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Abstract Wetlands of the moribund region of the Ganga–Brahmaputra deltaic part 
experience extreme loss and degradation, which is the leading cause for our present 
study. In this study, the vulnerable situation, as a part of degradation, is explored 
using tree-based ML algorithms in python environment using eight conditioning 
parameters, namely: water presence frequency (WPF), change in WPF, hydro dura-
tion, water depth, agriculture presence frequency, proximity to the river, distance 
from the road network, and built-up proximity. Four tree-based machine learning 
algorithms, namely, bagging classification model, reduced error pruning tree (REP 
Tree), gradient boosting classification model (GBM), and AdaBoosting classifica-
tion model (ADB), has been used to evaluate the vulnerability of wetlands for both 
phase II (1998–2007) and phase III (2008–2017). It is found that 23.92–25.01% and 
44.67–46.99% area to total wetland area emerged as high to very high vulnerable 
zone in phase II, whereas 24.08–26.16% and 45.41–49.13% of wetland area iden-
tified as high to very high vulnerable zone in phase III. More than 45% of the total 
wetland area disappeared during phase II to phase III. The models have been vali-
dated using the following matrices like sensitivity, Precision F1-score, and MCC for 
justifying the best-suited model. With an average score of more than 91 for all the 
matrices, the gradient boosting classification model (GBM), and AdaBoosting classi-
fication model (ADB) exhibit more prediction capability and model accuracy than the 
bagging classification model, and Reduced Error Pruning (REP) Tree model. With 
the successful prediction, the study recommends tree-based ML algorithms for such 
or similar works. The study also warns about growing wetland habitat vulnerability 
and its negative consequences on socio-ecological benefits. 
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1 Introduction 

The wetland contains a distinctive ecosystem system with significant hydro-
ecological functions that have been altered significantly faster than any other known 
ecosystem (Dong et al. 2020;MEA  2005). Wetland provides 60% of global ecosystem 
services with only 6% global spatial extension (Finlayson and Davidson 2018). The 
wetland ecosystem also provides shelter for 40% of global species including some 
of the most endangered ones (Meng and Dong 2019). Despite immense ecosystem 
contribution, the wetland is one of the most threatened ecosystems due to rapid 
change in habitat ecology triggered by agricultural extension, infrastructural devel-
opments, population growth in the wetland area (Akpabio and Umoh 2021; Saha 
and Pal 2019a), hydrological modification (Pal and Debanshi 2021a, b; Talukdar 
and Pal 2019). Agricultural extension towards wetland areas, directly and indirectly, 
affects its habitat, and rapid urban growth and infrastructural development deteriorate 
its habitat completely (Xia et al. 2021). Davidson (2014) reported that 87% of the 
global wetland has been lost since 1700, with an increasing rate of up to 71% in late 
1900. Space Application Centre (2018) reported that 32.5% of Indian wetlands shrink 
seasonally due to rainfall anomaly and water table fluctuation, which is responsible 
for ~3% annual wetland loss (Prasher 2018). In the floodplain region, population 
pressure towards the wetland area with vast agricultural practices leads to accelerate 
the rate of shrinking (Saha and Pal 2019b; Bassi et al. 2014). The study area moribund 
deltaic region of the Ganga–Brahmaputra delta is also facing similar situations (Paul 
and Pal 2020a). This region is enriched with many back swamps, sloughs, oxbow 
lakes, residual channels, and marshy lands of various sizes. Those wetlands are one 
of the major sources of various hydrological resources and also act as a corridor for 
many ecologically sensitive species (Bala and Mukherjee 2010). Studies like Paul 
and Pal (2020a) reported that 47.31% wetland of this region has been transformed 
seasonally due to extensive agricultural practices. This seasonal drying out process 
accelerates the rate of wetland conversion into agricultural lands and built-up land 
permanently (Paul and Pal 2020b). These factors are very crucial for determining the 
fate of the wetland, and therefore, these are considered conditioning parameters for 
wetland habitat modelling. 

