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Preface 

Nowadays, the visual signals collected nationwide exceed 500,000 TB per day, 
accounting for 85% of the total Internet traffic. How to make full use of and deep 
mine the massive visual signals via advanced image processing techniques is the 
key to promote the rapid development of industries such as security surveillance, 
medical applications, distance education, social networking, and so on. During the 
past two decades, important image processing techniques, such as image quality 
assessment (QA) and enhancement, and object detection and recognition, have 
attracted extensive and in-depth studies from researchers in the fields of multimedia 
signal processing, computer image processing, pattern recognition and intelligent 
systems, automatic detection technology, etc., and have obtained a series of impor-
tant research accomplishments. The acquisition equipment, storage media, transmis-
sion system, and processing algorithm inevitably have an impact on visual signals 
during the processes from collecting and generating to receiving visual signals, which 
causes the degradation of image quality and further inhibits the accuracy of subse-
quent object detection and recognition algorithms. Therefore, image QA is usually 
considered as the basis of the above-mentioned important image processing tech-
niques, possessing two significant capabilities: One is that image QA can be used 
to monitor the whole procedure of visual signal processing and the other is that it 
can be employed to optimize the model structure and parameters of visual signal 
processing techniques. Based on the aforesaid analyses, this book mainly reviews 
the representative research on image QA during the past decade and analyzes their 
applications, performance, and prospects in various important fields, such as screen 
content images, 3D-synthesized images, sonar images, enhanced images, light-field 
images, virtual reality images, and super-resolution images, expecting to provide 
guidance and reference for engineering applications in various types of fields. 

The main audiences of this book are graduate students, engineers, specialists, 
and scholars who are interested in image QA techniques in varied subject areas, e.g., 
optics, electronics, mathematics, photographic techniques, and computer technology. 
The authors anticipate that a systematic review of the current state of the technologies, 
key challenges, and future trends in QA of visual signals will enable the readers 
to obtain a deeper, more comprehensive, and more systematic understanding and
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appreciation of image QA and ideally will offer a positive impetus to the work and 
research. 

In Chap. 1, the authors first outline the basic theories from the classification of 
image QA, namely subjective assessment and objective assessment, to the classifi-
cation of objective image QA, namely full-reference assessment, reduced-reference 
assessment, and no-reference assessment according to the presence of distortion-free 
reference images or not. The authors then briefly analyze the research background, 
image characteristics, and cutting-edge technologies of different types of image QA 
in hot fields, such as screen content images, 3D-synthesized images, sonar images, 
enhanced images, light-field images, virtual reality images, and super-resolution 
images. 

Screen content images are generated by computers, covering massive Internet 
information. Screen content images are composed of three kinds of complicated 
contents, namely texts, graphics, and illustrations, in each of which distortion causes 
various degrees of degradation. For the QA of screen content images, Chap. 2 first 
introduces the full-reference QA method based on structural similarity, in order to 
estimate structural changes and different statistical properties of regions. Second, 
it presents the reduced-reference QA method based on the fusion of macroscopic 
and microscopic features, in order to solve the problem of unsatisfactory predic-
tion monotonicity. Third, it introduces the no-reference QA method based on adap-
tive multi-scale weighting and big data learning, in order to address the issues of 
monotonous color and simple shape in screen content images. Finally, the authors 
discuss the future research trend of QA of screen content image and point out that it is 
necessary to construct accurate and efficient objective QA models of screen content 
images. 

3D-synthesized images possess the significant function of generating new view-
points based on rendering technique, but tend to introduce specific geometric distor-
tions that cause the quality degradation. For the QA of 3D-synthesized images, 
Chap. 3 first presents the no-reference QA method based on autoregressive modeling 
and multi-scale natural scene statistical analysis, in order to capture geometric distor-
tion. Then, it introduces the no-reference QA method based on pixel-based changes 
in transform domains, in order to measure color and depth distortion. Finally, it 
presents the no-reference QA method on account of structural variations caused by 
geometric, sharpness, and color distortions, in order to assess the quality of blurred, 
discontinuous, and stretched 3D-synthesized images. 

Sonar images contain important underwater information like submarine geomor-
phology, marine organism, and wreck remains in dim light and are prone to typical 
underwater distortion due to the poor underwater acoustic channel condition. For the 
QA of sonar images, Chap. 4 first introduces the sonar image quality database and the 
full-reference QA methods based on local entropy and statistical and structural infor-
mation, in order to measure underwater distortion in sonar images. Second, it presents 
the task- and perception-oriented reduced-reference QA methods based on the human 
visual system, in order to assess the poor-quality sonar images in the complicated 
underwater environment. Finally, it describes the no-reference QA method based on
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contour degradation measurement, in order to overcome the difficulty of failure to 
acquire reference sonar images in the dynamic underwater environment. 

Image enhancement has the function of changing the visual perceptual quality 
of images. How to optimize the model structures and parameters to achieve proper 
enhancement based on the QA of enhanced images has been a hot issue in recent years. 
For the QA of enhanced images, Chap. 5 first establishes the contrast-changed image 
QA database and presents the reduced-reference QA methods based on phase congru-
ency and histogram statistics. Then, it introduces the no-reference QA methods 
that fuse non-structural information, sharpness, and naturalness and are based on 
feature extraction and regression. Finally, it shows evaluation criteria guidance-based 
automatic contrast enhancement technique. 

Light-field images record the light intensity in different directions of the sensor, 
which is important for the research of next generation imaging technology. However, 
they tend to lose visual details in the processes of acquisition and transmission. For the 
QA of light-field images, Chap. 6 first introduces the full-reference QA method based 
on single- and multi-scale Gabor feature extraction, in order to address the problem of 
ignoring the perceived characteristic of the human visual system. Second, it illustrates 
the reduced-reference QA method based on depth map distortion measurement, in 
order to deal with different sizes of light-field images. Third, it presents the tensor-
oriented no-reference QA methods based on spatial-angular measurement, in order 
to capture the high-dimensional characteristics of light-field images. In the end, the 
above-mentioned QA methods are validated on relevant databases, and the necessity 
of establishing efficient light-field image QA methods is pointed out. 

Virtual reality images have attracted an amount of attention for providing 
an immersive experience. They have the characteristics of omnidirectional view, 
massive data, and so on, which are so vulnerable to external interference that their 
quality deteriorates. For the QA of virtual reality images, Chap. 7 first describes the 
databases that contain projection format, stitching, and double fisheye images, in 
order to fill the blank of lack of a virtual reality image database. Then, it presents 
the no-reference QA method based on the 3D convolutional neural network, in order 
to tackle the issue that the reference virtual reality images are inaccessible. Finally, 
it shows the no-reference QA method based on a multi-channel neural network, in 
order to overcome the problem of the full range of compression distortion in video 
coding technology. 

It is important to generate a high-resolution image from a low-resolution image 
by super-resolution technique, but there often exist artifacts and blurring distortions 
during the process. For the QA of super-resolved images, Chap. 8 first introduces 
the super-resolution image database based on interpolation and image enhancement. 
Second, it presents the full-reference QA methods based on quality loss function and 
L2 Norm. Finally, it introduces the QA approaches based on two-stage regression 
model, pixel similarity between image blocks, and natural scene statistical model. 

This book collects the work programs of several research groups from all over 
the world. It introduces the image QA algorithms in various hot fields from different 
perspectives, which has scientific research value and engineering application value. 
This book is written by Ke Gu, Hongyan Liu, and Chengxu Zhou. We have received
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great help from Jing Liu, Shuang Shi, and Shuangyi Xie, so we would like to express 
our sincere thanks to the experts, authors, teachers, and friends who have guided and 
supported us. 

Beijing, China Ke Gu 
Hongyan Liu 

Chengxu Zhou
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Chapter 1 
Introduction 

1.1 Quality Assessment of Traditional Images 

Image quality assessment (QA) is one of the basic techniques of image processing. 
It can evaluate the degree of image distortion by analyzing and studying the char-
acteristics of images. In an image processing system, image QA plays an important 
role in system performance evaluation, algorithm analysis, and comparison. 

For many decades, there has been a lot of research on image QA. These image QA 
approaches can be classified as subjective image QA and objective image QA based 
on whether a human is involved in quality evaluation. Subjective QA is expensive and 
time-consuming. In contrast, objective image QA uses the computational model to 
automatically evaluate the perceived quality of images, which is convenient and fast. 
Because of its advantages of high precision and strong robustness, objective image 
QA has been favored by a wide range of researchers. Objective image QA can be 
further classified into three types according to the utilization of the reference image 
information. They are, respectively, full-reference (FR) image QA, reduced-reference 
(RR) image QA, and no-reference (NR) image QA. The FR image QA utilizes 
complete pristine image information in the processing. The RR image QA only adopts 
part of the pristine image information to assess image quality. The NR image QA 
is totally different from the two models above-mentioned, due to its implementation 
of quality inferring without using any reference information. Several QA methods 
of traditional images are listed below, such as noise quality measure (NQM) [1], 
visual information fidelity in pixel domain (VIFP) [2], visual signal-to-noise ratio 
(VSNR) [3], the structural similarity (SSIM)-based QA method [4], the natural scene 
statistics (NSS)-based QA method, the information weighted structural similarity 
(IW-SSIM)-based QA method [5], peak signal-to-noise ratio (PSNR) [6], spherical 
PSNR (S-PSNR) [7], Craster parabolic projection-based PSNR (CPP-PSNR) [8], the 
VSNR based on the near-threshold and supra-threshold properties of human vision 
[3], the most apparent distortion based on the Fourier transformation and the Log-
Gabor filtering [9], and so on. Most of these methods fail to effectively evaluate the 
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quality of new types of visual signals such as screen content images, 3D-synthesized 
images, sonar images, enhanced images, light-field images, virtual reality images, 
and super-resolution images, so it is urgent to establish efficient QA methods that 
are specific to particular images. 

1.2 Quality Assessment of Screen Content Images 

With the rapid development of computer technology and the popularity of electronic 
devices, screen content images (SCIs) have received much attention from researchers 
as the main computer-generated signals. The visual quality of SCIs, which is the basis 
for image processing techniques, is inevitably subject to external interference during 
image compression, transmission, display, and so on, further resulting in poor image 
quality. Therefore, it is necessary to first evaluate the quality of SCIs in order to ensure 
the efficiency and accuracy of image processing systems. Most of the existing image 
QA metrics were designed based on the assumption that the human visual system 
(HVS) is highly adapted to deriving the scene’s structural information. Besides, 
various QA methods of natural scene images (NSIs) have been proposed recently, 
most of which can effectively evaluate the quality of NSIs rather than SCIs. There 
are few studies on SCIs which contain complicated content like texts, graphics, and 
illustrations, and the distortion causes varying degrees of degradation in different 
areas. 

