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Abstract

The plant rhizosphere hosts a vast array of microbes including bacteria, fungi, and
others that provide nutrient absorption and plant protection among other crucial
functions. Recent research shows that the plant defense system through the
influence of secondary metabolites in root exudates and defense hormones shapes
the rhizosphere and endosphere microbiome, promoting certain taxa while
removing others. The root-associated microbiota deploys their repertoire of
secondary metabolites to antagonize pathogens even before they get to the
plant, acting as the true first line of defense while also priming systemic plant
defense. Attempts to promote plant protection through the use of one or more
such beneficial microbes have not yielded consistent results in field settings.
Disease-protective soils that confer strong plant protection have spurred interest
in the use of the microbiome to bolster plant protection. The consistent theme
arising in recent research has been that healthy resilient microbiomes
corresponding to better plant protection are characterized by a higher diversity
of microbes, likely nurtured by richer host root exudates. Relatively higher
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microbial diversity is detected in wild relatives of crops, organic farms, and
disease-suppressive soils as opposed to domesticated crops with inorganic fertil-
izer farming, which also display reduced symbiotic interactions. These
observations suggest that a good investment in sustainable farming would be to
harness diverse beneficial microbial communities for agriculture and to engineer
crop plants to recruit and retain the same, akin to their wild relatives.
Microbiome-based agriculture, free from toxic and polluting pesticide and fertil-
izer use, is, therefore, an exciting advance towards sustainability.
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9.1 Introduction

All eukaryotes display complex associations with microbial communities (Lareen
et al. 2016). The rhizosphere microbiome refers to the teeming diversity of microbes
including bacteria, fungi, oomycetes, archaea, viruses, and protists inside, on, or
around plant roots in the soil forming a complex ecosystem (Compant et al. 2019);
specifically, the term microbiome indicates the genetic information that identifies
these microbes. Rhizosphere microbes compete with each other and the plant for soil
nutrients and organic compounds and often assist the plant in accessing the trove of
nutrients from the soil. Some of these microbes are free-living, and some colonize
the root surface (rhizoplane), while others can live inside the roots and are referred to
as endophytes. The best-characterized endophytes include the nitrogen-fixing Rhi-
zobium and arbuscular mycorrhizal fungi. Fungi are also vital members of the
rhizosphere microbiome and an estimated 80% of angiosperm species are supposed
to associate with mycorrhizal fungi (Wang and Qiu 2006).

The microbiome of an organism serves as an extension of its genome (Turner
et al. 2013), conferring new genomic and biochemical functional capabilities. The
rhizosphere microbiome bestows on the plants a vastly extended capability of
nutrient absorption, disease resistance, immune regulation, and stress tolerance and
is an important determinant of growth and productivity (Berendsen et al. 2012;
Perez-Jaramillo et al. 2016). The rhizosphere microbiome of each plant is influenced
by many factors—primarily the soil microbial diversity which is used to seed the
microbiome; the nature of the soil, including water, nutrient, mineral content, and
pH; plant genotype; and other environmental conditions. Microbes are attracted to
root exudates and other organic material secreted by the roots which contain
nutrients and signals to attract microbes for colonization through a process referred
to as rhizodeposition, which alters the chemical nature of the rhizosphere environ-
ment. Up to 40% of photosynthetically fixed carbon and 20% of plant nitrogen may



be released into the soil environment (Odelade and Babalola 2019; Whipps 1990).
This highlights the significant investment made by the plant to nurture its
microbiome. The quality of the root exudates is dependent on the host genotype
and its products of primary and secondary metabolism and is also influenced by the
environment; hence, the rhizosphere microbiome composition is a function of the
genotype-environment interactions with soil being the major seeding factor.
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From a plant defense standpoint, the microbiome functions as an additional layer
of protection against pathogens. The existence of certain microbes in the rhizosphere
can reduce or avert plant disease (Newitt and Prudence 2019). Rhizosphere microbes
add to the repertoire of defense proteins that plants produce such as chitinases and
proteases to suppress pathogens (Pinski and Betekhtin 2019). The microbes can
synthesize novel antimicrobials that the plant cannot make (Rout 2014), restricting
the growth of certain microbes, including potential pathogens. Rhizosphere coloni-
zation of bacteria can also induce systemic defense in a process referred to as
induced systemic resistance (ISR), wherein plants are primed for a faster and
stronger response for defense against infections.

The plant immune system also plays a significant role in selecting microbes from
the soil environment (Leach et al. 2017). Plants respond to microbes in the rhizo-
sphere through a process is known as MAMP-triggered immunity (MTI), which
senses microbial structures and secretions and limits microbial access to the root
environment. In addition, plants utilize a large diversity of secondary metabolites to
selectively retain certain microbes while targeting others. For example, the plant
stress hormone salicylic acid gates the plant endosphere and limits access to certain
microbes, thus shaping the microbiome composition (Lebeis et al. 2015). The plant
commensals and symbionts have evolved to tolerate or dampen plant immunity to
survive in the rhizosphere and endosphere. The beneficial survivors in the rhizo-
sphere not only stimulate plant growth but also protect them from stress in return for
organic carbon and other nutrients. Thus, the plant immune system and the selected
rhizosphere microbiota mutually benefit each other.

Crop disease accounts for major losses in agriculture and disease resistance can
be bred into crops, but evolving pathogens can overcome the resistance in field
settings (Wille et al. 2019). Modern agriculture has been based heavily on chemical
application and the effect of pesticides has adverse effects on the environment
(Gomez Exposito et al. 2017). For generations, humans have unwittingly as well
as knowingly manipulated the rhizosphere microbiome to optimize plant growth.
Soil amendments ranging from manure to compost involving microbe-driven fer-
mentation processes constitute an important part of organic farming and enrich the
root microbiome. In recent decades, farmers have used one or more beneficial plant
growth-promoting rhizobacteria (PGPR) such as Pseudomonas and Bacillus species
to enhance plant growth and protection through biological control of pests and
pathogens (Rosier et al. 2016; Kloepper et al. 1980). Appreciating that microbes
are crucial drivers of agricultural productivity (Qiu et al. 2019), recently the focus
has shifted to utilizing the soil microbiome to sustainably improve crop production
without the use of polluting fertilizers and harmful pesticides (Philippot et al. 2013).
To realize this, it is important to approach plants that need protection as holobionts



that are intimately and inseparably tied to their microbiome and maximize the
positive effects of the microbiome (Wille et al. 2019). The one plant-one pathogen
model is now giving way to the pathobiome concept, which considers that the effects
of the pathogen are moderated by the action of the commensals and symbionts such
as those in the rhizosphere microbiome as well as the environment (Bass et al. 2019).
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Only a fraction of the microbiome can be cultivated in artificial media and early
estimates ranged from only 1% to 10% (Conn et al. 1918) as it is a challenge to
reproduce the conditions required to sustain many species; recent research shows
that these predictions are an underestimate. Culture-independent identification of
bacteria through DNA sequencing has enabled the identification of bacteria recalci-
trant to culture. The development of high-throughput next-generation sequencing
has facilitated shotgun metagenome sequencing and made possible the identification
of millions of sequences per sample and dramatically improved the resolution of
identification to include even rare species (Turner et al. 2013). Most importantly, this
has led to the identification of microbes that are recalcitrant to culture and broaden-
ing of our understanding of three-way plant-rhizosphere microbiome-pathogen
interactions in an unprecedented fashion (Wille et al. 2019). The study of the
metaphenome, which encompasses not only the metagenome and metatranscriptome
but also the metaproteome and metametabolome can help appreciate the full func-
tional potential of the rhizosphere microbiome on a global scale (Jansson and
Hofmockel 2018).

The improved ability to culture bacteria has also enabled the development of
synthetic communities (SynComs) of bacteria that have enabled a deeper under-
standing of microbial community functions, their interactions with the plant, and
plant responses to them. This information can facilitate the development of new
strategies including improving plants to adopt better microbiomes, applying optimal
microbial communities, plant probiotics, and microbe-derived products for better
plant growth and biological control of pests and pathogens (Levy et al. 2018; Rosier
et al. 2016). The discovery that plant genotype influences microbiome composition
has also important connotations to improve agriculture (Leach et al. 2017).

Sustainable agriculture is a priority in serving the burgeoning human population,
which has increased sevenfold since the beginning of the nineteenth century. It will
be an important strategy to combat the rising challenge to grow food and fodder in
less than ideal conditions including dwindling arable land and more hostile climate
conditions triggered by climate change (Tilman et al. 2002; McNear 2013).
Harnessing the rhizosphere microbiome could improve crop productivity, decrease
losses from plant disease, and reduce the use of pesticides (Turner et al. 2013). In this
chapter, we discuss the rhizosphere microbiome in the context of agriculture and
how the understanding of plant immunity-microbiome interactions can be utilized
for sustainable agriculture.
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9.2 Understanding Rhizosphere Microbiome Interactions
with Plant Defense

9.2.1 Rhizosphere Colonization

Plant-microbe association in the rhizosphere is largely driven by mutual metabolic
needs. Competing or cooperating microbes influence each other’s survival and
abundance, while the plant recruits and selects microbes from the pool in the soil
environment. The plant genotype, as well as the environment, can affect the mor-
phology of the root as well as the chemical composition of the root exudates and
other plant material. The amount of organic compounds like sugars and amino acids
and inorganic nutrients can dictate the composition and abundance of microbial
species in the rhizosphere (Fierer 2017; Rout 2014). The colonization of the rhizo-
sphere by microbes proceeds through several steps: recruitment and motility, root
surface colonization, and in some cases biofilm formation (Pinski and Betekhtin
2019). Additionally, endophytic microbes also invade the host tissue for
colonization.

9.2.1.1 Recruitment
The recruitment of specific microbes by plant roots to form the rhizosphere
microbiome is an active process involving rhizodeposition (Quiza et al. 2015).
Rhizodeposition involves the secretion or release of root exudates, gases,
macromolecules, sloughed-off cells, and intact root border cells enriched in organic
compounds into the rhizosphere environment (Jones et al. 2009). Root exudates are
predominated by sugars, organic acids (as in tomato) (de Weert et al. 2002), and
amino acids (as in rice) (Bacilio-Jiménez et al. 2004) and also include metabolites
such as fatty acids, sterols, vitamins, secondary metabolites like phenolic
compounds and putrescine, volatile compounds as well as macromolecules such as
proteins, and complex carbohydrates such as cellulose and mucilage (Badri and
Vivanco 2009; Bertin et al. 2003; Quiza et al. 2015; Mendes et al. 2013). The
molecules in root exudates, released mainly from root cap cells, can attract microbes
in the surrounding soil, which can utilize them as carbon and nitrogen sources or as
signals that trigger chemotaxis (Reinhold-Hurek et al. 2015). Only microbes that
survive host defenses and competition among each other and sense these molecules
as preferred substrates venture into the rhizosphere for successful colonization
(Zhalnina et al. 2018). Many beneficial bacteria like rhizobia and Bacillus and
Pseudomonas spp. migrate to the plant through chemotaxis and can colonize on or
inside the plant. Thus, root exudates are critical determinants of the root and
rhizosphere microbiome composition (Rout 2014; Turner et al. 2013).

