
Chapter 4 
Extending Neuro-fuzzy Techniques 
with Grey-Based Hybridisation 

Jose L. Salmeron 

4.1 Introduction 

Real-world problems are commonly composed by interrelated components in many 
complex ways. They are usually dynamic, that is, they change with time through 
a series of interactions among related components (Salmeron, 2012). Classical 
decision-making techniques cannot support these kinds of challenges. For that reason, 
this paper focused on the extension of neuro-fuzzy techniques as Fuzzy Cognitive 
Maps with Grey Systems Theory. 

Fuzzy Cognitive Maps (FCMs) constitute neuro-fuzzy systems, which are able to 
include experts’ knowledge (Kosko, 1986; Lee et al., 2002; Salmeron, 2009a, 2009b). 
From an Artificial Intelligence point of view, FCMs are supervised learning neural 
systems, whereas more and more data is available to model the problem, the system 
becomes more accurate at adapting itself and reaching a solution (Papageorgiou & 
Groumpos, 2005; Rodriguez-Repiso et al., 2007). FCM is a modelling technique for 
complex systems generated from mixing fuzzy logic and artificial neural networks 
(Salmeron, 2009a, 2009b). 

FCMs have some benefits over classical modelling methods; they offer more 
information in the relationships between variables or concepts. Moreover, the FCM 
model is dynamic, and customizable and capture nonlinear relationships. The final 
fuzzy model is worthy for simulation, analysis and check the influence of variables 
and forecast the behaviour of the whole modelled system. 

FCM have been used in many different fields as medicine (Papageorgiou, 2011; 
Salmeron, 2012), failure modes effects analysis (Pelaez & Bowles, 1995; Salmeron &
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Gutierrez, 2012) simulation (Fu, 1991), affective computing (Salmeron, 2012), engi-
neering (Salmeron & Papageorgiou, 2014; Stylios & Groumpos, 2000), space explo-
ration (Furfaro et al., 2010), relationship management in airline services (Kang et al., 
2004), web-mining inference amplification (Lee et al., 2002) and others. For a deep 
review of the FCM research see (Papageorgiou & Salmeron, 2013). 

4.2 Fuzzy Cognitive Maps 

4.2.1 Theoretical Background 

Fuzzy Cognitive Maps (Kosko, 1996) are a worthy technique for modelling and 
analysing the systems and people’s behaviour. FCMs are a set of nodes linked by 
edges. The nodes model concepts relevant to a given problem. The causal links 
between these concepts are modelled by the edges showing the direction of the 
influence. The other attribute of an edge is its sign, which can be positive (a promoting 
effect) or negative (an inhibitory effect). 

The main aim of a FCM around a problem is to be able to forecast the outcome 
by letting the critical issues interact with one another. These forecasts can be used 
for checking whether an initial scenario is consistent with the entire collection of 
stated causal assertions (Bueno & Salmeron, 2009). Causal relationships between 
the nodes can have different weights, represented in a range [−1, +1] (or [0, +1]). 
FCM substitutes the signs by a fuzzy value between −1 and +1 where the zero value 
indicates the absence of causality. Moreover, it involves feedback, where the impact 
of the change in a node may affect other nodes (Lopez & Salmeron, 2013) (Fig. 4.1). 

The FCM nodes (ci) would model such concepts such as heat, radiation, temper-
ature or marketing strategy, among others. An edge linking two nodes models the

Fig. 4.1 Gaussian membership functions 



4 Extending Neuro-fuzzy Techniques with Grey-Based Hybridisation 83

causal influence of the causal node on the effect node (e.g.: the influence of the 
temperature to failure). 

In a more formal way, an FCM can be represented as a 4-tuple;

Ω = (N, A, f, r ) (4.1) 

where N is the set of nodes N = {ni }m i=1 with m the number of them, A = [wij]n×n 

is the adjacency matrix modelling the edges between nodes as {wi j }m i, j=1, f(·) the  
activation function, and r the nodes’ range. 

An adjacency matrix A represents the FCM nodes relationships. FCMs measure 
the strength of the causal relation between two nodes and if no causal relation be it 
is denoted by 0 in the adjacency matrix. 

A = 
C1 
... 
Cn 

C1 . . .  Cn⎛ 

⎜⎝ 
w11 · · ·  w1n 
... 