This book elaborately introduces two FR QA, a RR QA and two NR QA methods 
of SCIs proposed in recent years, and the details are illustrated in Chap. 2. One of the 
FR QA models of SCIs is named structural variation-based quality index (SVQI) on 
account of the association between the perceived quality and the structural variation 
[10]. The other FR QA model of SCIs incorporates both visual field adaptation and 
information content weighting into structural similarity-based local QA [11]. The 
RR QA method of SCIs extracts the macroscopic and microscopic structures in the 
original and distorted SCIs separately and compares the differences between them 
in order to obtain the overall quality score [12]. One of the NR QA models of SCIs 
named unified content-type adaptive (UCA) is applicable across content types [13]. 
The other NR QA model of SCIs is based on big data learning and uses four types 
of features including the picture complexity, the screen content statistics, the global 
brightness quality, and the sharpness of details to predict the perceived quality of 
SCIs [14]. In addition, there are some methods that can be learned by any interested 
readers, such as screen content perceptual quality assessment (SPQA) [15], reduced-
reference wavelet-domain quality measure of screen content pictures (RWQMS) 
[16], blind quality measure for screen content images (BQMS) [17], and so on.
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1.3 Quality Assessment of 3D-Synthesized Images 

Technological advances in 3D visual signals continue to make 3D imaging and 
display techniques draw a large amount of attention in several different fields, such as 
remote education, security monitoring, entertainment, and so on. The depth image-
based rendering (DIBR) technique is utilized to synthesize new viewpoint images 
of the same scene from a limited number of reference-free multiple views, solving 
the problems of high cost and complexity [18]. The introduction of DIBR causes 
geometric distortion in 3D-synthesized images, which results in a decrease in the 
perceived quality of 3D-synthesized images. With this concern, it is imperative to 
design efficient perceptual QA methods for 3D-synthesized images before processing 
these images to avoid operating on low-quality images and reducing the efficiency 
of the whole process. The DIBR technologies introduce particular distortions when 
utilizing depth information to transfer occluded regions on the outlines of foreground 
objects, which are more likely to destroy the semantic structure of images. Several 
image QA approaches are tailored to particular scenes or common distortions (i.e., 
blur and noise) and, thus, are not applicable to evaluate the perceived quality of 
3D-synthesized images. 

To solve the problems mentioned above, the researchers have been concerned 
about 3D-synthesized image QA approaches based on DIBR. This book elaborately 
introduces six NR 3D-synthesized image QA approaches, and the details are illus-
trated in Chap. 3. These methods are mainly classified into three categories, namely 
the models based on NSS, domain transformation, and structural transformation. 
The first type includes two blind image QA models based on the autoregression 
(AR) with local image description [19] and the multi-scale natural scene statistical 
analysis (MNSS) using two new NSS models [20]. One of the second-type methods 
is the high-efficiency view synthesis quality prediction (HEVSQP) QA model that 
quantifies the effects of color and depth distortion in 3D-synthesized images [21]. The 
other one is the new QA model which combines local and global models to evaluate 
geometric distortion and sharpness changes in wavelet domain [22]. The third type 
includes two image quality prediction models based on local changes in structure and 
color and global changes in brightness [23] as well as the image complexity [24]. In 
addition, there are some methods that can be learned by any interested readers. For 
example, the 3D-synthesized view image quality metric (3DSWIM) [25] measures 
local geometric distortion and global sharpness changes [26]. The view synthesis 
quality assessment (VSQA) modifies the distorted view or similarity view from the 
reference view and the composite view [27]. The reduced version of morphologi-
cal pyramid peak signal-to-noise ratio (MP-PSNR-RR) image QA can evaluate the 
geometric distortion in 3D-synthesized images influence generated by DIBR [28].
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1.4 Quality Assessment of Sonar Images 

It is possible to obtain important information by observing sonar images, such as 
submarine geomorphology, marine organism, and wreck remains, so the sonar imag-
ing technique is widely utilized in the field of ocean exploration, underwater rescue 
[29, 30], etc. The sonar imaging technique can acquire clearer images in a dim envi-
ronment based on the temporal distribution of echo received by sonar equipment. 
However, the sonar images are inevitably distorted due to the influence of the com-
plex underwater environment in the formation and propagation processes, resulting 
in poor sonar image quality. Therefore, the QA prior to the analysis of sonar images 
can exclude low-quality sonar images with information loss, further increasing the 
efficiency of performing underwater tasks. Generally speaking, images obtained in 
different scenes possess various characteristics. For example, NSIs have rich color 
changes, complex textures, and coarse lines. Sonar images are gray and simple due 
to the unavailability of natural light, which differ dramatically from NSIs [31]. In 
addition, more attention has been paid to the structural features of sonar images con-
taining task information in underwater detection and scene rendering. Most of the 
previous QA studies focus on camera-captured natural scene images (CC-NSIs) and 
are not suitable for effectively assessing the visual quality of sonar images. 

In order to fill the gap in the study of sonar image QA, this book introduces an 
FR image QA, two RR image QA, and an NR image QA methods of sonar images 
presented in recent years, and the details are illustrated in Chap. 4. The FR image QA 
approach named the sonar image quality predictor (SIQP) combines the statistical 
and structural information [32]. One of the RR image QA approaches is the task- and 
perception-oriented sonar image quality assessment (TPSIQA), which considers the 
underwater tasks and better estimates the perceptual quality of sonar images [33]. 
The other RR image QA approach is the partial-reference sonar image quality predic-
tor (PSIQP) that can predict the image quality by using image information, comfort 
index, and SSIM index [34]. The NR image QA approach is the no-reference contour 
degradation measurement (NRCDM), which can evaluate the sonar image quality 
on the basis of the degree of contour degradation [35]. In addition, there are some 
classical QA methods of sonar images, namely the QA method of synthetic aperture 
sonar (SAS) based on navigation error degree [36]; the method based on sonar plat-
form motion, navigation error level, and environmental characteristics [37]; and the 
method called no-reference sonar image quality metric (NSIQM) that measures the 
contour degradation degree of the test and the filtered images [38]. 

1.5 Quality Assessment of Enhanced Images 

In many real-world applications, such as object detection and recognition, origi-
nal images require to be enhanced appropriately to improve the perceptual quality 
[39]. Image enhancement is the frequently used technique for improving the visual 
quality of images. Among, contrast enhancement is a popular type of image enhance-
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ment method that can improve the perceived quality of most images. Its goal is to 
create more aesthetically beautiful or visually instructive images or both. The con-
trast of an image can be dramatically increased by reassigning pixel values. Due to 
its ease of use and speed, histogram equalization is commonly employed in many 
image post-processing systems. However, the problem in these methods such as 
over-enhancement still requires attention. Therefore, it has been a hot issue in recent 
years to optimize the model structures and parameters in order to realize appropriate 
enhancement using enhanced image QA. The classic image QA methods may be 
separated into subjective and objective evaluation. For current image enhancement 
studies, the quality of enhanced images is mostly determined by subjective tests, 
which are time-consuming and costly. To overcome the limitations of subjective 
assessment, researchers have turned their research priorities to the design of objec-
tive assessment. Despite the emergence of hundreds of objective image QA models, 
very few efforts have been made for the issue of contrast-changed image QA. 

This book elaborately introduces two enhanced image databases, two NR QA 
approaches of enhanced images, and two contrast enhancement methods, and the 
details are illustrated in Chap. 5. One enhanced image database is based on five 
image enhancement algorithms and three image processing software [40]. The other 
database includes 655 images which are created by five categories of contrast-
oriented transfer functions [41]. One of NR QA approaches of enhanced images 
is the first opinion-unaware (OU) blind image QA metric named blind image quality 
measure of enhanced images (BIQME), which can effectively obtain the prediction 
quality of enhanced image [39]. The other NR QA approach is based on the theory of 
information maximization to realize the judgment of images having better contrast 
and quality [42]. One of the contrast enhancement methods is an automatic robust 
image contrast enhancement (RICE) model based on saliency preservation [43]. The 
other image contrast enhancement framework is based on cloud images, solving the 
difficulty of multi-criteria optimization [44]. 

1.6 Quality Assessment of Light-Field Images 

In recent years, the light-field (LF) imaging technology has attracted wide attention 
in many practical applications, such as underwater imaging, 3D object recognition, 
super-resolution (SR) imaging, and so on. Yet, the LF images will inevitably dam-
age visual details in the acquisition, coding, denoising, transmission, rendering, and 
display, which will affect the perceived quality of low-frequency images. 

In order to better assess the quality of LF images, a large number of researchers 
have done work to design different LF image QA approaches. This book elaborately 
introduces an FR LF image QA, a RR LF image QA, and two NR LF image QA 
methods proposed in recent years, and the details are illustrated in Chap. 6. The FR 
LF image QA methods measure the LF coherence between the pristine LF image and 
the corrupted LF image to evaluate the image quality [45]. The RR LF image QA 
methods investigate the association between the perceptual quality of LF images and
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the distortion of the estimated depth map [46]. One of the NR LF image QA methods 
named no-reference light-field image quality assessment (NR-LFQA) evaluates the 
quality degradation of LF images on the basis of the spatial information and the 
angular consistency [47]. The other NR LF image QA method is a novel tensor-
oriented no-reference light-field image quality evaluator named Tensor-NLFQ that 
is based on tensor theory. In addition, there are some methods that can be learned by 
any interested readers. For example, [48] came up with an FR image QA model called 
the multi-order derivative feature-based model to explore the multi-order derivative 
features. Huang et al. [49] presented an FR LF image QA algorithm that is based on 
dense distortion curve analysis and scene information statistics. 

1.7 Quality Assessment of Virtual Reality Images 

With the development of multimedia techniques, virtual reality (VR) technologies, 
such as 3D real-time image display and 3D positioning tracking, have attracted a lot 
of attention. The images generated by VR technologies can provide observers with 
an immersive and realistic viewing experience and further improve the efficiency 
of human-machine interaction. However, the omnidirectional view characteristics 
lead to high resolution and massive data of 360-degree images, which in turn make 
images so sensitive to external interference that their quality deteriorates. Based on 
this consideration, it is significant to design efficient image QA methods for VR 
images to prevent low-quality images from causing undesirable user experience. 
Traditional image QA methods have poor performance due to the limitation of VR 
image databases and cannot effectively assess the perceptual quality of VR images 
with high-dimensional characteristics. 

In order to fill the gap in the research of QA methods of VR images, this book 
elaborately introduces four different QA methods of VR images proposed in recent 
years, and the details are illustrated in Chap. 7. These VR image QA approaches are 
classified into four categories according to the different observing subjects, namely 
subjective QA, objective QA, subjective-objective QA, and cross-reference stitching 
QA, respectively. The subjective QA method is based on the database named com-
pression VR image quality database (CVIQD) [50] that consists of raw images and 
images with JPEG compression to evaluate the VR image quality. The objective QA 
approach named weighted-to-spherically uniform peak signal-to-noise ratio (WS-
PSNR) assesses the visual quality of VR images in terms of the reweighting of pixels 
according to their position in space [51]. For subjective-objective QA, deep learning is 
employed to assess the omnidirectional images quality. Two typical image QA meth-
odsnamedvectoreddifferentialmeanopinionscore(V-DMOS)andoveralldifferential 
meanopinionscore(O-DMOS)arepresentedtoeffectivelyassessthepanoramicimage 
quality[52].Forcross-referencestitchingQAmethod,whichfocusesonevaluatingthe 
area of stitched omnidirectional images, [53] designed a typically used method. The 
method concentrates on the stitching regions by convolutional sparse coding and com-
pound feature selection to quantify ghosting and structure.
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1.8 Quality Assessment of Super-Resolution Images 

With the increasing demand for image or video resolution, the SR technique is 
widely utilized in medical image processing, infrared imaging, security monitor-
ing, and other fields. The high-resolution images can be generated from the given 
low-resolution images via the image SR techniques like bilinear interpolation, bicu-
bic interpolation, and the Lanczos resampling. However, these pixel integration 
operations cause serious mixed artifacts and fuzzy distortion in the edge and high-
frequency regions, resulting in poor image perception quality. Therefore, it is essen-
tial to effectively assess the SR image perceptual quality before further analysis of 
SR images, in order to improve the accuracy of processing systems. The commonly 
used image QA methods do not systematically consider the artifacts and distortions 
that appear in SR images, so they are not applicable to assess the SR image quality. 

