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Abstract The occurrence of landslides is a frequent phenomenon in the hilly 
terrain of the Indian Himalayan region leading to severe environmental and socio-
economic issues by distorting ecological balance and damaging human lives and 
property. The present work intends to identify the landslide susceptibility zones of 
Sikkim Himalaya using the ensembles of important knowledge-driven technique, 
i.e., Analytical Hierarchy Process (AHP) with Landslide Numerical Risk Factor. 
The Shuttle Radar Topography Mission (SRTM) DEM, Landsat 8, and GSI datasets 
were used. The landslide inventory map has been considered as the dependent factor 
and the geo-environmental factors like rainfall, slope, aspect, altitude, geology, soil 
texture, distance from the river, lineament, and road, Stream Power Index (SPI), 
topographic wetness index (TWI), Topographic Roughness Index (TRI), and Sedi-
ment Transport Index (STI), Normalized Difference Vegetation Index (NDVI) have 
been considered as independent factors. A landslide susceptibility map was prepared 
based on the AHP method and classified into high, moderate, and low-risk zones 
in a GIS environment. Results reveal that, about 29% of areas highly susceptible to 
landslide and past landslide inventories were also overlaid to observe the accuracy 
of susceptibility mapping. 
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1 Introduction 

Landslides are dangerous natural hazards that occur suddenly and cause consider-
able damage (Guzzeti et al. 1999). It is defined as the downslope mass movement of 
rock, earth, and debris under the direct influence of gravity (Cruden 1991), that are 
triggered by the earthquake, volcanic eruptions, rainfall, slope failures, and human
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activities like excavation and slope cutting (Bahrami et al. 2021). Landslides belong 
to the most distributed natural disasters in the world with the potential to cause loss 
of human lives as well as severe damage to the infrastructure (Vojtekova and Vojtek 
2020). Snow avalanches are a form of a landslide that happens in snow-covered 
areas at higher elevations and are caused by the bulk movement under gravity’s 
impact. Identification of avalanche hazard is necessary for planning future devel-
opmental activities in mountain areas (Athick et al. 2015). Landslide occurrence is 
affected by two types of factors, i.e., Predisposing factors which create the condi-
tion and Triggering factors which initiate the landslide. Predisposing factors include 
elevation, slope, aspects, LULC, curvature, and geology, whereas Triggering factors 
are earthquakes, seismic activity, heavy or prolonged rainfall, excavation, and slope 
cutting (Guzzeti et al. 2012; Chen et al. 2017a, b; Rabby and Li 2020). Soil erosion 
considerably contributes to the landslide as it weakens the slope material. The rate 
of mean soil loss is higher in elevated zones and decreases toward the lower region, 
also increase in the slope gradients accelerates the rate of sediment loss (Naqvi 
et al. 2015; Agegnehu et al. 2020), higher elevation and steeper slope areas are 
more prone to landslide occurrence. The changes in land cover, biomass, and hydro-
logic regimes subsequently affect erosion which is more pronounced on hill slopes 
(Naqvi et al. 2013, 2019; Emiru et al. 2018). Analysis of the landslide and predictor 
factors correlation are used to estimate the susceptibility of landslide. Generally, 
landslide susceptibility is the spatial probability of land sliding in a given area, 
depending on a combination of various factors such as geology, land use and land 
cover, tectonics, slope, aspects, vegetation, etc. (Guzzeti et al. 2006; Wu et al.  2016). 
For rainfall-induced landslide, drainage density is an important susceptibility index. 
High drainage density indicates a highly dissected landscape that has undergone 
intense slope cutting (Latief et al. 2015). Landslide hazard zonation (LHZ) is an 
important content of landslide hazard prediction modeling. Identifying landslide-
prone locations can assist decision-makers in reducing landslide risks (Boroumandi 
et al. 2015). The aim of landslide susceptibility mapping is to identify landslide-
prone areas for the purpose of disaster management, spatial planning, and devel-
opmental process. Till now various qualitative (knowledge-driven) and quantitative 
(statistical) techniques and methods have been proposed for landslide susceptibility 
modeling (Dai and Lee 2002; Lazzari and Danese 2012). Quantitative and semi-
quantitative methods consider weighing and rating based on logical tools such as 
AHP, fuzzy logic, combined landslide frequency ratio, and weighted linear combi-
nation (Pradhan and Lee 2009; Kayastha et al. 2013; Zhu et al. 2018). Landslide 
accounts for 9% of the world’s disaster (Galli et al. 2008). According to various 
researches, China, India, Nepal, and Philippines are the most affected countries by 
landslides on the basis of severity, losses, and frequency of occurrence (Kirschbaum 
et al. 2009). Indian Himalayan Region has been the site of frequent landslides. The 
present study area lies in the East Sikkim Himalaya. In the past, there have been 
frequent and catastrophic landslides that caused heavy losses of lives and property 
in Sikkim. Due to the increase in population in hilly areas, economic activities like 
infrastructural development and construction of roads have increased making this
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region vulnerable to landslides (Biswakarma et al. 2020). So it is very demanding to 
prepare an updated landslide susceptibility map for the East Sikkim region. 

