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Nomenclature

A Frontal area of rotor (m2)
AR Aspect ratio
Cp Pressure coefficient
θ Angle of attack of wind (°)
ρ Density of air (kg/m3)
Ω Omega
E Epsilon
α Roughness coefficient 0.147

1 Introduction

With the advancement of technology and enormous population growth, the need and
design of high structures with different configurations have been a growing trend.
High-rise structures have always fascinated from the beginning of civilization and
are unique in various aspects, such as consideration of lateral deflections. The wind is
a complicated phenomenon in which the motion of an individual particle is so unpre-
dictable that one needs to be concerned about the statistical distribution of velocity
rather than just simple averages. There are twodistinct local influences in determining
overall wind power, even if windward pressure and leeward suction add up to one
total.When it comes towind load planning, a structure cannot be considered to have a
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regular configuration by default. Designers usewind load standards to compute struc-
tural pressure coefficients and force coefficients for other structures that are exposed
to wind-induced stresses [1–5]. On the other hand, these standards offer details for
plain cross-sectional configurations with a limited number of wind incidence angles.
These codes do not provide information onwind loadings for structureswith different
configurations. As a result, wind tunnel research on models of such forms is popular.
Chandan and Kumar [6] simulating wind studies of towering structures was accom-
plished with the use of CFD (computational fluid dynamics). CFD can yield results
that are comparable to those obtained from wind tunnel studies. CFDmight examine
the entire domain study, provide better visualization of data and be less expensive
than wind tunnel tests. Raj and Ahuja [7] The use of a boundary layer wind tunnel
was used to conduct experimental study on the wind load on high structures with
cross-plan configurations. Bairagi and Dalui [8] as a result of increased turbulence,
positive pressure built up in the setback roof, where turbulence is at its most severe,
and the largest spectral density frequency was formed at this place. Using CFD
simulations for wind incidence angles ranging from 00 to 1800, this article exam-
ined the influence of aerodynamics on the setback of tall structures. Hajra and Dalui
[9] performed the mathematical-based research of interference effect on octagonal
plan configuration high structure using CFX (ANSYS), for 00 wind incidence angle
using k − E, SST and k − ω model, and analysis of these three models shows nearly
identical results. Meena et al. [10] research has been carried out to determine how
wind affects different types of multi-storey steel structures’ bracing mechanisms.
Verma et al. [11] for the 00, 150 and 300 wind speeds, the influence of wind load
on a high octagonal configuration structure was investigated using computational
fluid dynamics (CFD) simulation. This demonstrated that CFD may be utilized to
forecast wind-related problems on tall structures with complicated geometries. The
conclusions of wind-induced response are dependent on the type of plan in geometry
and defining the flow properties. Dalui et al. [12] studied the effects of interfer-
ence on octagonal plan configuration high structures under the influence effect of
wind, windward face and immediate side face to windward face is not affected much
by the presence of the interfering structure. Paterka et al. [13] discussed the wind
flow pattern around the structures. Wind flow about three-dimensional structures
results in separated flow regions fundamentally highly different from those about
two-dimensional structures. In three-dimensional, as opposed to two-dimensional
modelling, the separation of cavities immediately downwind is not encased by free
streamlines. Kawamoto [14] for the assessment of wind load on the structure, a cost-
effective turbulence model was created. The mean pressure coefficient improves
considerably when employing the k − ω turbulence model, and the over prediction
of turbulence kinetic energy in the k-turbulence model is the source of the error in the
k − ε turbulence model. Pal et al. [15] looked at both square and fish floor layouts.
It is the most efficient design in terms of wind-generated pressure and base shear
when completely blocked, compared to other designs. Amin and Ahuja [16] suction
on side faces and leeward faces is greatly affected by the plan arrangement of the
model and wind incidence angle, according to experimental studies of wind-induced
pressure on structures of various geometries. Selvem [17] by employing large eddy
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simulation, the Navier–Stokes equation was numerically solved, resulting in a peak
pressure that is substantially greater than that measured in the field. As compared
to the three turbulence models, the peak pressure calculated using TTU wind data
is substantially closer to the measurements taken in the field. Pirooz and Flay [18]
the impacts of a solid tower and an urban environment on collected wind data were
explored, as well as numerical and wind tunnel simulations. Some researchers have
also explained few important characteristics of wind using wind tunnel test like pal
et al. [19] on isolated fish plan shape building, Nagar et al. [20] on plus plan shape
building, Pal et al. [21] interference study on same-type building, Kumar and Raj
[22] on oval shape building, Gaur and Raj [23] on plus shape, Meena et al. [24] on
“L” shape, Mahajan et al. [25] on the effect of shear wall on different corner shape
structure, Gaur et al. [26] interference study on wind effects and Nagar et al. [27] on
different shape of high-rise structure. In this study, the influence of shape of high-rise
structure is obtained using the numerical simulation performed using ANSYS CFX
on hexagon and octagon shape building model. The entire numerical simulation is
performed by utilizing the k − E turbulence model. The domain is considered such
that no recirculation of flow can occur.

2 Numerical Modelling

The present study is carried out to obtain pressure contour and pressure coefficient
for a different types of high structure using the ANSYS CFX package (Version 2020
R-2).

2.1 Model and Boundary Conditions

The purpose of this research is to determine the wind effects on hexagon model A (a)
and octagonmodel B (b) at a 00 wind incidence angle. Figure 1 shows the dimensions
of the structure as well as the angle of wind incidence.

