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Abstract. The precision model of relative motion is a necessity for satellite
formation flying, but these models are complex for analysis and design, espe-
cially in elliptic orbit. For some satellite formation flying applications, the long-
term formation maintenance and fuel-saving is more important for satellite life.
Using the averaged analysis method over an orbit period, the averaged equation
of satellite relative motion in an elliptic orbit is presented in this paper. Firstly,
based on the homogeneous solutions of T-H equations, a simple averaged
equation of relative motion is derived. Secondly, the improved averaged
equation of relative motion which is described by the instantaneous orbit ele-
ments difference is developed for considering the orbital perturbation. The
effectiveness of the proposed models is verified by four simulation cases which
consider the orbit perturbation or not. The proposed model can eliminate the
periodicity movement of satellite relative motion, and it is convenient for long-
term formation flying designing and configuration controlling.
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1 Introduction

In recent years, there has been a growing interest in satellite formation flying and there
are many space applications of formation flying, such as stereo observation, SAR
interferometry etc. [1]. The earliest and most prevalent model governing relative
motion is given by the Clohessy-Wiltshire (C-W) equation [2] which assumes a circular
reference orbit for target satellite, providing an analytic description of relative motion.
The Tschauner-Hempel (T-H) equation [3] extend the C-W model to accommodate
non-circular reference orbit, by expressing the equations of motion in terms of target
orbit eccentricity and initial true anomaly [4]. Currently, there have been many sci-
entific papers written on the subjects of high precision models and configuration
designing for relative motion. Katsuhiko [5] developed expansion of T-H equation
which considering J2 perturbation to improve the calculating precision. Mai [6]
developed a graphical analysis for T-H equation based on the period orbit. Schaub [7]
proposed a new presentation which is based on the orbital elements difference. For
configuration controlling of relative motion, Vadali [8] designed a digital filter to
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eliminate the period vibration which can reduce the fuel consumption. Balaji [9] has
parameterized C-W equation in terms of mean value for configuration controlling.

There is a wealth of literature on relative motion models. Nevertheless, the aver-
aged equation over orbit period is useful for relative motion analysis, especially for
long term prediction and formation configuration designing. Based on the average
calculation in an orbit period, two different averaged relative motion equations are
presented in this paper. Then, the characteristic of averaged models are also been
developed. The analysis thought and calculation of this method is simple, and the
effectiveness of the model was proved by digital simulations.

2 Relative Motions in Two-Body Orbit

We take the orbit coordinate systems oxyz of the target satellite as the relative motion
coordinate system. The origin is the center of the mass of the target satellite, and move
in orbit with it. The x-axis coincides with geocentric vector r of the target satellite, and
points from geocenter to target satellite. The y-axis is normal to x-axis in the orbit
plane, and points to the direction of motion. The z-axis determined by right-hand rule,
coincides with the angular momentum vector of the target satellite. The relative motion

coordinate system oxyz and geocentric inertial coordinate system OXYZ is shown in
Fig. 1.

2.1 Relative Motion Model and Analytical Equation

Consider two satellites in elliptical orbits about a common gravitational source, as
shown in Fig. 1. Employing the common designations associated with relative motions,
tracking satellite denotes the second satellite, moving close to the target and with
position rt.

By form the relative position vector q ¼ ½x y z�T. Based on the condition of q\\r,
the relative motion equation in two-body orbit can be described by [4].