2 Study Area 

East Sikkim is one of the districts of the state of Sikkim. Geographically, it is located 
in northeastern India and a part of Sikkim Himalaya of the Indian Himalaya that lies 
between 27.274° N to 27.322° N latitudes and 88.778° E to 88.732° E longitudes 
(Fig. 1). The study area covers 954 sq km and has an average elevation of 610 m 
above mean sea level. The capital of Sikkim state is Gangtok city which lies in this 
area. It has a population of 283,583 and is one of the most populous districts among 
the four districts in the state (Census 2011). The climate of the district has been 
divided into tropical, temperate, and alpine zones. The climate is cold and humid for 
most of the period, and rainfall occurs almost each month. Due to its proximity to 
the Bay of Bengal, the Study area experiences heavy rainfall. 

The mean temperature varies from 1.5 to 9.5 degree centigrade. In the entire state, 
fog is the common attribute between May to September and biting cold in the winter. 
During the month of May to October, rainfall is heavy and well distributed. The study 
area is mainly drained by the perennial Tista River with its tributaries such as Dik 
Chhu, Rate Chhu, and Rangpo Chhu. The surface area is generally roofed by forests, 
agricultural land, rocky and barren land, and settlements. The thickness of soil varies 
from steep slopes to valleys and terraces. The study area lies in the seismic zone IV 
and geological formation is as old as Proterozoic Eons. 

3 Data and Methodology 

For the accomplishment of the present work, a variety of significant data have 
been collected and followed different methods to achieve the landslide suscepti-
bility mapping (Fig. 2). The rainfall data was obtained from Indian Meteorological 
Department, population data from the District Statistical Handbook, Census of India 
(2011), SRTM DEM from NASA, drainage and road networks from Open series 
Topographical Sheets (2015), Soil data and Geological data from the Geological 
Survey of India (Table 1). 

3.1 Landslide Conditioning Factors 

Significant and efficient mapping required an appropriate set of conditioning factors 
correlated to landslide events that need prior knowledge of the main contributors to 
the landslides (Guzzeti et al. 1999). These conditioning factors are terrain, geology
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Fig. 1 Study area East Sikkim 

and morphology, slope, weather conditions, vegetation density, LULC, and man-
made influences. In this study, we have used 15 conditioning factors such as slope, 
elevation, curvature, aspect, normalized difference vegetation index (NDVI), land 
use land cover (LULC), topographical roughness index (TRI), topographical wetness 
index (TWI), sediment transport index (STI), distance from lineament, distance from 
the road, distance from the fault, lithology age, and Geomorphological landform. 

The elevation change of each place is one of the most essential factors in the 
creation of soil erosion and slope mass movement. This factor has a significant impact 
on the direction of runoff as well as the rate at which drainage density accumulates 
(Hosseinzadeh et al. 2009). The highest point in the region is 4704 m, whereas
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Fig. 2 Schematic flowchart depicts the datasets and methods used for the study 

Table 1 Datasets and their sources employed for the study 

Datasets Data structure Spatial resolution Source 

SRTM (DEM) Raster 30 m USGS, 
Earth Explorer, http://www.dwtkns. 
com/srtm30m/ 

Rainfall (mm) Raster 0.05° CHIRPS (https://chg.geog.ucsb.edu/ 
data/chirps) 

Landsat 8–OLI Raster 30 m (USGS) https://earthexplorer.usgs. 
gov/ 

Landslide inventory Vector National scale https://bhukosh.gsi.gov.in/Bhukosh/ 
MapViewer.aspx 

