
Analysis of an Intelligent Optimization
Algorithm for Automatic Generation
of Computer Software Test Data

Liping Li and Xiaoyan Zhang(B)

Yunnan College of Business Management, Kunming 650300, Yunnan, China
z316819595@163.com

Abstract. Software testing can guarantee the quality of software products, but it
also takes up nearly half of the cost and resources of the entire software devel-
opment cycle. The traditional test data acquisition requires manual design, but as
the scale and complexity of software increases, manual design of test data can no
longer meet the requirements of testing, therefore, automatic test data generation
has become a hot spot and focus of many scholars’ research. In this paper, we will
study and analyse the automatic generation of computer software test data based
on intelligent optimisation algorithms.

Keywords: Software testing · Automatic data generation · Intelligent
optimisation algorithm

1 Introduction

Software testing is a method and means of evaluating software products by designing
test data and using it to find defects or errors in the software in order to guarantee the
quality of the product. The importance of software testing is evident in the fact that
it runs through almost the entire software development process, and the design of test
data is the most central and important part of testing, which determines the quality and
efficiency of testing. The traditional way of designing test cases and test data is to design
them manually, relying mainly on the experience of testers, but However, as the size of
software increases, the traditional manual data design mode of generating test data is
inefficient, laborious, prone to omissions, long testing cycles and high testing costs, so
more and more researchers are beginning to study the automatic generation of test data.

In this paper, the research of automatic test data generation is carried out by optimis-
ing some shortcomings of the algorithm in the application of the problem, improving
the performance of the algorithm so as to achieve the goal of fast and effective test data
generation, reducing the time cost and resources consumed in software testing due to the
design of test data, and improving the efficiency of test data generation while reducing
unnecessary costs in testing. This paper is not only of theoretical significance, but also
of practical application.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
I. Ahmad et al. (Eds.): STSIoT 2021, LNDECT 122, pp. 660–669, 2023.
https://doi.org/10.1007/978-981-19-3632-6_77

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-3632-6_77&domain=pdf
https://doi.org/10.1007/978-981-19-3632-6_77

Analysis of an Intelligent Optimization Algorithm 661

Achieve usability and ease of use; The core production management software has
leading advantages, and the material base, knowledge base, model base, process base,
algorithm database and other basic elements are constantly improved; Cultivate new
industrial software platform; Strengthen the enabling of industrial data and improve
the intelligent level of industrial software. As shown in Fig. 1, the intelligent level of
industrial software.

Fig. 1. Intelligent level of industrial software

Focus on the development of core industry software. For the process industry, sup-
port the research and development of planning and scheduling, production scheduling
and real-time optimization software, overcome the deep integration of scheduling and
planning and the development of rolling optimization technology, and promote the appli-
cation of petrochemical, chemical and non-ferrous metals. Applications in light industry
and other fields accelerate the breakthrough of core technologies such as industrial soft-
ware and hardware, intelligent algorithm and industrial mechanism model, focusing on
the whole process of optimization design, production, operation and maintenance, qual-
ity improvement, intelligent manufacturing, intelligent detection, real-time scheduling,
optimization decision-making, predictive protection and other industry scenarios.

Focus on industrial Internet, intelligent manufacturing and production services. This
paper consists of the following parts. The first part introduces the relevant background
and significance of this paper, the second part is the related work of this paper, and the
third part is automatic generation of single-path test data. The fourth part is automatic
generation of multi-path software test data. The fifth part is conclusion.