As shown in Fig. 2, domain is where all the solution of CFD simulation is done
and is provided according to Revuz [28]. Domain side wall, inlet and top wall are
kept at 5H. The outlet is kept at 15H, where H is the height of the structure.

Domain top wall and side wall are kept as free slip wall, and model face and
ground are kept as no-slip wall.

2.2 Meshing

Meshing is provided to increase the accuracy of the solution done during simulation.
This can be provided by manual and automatic using ANSYS CFX. In the manual
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Fig. 1 Model dimension, face name and wind incidence angle a model A, b model B

Fig. 2 Domain
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method, meshing for different parts can be applied, and depending on the problem,
meshing size is selected. The inflation done in CFD simulation for all models is used
to reduce the anomalous flow. As shown in Fig. 3, domain provided with tetrahedron
meshing, structure and groundmeshing is relativelymore delicate in size. It increases
the solution accuracy. Figure 4a is edge meshing, and Fig. 4b is inflation, used to
minimize the unusual flow.

Fig. 3 Domain, ground and structure meshing

Fig. 4 Meshing a edge meshing b inflation
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3 Result and Discussion

3.1 The Profile of Velocity and Turbulence Intensity

When estimating the vertical profile of wind speed, surface roughness and drag
induced by local projections that impede wind flow are important elements. Neither
the gradient height nor the gradient velocity causes any drag; these two numbers are
referred to as the gradient. The atmospheric boundary layer refers to the layer of air
above which topography has an effect on wind speed.

The wind speed profile within the atmospheric boundary layer, as seen in Fig. 5,
is determined by equation according to Power Law Eq. (1).

U

UH
=

(
Z

ZH

)α

(1)

where UH is the speed at the reference height ZH, which is 10 m/s, α is the ground
roughness, that varied as per the terrain conditions, and actual situation in this study
is 0.147 for terrain category 2, while ZH is 1.0 m for terrain category 2.

Fig. 5 Height-dependent
variations in wind speed and
turbulence intensity
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3.2 Pressure Contours

Figures 6 and 7 show that the pressure applied to the windward face is positive for
the models and that it is negative for the windward and leeward faces. As seen by a
bar chart in Figs. 6 and 7, models A and B are subjected to varying levels of pressure.

Legend             face-A              face-B    face-C     face-D         face-E    face-F 

Fig. 6 Pressure contour for model A at 00 wind incidence angle

Legend       face-A   face-B  face-C  face-D   face-E   face-F   face-G face-H  

Fig. 7 Pressure contour for model B at 00 wind incidence angle
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3.3 Velocity Streamlines

At each location along the imaginary line, the direction of a fluid particle’s velocity is
indicated by the tangent. While moving through the air, a fluid particle is called to be
on a streamline. For awind incidence angle of 00 degrees, the streamline is symmetric.
The model shows how the streamlining will look. Figure 8 shows a structure (a) in
plan, (c) in elevation and (e) in three-dimensional view of streamlines at a 00 wind
incidence angle. With a 00 wind incidence angle, Fig. 8 shows the streamlines for
the model B structure (b) in plan, (d) in elevation and (f) in 3D perspective.

The mean Cp for model B is shown in Fig. 7. It can be seen in Fig. 7 that face A is
the only face of model B that is subjected to positive pressure, while the remaining
faces of model B are subjected to negative pressure. The k − ε, SST and k − ω

models all produce Cp values that are almost equal for each face.

Plan of stream lines for model-A Plan of stream lines for model-B 

Stream lines in evelvation for model-A Stream lines in evelvation for model-B 

3D- Stream lines for model-A 3D- Stream lines for model-A 

(a) (b) 

)d()c(

(e) (f) 

Fig. 8 Streamlines on model A and B



Comparative Study of Wind Loads on Tall Buildings … 233

3.4 Vertical Centre Line Pressure Coefficient

In both Figs. 9 and 10, the structural height and the mean surface pressure coefficient
are shown. Because face A is a windward face, the wind hits it directly as shown
in Figs. 9 and 10. Pressure variation due to 00 wind incidence angle is for both the
structure models A and B and is shown in Figs. 9 and 10, respectively, around the
centreline of every face.

Fig. 9 Variation in pressure
along the centreline for all of
the faces of model A
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Fig. 10 Variation in
pressure along the centreline
for all of the faces of model B
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4 Conclusion

“Hexagon” and “Octagon” design values of the pressure contours, mean pressure
coefficients and velocity streamlines are all examined at 00 wind incidence angles in
this study”. K − ε modelling is utilized to replicate this study. The following are the
findings of the study:

• Negative pressure is always applied to face B, while positive pressure is always
applied to face A in both models.

• Octagonal tall structure experiences almost symmetrical pressure distribution.
• The fluctuation of pressure coefficients along the centreline is examined and

graphically depicted.
• The octagonal and hexagonal plan cross-sectional shape has more or less the same

nature of pressure distribution on the windward surface in the case of symmetrical
wind incidence angle.

• The velocity streamlines are depicted in the plan, elevation and 3D views using
the figure.

• In the same way that a boundary layer wind tunnel determines the precision of
the task, meshing the geometry model and setting the flow physics determine the
precision of the task.

• This investigation of the wind pressure distribution on the leeward face illustrates
the formation of vorticity, which indicates a significant amount of turbulence,
according to the findings.
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