Deep learning, especially convolutional neural networks (CNNs), has been broadly 
applied to image processing tasks [54]. Therefore, this book elaborately introduces 
two QA methods based on deep learning and a QA method based on NSS of SR 
images presented recently, and the details are illustrated in Chap. 8. One of the deep 
learning-based QA methods of SR images is the method based on a cascade regres-
sion, which establishes the mapping relationship between multiple natural statistical 
features and visual perception scores by learning a two-layer regression model [55]. 
The other deep learning-based QA method of SR images is the method based on 
the combination of SR image QA loss function and L2 Norm, which can effectively 
assess the visual perceptual quality of SR images [56]. The NSS-based QA method 
of SR images is the method that quantifies the degradation of image quality using 
deviations from statistical models of frequency energy falloff and spatial continuity 
of high-quality natural images [57]. In addition, there are also some approaches, such 
as the metric named the deep similarity (DeepSim) [58], the dual-stream siamese net-
work used to assess the distorted image perceptual quality score [59], and the model 
called the deep image quality assessment (DeepQA) [60]. The interested readers can 
learn these above-mentioned methods on their own. 
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Chapter 2 
Quality Assessment of Screen Content 
Images 

2.1 Introduction 

With the quick evolution of multimedia and social networks, computer-created sig-
nals, especially screen content images (SCIs), have turned pervasive in people’s 
daily lives. Recently, applications based on images and videos have increasingly 
appeared on phones, vehicles, and cloud platforms, generating various digital SCIs, 
and thus, relevant image processing techniques have been gaining more and more 
attention. During SCI processing, digital images introduce a variety of distortions 
when acquired, processed, compressed, stored, transmitted, and reproduced, which 
can cause deterioration of the perceptual quality of images. The image quality assess-
ment (QA) method can also be utilized to optimize image processing models, so it 
plays an essential role in the image processing domain, including subjective assess-
ment and objective assessment. The objective image QA methods are often used in 
order to solve the issue of humans spending a lot of time judging the subjective quality 
of images. Therefore, it is extremely important to design accurate and effective QA 
methods for SCIs, which can contribute to reduce the inevitable distortions in various 
processes such as screen image acquisition, transmission, coding, and display. 

Unlike the camera-generated natural scene images (NSIs) acquired from real-
world scenes, SCIs are mostly generated by computers. There mainly are texts, 
tables, dialogs, and some content produced by computers in the SCIs. The main 
difference between SCIs and NSIs can be described from two perspectives. The 
first one is that computer-generated discontinuous-tone SCIs have the characteristics 
of pattern repetition, sharp edge, thin line, and less color, while NSIs usually have 
the characteristics of continuous-tone, smooth edge, thick line, and more color. The 
second one is that SCIs are mostly without the noise because they may be exclusively 
computer-produced, while the process of acquiring NSIs may introduce noise since 
the physical limitations of imaging sensors. With this concern, the image QA models 
of NSIs are ineffective in evaluating the visual quality of SCIs, so it is necessary to 
establish SCI QA models. 
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The basic ideas of image QA of SCIs are as follows. The first train of thought 
is that the structural similarity (SSIM) between the original and contaminated SCIs 
is calculated by some quality-related features. The above features are chrominance, 
chromaticity, contrast, and some edge features (e.g., edge contrast, edge width, edge 
direction, etc.). Then it carries out a weighted summation or regression operation on 
the obtained similarity feature map to further obtain the final score. The second way 
of thinking is that SCIs should be segmented according to the human visual system 
(HVS). Human eyes pay attention to different areas when looking at SCIs. The 
different regions (such as text region and image region) should be divided, analyzed 
separately, and finally integrated together to form a final score. For example, human 
eyes pay more attention to the readability of SCIs than the change of color and 
saturation for text, so the text is more important than image areas. 

At present, the researches on SCIs are relatively new, especially in image QA. 
According to the accessibility of reference information, the SCI QA methods 
are divided into full-reference (FR) types, reduced-reference (RR) types, and no-
reference (NR) types, separately. Some representative works of FR image QA have 
been published with good results. In [1], Gu et al. studied the association between the 
perceived quality and the structural variation and provided the structural variation-
based quality index (SVQI) metric for evaluating quality. It was compared with 
traditional FR image QA approaches in [2–6]. In [7], Ni et al. used gradient direction 
in accordance with local information to assess the visual quality of SCIs. In [8], Gu 
et al. designed an FR metric that is mostly based on simple convolution operators 
to gauge prominent domains in order to assess the quality of SCIs. In [9], Fang et 
al. divided SCIs into text and graphic areas and combined the visual quality of text 
and graphic areas using a weighted method. In this work, gradient information and 
brightness resources based on structural features were selected for similarity calcu-
lation to derive the visual quality of SCIs. In [10], Ni et al. established an FR metric 
that relies on the local similarity extracted by the Gabor filter in LMN color space. 
In [11], Fu et al. proposed an FR model by applying different scales of Gaussian. 
All the above-mentioned QA models require the participation of reference images, 
but most of SCIs cannot obtain reference images, so NR image QA approaches for 
SCIs are urgently needed. 

Conventional NR QA methods designed for SCIs can be divided into three cat-
egories. For the first dominant category, the perceptual quality of SCIs is predicted 
by utilizing the theory of free energy, which is suitable for NSI QA [12]. Inspired 
by this, in [13], Gu et al. constructed a superior NR SCI quality evaluation model 
called screen image quality evaluator (SIQE), which extracted 15 resources, including 
image complexity, screen content information, overall brightness, and detail clarity. 
It used effective support vector regression (SVR) to convert resources into overall 
quality scores and compared them with the excellent performance NR model in [14, 
15]. The second category relies on texture and brightness characteristics. In [16], a 
valid NR QA method for evaluating the quality of SCIs was proposed. The method 
extracted texture and brightness features from texture and brightness histograms and 
trained these features based on SVR to derive the overall quality score. For the third 
category, sparse representation is considered. In [17], Shao et al. proposed a NR image
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quality predictor for SCIs to explore this problem from the angle of sparse repre-
sentation. For evaluating the performance of those QA methods, we compared them 
with state-of-the-art competitors using four extensive employed standards, namely 
the Pearson linear correlation coefficient (PLCC), the Spearman rank correlation 
coefficient (SRCC), the Kendall rank correlation coefficient (KRCC), and root mean 
square error (RMSE). 

The organization of this chapter is arranged as shown below. Section 2.2 introduces 
in detail the modeling process and comparison and analysis of three types of QA 
approaches of SCIs, namely the FR type, the RR type, and the NR type. Section 
2.3 compares several advanced image QA approaches of SCIs with the proposed 
approaches. Section 2.4 finally draws the conclusion and provides future work. 

2.2 Methodology 

In this section, we give a detailed introduction to five advanced SCI QA methods. We 
divide these QA approaches into three categories, namely the FR image QA method, 
the RR image QA method, and the NR image QA method. More specifically, we first 
introduce two FR methods. One method is to systematically combine the measures of 
global and local structural variations to yield the final quality estimation of SCIs. The 
other method is to incorporate both visual field adaptation and information content 
weighting into local QA on the basis of SSIM. Second, we introduce a RR method that 
compares the differences in macroscopic and microscopic features between original 
SCIs and the corresponding distortion version to deduce the overall quality rating. 
Third, we introduce two NR methods. One method is a unified content-type adaptive 
(UCA) NR image QA approach, which is suitable for different content types. The 
other method evaluates image quality by extracting four categories of features that 
represent the complexity of the picture, screen content statistics, global brightness 
quality, and detail sharpness. Finally, we analyze the performance of these methods 
with the typically used indices of PLCC, SRCC, KRCC, and RMSE. 

2.2.1 Full-Reference QA of Screen Content Images 

Structural information is one of the main bases for FR image objective QA. Extracting 
structural information from the background is the main function of HVS, and it can 
be implemented adaptively by this system. Hence, using structural information to 
measure the distortion of images is a more effective QA method in accordance with 
the HVS. Here, we will introduce two FR image QA methods founded on structural 
variation and SSIM.
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Evaluating Quality of SCIs via Structural Variation Analysis 

Recently, the free energy theory [18, 19] was proposed by Friston’s team. The theory 
assumes that cognitive processes in the human brain are based on internal genera-
tive mechanisms. On this basis, we can learn that the input visual signals can be 
obtained according to the free energy theory. The cognitive process can be repre-
sented by a probabilistic model consisting of a prior component and a likelihood 
component. Although the current level of knowledge does not fully reconstruct the 
cognitive process of the human brain, it is reasonable to suppose that there are differ-
ences between the input visual signals and the internal generative mechanism. This 
difference is intimately associated with human perception of visual quality [12]. 

We hypothesize the internal generative mechanism can explain the external input 
visual signal by altering the model parameters ω vector. t represents an input visual 
signal. Its “surprise” is calculated by integrating the joint distribution P(t,ω) on the 
space of model parameters: 

− logS(t) = −  log
∫

Q(ω|t) 
P(t,ω) 

Q(ω|t) 
dω, (2.1) 

where the Q(ω|t) denotes the assistant posterior distribution of the t , which is regarded 
as an approximate posterior to the true posterior P(ω|t). The human brain tries to 
decrease the difference between the assistant posterior and the true posterior by 
changing the → in Q(ω|t) to describe the perceptual visual signal t accurately. We 
apply Jensen’s inequality to Eq. (2.1) and yield the following: 

− logS(t) ≤ −
∫

Q(ω|t) log 
P(t,ω) 

Q(ω|t) 
dω = F(ω). (2.2) 

On the basis of the definition in statistical thermodynamics and physics [20], the 
free energy F(ω) can be calculated from the right part of Eq. (2.2). According to 
Bayes’ theorem, we know that P(t,ω)=P(ω|t) S(t). Then Eq. (2.2) can be demonstrated 
as follows: 

F(ω) =
∫

Q(ω|t) log 
Q(t,ω) 

S(t)P(ω|t) 
dω 

= −logS(t) + K L(Q(ω|t) ‖ P(ω|t)), 
(2.3) 

where K L(Q(ω|t) ‖ P(ω|t)) represents a Kullback-Leibler (KL) divergence between 
Q(ω|t) and P(ω|t). We find that the free energy changed with K L(Q(ω|t) ‖ P(ω|t)), and 
F(ω) have a strict upper bound since K L(Q(ω|t) ‖ P(ω|t)) is a non-negative component. 
Only when the Q(ω|t) equals to S(t), F(ω) can achieve the minimum value −logS(t). 
Equation (2.3) reveals that the F(ω) is inhibited by minimizing the KL divergence of 
the approximate posterior against the true posterior. This situation reflects the brain 
will decrease the KL divergence as explaining input visual signal. 