. . . 
... 

wn1 · · ·  wnn 

⎞ 

⎟⎠ (4.2) 

4.2.2 FCM Dynamic Analysis 

FCMs are dynamical systems involving feedback, where the effect of change in a 
node may affect other nodes, which in turn can affect the node initiating the change. 
The analysis starts with the design of the initial vector state (c(0)), which models 
the initial value of each variable or concept (node) (Salmeron & Lopez, 2012). The 
initial vector state c(0) with n nodes is denoted as 

c(0) = (c1(0), c2(0), .  .  .  ,  cn(0)) (4.3) 

where c1(0) is the value of the concept i = 1 at instant t = 0. 
The new states of the nodes are computed in an evolutive updating process with 

an activation function, which is applied to map monotonically the node state into 
a normalized range [0, 1] or [−1, +1]. The sigmoid function is the most used one 
(Bueno & Salmeron, 2009) when the node value maps in the range [0, 1]. The vector 
state c(t + 1) at time t + 1 would be 

c(t + 1) = f (c(t) · A) 
= f (c1(t) · A), . . . ,  f (cn(t) · A)) 
= c1(t + 1)), . . . , (cn(t + 1) 

(4.4)
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The element i of the vector state ci(t + 1) at time t + 1 can be computed as 
shown in Eqs. 4.5 and 4.6. Equation 4.5 computes ci(t + 1) just with pre-synaptic 
computation. 

post−synaptic' ,, '
Ci (t + 1) = f 

⎛ 

⎜⎜⎜⎜⎝ 

pre−synaptic' ,, '
nΣ
j=1 

W ji  .C j (t) 

⎞ 

⎟⎟⎟⎟⎠ 
(4.5) 

Equation 4.6 computes the pre-synaptic influence and aggregate the state of the 
post-synaptic node in the previous iteration. In that situation, the node has memory 
of its former state. 

post−synaptic' ,, '
Ci (t + 1) = f 

⎛ 

⎜⎜⎜⎜⎝ 

memor y' ,, '
Ci (t) + 

pre−synaptic' ,, '
nΣ
j=1 

W ji  .C j (t) 

⎞ 

⎟⎟⎟⎟⎠ 
(4.6) 

If f(·) is the unipolar sigmoid function and the updating rule is as Eq. 4.6, then 
the element i of the vector state c(t) at time t would be 

Ci (t + 1) = 1 

1 + e−λ.(Ci (t)+Σn 
j+1W ji  .C j (t)) 

(4.7) 

where λ is the constant modelling the degree of normalization (function slope). If 
f(·) is the hyperbolic tangent function and Eq. 4.6 the updating rule, then the element 
i of the vector state c(t) at time t would be as follows 

Ci (t + 1) = 
e2.λ.

(
ci (t) +Σn 

j=1wji  .c j (t)
)

− 1 

e2.λ.
(
ci (t) +Σn 

j=1wji  .c j (t)
)

+ 1 
(4.8) 

After an inference process, the FCM reaches either one of two states after the 
iterations. It settles down to a fixed pattern of node values, the so-called hidden 
pattern or fixed-point attractor (as c(t) ≈ c(t − 1)). 

Alternatively, it keeps cycling between several fixed states, known as a limit cycle. 
Using a continuous activation function, a third possibility known as a chaotic attractor 
exists. This occurs when, instead of stabilizing, the FCM keeps producing different 
state vector values for each iteration (Salmeron & Froelich, 2016).



4 Extending Neuro-fuzzy Techniques with Grey-Based Hybridisation 85

4.2.3 FCM Consensus 

It is possible to build FCMs from real-world raw data (e.g.: with evolutionary tech-
niques) or from a panel of experts (Salmeron, 2009a, 2009b). Delphi methodology it 
is a methodology applied to manage the communication of a panel of experts in order 
to reach a consensus regarding a problem. One of the main features of Delphi method 
is when the experts get feedback reports, they could modify their own judgement 
based on the feedback (Bueno & Salmeron, 2009). 