From the environmental perspective, wetland vulnerability is an ensemble of 
various natural and artificial factors like rainfall anomaly, lowering down of ground-
water table, extensive land use/land cover (LU/LC) change, loss of connectivity with 
active recharge points, and climatic change (Pal and Talukdar 2019; Finlayson 2006). 
Current remote sensing (RS) and GIS have such capability to explore the nature of 
such change using various spatial models like the wetland vulnerability index (WVI) 
model (Defne et al. 2020), Pressure, State, Impact, Response (PSIR) framework 
(Mosaffaie et al. 2021), multivariate adaptive regression spline (MARS) (Adnan 
et al. 2021). Recently, data-driven and knowledge-driven models such as statistical 
index (SI) (Li et al. 2020), linear discriminant analysis (LDA) (Nie et al. 2020), arti-
ficial neural network (ANN) (Paul and Pal 2020b), support vector machines (SVM) 
(James et al. 2013), Bagging (Chhabra et al. 2021), Boosting (Pal and Paul 2021b),
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decision tree (DT) (Luo et al. 2021a, b), random forest (RF) (Granger et al. 2021), 
Random subspace (Talukdar et al. 2021), Reduced Error Pruning (REP) Tree (Pal and 
Paul 2020), boosted regression trees (BRT) (Shaziayani et al. 2021), Evidential belief 
function (EBF) (Ghosh 2021), deep belief network (DBN) (Scarpiniti et al. 2021), 
and naive Bayes (NB) (Costache et al. 2021) are also used to measure different spatial 
phenomenon like flood and landslide susceptibility mapping (Jacinth Jennifer and 
Saravanan 2021), groundwater potentiality mapping, climate forecasting (El-Magd 
and Eldosouky 2021; Lin et al. 2021). Studies show that the machine learning (ML) 
models have the capability to predict spatial phenomena on large datasets and give 
more accurate results than traditional statistical techniques (Pal and Paul 2020). 
Individual machine learning techniques also has some of their strengths and weak-
nesses, therefore, different ensemble techniques have been introduced to reduce such 
weaknesses (Rabbani et al. 2021; Pal and Paul 2021a). In a multi-model approach, 
validation of the model is necessary to check the accuracy level and also ensure the 
performance of the employed models (Ling et al. 2021). Studies like Mohana et al. 
(2021), and Qolipour et al. (2021), reported that tree-based ensemble ML algorithms 
have such capability to perform better than generic algorithms. Recently, various 
advanced machine learning (ML) algorithms have been incorporated for modelling 
various environmental phenomena, but the tree-based multi-model approach for 
wetland vulnerability mapping is rare, especially in this region. Therefore, in this 
present study, we have attempted to employ multiple tree-based machine learning 
techniques for modelling wetland vulnerability in the moribund deltaic part of India. 
Different matrices and an extensive field investigation have been done to validate the 
performance of the employed models. 

Previously, it is mentioned that the moribund of the Ganga–Brahmaputra deltaic 
region is prone to rapid wetland loss and hydrological transformation due to 
rapid anthropogenic pressure and infrastructural developments. Previous studies like 
Mandal and Pal (2017), Paul and Pal (2020a, b), and Everard et al. (2019) focused 
on only the transformation and dynamic nature of wetlands but no study focused on 
the degree of risk faced by the habitat or habitat risk areas which have a long-term 
effect on habitat ecology and ecosystem services of the wetland. Therefore, this study 
attempts to identify vulnerable areas of wetland with the help of multiple tree-based 
machine learning algorithms. 

2 Study Area 

The present study area, moribund deltaic region, is a part of the great Ganges– 
Brahmaputra delta of Indo-Bangladesh. It extends from 24°30' N/88° E to 23° 
N/89°45' E with a total area of 7685.99 km2. The extension of our present study 
is 23°24'35'' N/88°15'50'' E to 23°42'30'' N/88°33'20'' E with an area of 3927 km2 

(Fig. 1). The Ganges–Brahmaputra delta is divided into three geomorphological 
units and spread across an administrative unit of India and Bangladesh (Bagchi and 
Mukherjee 1983). The Wetland of this region is enriched by fertile alluvial soil
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Fig. 1 Geolocation of the study area, moribund delta (Indian part) 

and inundated water cane from rivers and depends on the seasonal rainfall regime, 
and therefore, most of the wetlands are seasonal (Bala and Mukherjee 2010). Since 
the region receives 80% of total annual rainfall (1450 mm) during the monsoon 
season, the wetland area gets its maximum areal extent during this season. With 
an interconnected network of streams like Bhagirathi–Hooghly, Jalangi, Ichamati, 
and Churni, numerous active riverine morphometric structures create a thick layer 
of fertile alluvium, silt, and clay layer in this region (Majumdar 1978). Agrarian 
economy determines the nature of wetland transformation to a large extent. 