Fig. 1. The oxyz and OXYZ coordinate.
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where kf ¼ 1þ e cos f , e is the eccentricity of target satellite, f is true anomaly of target
satellite, ð�Þ0 ¼ dð�Þ=df . In two body orbit, the analytical model of Eq. 1 can be written
as follows [4]:

xðf Þ ¼ d1eþ 2d2e2Hðf Þ½ � sin f � ðd2ek�2
f þ d3Þ cos f

yðf Þ ¼ d3ð1þ k�1
f Þ sin f þ d1eþ 2d2e2Hðf Þ½ � cos f þ d1þ d4k

�1
f þ 2d2eHðf Þ

h i
zðf Þ ¼ d5k

�1
f sin f þ d6k

�1
f cos f

9>>=
>>; ð3Þ

x0ðf Þ ¼ ½d2ek�2
f þ d3� sin f þ d1eþ 2d2e2Hðf Þ½ � cos f

y0ðf Þ ¼ d3ek
�2
f sin f þ d4ek

�2
f � d1e� 2d2e2Hðf Þ

h i
sin f þ d3ð1þ k�1

f Þþ 2d2ek
�2
f

h i
cos f

z0ðf Þ ¼ ðd5ek�2
f sin f � d6k

�1
f Þ sin f þðd5k�1

f þ d6ek
�2
f sin f Þ cos f

9>>=
>>; ð4Þ

where diði ¼ 1; :::; 6Þ is the integral constant, Hðf Þ is integral expansion item.

2.2 The Averaged Equation of Relative Motion

It is well known that typical character of the T-H equations is periodicity of orbit
because each equation contains trigonometric function. For applications to surveillance,
the first goal is to survey the averaged equation in an orbit period.

Because the integral expansion item Hðf Þ is very complex, and it is difficult to
directly calculate the average equation. Nevertheless, the series of Hðf Þ can be used to
express the equations. Based on the power series

kmf ¼ 1þ e cos fð Þm¼ 1þme cos f þ � � � þ mðm� 1Þ � � � ðm� nþ 1Þ
n!

en cosn f þ � � �
ð5Þ

The integral expansion item Hðf Þ can be rewritten as

Hðf Þ ¼ sin f � 3e½ f
2
þ sin2f

4
� þ 6e2½ sin f þ sin3f

3
��10e3½ 3f

8
þ 3

16
sin2f þ sin f cos3f

4
� þ � � � � Hf0 ð6Þ
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where

Hf0 ¼ sin f0 � 3e½ f0
2
þ sin2f0

4
� þ 6e2½ sin f0 þ sin3f0

3
��10e3½ 3f0

8
þ 3

16
sin2f0 þ sin f0cos3f0

4
� þ � � � ð7Þ

f0 is the true anomaly at initial time. For satellites in low earth orbit, e4 and higher
items are very small which can be omitted in calculation. The Eq. 7 can be approxi-
mated as

Hðf Þ � sin f � 3e½ f
2
þ sin2f

4
� þ 6e2½ sin f � sin3f

3
��10e3½ 3f

8
þ 3

16
sin2f þ sin f cos3f

4
� � Hf0 ð8Þ

Then, the x-axis averaged motion in an orbit period can be calculated as

x ¼ 1
2p

Z 2p

0
d1eþ 2d2e2Hðf Þ� �

sin f � ðd2ek�2
f þ d3Þ cos f

n o
df ð9Þ

Substituting Eq. 8 into Eq. 9, omitting e4 and higher order items, we obtain

x � d2e
2p

R 2p
0 2e sin2f � 3eð f sin f2 þ sin fsin2f

4 Þ
h i

�2e sin fHf0 � cos f 1� 2e cos f þ 3e2cos2f½ �
n o

df

¼ ð2e2 þ 3e3Þd2
ð10Þ

In the same way the averaged relative position and averaged relative velocity in y-
axis and z-axis can be obtained

x ¼ ð2e2 þ 3e3Þd2
y ¼ d1 � ð3e2pþ 2eHf0Þd2 þð1þ e2

2 Þd4
z ¼ �ðe2 þ 3e3

8 Þd6

9=
; ð11Þ

x0 ¼ 0
y0 ¼ ½�3e2 � 6e3�d2
z0 ¼ 0

9=
; ð12Þ

The averaged equations, Eq. 11 and Eq. 12, are simple and convenient for analysis
and designing. In two-body elliptical orbit, if d2 6¼ 0, the relative motion in along-track
direction is not closed. The averaged drift velocity in y-axis is y0, which can be decided
by eccentricity and initial constant d2. The mean velocity in x-axis and z-axis is zero,
which is correspond to the relative motion.