The corrupted image D can be represented as follows:
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D = R + Δ, (2.4) 

where R stands for the original image, and Δ is the error difference. Relying on the 
free energy theory, we are aware that the human brain actively recovers the corrupted 
image D by decreasing the error difference. In this way, the human brain can achieve 
a satisfactory visual perception or semantic understanding. We assume that the true 
posterior corresponds toR, and the deduced approximate posterior corresponds to R′
that is recovered by the human brain. The implementation of the recovering process 
is closely associated with the image QA. In particular, since certain characteristics 
of the HVS, the brain does not need to recover. 

Measurement of Structural Variation 

According to all the content mentioned above, the human brain is a long-term well-
trained organ, and thus, it works in an extremely efficient manner. In the process 
of evaluating the perceived quality of SCIs, the human brain first makes a basic 
perception about the overall structure of a given image. Especially, for the low contrast 
images (i.e., too light or too dark images), the brain will ignore the details. After 
completing basic perception, the human brain will target local structures, selectively 
perceiving changes in detail. At last, the human brain systematically combines basic 
and detailed perception to achieve the ultimate image QA. 

Variations in Global Structures In the process of basic perception to global 
structures, we focus on two significant features, which are the contrast and complexity 
of images. The contrast is closely related to the perceptual quality of images. Too low 
contrast will seriously degrade the image quality, making it difficult for the human 
brain to capture the details and make sense of semantic information. We suppose that 
the pristine image R has the baseline brightness and contrast, and the information 
entropy changes as they deviate. Next, we utilize the variation of entropy (EOV) to 
represent the feature as follows: 

F1 = 
μ(D) + ν(1) 

μ(R) + ν(1) 
, (2.5) 

where ν(1) is a minor fixed value to prevent the feature value from being too large. D 
and R represent the original and distorted images, respectively. The entropy value μ 
can be calculated by 

μ = −
∫

H(β)logH(β) dβ, (2.6) 

where H(β) represents the probability density of grayscale β. To find the EGM’s 
impact, we compare eleven categories of distortions from three databases, consist-
ing of screen image quality assessment database (SIQAD) [6], quality assessment 
of compressed screen content image (QACS) database [21], and SCTL database 
[22]. From the SIQAD database, we select seven types of distortions, including con-
trast change (CC), motion blur (MB), Gaussian blur (GB), JPEG2000 compression
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Fig. 2.1 Box plot of EOV distribution across 11 categories of distortions from three SCI databases 
(©[2021] IEEE. Reprinted, with permission, from [1].) 

(J2C), JPEG compression (JC), layer segmentation backed coding (LC) [23], and 
white noise (WN). From the QACS database, three types of distortions are picked 
out, namely high-efficiency video coding (HEVC), high efficiency video coding 
compression (HC) [1], and screen content image compression (SC). From the SCTL 
database, transmission loss under HEVC compression (TH) and transmission loss 
under screen content image compression (TS) are selected. Figure 2.1 shows that 
only changing the image contrast can largely reshape the histogram, while other 
distortion categories sightly impact the EOV distribution. 

The other feature we considered is the image complexity, which is an abstract 
concept. The images with high complexity consist of edge, texture, and other high-
frequency information, which generally have stronger noise masking effects. Com-
pared with smooth areas, these edge and texture regions are poor at self-expression. 
Based on this, we utilize the classical linear autoregressive (AR) model, which can 
be established in each local patch: 

ri = Vψ(ri ) · a + di , (2.7) 

where ri is the pixel value at i ; Vψ(ri ) composes a vector of ψ member neighborhood; 
a is the vector containing ψ AR parameters; di denotes the difference error term 
between the given pixel and the corresponding output estimation. For obtaining the 
best AR parameter vector a, we design the following linear equation:
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aopt = arg min 
a 

||r − R · a||n, (2.8) 

where r = (r1, r2, ..., rδ)T contains pixels around δ in a
√

δ × √
δ patch; R(i, :) equals 

Vψ(ri ); n is the standard order assigned as 2. We find the linear equation’s solution 
to be aopt = (RT R)−1 RT r by adopting the least square method. We observe that 
the AR model has a good performance on texture area, but poorly at the edge area. 
To solve this problem, we propose a tradeoff better filter by integrating bi-lateral 
(BL) filter with the AR model. We replace a and di with ã and d̃i . ã represents a 
collection of BL filter’s parameters, which is determined by two distances. One is 
the spatial distance between i and j ( j is the index of the adjacent pixel of i). The 
other is photometric distance of ri and r j . Based on this, Eq. (2.7) can be rewritten 
to express the BL filter as follows: 

BL  j = e
{ −||i− j ||2 

2σ2 1 
+ −(ri −r j )

2 

2σ2 2 
} 
, (2.9) 

where σ1 and σ2 are two constant variances adopted to make tradeoff in the density 
between the spatial distance and photometric distance. d̃i is also the difference term. 
To inherit the advantages of AR and BL models, a linear fusion is employed to obtain 
the filtered image: 

r ′
i = 1 

1 + φi 
[Vψ(ri )â + φi · Vψ(ri )ã], (2.10) 

where φi is a non-negative weight of a space variant, which can be utilized to manip-
ulate the correlated contribution of AR and BL models. We set φi as 9 to stress the 
significance of edges, and the image complexity feature can be predicted by 

F2 = −
∫

H′
(θ)logH′

(θ) dθ, (2.11) 

where H′
(θ) represents the feasibility density of grayscale θ in the error map between 

the input image and the related filter version. 
Variations in Local Structures Edge variation is the primary feature that can be 

perceived to reflect local structural details. Among many edge variation measurement 
methods, the Scharr operator [24] has better performance. Therefore, we convolve 
the reference image R by utilizing the Scharr operator and obtain the following: 

I(R) = 
√

I2 
(R,x) + I2 

(R,y), (2.12) 

where I(R,x) = M
⊗

R and I(R,y) = MT
⊗

R. M = 1 16 [3, 0, −3; 10, 0, −10; 3, 0, 
−3].⊗ is the convolution operation. Also, the I(D) can be derived by applying the 
Scharr operator to the distorted image D. We measure the edge variations of original 
and distorted images as follows:
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A(R,D) = 
2I(R)I(D) + ν2 

I2 
(R) + I2 

(D) + ν2 
, (2.13) 

where ν2 is a minor constant positive value similar to ν1. Different from the previous 
studies, we present two inherent attributes of human perception. One of them is the 
HVS, which is more susceptible to sudden local window alters in a series of signals 
[25, 26]. For original image R, its corresponding filter version can be obtained by 
R∗ = h

⊗
R = (1 - g)

⊗
R = R - g

⊗
R = R -R+, where g represents the low-pass 

Gaussian function. R+ is a parameter corresponding to the R∗. We compare the 
original image and the corresponding filtered image: 

B′
(R,R∗) = A(R,R) − A(R,R+) 

= 1 − 
2I(R)I(R+) + ν2 

I2 
(R) + I2 

(R+) + ν2 
. (2.14) 

The other attribute is the movement tendency of the human eye, which is accus-
tomed to moving from left to right when reading text content. Thus, the local window 
should contain the present fixation point and its adjacent right pixels. We apply an 
associated high-pass filter to pre-enhance the visual input signal to avoid the effect 
of motion blur. Similarly, we define its filtered version as R†, which corresponds to 
the parameter R−. We generate the filtered images as R† = h′ ⊗ R=(1-g′)

⊗
R 

= R-g′ ⊗ R=R-R−, where g′ is a motion blur function. We make a comparison 
between the original image and the corresponding filtered image by 

B′′
(R,R†) = A(R,R) − A(R,R−) 

= 1 − 
2I(R)I(R−) + ν2 

I2 
(R) + I2 

(R−) + ν2 
. (2.15) 

We then propose a linear weighting function by integrating the two perceptual 
attributes: 

B(R) = 
1 

1 + αi 
[B′

(R,R∗) + αi · B′′
(R,R†)]. (2.16) 

We roughly assume the space-variant positive number αi is the unit. It reflects 
that the image and text parts are almost equal in size. The linear weighting function 
can be rewritten as follows: 

B(R) = 1 − 
I(R)I(g

⊗R) + 1 2 ε2 
I2 

(R) + I2 
(g
⊗R) + ε2 

− 
I(R)I(g′ ⊗R) + 1 2 ε2 
I2 

(R) + I2 
(g′ ⊗R) + ε2 

, (2.17) 

where g and g′ are fixed parameters. We measure the edge variations by modifying 
A(R,D) with the weighting map B(R):
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F3 =
∑

i A(Ri ,Di ) · B(Ri )∑
i B(Ri ) 

. (2.18) 

The other feature denotes the variations in corners. The introduction of differ-
ent distortions will change the corners of the original image correspondingly, which 
proves that corners can be effectively adopted to evaluate image quality [27]. The 
uncontaminated image can be rewritten in a matrix format R= [ri j  ]. The high-
efficiency Shi-Tomasi detector [28] are adopted to detect corners. The corner map 
C(R) can be defined as follows: 

ci j  =
{
1 i f  ri j  ∈ C(R) 

0 other wise  
, (2.19) 

where ri j  ∈ C(R) indicates a corner with coordinates (i, j ). We define distorted 
image’s corner map as C(D). Note that C(Ri ) and C(Di ) are binary maps, C(Ri )C(Di ) 
≡ C(Ri ) ∩ C(Di ), C2 

(Ri ) ≡ C(Ri ), C2 
(Di ) ≡ C(Di ). Similar to Eq. (2.13), we calculate the 

corner’s variations between the pristine and contaminated images by 

F4 = 2
∑
i 

C(Ri ) ∩ C(Di ) + 1 2 ε3 
C(Ri ) + C(Di ) + ε3 

. (2.20) 

Proposed SCI QA Metric 

We extract four features associated with global and local structures from basic and 
detailed perceptions. To integrate these features reliably, three reference SCIs are 
elaborately picked from the SIQAD database, exhibited in Fig. 2.2. In Fig.  2.2, each 
column corresponds to F1, F3, and F4 from left to right. Notice that we ignore F2, 
since it is only determined by the reference image. 

In the second column, the distribution of sample points is irregular. We use blue 
and red dots to stand for contrast alter and other distortion categories, respectively. 
Although differential mean opinion score (DMOS) is discrepant, blue points have an 
approximate linear relationship and red dots are almost equal. In the third and fourth 
columns, it can be obviously found that each plot has a near-linear relationship and 
consistent ordering. In other words, they are all negatively correlated with subjective 
DMOS values. For the image complexity characteristic, it can be utilized to normalize 
for clearing the interference of different image contents. Furthermore, the brain first 
perceives the global structures of images. In the case of a normal image (the image is 
not over-bright or over-dark), the brain perceives global structure and local structure 
in turn. Then the brain systematically integrates these two structural variations to 
predict the image’s perceptual quality. Based on the above analysis, the final quality 
is calculated by
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Fig. 2.2 Comparison of the global and local features derived from three original SCIs chosen from 
the SIQAD database. From left to right, four columns are related to pristine images, scatter plots of 
DMOS, and three features F1, F3, and  F4 (©[2021] IEEE. Reprinted, with permission, from [1].) 

Q(R, D) =
{
0 i f  F2 

F1 
≥ Tr 

1 
Fα 

2

∏
i=1,3,4 Fi other wise  

, (2.21) 

where Qr is a fixed threshold that is designed to distinguish whether the global 
contrast of the image is extremely low or the complexity is extremely high. α is a 
constant manipulating operator to reduce the F2 value for making four features have 
comparable magnitudes. 

