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1 Introduction 

Fibre-reinforced polymers (FRP) belong to a class of composite materials. The 
majority of FRP materials are composed of continuous fibres of high strength 
embedded in a polymer matrix (resin). The embedded fibres serve as the primary rein-
forcing components, while the polymer matrix acts as a binder, preserving the fibres 
and facilitating load transmission to and between them. Fibre-reinforced polymer 
(FRP) materials exhibit a wide range of behaviours based on the fibre type and 
polymer matrix. Retrofitting reinforced and unreinforced masonry walls, retrofitting 
earthquake-resistant bridges and other structures, repairing or improving concrete 
structures, metal-and-timber girders, or slabs, and restoring historic monuments and 
offshore platforms are all possible applications for FRP materials. Concrete surfaces 
must be prepped before FRP plates and sheets may be attached to them using grinding, 
sandblasting or water jetting. This method of external reinforcement can be swiftly 
applied due to its simplicity. 

Neural networks are made up of neurons, also known as nodes or units, which 
are the basic computational units. It receives input from other nodes or an external 
source. Weight (w) for each input in the equation is assigned based on how significant 
it is in relation to other inputs. The main components of neural network are input 
nodes (layer), hidden nodes (layer) where most of the calculations take place and the 
output nodes (layer). 

Experiments on the influence FRP have on flexural, shear, torsional and axial 
reinforcement in reinforced concrete structural component have garnered attention 
in recent years from both academic and industry researchers. In 1998, Ritchie et al. 
[1] tested adhesively bonded GFRP and CFRP plates to failure on 2.75 m long
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reinforced RC beams that were exposed to flexural impacts. Meier [2] conducted a 
study in 1992 on 60 small-scale RC beams in a four-point bend configuration. CFRP 
sheets of 200 mm in width and 0.3 mm thick were used to reinforce these beams. 
There were experiments performed by Arduini and Nanni [3] that involved the use 
of CFRP sheets to reinforce pre-cracked RC beams. Hussain et al. [4] conducted 
research on RC-columns of three distinct forms wrapped with GFRP. El-Gamal’s 
et al. [5] research work involved casting 10 full-scale RC beams and reinforcing them 
in flexure with different FRP materials. Anil et al. [6] in 2013 conducted tests on 
12 FRP-strengthened reinforced concrete slabs. Ceroni et al. [7] carried out flexural 
tests on 21 RC beams reinforced with NSM bars and CFRP plates. 

Researchers have shown that artificial neural networks (ANNs) may be used 
to calculate displacement in reinforced concrete beams as an alternative to tradi-
tional techniques. For example, Naderpour et al. [8] predicted concrete’s compressive 
strength; Ahmadi et al. [9] predicted the axial strength of composite columns; and 
Khademi [10] evaluated the displacement of RC buildings using ANN. Using ANN, 
Kaczmarek and Szyma’nska [11] calculated displacement in reinforced concrete 
and the findings were highly accurate. An investigation conducted by Tuan Ya et al. 
[12] found that the result was extremely accurate when using the ANN technique to 
forecast displacement in cantilever beams. 

Although previous work has been carried out on strengthening beams with FRP, 
the area to be laminated and the position of placing the FRP over the beam can 
be a scope of study. How the different strength parameters, crack pattern and other 
behavioural changes occur with the positioning of the FRP, and varying the area 
of lamination can be further studied. Prediction of the behaviour of these kinds of 
beams can be done using ANN and will help the structural engineering professional 
to assess the extent of improvement that can be achieved by the strengthening process. 
But to understand the behavioural changes due to FRP, it requires a huge number of 
numerical experiments. It can be avoided if ANN models can predict those parameters 
based on some developed data. 

2 Numerical Modelling 

2.1 Finite Element Modelling 

A nonlinear analysis is performed when applied forces and displacements for a 
structural component are not linearly related. As a result, unlike in linear analysis, 
the stiffness matrix does not remain constant during the load application process. 
Thus, the nonlinear analysis requires a different solution method and, consequently, 
a separate solver. Loading of a structure results in varying stresses at different places 
in the structure. With the help of modern analytic software tools, nonlinear issues 
can now be analysed. In this work, the commercial software package ABAQUS 
has been used for nonlinear analysis of RC beam strengthened with FRP laminates.
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The concrete damage plasticity model has been used for analysis of concrete and 
reinforcement, and the Hashin damage model for analysis of CFRP. The concrete 
damaged plasticity model in ABAQUS can simulate behaviour of concrete and other 
quasi-brittle materials in various kinds of constructions (beams, trusses, shells and 
solids). It is also used with rebar to model concrete reinforcement. The CDP model 
has been developed for applications where concrete is subjected to monotonic, cyclic 
and/or dynamic loads. 