662 L. Li and X. Zhang

2 Related Work

Koparan aimed to examine the effect of dynamic data analysis software-supported learn-
ing environments on secondary school students’ achievement and attitude [1]. Su et al.
take the touch screen characteristic test as an example,through the multi-dimensional
automatic motion platform, the test pen is driven to move on the touch screen according
to the set trajectory [2]. Transformer routine tests have been analyzed by using the gener-
ated firefly algorithm [3]. The subject of Ref [4] was to improve students understanding
of introductory oceanography with the aid of a computer program. Rahmawati et al.
aim to find out if computer self-efficacy, learning motivation, and accounting knowl-
edge affect the computer anxiety of accounting students in using accounting software
[5]. To cooperate with the research on the fragmentation pre-conditioning technology
of large hard rock in natural caving mining, Jingjie et al. perform a large flow hydraulic
fracturing test in Tongkuangyu Copper Mine to investigate the relationship between the
occurrence and expansion of fractures in ore bodies and the pressure and flow of water
injection [6]. The research results show that the system constructed has certain practi-
cal effects [7]. Huang et al. introduce the secondary development process of simcenter
Test [8]. Lab software. CBCT images of twenty patients with UCCLP were included
Ref [9]. Other influential work includes Ref [10]. Relying on universities and scientific
research institutes, build industrial software adaptation, testing, verification and pilot
test platforms for production, University and research. Vigorously promote the promo-
tion of new technologies for industrial software integration; Promote the autonomy of
industrial software of industrial Internet base, support micro service architecture such
as aggregation tools, algorithms and models, promote industrial software components
and services, and improve the comprehensive integration, test and verification, quality
control, life cycle management and service capabilities of industrial software.

2.1 Overview of Intelligent Optimisation Algorithms

The so-called intelligent optimisation algorithm is a kind of intelligent search calcula-
tion method developed according to some principles of the real phenomena in nature,
and the intelligent optimisation algorithm can be regarded as a kind of reference and
simulation of the laws of nature. At present, in addition to traditional algorithms such as
genetic algorithms and particle swarm algorithms, there are also algorithms such as fire-
fly algorithms and firework explosion algorithms. The genetic algorithm is an algorithm
invented by simulating biological genetics and biological evolution in nature, which is
characterised by its adaptive structure and global optimisation effect. The particle swarm
algorithm is based on the interaction between particles and is able to find optimal regions
in a complex search space. In the process of computer software testing, these two more
basic intelligent optimisation algorithms have been used in large numbers.

{
E(t)ẋk(t) = f (t, xk(t)) + B(t)uk(t)

yk(t) = C(t)xk(t)
(1)

uk+1(t) = uk(t) + �l1ėk(t) + �l2ėk+1(t) + �p1�ėk(t) + �p2�ėk+1(t) (2)

Analysis of an Intelligent Optimization Algorithm 663

2.2 Applications of Genetic Algorithms

Genetic algorithms have a global probability search function. In using this algorithm,
the problem is transformed by replacing the problem of generating software test data
with a functional optimisation problem, and then designing the fitness function, while
the population of software test data is coded to facilitate the application of genetic
operations. The populations of software test data are evolved over many generations to
obtain the corresponding test data results. In the automatic generation of software test
data, the first step in the application of genetic algorithms is to encode the data entered
through the software program in order to facilitate the formation of different individuals.

ẋk+1(t) = f (t, xd (t)) − f (t, xk+1(t)) (3)

�xk+1(t) = t∫
0
Q−1(f (t, xd (τ)) − Q−1f (t, xk+1(τ)))dτ

+ t∫
0
Q−1B�uk(τ)dτ − t∫

0
Q−1Zẋd (τ)dτ + t∫

0
Q−1Fẋk−1(τ)dτ

(4)

The second step is to generate the initial population. The initial population is com-
posed of N individuals, each of which is made up of N initial strings of structural data,
the production of which is random. The initial population is an important starting point
for iterative updating of the genetic algorithm.

The third step is to select the population. The selection operation is a simulation by
the genetic algorithm of the survival of the fittest principle. Selection begins by selecting
a certain number of individuals in the initial population that meet the criteria of being
well adapted. These selected individuals will become the new parents and from this a
new generation of individuals will be generated.