Objective QA and Perceptual Compression of SCIs 

In [29], an objective SCI QA algorithm was proposed and used to optimize the coding 
procedure of SCI compression. Specifically, the proposed model takes into account 
field adaptation and information content and uses a weighted strategy based on local 
SSIM to evaluate the quality of images. In addition, it proposes a new perceptual 
SCI compression scheme based on the concept of divisive normalization transform 
to boost the coding efficiency of SCIs. Compared with traditional methods, this algo-
rithm has a better performance.
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Objective QA of SCIs 

SCIs usually contain pictorial regions and textual or graphical content produced by 
computers. These regions often show different statistical characteristics. Here, we 
introduce two statistical features that can help distinguish graphic regions from text 
regions and assist in the development of QA methods of SCIs compression. 

It can be found in the relevant literature of NSS that the amplitude spectrum of 
natural images decreases as the spatial frequency decreases in proportion to 1/ f p s 

[32]. fs represents spatial frequency and p represents image correlation frequency. 
And the typical textual images computer-generated seem a little “unnatural”. This 
inspires people to further study this characteristic on SCIs. As shown in Fig. 2.3, 
the Fourier transform is used to decompose natural and textual images. The same 
result can be observed in [32]. In other words, it can be seen that the energy of 
the natural image decreases as the spatial frequency decreases, and the relationship 
between them is approximately a straight line on a log-log scale. The peak appears 
at the middle and high frequency of the textual image. We can also find that larger 
characters lead to peak frequency to lower frequency. This shows the connection 
between peak values and stroke width and spacing. Though these features are not 
explicitly used in the design of the image QA methods, it is obviously learned from 
these examples that the statistical characteristics of textual images are different from 

Fig. 2.3 An exemplified frequency energy falloff curve of textual and natural images in log-log 
scale. a and b: Different scales’ textual images; c: A natural image;  d and e: Frequency energy 
falloff curve of textual images in (a) and  (b); f : Frequency energy falloff curve of the natural image 
(c) (©[2021] IEEE. Reprinted, with permission, from [29].)
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Fig. 2.4 An exemplified SCIs and its corresponding local information content maps (brighter means 
higher information content). a, c SCIs; b, d Corresponding information content maps (©[2021] 
IEEE. Reprinted, with permission, from [29].) 

those of natural images. Based on this, we need to separate them when designing 
QA metrics. 

The valid information content model [30] is established by using the Gaussian 
source transmitted to the receiving end through the Gaussian noise (GN) channel to 
locally model the input signal [31]. The mutual information between the input signal 
and the output signal is the number of perceived information content, which can be 
quantified in the following equation: 

ω = log2

(
1 + 

σ2 
p 

σ2 
n

)
, (2.22) 

where σ2 
p represents the variance in the local window x . σ

2 
n refers to the constant 

parameter used to describe the noise degree of the visual channel. 
Figure 2.4 shows the local information maps processed by Eq. (2.22) and their 

corresponding original images. This example illustrates the distribution of percep-
tual information in space and the difference between textual and graphical areas. 
Because the local variances surrounding high-contrast edges are usually significant, 
text regions containing rich high-contrast edges usually have a high content of local 
information. They are easier to observe than image regions. 

The SSIM index is an effective quality measure [2], which can be used to estimate 
the local quality of SCIs. Two local image blocks x and y with size l × l are extracted 
from the pristine image and the contaminated image separately. The SSIM between 
them is expressed as follows: 

SS  I  M(x, y) = (2ηx ηy + B1)(2σxy  + B2) 
(η2 

x + η2 
y + B1)(σ2 

x + σ2 
y + B2) 

, (2.23) 

where ηx , σx , and σxy  separately denote the mean, standard deviation, and cross-
correlation of the local window. B1 and B2 are positive numbers set to prevent the 
instability generated as mean value and variance value are 0. The specific settings 
are as follows: 

B1 = (K1L)2 , (2.24)
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B2 = (K2L)2 , (2.25) 

where L is the dynamic domain of pixel values. The K1 and K2 are separately two 
constants, where K1 = 0.01 and K2 = 0.03. 

It is necessary to distinguish between image and text content in order to assess 
their perceptual distortions in different and more appropriate methods. In terms of 
visual field, the perceptual span involved in scanning text content when we view SCIs 
is significantly less than the perceptual or visual search range when reading NSIs. 
Hence, we will consider adjusting the window size when processing the content in 
the textual and pictorial areas. 

Here, we use the block classification method of information content map to process 
the image. It can be observed from Fig. 2.4 that the text domain in the SCIs has a 
higher salience and contains more information than the pictorial area. We set the 
threshold T f for the sum of the information contained in each 4 × 4 block to achieve 
the classification of blocks. The mass of each image block region ωT and ωP can be 
described by ST and SP . Specifically, they are calculated by spatial adaptive weighted 
pooling to obtain correlative weights of local content in text or image: 

QT =
∑

i∈ωT 
SS  I  Mi · ωα 

i∑
i∈ωT 

ωα 
i 

, (2.26) 

Q P =
∑

j∈ωP 
SS  I  M  j · ωα 

j∑
j∈ωP 

ωα 
j 

, (2.27) 

where α is the parameter used to adjust the weighted strength. Based on experience, 
we set the thresholds T f and α as 30 and 0.3. Since the field of view of the text area is 
smaller than that of the image area, we use Gaussian windows of different sizes and 
different standard deviations to calculate local SSIM values, which are represented 
by kt and kp separately. The ωi and ω j are local information, which can be calculated 
through their respective windows. And the SSIM values are also calculated in these 
windows. It is worth noting that text content is not the only difference between NSIs 
and SCIs, but it is the most important feature of SCIs. 

The final SCI quality index (SQI) is achieved by calculating the weighted averages 
of QT and Q P of the correlative weights of text and image regions: 

SQ  I  = 
QT · μT + Q P · μP 

μT + μP 
, (2.28) 

where μT = 1 
|ΩT |

∑
j∈ΩT 

ωα 
u, j and μP = 1 

|ΩP |
∑
j∈ΩP 

ωα 
u, j . The windows are utilized to 

calculate weights and need to be the same size.
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Perceptual SCI Compression 

In addition to an objective QA method of SCIs, we will introduce a scheme for 
screen content coding on the basis of the recently designed QA method. It improves 
the performance of SCI compression. In this method, we use video coding based 
on segmentation normalized transformation [32]. The coding scheme normalizes the 
discrete cosine transform (DCT) coefficients of the residual block Bk by using the 
positive perceptual normalization parameter f to change the DCT coefficients into 
the range of perceptual consistency: 

B(k)′ = 
B(x) 
f 

. (2.29) 

Then, we use As to denote the predefined quantization step. The quantization 
process of normalized residuals can be described as the following: 

A(k) = sign{B(k)}round
{ |B(k)′| 

As 
+ ξ

}

= sign{B(k)}round
{ |B(k)| 
As · f + ξ

}
, 

(2.30) 

where ξ is the rounding offset in quantification. Accordingly, inverse quantization 
and B(k) reconstruction are performed at the decoder: 

R(k) = R(x)′ · f = A(k) · As · f 
= sign{B(k)}round

{ |B(k)′| 
As · f + ξ

}
· As · f. 

(2.31) 

We make an adaptive adjustment to the quantization parameters of each coding 
unit (CU), and the transform coefficients can be converted to a perceptually uniform 
space. Given the reference block x and the reconstructed block y, the SSIM in the 
DCT domain can be computed as follows: 

SS  I  M(x, y) =
(
1 − (X (0) − Y (0))2 

X (0)2 + Y (0)2 + N · B1

)

× 

⎛ 

⎜⎜⎜⎝1 − 

N−1∑
k=1 

(X (k)−Y (k))2 

N−1 
N−1∑
k=1 

X (k)2−Y (k)2 

N−1 + B2 

⎞ 

⎟⎟⎟⎠ 

, (2.32) 

where X and Y are the DCT coefficients separately that correspond to x and y. N 
represents the block size. C1 and C2 defined as fixed values are determined by the 
SSIM index. Assuming that each CU consists of l DCT blocks, the normalization
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factor of AC coefficient is as follows: 

fac = 

1 
l 

l∑
i=1 

√
N−1∑
k=1 

(Xi (k)2−Yi (k)2) 

N−1 + B2 

E( 

√
N−1∑
k=1 

(X (k)2−Y (k)2) 

N−1 + B2) 

. (2.33) 

Since the distortion blocks cannot be obtained before actual encoding, we can 
only use the original blocks and apply fac to obtain the quantization parameter (QP) 
offset for each CU. 

After finishing the division normalization, the rate distortion optimization (RDO) 
is carried out via the minimizing process of the perceived distortion D under the 
condition that the rate R obeys a constraint Rc. The above step can be translated into 
an unconstrained optimization problem: 

min{RD} where J  = D + γ · R, (2.34) 

where RD  represents the rate distortion (RD) cost. γ denotes the Lagrangian multi-
plier that can be used to control the tradeoff between rate and perceived distortion. 
D is defined by calculating the sum of the squared difference (SSD) between the 
normalized pristine coefficient and the distortion coefficient: 

D = 
l∑

i=1 

N−1∑
k=0 

(Bi (k)
′ − Ri (k)

′)2 = 
l∑

i=1 

N−1∑
k=0 

(Bi (k) − Ri (k))2 

f 2 ac 
. (2.35) 

Since the DCT coefficients are split and normalized to a space with uniform 
perception, the Lagrange multiplier γ in the optimizing process of rate distortion is 
not touched in the encoder. 

Window adaptation and information content weight process may well explain the 
major difference between SSIM and SQI. Specifically, in the case of situation to 
the SQI method, we first classify the block types by assessing the local information 
content in each block. Next, we make a comparison with the predefined threshold. 
Relying on the idea of SQI, the text block’s normalization factor is given: 

ft = fac/gt , (2.36) 

where the gt is relatively important to local blocks in information content, defined 
as follows:
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Fig. 2.5 Spatial adaptive divisive normalized parameters visualization for classical SCI (darker pix-
els denote higher normalization parameters). a Pristine SCI; b Normalization parameters obtained 
from SSIM; c Normalization parameters accessed from SQI (©[2021] IEEE. Reprinted, with per-
mission, from [29].) 

gt = 

√√√√√√√√√

2

(
1 
l 
1 
N 

l∑
i=1 

N∑
k=1 

ωα 
i,k

)
· μT

(
1 

|ΩT |
∑
j∈ΩT 

ωα 
j

)
· (μT + μP ) 

, (2.37) 

where N represents the size of the block, k is the spatial location index in the block, 
and i denotes the block index in each CU. 