3 Materials and Methods 

3.1 Materials 

For this present study, Landsat TM 4–5 imageries ETM and OLI imageries from the 
United States Geological Survey (USGS) from 1988 to 2017 (Path/row: 138/43,44;
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spatial resolution: 30 m) have been used to prepare wetland map, water depth map, 
seasonal dynamics of wetland, vegetation and agriculture cover map, and built-up 
area map. Open Street Map (OSM) has been used to prepare a road map. Survey of 
India (SOI) toposheets have been used to prepare river map. Whereas, the adminis-
trative map of Nadia district was used to demarcate the study area because all parts of 
the Nadia district come under the moribund part of the Ganga–Brahmaputra deltaic 
region. Extensive field surveys and high-resolution Google Earth imageries have 
been used to validate wetland map, built-up map, agricultural map, and road map. A 
total of 540 sites has been selected for validating the models. 

3.2 Methods 

3.2.1 Data Layers Preparation for Wetland Vulnerability Assessment 
(WVA) 

Eight spatial data layers have been considered for this present study, among which five 
parameters are related to the hydrodynamics of the wetland, namely, water presence 
frequency (WPF), water depth, change in WPF, hydro duration, and proximity from 
the river. The remaining three parameters such as distance from the road network, 
built-up proximity, and agricultural presence frequency (APF) are related to LU/LC 
dynamics. For this present study, the range of available data (1988–2017) has been 
divided into three phases in a decadal manner such as phase I (1988–1997), phase 
II (1998–2007), and phase III (2008–2017). Due to the lack of availability of the 
change in the WPF layer for phase I, this phase has been excluded. 

The normalized differences water index (NDWI) (McFeeter 1996) has been calcu-
lated for each Landsat image (1998–2017) to identify the wetlands. According to the 
studies conducted by Mandal and Pal (2017) and Das and Pal (2016), the NDWI 
technique of surface water detection gives better sensitivity for the Indo-Gangetic 
region. The NDWI value is higher in greater water depth areas. The NDWI map is 
used to prepare water presence frequency (WPF) and also wetland depth mapping 
for this study. Recent NDWI layers have been validated using 987 reference sites 
selected from Google earth images and field sites. The computed Kappa coefficient 
(K) value ranges from 0.86 to 0.95, which indicates an excellent match between 
image-based wetland map and ground reality. The equation to calculate NDWI is as 
follows: 

NDWI = 
bgreen − bNIR 
bgreen + bNIR 

(1) 

where NDWI = Normalized Differences Water Index; the green band is indicated 
by bgreen; and the near infra-red band is indicated by bNIR. The NDWI value ranges



168 S. Pal and S. Paul

from −1 to 1, where pixel value towards positive 1 indicates maximum availability 
of water. 

Water presence frequency (WPF) indicates the frequency of appearance of water 
pixels within a selected temporal frame (Borro et al. 2014). Consistent appearance 
of water pixels considered high WPF and inconsistent appearance of water pixel 
considered as low WPF (Paul and Pal 2020a). Therefore, WPF can be an important 
indicator to determine the habitat health status of the wetland. To prepare the WPF 
layer, each NDWI layer has been converted to the binary image where the presence 
of water pixel is considered as 1 and non-water pixel is considered as 0. Thereafter, 
images of each decade have been summed up to prepare a decadal WPF map (Figs. 2, 
3). The total frequency of water presence within a temporal span is considered as 
100%. The WPF has been divided into three categories such as low WPF (<33%), 
moderate WPF (33–67%), and high WPF (>67%). 

WPF =
∑n 

i=1 NDWI 

NI 
× 100 (2) 

Fig. 2 Incorporated data layers for wetland vulnerability assessment of phase II a WPF, b water 
depth, c hydro duration, d APF, e change in WPF, f distance from river, g distance from road, and 
h distance from the built-up area
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Fig. 3 Incorporated data layers for wetland vulnerability assessment of phase III a WPF, b water 
depth, c hydro duration, d APF, e change in WPF, f distance from river, g distance from road, and 
h distance from the built-up area 

In this equation, INDWI is the frequency of water presence at the Ith pixel, and N 
is the total number of years. 

Imaged-based change detection analysis has been done to detect the decadal 
change in WPF in the ArcGIS environment. Water depth indicates the potentiality of 
hydrological richness (Pal and Paul 2021b). NDWI maps have been used to prepare 
the depth map for this study as the pixel value varies with water depth (Paul and 
Pal 2021). 30 field-based wetland depth data have been used to calibrate the depth 
maps. Hydro-duration is another important parameter that indicates the presence and 
availability of saturated soil periodically (Pal and Sarda 2021). Hydro-duration map 
phase II and III prepared using 1999 and 2007 for phase and 2010 and 2017 aver-
aging annual hydro-duration maps. This technique has been adopted due to the lack 
of monthly data for different phases. 

