
Chapter 13 
Design and Use of a Chatbot 
for Learning Selected Topics of Physics 

José Rafael Aguilar-Mejía, Santa Tejeda, Carla Victoria Ramirez-Lopez, 
and Claudia Lizette Garay-Rondero 

13.1 Introduction 

Technological advancement has boosted new learning methodologies in physics 
education (Sarwi et al. 2019). The emerging technologies have been based on theories 
of student-centered learning. Some courses continue to use traditional methodologies 
within physics education, where the instructor assumes the active role, causing the 
benefits of technology not to be fully exploited (Hwang et al. 2015). For this reason, 
it is crucial to design didactic strategies that integrate emerging technologies with 
student-centered activities.
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13.2 Literature Review 

One such recently implemented strategy is flipped learning, a pedagogical approach 
with two main characteristics (Nganji 2018; Scager et al. 2016). When applying the 
flipped learning methodology within physics education, it is necessary to consider 
two key points: (i) what emerging technologies support direct individual physics 
instruction? (ii) what type of active learning activities will reinforce and enrich 
student learning? For the first question, technological resources should be considered, 
letting the student address the issues individually at the time and space required. This 
exploration opens the possibility of using tools offering ubiquity, such as chatbots. 
Such tools can provide reliable information while adapting to the learner’s need for 
information. 

Active learning strategies have been employed in physics higher education. One 
acknowledged methodology is Tutorials in Introductory Physics (TIP) (McDermott 
and Shaffer 2001). The goal of TIP is to construct concepts and develop reasoning 
skills using various instructional strategies (McDermott 2013). Many tutorials are 
available for the purposes and topics. Their instructions provide worksheets for 
activities recommended to be carried out in teams of three or four people. 

The literature discusses how learning must be personally relevant to be effec-
tive, such as self-regulated learning anywhere (Fitzgerald et al. 2018). Many works 
conclude with a reflection for the educational community about personalized learning 
focused on individual choice and control. Their perspectives contrast with Sarsar et al. 
(2018), who mentioned that digital learners have three types of expectations from 
mobile technologies in their courses, classified as pedagogical, personal/individual, 
and technological. All are disruptive educational approaches. 

One disrupting approach could be using a chatbot, a technological tool to assist any 
user search for information. According to Gupta (2020), chatbots are conversational 
platforms focused on specialized activities. Chatbots can communicate through text 
or voice and use artificial intelligence and natural language processing to understand 
the user’s message (Khanna et al. 2015). These characteristics allow them to be used 
as support tools at any time. On the other hand, Winkler and Söllner (2018) specified 
that chatbot’s advantages are increasing user satisfaction due to their immediacy 
and their availability at any time, personalized attention to the user, and lower costs 
in service areas. Another advantage is that the data allows analyzing user needs 
to improve processes or services. Other uses are personalized interactions (Gonda 
et al. 2018), resources for tutorials, and cognitive skills development (Pogorskiy 
et al. 2018). For these reasons and the chatbot’s adaptability in mobile devices, the 
education sector has begun implementing them. 

Chatbots can enable or accelerate student learning (Becker et al. 2017), but it is 
necessary to know how to implement them to achieve the desired learning outcomes. 
Winkler and Söllner (2018) claim to research “the integration of chatbots in the 
different stages of learning processes with the help of learning theories” to resolve 
the lack of empirical evidence on how they influence learning. One of the learning 
outcomes necessary for first-year engineering students is understanding Newton’s
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laws. Some investigations aim to develop technology strategies that help students 
improve their understanding of concepts in physics class (González et al. 2019; 
Pohan et al. 2020). These promote students’ understanding of Newton’s laws with 
the help of virtual laboratories. The emergence of technologies such as chatbots 
offers new ways to achieve learning outcomes. This research aimed to implement 
these tools within a physics class for understanding Newton’s laws. We proposed an 
intervention integrating a chatbot with a tutorial-type activity. Another purpose was 
to gather empirical evidence of the impact that this type of implementation has on 
learning. Thus, this research is based on the following questions: 

Q1. What is the learning gain of Newton’s laws for first-year engineering students 
who carry out a tutorial-type activity with the “Professor Atom” chatbot? Q2. How 
does the chatbot’s use impact groups with different characteristics? Q3. What are 
first-year engineering students’ opinions about using the chatbot in the tutorial-like 
physics activity? 