Concrete elements are modelled using C3D8R meshing, i.e. 8-node linear brick, 
reduced integration and hourglass control. Reinforcements are meshed using T3D2: 
a 2-node linear 3-D truss is used, and for CFRP element S4R (a 4-node doubly curved 
thin or thick shell, reduced integration, hourglass control, finite membrane strains) 
mesh is used. 

2.2 ANN Modelling 

It is the neurons in the model that process input data and predict output in artificial 
neural networks (ANNs) or deep learning models. Neurons can have more than one 
layer. The model predicts the output using weights and other activation functions 
that are sent through the model’s neurons along with each input. This is known as 
“forward propagation”. The training dataset is a pair of (x, y) where x denotes the 
features and y denotes the expected output. The predicted output is evaluated against 
the expected output “y”. Now we evaluate the performance of the model using a 
loss function between the predicted output and “y” (actual output). The loss function 
is the measure of the difference between the actual and predicted outputs. The loss 
function could be log-loss, mean-squared-error or any other function. The weights 
associated with the input and other neural network layers are randomly initialised and 
are adjusted repeatedly with the help of the loss function. The weights are so adjusted 
to minimise the loss function. The gradient of the loss function with respect to the 
parameters is computed. Using this gradient, the weights in each layer are adjusted. 
This process of adjusting weights, starting from the last layer to the input layer, is 
known as “back-propagation”. There is a learning rate associated with the weight 
gradients that determine the influence of the gradients in adjusting weights. Once the 
weights are adjusted, the model is again evaluated to get the loss function and the 
weights are readjusted. This process goes on till the loss functions are minimised.



652 S. Mukhopadhyay and S. R. Chowdhury

3 Results and Discussion 

3.1 Loading Condition 1: Beam Subjected to Concentrated 
Load at Mid-Span 

A sample RCC beam with the following specification has been taken for modelling: 

Cross section: 100 mm × 200 mm, Length: 2 m. 

Reinforcement: Main reinforcement: Top-12 mm @ 2 Nos, Bottom-12 mm @ 2 Nos. 
Stirrups: 8 mm @ 150 c/c (Fig. 1). 

On the given beam, incremental load has been induced at the centre till the RCC 
beam reached the plastic state. Carbon fibre-reinforced polymer (CFRP) has been 
wrapped at different places on the beam (Figs. 2, 3, 4, 5, 6 and 7). 

When the load is low, the lines almost completely overlap (Fig. 8), but as the load 
increases, the difference in displacement widens significantly. It is seen in this graph 
that the deflection values for the two configurations, S2 and S3, are nearly identical 
across the whole region. 125 kN yielded a deflection of 4.69 mm on S3 sides and

P kN 

1 m 1 m 

12 mm 

8 mm @ 150 c/c 

Side View Cross-Section 

Fig. 1 Sketch of simply supported beam 

Fig. 2 Different 
combinations of CFRP 
strengthening
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Fig. 3 Stress flow in CFRP 
in B (top), S2 (centre) and S3 
(last) 

Fig. 4 Crack propagation 
for RCC 

Fig. 5 Crack propagation 
for CFRP at bottom (B) 

4.96 mm on S2. Even at a larger load, the change is only 0.27 mm, which is not that 
significant. As a result, it is preferable to use CFRP on both sides (S2) rather than all 
three, which makes it less cost-effective (Table 1).

It may be deduced that one of the most efficient ways to apply CFRP is to wrap 
it on both faces. Further different combinations of wrapping of CFRP on both sides 
of the beam have been done, which are depicted below (Fig. 9).
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Fig. 6 Crack propagation 
for CFRP on both sides (S2) 

Fig. 7 Crack propagation 
for CFRP on 3 sides  (S3) 

Fig. 8 Load–displacement graph under concentrated loading for different CFRP strengthening 
modes
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Table 1 Comparison of load–deflection responses 

125 kN 100 kN

Δ (mm) % reduction in Δ Δ (mm) % reduction in Δ

R: RCC 15.58 – 6.25 – 

B: CFRP on bottom 9.7 38 5.58 11 

S2: CFRP on both faces 4.96 68 3.44 45 

S3: CFRP on 3 sides 4.69 70 3.28 48 

Fig. 9 Different combinations of CFRP wrapping on sides 

C1: CFRP of total length L/2 wrapping at mid-section.
C2: CFRP of total length L/2, with L/4 wrapped at two ends. 
C3: CFRP of total length L/2, with each segment having a width of 100 mm and 
100 mm spacing in between. 