A more analytical way is the Augmented FCM. It doesn’t require that experts 
change their initial judgement for consensus as Delphi method needs. The augmented 
adjacency matrix is built adding the adjacency matrix of each expert (Salmeron, 
2009a, 2009b). Let k FCMs with common nodes. The augmented adjacency matrix 
(A*) would be computed as follows 

A∗ =  

⎛ 

⎜⎜⎝ 

w∗ 
11= 1 

k 
.
Σk 

m=1w11.m · · ·  1 k .
Σk 

m=1w1n.m 

... 
. . . 

... 
w∗ 
n1= 1 

k 
.
Σk 

m=1w1.m · · ·  1 k .
Σk 

m=1wnn.m 

⎞ 

⎟⎟⎠ (4.9) 

If the FCMs have not common nodes, then the adjacency matrix would be added 
including zero rows and columns. Let a couple of FCMs ({w,

ij} and {w,,
ij}) without 

common nodes, the augmented adjacency matrix would be 

A∗ =  

⎛ 

⎜⎜⎝ 

w∗ 
11= 1 

2 
.w,

11 · · · 0 
... 

. . . 
... 

0 w∗
nn= 

1 
2 .w

,,
nn 

⎞ 

⎟⎟⎠ (4.10) 

Figure 4.2c shows an example of Augmented FCM building process of a couple 
of FCMs with common and not common nodes. Figure 4.2a, b detail the FCMs from 
experts A and B and Fig. 4.2c is the Augmented FCM. 

Fig. 4.2 Augmented FCM
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4.3 Fuzzy Grey Cognitive Maps 

Fuzzy Grey Cognitive Maps (FGCMs) are a FCM generalization (proposed in 
Salmeron (2010)) for modelling complex systems with high uncertainty, under 
discrete incomplete and small data sets and it is based on Grey Systems Theory 
(Deng, 1989). 

4.3.1 Theoretical Background 

4.3.1.1 Grey Systems Theory 

Grey Systems Theory (GST) is a useful approach for solving problems with 
high uncertainty and discrete small and incomplete datasets (Liu & Lin, 2006). 
GST has been successfully applied in fields such as military science, agriculture, 
medicine, meteorology, business, industry, energy, transportation, geology and so on 
(Yamaguchi et al., 2007). 

GST categorizes the information according to the degree of the available knowl-
edge in three-fold. The system is white if the knowledge of that system is fully known 
(whole understanding), but it is black if the system is completely unknown. Finally, 
a system with partial knowledge known and partial knowledge unknown is called a 
grey system (Deng, 1989). 

GST includes data fuzziness because it can consider it (Liu & Lin, 2006). Further-
more, the fuzzy theory holds information usually based on experience; while GST 
is concerned with objective data, they do not need any information different than the 
datasets to be disposed. 

In a more formal way, let Θ be the universal set, then a grey set Φ ⊂ Θ is defined 
by its both mappings. Note that

{
μ+

Φ(·), μ−
Φ(·)} ∈ [0, 1], where μ−

Φ(·) is the lower 
membership function, μ+

Φ(·) is the upper one and μ−
Φ(·) ≤ μ+

Φ(·). Also, GST extends 
fuzzy logic, since the grey setΦ becomes a fuzzy set when μ−

Φ(·) = μ+
Φ(·). The crisp 

value of a grey number is unknown, but the range in which the value is found is known. 
An interval grey number is denoted as x± ∈ [x−, x+] | x− ≤ x+ and it has an upper 

(x+) and a lower (x−) limit (Yang & John, 2012). Both limits are crisp numbers in 
first order interval grey numbers. 

When the grey number x± has just an upper limit is as follows x± ∈ (−∞, x+] 
and when it has just a lower limit is x± ∈ [x−, + ∞). A black number has both 
unknown limits x± ∈ (−∞, + ∞) and it becomes a white number when both limits 
are the same x− = x+. The transformation of grey numbers in crisp ones x

Λ

is known 
as whitenisation (Liu & Lin, 2006) and it is computed as follows 

x
Λ = x + ·ξ + (1 − ξ) · x − |ξ ∈ [0, 1] (4.11)
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where ξ is a parameter to control the position of the crisp values according to the 
limits. If ξ = 0.5, then it is called equal mean whitenisation. The length of a grey 
number is computed as l(x±) = | x+ − x−|. In that sense, if the length of the grey 
number is zero (l(x±) = 0), then it is a white number. 