In this floodplain deltaic region, wetlands in the riparian region often lost their link 
with feeding channels in the pre-monsoon season (Pal and Saha 2018). These small 
tie channels are very important for maintaining water availability and the hydro-
ecological health of the wetland (Kundu et al. 2021). Studies made by Pal and Paul
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(2021a) and Debanshi and Pal (2020) reported that the wetlands located far away 
from the perennial channels are generally unable to maintain their stable hydrological 
status throughout the year. Therefore, distance from rivers can be considered as 
a potential parameter to check the vulnerability status of the wetland. Phase-wise 
distance map has been prepared using the Euclidian tool in the ArcGIS environment. 
The rapid extension of infrastructure causes fragmentation of wetland scape and 
it is caused for disconnection among the fragmented wetland units and increasing 
anthropogenic pressure (Grzybowski and Glińska-Lewczuk 2019). 

The current study region comprises some populated urban areas like Kalyani, 
Krishnanagar, Ranaghat, Santipur, and Nabadwip. These cities are well-connected 
with very dense road networks. Therefore, distance from the road and the built-up 
area is considered as a potential parameter for detecting the status of vulnerability 
due to anthropogenic pressure towards the wetland area (Islam et al. 2021). Phase-
wise NDBI has been calculated to prepare the built-up distance map and Open Street 
Map (OSM) road layer is used to prepare the Euclidian road distance map (Figs. 2, 
3). In the floodplain region, wetland capture through agricultural encroachment is 
very much visible (Pal and Saha 2018). 

NDVI = 
(bNIR − bred) 
(bNIR + bred) 

(3) 

NDBI = 
(bMIR − bNIR) 
(bMIR + bNIR) 

(4) 

Normalized Difference Vegetation Index (NDVI) from 1998 to 2017 (Eq. 3) has 
been taken to prepare yearly vegetation and cropland maps. Thereafter, each NDVI 
map is converted into a binary map by providing1 for vegetation and cropland and 
0 for the non-vegetated area. These maps are summed up phase-wise to prepare an 
agricultural presence frequency (APF) map. APF varies from 0 to 100%, where a 
value near 100% often indicates a consistent cropping area (Figs. 2, 3). 

3.2.2 Modelling of Wetland Vulnerability 

For this study, four tree-based ML classifiers have been used, namely: Reduced Error 
Pruning (REP) Tree, Gradient boosting classification model (GBM), AdaBoosting 
classification model (ADB), and Bagging classification model. A methodological 
overview of the employed models is discussed below. 

Reduced Error Pruning Tree (REP Tree) 

The reduced error pruning Tree or REP tree is considered to be a relatively fast 
decision-making algorithm that uses the pruning method to reduce the complexity of 
a data model and minimizes the model error (Pham et al. 2019; Sattari et al. 2021).
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This pruning process simplifies the model tunning and structurization process and 
also saves more time during the training (Pham et al. 2019). The pruning process 
also reduces the overfitting problem and provides better accuracy to the model (Zhar-
magambetov et al. 2021). There are two types of pruning processes: pre-pruning and 
post-pruning. The pre-pruning is a relatively faster process with lesser accuracy 
than the post-pruning (Shahabi et al. 2021). For this study, we have applied the 
post-pruning technique to assess the wetland vulnerability. 

Bagging Classification Model 

Bagging or bootstrap algorithm uses bootstrapping technique to reduce the noise in 
a dataset and improve the performance of the model (Luo et al. 2021a, b; Song et al. 
2021). It is one of the primitive ensemble models which generates multiple randomly 
to form a training set (Wen and Hughes 2020; Jain and Xu 2021; Ankar and Yadav 
2021). The bagging model decreases the variance of classification error to improve 
classification accuracy. For this study, we have used the SK-learn package in python 
to run this model. 

Gradient Boosting Classification Model (GBM) 

The gradient boosting classification model (GBM) is an ensemble model which 
uses a decision tree algorithm under the hood (Zhang et al. 2021; Abdi 2020). The 
GBM algorithm uses boosting tree technique over the generic tree-based algorithm 
for optimizing the model accuracy and performance (Yang et al. 2021). The GBM 
algorithm replaces “best-fit” optimization with a “weak” learner model for staking 
the model and applying aggregation of the existing dataset (Jun 2021). GBM has 
high predictive power over RF, but for noisy data, sometimes it leads to overfitting 
(Yang et al. 2021). For this study, GradientBoostingClassifier from the Scikit-learn 
ensemble package has been used for wetland vulnerability mapping. 