Except for S2, the same length of CFRP has been applied on all the other combina-
tions, i.e., C1, C2 and C3, but the difference in deflection is quite significant. While 
the best possible combination is C1, which has a merely 7.2% increment from S2, 
C2 is the worst combination with a drastic 90.9% increment over S2 (Table 2).
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Table 2 Load–deflection 
comparison of C1, C2 and  C3 
with respect to S2 

P = 125 kN
Δ (mm) % increment in Δ w.r.t S2 

R: RCC 15.58 – 

S2: CFRP on sides 4.96 – 

C1: CFRP L/2 middle 5.31 7.2 

C2: CFRP L/4 both edges 9.47 90.9 

C3: CFRP gap graded 8.26 66.5 

Gain in Strength of RCC beam may be represented as: S3 >  S2 >  C1 >  C3 >  C2 
> B.  

3.2 Loading Condition 2: Beam Subjected to Pressure Load 
of Different Magnitude 

Pressure load of different magnitude applied on the same simply supported beam 
(mentioned earlier) (Figs. 10 and 11). 

S3 and S2 give the best results (Table 3) with maximum reduction in deflection,

Fig. 10 Abaqus model of 
RC beam under pressure 
loading 

Fig. 11 Crack propagation 
of RC beam under pressure 
load
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Table 3 
Pressure–displacement 
comparison 

Pressure = 1.8 MPa

Δ (mm) % Reduction in Δ

R: RCC 9.91 – 

B: CFRP on bottom 6.28 36.7 

S2: CFRP on both faces 3.99 59.7 

S3: CFRP on 3 sides 3.65 63.1 

C1: CFRP @ L/2 middle 7.50 24.3 

C2: CFRP @L/4 on both edges 4.07 58.9 

C3: CFRP gap graded 4.41 55.5

but one major difference that has been found is that C2 and C3 perform better when 
pressure load is applied, unlike in concentrated loading at the midpoint (Figs. 12, 13). 
So, it can be concluded that for pressure loading S3, S2 performs the best, followed 
by C2 and C3. C2 will be the most economical way of strengthening for pressure 
loading.

Fig. 12 Pressure–displacement graph for R, B, S2 and  S3
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Fig. 13 Pressure–displacement graph for S2, C1, C2, C3 

Gain in strength of RCC beam may be represented as: S3 >  S2 >  C2 >  C3 >  B > 
C1.

Variation of Load and Deflection of Beam With Thickness of CFRP 
The thickness of CFRP has also been changed and the variation in loading capacity 
and reduction in deflection has been observed. The ultimate loading capacity of the 
beam increases significantly as the thickness of the CFRP increases (Fig. 14). The 
deflection of the beam reduces if the thickness is increased. Though the reduction is 
greater initially, the rate of reduction in deflection decreases after 2.4 mm (Figs. 15, 
16, and 17). The slope of the graphs decreases with an increase in thickness, which 
signifies that the rate of reduction decreases. 

Validation of FEM Model Using Artificial Neural Network 
FEM data obtained from Abaqus was trained with the deep neural network (DNN) 
model, to learn the constitutive law of the carbon fibre-reinforced composite. DNN 
learns the constitutive law in a form-free manner. The learned result automatically 
satisfies the equilibrium and kinematics equations, which avoids inaccuracies associ-
ated with the presumed functions in the constitutive laws. All the models were trained 
for different combinations of CFRP wrapping in Python (using Keras) and MATLAB. 
The dataset consists of one feature, i.e. load or pressure, and one target variable, i.e. 
displacement. The splitting of dataset has been done into training (70%), testing 
(20%) and validation (10%) using train_test_split () function from sklearn. Training
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Fig. 14 Load–displacement curve of S2 for different thickness of CFRP 

Fig. 15 Thickness (CFRP)–displacement graph for S2 model at 150 kN load
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Fig. 16 Thickness (CFRP)–displacement graph for S2 model at 175 kN load 

Fig. 17 Thickness (CFRP)–displacement graph for S2 model at 195 kN load
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Fig. 18 ANN architecture Input Layer 

Hidden Layer 

Hidden Layer 

Output Layer 

of the neural network with different hyper-parameters has shown that the best acti-
vation function is “tanh” and the best optimization function is Adam. Two hidden 
layers were used with 10 and 20 nodes. The model architecture is given in Fig. 18. 
The input node consists of one node (since the dataset has one feature), then there 
are two hidden layers of 10 neurons followed by one output node. In MATLAB, two 
different neural network models have been used, cascade forward back-propagation 
(CFB) and Elman back-propagation (EB). The difference in displacement values for 
FEM and both the ANN models have been calculated (Tables 4, 5) and the values 
have been plotted (Figs. 19, 20, 21, 22, 23 and 24) to get an idea of the variations 
from FEM model.