Geological data Vector National scale https://bhukosh.gsi.gov.in/Bhukosh/ 
MapViewer.aspx

http://www.dwtkns.com/srtm30m/
http://www.dwtkns.com/srtm30m/
https://chg.geog.ucsb.edu/data/chirps
https://chg.geog.ucsb.edu/data/chirps
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://bhukosh.gsi.gov.in/Bhukosh/MapViewer.aspx
https://bhukosh.gsi.gov.in/Bhukosh/MapViewer.aspx
https://bhukosh.gsi.gov.in/Bhukosh/MapViewer.aspx
https://bhukosh.gsi.gov.in/Bhukosh/MapViewer.aspx
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the lowest point is 289 m from mean sea level (MSL). In most of the landslide 
susceptibility studies, slope percentage is one of the most important predisposing 
factors (Abedini et al. 2017). Technically, as the slope rises, shear stress increases, 
resulting in an increase in the potential for slope instability. The aspect factor is vital 
in maximizing the quantity of rainfall, sun energy, and suitable wind blowing in any 
region, as well as reflecting the influence of soil thickness, vegetation, wetness, and 
other factors. Another contributor, the curvature is defined as the rate of change of 
slope angle or aspect which has a significant impact on slope stability. A general 
curvature map can be used to describe slope morphology and flow (Nefeslioglu et al. 
2008). Concave, flat, and convex curvatures are the three types of curvature found in 
the research area.

Slope failure is complicated by the presence of lineaments (Ramli et al. 2010). 
Lineaments describe the weaker plane or zone, and most landslides occur in this zone 
(Kannan et al. 2013; Thapa et al. 2017). Active faults are significant in landslides from 
two perspectives: first, they are the source of earthquakes, and second, active faults 
play a key role in breaking stones and causing instability. The shear resistance of the 
slide lowers as a result of discontinuity in the geological formation, and landslides 
are more likely to occur. In this case, highways play the most important role in 
concentrating runoff, therefore, experience and current data on landslides during 
road reconstruction and widening demonstrate the need of including this component 
in landslide sensitivity zoning. In the ArcGIS environment, the three parameters 
stated above were determined using Euclidean distance. 

The nature of land use land cover (LULC) is a key indicator of slope inconstancy 
which influences the earth’s characteristics and causes variations in its activity. As 
a result, mapping the LULC and its monitoring is a critical undertaking that has a 
significant impact on the frequency of these dangers. Rainfall is a highly influential 
factor that has been considered as a landslide triggering factor. The annual rainfall 
map was created for this study using data from eight meteorological stations in the 
area and the inverse distance weighted (IDW) interpolation method was employed. 
Landslides are thought to be caused by a variety of factors, including geomorphology 
that was created using geological maps and only a few field checks (Kannan et al. 
2013). In landslide susceptibility, lithology age is one of the most prominent determi-
nant factors since different lithological units have varying weightage scores, which 
can provide valuable information about a region’s landslide susceptibility (Yalcin 
and Bulut 2007). Other important and crucial aspects were also considered, and their 
computations were based on the following equations: 

Topographic Roughness Index (TRI) 

Topographic roughness index (TRI), one of the morphological factors which is 
broadly utilized in landslide analysis was computed by using Eq. (1). 

TRI =
/
Abs

(
max2 − min2

)
(1)



Landslide Susceptibility Mapping of East Sikkim … 109

where max and min are the biggest and smallest values of the cells in the nine 
rectangular neighborhoods of altitude, respectively. 

Sediment Transportation Index (STI) 

Sediment transportation index (STI) defines the procedure for slope failure and 
deposition (Eq. 2). 

STI =
(

As 

22.13

)0.6( Sinβ 
0.0896

)1.3 

(2) 

where β is the slope at each pixel and As is the upstream area. 

Topographic Wetness Index (TWI) 

Topographic Wetness Index (TWI) is an index that quantifies how topography 
controls the hydrological processes of an area and is derived using Eq. (3) 

TWI = Log[A tan(α)] (3) 

where A is the catchment area and α is the local slope gradient corresponding to a 
specific cell. 

TWI increases with the decrease of slope and the highest TWI value is usually on 
floodplains (Yilmaz and Keskin 2009). 

