there exists an atomic measure μ (i.e. μ({x}) > 0 for some x ∈ R

3) such
that

|u(·, t)|2dx ⇀ μ as t → 0
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in the sense of measure. A typical example is

|u(·, t)|2dx ⇀

∞∑
k=1

Ckδxk .

DSS singularity in the energy conserving scale is an example of Type I blow-up with
one point energy conservation. Removing this scenario has been open. Concentration
phenomena in the other equations are well studied. For example for the nonlinear
Schödinger equations blow-up happens with L2 norm concentration, while in the
chemotaxis equations the blow-up occurs with L1 norm concentration.

We first remove one point energy concentration under Type I. In the case u ∈
L∞(−1, 0; L2(R3)), we can show that there exists a unique measure σ ∈ M(R3)

such that
|u(t)|2dx → σ weakly- ∗ in M(R3) as t → 0. (77)

Here, we first consider the case σ is equal to the Dirac measure E0δ0 for some
constant 0 � E0 < +∞. Under the Type I condition we can exclude such one-point
concentration of the energy, namely we have the following [22].

Theorem 5.1 Let u ∈ L∞(−1, 0; L2(R3)) be a solution to the Euler equations. In
addition, we assume that u satisfies the Type I blow-up condition (69) and (82) with
σ = E0δ0 for some 0 � E0 < +∞. Then u ≡ 0.

In the proof of the above theorem we use several decay properties of the solution
to the Euler equations with respect to the space and time variables as we approach the
blow-up time. The decay estimate is actually obtained under following more general
condition than (69)

∃ μ ∈
[3
5
, 1
)

: sup
t∈(−1,0)

(−t)
5
3μ‖∇u(t)‖L∞ < +∞. (78)

The following lemma is one of the two key decay estimates used to prove Theo-
rem 5.1.

Lemma 5.2 Let u ∈ L2(−∞, 0; L2(R3)) ∩ L∞
loc([−1, 0), W 1, ∞(R3)) be a solution

to the Euler equations satisfying (69) and (82) with σ = Eδ0. Then for every 0 <

β < 5 there exists a constant C such that for every t ∈ [−1, 0) it holds

∫

R3

|v(t)|2|x |βdx � C(−t)β(1−α). (79)

(Sketch of the Proof) We first claim the estimate

‖u(t)‖L∞ � C(−t)−
3
5 . (80)
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Indeed, by the Gagliardo-Nirenberg interpolation we obtain

(−t)
3
5 ‖u(t)‖L∞ � C(−t)

3
5 ‖u(t)‖ 2

5

L2‖∇u(t)‖ 3
5
L∞

� C E(−1)
2
5 {(−t)‖∇u(t)‖L∞} 3

5 < +∞.

We first prove the decay estimate for β = 1. We multiply (E) by u|x |uηR for a
smooth cut-off ηR supported on the ball BR , and integrate both sides overR

3 × (t, 0).
Integrating by parts, using the assumption of L2-energy concentration at x = 0 as
t → 0, we have

1

2

∫
R3

|u(t)|2|x |ηRdx

=
∫ 0

t

∫
R3

ηR|u|2u · ∇|x |dxds +
∫ 0

t

∫
R3

ηR pu · ∇|x |dxds

+ 1

2

∫
R3

|u(0+)|2|x |ηRdx + {terms vanishing as R → +∞}

�
∫ 0

t

∫
R3

|u(s)|2dx ‖v(s)‖L∞ds +
∫ 0

t

∫
R3

|p(s)||v(s)|dxds + o(1)

� C E(−1)2
∫ 0

t
(−s)−

3
5 ds +

∫ 0

t
‖p(s)‖L2‖v(s)‖L2ds + o(1).

For the pressure term estimate we use the Calderon-Zygmund inequality ‖p‖Lq �
‖u‖2Lq , which follows from the well-known velocity-pressure relation p = R j Rk

(u j uk), and estimate

∫ 0

t
‖p(s)‖L2‖u(s)‖L2ds � C

∫ 0

t
‖|u(s)|2‖L2‖u(s)‖L2ds

� C
∫ 0

t
‖u(s)‖L∞‖u(s)‖2L2ds � C{E(−1)}2

∫ 0

t
(−s)−

3
5 ds.