The average R-square value for ANN is 0.99. There is a strong correlation between 
the two results. With an error rate of less than 1% on average, ANN’s predictions 
reveal a very low and acceptable level of precision in prediction. Moreover, the plots 
also show that predicted values follow a nonlinear trend (Figs. 21, 22, 23, and 24). 
Most of the predicted values are in agreement with the Abaqus data. 

Table 4 Relative error of ANN model (load-Δ) for  C1 

C1 FEM ANN % Error  

Load (N) Δ (mm) CFBΔ (mm) EB Δ (mm) CFB EB 

0 0.00 0.02 0.04 – – 

12,500 0.26 0.25 0.23 0.36 9.81 

25,000 0.55 0.55 0.56 0.12 1.55 

50,781 1.38 1.38 1.39 0.07 0.20 

60,290 1.73 1.73 1.73 0.34 0.18 

75,276 2.31 2.31 2.31 0.02 0.20 

100,364 3.60 3.64 3.61 1.30 0.28 

120,013 5.08 5.08 5.09 0.02 0.26 

125,000 5.58 5.54 5.49 0.69 1.51
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Table 5 Relative error of ANN model (pressure-Δ) for C1 

C1 FEM ANN % Error 

Pressure (MPa) Δ (mm) CFB Δ (mm) EB Δ (mm) CFB EB 

0.00 0.00 0.00 0.01 - -

0.20 0.27 0.27 0.27 0.00 0.48 

0.63 0.95 0.95 0.95 0.01 0.18 

1.01 1.77 1.77 1.77 0.00 0.03 

1.41 2.82 2.81 2.83 0.24 0.41 

1.61 4.51 4.51 4.48 0.02 0.65 

1.72 7.66 7.66 7.64 0.00 0.18 

1.80 11.86 11.82 11.83 0.30 0.26 

1.90 21.82 21.80 21.87 0.11 0.21 

Fig. 19 Actual versus predicted load–displacement curve for C1 

4 Conclusion

● Under concentrated loading, 48% and 45% reductions in displacement over the 
control RC beam have been found for CFRP wrapped on three sides (S3) and 
CFRP wrapped on both faces (S2), respectively.

● In the case of the RC beam under concentrated load, CFRP of length L/2 wrapped 
on both sides at mid-span (C1) has shown to be one of the most effective and
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Fig. 20 Actual versus predicted pressure–displacement curve for C1 

Fig. 21 Actual versus predicted load–displacement curve for S2

economical means of wrapping since the increase in deflection was only 7.2% 
compared to S2 (fully wrapped on both faces).

● Under pressure loading, it has been observed that S3 and S2 perform best, with a 
reduction in the displacement of 63.1% and 59.7% over the control beam, respec-
tively. Apart from full-length wraps, C2 (wrapped L/4 at edges on both sides of
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Fig. 22 Actual versus predicted pressure–displacement curve for S2 

Fig. 23 Actual versus predicted of ultimate load for RCC

the beam) and C3 (CFRP gap graded) produce better results, with a reduction of 
58.5% and 55.5% over the control beam, respectively.

● With an increase in the thickness of CFRP, there is a considerable amount of 
reduction in the deflection of the beam, but the rate of reduction in deflection 
decreases after a certain point even if the thickness of CFRP is kept on increasing.

● It can be concluded that when the load is concentrated at the mid-span of a beam, 
then the most efficient way of strengthening is to wrap CFRP of length L/2 at the
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Fig. 24 Actual versus predicted ultimate load for S2

mid-span on opposite faces. But when the beam is under pressure load then CFRP 
of length L/4 wrapped near the ends is the most efficient way of strengthening.

● The ANN model predicts the nonlinearity of the models with very high accuracy. 
An average value of R score of 0.999 indicates that the two results are consistent. 
Both the ANN model could predict the ultimate load as well as unknown deflection 
with high accuracy. 
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