Normalized Difference Vegetation Index (NDVI) 

The NDVI (Normalized Difference Vegetation Index) is a frequently used metric 
for describing vegetation and plant health (Chen et al. 2019a, b; Abedini and Tulabi 
2018). Because the root system links to the soil and keeps it from wasting after rains, 
vegetation coverage helps to prevent erosion and landslides (Chen et al. 2019a, b). 
The NDVI was calculated using Eq. (4) and Landsat 8 level 2 images from March 7, 
2018, where IR is the infrared band and R is the red band. 

NDVI = (IR − R)/(IR + R) (4) 

The NDVI scale runs from 1 to 1, with a positive value of 0.2–0.8 indicating 
vegetation and forests, a negative value indicating water bodies, and a low positive 
value (0.2 and below) indicating bare land and urban areas (Chen et al. 2017a, b; 
Althuwayee and Pradhan 2018).
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Table 2 Saaty’s fundamental 
scale (1980) 

1 Equal importance on the scale 

3 Importance of moderate value 

5 Significant importance 

7 Extremely important 

9 Extremely high influence 

2, 4, 6, 8 Values in the middle of the two adjacent judgments 

3.2 Analytic Hierarchy Process (AHP) 

An important multi-criteria decision analysis (MCDA) method for allocating weights 
to specific parameters is the analytical hierarchy process (AHP) proposed by Saaty 
and Vargas (1998). The AHP approach employs a pair-by-pair comparison matrix. 
The consistency ratio (CR) value varies from 0 to 1 when the matrix is created (Saaty 
1980, 1990, 1994). The AHP method can be used to do a general linear combination 
method to determine the potentiality index (Malczewski 1999). The fundamental 
scale of Saaty (1980) was used to create the pairwise matrix (Table 2). The weight 
of parameters was computed using the AHP approach in this example. 

3.3 Application of the AHP Model 

The AHP is used in this study to identify landslide vulnerability zones using a criteria-
based judgment technique. For zoning landslide susceptibility, AHP can provide a 
good and reliable method. AHP is a single procedure that assists in determining the 
relative importance of various aspects based on the expert’s knowledge and opinion. 
The AHP approach was used to assign weights to the landslide determining elements 
(Table 3) for this study. For mapping the landslide probability, the slope has the most 
weight (0.218), followed by rainfall (0.112), elevation (0.109), and TWI (0.101). 

4 Result and Discussion 

4.1 Mapping and Assessment of Factors Responsible 
for Landslide Occurrence 

The various factors were considered that could be significantly responsible for land-
slide occurrences, and accordingly, thematic maps of all parameters were prepared 
for the AHP model. The most influential factor for landslide trigger is topography and 
all the possible thematic layers were extracted through DEM data (Fig. 3a–g). The 
degree of slope is more important, and the majority of the pixels indicated by blue hue
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Fig. 3 Parameters such as a Slope, b Curvature, c Elevation, d Aspect, e STI, f TWI, g TRI, 
h NDVI, i LULC, j Distance from Road, k Distance from Lineament, l Distance from Fault, m 
Rainfall, n Landforms, and o Lithology used for landslide susceptibility mapping

had values greater than 40° and ranged between 0° to 70° (Fig. 3a). The study area 
has concave, plain, and convex curvatures, among them plain is dominant followed 
by convex and concave curvatures (Fig. 3b). The altitude of the study area ranges 
from 289 to 4704 m and the eastern part has the greatest variation in topography and 
almost half of the area has elevation >2500 m. Therefore, the study region is classified 
into five zones, viz., very low (289–1160), low (1160–1794), medium (1794–2550),
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high (2550–3443), and very high (3443–4704) (Fig. 3c). The aspect (slope orienta-
tion) affects the exposure to sunlight, precipitation, and wind, thus inversely affecting 
other factors that could be responsible for triggering the landslides such as vegeta-
tion cover, soil moisture, and thickness (Clerici et al. 2006). Accordingly, aspect has 
been categorized into flat, north, northeast, east, southeast, south, southwest, west, 
northwest, and north (Fig. 3d). The sediment transport index (STI), reflecting the 
erosive power of the overland flow depends on slope and upstream area that has been 
derived by considering the transport capacity limiting sediment flux and catchment 
evolution erosion theories (Devkota et al. 2013; Pradhan and Kim 2014). Higher 
STI scores denote that the area has more probability for the occurrence of a land-
slide (Fig. 3e), and accordingly, STI has been classified and considered in the AHP 
model. TWI has been calculated and results generated through DEM data denote that 
wherever the TWI is high, that area is considered more susceptible to landslide. The 
composite scores of TWI are categorized into four classes such as <2, 3–7, 7–11, 
and >11 (Fig. 3f). Moreover, TRI has also been calculated through DEM which too 
showed the similar criteria adopted in STI and TWI. The pixels under different scores 
of TRI have been categorized into five classes, viz., <0.3, 0.3–0.4, 0.4–0.5, 0.5–0.6, 
and >0.6 where higher score has more probability for the occurrence of landslide 
(Fig. 3g).