13.3 Design of the Chatbot 

This project began in July 2018 to be integrated into Physics I through the modality 
of telepresence with a hologram. Telepresence is an educational innovation project of 
Tecnologico de Monterrey (Paredes and Vazquez 2019). It was complemented with 
artificial intelligence innovations designed and implemented for Physics I in 2017. 
This project evolved into the Professor Atom chatbot that could receive questions 
by voice and writing based on natural language and communicate with the student 
through dialogue. The help, explanations, exercises, criticisms, and discussions of 
a topic or problem were carried out through the system’s dialogue with the student 
(Medina et al. 2016). 

For instance, Professor Atom was created as a chatbot (Pai et al. 2020), developed 
with artificial intelligence based on natural language to receive questions or general 
inquiries from the students about basic Physics topics. This chatbot provides an 
immediate response, thus simulating an academic tutor with 24/7 attention. The 
students can use their mobile devices when and where they need to learn a concept, 
speeding up the learning experience, saving time searching for basic concepts, and 
being accompanied during their learning process. 

From a pedagogical perspective, Professor Atom chatbot was designed with active 
learning strategies to promote students’ learning by developing information search, 
analysis, and synthesis skills and motivating them to solve the problem examples 
presented (Friston et al. 2017; Ballen et al. 2017). The objective was authentic 
learning, in which the chatbot builds the students’ knowledge by relating new infor-
mation to add to their previous knowledge, readjusting and reconstructing it during 
their learning process (Riddell 2017). 

It was intended that the student using Professor Atom could resolve questions, 
reinforce knowledge, review or update notes, study for an exam or exposition, carry 
out individual and team tasks, and delve deeper into a concept than it would be
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Fig. 13.1 Examples of professor atom chatbot answers 

done in the classroom (Docktor et al. 2016; Weliweriya et al. 2019). Considering the 
opinions of the Science and Engineering department professors and the Educational 
Innovation team, we decided that Professor Atom would address 129 basic physics 
concepts in four categories: definitions, formulas, examples, and video explanations. 
Some examples are shown in Fig. 13.1. 

13.4 Method 

This research method consisted of seven steps where 145 students participated from 
different campuses and engineering majors in a private educational institution in 
Mexico. First-year students were enrolled in five different groups (classes). Each 
group had characteristics as follows: 37% of students (groups 1 and 2) were within a 
traditional educational model, of which 48% (group 1) were in a face-to-face mode, 
and 52% (group 2) in a remote modality. The other 63% of the participants (groups 
3–5) were in a face-to-face model to develop competencies through challenge-based 
learning. Group 2 had students from four different campuses and cities in Mexico. 
Groups 3, 4, and 5 belonged to the same campus, and group 1 students belonged 
to a single campus different from the other groups. Groups 1 and 2 had students 
in different engineering majors, while groups 3–4 studied engineering within the 
biotechnology area. All students in group 5 were studying in a program related to 
computer engineering and information technology. Moreover, groups 2–5 had the 
same instructor. 

The first step was introducing the students to interact with the chatbot in the 
classroom. This stage aimed to characterize the chatbot and avoid false expectations
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Table 13.1 Items by 
concepts of the HFCI 

Concepts Items 

Free fall 1 

Newton’s third law 2, 14 

Force motion 9, 11, 12 

Circular motion 3, 4 

Projectile motion 10 

Kinematics 13 

Force motion cluster 5, 6, 7, 8 

regarding its use. The chatbot has to support student learning, and the experience 
with this technology affects the learning outcomes (Harrati et al. 2016). 

Second, we administered a pre- and post-test using the Half Force Concept Inven-
tory (HFCI) multiple-choice exam (Han et al. 2015). Since only a few aspects of 
Newton’s laws were to be evaluated on the test, we chose the HFCI exam as a tool. 
The test had 14 questions about seven force concepts, as shown in Table 13.1. The  
focus of this research was most related to three of them, namely, Newton’s third law, 
force motion, and force motion cluster, which represented 64% of the items in the 
test. 

As a third step of the experimental design methodology, an individual tutorial 
activity based on TIP was implemented outside the classroom. During the exercise, 
the student was encouraged to interpret concepts about forces and Newton’s laws. 
Then, TIP was implemented inside the classroom. These phases correspond to the 
implementation of flipped learning. 