Passing R → ∞, the lemma is proved for β = 1:

∫
R3

|u(t)|2|x |dx � C(−t)
2
5 .

For β > 1 we multiply (E) by u|x |βηR , and integrate by parts as the above, and use
the induction argument. For the pressure estimate we use the following weighted
Calderon-Zygmund inequality (Ap weight) [53]:

∫

R3

|p(s)|2|x |γdx � C
∫

R3

|u(s)|4|x |γdx � C(−s)−
6
5

∫

R3

|u(s)|2|x |γdx,
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which holds true for all 0 � γ < 3. �

The following is the second decay estimate for the Proof of Theorem 5.1.

Lemma 5.3 Let u ∈ L2(−1, 0; L2
σ(R3)) ∩ L∞

loc([−1, 0), W 1, ∞(R3)) be a solution
to the Euler equations satisfying (69) for some μ ∈ [ 35 , 1) and (82) with σ0 = Eδ0.
Then for all k ∈ N ∪ {0} and 0 < r < +∞ it holds

‖Pr (v(t))‖2L2(B(r)c) � Ck
04

k2(−t)(1−μ)kr−k ∀ t ∈ (−1, 0),

where Pr is the Helmholtz projection operator on B(r).

(Sketch of the proof of Theorem 5.1) We choose θ small enough: 0 < θ < 1
5 . For a

solution u to the Euler equations we transform: u 	→ w,

w(x, t) = u((−t)θx, t).

Then, w solves the transformed Euler system,

wt + θ(−t)−1x · ∇w + (−t)−θ(w · ∇)w = −∇π,

∇ · w = 0.

Using the two decay lemmas above, one can show that there exists t0 ∈ (−1, 0) such
that

∇ × w(t) = 0 on B(1)c ∀t0 < t < 0.

Transforming back to the original vorticity, ω(t) = ∇ × u(t), we find

suppω(t) ⊂ B((−t)θ) ∀t0 < t < 0.

Since the measure of suppω(t) is preserved due to the Cauchy formula,

ω(X (a, t), t) = ∇a X (a, t)ω0(a),

we have
meas{suppω(t0)} = meas{suppω(t)} � C(−t)3θ → 0

as t → 0. Whence, ω(t0) ≡ 0, and u(t0) is harmonic. Since u(t0) ∈ L2(R3), we con-
clude that u(t0) ≡ 0, and hence u ≡ 0, which is a contradiction. Therefore, one point
energy concentration under the Type I condition is impossible. �

As an immediate corollary of the above theorem we establish the following.

Corollary 5.4 Let u ∈ L∞(−1, 0; L2(R3)) ∩ L∞
loc([−1, 0), W 1, ∞(R3)) be a DSS

solution to the Euler equation, i.e. there exists λ > 1 such that
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u(x, t) = λ
3
2 u(λx,λ

5
2 t) ∀ (x, t) ∈ R

3 × (−1, 0).

Then u ≡ 0.

For the proof we refer to [22].

Next, we shall use the blow-up argument to remove more general form of atomic
concentration under local Type I condition. More specifically, we have the following.

Theorem 5.5 Let u ∈ L∞(−1, 0; L2(R3)) ∩ L∞
loc([−1, 0); W 1, ∞(R3)) be a solu-

tion of the Euler equations satisfying the Type I condition,

sup
t∈(−1,0)

(−t)‖∇u(t)‖L∞ < +∞.

Suppose there exists σ0 ∈ M(R3) such that

|u(t)|2dx → σ0 as t → 0−.

Then, σ0 is non-atomic.

We first recall the notion of suitable weak solution (u, p) of (E), a weak solution
satisfying the local energy inequality:

∫

R3

|u(t)|2φdx �
∫

R3

|u(s)|2φdx +
∫ t

s

∫

R3

(|v|2 + 2p)u · ∇φdxdτ

for all φ ∈ C∞
c (R3) and for a.e. −1 � t < s < 0. Below we denote the ‘parabolic

cylinder’ consistent with the energy conserving scale by Q(R) := B(R) × (−R5/2,

0). Then we establish the following criterion of energy non-concentration in terms
of a Morrey norm.