AdaBoosting Classification Model (ADB) 

Adaptive boosting or AdaBoosting is also a decision tree-based ensemble model 
designed to improve the performance and efficiency of binary classifiers (Zhar-
magambetov et al. 2021). Like other ensemble models, AdaBoosting also uses an 
iterative process to learn the mistakes of multiple weak classifiers and improve 
the model’s performance (Zharmagambetov et al. 2021; Walker  2021). AdaBoost 
classifier tools from the SK-learn ensemble library have been used in this study.
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3.2.3 Data Preparation and Training of the Models 

To construct a wetland vulnerability model, vulnerability conditioning factor layers 
water presence frequency (WPF), change in WPF, water depth, hydro duration and 
proximity from the river, wetland road distance, built-up proximity, and Agricultural 
presence frequency) have been converted to grid cell format with a spatial resolution 
of 30 m. Subsequently, the frequency ratio for each lower-class area of WPF (<33%) 
and depth map has been taken to identify poor wetland habitat areas for both phases. 
These maps have been used to extract training and validation datasets for the ML 
algorithms. 

3.2.4 Parameter Optimization of the Models 

K-fold cross-validation technique along with hyperparameter optimization technique 
like GridSearch CV method has been applied to optimize the model. All ML algo-
rithms are optimized to a certain number of iterations using the grid search technique 
to generate hyper-parameters (Daviran et al. 2021). The training sets have been split 
into some equal random k-sets for training and validation of the model as a standard 
procedure (Wen and Hughes 2020). For better performance and accuracy, 5- and 
tenfold K iterative processes for 240 candidates have been run to generate 1200 and 
2400 fits for each model. 

3.2.5 Evaluation and Comparison Methods 

In this study, the models have been evaluated using six matrices, namely: sensitivity, 
precision, FI-score, and MCC. The confusion matrix for the training and validation 
dataset consisted 2 × 2 contingency table from which four types of evaluation results 
have been categorized as, true positive or TP, false positive or FP, true negative or 
TN, and false-negative or FN. The TP and TN are correctly classified data, whereas 
the FP and FN part of datasets are incorrectly classified results. Based on these four 
classification results, sensitivity, precision, FI-score, and MCC are calculated using 
the following equations: 

Sensitivity = T p  

T p  + Fn  
(5) 

Precision = T p  

(T p  + Fn) 
(6) 

F1 − score = 
precision × recall 
precision + recall 

(7) 

MCC = T p  × Tn  − Fp  × Fn  √
(T p  + Fp)(T p  + Fn)(Tn  + Fp)(Tn  + Fn) 

(8)
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3.2.6 Field-Based Validation Method to Determine Wetland 
Vulnerability 

An extensive field investigation has been conducted to validate and assess the perfor-
mance of the models and also for measuring the physical vulnerability status of 
wetlands. For this study, 30 wetlands have been studied from different parts of this 
region. The selection criteria of those wetlands include site, situation, wetland type, 
and distance from the feeding channel. A total of 12 vulnerability controlling factors 
like the connection with a nearby stream, wetland area change, quantity of natural 
and artificial inflows, quantity of surface outflows, hydrological period of wetland, 
depth (average), water level fluctuation (monthly), and wetland eutrophicated area 
are the physical factors, whereas cultivation of fish, presence or absence of agri-
culture practice, area encroached for agriculture, are considered as anthropogenic 
factors those are considered to evaluate the vulnerability status of the wetland. A 
composite rank score has been calculated to derive a factor-wise score and then the 
final score has been generated using the averaging technique in SPSS software to 
generate the final wetland vulnerability index (WVI). 