Certain metabolites in root exudates help recruit beneficial bacteria. For instance,
the release of the organic acid malic acid in exudates triggered by foliar infection
with Pseudomonas syringae enlists the beneficial bacterium Bacillus subtilis
(Rudrappa et al. 2008). Likewise, citric acid and malic acid released by tomato,
watermelon, and cucumber roots promoted positive chemotaxis of beneficial Pseu-
domonas fluorescens WCS365, Paenibacillus polymyxa, and Bacillus



amyloliquefaciens SQR9, respectively (de Weert et al. 2002; Ling et al. 2011; Zhang
et al. 2014). Thus, the attraction of beneficial bacteria by exuding organic acids is a
common phenomenon in the rhizosphere.
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9.2.1.2 Surface Colonization and Biofilm Formation
Root exudates attract a variety of bacteria, but only those that can make contact with
the root can colonize the root surface and access the interior (Pinski and Betekhtin
2019). Protein-based fimbriae, pili, adhesins, and curli fibers can facilitate the
physical attachment of bacteria to surfaces (Mohan et al. 2018). Bacteria can then
autoaggregate and form microcolonies. Bacteria communicate through a process
known as quorum sensing (QS), which is fundamental to the colonization of plants
by bacteria. Through this process, they sense or estimate the density of their
population or that of other bacteria by monitoring levels of certain secreted signaling
molecules called autoinducers and regulate gene expression accordingly.
Autoinducers include N-acyl homoserine lactones (AHLs) (e.g., Pseudomonas),
lipid-based diffusible signal factors (DSF) (e.g., Xanthomonas, Stenotrophomonas),
and oligopeptides (e.g., Bacillus) (Eberl 1999) (reviewed in Mohan et al. 2018).
Different bacterial species may share the same signal and display interspecies
cooperativity, or interfere with quorum sensing in other bacteria in a process
known as quorum quenching. QS communication is critical for the coordination of
various population density-driven processes such as motility, adhesion, biofilm
formation (Lareen et al. 2016), and virulence functions in pathogens. Once bacteria
adhere to root surfaces, they can form microcolonies and in some cases proceed to
develop a biofilm (Rout 2014).

Microcolonies can grow into biofilms where bacteria aggregate in several layers
ensheathed in a matrix. Biofilm-forming bacteria may shed their flagella and secrete
a glutinous substance called exopolysaccharide (EPS) among others to aid the
formation of a biofilm (Meneses et al. 2011; Żur et al. 2016). The secretion of
these substances requires cooperation between bacteria of the same or different
species, coordinated through QS (Hassani et al. 2018). Root exudates, particularly
amino acids, have an important role in the dynamics of biofilm formation and
disassembly (Kolodkin-Gal et al. 2010). Bacteria within a biofilm can also commu-
nicate to coordinate the density-dependent discharge of plant growth-promoting
compounds (Rudrappa et al. 2008). Biofilms not only serve to shield the component
bacteria from other bacteria and host immunity (Van Acker et al. 2014) but also
occupy niches to deny phytopathogens access to space, thus physically protecting
the root surface.

9.2.1.3 Invasion
Bacteria, particularly endophytes, may enter into roots passively through cracks or
may actively produce cell wall- and middle lamella-degrading enzymes (Turner et al.
2013; Viaene et al. 2016) to disrupt the barriers and gain entry into the root. The
production of these enzymes (frequently hydrolases) may be triggered by root
exudate components and amplified by QS (Levy et al. 2018). In sum, the bacteria
that establish in the rhizosphere survive a competitive environment and go through



several steps to establish contact with roots in the rhizosphere. The colonized
microbes confer numerous benefits to the plant as illustrated in Fig. 9.1.
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Fig. 9.1 Various benefits of the rhizosphere microbiota—belowground and aboveground.
Epiphytes colonize root surfaces (purple), while endophytes colonize root interiors (red). Roots
release exudates containing primary and, more selective, secondary metabolites and microbes
(bacteria shown as blue) respond to the exudates; rhizosphere microbes facilitate nutrient absorp-
tion, mineral scavenging, and nitrogen fixation; they also recruit other microbes to the root;
microbe-derived signals stimulate various systemic responses in the aerial parts of the plant as
shown

9.2.2 Selection of the Rhizosphere Microbiome by Plant Immunity

Microbial diversity decreases from the surrounding soil to the rhizosphere and is
least in the endosphere, indicating that the rhizosphere and root interiors are strong
selective environments (Rodriguez et al. 2019). At the same time, the abundance of
microbes of each type is enriched within the rhizosphere implying that the selected
microbes experience a supportive environment. Recent evidence strongly suggests
that plant immunity plays a major role in selecting the microbes in the rhizosphere.
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Plants appear to have a strong capacity to influence the composition of the
rhizosphere through the secretion of secondary metabolites and phytohormones
(Bulgarelli et al. 2015). Exudation of nutrients and antimicrobial metabolites and
proteins encourages certain microbes while deterring others (Quiza et al. 2015). It
appears that the competitive shield of rhizosphere microbes operates as the very first
layer in plant protection, while additional layers of plant immunity exist. The first
line of plant defense is the basal resistance conferred by preexisting physical and
chemical defenses. Then comes the molecular machinery of induced defense that is
activated when the plant perceives potential intruders by detecting microbial
structures or contents. Finally, induced defense involves signaling that culminates
in transcriptional and posttranslational activation of protein-based defenses in addi-
tion to refortification of physical structures and recharging of chemical defenses.

9.2.2.1 Basal Immunity

9.2.2.1.1 Physical Defenses
The waxy cuticle of the root serves as the primary physical barrier to microbial
ingress (Martin 1964). The root cap and the border cells that constitute the distal part
of the cap are also important defensive structures in the root. While the root cap
protects the growing root tip, the root border cells are sloughed off periodically and
participate in the physical and chemical defense against potentially pathogenic
microbes (Gunawardena and Hawes 2002). The sloughed-off cells and root border
cells serve a protective function for the plant by acting as bait to distract
phytopathogens while attracting beneficial bacteria (Hawes et al. 2000).

9.2.2.1.2 Basal Chemical Defenses
Root exudates, in addition to primary metabolites like sugars, amino acids, and
organic acids, are also enriched in secondary metabolites relevant to plant immunity
and thus begin to target specific microbes even before they have come into contact
with the plant. Several defense-related metabolites differentially influence (attract,
deter, or kill) different sets of microbes, and the resultant microbial community is a
consequence of the collective selective pressure exerted by the plant metabolites and
proteins in combination with those released by microbes. Some defense metabolites
are produced before the onset of stress and are coined phytoanticipins (VanEtten
et al. 1994). Phytoanticipins include benzoxazinoids, cyanogenic glycosides,
glucosinolates, and saponins (Pedras and Yaya 2015).

9.2.2.1.2.1 Phenolic Compounds
Application of a mixture of root exudate-based phytochemicals followed by 16S
rRNA profiling in Arabidopsis revealed that phenolic compounds in root exudates
had a stronger impact than other metabolites on the root microbiome composition
through suppression of certain members while promoting the growth of others (Badri
et al. 2013). Moreover, plant phenolic compounds induced the expression of the
antifungal compounds 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin (PLT) in
the beneficial P. fluorescens CHA0 (de Werra et al. 2011). Phenolics may serve as



substrates or as signals to certain bacteria and are positively correlated with the
enrichment of certain beneficial bacteria such as Streptomyces (Newitt and Prudence
2019). Alteration in phenolic compound profile in poplar cinnamyl-Co reductase
(CCR) mutant resulted in shifts in the root microbiota composition (Beckers et al.
2016), illustrating the importance of phenolics in microbiome homeostasis.
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Fig. 9.2 Local and systemic protection conferred by rhizosphere microbes. Beneficial bacteria
such as Bacillus sp. and Pseudomonas sp. can antagonize other microbes, including potential
pathogens, through antibiosis, for instance, by producing antimicrobial compounds. Bacillus
sp. can suppress plant defense (MTI/PTI, MAMP/PAMP-triggered immunity) using effector
proteins; this allows them to colonize. Iron deficiency can signal through the ethylene pathway
(EIN3/EIL), which promotes iron import through transporters. Both ethylene signaling and Pseu-
domonas simiae (fluorescens) can activate the transcription factor MYB72 which can trigger the
production of the secondary metabolite coumarin and also induce ISR (induced systemic resis-
tance). Coumarin secretion helps with the iron acquisition as well as serves as an antimicrobial to
reshape the microbiome. Pathogen attack can stimulate malate release which triggers biofilm
formation in Bacillus. The physical occupation by a biofilm protects the plants from pathogens.
ISR stimulates the priming of defense in systemic tissues. While the defense hormones salicylic
acid, jasmonic acid, and ethylene can also stimulate structural defenses, they can also activate
primed defense gene expression (PR, MYC, PDF) against both biotrophic and necrotrophic
pathogens

Phenolics may be simple phenols like coumarins or complex phenols like
flavonoids. Coumarins are secondary metabolites that protect plants from pathogenic
fungi. The release of coumarins by roots is triggered by beneficial bacteria during
iron starvation and is dependent on a root-specific transcription factor, MYB72
(Fig. 9.2) (Stringlis et al. 2018). One such coumarin, scopoletin, not only mobilizes
iron but also exhibits antimicrobial activity against pathogenic fungi, while not
affecting some beneficial bacteria. Recent evidence suggests coumarins also inhibit



biofilm formation in bacteria (Reen et al. 2018), thus potentially affecting the ability
to compete for bacteria to establish themselves in rhizosphere niches. Thus, benefi-
cial bacteria can restructure the microbiome by triggering the release of selective
metabolites like coumarin from plants. Flavonoids are plant-specific polyphenols
that are critical determinants of the root microbiome (Weston and Mathesius 2013),
particularly enriched in the maize and Arabidopsis rhizospheres (Pétriacq et al.
2017). The role of flavonoids in plant-microbe interactions was underscored when
they were identified as plant signals exuded by legume hosts to recruit modulating
Rhizobium species (Cooper 2007).
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9.2.2.1.2.2 Other Secondary Metabolites
Benzoxazinoids are an important group of secondary metabolites functioning in
defense against pathogens and pests and are derived from indole (Zhou et al. 2018).
They are abundant in maize and other Poaceae members. Benzoxazinoids have been
shown to affect rhizosphere microbiome composition in maize by specifically
affecting certain groups of bacteria (Hu et al. 2018). Additionally, a type of
benzoxazinoid termed DIMBOA also helps recruit and colonize beneficial microbes
like Pseudomonas putida (Neal et al. 2012). Saponins are constitutive phytoanticipin
antimicrobial metabolites with defense functions, derived from the fusion of
triterpenoid or steroid groups with sugar groups (Pedras and Yaya 2015). Well-
known examples are saponins avenacin A-1 and avenacoside B that influence
microbiota in oats and confer resistance to fungal pathogens (Papadopoulou et al.
1999). Strigolactones are often released by roots during nitrogen or phosphate
starvation and help recruit beneficial microbes (Yoneyama et al. 2012). Like
flavonoids, strigolactones also serve as signals for a symbiosis of plants with
mycorrhizal fungi and parasitic plants (Perez-Jaramillo et al. 2016). Some secondary
metabolites mimic bacterial AHLs and manipulate bacterial quorum sensing. For
example, plants like sweet basil release rosmarinic acid (RA) in root exudates in
response to infection with Pseudomonas aeruginosa. RA directly binds to a QS
response regulator and triggers premature QS signaling to suppress microbial growth
(Corral-Lugo et al. 2016). Thus, plants have a versatile array of secondary
metabolites that exert a strong effect on the rhizosphere and endosphere to sculpt
the root microbiome.