Theorem 5.6 We set the cylinder Q(R) = B(R) × (−R
5
2 , 0). Let u ∈ L∞(−R

5
2 , 0;

L2(B(R))) ∩ L3(Q(R)) be a local suitable weak solution to (E) such that the local
energy inequality is satisfied. Furthermore, we assume that

sup
0<r�R

r−1‖u‖3L3(Q(r)) < +∞, lim inf
r→0+

r−1‖u‖3L3(Q(r)) = 0. (81)

Then, there is no energy concentration at the point x = 0 as t → 0.

Remark In [52] Shvydkoy showed that if u ∈ Lq(−1, 0; L∞(�)) ∩ L∞(−1, 0; L2

(�)), q = 5
3 , is a suitable weak solution, then there is no atomic concentration in �.

This actually follows from the above theorem immediately. Let Q(r) ⊂ � × (−1, 0).
Then
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r−1‖u‖3L3(Q(r)) = r−1
∫ 0

−r
5
2

∫
B(r)

|u|3dxdt

� ‖u‖2L∞(−1,0;L2(�))r
−1

∫ 0

−r
5
2

‖u‖L∞(B(r))dt

� ‖u‖2L∞(−1,0;L2(�))

(∫ 0

−r
5
2

‖u‖ 5
3
L∞(B(r))dt

) 3
5

→ 0

as r → 0.

(Sketch of the proof of Theorem 5.6) We shall use the blow-up argument for the proof
of the theorem. Let us first note the following interpolation inequality,

r−1‖u‖3L3(Q(r)) � C K0r
− 5

2 ‖u‖2L2(Q(r)) + C K
1
2
0 K

3
2
1

(
r− 5

2 ‖u‖2L2(Q(r))

) 1
2
, (82)

where we set

K0 := ‖u(t)‖L∞(−R5/2,0);L2(B(R)), K1 := sup
t∈(−R

5
2 ,0)

(−t)‖∇u(t)‖L∞(B(R)),

which are bounded constants by the hypothesis. Suppose there exists an atomic
concentration. Then Theorem 5.6, combined with the above interpolation inequality
(82) implies that there exists ε > 0 and a sequence rk → 0 such that

r
− 5

2
k ‖u‖2L2(Q(rk ))

� ε ∀k ∈ N.

We define a (blow-up) sequence

uk(x, t) = r
3
2

k u(rk x, r
5
2

k t), k ∈ N.

Using Type I condition and the energy conservation, we can deduce the following
uniform bound for {uk},

‖uk‖L∞(−1,0;L2(R3)) + ‖uk‖L3([−1,0);Ẇ θ, 3(R3)) � C

for all 0 < θ < 1
3 . Here, we use the following norm for the fractional derivatives

(Sobolev-Slobodeckij semi-norm) in R
3,

| f |Ẇ θ,p :=
(∫

R3

∫
R3

| f (x) − f (y)|p

|x − y|θp+3
dxdy

) 1
p

.

Taking the limit for a sub-sequence (by compactness lemma), one can construct a
non-trivial suitable weak solution to (E),
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u∗ ∈ L∞(−1, 0; L2
σ(R3)) ∩ L3([−1, 0); Ẇ θ, 3(R3))

satisfying the following ‘weaker-norm version’ of local Type I condition

sup
r∈(0,R)

1

r1−3θ

0∫

−r
5
2

|u∗(t)|3Ẇ θ, 3(B(r))
dt < +∞.

Indeed, we have the following another interpolation inequality:

sup
r∈(0,R)

1

r1−3θ

0∫

−r
5
2

|u(t)|3Ẇ θ, 3(B(r))
dt � C sup

r∈(0,R)

r−1‖u‖3L3(Q(r))