The fourth step is to carry out crossover. The main purpose of the crossover oper-
ation is to facilitate the exchange of data and information. Without crossover, the new
generation of individuals would not be available to the parents selected by the algorithm.
Almost every individual of the new generation has some of the characteristics inherited
from its parents.

The fifth step is the mutation operation. When the mutation operation is performed,
the elite individuals are kept out of the mutation operation. The first step is to select
individuals at random in the population and to change them in a random way.

The sixth step is to calculate the value of the fitness function. If the result of the
calculation satisfies the termination condition of the algorithm, the operation of the
algorithm is terminated, and if the result of the calculation does notmeet the requirements
of the termination condition, the genetic algorithm is repeated until the result of the data
satisfying the termination condition is found.

2.3 Firefly Algorithm

The proposed firefly algorithm is based on the luminous properties of fireflies, and
summarises the relevant laws of their luminous activity in order to find the optimal
solution.

664 L. Li and X. Zhang

The first step is to determine the population size of the fireflies, and then to initialise
the population to determine the initial position of the individuals.

The second step is to calculate the absolute brightness of individual fireflies by using
the objective function based on their position. As shown in Fig. 2 below, initialize the
population to determine the initial position of the individual.

Fig. 2. Initialize the population to determine the initial position of the individual

The third step is to calculate the relative brightness and attraction of each of the two
individuals based on the formula for the relative brightness of the individuals and the
formula for the attraction between the individuals.

In the fourth step, according to the individual position change formula, the update of
individual positions in the population can be calculated. The brightest individual firefly
in the population, however, moves irregularly and its position change can be calculated
using a separate formula.

In the fifth step, the luminous intensity of each new individual firefly is recalculated
for each individual firefly in the population at the end of the update.

Step 6, determine if the algorithmmeets the conditions for the end of the algorithm, if
so, end the algorithm and produce the final result, if not, repeat step 3 until the algorithm
is finished.

Analysis of an Intelligent Optimization Algorithm 665

3 Automatic Generation of Single-Path Test Data

There are many classical optimization algorithms, such as genetic, ant colony, particle
swarm, simulated annealing, etc., which have been used in single-path applications,
so there is less and less room for development and it is difficult to further improve
the efficiency of data generation by improving classical algorithms such as genetic and
particle swarm algorithms. In solving the single-path testing problem, this paper chooses
to apply the Firefly algorithm (FA) to it and optimise it in order to find new ideas and
solutions for the study of single-path testing.

3.1 FA Algorithm Mathematical Model

For the establishment of the FA algorithm mathematical model, the first thing to under-
stand is the concept of absolute luminance and relative luminance, the absolute lumi-
nance of fireflies, is for a firefly individual i, its initial luminance value is called absolute
luminance, can be recorded as Ii. And for the definition of relative luminance, and the
absolute luminance Ii is different, it refers to for two individuals i and j, firefly i in firefly
j position of the luminous intensity, can be be expressed as Iij.

At position Xi(xi1,xi2,…,xid), the expression for the absolute luminance

Ii = f (Xi) (5)

The brightness between fireflies is not fixed. It will be gradually weakened with the
increase of the interval between them and the absorption of some substances in the air.
Therefore, the relative brightness formula of firefly individual i to firefly individual j can
be expressed as

Iij(rij) = Iie
−γ 2

ij (6)

3.2 Basic Flow of FA Algorithm

Step l: Assume that the whole population of fireflies is N, and initialize the positions of
individuals in the whole population;

Step 2: According to the position of firefly Xi, we can know the value of the objective
function f (Xi), so as to calculate the absolute brightness Ii(Xi) of firefly i according to
the formula (1);

Step 3: Calculate the relative luminance Ii; and attractiveness of fireflies i and j,
respectively;

Step 4: Update the positions of the individuals in the population, and for the brightest
fireflies, move them randomly in an irregular manner;

Step 5: After the iterative update of the individuals in the population, the luminous
intensity of each individual firefly is recalculated;

Step 6: Determine whether the algorithmmeets the conditions of the end, if not, then
return to Step3, if so, the algorithm will end and the results will be output.