9.2.2.2 Induced Immunity

9.2.2.2.1 MAMP-Triggered Immunity (MTI)
An important challenge that plants face when encountering a myriad of microbes in
the rhizosphere is distinguishing between pathogenic and nonpathogenic species. In
some cases, plant pathogens and nonpathogens are physically not very different, and
the functional differences may arise simply by the gain or loss of a few pathogenicity
islands in some cases (Melnyk et al. 2019b); this complicates the distinction between
pathogens and nonpathogens for the plant. Induced plant defense responses may be
triggered by recognition of conserved bacterial structures (microbe-associated
molecular patterns or MAMPs) on bacteria in a process known as MAMP-triggered



immunity (MTI). Plant cell surface pattern recognition receptors (PRRs) recognize
MAMPs such as lipopolysaccharide (LPS), EF-Tu, and flagellin through cognate
PRRs (e.g., FLS2, a leucine-rich repeat receptor-like kinase or LRR-RLK) to trigger
an immune response. A typical MTI defense response includes the generation of
reactive oxygen species (ROS), proton influx, calcium level spike, MAP kinase
signaling, and transcription of antimicrobial pathogenesis-related (PR) genes, and
collectively, these processes serve to limit pathogens (Trdá et al. 2014). MTI is
important to limit microbial growth (Dangl et al. 2013) and is expected to be an
important factor in gating the root microbiome.

9 Microbiome-Based Sustainable Agriculture Targeting Plant Protection 149

For symbiotic bacteria and fungi, microbially produced signals are recognized by
the plant to enable colonization (Pinski and Betekhtin 2019). For example, Rhizo-
bium, an endosymbiont establishes symbiosis with legume hosts through a
lipochitooligosaccharide NOD factor signal, while mycorrhizal fungi use
chitooligosaccharides that are recognized by host roots (Leach et al. 2017). These
signals are structurally similar to the bacterial MAMP peptidoglycan and the fungal
MAMP chitin, respectively (Liang et al. 2014) and recognized by receptor-like
kinases (RLKs) in plants to initiate symbiosis (Zipfel and Oldroyd 2017). Although
MTI is an important defense response in the roots, profiling the PRR FLS2 expres-
sion in roots suggests that MTI may be more actively induced in the inner layers of
the root (e.g., pericycle in stele) and in areas most susceptible to infection—the entry
sites (Beck et al. 2014; Chuberre et al. 2018; Wyrsch et al. 2015). The abundance of
MAMPs in the soil may prompt desensitization of the MTI response in the outer
layers. Recently, mounting evidence indicates that beneficial microbes actively
suppress or evade host immunity to engage in symbiosis (Yu et al. 2019).

9.2.2.2.2 Induced Chemical Defenses
In contrast to phytoanticipins that are constitutively produced, phytoalexins are
secondary metabolites that are produced in response to pathogen infection.
Phytoalexins are produced in both root and shoot infections (Duan et al. 2014) and
can impact rhizospheric and endophytic bacteria composition (Pinski and Betekhtin
2019). A variety of phytoalexins are produced by plants, many in a genotype-
specific manner; for example, camalexin in Brassicaceae members, capsidiol in
capsicum, gossypol in cotton, and pisatin in pea (Preisig et al. 1990). Such defense
metabolites play significant roles in defining the characteristic microbiomes of
various plant species.

9.2.2.3 Plant Defense Hormones
That phytohormones are important in the regulation of microbial community com-
position is evident with the observation that treatment with hormones as well as
defense hormone signaling mutants altered root exudate and microbial profiles
(Leach et al. 2017). Three major plant defense hormones are salicylic acid (SA),
jasmonic acid (JA), and ethylene. Salicylic acid mediates defense against biotrophic
pathogens and is important for systemic acquired resistance (SAR), a resistance
mechanism that is triggered in the shoot (Glazebrook 2005). On the other hand, JA
and ethylene function in resistance to necrotrophic pathogens in the shoot, but are



also required for induced systemic resistance, a resistance pathway initiated in roots
upon interaction with beneficial microbes. These three hormone pathways can
function in defense signaling with additive and synergistic effects, and the loss of
all three hormonal pathways results in aberrant rhizosphere microbiome composition
or dysbiosis that may be linked with reduced field survival (Lebeis et al. 2015). Each
of these hormones play an active role in shaping the rhizosphere and/or endosphere
microbiome.
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9.2.2.3.1 Salicylic Acid
Salicylic acid (SA) has been detected in root exudates of plants (Khorassani et al.
2011; Ling et al. 2013) and is among the preferred nutritional substrates for certain
rhizosphere bacteria, alongside other organic acids, as observed in the oat, Avena
barbata (Zhalnina et al. 2018). Besides serving as a nutrient, SA could also serve as
a signaling molecule for some bacteria (Lebeis et al. 2015). The biosynthesis of SA
in plants is suppressed by beneficial microbes; for example, an effector protein
produced by the beneficial fungus Piriformospora indica suppressed the expression
of the plant SA biosynthetic transcription factor CBP60g presumably to suppress
SA-mediated defense and to facilitate its own colonization (Akum et al. 2015). SA
also has a marked influence on the rhizosphere microbiome composition and can
inhibit mycorrhizal and root nodule symbioses (Rodriguez et al. 2019). A defect in
SA-mediated defense leads to increased colonization of certain bacterial species
including Salmonella enterica and the nitrogen-fixing Gluconacetobacter
diazotrophicus (consistent with the inhibition of nitrogen-fixing bacteria by SA),
but not other bacteria such as Klebsiella pneumoniae (Pinski and Betekhtin 2019).
Arabidopsis mutants exhibiting altered SA synthesis and signaling, but not JA and
ethylene mutants, showed distinct core root microbiomes at the family level (Lebeis
et al. 2015), while previous studies showed little effect of SA on the microbiome
(Bodenhausen et al. 2014; Carvalhais et al. 2014; Doornbos et al. 2011). SA
appeared to limit the growth of several families of bacteria as they were enriched
in SA defense-deficient mutants in root interiors, suggesting that SA plays an
important role in restricting the growth of certain taxa in wild-type plants while
allowing the growth of others. The disruption of SA-mediated defense also reduced
leaf endophytic diversity (Kniskern et al. 2007). Thus, it is clear that SA is a strong
component of plant defense in gating rhizosphere microbes and regulating the
microbiota composition. Consistently, beneficial bacteria such as Pseudomonas
putida appear to modify the microbial community by activating SA signaling in
Arabidopsis (Sheoran et al. 2016).

9.2.2.3.2 Jasmonic Acid
The effect of JA on symbiosis varies with plant genotype and conditions (Reverchon
et al. 2019). Certain microbes not only suppress SA defenses, but some like the
mycorrhizal fungus Laccaria bicolor also inhibit JA signaling to enable coloniza-
tion; an L. bicolor effector prevents the degradation of the JA repressor JAZ to keep
early JA-mediated defense inhibited to allow colonization (Plett et al. 2014). Other
beneficial fungi, P. indica, and the beneficial bacteria Bacillus subtilis suppress early



PTI in Arabidopsis using the JA pathway as the defense suppression is lost in JA
signaling mutants, jar1 and jin1 (Jacobs et al. 2011; Lakshmanan et al. 2012). While
the loss of SA defense reduced endophytic diversity in Arabidopsis roots, on the
contrary, activation of JA signaling through exogenous JA application reduced root
endophytic diversity in wheat (Liu et al. 2017). The shift in microbiome composition
following JA application is attributed to changes in root exudate composition
(Yu et al. 2019).
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9.2.2.3.3 Ethylene
Colonization of plants such as Medicago truncatula (Iniguez et al. 2005) and
sugarcane (Cavalcante et al. 2007) with beneficial microbes triggered ethylene
signaling and gene expression early on and an ethylene-insensitive mutant of
M. truncatula was observed to be over-colonized by the endophyte K. pneumoniae
(Iniguez et al. 2005), indicating that ethylene plays a restrictive role in microbial
colonization consistent with its role in plant defense. Ethylene also inhibits root
nodule symbiosis as well as the association with mycorrhizal fungi (Rodriguez et al.
2019). It is, therefore, not surprising that some bacterial species including Bacillus
and Pseudomonas produce the enzyme 1-aminocyclopropane-1-carboxylate (ACC)
deaminase, which reduces root ethylene biosynthesis by degrading the ethylene
precursor, ACC (Compant et al. 2019; Glick 2014), and this was shown to enhance
plant stress tolerance and root development and possibly improved general microbial
colonization. Suppression of ethylene production can be beneficial to the plant as
ethylene is a stress hormone that can be detrimental to plant growth at higher levels
(Vaseva et al. 2018). Unexpectedly, ablation of ethylene biosynthesis and signaling
in Nicotiana attenuata mutants reduced endophytic microbial diversity, suggesting
that ethylene affects microbial homeostasis within the plant and certain bacteria may
require plant ethylene signaling for invasive colonization in roots (Long et al. 2010).
In contrast, in Arabidopsis, root microbial diversity was not affected, but rhizosphere
bacterial abundance was reduced in ethylene mutant ein2. Thus, ethylene, like SA
and JA, functions inflict both positive and negative effects on root microbiota. SA
and JA/ethylene pathways generally function antagonistically as they confer resis-
tance to different kinds of pathogens, but in the roots, they modulate microbial
homeostasis as they all appear to generally prevent microbial ingress and overgrowth
of certain bacteria while in some cases promoting endophytic diversity. The activa-
tion of these pathways during stress may be further instrumental in reshaping the
microbiome.

9.2.3 Modulation of Plant Immunity by the Rhizosphere
Microbiome

While the root microbiome is, in large part, selected by the plant immune system,
they also have a reciprocal effect on plant immunity. It is now well established that
the root microbiome expands plant immunity and functions as an additional layer of
defense against pathogenic microorganisms, providing unique opportunities to



develop novel tools in crop protection and enhance crop productivity sustainably.
Two of the ways the root microbiota participates in plant disease resistance are direct
disease suppression (DDS) and induced systemic resistance (ISR) (Fig. 9.2).
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9.2.3.1 Local Disease Suppression
DDS takes place either in the rhizosphere or the root interior and is commonly based
on competition for nutrients and niches, parasitism, antibiosis, or combinations of
the abovementioned mechanisms. DDS has ideally exemplified in disease-
suppressive soils, soils in which a soilborne pathogen cannot cause disease because
of the presence and/or increased abundance of potent antagonistic microbes. The
mechanisms involved in direct pathogen suppression include mainly competition for
carbon and siderophore-mediated competition for iron, the production of cell-wall-
degrading enzymes such as chitinases, and the production of various antibiotics
including the well-studied antibiotic compounds 2,4-diacetylphloroglucinol
(DAPG) and phenazines (PHZ) (Rout 2014). More recently, volatile molecules
have been proposed to contribute to DDS in suppressive soils. These functions are
further elaborated below in the context of disease-suppressive soils.