+ C sup
−R

5
2 <t<0

(−t)3‖∇u(t)‖3L∞(B(R)) < +∞

by (82) and the Type I condition respectively. Moreover, for such limiting solution
u∗ one can choose a sequence of time {tk} ⊂ [−1, 0) and a positive constant c0 > 0
such that

|u∗(x, tk)|2dx ⇀ C0δ0 as k → +∞

in the sense of measure, namely one point concentration in R
3 for blow-up limiting

solution. Our previous exclusion theorem for one point energy concentration in R
3

with Type I blow-up condition implies C0 = 0, namely no atomic concentration. �

6 The Boussinesq Equations

We consider the Boussinesq equations in the space time cylinder R
2 × (0,∞)

(B)

⎧⎪⎨
⎪⎩

∂t u + (u · ∇)u = e2θ − ∇ p,

∂tθ + (u · ∇)θ = 0,

∇ · u = 0, u(x, 0) = u0(x), θ(x, 0) = θ0(x)

where u = (u1(x, t), u2(x, t)), (x, t) ∈ R
2 × (0,+∞) is the fluid velocity, while

θ = θ(x, t) represents the temperature of the fluid, and e2 = (0, 1). The system (B)
is a fundamental system of equations describing the motion of atmosphere (see e.g.
[49, 50]). Besides its importance in application to the atmospheric sciences another
reasonwhy theBoussinesq equation attractedmanymathematicians is that the system
(B) has strong similarity to the 3D axisymmetric Euler equations, thus providing a
good model problem for the Euler equations. To see this resemblance between the
two equations more closely we consider the following vorticity equation, obtained
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by operating ∇⊥· on the first equation of (B):

∂tω + u · ∇ω = ∂1θ, ω = ∂1u2 − ∂2u1. (83)

Setting � = (ruθ)2 and W = ωθ

r , the axisymmetric Euler system (64), (62) and (61)
can be written as

⎧⎨
⎩

Wt + ur∂r W + u3∂3W = 1

r4
∂3�,

�t + ur∂r� + u3∂3� = 0, ∂r (rur ) + ∂3(ru3) = 0.
(84)

Therefore, if we consider the system (84) off the axis region(r > 0) the system (B)
has the almost same structure as (84) with the correspondence

(x1, x2) ⇔ (r, x3), (u1, u2) ⇔ (ur , uθ), (ω, θ) ⇔ (W,�).

Let us consider the particle trajectory X (α, t) generated by u = u(x, t). Then, the
second equation of (B) implies the conservation

f (θ(X (α, t), t)) = f (θ0(α)) ∀ f ∈ C1(R).

The following proposition shows that a certain quantity, which corresponds to the
Helicity of the 3D Euler equations, has localized conservation law.

Proposition 6.1 Let f be a C1(R), and (u, θ) be a smooth solution to (B), and Ct ,
t � 0 be a level curve of θ(·, t). Then,

∮
Ct

u · ∇⊥ f (θ)ds =
∮

C0

u0 · ∇⊥ f (θ0)ds ∀t > 0. (85)

(Proof) From the second equation of (B) we have

D

Dt
∇⊥θ = (∂t + u · ∇)∇⊥θ = ∇⊥θ · ∇u. (86)

Let
C0 = {γ(s) : θ0(γ(s)) = λ, s ∈ [0, 1], γ(0) = γ(1)}

be a closed level curve for θ0. Define

Ct = X (C0, t) = {X (γ(s), t) : 0 � s � 1}.

Then, for any f ∈ C1(R), we have
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d

dt

∫ 1

0
u(X (γ(s), t), t) · ∇⊥ f (θ(X (γ(s), t), t))ds

= f ′(λ)

∫ 1

0

D

Dt
u(X (γ(s), t), t) · ∇⊥θ(X (γ(s), t), t)ds

+ f ′(λ)

∫ 1

0
u(X (γ(s), t), t) · D

Dt
∇⊥θ(X (γ(s), t), t)ds

= − f ′(λ)

∫ 1

0
∇ p(X (γ(s), t), t) · ∇⊥θ(X (γ(s), t), t)ds

+ f ′(λ)

∫ 1

0
θ(X (γ(s), t), t)e2 · ∇⊥θ(X (γ(s), t), t)ds

+ f ′(λ)

∫ 1

0
u(X (γ(s), t), t) · ∇⊥θ(X (γ(s), t), t) · ∇u(X (γ(s), t), t)ds

= K1 + K2 + K3.