3 Averaged Equation of Relative Motion with Orbital
Perturbation

For LEO satellite, the earth’s non-spherical shape and atmosphere perturbation greatly
affects the relative motion of satellite. The perturbations make the satellite rotate or
drift, and the relative motion will not be closed. Equation 11 and Eq. 12 are not
convenient to analyze the orbital perturbation, so the orbital elements will be consid-
ered in this section.
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We denote

r ¼ ða; e; i;x;X;MÞT

rt ¼ ðat; et; it;xt;Xt;MtÞT
)

ð13Þ

where a is semi-major axis, e is eccentricity, i is inclination, x is perigee anomaly, X is
right ascension of ascending node, M is mean anomaly. The orbital element differences
between the target satellite and tracking satellite defined as dr ¼ rt � r. Based on the
relations between the integral constant di and the orbital element difference dr0 [10]

da0 ¼ 2e2

g4
d2; de0 ¼ e

ag2
d2þ 1

a
d3; dx0 ¼ 1

ag2
d4 � sinx cot i

ag2
d5þ cosx cot i

ag2
d6

dM0 ¼ g
a
ðd1 � 2eHf0d2Þ; di0 ¼

cosx
ag2

d5 þ sinx
ag2

d6; dX0 ¼ sinx sin�1 i
ag2

d5 � cosx sin�1 i
ag2

d6

9>>>=
>>>;

ð14Þ

where g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
, Eq. 11 can be rewritten as

x ¼ ð1þ 3
2 eÞg4da0

y ¼ a
g dM0 � 3pg4

2 da0 þ ag2ð1þ e2
2 Þðdx0 þ cos idX0Þ

z ¼ �ðe2 þ 3e3
8 Þag2ðsinxdi0 � cosx sin idX0Þ

9>=
>; ð15Þ

Considering the orbital perturbation, the orbital element difference would not be a
constant, that means d _r 6¼ 0. In each calculation step, the instantaneous orbital element
of satellite can be calculated in high precision. So the orbital element difference can be
obtained in real time, the averaged relative motion can also be calculated by following
equations.

xðtÞ ¼ ð1þ 3
2 eÞg4da

yðtÞ ¼ a
g dM � 3pg4

2 daþ ag2ð1þ e2
2 Þðdxþ cos idXÞ

zðtÞ ¼ �ðe2 þ 3e3
8 Þag2ðsinxdi� cosx sin idXÞ

9>=
>; ð16Þ

The time derivative of Eq. 16 can be approximated as

_xðtÞ � ð1þ 3
2 eÞg4d _a

_yðtÞ � a
g d _M � 3pg4

2 d _aþ ag2ð1þ e2
2 Þðd _xþ cos id _XÞ

_zðtÞ � �ðe2 þ 3e3
8 Þag2ðsinxd_i� cosx sin id _XÞ

9>=
>; ð17Þ

Moreover, with the theory of the secular orbit perturbation, we can obtain the
following conclusion:
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(1) Out of orbit plane: The averaged relative motion of the z-axis is decided by di and
dX, which is affected by the J2 perturbation. In short-term, for example, in several
orbit periods, z-axis drift is small that can be omitted.

(2) In-orbit plane: The averaged relative motion in x-axis is only decided by da,
which is mainly affected by the atmospheric perturbation. The averaged relative
motion in y-axis is complex, which is decided by dM, da, dx and dX. If the cross-
section mass ratio is different between the target satellite and tracking satellite,
there will be a long-term drift in x-axis and y-axis.

4 Simulation

4.1 Simulation in Two-Body Orbit

In order to evaluate the accuracy of averaged equations which described above, the
following test case are considered. The orbit elements of satellites listed in Table 1.

The initial relative conditions (integral constants of T-H equation) of chaser satellite
in two test cases are.