The NDVI and LULC thematic layers are prepared through Landsat 8–OLI dataset 
and these are also indicating factors that can help in finding the landslide susceptible 
area. The highly dense vegetative cover (>0.5), sparse vegetation (0.2–0.5), and bare 
land (0–0.2) areas are possibly extracted through NDVI. The NDVI scores have 
great potential to identify the more prone region in terms of landslide on the basis 
of land coverage, thus the values near 0 to 0.2 are highly susceptible (Behling et al. 
2014), and accordingly, the mentioned range of NDVI values are prone within a 
range of our NDVI results from −0.156 to 0.459 (Fig. 3h). The spatial distribution 
of LULC showed that almost 2.27% of the area is covered by water bodies, 70.75% 
area is covered by vegetation, and 0.16 by built-up area (Fig. 3i). The remaining 
LULC areas such as agriculture fields (8.31%), bare lands (5.42%), and snow/glacier 
(13.08%) areas are exposed and make these regions highly susceptible to landslides. 
Other parameters such as distance from the road, lineament, and fault have also been 
considered and calculated through Euclidean distance (in km) into a few categories. 
The lowest (<0.01, <0.01, and <1) and highest (>0.07, >0.1, and >4) scores for 
the distance from the road, lineament, and fault are, respectively, (Fig. 3j–l). Road 
building activity in mountain areas is regarded as an infrastructure improvement 
that may be very detrimental to landslides. These lower scores suggest that the 
minimum distance from lineament, road, and fault makes the region more susceptible 
to landslides (Cao et al. 2021). 

Rainfall is one of the significant triggering factors of landslides. Often, a heavy 
rainfall spell of 1 or 2 h can cause mass movement, or sometimes it can be an 
antecedent rainfall over the past few days (Dutta et al. 2021). The study area expe-
riences an abundance of rainfall and recorded a value >1500 mm (Fig. 3m). The 
geomorphologic map depicts important geomorphic units, processes, landform, and
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structure that controls landslide. The geomorphological landforms are of eight cate-
gories: Terrace, WalBond-Pond, StrOri-Moderately Dissected Hills and Valleys, 
StrOri-Highly Dissected Hills and Valleys, Snow cover, WatBod-River, Valley, and 
Lake (Fig. 3n). Literature suggests that the dissected hills and valleys are more prone 
to landslides (Sonker et al. 2021). Most of the portion of this study area has moder-
ately and highly dissected hills and valleys. It is recognized that geology is also one of 
the significant parameters that greatly influence landslide occurrence and lithological 
variation leads to a difference in the strength and permeability of rocks. Although 
lithology falls into three categories of geological age, i.e., Pleistocene, Mesopro-
terozoic, and Proterozoic periods (Fig. 3o), studies have suggested and was found 
that the Proterozoic age group in the Lesser Himalayan sequence is most prone to 
landslides (Tiwari et al. 2017). 

4.2 Landslide Susceptibility Mapping 

The various studies have been conducted and used weight combining methods 
for landslide susceptibility mapping (Abedini and Tulabi 2018). Identifying the 
landslide-prone area is not an easy task, as its mapping is very important for decision 
makers. The previously published researches have suggested that the AHP method 
is more suitable than the frequency ratio method. Therefore, in this study, a landslide 
susceptibility map was produced by combining all the influential factors according to 
weightage criteria using the AHP model (Table 3). Further, it was classified into low, 
medium, and high susceptible zones (Fig. 4). In light of the produced results, it was 
found that nearly 29% area of this region has been highly susceptible to landslides. 
The medium and low risks have shared 18 and 53% area, respectively, under the 
susceptible zones (Table 4). 