4 Results 

4.1 Characteristics of the Parameter Layers 

Before assimilating all the eight layers, spatial variation of individual parameters can 
be quantified to comprehend the nature of each factor used for measuring wetland 
vulnerability. The overall wetland area has decreased from 150.38 to 80.63 km2, 
which means more than 45% of the wetland area was lost between phase II to phase 
III. In case of water presence frequency (WPF), the area under moderate WPF has 
lowered from 60.57 to 24.59 km2 between phase II to phase III during the post-
monsoon season. The area under high (>5 m) wetland depth also decreases from 
41.81 to 23.70 km2, which indicates that many wetlands have been dried out during 
phase II to phase III. In the fragmentation dataset, the large core area decreases from 
20.60 to 13.63 km2 from phase II to phase III. The edge and patch areas also decrease 
from 55.59 to 5.94 km2 and 24.22 to 13.63 km2, which indicates growing wetland 
fragmentation and increasing pressure on the human landscape. The core area of 
wetlands is less affected as compared to edge and patch areas. In agricultural presence 
frequency, the area under the high APF zone is increased from phase II to phase III 
indicates that the low WPF areas area converted into permanent or semipermanent 
agricultural land by extending agricultural areas. Similarly, the built-up area towards 
the wetland is rapidly increased from phase II to phase III, which is also a cause for 
rapid wetland conversion. It is the fact that all the parameters are not concentrated 
in the same spatial unit or same spatial variability, therefore, to produce the final 
vulnerability model, it is necessary to integrate all the spatial layers.
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4.2 Wetland Vulnerability Assessment (WVA) Modelling 

Based on the tree-based machine learning technique, four vulnerability models for 
phase II and phase III have been developed. Each output model is classified into 
five subtypes (starting from very low to very high vulnerability) based on varying 
vulnerability intensities (Figs. 4, 5). In phase II, 102.88 km2 (2.64%), 102.55 km2 

(2.63%), 104.55 km2 (2.68%), and 106.96 km2 (2.74%) areas are predicted as very 
high vulnerable category by the Bagging, REP Tree, ADB and GBM models, respec-
tively (Table 1). These four vulnerability models indicate that more than 2.5% of 
wetland area belongs to a very high vulnerable zone in phase II. In phase III, the 
area under the very high vulnerable zone has declined to 53,67 km2 (1.37%), 52.91 
km2 (1.36%), 55.37 km2 (1.42%), and 56.12 km2 (1.44%) for all four models in the 
same order. The area under high vulnerable area is almost twice than the very high 
vulnerable area. Wetland proximity to a perineal channel(s) tends to be hydrologi-
cally more secure than the wetland located away fromthe river. The overall wetland 
area under different vulnerable zones reduces from 426.28 km2 (10.92%) to 215.14 
km2 (5.51%). This indicates that almost 50% of the wetland area lost since phase 
II among which most of the wetlands belong to the high to very highly vulnerable 
wetland category (Figs. 4, 5). 

4.3 Assessing the Accuracy of the WVA Models 

Table 2 depicts the model validation result for WVA using sensitivity, precision, 
F1-score, and MCC. The value for the matrices ranges from 0 to 100, where a value 
of 100 indicates good accuracy >88% accuracy level found in case of all the applied 
models. The model’s sensitivity score is more than 89 in case of bagging and REP 
tree classifiers. Whereas, the sensitivity score increases to more than 90 for ADB and 
BGM models. Precision, recall, and MCC score has similarity to sensitivity scores 
for all the models (Table 2). The accuracy level for k10 is lower than the k5 value. 
The model’s accuracy level tends to be higher in phase III as compared to phase II 
(Table 2). Among the four ML models, it is observed that the GBM and ADB models 
perform better in comparison to bagging and REP Tree models for both the phases 
II and III. Apart from this, the overall performance of all ML models is good for 
wetland vulnerability assessment and mapping. 

4.4 Factor-Based Wetland Vulnerability Index (WVI) 
Analysis Using Filed Data 

Based on the average rank score, the wetland vulnerability index (WVI) has been 
calculated on 30 selected wetlands in this region. The average score value has



Hybrid Tree-Based Wetland Vulnerability Modelling 175

Fig. 4 Wetland vulnerability zones derived from bagging classifier a phase II, b phase III and REP 
Tree classifier, c phase II, and d phase III



176 S. Pal and S. Paul

Fig. 5 Wetland vulnerability zones derived from ADB classifier e phase II, f phase III and GBM 
classifier, g phase II, and h phase III
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Table 2 Ground truth accuracies of the models 