We compute each term separately. First,

K1 = − f ′(λ)

∫ 1

0
∇ p(X (γ(s), t), t) · ∂

∂s
X (γ(s), t)ds

= − f ′(λ)

∫ 1

0

∂

∂s
p(X (γ(s), t), t)ds = 0.

Second,

K2 = f ′(λ)λe2 ·
∫ 1

0

∂X (γ(s), t), t)

∂s
ds = 0.

Finally,

K3 = f ′(λ)

∫ 1

0
u(X (γ(s), t), t) ·

(
∂

∂s
X (γ(s), t) · ∇

)
u(X (γ(s), t), t)ds

= 1

2
f ′(λ)

∫ 1

0

(
∂

∂s
X (γ(s), t) · ∇

)
|u(X (γ(s), t), t)|2ds

= 1

2
f ′(λ)

∫ 1

0

∂

∂s
|u(X (γ(s), t), t)|2ds = 0.

Combining the calculations for K1, K2, K3 above, we find that

d

dt

∫ 1

0
u(X (γ(s), t), t) · ∇⊥ f (θ(X (γ(s), t), t))ds = 0.
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This completes the proof of the proposition. �

Regarding the Cauchy problem for the system (B) for the initial data in H k(R2),
k > 2, the local-in-time existence of solution and the Beale-Kato-Majda type blow-
up criterion are first obtained in [16].

Theorem 6.2 Let (u0, θ0) ∈ H k(R2), k > 2. Then, there exists T = T (‖u0‖H k ,

‖θ0‖H k ) such that a unique solution u ∈ C([0, T ); H k(R2)) exists. Furthermore,

lim sup
t→T

(‖u(t)‖H k + ‖θ(t)‖H k ) = +∞ if and only if

∫ T

0
‖∇θ(t)‖L∞dt = +∞. (87)

The finite time blow-up question for the Boussinesq system with a smooth initial
data is also a wide-open problem. We mention that for domain with cusp singularity
finite time blow-up at the boundary point is obtained recently in [37], and also in [27]
the authors show singularity on the boundary point of a cylinder. Our main concern
here is the possibility of interior singularity in the whole domain of R

2. It is also
worth mentioning that if we add viscosity term to either one of the velocity or the
temperature equations of (B), the finite time blow-up question was posed by Moffatt
in [51] as one of the millennium problems in the fluid mechanics, for which there
was a partial result due to Córdoba, Fefferman and LLave in [34], removing “squirt”
singularities. The problem is fully resolved in [11], which shows that there exists no
finite time singularities in this partially viscous case.

A similar result to Theorem 6.2 in the setting of the Hölder space is proved in
[17]. For the BKM type criterion an improvement of (87) has been obtained in [25]
as follows.

Theorem 6.3 Let (u, θ) ∈ C([0, T ); W 2,q(R2)), q > 2, be a solution of (B). If

T∫

0

(T − t)‖∇θ(t)‖L∞dt < +∞, (88)

then there exists no blow-up at t = T , and thus both u and θ belong to C([0, T ]; W 2, q

(R2)).

(Proof ) For convenience we shift in time so that [0, T ] 	→ [−1, 0].
Step (i) We first show that

∫ 0

−1
‖ω(t)‖L∞dt +

∫ 0

−1
(−t)‖∇θ(t)‖L∞dt < +∞ (89)

implies no blow-up at t = 0. Let q > 2. We apply the operator ∂i to the vorticity
equation, multiplying the resultant equation by ∂iω|∇ω|q−1, and integrating it over
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R
2. Then, after the integration by parts and using the Hölder inequality, we are led

to

d

dt
‖∇ω‖Lq � ‖∇u‖L∞‖∇ω‖Lq + ‖∇2θ‖Lq

= ‖∇u‖L∞‖∇ω‖Lq + (−t)−1(−t)‖∇2θ‖Lq . (90)

Next, we apply the operator ∂i∂ j to both sides of the θ equation, multiply both
sides by ∂i∂ jθ|∇2θ|q−2, and sum over i, j = 1, 2, 3, and the integrate it over R