In the fourth step, a post-test was implemented to explore the change in the 
students’ conceptual understanding through the normalized gain defined by Hake 
(1998). This variable measures the normalized learning gain after the students 
completed the methodology described in previous steps. The Hake’s gain is calcu-
lated as shown in Eq. (13.1), where Xpost represents the mean of the results obtained 
in the post-test and Xpre the mean of the diagnostic evaluation results. 

gHake = (xpost − xpre)/xpre (13.1) 

Hake’s gain was analyzed through a descriptive and statistical inference analysis. 
Moreover, data exploration and arrangement were directly observed in the physics 
courses in groups 1–5. The final step was to gather students’ voluntary opinions on 
the chatbot to know their perceptions of Professor Atom’s usability.
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13.5 Analysis and Results 

First, the quantitative data were collected from 145 students in the five different 
groups (described in the Method section) in person and via the Learning Management 
System. The group analysis of the diagnostic test later moved on to the final test. 
Then it was decided to observe the behavior of the data, differentiating the results by 
group, to have a more detailed analysis and examine if there was a different behavior 
in each one. 

The mean of correct answers per student, per group, and the general average were 
calculated to analyze the results for the diagnostic evaluation (pre-test) and final 
(post-test). Figure 13.2 displays the distribution of the individual averages of the 
students in both tests on a scale of 0–100. 

When comparing averages’ distributions obtained by the participants in the pre-
test and post-test, we observed that the maximum value increased from 79 to 93. The 
minimum values for both distributions presented a value equal to zero. It was also 
observed that the mean increased from 34 to 38, although the median remains at a 
value of 36. Likewise, there is more dispersion of the post-test data than the pre-test. 
An increase in the interquartile range was observed, going from 22 in the pre-test to 
29 in the post-test. 

Three different gains were calculated for the entire group of participants. In the 
first, the average of all the HFCI items was considered. Only the average of the 
items that evaluated the concepts addressed by Newton’s laws was considered in the 
second. The third gain considered the averages of the items addressing other topics. 
The results are seen in Fig. 13.3a. 

The students obtained an overall gain of 6.8%. If only the questions on the concep-
tual understanding of forces and Newton’s laws were examined, a gain of 8.1% was 
obtained, and 3.8% in the other topics. Thus, there was a more significant gain in 
the topics developed in the intervention. According to Hake (1998), these gains are 
considered low since a value of less than 30% was obtained. For a focused analysis, 
normalized Hake’s g was calculated for each of the different groups, considering

Fig. 13.2 Comparison of 
the score (0–100) 
distribution between the 
pre-test and the post-test
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Fig. 13.3 a Hake’s g by question type. b Hake’s g per group considering only Newton’s law 
concepts compared to Hake’s g for all items 

only the items of Newton’s laws. These were compared with Hake’s g calculated, 
considering all the items for each group. As shown in Fig. 13.3b, there is a greater 
Hake’s g in three of the five groups versus Hake’s g of all the concepts. Also, it has 
a bold black line that remembers the gain tanking account of all the items for each 
group. Groups of both study plans, groups 2 and 3, showed a Hake g in Newton’s 
laws topics lower than all the items, with Hake g of 2% and 5%, respectively.

Next, the gain per student was calculated to know the results associated with 
the intervention. It was found that 50% of the students increased their conceptual 
understanding by showing a Hake’s gain greater than zero, considering that zero 
represents a standard reference. On the other hand, it was found that 25% of the 
students obtained a Hake’s gain equal to zero, and the other 25% scored a Hake’s 
gain less zero.
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13.5.1 Quantitative Analysis: Descriptive and Parametric 
Statistics 

A descriptive analysis was carried out for the total data of the students receiving 
the methodology described in this research work. First, a process to clean the data 
and eliminate outliers yielded 145 first-year college students in 5 different groups 
(classes). Table 13.2 summarizes the primary statistical findings among the five 
groups. Group 3 had the largest variability (standard deviation), followed by group 
4. Notably, the mode and median value observed in each group equal 0 due to the 
variable Y = Hake’s gain. This behavior indicates a sample centered on the zero 
value, referring to those students who presented neither Hake’s gain nor loss in this 
experiment in educational innovation. 

A parametric statistical analysis was carried out first, performing the normality 
test for each group. Subsequently, a variance test was performed using Bartlett’s 
method and Bonferroni Confidence Intervals for Standard Deviation (see Fig. 13.4). 
The next step was to perform the Analysis of Variance test, thus statistically proving 
the Hake’s Gain behavior in the five groups. 