Phase Classifiers K-fold Sensitivity Precision F1-score MCC Support 

Phase II Bagging 5 89.33 0.89 0.87 0.87 40,000 

10 89.76 0.86 0.89 0.88 40,000 

REP tree 5 89.23 0.87 0.89 0.88 40,000 

10 90.11 0.84 0.90 0.89 40,000 

ADB 5 91.50 0.89 0.91 0.90 40,000 

10 91.45 0.88 0.88 0.87 40,000 

GBM 5 95.56 0.89 0.87 0.86 40,000 

10 93.21 0.87 0.88 0.89 40,000 

Phase III Bagging 5 89.52 0.89 0.88 0.89 40,000 

10 90.73 0.88 0.89 0.88 40,000 

REP tree 5 90.21 0.87 0.88 0.89 40,000 

10 89.71 0.86 0.89 0.90 40,000 

ADB 5 91.29 0.89 0.87 0.88 40,000 

10 92.46 0.88 0.87 0.87 40,000 

GBM 5 93.65 0.91 0.92 0.90 40,000 

10 92.86 0.89 0.92 0.91 40,000 

been reclassified into five sub-categories similar to wetland vulnerability mapping 
(Table 3). Wetlands like Chaldoba Beel (wetland), Gupiyar Beel, Chuchokhola Beel, 
Sukna Beel, Mora Ganga, and Charganga 2 are identified as very high vulnerable 
wetlands with WVI ranges from 11.75 to 10.33. Whereas, wetlands like Bachamari 
Beel, Padmamala Beel, Chamta Beel, Boro Beel, Gorgore Beel, Nilkuri Beel, and 
Nabadwip Municipality Lake belongs to high vulnerable wetland category with a 
WVI score ranging from 9.67 to 9.00. The wetlands like Digri Beel, Chand Beel, 
Anjana, Chakla Beel, Bhomra Beel, Khalsi Beel, Charganga 1, Tungi Beel, Bahluka 
Beel, Majhdia Doapara Beel, and Hasnadanga Beel with well-connected recharge 
points and stable hydro-ecological characteristics belong to low to very low WVI 
category (Table 2). The correlation coefficient between WVI and WVA ranges from 
0.88 to 0.93 which is significant at a 0.01 level of significance. The GBM model with 
a correlation value of 0.93 came out to be the most significant.

5 Discussion 

Wetland risk or vulnerability assessment is a fundamental step towards wetland 
management and planning. In this present study of the Indian moribund deltaic 
floodplain region, seasonal hydrological alteration and human intervention towards 
the wetland area are found as the major triggering factors for exposing wetland habitat 
towards vulnerability. Intensive agricultural practices during the pre-monsoon season
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Table 3 Calculated wetland vulnerability score of some selected wetlands 

Wetlands WVI State of 
vulnerability 

Wetlands WVI State of 
vulnerability 

Chaldoba Beel 11.75 Very high Arangsartsa Beel 8.42 Moderate 

Gupiyar Beel 11.67 Chokar Beel 8.25 

Chuchokhola Beel 11.33 Arpara Beel 7.83 

Sukna Beel 10.83 Mathura Jhil 7.00 

Mora Ganga 10.33 Digri Beel 6.92 Low 

Charganga 2 10.33 Chand Beel 6.58 

Bachamari Beel 9.67 High Anjana 6.42 

Padmamala Beel 9.58 Chakla Beel 6.42 

Chamta Beel 9.42 Bhomra Beel 6.33 

Boro Beel 9.42 Khalsi Beel 6.25 

Gorgore Beel 9.17 Charganga 1 5.50 Very Low 

Nilkuri Beel 9.08 Tungi Beel 5.08 

Nabadwip 
Municipality Lake 

9.00 Bahluka Beel 4.42 

Gayshpurkhulia Jhil 8.83 Moderate Majhdia Doapara 
Beel 

4.17 

Muktaduar Beel 8.50 Hasnadanga Beel 3.92

intensify the magnitude of wetland loss. The WPF change detection statistics indicate 
that there is a huge reclamation of agricultural land for crop cultivation which leads to 
extensive wetland loss. This is also supported by the statistics where more than 50% 
of the wetland area has been lost during phases II to III. Whereas, the agricultural and 
vegetation cover increased from 2497.85 to 2654.05 km2 during phase II to phase III. 
Scholars like Sampson (2021), Fickas et al. (2016), and Saha and Pal (2019a) reported 
similar conversions of wetland areas due to agricultural extension in their studies 
across flood plain wetland. The present study also shows that the process of wetland 
conversion is deeply related to the rate of wetland fragmentation by which moderate 
to moderately large wetlands are divided into many small numbers of patches with 
small core areas. Small wetlands are the most vulnerable to such conversion and 
loss, whereas the large wetlands with relatively stable core areas somehow maintain 
their integrity. But the edge area of such large wetlands is significantly shrunken 
from phase II to phase III (Figs. 4, 5). The large core area decreases from 20.60 to 
13.63 km2during phase II to phase III. Extension of the built-up area and connected 
transportation networks increased from 913.58 to 1094.27 km2 from phase II to phase 
III which is a reason behind wetland fragmentation in this region. Change in WPF 
also indicates that a large number of wetlands converted into ortho fluvial wetland 
from para fluvial wetland from phase I to II and also phase II to III (Figs. 2, 3). 
Rainfall is the only source of water for these orthofluvial wetlands, which rarely 
receive water from the river. Also, connectivity loss from the main feeder channels
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and lowering of groundwater table due to anthropogenic interferences negatively 
affects the habitat condition of these wetlands (Pal et al. 2020; Gómez-Baggethun 
et al. 2019).