Despite the length of a grey number with only one limit known (lower or upper), 
x± ∈ [x−, +∞) or x± ∈ (−∞, x+] being infinite, the grey number is not a black 
number because it is possible to know one of the two limits. 

Equations 4.12–4.15 compute the grey arithmetic operations 

x 
+ 
1 

+ x 
+ 
2 

∈ [x− 
1 + x− 

1 , x
+ 
1 + x+ 

2

]
(4.12) 

x 
+ 
1 
_x 

+ 
2 

∈ [x− 
1 + x− 

2 , x
+ 
1 + x2

]
(4.13) 

x 
+ 
1 

· x + 
2 

∈[min
{
x− 
1 · x− 

2 , x
+ 
1 · x+ 

2 , x
− 
1 · x+ 

2 , x
+ 
1 · x− 

2

}
, 

max
{
x− 
1 · x− 

2 , x
+ 
1 · x+ 

2 , x
− 
1 · x+ 

2 , x
+ 
1 · x− 

2

}] (4.14) 

x + 
1 

x + 
2 

∈
[
min

{
x− 
1 

x− 
2 

, 
x+ 
1 

x+ 
2 

, 
x− 
1 

x+ 
2 

, 
x+ 
1 

x+_ 
2

}
, max

{
x− 
1 

x− 
2 

, 
x+ 
1 

x+ 
2 

, 
x− 
1 

x+ 
2 

, 
x+ 
1 

x+_ 
2

}]|||{x_ i , x+ 
i

}
i=1 

2Y /= 0
||| (4.15) 

4.3.1.2 FGCM Fundamentals 

The FGCM nodes are concepts or variables and the relationships between them are 
modelled by grey weighted and directed edges (Nápoles et al., 2021; Salmeron, 
2010). Formally, a FGCM is denoted as a 4-tuple

Ω = (
ζ, W, f±(·), l(ψ)

)
(4.16) 

where ζ = {α± 
i }n i=1 is the set of nodes with grey numbers as grey states, W = {w± 

i j } 
is the set of edges linking the nodes weighted with grey weights, f±(·) the grey 
activation function and l(ψ) the range of the information space. 

An interval grey weight between the nodes αi
± and αj

± is denoted as wij
± ∈ [wij

−, 
wij 

+] and it has a lower (wij
−) and an upper (wij 

+) limit. 
FGCM includes greyness as an uncertainty score (Salmeron, 2010; Salmeron & 

Gutierrez, 2012; Salmeron & Papageorgiou, 2014). If a grey state (or weight) has 
a high score of greyness, then it means that the grey state have a high uncertainty 
associated. It is computed as follows 

∅
(

α 
+ 
i

)
=
||l(α + 

i )| 
l(ψ) 

(4.17)



88 J. L. Salmeron

Fig. 4.3 Potential relationships of the nodes in FGCM (a) and  FCM (b) 

where |l(αi
±)| = |αi 

+ − αi
−| is the length of grey node state αi

± in absolute value and 
l(ψ) is the length of the information space, denoted by ψ. It is computed as follows 

l(ψ) =
{

1i f
{
α + 

i ,ω
+ 
i

} ⊆ [0, 1] 
2i f

{
α + 

i ,ω
+ 
i

} ⊆ [−1, +1] 
(4.18) 

where l(ψ) = 1 for unipolar FGCMs and l(ψ) = 2 for bipolar FGCMs. 
FGCMs model the human reasoning in a more realistic way than FCM does, 

because it is able to manage the uncertainty between the concepts and the incomplete 
information about the modelled system as FCMs cannot do (Salmeron & Palos-
Sanchez, 2019). 

In Fig. 4.3a, the relationship (ω13
±) between α1

± and α3
± is a white one, between 

α1
± and α2

± is  a grey one  (w12
±), and between α3

± and α1
± is a black one (w32

±). 
FCMs are just able to model white (crisp) relationships (Fig. 4.3b). As a result, 

a huge amount of information is lost. Another advantage of FGCMs over FCM is 
related with the uncertainty associated to the elements of the problem (or system) 
modelled (Salmeron & Papageorgiou, 2012). 