In a similar way, the normalization factor of an image block is given by 

f p = fac/gp, (2.38) 

where 

gP = 

√√√√√√√√√

2

(
1 
l 
1 
N 

l∑
i=1 

N∑
k=1 

ωα 
i,k

)
· ηP

(
1 

|ΩP |
∑
j∈ΩP 

ωα 
j

)
· (ηT + ηP ) 

. (2.39) 

Figure 2.5 shows the splitting normalization factors obtained from SSIM and SQI 
for classical SCIs. For better visualization, the splitting normalization factor is calcu-
lated within each 4 × 4 block. The results show that compared with pictorial regions, 
this method is more responsive to the HVS, and it can allot tiny normalization factors 
to text regions with high-contrast edges. Therefore, through the split normalization 
method that is proposed for SCI compression, we can adapt to the process of bit 
allocation for improving the whole SCI quality.
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2.2.2 Reduced-Reference QA of Screen Content Images 

In general, the main works of this research are displayed as follows. First of all, this 
research designs a new and effective SCI QA model, which appropriately combines 
the measurement of macroscopic and microstructure changes. Based on this frame-
work, this part deploys appropriate measurements to get the changes in macro and 
microstructure and merges these two measured values to deduce the whole quality 
estimation of the input SCIs. Secondly, compared with the latest quality inspection 
indicators currently used for SCI QA, the introduced QA method in this section 
has achieved superior performance. Finally, we find the designed QA model only 
uses very sparse reference information and accurately conveys a small amount of 
information in header files. 

Toward Accurate Quality Estimation of SCIs with Very Sparse 
Reference Information 

The design principle of the model in this part is to combine the macrostructure and 
microstructure to deduce the quality of SCIs. Specifically, extracting the macrostruc-
ture and microstructure of the established histogram can greatly reduce the dimen-
sionality of the reference information to only two features. In this way, these two 
features can be used to compare the discrepancy between distortion and the original 
SCI. The designed quality model is shown in Fig. 2.6. 

Macroscopic Structure Measurement 

Fig. 2.6 Statement of the working process of the designed QA method (©[2021] IEEE. Reprinted, 
with permission, from [39].)
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Fig. 2.7 Comparisons of the macroscopic structures of the natural scene and screen images. a and 
b Original natural scene and screen content pictures, separately. c and d The maps of macroscopic 
structures of (a) and  (b), respectively (©[2021] IEEE. Reprinted, with permission, from [39].) 

Natural scenario and screen content have some differences in macrostructure. By 
comparison, the macrostructure of NSIs can be considered as the outline of images. 
The SCIs are concentrated in the text area, which contains a lot of semantic infor-
mation, as exhibited in Fig. 2.7. 

The macrostructure measurement (MASM) model plays an important role in this 
method, and the model is proposed to select the important structure of SCIs. Based
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on anisotropy, the MASM model can be considered as a directional metric, deployed 
by combining gradient and anisotropy measured value. 

Gradient Magnitude As mentioned earlier, the change of structure tends to 
appeal to the perception of the HVS [33]. The gradient magnitude is usually uti-
lized in the application of computer vision and image processing algorithms. Specif-
ically, this article calculates the gradient by using the Scharr operator, which can be 
computed by the following two convolutions masks: 

G(s) =
√
G2 

h + G2 
v, (2.40) 

where 

Gh = Hh ⊗ S = 
1 

16 

⎡ 

⎣ 
+3 0  −3 
+10 0 −10 
+3 0  −3 

⎤ 

⎦ ⊗ S, (2.41) 

Gv = Hv ⊗ S = 
1 

16 

⎡ 

⎣+3 +10 +3 
0 0 0  

−3 −10 −3 

⎤ 

⎦ ⊗ S, (2.42) 

where S denotes a SCI signal, and Hh and Hv represent the Scharr convolution masks 
with the horizontal and vertical directions, respectively. The gradient magnitude can 
be underlined as the structural information of textual region and graphical region by 
the above convolution operation. 

Anisotropy Measurement It is easy to arise strong visual perception through a 
macrostructure with intensity changes and preferred directions. This macrostructure 
is considered to be large anisotropy. In contrast, structures with uniform scattering are 
generally considered to have less anisotropy, which usually results in less perception 
of structural changes. It can be inferred that the macroscopic structure can be directly 
extracted by anisotropy measurement. In practice, anisotropy measurement has been 
extensively studied in many pioneering research to obtain the local heterogeneity of 
intensity changes [34–36]. In this study, the anisotropy measurement means the pixel 
intensity distribution of the SCI. It also implies the fundamental direction change 
near the local pixel [6, 9, 37]. 

From the perspective of the structure tensor, the anisotropy measurement as a 
matrix is produced according to the gradient magnitude of the SCI. Particularly, the 
structure tensor can be expressed by 

T (i) =
(

� j
〈�h S j ,�h S j

〉
� j

〈�v Sj ,�h S j
〉

� j
〈�h S j ,�v Sj

〉
� j

〈�v Sj ,�v Sj
〉
)

, (2.43) 

where pixel j ε R(i) near pixel i with a predefined radius; �h and �v represent the 
partial differential operators in the directions of horizontal and vertical, respectively; 
and 〈·, ·〉 is the inner product of two vectors. In terms of mathematics, T (i ) is a semi 
positive-definite symmetric. As a 2 × 2 matrix, T (i ) has two eigenvectors η�

i and 
η∗ 
i and the two corresponding non-negative eigenvalues λ

�
i and λ

∗ 
i . From this,  we
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define the anisotropy measurement as the correlative distance between λ�
i and λ

∗ 
i , 

expressed as follows: 

A(i ) = 
λ�
i − λ∗ 

i + ε

λ�
i + λ∗ 

i + ε
, (2.44) 

where ε is a minor constant used to prevent division by zero. Equation (2.44) denotes 
the value of anisotropy measurement A between 0 and 1. A equals or approximates 
the maximum value 1 when there is a vital alter in the pixel intensity of the structure, 
i.e., 1) λ�

i � λ∗ 
i and 2) λ

�
i > 0 and λ∗ 

i = 0. When the structures have the same 
direction (λ�

i ≈ λ∗ 
i ), the anisotropy measurement converges to 0. The inner product〈

η�
i , η∗ 

i

〉
, with values ranging from 0 and 1, is used to assess the difference in direction 

between two vectors. In most cases, the pixels of SCIs with fine anisotropy are easily 
perceptible, so anisotropy measurement provides a better method to find the main 
direction of the SCI. Given the above considerations, the MASM model in this 
research can be defined as follows: 

MASM(S) = G · A, (2.45) 

where G and A are obtained from Eq. (2.40) and Eq. (2.44), respectively. 

Microscopic Structure Measurement 

The microstructure measurement (MISM) model is also critical in this method, which 
is defined by measuring the main visual information and uncertain information. 

Gradient Magnitude The calculation of gradient magnitude can be found above. 
Uncertain Information The input visual signal passes through the HVS channel 

before entering the brain when image is perceived. In this process, the lens represents 
low-pass filters, and it can decrease specific high-frequency information [7, 8]. In 
essence, the procedure of human visual perception can be approximately denoted 
as a low-pass filter [33]. By sufficiently considering the special functions of HVS 
and SCIs, the Gaussian and motion low-pass filters merged to derive the uncertain 
information [38]. The text content of viewing behavior is explained, and the uncer-
tainty information generated during the “fixation” and “saccade” stages of the eye is 
measured effectively [10, 39]. Especially, a Gaussian filter can be denoted as follows: 

Hg(p, q) = 1 

2πδ2 
exp(− 

p2 + q2 

2δ2 
), (2.46) 

where δ denotes the criterion deviation of the control smoothing intensity. Subse-
quently, the research generates the Gaussian smoothed image by convoluting it with 
the input SCI S: 

Sg = S ⊗ Hg. (2.47) 

In this way, the uncertain information is derived by quantifying the discrepancy 
between S and Sg . Due to the maximum value, boundedness, and symmetry, we use
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the normalized form of gradient similarity [31]: 

GSg = f (S, Sg) = 
(G(s) − G(Sg))

2 

G2(S) + G2(Sg) 
. (2.48) 

The motion filter is expressed by 

Hm(p, q) =
{
1/t i  f  Γ (  p, q, φ), Υ (p, q) ≤ t2/4 
0 other wise  

, (2.49) 

where Γ (p, q, φ) = psinφ + qcosφ and φ denotes motion filter’s special direction. 
Υ (  p, q) = p2 + q2; t indicates the quantity of motion in pixels considered in the 
convolution step. The motion filtered image can be derived by convoluting it with 
the input SCI S: 

Sm = S ⊗ Hm . (2.50) 

Like the Gaussian filter, the uncertain information obtained from the motion blur 
is expressed by 

GSm = f (S, Sm) = 
(G(s) − G(Sm))2 

G2(S) + G2(Sm) 
. (2.51) 

In summary, as for the SCI S, we calculate the number of uncertain information 
through a simple direct average [40], which can be expressed by 

U = 
1 

2 
(GSm + GSg). (2.52) 

The proposed MISM model is denoted as follows: 

MI  SM(S) = G · U. (2.53) 

The MISM model is utilized to generate maps, and the result is exhibited in Fig. 
2.8. It is worth mentioning that the detailed structure can be observed and highlighted. 

Overall Quality Measure 

On the basis of the above analysis, it is rational to merge the MASM and MISM 
models to make up for the shortcomings of each component and improve the predic-
tion accuracy. In order to significantly facilitate the distortion comparison process, 
we distinguish insignificant structures from meaningful ones by linear mapping. 
By combining the psychometric function with the sigmoid colon [11], this article 
uses Galtons ogive [41], which is the cumulative normal distribution function (CDF) 
formula 

C(s) = 1 √
2πφ

∫ s 

−∞ 
exp

[
− 

(t − κ)2 

2φ2

]
dt, (2.54)
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Fig. 2.8 Illustration of microscopic structures of SCIs. a A original SCIs. b The map of microscopic 
structures of (a) (©[2021] IEEE. Reprinted, with permission, from [39].) 

where C(S) denotes the prediction probability density used to distinguish the 
insignificant and significant structures. κ represents the modulation threshold; s is 
the stimulus amplitude; φ is the parameter that controls the slope of predicted change 
in probability. In this research, the authors allocate φ to a constant value fixed at 0.05 
according to experience. By passing the maps of the MASM and MISM models 
through the CDF, we can obtain two important maps related to input SCI. 

We adopt the above method of feature extraction on the original SCI Ṡ and its 
corresponding damaged version S̈. However, it is impractical to use the original 
image as pristine information for QA, which causes a huge transmission burden. To 
overcome this difficulty, this article uses a histogram to represent the distribution. 
Essentially, this approach targets at achieving an excellent compromise between the 
prediction and pristine information data score. We first study how to employ this 
approach to the MASM model. The distribution domain of φ([dmin, dmax ]) can be 
divided into N equal-length gaps. The histogram bin relies on the amount of factors 
by setting Wk as follows: 

hk = |Wk |, Wk = {w|Φ(w) ∈ Jk}, (2.55) 

where 

Jk = {dmin + (k − 1)
d̃ 

N 
, dmin + k

d̃ 

N 
}, d̃ = dmax − dmin. (2.56) 

The histogram bin of the lossless SCIs can be calculated as follows:
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HS̃(k) = hk/ 
N∑
l=1 

hl . (2.57) 

The same operation is applied to the damaged image S̈ to obtain HS̈(k). Each 
histogram bin’s value is related to the interval probability. The score of the MASM 
model is obtained by comparing the following two histograms: 

QMASM  ( ̇S, S̈) = 
1 

N 

N∑
k=1 

min{HS̈(k), HS̈(k)} +  μ 
max{HS̈(k), HS̈(k)} +  μ 

, (2.58) 

where min{·, ·} and max{·, ·} are utilized to observe the minimum and maximum 
values from two values, separately. μ is a tiny positive fixed value close to 0. 