2.
This, applying the integration by part and the Hölder inequality, yields the following
inequality

d

dt
‖∇2θ‖Lq � 2‖∇u‖L∞‖∇2θ‖Lq + ‖∇θ‖L∞‖∇2u‖Lq . (91)

Multiplying both sides of (91) by (−t), we see that

d

dt
(−t)‖∇2θ‖Lq + ‖∇2θ‖Lq

� 2‖∇u‖L∞(−t)‖∇2θ‖Lq + (−t)‖∇θ‖L∞‖∇2u‖Lq

� 2‖∇u‖L∞(−t)‖∇2θ‖Lq + ccz(−t)‖∇θ‖L∞‖∇ω‖Lq . (92)

Now define

�(t) := ‖∇ω‖Lq + (−t)‖∇2θ‖Lq , t ∈ (−1, 0).

Adding the last two inequalities (90) and (92), we are led to

� ′ �
(
2‖∇u(t)‖L∞ + (−t)−1 + ccz(−t)‖∇θ(t)‖L∞

)
�. (93)

By means of the logarithmic Sobolev embedding of the Beale-Kato-Majda type,
we find

‖∇v(t)‖L∞ � C
{
1 + ‖ω(t)‖L∞ log(e + ‖∇2u(t)‖Lq )

}
� C {1 + ‖ω(t)‖L∞ log(e + �(t))} . (94)

Inserting (94) into (93), it follows

� ′ �
{
C
[
1 + (‖ω(t)‖L∞ + (−t)‖∇θ(t)‖L∞) log(e + �(t))

] + (−t)−1}�(t).
(95)

Setting y(t) = log(e + �(t)), we infer from (95) the differential inequality

y′ � Ca(t)y + C(−t)−1, a(t) = ‖ω(t)‖L∞ + (−t)‖∇θ(t)‖L∞ (96)
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which can be solved as

y(t) = log(e + �(t))

� y(t0)e
C
∫ t

t0
a(s)ds + C

t∫

t0

(−s)−1ec
∫ t

s a(τ )dτ ds. (97)

We now choose t0 so that eC
∫ 0

t0
a(s)ds

< 2. Then, (97) implies

log(e + �(t)) � C log(e + �(t0)) + C log(−1/t) ∀t ∈ (t0, 0), (98)

where c > 2 is another constant. From θ-equation of (B) we have immediately

∂

∂t
|∇θ| + (u · ∇)|∇θ| � |∇u||∇θ|. (99)

Let t ∈ (−1, 0) be arbitrarily chosen but fixed. Let x0 ∈ R
2. By X (x0, t) we denote

the trajectory of the particle which is located at x0 at time t = t0, defined by the
following ODE

d X (x0, t)

dt
= u(X (x0, t), t) in [−1, 0), X (x0, t0) = x0. (100)

Then, (99) can be written as

∂

∂t
|∇θ(X (x0, t), t)| � |∇u(X (x0, t), t)||∇θ(X (x0, t), t)|, (101)

which can be integrated along the trajectories as

|∇θ(X (x0, t), t)| � |∇θ(x0)| exp
(∫ t

t0

|∇u(X (x0, s), s)|ds

)
.

Therefore, we estimate, using (94) as

‖∇θ(t)‖L∞ � ‖∇θ(t0)‖L∞ exp

(∫ t

t0
‖∇u‖L∞ ds

)

� ‖∇θ(t0)‖L∞ exp

(
C
∫ t

t0

{‖ω(s)‖L∞
[
log(e + �(t0)) + log(−1/s)

] + 1
}

ds

)

� ‖∇θ(t0)‖L∞×

× exp

(
C {log(e + �(t0)) + log(−1/t)}

∫ t

t0
‖ω(s)‖L∞ ds + c(t − t0)

)
.

(102)
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Choosing t0 ∈ (−1, 0) so that C
∫ 0

t0
‖ω(s)‖L∞ds < 1

2 , we deduce from (102) that

‖∇θ(t)‖L∞ � ‖∇θ(t0)‖L∞(e + �(t0))
C eC(−t)−

1
2 ∀t ∈ (t0, 0).

Therefore,
∫ 0
−1 ‖∇θ‖L∞dt < +∞. Applying the well-known blow-up criterion in

[5], we obtain the desired result of (89).