4.3.2 FGCM Dynamic Analysis 

FGCMs are dynamical systems involving feedback just as FCMs are, where the 
influence of change in a grey node may affect other grey nodes, which in turn can 
impact the grey node starting the dynamics. The dynamic analysis begins with an 
initial grey vector state (α±(0)), which models the initial grey value of each concept 
(grey node). The initial grey vector state α ± (0) with n grey nodes is denoted as



4 Extending Neuro-fuzzy Techniques with Grey-Based Hybridisation 89

α±(0) = (
α±(0), α±(0), . . . , α±(0)

)
(4.19) 

where α±(0) is the state of the concept i = 1 at time t  = 0. 
The grey state values of the grey nodes are updated in an evolutive process with a 

grey activation function, which is applied to map monotonically the grey node state 
into the information space (Salmeron, 2010). The grey state is updated as follows 

α± = f ±
(
α±(t) · A±)

= (
f ±
(
α± 
1 (t) · A±), . . . ,  f ±

(
α±
n (t) · A±))

= (
α± 
1 (t + 1), . . . , α±

n (t + 1)
) (4.20) 

where A± is the grey adjacency matrix and f±(·) the grey activation function. Mostly, 
the grey activation function used to be the grey unipolar sigmoid (Eq. 4.21) 

α 
+ 
i 

(t + 1) =
[

1 

1 + e−.λ.
(
a + 

i (t)+
Σn 

j=1 w 
+ 
j i  .α + 

j (t)
) , 

1 

1 + e−.λ.
(
a + 

i (t)+
Σn 

j=1 w 
+ 
j i  .α + 

j (t)
)

]

(4.21) 

or the grey hyperbolic tangent (Eq. 4.22) as follows 

α 
+ 
i 

(t + 1) = 

⎡ 

⎣ e 
2.λ.

(
a + 

i (t)+
Σn 

j=1 w ji  .α + 
j (t)

)
− 1 

e 
2.λ.

(
a + 

i (t)+
Σn 

j=1 w ji  .α + 
j (t)

)
+ 1 

, 
e 
2.λ.

(
a + 

i (t)+
Σn 

j=1 w ji  .α + 
j (t)

)
− 1 

e 
2.λ.

(
a + 

i (t)+
Σn 

j=1 w ji  .α + 
j (t)

)
+ 1 

⎤ 

⎦ 

(4.22) 

4.3.3 FGCM Consensus 

It is possible to build FGCMs from real-world raw data (e.g.: using evolutionary 
techniques) or from a panel of experts. As far as the author knows, there have been 
not used Delphi methodology for building FGCMs yet, but augmented FGCMs have 
been used. The augmented adjacency grey matrix is built adding the adjacency grey 
matrix of each expert (Salmeron & Palos-Sanchez, 2019). 

Let k FGCMs with common grey nodes. The augmented adjacency grey matrix 
(A±*) would be computed as follows 

A±∗ = 

⎛ 

⎜⎝
ω ∗

11 = 1 k .
Σk 

m=1 ω + 
n1 .m · · · ω ∗ 

1n = 1 k .
Σk 

m=1 ω + 
1n .m 

... 
. . . 

...

ω ∗
n1 = 1 k .

Σk 
m=1 ω + 

n1 .m . . . ω ∗ 
nn = 1 k .

Σk 
m=1 ω + 

nn .m 

⎞ 

⎟⎠ (4.23)
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If the FGCMs have not common grey nodes, then the adjacency grey matrix would 
be added including null rows and columns. Let a couple of FGCMs {wij

±(a)} and 
{wij

±(b)} without common grey nodes, the augmented adjacency grey matrix would 
be 

A±∗ = 

⎛ 

⎜⎝
ω

+(a)∗ 
11 = 1 2 .ω

+(a) 
11 · · · 0 

... 
. . . 

... 
0 . . . ω +(b)∗ 

nn = 1 2 .ω
+(b) 
nn 

⎞ 

⎟⎠ (4.24) 

4.4 Conclusions 

This work shows the extension of neuro-fuzzy techniques with Grey Systems Theory. 
FGCMs are a generalization for modelling systems with high uncertainty, under 
discrete incomplete and small data sets. 

FGCMs model the human reasoning in a more realistic way than FCM does, 
because it is able to process the uncertainty between the nodes and the incomplete 
information about the modelled problem as FCMs cannot do. 
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