FA algorithm basic flow chart is shown in Fig. 3.

666 L. Li and X. Zhang

Fig. 3. Basic flow chart of the FA algorithm

3.3 Construction of the Fitness Function

The bridge between algorithms and real application problems is the fitness function,
which can be used to assess the quality of the data generated. A well-designed fitness
function can better guide the algorithm towards the optimal solution region, covering the
target in fewer iterations and less time path and find themost optimal solution. Therefore,
it is important to construct a suitable fitness function, which is related to the efficiency
of data generation.

In this chapter, the fitness function is constructed using the branching function super-
position method devised by Korel, which converts branching predicates into branching
functions, and then uses these functions, which are formed by superposition of branching
functions, as the final objective function to be optimised.

This is the concept of a branch predicate, which indicates when a branch can be
overwritten. A branch predicate can be expressed in the form of “E1 op E2”, where E1
and E2 are mathematical expressions and op is a relational operator containing <, ≤,
=, >, ≥, �=. When the predicate does not contain logical operations, then a branching
predicate in the form of “E1 op E2” can be converted to “f rel0”, where f is the mentioned
“branching function” and f is used to quantitatively evaluate the degree towhich the input
value satisfies the target function, when the branching predicate is true, the function value
is negative. When the branch predicate is true, the function value is negative, when f =
0; conversely, when the branch predicate is false, the function value is positive, f > 0.

The relationship between branch predicates and branch functions is shown in Table 1.

Analysis of an Intelligent Optimization Algorithm 667

Table 1. Relationship between branch predicates and branch functions

Branch predicates Branching functions

E1> E2 E2-E1

E1≥ E2 E2-E1

E1< E2 E1-E2

E1≤ E2 E1-E2

E1= E2 |E1-E2|

E1 �= E2 |E1-E2|

4 Automatic Generation of Multi-path Software Test Data

The automatic generation of computer software test data for multiple paths involves two
techniques. The first is path similarity. In computing, path similarity refers to the degree
to which the path of software test data matches the target path. In order to determine path
similarity more accurately, a more appropriate measure of path similarity is needed. At
present, there are three main factors that affect path similarity: the number of identical
nodes, the number of consecutive identical nodes, and the weight of different nodes.
These three factors must be fully considered in designing the path similarity measure.
The second is the design of the multi-path fitness function. In multi-path testing, the
design of the fitness function is usually based on the idea of mean value. The first step is
to calculate the value of the similarity of all paths according to a professional calculation
method, and then take the average value. This mean value can be used as the fitness value
of the data for the target set of paths. By comparing the matching of different paths with
the mean value, it is more intuitive to see the strengths and weaknesses between the test
data.

The path selector selects the least number of paths in the program control flow
diagram for use by the test data generator. The path selection must meet certain coverage
principles. Here are some common principles:

(1) Statement coverage: any statement can be covered by the selected path.
(2) Branch coverage: all conditional branches in the procedure must be covered. For

example, in an IF statement, the condition predicates that are true or false must be
covered by the selected path.

(3) Conditional coverage: when each clause in the condition of a branch statement is
true or false (single condition coverage) and all combinations of the true values of
each clause must be covered by the selected path (multi condition coverage).

(4) Path coverage: traverse all paths in the program control flow graph.

Among the above four principles, multi condition coverage and path coverage are
difficult to achieve, becausewith the growth of program scale, the combination of clauses
in conditions and the number of paths in program control flow graph will generally
increase exponentially. Therefore, statement coverage and branch coverage are widely
used as the basic measures of software testing.