Apart from the contemporary conditioning factor, historical hydrological evolu-
tion is also a reason behind the present geomorphic setting of the wetlands. Histori-
cally (around the sixteenth century), this part of the deltaic region had gone through 
massive hydrological alteration. In 1975, after the construction of the Farakka 
barrage, a massive wetland conversion in this region has been occurred (Hirst 1916; 
Pal 2011). Studies by Paul and Pal (2020a) reported a loss of 63.34% of wetland area 
from 1987 to 2017. 

This present study successfully explored the predictability of tree-based WVA 
using four tree-based machine learning approaches. The result of four ML models 
is compared with field-based data to check the applicability of the models. Among 
the four models, ADB and GBM model performs better and gives better accuracy in 
comparison to the Bagging and REP Tree model (Table 2). The overall performance 
of the GBM model is better than the other three models. But overall, all four models 
perform more than satisfactory as found from the accuracy assessment matrix results 
(Table 2). The bagging and REP Tree model was reportedly given better results in the 
studies like Pal and Debanshi (2021a, b), Talukdar et al. (2021), Pal and Paul (2020), 
and Khatun et al. (2021). The accuracy level of all four models has been increased 
in phase III and also for fivefold K classification. The complex ensemble models 
have proved their superiority over the comparatively simple bootstrap algorithms. 
Studies made by Chen et al. (2018a, b, c) and Han et al. (2019) also reported better 
performance of ensemble models over the generic ML models. It should be mentioned 
that the spatial extension of WVA zones varies through their geospatial distribution 
which is similar to each other. Since the wetland habitat is a complex interactive 
system, and it is controlled by different controlling factors, all the factors do not 
equally impact control on the spatial extension of vulnerability. Hydrological factors 
are found more dominant than LU/LC factors. This finding has further clarified that 
hydrological modification is a dominant reason for wetland conversion and promoting 
land use transformation causing wetland loss. Pal and Paul (2021b), and Debanshi and 
Pal (2020), also reported that hydrological insecurity enhances landscape insecurity. 

Wetland vulnerability assessment using such advanced tree-based ML algorithms 
is often rare but there is further scope for research in the future. The present study 
has focused on only mapping the state of vulnerability and changing the nature of 
such vulnerability without considering the parameters like river discharge, quality of 
water, and ecological productivity issues. The inclusion of those factors may uplift 
the quality of the result. The lack of such extensive spatial data availability restricted 
us to incorporate those datasets. In future studies, the incorporation of such extensive 
data regarding complex ecological phenomena can improve the acceptability of such 
studies a bit more.
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6 Conclusion 

This present work has assessed wetland vulnerability based on eight decisive param-
eters using four tree-based ML models. All the models have been validated using 
five matrices and found to be sensitive. Among all four models, AdaBoosting (ADB) 
and gradient boosting (GBM) are found as the most accurate to predict vulnerable 
wetland areas. Very high vulnerable areas have increased over the phases as per all 
the models. Wetland under greater exposure to the human landscape is more vulner-
able to transformation. Hydrological parameters are found to be more important for 
explaining the vulnerability of wetlands. Hydrological transformation is found as a 
promoting factor behind land use transformation. From the management perspective, 
wetland vulnerable models are very important since it provides a database for the 
future wetland restoration plan. Moreover, since the study has identified hydrological 
factors are playing a decisive role in wetland habitat transformation, it will be very 
good information regarding the way of wetland conservation and restoration. In addi-
tion to this, the present study tries to build a methodological knowledge addition for 
wetland vulnerability study which will be helpful for other types of environmental 
risk assessment studies. In this consonance, the study recommends the use of hybrid 
tree-based ensemble ML models instead of simple ML models for similar works. 
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