9.2.3.2 Induced Systemic Resistance
ISR is initiated in the roots upon microbial colonization and confers broad-spectrum
systemic resistance to aboveground plant tissues against pathogens and even insects
(Pieterse et al. 2014). ISR was first described in studies of the early 1990s focusing
on the ability of Pseudomonas sp. rhizobacteria to trigger systemic resistance in
carnation, wheat, and common beans. Since then, the phenomenon has been shown
to occur in numerous dicotyledonous and monocotyledonous plant species,
suggesting that ISR represents a conserved function of the root microbiome. Inter-
estingly, novel findings in Arabidopsis suggest that plants experiencing pathogen
attack in the aboveground tissues modify the composition of the exudates they
excrete in the root vicinity to recruit a potent consortium of ISR-inducing
rhizobacteria (Melnyk et al. 2019a). Such microbiota-dependent legacy that plants
generate in the soil under stress conditions has been shown to enhance the defense
capacity of future generations against pathogens thereby promoting offspring sur-
vival in hostile environments. The catalog of ISR-eliciting microorganisms is long
and includes both individual strains and microbial consortia. Epiphytic or endo-
phytic soilborne bacteria belonging to the genera Pseudomonas, Bacillus, Serratia,
and Streptomyces represent typical examples of ISR-eliciting microbes. Symbiotic
rhizofungi such as Trichoderma spp., mycorrhizal fungi like Rhizophagus
irregularis (syn. Glomus intraradices), the mycorrhizal-like endosymbiotic fungus
Piriformospora indica, and nonpathogenic Fusarium species are also capable of
eliciting ISR. Interestingly, several of the same strains involved in LDS have been
shown to be potent ISR inducers.

Epiphytic ISR-inducing bacteria capable of colonizing the root system of host
plants form biofilms in the root epidermis, whereas endophytic ISR-inducing bacte-
ria enter the root interior by either actively penetrating the external root layers or
entering passively through wounds and discontinuing in the epidermis such as those



formed during lateral root emergence (Pieterse et al. 2014). Although ISR-inducing
rhizobacteria are not enveloped in symbiotic organs, such as the root nodules in the
Rhizobium symbiosis, they commonly induce significant alterations in the root
system architecture. Such alterations contribute to plant growth promotion but also
enhance the exudation of energy-rich compounds taking into consideration that most
of the root exudation takes place in the elongation zone of young roots. Yet plant
growth promotion and ISR are mediated by distinct signaling pathways in the host
tissues. Evidence is also accumulating that rhizobacteria of the root microbiome,
including ISR-inducing bacteria, suppress plant defense responses at the early stages
of the interaction to efficiently colonize plant tissues. Yet plants have evolved
immunity-based genetic networks to control the population of epiphytic and endo-
phytic communities of microbes. In Arabidopsis, disruption of such networks has
been recently shown to result in a form of dysbiosis.
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Several microbial determinants have been proposed to function as ISR elicitors,
among them, molecules with well-established immune-stimulatory properties such
the MAMPs flagellin and LPS, but also iron-regulated siderophores, the antibiotics
DAPG and pyocyanin, N-acyl homoserine lactones, and biosurfactants such as
cyclic lipopeptides (Rout 2014). These elicitors are likely to act redundantly during
the elicitation of ISR. More recently, volatiles emitted by ISR-inducing strains have
been shown to trigger the expression of the essential for ISR establishment MYB72
transcription factor (Fig. 9.2). Despite the extended list of ISR-eliciting molecules,
with few exceptions such as the volatiles mentioned above, little is known on the
hierarchy that those molecules function during the initiation of ISR and the exact
contribution of each determinant to the phenomenon.

The molecular mechanisms underpinning rhizobacteria-mediated ISR are well-
studied in Arabidopsis (Pieterse et al. 2014). In Arabidopsis, ISR triggered upon root
colonization by the model strains Pseudomonas simiae WCS417 depends on an
intact jasmonic acid (JA) and ethylene (ET) signaling pathway and further requires
the transcriptional regulators MYC2 and NPR1. In contrast to the costly plant
defenses activated by pathogens or insects, the establishment of ISR is not correlated
with substantial reprogramming of the host’s transcriptome. Instead, upon pathogen
attack, immunized plants display a boosted immune reaction resulting in enhanced
resistance to the attacker encountered. This phenomenon is called priming and
shares striking similarities with the potentiation of cellular defense responses in
primed monocytes and macrophages in mammals. In roots, initiation of ISR is
regulated by the root-specific transcription factor MYB72, a member of the R2R3
family of MYB transcription factors, and components of the ET signaling pathway
that locally act in the generation or translocation of a thus-far unidentified systemic
signal. Importantly, MYB72 is also required for ISR triggered upon root coloniza-
tion by the beneficial fungus Trichoderma asperellum strain T34, suggesting that
this transcription factor is a node of convergence in signaling pathways induced by
diverse types of beneficial soilborne microbes. MYB72 regulates the secretion of
plant-derived coumarins, suggesting that these molecules are essential components
of the ISR signaling pathway. Thus, root microbes play a vital role in stimulating



local and systemic plant defenses for enhanced disease resistance, which, in turn, can
reshape the rhizosphere microbiome through altered root exudation.
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9.3 Microbiome and Modern Agriculture

9.3.1 Impact of Modern Agricultural Practices on the Rhizosphere
Microbiome

9.3.1.1 Plant Domestication
Generations of modern agricultural practices have markedly altered rhizosphere
microbes. Plant protection in agriculture has long involved breeding for resistance
and, more recently, genetic modification for enhanced resistance, but the develop-
ment of broad-spectrum resistant crops is time-consuming and subject to stringent
regulation and public approval (Syed et al. 2018). Moreover, resistance in crops can
break down over the years, as observed for grapevine mildew, wheat rust, and rice
blast. One of the reasons behind the resistance breakdown is that pathogens can
evolve rapidly (Peressotti et al. 2010) and recently there has been an alarming rise in
new fungal phytopathogens (Fisher et al. 2012). To counter this, modern agriculture
has witnessed a massive surge in the use of biocides, including toxic pesticides and
herbicides and yield-promoting fertilizers that can have a telling nontarget effect on
the rhizosphere microbial community either directly or indirectly through their
impact on the plants (Turrini et al. 2015).

9.3.1.1.1 Changes in the Rhizosphere Microbiome
Plant domestication through agriculture appears to have resulted in a reduction in
both plant and microbial genetic diversity through the loss of plant traits and wild
microbial species that were originally adapted for the plants (Perez-Jaramillo et al.
2016; Compant et al. 2019). These changes in the microbiome may be small in some
cases but significant, as observed in wild and cultivated barley, beans, and sugarbeet
(Bulgarelli et al. 2015; Zachow et al. 2014; Perez-Jaramillo et al. 2017). In general
the bacterial phylum Bacteroidetes was comparatively less abundant in the
rhizospheres of cultivated crop plants such as beans and other plant species com-
pared to their wild counterparts, which are colonized more abundantly by
Proteobacteria and Actinobacteria (Perez-Jaramillo et al. 2017; Pérez-Jaramillo
et al. 2018). Members of Bacteroidetes, also an abundant phylum in the human
gut, are known for their propensity to metabolize complex carbohydrates, a compo-
nent that may have become more limited in agricultural crop rhizospheres. Thus,
changes in root microbiota composition could be associated with simplification of
plant exudates.

Several studies have suggested that microbial community changes during domes-
tication likely resulted from changes in root architecture, root exudate composition,
plant physiological changes, and alteration of the chemical environment (Perez-
Jaramillo et al. 2016). These changes appear to have hampered beneficial
associations with mycorrhizae and nitrogen-fixing rhizobia. Indeed, wild ancestors



g
in maize, wheat, and breadfruit showed a greater disposition to mycorrhizal
associations compared to modern varieties (Kapulnik and Kushnir 1991; Xin
et al. 2012; Zhu et al. 2001). The comparison of wild and domesticated legumes
grown in natural soil also revealed that the ability to attract and colonize a diverse
microbial community was reduced in cultivated crops, suggesting the loss of micro-
bial recruitment skills upon domestication (Mutch and Young 2004). The lower
microbial diversity in agricultural soils may also be attributed to the reduced
diversity of available microbes in agricultural soils compared to natural soils since
the selection of microbes by the plant is limited by what is available in the soil. This
is well exemplified in the study showing that the transformation of Amazon forest
areas into agricultural land resulted in shrinkage of microbial diversity (Rodrigues
et al. 2013).
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The loss of rhizosphere microbial diversity has consequences to plant health.
Generally, diversity in a microbial community ensures that competition for niches
and resources keeps pathogens at bay. Additionally, more diverse communities are
also more resilient to environmental stresses such as drought as the stress-induced
loss of important microbial species (often temporary) is compensated for by the
presence of new taxa that spring into action and help the plant withstand stress
(Xu et al. 2018). Thus, the reduction in microbial diversity in modern agricultural
soils could offer pathogenic species an opening to invade the rhizosphere and cause
disease and could also render the plants less resilient to stress.

9.3.1.1.2 Changes in Plant Morphology
Soil surface watering and fertilization in agricultural plants appear to have led to the
evolution of shallower root systems, as the nutrients are easily accessible at the
surface negating the need for deep rooting (Jackson 1995). This change in root
architecture can alter root surface niches as well as oxygen exposure near the surface
and consequently affect the microbiome, as has been suggested (Micallef et al.
2009). The shallowing of roots or loss of deep rooting in domesticated plants
compared to wild plants has been witnessed in many plant species including lettuce.
Evolutionarily, a less deep root system may have contributed to the deselection of
anaerobic root microbiota such as some members in the Bacteroidetes phylum
(Pérez-Jaramillo et al. 2018).