Step (ii) Here we show the estimate:

t∫

−1

‖ω(s)‖L∞ds +
t∫

−1

(−s)‖∇θ(s)‖L∞ds

� ‖ω(−1)‖L∞ + 2

0∫

−1

(−s)‖∇θ(s)‖L∞ds < +∞, (103)

thus finishing the proof, combining this with (89). We recall the vorticity equation
from (B).

∂tω + u · ∇ω = ∂1θ in R
2 × [−1, 0), (104)

where ω = ∂1u2 − ∂2u1. Using the particle trajectories with X (x0,−1) = x0 as the
above, we have from (104)

d

dt
|ω(X (x0, t), t)| � |∂1θ(X (x0, t), t)| in [−1, 0), (105)

which implies that

‖ω(s)‖L∞ � ‖ω(−1)‖L∞ +
∫ s

−1
‖∂1θ(τ )‖L∞dτ . (106)

Integrating both sides of (106) over [−1, t), t ∈ (−1, 0)with respect to s, and apply-
ing integration by parts, we get

∫ t

−1
‖ω(s)‖L∞ ds � (1 + t)‖ω(−1)‖L∞ +

∫ t

−1

∫ s

−1
‖∂1θ(τ )‖L∞ dτds

= (1 + t)‖ω(−1)‖L∞ +
∫ t

−1

{
d

ds
(s)

∫ s

−1
‖∂1θ(τ )‖L∞ dτ

}
ds

= (1 + t)‖ω(−1)‖L∞ +
∫ t

−1
(−s)‖∂1θ(s)‖L∞ ds + t

∫ t

−1
‖∂1θ(s)‖L∞ ds

� ‖ω(−1)‖L∞ +
∫ t

−1
(−s)‖∂1θ(s)‖L∞ ds.

�
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The above theorem has been also localized in [23] as follows.

Theorem 6.4 Let B(r) ⊂ R
2 be the unit ball, 2 < q < +∞, and

(u, θ) ∈ C([0, T ); W 2, q(B(r))) × C([0, T ); W 2, q(B(r)))

be a solution to (B). Suppose that

u ∈ L∞(0, T ; L2(B(r)))

and
T∫

0

(T − t)‖∇θ(t)‖L∞(B(r))dt < +∞,

T∫

0

‖u(t)‖L∞(B(r))dt < +∞.

Then u, θ ∈ C([0, T ], W 2, q(B(ρ))) for all 0 < ρ < r .

The blow-up criterion in terms of the Hessian of the pressure is also recently obtained
as follows. For a solution (u, p, θ) of the system (B) let us introduce theR

2×2-valued
functionsU = (∂i u j ) and P = (∂i∂ j p). For the vector field∇⊥θ = (−∂2θ, ∂1θ)we
define the direction vectors

ξ = ∇⊥θ/|∇⊥θ|, ζ = U∇⊥θ/|U∇⊥θ|.

We note that contrary to the case of Euler equations U is not the symmetric part of
the velocity gradient matrix. Then, the following blow-up criterion in terms of the
Hessian of the pressure is proved in [14].

Theorem 6.5 Let (u, p) ∈ C1(R2 × (0, T )) be a solution of the Boussinesq equa-
tion (B) with u ∈ C([0, T ); W 2,q(R2)), for some q > 2. Suppose the following holds.
Either ∫ T

0
(T − t) exp

(∫ t

0

∫ s

0
‖[ζ · Pξ]−(τ )‖L∞dτds

)
dt < +∞,

or
lim sup

t→T
(T − t)2‖[ζ · Pξ]−(t)‖L∞ < 2.

Then lim supt→T ‖u(t)‖W 2,q < +∞.

Note the relaxed smallness condition for the nonexistence of Type I blow-up com-
pared to the case of 3D Euler equations. This is due to the extra factor, (T − t) in
the integral

∫ T
0 (T − t)‖∇⊥θ(t)‖L∞dt < +∞ in Theorem 6.3.

(Proof of the first part of Theorem 6.5) Let (u, p, θ) be a solution of (B), which
belongs to C1(R2 × (0, T )). We first claim the following formula.