To prevent the denominator from being zero as {HṠ(k), HS̈(k)} approaches zero, 
set μ to a small normal number that approaches zero. At the same time, N is set to 2 
to minimize the transmission burden. Obviously, the value of QMASM  ( ̇S, S̈) ranges 
from zero to one. The value of QMASM  ( ̇S, S̈) is larger, and the quality of the input 
SCI is much better. In addition, we adopt the uniform step to the map of MISM, and 
its score QMI  SM  ( ̇S, S̈) can be obtained. Next, we multiply the scores of the MASM 
and MISM models to derive the final overall image quality score: 

Q( ̇S, S̈) = QMASM  ( ̇S, S̈) · QMI  SM  ( ̇S, S̈)α , (2.59) 

where α is an exponential parameter to adjust the validity of two models’ score of 
the MASM QMASM  ( ̇S, S̈) and MISM QMI  SM  ( ̇S, S̈). If the two terms are assumed 
to be equally important, α can be set as 1. 

2.2.3 No-Reference QA of Screen Content Images 

As computer technology evolves with each passing day, different types of natural 
scenes, graphics, and SCIs are being created. Over the past decades, a quantity of 
image QA methods have been proposed to process the content of NSIs. However, 
there is limited research on the QA of SCIs. In SCIs, the original picture information 
is not available, so it is particularly important to propose NR QA algorithms. 

Unified Blind QA of Compressed Natural, Graphic, and SCIs 

To deal with the booming growth of SCIs, we will introduce a cross-content-type 
(CCT) database as well as an UCA NR image QA model that can be applied to 
multiple content categories.
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Fig. 2.9 Pristine images in the CCT database. Top two rows: NSIs. Middle two rows: CGIs. Bottom 
two rows: SCIs (©[2021] IEEE. Reprinted, with permission, from [42].) 

CCT Database 

Due to the different characteristics shown by SCIs, existing objective image QA 
methods lack reliable mechanisms to obtain content category changes, which is a 
serious problem for generalizing from one category to another. To solve this issue, 
we established a CCT database consisting of 1,320 contaminated NSIs, computer 
graphic images (CGIs), and SCIs. We utilize the HEVC intracoding method and the 
screen content image compression (SCC) extension of HEVC. 

In addition, we select three kinds of images from the above database. (1) 24 high-
quality NSIs covering a variety of image content: nature and urban views, indoor and 
outdoor landscapes, and close-up and wide-angle shots. (2) 24 reference CGIs were 
captured from 15 computer games through screen shots. The types of games selected 
are diverse, including action, adventure, and strategy. (3) The last 23 reference SCIs 
are picked from the SCD database [21] and another one is collected via screen shot. 
The SCIs cover a wide range of usual computer operation scenes, such as web pages, 
Internet files, and software. All 72 pristine NSIs, CGIs, and SCIs are exhibited in Fig. 
2.9. Similarly, the HEVC and HEVC-SC are utilized to compress the original SCIs. 
Generally, the CCT database totally composes of 72 original and 1,320 contaminated 
NSIs, CGIs, and SCIs. 

The Proposed UCA Model 

The designed UCA model contains two major parts: a feature extraction step imple-
mented on multiple scales and an adaptive multi-scale weighting step integrating the 
results into a single quality score. A diagram of this model is exhibited in Fig. 2.10. 

Feature Extraction From the perspective of the spatial domain, corners and edges 
may be the most significant image features. They are sensitive to multifarious image 
distortion types. New corners and edges are generated close to block boundaries, 
whereas real corners and edges will be smoothed inside blocks. We find it is easy 
to detect the differences in corners and edges between block boundaries and regions 
inside, which can effectively obtain the prediction of compressed images’ perceptual 
quality.



2.2 Methodology 35

Fig. 2.10 Diagram of the designed UCA method. LPF: low-pass filtering. ↓ 2: downsampling by 
a parameter of 2. pn : the likelihood of a contaminated image being NSI. wn : multi-scale weights 
for NSI. ws : multi-scale weights for SCI. w: final multi-scale weights. r : feature vector 

Corner Feature We realize the recognition of corners in UCA model by using Shi 
and Tomasi’s minimum eigenvalue method [28]. The corners in an image P(x, y) 
can be identified by maximizing the weighted sum of squared differences: 

S(a, b) =
∑
x,y 

A(x, y)[P(x + a, y + b) − P(x, y)]2 , (2.60) 

where (a, b) denotes the spatial transform, and A(x, y) is a weighted parameter. We 
apply a Taylor series expansion to I (x + u, y + v), and S(a, b) can be estimated as 
follows: 

S(a, b) ≈ [
a b

]
H
[
a 
b

]
, (2.61) 

where H is a Harris matrix: 

H =
∑
x,y 

w(x, y)
[
PxPx PxPy 

PxPy PyPy

]
. (2.62) 

Corner has a more clear variance in S(a, b) along all directions defined by (a, b). 
It means that the Harris matrix H should have two large eigenvalues. Hence, a corner 
metric can be expressed as follows: 

Hλ = min (λ1, λ2) , (2.63) 

where λ1 and λ2 are eigenvalues of H. A corner map can be obtained by
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Cmap =
(
ci j
)
h×w = BW (Hλ) , (2.64) 

where BW represents a threshold based on binarization function. Cmap denotes the 
binary corner map, where ci j  = 1 means that a corner is recognized at location (i, j ). 
h and w separately indicate the image’s height and width. 

For selecting the corners located at the boundaries of block, we make a mask map 
M = (

mi j
)
h×w

. The parameters can be expressed as follows: 

mi j  =
{
1 if  mod  (i, N ) <  2 or  mod  ( j, N ) <  2 
0 otherwise 

, (2.65) 

where i and j indicate the row and column parameter, respectively. mod computes 
the rest; N means the block size. With the mask, the corners can be derived by 

Cmap
′ = (

c′
i j

)
h×w = Cmap ◦ M = (

ci j  · mi j
)
h×w , (2.66) 

where ◦ means the Hadamard product. The corner feature is obtained by 

rc =
∑

i, j c
′
i j∑

i, j ci j  
. (2.67) 

Edge Feature Same as the corner feature, we have to enhance the edge of SCI and 
extract the edge feature. To this aim, we obtain the gradient magnitude of an image 
P from 

G =
√
G2 

x + G2 
y, (2.68) 

where Gx and Gy represent the partial derivatives along horizontal and vertical 
directions, separately. An edge map is calculated as follows: 

Emap =
(
ei j
)
h×w = BW(G), (2.69) 

where Emap is a binary map of edge, in which ei j  = 1 is an edge pixel located at 
(i, j). We recognize edges at the block boundaries with the uniform mask map M 
defined: 

Emap
′ = (

e′
i j

)
h×w = Emap ◦ M = (

ei j  · mi j
)
h×w . (2.70) 

Similarly, we obtain the edge feature by calculating the ratio of the edges as follows: 

re =
∑

i, j e
′
i j∑

i, j ei j  
. (2.71) 

Overall Quality Feature In Fig. 2.11, block boundaries take up R = 4(N−1) 
N 2 of 

an image. Normally, a high-quality image without block-based compression should 
have rc and re, which values approximate R. The stronger the compression level
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Fig. 2.11 Multi-scale weights for screen content (©[2021] IEEE. Reprinted, with permission, 
from [42].) 

is, the easier the corners and edges are detected near the boundary, and the larger 
the values of rc and re are. We calculate the overall quality or distortion feature as 
the product of rc and re normalized with R2 in order to make the eigenvalue of the 
high-quality image approach one: 

r = 
rcre 
R2 

= N 4rcre 
16(N − 1)2 

. (2.72) 

The process of eigenvalue extract is implemented at four scales. The eigenvalue vec-
tor r = [r1, r2, r3, r4]T , where ri means the overall quality eigenvalue at the i th scale. 

Adaptive Multi-Scale Weighting 

To thoroughly investigate the effect of human psychological behaviors and visual 
perception characteristics, we designed an adaptive multi-scale framework. This 
framework has been proved to improve quality prediction performance in many 
works. 

Multi-Scale Weights for Screen Content Normally, humans behave very dif-
ferently when watching SCIs. When people watch SCIs, the human brain is more 
inclined to focus attention, making the framework’s performance of extracting the 
categories of information better. Our aim is to simulate the human brain’s behavior
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in daily life and realize equal watching performance in natural scenes and screen 
content. For that, we fix the equivalent viewing distance of the screen content at half 
its actual viewing distance. The parameter of viewing distance is expressed by 

ξs = π · d · n 
180 · hs · 2 , (2.73) 

where ξs is viewing distance factor, its unit is cycles per degree of visual angle (cpd); 
d means the viewing distance (inch); hs indicates the screen’s height (inch); n is the 
sum of pixels in the screen’s vertical direction. We utilize ξs to split the domain for 
each scale, which covers one part of the contrast sensitivity function obtained by [43] 

S(u) = 5200exp
(−0.0016u2(1 + 100 L )

0.08
)

√(
1 + 144 

X2 
0 

+ 0.64u2
) (

63 
L0.83 + 1 

1−exp(−0.02u2 )

) , (2.74) 

where u, L , and X0 
2 represent spatial frequency (cpd), luminance (cd/m2), and 

angular object area, respectively. The weight of each block is computed as the area 
covered by the corresponding frequency under the CSF 

wi = 
1 

Z

∫ ξs 
2i−1 

ξs 
2i 

S(u)du, i ∈ {1, 2, 3, 4}, (2.75) 

where wi indicates the block’s weight, and
∑

i wi = 1. The  value of  i between 1 to 
4 means the optimal to coarsest scale, separately. Z is a normalization parameter. 

Reference-Free QA of SCIs 

In this part, we introduce a new reference-free model to estimate the perceptual qual-
ity of SCIs by utilizing big data learning. The novel model extracts four categories 
of features including image complexity, screen content statistics, global brightness 
quality, and details’ sharpness. 

Feature Selection 

Image Complexity Description Due to the fact that image complexity is a key 
parameter correlated to the influences of gaze direction and spatial masking, we 
consider it when devising SCI QA models. In this work, we define image complexity 
by calculating the discrepancy between an input image s and its measured output 
produced by an AR model: 

yq = Qn
(
xq
)
a + t̃q , (2.76)
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(a) (b) 

(c) (d) 

Fig. 2.12 Comparison of different filters: a a lossless SCI; b–d processed images generated by uti-
lizing AR model, BL filter, and hybrid filter, separately (©[2021] IEEE. Reprinted, with permission, 
from [13].) 

where q denotes pixel’s index; yq is a pixel’s value located at xq ; Qn(yq ) consists 
of the n surrounding pixels of xq ; a = (a1, a2, . . . ,  an)T represents a vector of AR 
parameter; t̃q means the residual error. We then derive the predicted image by 

ŷq = Qn
(
xq
)
â. (2.77) 

Figure 2.12a, b exhibits an example of the SCI and its corresponding output 
images generated by the AR model. To enhance the performance of near-image edges 
detection by using the AR model, we use a BL filter. BL filter has edge protecting 
capability and computational simplicity, which can modify the AR model toward 
preserving edges and restraining the effect of ringing artifacts. The BL filter can be 
expressed as follows: 

yq = Qn
(
xq
)
b + t̂q , (2.78) 

where b = [b1, b2, . . . ,  bn]T are a series of parameters generated by BL filter; t̂q 
means the error; b denotes the response of BL filter. The BL filter has better per-
formance of closing luminance edges than does the predictor based on AR model. 
But it doesn’t preserve texture details. In order to access the optimal performance 
of the two models, a hybrid filter is designed by combining the AR and BL filters 
systematically: 

ŷq = 
Qn

(
xq
)
â + κQn

(
xq
)
b 

1 + κ 
, (2.79)
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where κ regulates the correlative force of the AR and BL filters’ responses. We 
assign this value at 9, since its related to hybrid filter can attain the output image. The 
predicted output has a positive tradeoff between the AR and BL filters, as exhibited 
in Fig. 2.12d. 