9.3.1.1.3 Changes in Plant Physiology
Agricultural domestication of plants has resulted in an erosion of genetic diversity as
witnessed in multiple plant species including rice, wheat, and bean (Perez-Jaramillo
et al. 2016). A general reduction of plant genetic diversity through agriculture may
be linked with a reduced ability to recruit and select rhizosphere microbial
communities (Wissuwa et al. 2008). The genetic component of rhizosphere
microbiome selection is evident from the analysis of maize recombinant inbred
lines that revealed the significant genetic contribution to microbial selection and
diversity (Peiffer et al. 2013). Specifically, plant domestication progressively
selected out secondary metabolites and volatile compounds to render plants more
palatable or less toxic to humans and livestock (Meyer et al. 2012) and this has



rendered modern crops more susceptible to insect pest herbivory, for instance (Chen
et al. 2015). Many of these metabolites are defense compounds against pathogens
and insect pests, including phenols, flavonoids, terpenes, and glucosinolates, which
almost always carry a strong taste such as bitterness, acridity, or astringence
(Drewnowski and Gomez-Carneros 2000). Such metabolic changes may have
impacted the ability of modern crops to recruit microbiota as these secondary
metabolites also play a key role in the selection and shaping of the rhizosphere
microbiome as discussed above. The root exudates of crops may also be less
complex than wild counterparts as modern wheat showed severalfold higher exuda-
tion of simple sugars such as glucose and fructose (Shaposhnikov et al. 2016). The
impact of plant domestication on rhizosphere microbes is illustrated in Fig. 9.3.
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Fig. 9.3 Impact of plant domestication and agriculture on rhizosphere microbes. Left panel,
monoculture in agriculture has resulted in the rise of pathogens, but also nurtured the development
of disease-suppressive soils which have had a protective effect in limiting pathogens; right panel,
plant domestication through agriculture had led to the loss of secondary metabolites that are key
selective agents in root exudates against microbes. The regular provision of water and nutrients has
led to the evolution of shallow root systems, which can alter microbial niches in the rhizosphere.
The root exudate composition in domesticated plants is also simpler and correlates with reduced
microbial diversity and interaction with symbiotic microbes like nitrogen-fixing rhizobacteria and
mycorrhizal fungi. In comparison, the undomesticated wild counterparts have more secondary
metabolites, deeper root systems, more complex components in root exudates, and higher microbial
diversity

9.3.1.2 Inorganic Fertilizers
Modern farming is largely inorganic farming and inorganic fertilizer treatment of
soil undoubtedly enhances plant growth, but only about 60% of the nitrogen
supplements are absorbed by the plant, and the rest leach into and contaminate
groundwater and end up in water bodies causing environmental pollution such as
eutrophication (Schmer et al. 2014). Furthermore, the treatment of plants with
nitrogen-based fertilizers for a long time resulted in the displacement of mutualists



by less mutualistic root bacteria, negating microbe-mediated benefits to the host
(Weese et al. 2015). Similar to the enrichment of certain members by eutrophication
in water bodies, fertilizer treatment promoted the growth of copiotrophic bacterial
taxa like Actinobacteria and Firmicutes with a reduction in oligotrophic species in
Acidobacteria and Verrucomicrobia (Ramirez et al. 2012). Phosphorus is another
major macronutrient for plants, but only about 5% of soil phosphorus is accessible
for uptake by the plant. To sidestep this problem, farm soil is amended with
phosphate fertilizers. Fertilizers do augment the biological activity in the soil
(Quiza et al. 2015), but appear to restructure the microbiome with the apparent
cost of microbial diversity loss.
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9.3.1.3 Pesticides
Without question, pesticides can boost crop yield through protection from pests and
plant growth promotion (Syed et al. 2018). Products like fungicides carry both
financial and environmental costs, in addition to the development of fungicide
resistance by pathogens and the need to keep developing new products (Ma and
Michailides 2005). Fungicides and other agrochemicals can also inadvertently target
the microbiomes and weaken beneficial interactions of the plant with rhizobacteria
and mycorrhizae (Berg 2009). For instance, products like Oryzalin and glyphosate
have been shown to suppress plant-associating mycorrhizae and nitrogen-fixing
bacteria, respectively (Kelley and South 2017; Santos and Flores 1995).

Taken together, many modern agricultural practices appear to have collectively
caused a shift in rhizosphere microbiomes with reduced interactions with beneficial
microbes and diminished microbial diversity compared to their undomesticated
counterparts. Soil organic matter is the driving force for rhizosphere microbiome
colonization as a source of colonization signals and sustaining nutrients. Modern
farming practices reduce soil organic matter content, compromising soil microbial
diversity (Lareen et al. 2016). Indeed, low-input farming is correlated with higher
microbial diversity characteristics of a healthy rhizosphere microbiome (Postma-
Blaauw et al. 2010).

9.3.2 Contemporary, Alternative Farming Practices

9.3.2.1 Organic Farming
Organic farming is a more sustainable alternative to modern agriculture, as it aims to
replace hazardous and polluting pesticides, fungicides, herbicides, and fertilizers
with the more eco-friendly options—organic matter (Quiza et al. 2015). Organic
farming enriches soil organic matter content and biological activity and plants
cultivated in organic soil showed greater microbial diversity and species richness
than those grown in conventional mineral soil in winter wheat, clover, and other
species (Hartmann et al. 2015; Long et al. 2010; Lupatini et al. 2016). The increased
microbial species richness may be owed to the fact that organic matter contains
complex organic substrates that may nurture a distinct and more diverse set of
bacteria. Microbial 16S rRNA profiling revealed that Proteobacteria members



were elevated in the organic soils compared to conventional soils which mainly
contained Actinobacteria (Li et al. 2012). The enrichment of Proteobacteria is not
surprising because they are among the most abundant phyla in animal feces (Shanks
et al. 2011) that are often used as soil amendments and may also indicate an
enrichment by the plant.
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Organic farming practices emphasize soil amendments including compost, ani-
mal manure, and treated sewage sludge, rich in organic matter. Compost includes
chitinous material such as crab shells, fish emulsion, and fruit pulp (Gómez Expósito
et al. 2017). Often the compost possesses biocontrol activity and affords disease
protection; for example, compost including chitosan, crab shell (chitin), and citrus
pulp protected bell pepper from Phytophthora root and crown rot (Kim et al. 1997).
In some cases, organic mulches have been supplemented with beneficial fungi to
improve disease resistance, as observed for root rot resistance to the oomycete
pathogen Phytophthora cinnamomi in avocado (Costa et al. 2000). Green manure,
consisting of cover crop plant material left to decompose on the field, not only
enriches organic matter but also acts as a mulch to retain soil moisture and suppress
weed growth (Muimba-Kankolongo 2018). The application of green manure
increased bacterial richness and soil microbial heterogeneity while also increasing
the levels of microbes that promote nutrient cycling (Ingels et al. 2005). Thus,
organic farming practices generally supported a higher microbial diversity than
inorganic farming with protective effects.

9.3.2.2 Crop Rotation
Crop rotation has been utilized as an important tool to restructure the rhizosphere
microbiota to benefit crop plants and is a mainstay in organic farming (Mazzola
2007), although it could also be practiced with modern inorganic farming. The
alternating growth of complementary plants in crop rotation—particularly with
legumes—not only increased nutrient cycling and improved soil properties but
also increased disease resistance (Ingels et al. 2005). For instance, the nitrogen-
fixing legume chickpea was found to recruit microbiome—including the plant-
protective Penicillium sp. that benefited the subsequent wheat crops (Ellouze et al.
2013). Similarly, another legume red clover developed rhizobacterial communities
that were beneficial to potato growth (Sturz et al. 2003). Thus, legumes make good
partner crops for rotation with other crops. Oats produce terpenoid avenacin that
confers resistance to the highly destructive fungal disease take-all (Begley et al.
1986). The growth of oat as a break crop before growing wheat transferred the
resistance benefits to wheat as the protective effects persisted in the soil (Huang and
Osbourn 2019). Thus, rotation or alternation of crops can result in complementary
microbiomes that are tolerated by both crops, with additive or synergistic benefits
from the mixed microbiome (Quiza et al. 2015). The mixed community has greater
microbial diversity and resilience to pathogen invasion, contributing to a disease-
suppressive effect. Furthermore, the alternation with incompatible hosts also
discourages plant pathogen survival.

Although organic farming is ecologically friendly, drawbacks include the unde-
fined nature of the amendments that limit the reproducibility of benefits (Quiza et al.



2015). Moreover, the salinity in some of the treatments and heavy metals and
therapeutic agents in biosolids and other soil amendments may be toxic to the native
soil microbiota. Nevertheless, organic farming is a more sustainable alternative to
modern inorganic farming. The effect of organic and inorganic farming on rhizo-
sphere microbes is compared in Fig. 9.4.
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Fig. 9.4 Microbiota in organic and inorganic farming. N, P, K, nitrogen, phosphorus, potassium;
“-” indicates unknown

9.3.2.3 Tillage
Tilling and turning over of soil can aerate the soil, but disrupt the soil structure and
microbial community organization and expose the soil to potential erosion and
runoff from precipitation. No-till farming preserves the microbial communities for
the next crop season and the residual plant material can sustain microbial growth. In
one study comparing the microbiomes of tilled and non-tilled farms, the bacterial
communities were not observed to be significantly different (Yin et al. 2017). It was
suggested that the tillage may affect fungal populations more as fungal enzymes may
play a more significant role in the digestion of lignocellulosic material (Baker et al.
2019).

9.3.3 Monoinoculant Biocontrol

As an alternative to inorganic and organic fertilizers, microbes such as Azospirillum
can be introduced in the field as biofertilizers that can promote plant growth,
generally by solubilizing nutrients and promoting absorption (Maeder et al. 2002;
Namvar and Khandan 2015; Qiu et al. 2019). Plant growth-promoting rhizobacteria
(PGPR) go a step further by not only improving plant growth but also enhancing



protection from diseases (Compant et al. 2019). Some PGPR produce plant growth-
promoting phytohormones including auxins, gibberellins, and cytokinins or modu-
late endogenous levels of them within the host (Compant et al. 2019; Hardoim et al.
2008). Several PGPR species including Pseudomonas, Bacillus, and Streptomyces
have been employed in agricultural soils to enhance crop growth, yield, and survival
(Sanchis and Bourguet 2008). Several Bacillus spp. have shown promising results in
conferring plant growth promotion and disease resistance under field conditions
(Syed et al. 2018). Beneficial fungal species such as Trichoderma have been
employed for a similar purpose and function (Harman et al. 2004).
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Plant protection by PGPR species involves pathogen antagonism as many of them
grow aggressively and compete fiercely and these bacteria are also referred to as
biological control or biocontrol bacteria. For example, Pseudomonas and Strepto-
myces can protect host plants through the function of antimicrobial/antibiotic/anti-
fungal compounds such as phenazine derivatives and DAPG and antimicrobial lytic
enzymes such as proteases (Newitt and Prudence 2019). Similarly, Bacillus spp.
produce antibiotics such as iturin A and surfactants well as lipoproteins that have an
antimicrobial function (Lareen et al. 2016; Turner et al. 2013). PGPR also sequester
critical nutrients such as iron using iron-scavenging siderophore proteins, thus
depriving their competitors and potential pathogens (Hassani et al. 2018). For
instance, Pseudomonas spp. suppress fungal pathogens and disease through the
use of siderophores (Mercado-Blanco and Bakker 2007). PGPR also prime the
plant immune system to trigger a rapid defense to a wide range of pathogens through
various mechanisms. One such process is induced systemic resistance (ISR), where
rhizosphere colonization triggered systemic resistance in plants. For example, field
trials showed that root colonization of Bacillus spp. enhanced resistance to the
cucumber mosaic virus (CMV) in tomatoes and cucurbit wilt disease (Zehnder
et al. 2000). Similar benefits of ISR have been observed in several crop species
(Choudhary et al. 2007).