The study area is undoubtedly not new to the phenomena of gravitational insta-
bility, as expected, the geologic setting and the characteristics of the terrains are a 
part of the Himalayas. Thus, the susceptibility to landslides is inbuilt in the natural 
characteristics of this landscape and there is a definite relationship between landslide 
occurrence and geophysical setup. Morphology of the hill slope has a great effect 
on the landslide events (Dai and Lee 2002). The Slope is considered as an impor-
tant factor and the main reason for terrain instability (Haeri and Samiei 1996). In 
this study, high instability occurred in those regions where slopes were between 24° 
and 41°, whereas slopes less than 24° and higher than 41° angles were noticed to 
be less prone to landslide occurrences. Duration of rainfall and its intensity have a 
major role in the occurrence of landslides that, of course, depends on factors such as 
topography and geological structure of the slopes and their permeability (Lydia and 
Espizuajorge 2002). Heavy rainfall increases TWI, as well as STI, of a place due to 
water invasion in the gaps that leads to the slope deformation. The area where the 
values of STI, as well as TWI, were high has been found to be more susceptible to 
landslides. The instability is high in the valley area and along the roadsides. The city 
of Gangtok, which is the capital of Sikkim experiences great human interference and
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Fig. 4 Generated landslide susceptibility zones and overlaid point locations of past landslides 

Table 4 Landslide 
susceptible zones with 
respective spatial coverage 

Landslide susceptibility zone Area in km2 Area (%) 

Low 510.42 52.948 

Medium 165.54 17.172 

High 288.04 29.88

goes through a phase of drastic development activities that ultimately influence the 
land cover and encroachments. This uncontrolled settlement and rampant expansion 
of roads and other land use practices encroached on the vulnerable land significantly 
increases not only the area under susceptible zones, but also the landslides frequency. 
The results showed that built-up areas, bare land areas, and agricultural field areas 
mostly fall into the high susceptibility zone. Road networking activity in mountain 
areas is regarded as an infrastructural enhancement, which may develop the ground 
for change in the stability of the landscape over there. The results reveal that the high 
susceptible zone is dominant along the roads and its periphery. The region is a part 
of an active continent–continent collision zone and the prime locations of all human 
activities enhance the risk potential of landslides. The area which lies within a 2 km 
buffer zone of the fault line falls under the high susceptible zone. Therefore, these 
all-important reasons are collaboratively responsible for landscape deformation. 
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Fig. 5 Few samples of photographs of different types of slides. The Creep a, b Rockfall, c Debris 
flow cum rockfall, and d Debris flow pictures were taken during a field visit to validate the locations 
of landslides over susceptibility mapping 

4.3 Landslide Inventories Validation Over Susceptibility Map 

The landslide susceptibility map has been validated by superimposing the GSI land-
slide distribution point layer and supported by field photographs taken during the 
field visit (Figs. 4 and 5). According to GSI data, the study area had experienced 
approximately 167 landslides that differ in terms of width, length, and height. The 
overlaid analysis showed that most of the earlier landslides fall into the high suscep-
tible zone followed by the medium and low susceptible zone. The different types of 
landslides photographs were also taken in the field in order to validate the present 
study (Fig. 5, panel a–d). 

5 Conclusions 

Disaster is a serious disruption that unstabilizes the general condition of the phys-
ical, social as well as economic environment. The young mountain region is more 
vulnerable to earthquakes and landslides. This study area is a part of the young 
folded mountain Himalaya, where landslide is a vast growing hazard that poses a 
great threat to human lives, properties, and rising infrastructure. Therefore, mapping 
landslide-susceptible zones is the first step to be taken as preventive measure. In this
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study, the AHP method has been used in the GIS environment by considering slope, 
LULC, NDVI, TWI, rainfall, Distance from (road, fault, and lineament), and eleva-
tion factors. AHP method is applied to assign the weight of each factor causing the 
landslide. Based on the AHP calculation, the four most influencing possible factors 
found for landslide occurrence are slope, rainfall, elevation, and TWI. The obtained 
susceptibility map and its related data show that the high susceptible zones cover 
an area of 29% followed by medium (17%) and low (53%) area. The map was vali-
dated by earlier landslides event data taken from GSI as well as supported with field 
photographs. However, the field visit was in the initial days to take an overview of 
the area, and the photographs taken for validation and to assess the types of slides 
are not sufficient enough to conclude the results very accurately in terms of field 
data. Although, landslide inventories dataset is highly recommendable to validate 
our landslide susceptibility mapping. This attempt would be helpful for planners and 
decision makers to follow the proper land use planning and slope management for 
sustainable development that could possibly minimize the upcoming landslide events 
in the study area. 
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