Afterwards, a normality test was performed on the data for each interest factor 
named as “group.” Table 13.3 shows a normal behavior of the data for each level of 
the factor of interest. All the groups present a p-value > 0.05 with a significance level 
of α = 0.05. The hypothesis is H0: Data follow a normal distribution; H1: Data do  
not follow a normal distribution. That is, all the data in the factors of interest (groups) 
followed a normal distribution. 

Figure 13.4a shows the behavior of the variability of the factor of interest through 
Bartlett’s test for variances. The hypothesis result gave a p-value < 0.05 with a 
significance level of α = 0.05 where H0: All variances are equal, H1: At least 
one variance is different. The conclusion was that there is not enough statistically 
significant evidence to accept H0. Therefore, at least one group differed in their 
standard deviation due to the Y = Hake’s gain. 

Figure 13.4a shows that group 3 has the highest variance of all. Subsequently, 
Fig. 13.4b shows the result obtained by eliminating group 3 from the test. Then, on 
the right side, p-value > 0.05 with a significance level of α = 0.05 can be observed. 
With this iteration, the test conclusion could be defined as the variances between 
groups 1, 2, 4, and 5 are significantly equal per Y = Hake’s gain.

Table 13.2 Basic statistical analysis in groups 

Group Count Mean St. Dev. Median Mode N mode 

1 26 0.0221 0.1751 0 0 4 

2 28 0.0321 0.1412 0 0 8 

3 34 0.0326 0.3351 0 0 4 

4 31 0.0584 0.2314 0 0 10 

5 26 0.0221 0.1751 0 0 4
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Fig. 13.4 Bonferroni confidence intervals for standard deviation for groups 1–5 

Table 13.3 Normality test 
for groups of students 

Group N p-value 

1 26 0.342 

2 28 0.218 

3 34 0.774 

4 31 0.138 

5 26

Immediately, an ANOVA test was performed for the groups with equal variances. 
The hypothesis defined was H0: All means are equal; H1: Not all means are equal 
with a significance level of α = 0.05, obtaining p > 0.05. Furthermore, Table 13.4 
indicates there is no significant evidence to reject H0; all population means of groups
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Table 13.4 Analysis of variance 

Source DF Adjusted SS Adjusted medium square F-value P-value 

Group 3 0.02587 0.008622 0.25 0.861 

Error 107 3.67814 0.034375 

Total 110 3.7040 

Fig. 13.5 Means interval plot of Y = Hake’s gain and groups 

1, 2, 4, and 5 are equal per Hake’s gain. It is worth mentioning that a normal residual 
analysis was performed, where the assumptions of normality, homoscedasticity, and 
independence of the data were also validated.

Finally, Fig. 13.5 shows the Confidence Intervals for the mean, presenting similar 
behaviors per the variable Y = Hake’s gain for each one of the groups (including 
group 3). Also, group 4 has the highest value due to the studied variable Y, referring 
to the chatbot and methodology proposed in this research. On the other hand, groups 
1, 5, and 2 have the lowest values of loss in this variable Y. 

13.5.2 Qualitative Analysis: Usability Expressed 
by the Students 

After the intervention, 90 students voluntarily expressed their opinions on the use 
of the chatbot in writing. The research group collected and classified these opinions 
as positive and negative to improve the Professor Atom chatbot. This classification 
emerged from students’ opinions. Table 13.5 shows that students preferred the tech-
nological and pedagogical functionalities of the chatbot, e.g.: (i) quick access to
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Table 13.5 Feedback from students 

Topic Aspect 

Positive 1. Technological design Quick access to information 

2. Pedagogical design/curatorship Versatility of the chatbot’s representations 

3. Technological/pedagogical design Easy to use 

Negative 1. Pedagogical design/curation Synthesized information; suggest broader 
explanations 

2. Pedagogical/technological design Identify the intentions and needs of the user 

3. Technological design Disconnection after not using it for a few 
minutes 

the content, (ii) ease of use, and (iii) the different (pedagogical) categories of each 
concept giving definitions and explanations. This feedback indicated that students 
appreciated the chatbot’s representation versatility, which aligns with the experi-
mental and practical postulates of Yuliati et al. (2018). Next, these opinions will be 
complemented with the other side of the coin. 