PGPR microbial inoculants help slash the usage of polluting biocides and
fertilizers (Qiu et al. 2019), but the overall promise of biocontrol bacteria is curtailed
by their limited success and unpredictability in field settings even though they were
promising in laboratory and greenhouse experiments (Schlaeppi and Bulgarelli
2015). For instance, although Pseudomonas spp. exhibit promising biocontrol
activity against take-all disease in wheat, these strains are sensitive to desiccation
and only survive the early stages of growth on wheat in field settings and are
subsequently outcompeted (Coombs et al. 2004; Schlatter et al. 2017). Moreover,
plant protection is even more imperative in the context of climate change, which is
expected to be hostile to monoinoculant PGPRs—where all eggs lie in one basket.
These observations suggest that overreliance on single PGPR inoculants for agricul-
tural plant protection is untenable.
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9.3.4 Microbial Mixtures

Instead of single-strain PGPRs, a combination of strains holds more promise in
agriculture (Nguyen et al. 2017), particularly when the strains exhibit synergistic or
additive effects in conferring plant protection (Orozco-Mosqueda et al. 2018), as was
shown with Bacillus spp. in field trials (Zehnder et al. 2000). Similarly, a group of
six endophytes promoted resistance to tobacco wilt disease (Santhanam et al. 2015).
A diverse Pseudomonas consortium led to greater pathogen suppression and disease
protection in tomatoes, likely with the increased survival of the Pseudomonas strains
(Hu et al. 2016). Strain mixtures including Bacillus and Cutibacetrium spp.
improved growth and biocontrol of pathogens in cucumber (Raupach and Kloepper
1998). In some cases, benefits to the plant were only discernable when two Pseudo-
monas strains were used together resulting in synergistic interactions on chickpea
(Meena et al. 2010). Various studies in grapevine (Rolli et al. 2015), maize (Molina-
Romero et al. 2017), potato (De Vrieze et al. 2018), and tomato (Berg and Koskella
2018) have demonstrated that multistrain inoculations have the potential to increase
plant growth-promoting effects as compared to mono-inoculations. In some cases,
bacterial mixtures also improved tolerance to stresses such as drought, as was shown
for a cocktail of Pseudomonas, Sphingomonas sp., Azospirillum, and Acinetobacter
in maize (Molina-Romero et al. 2017).

A diverse set of microbes in a complex inoculum have the potential to occupy
different niches in the rhizosphere, expanding plant protection and boosting growth
promotion (Finkel et al. 2017). Furthermore, they may confer additive or synergistic
benefits, especially when their benefits are afforded through different mechanisms
(Timm et al. 2016). While microbial consortia often show greater potential than
single strains, sometimes they may be worse than single strains as seen in the case of
growth of grapevines during drought (Rolli et al. 2015). In another case, multiple
strains of Pseudomonas affected community stability and did not improve plant
protection (Becker et al. 2012). Other studies also witnessed multistrain inoculations
being less beneficial to the plant than single inoculants (De Vrieze et al. 2018;
Herrera Paredes et al. 2018). Furthermore, co-inoculation may produce a competitive
process that may be subjected to environmental changes, with unpredictable
outcomes. Thus, future endeavors with microbial consortia should be driven by
knowledge and evidence-based selection of complementary microbial strains.

9.3.5 Disease-Suppressive Soils

With the limitations of current single and multistrain PGPR inoculants, disease-
suppressive soils have proved not only to be a treasure trove to identify novel
individual PGPR strains but also as sources of beneficial microbiomes in agriculture.
Disease-suppressive soils are a great example of microbiome-mediated plant protec-
tion from pathogens in the soil (Gomez Exposito et al. 2017). Continual monoculture
on agricultural soils can build selective pressures against pathogens to produce
disease-suppressive soils enriched in beneficial microbes and microbial and



plant-derived antimicrobial metabolites that mediate disease suppression (Durán
et al. 2018; Santhanam et al. 2015), although this can take several years to build
(Coque et al. 2020). In disease-suppressive soils, plants can continue to be healthy
even in the presence of pathogens (Teixeira et al. 2019) and this partly results from
higher microbial diversities than in conventional soils (Garbeva et al. 2006) that can
have a protective effect against pathogens. In some cases, disease suppressiveness
may also result from changes in the relative abundance and functions of specific
bacterial groups rather than their presence or absence (Mendes et al. 2011; Chapelle
et al. 2016). Although soil suppressiveness is a complex phenomenon, the ability of
a specific plant genotype to gather in the rhizosphere disease-suppressive
communities is critical for the transition of the soil from the conductive to the
suppressive state.
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Within disease-suppressive soils, specific microbes or groups of microbes confer
disease protection to plants largely through competition, pathogen antagonism, and
the production of antimicrobial compounds (Mendes et al. 2011). For example,
Pseudomonas spp. obtained from Fusarium wilt-suppressive soil conferred resis-
tance to flax (Mazurier et al. 2009). The development of disease suppressiveness
involves the selective recruitment of beneficial microbes by the plant roots. For
instance, foliar infection with the oomycete pathogen Hyaloperonospora
arabidopsidis summoned multiple beneficial strains in the soil that functioned
synergistically to promote disease suppressiveness and this effect persisted in the
following generations (Berendsen et al. 2018). Thus, the development of disease
suppression is accomplished through changes in the microbial community and
function in the soil. Since the first report by Atkinson of a cotton-grown soil
suppressive to Fusarium wilt, several bacterial and fungal species conferring DDS
have been reported. Typical examples are individual bacterial strains belonging to
the genera Pseudomonas, Bacillus, Paenibacillus, Enterobacter, Alcaligenes, and
Pantoea; fungal strains of the genera Trichoderma, Penicillium, and Clonostachys/
Gliocladium; nonpathogenic Fusarium species; and the fungal species Verticillium
biguttatum and Pochonia chlamydosporia. Besides the commonly studied Bacillus,
Pseudomonas, and Streptomyces, many other bacterial genera including
Burkholderia, Paraburkholderia, Enterobacter, and Pantoea show pathogen antag-
onism (Compant et al. 2019) and are expected to play important roles in the
development of disease suppression. Depending on the case, these beneficiaries
have been shown to target pathogenic soilborne fungi and oomycetes but also
pathogenic bacteria, protists, and parasitic root-knot and cyst nematodes (Gomez
Exposito et al. 2017).

In addition to protective strains, disease-suppressive soils also contain microbe-
and plant-derived protective compounds that suppress soilborne pathogen growth.
This is best exemplified in the case of the wheat take-all disease caused by the fungal
root pathogen, Gaeumannomyces graminis, which has the potential to wipe out
wheat fields (James Cook 2003). The presence of Pseudomonas-derived antimicro-
bial DAPG and oat-derived avenacin in the soil corresponded with the suppression
of take-all disease in wheat (Mendes et al. 2011; Huang and Osbourn 2019;
Raaijmakers et al. 2009). Thus, in take-all decline, the severity of disease was



reduced with every generation of wheat, consistent with the development of disease-
suppressive soil (Turner et al. 2013). Compounds like DAPG and phenazines can
also prime the plant immune system, further enhancing disease resistance. Strepto-
myces spp. have also been frequently isolated from disease-suppressive soils and
their disease suppressiveness was linked with the production of antifungal volatile
organic compounds and thiopeptides (Cordovez et al. 2015; Cha et al. 2016; Newitt
and Prudence 2019). The disease suppressiveness of Paraburkholderia graminis
PHS1 was attributed to the production of sulfur-containing volatile compounds
(Carrión et al. 2018). Antimicrobials like DAPG, phenazines, and iturin A can
persist in the rhizosphere soil. Therefore, the disease’s suppressive nature in soils
can persist for generations, particularly if the plant- and microbe-derived compounds
are not volatile. Breeding crops for traits related to the recruitment of disease-
suppressive microbial communities could be an alternative breeding strategy
towards durable disease resistance.
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Microbiome studies have broadened our understanding of disease-suppressive
soils and revealed that communities constituted by distinct taxonomic groups oper-
ate to confer disease suppression. For instance, bacterial species from Proteobacteria
(including Pseudomonas producing antifungal compounds), Firmicutes, and
Actinobacteria were implicated in the development of resistance to Rhizoctonia
root rot through pathogen antagonism (Mendes et al. 2011). Another report revealed
identified Acidobacteria, Actinobacteria, and Firmicutes as keystone groups for
resistance to Fusarium wilt (Trivedi et al. 2017). In general, a diversity of microbial
taxa become more abundant in disease-suppressive soils (reviewed in Gomez
Exposito et al. 2017). Collectively, these studies reveal shifts in community compo-
sition with the development of disease suppression and the concomitant microbial
enrichment may prevent pathogen invasion (Turner et al. 2013). Pathogen- or plant-
derived compounds can promote recruitment or growth of new microbial groups; for
example, fungal pathogen-derived oxalic acid or plant metabolites encouraged the
growth of bacteria from specific families, including Oxalobacteraceae and
Burkholderiaceae that likely served an antagonistic function (Chapelle et al. 2016;
Mendes et al. 2011). Many microbial strains have been isolated from rhizospheres
and developed as PGPRs for crop protection (Gopal et al. 2013). Disease-
suppressive soils can thus be invaluable sources of novel bioactive strains of
microbes as well as antimicrobial compounds (Weller et al. 2002). Indeed, the
PGPR Streptomyces was originally isolated from disease-suppressive soils (Cha
et al. 2016). A study of the rhizosphere community in take-all disease revealed
Enterobacter and Serratia as promising candidates for disease suppression (Durán
et al. 2018). The complexity of community interactions in disease-suppressive soils,
the underlying mechanisms, and the impact of environmental factors remain to be
elucidated for many disease-suppressive soils.

Disease suppressiveness can be transferred to new soils by mixing a small portion
(1–10% w/w), thus seeding the new soil with a consortium of beneficial microbes
(Mendes et al. 2011; Raaijmakers and Mazzola 2016; van der Voort et al. 2016).
Similarly, supplementing the soil with siderophore-producing Pseudomonas or their
siderophores, both isolated from suppressive soil, could suppress disease in wheat



and barley (Gomez Exposito et al. 2017). The organic soil amendments employed in
organic farming can also promote disease suppressiveness by increasing soil micro-
bial activity and promoting the recruitment of beneficial microbes. However, the
development of disease suppression involves continual monoculture, and crop
rotation can accelerate this development of disease suppressiveness (Coque et al.
2020), although in some cases, crop rotation could break disease suppressiveness
(Newitt and Prudence 2019), possibly by releasing the selective pressure on the
pathogens in the soil. Understanding the mechanisms of disease suppressiveness will
be a big step forward in the deployment of plant-protective microbiomes in
agriculture.
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9.4 Harnessing Microbes for Plant Protection in Sustainable
Agriculture

9.4.1 Harnessing Beneficial Microbes for Plant Protection

9.4.1.1 Identification and Selection of Candidate Microbes
While candidate plant-protective microbes can be isolated by screening assays in
laboratories, they tend to be laborious. Amplicon-based sequencing methods such as
16S ribosomal RNA offer a relatively cost-effective approach to profile and identify
microbial communities, but do not provide information about whether the microbes
are beneficial or their relative importance in the community (Levy et al. 2018).
Metagenomic sequencing (shotgun metagenomics) can be used to sequence the
genomes of the entire rhizosphere community and offer insights into their functional
potential and their relative roles. Metagenome sequencing can reveal what genes and
functions are enriched in various niches of the rhizosphere
(endosphere vs. rhizosphere) as well as dynamic spatiotemporal changes in micro-
bial populations. While elucidation of community structure is a good starting point,
the next important step is the functional characterization of promising candidates in
the community.