668 L. Li and X. Zhang

Static test data generation is not based on the input data of the program, but adopts
the method of program symbol execution and expression digestion and transformation.
Dynamic test data generation is a method of executing the program by using the actual
input data of the program. In the early research of automatic generation of program
test data, the symbol based method is basically used. Because the problem of program
test data generation is NP hard, the symbol based method occupies a lot of computer
resources and has certain restrictions on the program. The advantage is that there is no
need to check the truth value of the branch predicate.

The method based on the actual operation of the program is to take the value of the
input variable to actually execute the program, and determine whether the value of the
selected input variable can traverse the path selected by the path selector by observing
the data flow in the program. Using different search algorithms, we can find the value
of the input variable traversing a path, but it often takes a lot of time. It combines the
symbol based method and the actual operation method based on program to generate
test data, which saves the workload.

5 Conclusion

Software testing is an important part of the computer software development industry
and a major need for the industry. The use of intelligent optimization algorithms to
automatically generate computer software test data can be studied to obtain important
results to improve the efficiency of automatic software testing, which is of great value to
ensure the quality of software testing, improve the efficiency of software development,
and help the development of China’s software development industry.

References

1. Koparan, T.: Examination of the dynamic software-supported learning environment in data
analysis. Int. J. Math. Educ. Sci. Technol. 83, 80–98 (2018)

2. Su, M., Zhu, N., Huang, L., Xu, H.: Research on multi-degree-of-freedom and high-precision
touch screen characteristic test instrument. J. Test Syst. 16(8), 1204 (2019)

3. Zile, M.: Routine test analysis in power transformers by using firefly algorithm and computer
program. IEEE Access 26, 401–417 (2019)

4. Firdaus, M.L., Parlindungan, D., Elvia, R., Swistoro, E., Sundaryono, A., Rahmidar, L.:
Teaching oceanography using ocean data view software. In: Proceedings of the International
Conference on Educational Sciences and Teacher Profession (ICETEP 2018), pp. 3177–3184
(2019)

5. Rahmawati, A., Abidin, F.I.N.: The influence of computer self-efficacy, learning motivation,
and knowledge of accounting on accounting students computer anxiety in using accounting
software. Acad. Open 93, 395–422 (2021)

6. Jian, J., Peng, H., Ma, X., Sun, Y.: Software design of a data acquisition system for the
hydraulic fracturing experiment of rock at Tongkuangyu copper mine. J. Earth Environ. Sci.
282, 232–247 (2021)

7. Narengerile, L.,Di, L.: Framework and performance analysis of collegeEnglish testing system
based on data mining technology. J. Intell. Fuzzy Syst. 26, 401–417 (2021)

Analysis of an Intelligent Optimization Algorithm 669

8. Huang, J., Chen, B., Tan, M., Liu, M., Jia, C.: Exploration and research of noise automatic
processing algorithm based on multi-scale convolution neural network. J. Neurnalnet Appl.
209, 16–36 (2021)

9. Phienwej,K.,Chaiworawitkul,M., Jotikasthira,D.,Khwanngern,K., Sriwilas, P.:Comparison
of preoperative measurement methods of alveolar cleft volume using cone beam computed
tomography between computer simulation and water displacement methods. Cleft Palate-
Craniofac. J. 34, 2677–2684 (2021)

10. Zhang, H., Lin, F., Zhang, X., Wen, X.: Design of torque motor characteristic test system. J.
Exp. Manag. 1786, 108322–108326 (2021)

	Analysis of an Intelligent Optimization Algorithm for Automatic Generation of Computer Software Test Data
	1 Introduction
	2 Related Work
	2.1 Overview of Intelligent Optimisation Algorithms
	2.2 Applications of Genetic Algorithms
	2.3 Firefly Algorithm

	3 Automatic Generation of Single-Path Test Data
	3.1 FA Algorithm Mathematical Model
	3.2 Basic Flow of FA Algorithm
	3.3 Construction of the Fitness Function

	4 Automatic Generation of Multi-path Software Test Data
	5 Conclusion
	References