The students gave negative feedback (see Table 13.5), mainly regarding the content 
and technological design. First, the participants mentioned that the number of topics 
and concepts were limited. Second, the information was synthesized, so they asked 
for more in-depth explanations. Third, the students perceived that interactions could 
be improved through natural language questions. The students proposed that the 
chatbot stay connected for longer in idle time to improve the user experience. 

13.6 Discussion 

Equal gains in the conceptual understanding of Newton’s Law groups were observed 
among the groups. We conclude that the impact of the intervention was similar in the 
different groups despite the differences among them, such as the educational model, 
the teacher, the program curriculum, and the student campus. 

To respond to research question Q1. What is the learning gain of Newton’s laws 
for first-year engineering students who carry out a tutorial-type activity with the 
“Professor Atom” chatbot? We found that the intervention caused an increase in 
the level of conceptual understanding of Newton’s laws because higher increases 
in Hake’s g were obtained in the analysis of this topic. However, this value was 
low within the range considered by Hake (1998). Nevertheless, the effectiveness of 
chatbots depends on the students’ perception of this tool (Winkler and Söllner 2018). 
This intervention realized that previous user experience with the chatbot could affect 
Hake’s gain. Hence, future research suggests measuring the previous experience to 
see how it affects Hake’s gain. 

Regarding Q2. How does the chatbot’s use impact groups with different character-
istics? The ANOVA test validated an equal behavior in four of the five groups studied,
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related to the gain of the conceptual understanding of Newton’s laws. Therefore, it 
can be concluded that a significant difference among groups was not observed. 

Last but not least, Q3. What are first-year engineering students’ opinions about 
using the chatbot in the tutorial-like physics activity? The students voluntarily 
expressed opinions, both positive and negative, about technological and pedagog-
ical aspects of the user interaction; they requested more topics and concepts and 
versatility of representations. 

For this research, how the students understand the technology and its impact on 
the learning outcomes was relevant. Students who perceived the merits of a chatbot 
showed greater interest in the activities carried out (Fryer et al. 2018). The chatbot’s 
integration with the activity had a different impact on the students, evidenced by 
more dispersion of the results in the post-test compared to the pre-test. Likewise, 
the improvements of the chatbot that students suggested would affect their learning 
experience, according to Liu et al. (2019). 

13.7 Conclusion 

The literature review showed how integrating emerging technology with tutorials 
made it possible for some students to understand Newton’s laws conceptually. In 
contrast, some other references provide findings of low values of conceptual under-
standing in students, which are also related to technology use. For this reason, this 
research brings elements to propose a novel method that incorporates chatbot tech-
nology and didactic methods to teach basic sciences to first-year students in engi-
neering programs. With this in mind, the research group designed an experiment to 
collect qualitative and quantitative data to answer the research questions defined in 
Sect. 13.2. 

The results from analyzing quantitative data indicated the equality of the popula-
tion means of the groups for the Hake’s gain, even with the peculiar characteristics 
of their teaching in the remote learning modality necessitated by COVID-19, the 
different campus locations of the professors and freshmen, and different teachers for 
the groups. These results provided statistically conclusive findings that the proposed 
methodology and the technological tool (Professor Atom chatbot) had the same 
significant impact on all the groups. Furthermore, the confidence intervals observed in 
Fig. 13.5 indicated a high probability that most of the students using this methodology 
and the chatbot obtained a positive Hake’s gain. 

The qualitative data came from the opinions of freshmen volunteers to answer 
the second research question. The information demonstrates the chatbot utility and 
effectiveness and the requirements to develop more elaborated content. The chatbot’s 
limitations necessitated students’ training to use it, and when this step was carried 
out, some students still had difficulties handling the chatbot tool. 

In short, the low Hake’s g indicated that the research objective was achieved by 
integrating emerging technology such as a chatbot with tutorials, typical in teaching 
physics. The findings also allow visualizing areas of opportunity for future work:
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it is necessary to know the students’ previous experience with the use of chatbots 
and establish if there is a relationship with the Hake’s gain. Likewise, it would 
be preferable to increase the number of participants and extend the instructional 
design to public universities and high schools. The research group must generate 
an updated Professor Atom process analyzing unanswered questions and generating 
more content from our teachers, which the students value highly. This update will 
be implemented to achieve a better understanding of students’ needs and uses. 
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