9.4.1.2 Isolation and Functional Characterization of Candidate Microbes
From community profiling, microbial species that are preferentially recruited and/or
enriched by the plant may be identified for further characterization. It is estimated
that only a small portion of the rhizosphere microbiota is culturable, but recent
studies are proving that such estimates are underestimates and more microbes are
amenable to culture than previously thought. The ability to grow candidate microbes
and explore their functions through plant-microbe experiments is fundamental to the
understanding of the plant microbiome and to exploit its full potential. Microbial
culture can be employed to test if a plant recruits a microbe or microbial community
of interest and can also be used to analyze the underlying mechanisms. Network
analysis has been increasingly useful in guiding the selection of representative
microbes and identification of hub microbes that are critical to the assembly and
function of the microbiome (Gómez Expósito et al. 2017).
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If microbial isolates were identified by rRNA profiling, their genomes can be
sequenced to further understand their potential. Using the genome, one may explain
the organism’s observed behavior or trait of interest, examine additional plant
growth-promoting traits, and look for genes or gene clusters corresponding to the
synthesis of bioactive compounds (e.g., hormones, antimicrobials) and other genes
that indicate novel capabilities. For example, genome sequencing of Streptomyces
S4-7 revealed 35 gene clusters implicated in the biosynthesis of antimicrobial
compounds, following which a novel thiopeptide was isolated and showed antimi-
crobial activity (Cha et al. 2016). Similarly, the genome of Pseudomonas
sp. contained biosynthetic clusters that allowed the identification of novel antibiotics
(Helfrich et al. 2018). Microbes in such cases may be evaluated for antagonistic
functions against other microbes or pathogens, although it may be noted that strains
that do not show strong bioactivity against phytopathogens in vitro may do so in situ
in the presence of root signals (Newitt and Prudence 2019). Good-quality genomes
can also serve as reference sequences for the comparison of metagenomics data
(Levy et al. 2018). Genome information is not informative of what genes are
expressed or functioning in the rhizosphere. This may be accomplished through
transcriptomic, proteomic, or metabolomics analysis of the microbe in the rhizo-
sphere. Microbial genes important for plant interaction may be identified through
mutational analysis. Recently, transposon sequencing (TnSeq) has turned out to be a
facile strategy to create genome-wide mutants of a microbe and systematically test
all mutants for a trait of interest (Levy et al. 2018). Such approaches will not only
allow the identification of genes important for plant-microbe interaction, but also
interactions in the microbiome. Other approaches such as stable isotope probing to
assess microbial substrate preferences and metabolic potential are critical to under-
stand the metabolic basis of the plant-microbe interaction (Radajewski et al. 2000).

9.4.1.3 Assembling Synthetic Communities of Candidate Microbes
The representative microbes identified by network analysis can be grown to consti-
tute synthetic communities or SynComs (Gómez Expósito et al. 2017). As microbes
function in concert in the microbiome, SynCom scan is employed to study their
complex interactions with and impact on gnotobiotic plants in sterile culture (the
plant equivalent of germ-free mice). Traditionally, microbial culture in vitro has
been a limitation, but recent studies are demonstrating that it is possible to culture as
much as 50% of the major members of the microbiome (Bai et al. 2015). SynCom
experiments can demonstrate how each species contributes to community assembly
and function and how they influence plant fitness (Rodriguez et al. 2019). SynComs
also make excellent tools to assess how hub microbiota, which displays a high
degree of interaction with other members in the community function as focal points
in the community (Hassani et al. 2018). One study showed that the removal of one
strain caused five others to disappear, indicating the disproportionately important
role of specific members of the community (Niu et al. 2017). Many SynCom studies
focus on small communities containing representative strains, but larger synthetic
communities involving hundreds of members have also been shown to colonize the
rhizosphere reproducibly, making this a powerful approach (Finkel et al. 2017).



Additionally, SynComs are valuable in understanding fundamental aspects of plant-
microbial community interactions, for instance, SynCom experiments confirmed the
importance of the plant defense hormone, salicylic acid (SA) in gating the
endosphere and limiting colonization by certain taxa in Arabidopsis (Lebeis et al.
2015).
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SynCom experiments have revealed that higher diversity in the synthetic com-
munity correlates with better disease suppression (Hassani et al. 2018). More
complex Pseudomonas consortia afford better protection against Ralstonia
solanacearum, a root pathogen in tomato, through greater competition and pathogen
antagonism (Hu et al. 2016). A simplified SynCom consisting of seven species
representative of various taxa from the microbiome was collectively required for
resistance to Fusarium verticilloides blight in maize (Niu et al. 2017). Generation of
SynComs with complementary microbial species with different functions or
mechanisms of action may issue additive and synergistic effects, resulting in a
resilient microbiome (Gomez Exposito et al. 2017). Some sets of bacterial strains
may interact through cohabitation in the same biofilm (Berendsen et al. 2018). The
greater plant protection from higher strain diversity has been correlated with a
greater diversity of secondary metabolites that can protect the plant through varying
mechanisms (Hu et al. 2016). These studies collectively indicate that synthetic
communities containing diverse strains, complementary and synergistic with each
other, but competitive and antagonistic to other microbes such as potential
pathogens, and which can stimulate plant defenses are good candidates for use in
sustainable plant protection.

9.4.2 Enabling Plants to Harness Beneficial Microbes for Plant
Protection

While soil is the basic source of microbial pool available for plant colonization, host
plant genotype also plays an important role in selecting and sustaining the rhizo-
sphere microbiome (Badri et al. 2013; Bulgarelli et al. 2015, 2012; Lebeis et al.
2015; Peiffer et al. 2013). Each plant species, and even different genotypes within
the same species, enriches a distinct and selected set of microbes in the rhizosphere
and endosphere that are generally beneficial (Perez-Jaramillo et al. 2016), although
in some studies the varietal differences were more subtle (Bulgarelli et al. 2015;
Peiffer et al. 2013). This selection is primarily dictated by the root exudate composi-
tion which also includes selective secondary metabolites, both of which not only
serve to cull out certain species can also act as nutrients. A study of Arabidopsis
accessions found qualitative differences between root exudates that corresponded to
differences in rhizosphere microbiota (Micallef et al. 2009). Thus, the differences in
microbial communities may be owed to differences in root exudates.

Plant breeding has traditionally focused on traits like yield and disease resistance,
but the outburst of microbiome studies in the past decade has prompted consider-
ation that plants may additionally be bred for their ability to recruit preferred partners
and PGPR to build optimal microbiomes and disease-suppressive soils (Quiza et al.



2015; Ryan et al. 2009). For example, wheat varieties were selected for their ability
to recruit Pseudomonas populations for resistance to Rhizoctonia solani (Mazzola
2002). Some Arabidopsis mutants with altered root exudate composition were also
found to recruit beneficial bacteria. Since root exudate composition is critical for
microbial recruitment and selection, many studies have focused on modifying
exudate composition (reviewed in Quiza et al. 2015) and transferring these traits to
crop plants through traditional breeding and genetic engineering, potentially through
the CRISPR/Cas9 system (Schaeffer and Nakata 2015) to augment plant protection;
however, a detailed understanding of the mechanistic basis of microbial recruitment
is the priority.
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Identification of plant loci involved in recruiting or supporting the growth of
specific bacterial taxa in the roots may be accomplished through quantitative trait
loci (QTL) mapping (Collard et al. 2005) and genome-wide association studies
(GWAS) with crops and their wild relatives. One study identified several plant
QTLs regulating the colonization of Bacillus cereus UW85 and the accompanied
disease-suppressive effect (Smith and Goodman 1999). Wild relatives of cultivated
plants are more effective recruiters of a higher diversity of rhizosphere microbes
likely due to a richer root exudate and having coevolved with microbiota that
enhances their fitness (Perez-Jaramillo et al. 2016). Plant breeding for improved
traits over generations has been successful in improving cultivated plant traits, but
often with loss of genes from their wild ancestors (Gopal and Gupta 2016). Some of
these genes may have contributed to the synthesis of secondary metabolites, which
presumably made the plants more palatable both to humans and, inadvertently, also
to insect pests. Revisiting wild varieties to identify genes that promote microbial
recruitment is a promising approach to design a fitter rhizosphere microbiome and
holobiont (Perez-Jaramillo et al. 2016). A plant engineered to produce a diverse root
exudate may be expected to support microbiome diversity in the rhizosphere.
Desirable rhizosphere traits in plants could be incorporated into elite breeding
programs to enhance crop varieties. Thus, modulation of a plant’s ability to attract
and retain beneficial microbes is a promising approach to introducing beneficial
bacteria in the field. However, it is important to ensure that the soil is equipped with
the preferred partners of the plant and supplementing the soil with SynComs could
augment the recruitment of the microbiome. Bacterial strains may also be modified
for higher responsiveness to plant signals to promote colonization (Cole et al. 2017).

One other way plants can modulate rhizosphere bacterial communities is by
targeting quorum sensing (QS), a signaling system used by bacterial species to
monitor their population density or those of other species and activate specific
coordinated functions (Mohan et al. 2018; Quiza et al. 2015). Plants engineered to
produce QS signals or enzymes such as lactonases that can degrade QS signals in the
rhizosphere may be able to selectively target certain bacterial groups while retaining
others. In addition to improving microbes and plants for better colonization, plant or
microbial metabolites could be identified that enhance recruitment by the root.
Metabolite profiling and modeling can help identify candidate metabolites that affect
community structure and dynamics (Botero et al. 2018). Such metabolites could be
used as elicitors to enhance the colonization and retention of preferred beneficial



microbes. Thus, a variety of complementary approaches are feasible to enhance the
recruitment and enrichment of crop microbiome for enhanced protection; these are
summarized in Fig. 9.5.

168 R. Mohan et al.

Fig. 9.5 Harnessing microbes for plant protection in agriculture. Can be accomplished via three
approaches: identifying microbes ideal for plant colonization and protection (left), identifying
metabolites that promote microbial colonization (elicitors), and enhancing the ability of plants to
recruit and retain protective microbes

9.5 Future Considerations for Sustainable Microbiome-Based
Agriculture

Rhizosphere microbiomes have coevolved with plants, the local environment, and
fluctuating stress conditions serving as a shaping force. The understanding of the
microbiome and its dynamic interactions with plants, currently in its infancy, can be
potentially applied for sustainable agriculture, particularly in resource-limited
environments. An exciting array of opportunities that could transform agriculture
await exploration.