Case 1: d1 ¼ 225:9, d2 ¼ 0:0, d3 ¼ 1001:0, d4 ¼ 499:1, d5 ¼ 19:8, d6 ¼ �9:4
Case 2: d1 ¼ 12:2, d2 ¼ 110911:2, d3 ¼ �2630:3, d4 ¼ 10:4, d5 ¼ 14:1, d6 ¼ �10:2

Simulation duration corresponds to 25 orbit periods of target satellite. Both the true
relative position and averaged relative position are shown in Fig. 2 and Fig. 3, coloured
in blue and red respectively. Figure 2 shows the results of test case 1, the relative
motion is closed or periodic, which means no drift in along-track (y-axis). Figure 3
shows the results of test case 2, if d2 6¼ 0 the averaged along track distance is signif-
icantly changed. It can be seen that simulation results are consistent with the analysis
reported above.

Table 1. Initial orbit elements of satellites

Orbit elements Target satellite Chaser satellite
Case-1 (d2 ¼ 0)

Chaser satellite
Case-2 (d2 6¼ 0)

Semi-major axis (km) 7000 7000 7000.2
Eccentricity 0.03 0.030143 0.0301
Right Arc. of the A.N.(°) 200° 200.000148° 200.0001°
Perigee anomaly(°) 100° 100.00411° 100.0001°
Inclination(°) 98.5° 98.4999° 98.4999°
Mean anomaly(°) 0° 0.001848° 0.0001°
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4.2 Simulation Considering the Effect of J2 Perturbation
and Atmosphere Perturbation

With the same initial orbit parameters of satellite which are listed in Table 1. Two
different test cases are considered for comparing the effect of atmosphere perturbation.

Case 3: The cross-section mass ratio of target satellite and chaser satellite are same,
0:01 m2=kg.

Fig. 2. Relative track with no perturbation (Case-1:d2 ¼ 0)

Fig. 3. Relative track with no perturbation (Case-2:d2 6¼ 0)
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Case 4: The cross-section mass ratio of target satellite and chaser satellite are different,
0:01 m2=kg and 0:02 m2=kg respectively.

Simulation duration corresponds to 25 orbit periods. Both the true relative position
and mean relative position are shown in Fig. 4 and Fig. 5, coloured in blue and red
respectively. Figure 4 shows the results of test case 3, with the same cross-section mass
ratio, the averaged relative motion shown a linear drift in along-track (y-axis), which is
mainly caused by J2 perturbation. Figure 5 shows the results of test case 4, the aver-
aged relative motion shown a long-term drift in radial direction (x-axis) which is mainly
caused by atmosphere perturbation. In other words, with different cross-section mass
ratio, the orbit altitude of two satellites decreased in different velocity. There is an
approximate parabola drift in along-track, which is an integrated affection of J2 per-
turbation and atmosphere perturbation.

Fig. 4. Relative track with J2 and atmosphere perturbation (Case-3:d2 ¼ 0)

Fig. 5. Relative track with J2 and atmosphere perturbation (Case-4:d2 6¼ 0)
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Simulation results indicated that curves based on the averaged equation of relative
motion are well consistent with the numerical calculation. Using the result of averaged
equation, it is more intuitionistic and convenient to analysis the long-term movement
trend, and that is also helpful for the formation designing and configuration
maintaining.

5 Conclusions

The averaged equations of satellite relative motion in elliptic orbit have been presented.
Based on the homogeneous solutions of T-H equations, a simple averaged relative
motion equation is derived over an orbit period. Then, the improved averaged relative
motion equation which is described by the orbit elements difference is developed for
considering the orbital perturbation. This representation of averaged relative motion is
convenient to understand Earth oblateness and atmospheric perturbation effects on
formation dynamics. Simulation results have verified the effectiveness of the proposed
models. The averaged model can eliminate the periodicity movement of relative
motion, and it is useful for formation designing and configuration maintaining.
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