Dt |U∇⊥θ| = −ζ · P∇⊥θ. (107)
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Indeed, ∇ on the first equation of (B), we find

DtU + U 2 = −P + ∇(θe2).

Taking ∇⊥ on the second equation of (B), we obtain

Dt∇⊥θ = U∇⊥θ.

Let us compute

D2
t ∇⊥θ = DtU∇⊥θ + U Dt∇⊥θ

= −U 2∇⊥θ − P∇⊥θ + U 2∇⊥θ + ∇⊥θ · ∇(θe2)

= −P∇⊥θ, (108)

where we use the fact
∇⊥θ · ∇(θe2) = 0.

We multiply (110) by Dt∇⊥θ to have

|Dt∇⊥θ|Dt |Dt∇⊥θ| = 1

2
Dt

(|Dt∇⊥θ|2) = Dt∇⊥θ · D2
t ∇⊥θ

= −U∇⊥θ · P∇⊥θ. (109)

the left-hand side of which can be re written as

1

2
Dt |U∇⊥θ|2 = |U∇⊥θ| Dt |U∇⊥θ|.

Hence, dividing the both sides of (109) by |U∇⊥θ|, we obtain the formula (107),
and the claim is proved.

Now, integrating (107) along the trajectory for t ∈ [0, s], we obtain
∂

∂s
|∇⊥θ(X (α, s), s)| �

∣∣∣∣ ∂

∂s
∇⊥θ(X (α, s), s)

∣∣∣∣
= |(Ds∇⊥θ)(X (α, s), s)| = |U∇⊥θ(X (α, s), s)|

= |S0(α)ω0(α)| −
∫ s

0
(ζ · Pξ)(X (α, τ ), τ )|ω(X (α, τ ), τ |dτ .

After integrating this again with respect to s over [0, t], we find

|∇⊥θ(X (α, t), t)| � |∇⊥θ0(α)| + |∇⊥θ0(α) · ∇u0(α)|t
+
∫ t

0

∫ s

0
[ζ · Pξ]−(X (α, τ ), τ )|∇⊥θ(X (α, τ ), τ )|dτds.
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Thanks to Theorem 3.8 we find

|∇⊥θ(X (α, t), t)| � (|∇⊥θ0(α)| + |∇⊥θ0 · ∇u0(α)|t)×
× exp

(∫ t

0

∫ s

0
[ζ · Pξ]−(X (α, τ ), τ )dτds

)
.

Taking the supremum over a ∈ R
2, and integrating it with respect to t over [0, T ]

after multiplying by T − t , we obtain

∫ T

0
(T − t)‖∇⊥θ(t)‖L∞dt � (‖∇⊥θ0‖L∞ + ‖∇⊥θ0 · ∇u0‖L∞ T )×

×
∫ T

0
(T − t) exp

(∫ t

0

∫ s

0
‖[ζ · Pξ(τ )]−‖L∞dτds

)
dt.

Applying the blow-up criterion of Theorem 6.3, we obtain the desired conclusion. �

The following is a localized version of Theorem 6.5.

Theorem 6.6 Let (u, p) ∈ C1(B(x0, r) × (T − r, T )) be a solution to (E) with u ∈
C([T − r, T ); W 2,q(B(x0, r))) ∩ L∞(T − r, T ; L2(B(x0, r))) for some q ∈ (2,∞).
Let us assume ∫ T

T −r
‖u(t)‖L∞(B(x0,r))dt < +∞. (110)

If either

∫ T

T −r
(T − t) exp

(∫ t

0

∫ s

0
‖[ζ · Pξ]−(τ )‖L∞(B(x0,r))dτds

)
dt < +∞,

or
lim sup

t→T
(T − t)2‖[ζ · Pξ]−(t)‖L∞(B(x0,r)) < 2,

then for all ε ∈ (0, r) lim supt→T ‖u(t)‖W 2,q (B(x0,ε)) < +∞.

For the proof we first show that the condition (110) implies that the mapping t 	→
X (α, t) belongs to C([T − r, T ]; R

3) for all α ∈ B(x0, r). Then, the other part of
the proof follows by applying the continuity argument. For more details we refer to
[15].
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