9.5.1 Plant Probiotics

While the use of plant bacteria as pure inocula or microbial mixtures is not a new
concept to promote plant disease resistance and even though such inoculants showed
promising results in laboratory or greenhouse experiments, they fell short in field
settings (Glick 2012). With more recent knowledge of the microbiome, thoughtfully
selected microbial preparations produced with thorough testing using SynComs are



key to success. Many attributes are ideally desirable in these consortia; these include
the ability of the strains to compete and survive in the rhizosphere, protect the plant
from pathogens by antagonism, tolerate the plant immune system, and stimulate both
local and systemic defenses. The inclusion of hub microbes that are capable of
recruiting other microbes to assemble a plant-preferred microbiome in agriculture
would be beneficial. However, certain hub microbes such as Enterobacter cloacae
(Niu et al. 2017) are potential human pathogens and their enrichment in agricultural
fields may be considered carefully. The assembling members of the community
should preferably show metabolic and functional complementarity with different
mechanisms of pathogen antagonism and host defense stimulation so that they
combine to afford additive or synergistic protection to the host. The starter commu-
nity should be representative of the host microbiome, be inherently diverse, or be
able to build a diverse microbiome, as diverse microbiomes tend to be resilient; some
functional redundancy among the microbes is desirable in this aspect, especially in
dynamic environments. Ideally, consortia should include indigenous stress-tolerant
microbes that are adapted to the local environment (Mueller and Sachs 2015; Qiu
et al. 2019) and capable of assisting plants to withstand fluctuating environmental
stresses. Some of these desirable traits could be engineered in the bacteria through
recombinant strain production (Quiza et al. 2015), but the risks associated with
recombinant strain release and potential gene transfer should be evaluated first.
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One challenge in synthesizing ideal consortia is the present limitation in being
able to freely grow all microbes in culture. This is particularly true for obligate
biotrophs that can only grow on a living host and some of the keystone hub species
identified are obligate biotrophs. Bacterial consortia administered as probiotics may
be coated onto seeds before sowing (Santhanam et al. 2015), so they can establish
the microbial community early on. However, to accomplish this, they need to be
competitive to overcome the indigenous microbes already present in the soil.
Although fungicide or antibiotic treatments have been recommended to disrupt the
existing microbiome in the soil (Quiza et al. 2015), a more sustainable option would
be tilling the soil to achieve the same. To ensure invasion of the inocula in the
rhizosphere, higher doses may be required, but this may promote undesirable
pervasive growth of the microbes in the aerial parts of the plant; for instance,
treatment of Arabidopsis roots with high doses of Pseudomonas simiae
(P. fluorescens) resulted in the strain spreading to the aerial parts of the plant
(Zamioudis and Mohan, unpublished observations). Even if the inoculants establish
in the rhizosphere, they may not persist, as in some cases, inocula in the field have
been outcompeted by indigenous microbes (van Veen et al. 1997), as has been
observed for Azospirillum (Ryan et al. 2009; Herschkovitz et al. 2005). To ensure
persistence, periodic soil amendments with the inocula may be necessary (Syed et al.
2018).
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9.5.2 Mixed Microbiomes

The exclusive focus on bacterial microbiomes in the rhizosphere comes with the cost
of inherent bias as the other kingdoms of microbes including fungi and oomycetes
can in many cases play a substantial role in community dynamics, particularly in the
context of plant protection. PGPRs Bacillus and Pseudomonas teamed up with
mycorrhizal fungi for synergistic suppression of root-knot nematode in chickpea
(Akhtar and Siddiqui 2008). Disease suppressiveness in soils is contributed not only
by bacteria, but also by fungal genera such as Aspergillus, Fusarium, and Eurotium
(Adam et al. 2014; Giné et al. 2016; Song et al. 2016). Certain rhizospheres such as
that of pea are enriched in fungal species in addition to bacterial taxa (Turner et al.
2013). Bacteria and fungi can physically associate as some bacterial biofilms such as
that of Pseudomonas sp. are formed on the hyphae of fungi like Laccaria in the soil
(Guennoc et al. 2017; Hassani et al. 2018). Bacteria and fungi could be metabolically
interdependent. For instance, fungal enzymes may initiate the breakdown of com-
plex plant-derived substrates such as lignocellulosic material (Baker et al. 2019) and
the breakdown products could serve as substrates for bacterial groups. Bacteria,
fungi (e.g., Albugo), and oomycete species (e.g., Udeniomyces and Dioszegia) may
coordinate to serve as hub microbes that are highly interactive with other microbes in
the rhizosphere (Agler et al. 2016). Interkingdom molecular dialogue between
bacteria and fungi is possible through quorum sensing (Jarosz et al. 2011). The
inclusion of fungi in the bacterial consortium not only diversifies the inoculum but
also promotes niche filling and competitive suppression of pathogens (Quiza et al.
2015). However, these interactions have to be evaluated and optimized using
SynCom experiments in planta.

9.5.3 Engineered Plants

In addition to better probiotics, plants may also be better equipped to get the best
support out of their microbiomes, since plants and their microbiomes function in
unison as a holobiont. This is particularly relevant in the context of stress as
microbiomes can respond dynamically to confer stress protection. Plant-mediated
selection of microbiomes can alter traits such as flowering in Arabidopsis and
Brassica spp. (Panke-Buisse et al. 2017). Genetically engineering plants to be able
to modulate their microbiome is one approach as relevant genes could be transferred
to crop plants (Qiu et al. 2019). Genes regulating the production of metabolites that
attract beneficial microbes can be integrated into or enhanced in a plant. For
example, plants releasing volatile organic compounds could attract beneficial bacte-
ria from a distance in the soil (Schulz-Bohm et al. 2018). However, the consequences
of change in plant metabolite profiles, their impact on crop quality, and the
non-target effects of the metabolites on other organisms have to be carefully
evaluated. Comparative genomics of domesticated crops and their wild relatives in
combination with metabolite analysis and microbiome profiles can help narrow



down to genes that can enrich crop microbiomes, in what is referred to as the “back
to the roots” approach.
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9.5.4 Disease-Suppressive Soils

Disease-suppressive soils are gold mines of beneficial microbes and can also be used
to inoculate agricultural soils to transplant disease resistance to new soils even if the
latter contains pathogens. Such soils can retain the suppressive effect for generations
of crops and disease resistance may progress with generations due to enrichment of
the microbiome and optimizing selection by the host plants. Undoubtedly, the early
studies on suppressive soils focusing on single community members provide valu-
able insights into the mechanisms involved in disease suppression, yet they neglect
the complex interactions among microbial communities as these occur in the root
vicinity and within the root interior. Several seminal studies based on metagenomics
and metatranscriptomics support that microbial consortia rather than individual
strains function synergistically to confer solid protection against pathogens. Thus,
multi-omics technologies provide opportunities to dissect disease suppressiveness to
an exceptional level of detail and, in this context, may assist in the design of robust
synthetic communities of microbes with enhanced disease-suppressive potential.
Understanding the mechanisms of how disease suppression evolves in soils can be
invaluable in engineering the plants and the soil microbiome to enhance disease
suppressiveness. Presently, microbiome engineering is being pursued through artifi-
cially selecting a protective microbiome through repeated colonization over multiple
generations to achieve an optimal plant-preferred community with protective
functions (Mueller and Sachs 2015). This, in effect, creates a disease-suppressive
soil. Such microbiomes may, in the future, be mass-cultured and cryopreserved for
field application.

9.5.5 Microbiome-Mediated Organic Farming

Cultural practices in organic farming must have a pronounced impact on agricultural
microbiomes. The progressive ease of sequencing and microbial community char-
acterization affords the power to characterize the complex and diverse microbiomes
that must operate in organic farms. Manure that has been traditionally used to
fertilize agricultural fields is enriched in the fecal microbiomes of animals. The
substrates used in organic soil amendments are degraded or fermented with micro-
bial action which results in the enrichment of various microbial species. Recently,
the microbial composition of traditional organic preparations in rural agriculture is
receiving renewed attention; for instance, the compost fermentates named
jeevamrutha and beejamrutha, which are made through the fermentation of organic
substrates in jaggery and pulse crop flour by microbiota from cow dung, are
routinely used as soil amendments in agricultural fields for sustainable crop produc-
tion (Pattanaik et al. 2020). Microbial profiling of these preparations revealed that



they are enriched in bacteria such as actinomycetes and fungi. Organic farming in
itself promotes microbial diversity in the rhizosphere, and organic practices that
support the enrichment of beneficial microbes may be explored to promote
sustainability in agriculture, especially with increasing ease of microbiome profiling.
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9.5.6 Considering Environmental Impacts of and
on Microbiome-Based Agriculture

The introduction of a new microbial species into an ecosystem often comes with
consequences that may be difficult to quantify (Delgado-Baquerizo et al. 2016).
Microbial consortia have to be tested for the effects of their metabolites on nontarget
organisms before application in agriculture and whether the metabolic changes in the
crop could also affect human health. For instance, the inoculated rhizosphere
microbes could enrich antifungal compounds such as polyene macrolide antibiotics,
which have the potential to affect human cholesterol metabolism (Zotchev 2003).

Stresses such as drought are expected to aggravate plant disease and herbivory
while substantially impacting yield (Bebber et al. 2014; Lobell and Field 2007).
Environmental stress, particularly at high temperatures, can modulate the expression
of defense genes, increase the transfer of pathogen effector proteins into host cells,
reduce pathogen perception, and suppress host defense (Teixeira et al. 2019).
Unfortunately, the benefits conferred by the microbiomes on hosts are also
threatened by the effects of global climate change (Maclean and Wilson 2011).
Microbiomes in agriculture could also be influenced by the environment, particularly
climate change, including a rise in carbon dioxide levels, global warming, and
altered rainfall patterns (Blankinship et al. 2011). Increased carbon dioxide levels,
one of the key components of climate change, can influence rhizosphere structure
through the altered root exudation patterns (Drigo et al. 2013). The activity of hub
microbes has also been shown to be sensitive to environmental changes (Santoyo
et al. 2017; Vacher et al. 2016). Fortunately, plant adaptations to stresses are not only
accompanied by rapid compensatory changes in the rhizosphere, typically associated
with changes in root exudation profiles, but also with genetic changes in microbes
that are beneficial to the host (Rodriguez et al. 2008). Microbial communities have
been observed to evolve and adapt faster to environmental changes than the plant
itself, helping the plant overcome stress (Lau and Lennon 2012). Understanding the
mechanisms of plant-microbiome dynamics during stress may help us design better
strategies to harness microbiomes that can rescue plants from biotic and abiotic
stresses in a changing environment. Finally, testing microbiome-based agriculture in
multiple field trials across distinct locations and over multiple years is critical to
overcome limitations in performance under field settings.

In conclusion, steps towards sustainable agriculture are critical to increasing
global food security. The application of rhizosphere microbiomes as a sustainable
alternative to chemical-based agriculture is gaining ground, thanks to recent
advances in non-culture-based characterization of the microbiome and insights
into the mechanisms of their interactions with the plant. This may be accomplished



through a combination of microbiome treatments and enhanced recruitment and
retention of healthy microbiomes by the plant to create disease-suppressive soils for
durable plant protection.
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