We then calculate the residual error map Δyq = yq − ŷq by using Δyq to improve 
the predicted accuracy of large absolute values. Next, the obtained feature descriptive 
of the image complexity is defined as the entropy of the residual error map Er : 

Er = −
∫
i 
pi log pi di, (2.80) 

where pi indicates the probability density of the i th grayscale in the Δyq . 
Previous research finds that the mechanisms selective to limited domains of spatial 

frequencies and orientations are the intrinsic attributes of the HVS. These research 
results develop into multi-scale cortical models that permeate advanced perception 
models and visual processing algorithms. So we calculate the image complexity 
at a reduced resolution by employing a subsample with a set of 16 pixels in each 
fundamental direction after using a 16 × 16 square to move the low-pass filter. We set 
the decreased resolution complexity as Ed . The overall image complexity is denoted 
as Fc = {Er , Ed}. 

Screen Content Statistics The degradation of image structure can be calculated 
in the following way. s is the input image, μs, σs, and σ̃s indicate local mean and 
variance maps: 

μs = 
R∑

r=1 

wr sr , (2.81) 

σs =
[

R∑
r=1 

wr (sr − μs)
2

] 1 
2 

, (2.82) 

σ̃s =
[

R∑
r=1 

(sr − μs)
2

] 1 
2 

, (2.83) 

where w = {wr | r = 1, 2, 3, . . .  ,  R} denotes a normalized Gaussian window. The 
structural degradation can be calculated by 

Sμ(s) = 
1 

D

∑(
σ(μss) + γ 
σ(μs)σs + γ

)
, (2.84) 

Sσ(s) = 
1 

D

∑(
σ(σs σ̃s) + γ 

σ(σs)σ( ̃σs) + γ

)
, (2.85)
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where D means the pixels’ amount in s; γ indicates an extra positive stationary 
constant; σ(α1, α2) denotes the local empirical covariance map between α1 and α2: 

σ(α1,α2) = 
R∑

r=1 

wr
(
αr − μα1

) (
βr − μα2

)
. (2.86) 

Normally, SCIs are composed of pictorial and textual parts in the mean time. We 
use two Gaussian window functions to capture their microstructure and macrostruc-
ture, respectively. We also adopt different ways to process the interiors and edges of 
blocks when capturing structural degradation information. On this basis, we extract 
eight structural degradation features, named S(a,b,c), where a = {μ, σ} denotes infor-
mation category, b = {3, 11} represents kernel size, and c = {i, e} means block inte-
riors and edges, separately. 

There are eight structural degradation features S(a,b,c)(s0), in which s0 indicates an 
uncontaminated SCI. We compare the image complexity features Er (s0) by utilizing 
the obtained SCIs. The scatter plot is exhibited in Fig. 2.13. Blue dots are related to 
uncontaminated SCIs. It is obviously observed that there exists an approximate linear 
relationship between the image complexity feature Er and the structural degradation 
S(μ,3,i). It inspires us to predict distortions by estimating the departure of a distorted 
SCI with this linear relationship found in positive quality SCIs. We make efforts to 
fit the linear regression model: 

Er (s0) =
[
A(a,b,c) 
B(a,b,c)

]T [
S(a,b,c) (s0) 

1

]
, (2.87) 

where
[
A(a,b,c), B(a,b,c)

]
denotes one of eight factor pairs associated with (a, b, c). 

Structural degradation characteristics obtain the changes in image structure, while 
the estimation of image complexity is sensitive to image details. Hence, the perfor-
mance of these two features responds dissimilarly to the different levels and cat-
egories of distortion. As shown in Fig. 2.13, the near-linear relationship between 
pristine SCI features will be tampered when introducing diverse distortions. 

Global Measurement of Brightness and Surface Quality These above-
mentioned features perform well for measuring many visual degradations, but can-
not capture undesirable brightness changes or contrast changes. Among them, the 
contrast change is a challenge to detect, because it will also influence the complexity 
of the image: raised contrast will lead to the promotion of the image’s complexity 
and vice versa. From that, we find that features are sensitive to contrast adjustments 
and not susceptible to noise, blur, and other artifacts. Here, we employ the sample 
mean of the image s, defined as O1: 

O1 = E(s) = 
1 

D 

D∑
d=1 

sd . (2.88)
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Fig. 2.13 Representative scatter plot of image complexity feature Er versus structural degradation 
information S(μ,3,i ) on uncontaminated (blue points) and distorted (red points) SCIs (©[2021] 
IEEE. Reprinted, with permission, from [13].) 

We also calculate the sample skewness of the image s: 

O3 = E
[
(s − O1)

3
]

√
E3

[
(s − O1)

2
] . (2.89) 

This feature is positively related to image contrast. After processing, the SCI 
with larger skew displays brighter and darker than its correlated pristine image. In 
summary, we estimate features associated with global brightness and surface quality, 
which are denoted as Fbs = {O1, O3}. 

Detail Assessment of Sharpness and Corners With the development of pic-
ture compression technologies, more and more compression images are stored on 
our computers. Compression usually leads to complex interactions of multiple dis-
tortions. We utilize two types of features to percept two main categories of com-
pression distortion: local sharpness loss and blocking. We measure the log-energy 
of wavelet subbands of an image at three scales, that is, {LL3, LHn, HLn, HHn}, 
and n = 1, 2, 3. At each level of decomposition, the log-energy can be computed as 
follows: 

Lm,n = log10

[
1 + 

1 

Mn

∑
h 

m2 
n(h)

]
, (2.90)
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where h indicates the pixel index; m represents LH, HL  , and HH ; and Mn denotes 
the sum of wavelet coefficients at the nth level. Each decomposition level’s log-energy 
can be derived as follows: 

Ln = 
L LH,n + L HL ,n + γ L HH,n 

2 + γ 
, (2.91) 

where γ is set to 8 to apply a greater effect on the HH  subbands. Only the second 
and third levels are adopted to obtain information associated with sharpness. We 
have observed that utilizing all levels cannot produce performance gains. The sec-
ond compression feature detects corners to derive the measurement of blockiness. 
Min et al. [44] prove that SCI corners change with the variation of compression. 
Especially, there exist many sharp edges and regular patterns in the screen content 
image generated by the computer, which makes the increase of genuine corners. 
While the blockiness caused by compression will increase pseudo corners. We find 
that the real corners may occur anywhere, and the pseudo corners only appear at 
block boundaries. We define the image matrix S = (si j  ) τ×υ , where τ represents the 
image height and υ indicates image width. We first adopt the Shi-Tomasi detector 
[28] to detect corners. The corner map C = (ci j  )τ ×υ can be obtained by 

ci j  =
{
1 i f  si j  ∈ C 
0 other wise  

, (2.92) 

and the pseudo corner map P = (pi j  )τ ×υ denoted as follows: 

pi j  =
{
1 i f  si j  ∈ C, mod(i, k) � 1mod( j, k) � 1 

0 otherwise  
, (2.93) 

where si j  ∈ C denotes a corner located at (i, j ), mod keeps the rest part of the region, 
and k indicates the compression blocks’ size, which normally is set to 8 × 8 in JPEG.  
As the degree of compression distortion increases, the number of pseudo corners will 
increase due to blockiness, while the number of genuine corners will decrease due 
to intrablock blurring. By combining these, we calculate the ratio of pseudo corners 
to all corners: 

R = √
ξp/ξc, (2.94) 

where ξp = ∑
i, j pi j  and ξc =

∑
i, j ci j  , respectively, present the sum of pseudo cor-

ners and all corners. Thus, we utilize Fsc = {L2, L3, R} to calculate the last features 
associated with image sharpness and corners. 

In total, we extract 15 features, which contains image complexity ( f01- f02), 
the statistics of SCIs ( f03- f10), global brightness and surface quality ( f11- f12), 
compression-induced image sharpness loss ( f11- f12), and blocky corners ( f15).
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Module Regression 

In order to transform 15 features into a single index of the screen image quality, we 
adopt a regression model, that is, efficient SVR [14, 15, 45]. Concretely, we utilize 
the LibSVM package to execute the SVR with the radial basis function (RBF) kernel 
[46]. To observe the performance of the proposed model, we divide the 1,000 trials 
into two parts, 80% data for training and 20% data for testing. The contemporary 
database includes SCIs of less than 1500. The limited number of different scenes and 
distortion levels leads to the fact that the regression module cannot be successfully 
implemented in a larger domain of image scenes and distortion levels. To solve this 
issue, more opinion-unaware (OU) blind image QA models have been designed [47, 
48]. Different from the opinion-aware (OA) methods, the OU method does not rely 
on human-labeled training images, which has greater generalization potential for 
large volumes of authentic world images. 

We develop the OU-NR image QA model by a generic framework mentioned 
at the start of this section. The framework is flexible for developing the distortion-
specific blind image QA approach that uses a larger number of training images with 
more distortion types. This general framework is adopted to train a highly efficient 
SVR to study a regression module with a large number of training images. 

Training Samples Eleven kinds of distortions (namely, GN, JC, J2C, HEVC, SC, 
GB, MB, and four CC-correlated distortions including Gamma transfer, brightness 
intensity-shifting, and so on) are applied to distort 800 SCIs, producing a training 
sample including 100,000 distorted images. In [49], 1,000 “webpage” and “screen 
capture” images are gathered from the “Google Images” website. But these images 
were not tested to identify if they are contaminated with visible distortions. Apart 
from that, the image content is limited, and the resolution of some of the images 
is low. To overcome these limitations, we manually gather 800 undistorted SCIs 
including considerably richer content. 

Training Labels Image QA training labels are usually obtained from subjective 
experiments. Subjective experiments are time-wasting and laborious, which is not 
suitable for labeling a high volume of training images. To avoid the problems asso-
ciated with large-scale study participation, we implement an objective QA model to 
generate scores as training labels to take the place of subjective opinion scores. Ide-
ally, human scorings can be approximated by using a well-performed FR image QA 
model. We apply the FR saliency-guided quality measure of screen content (SQMS) 
metric on SCI QA, which realizes an excellent performance. After clearing images 
outlier, we label about 100,000 training images by using predicted quality scores 
obtained from SQMS. By training the SVR with a large body of training data, we 
derive a constant regression module named screen image quality evaluator, which 
can transform the fifteen features into a single quality prediction score. 

Data Cleaning Every FR metric on the basis of the learning framework may 
mislead the training process due to mislabeled training data. This indicates that it is 
meaningful to propose a mechanism to examine and reduce noisy training data [50]. 
We test the potentially noisy quality predictions by comparing the quality predictions 
generated from SQMS and structure-induced quality metric (SIQM) algorithms. Both
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Fig. 2.14 Scatter plot of image complexity estimate (Er ) and JPEG-based bpp value (Br ) on  
100,000 training images (©[2021] IEEE. Reprinted, with permission, from [13].) 

algorithms have been proved that they can predict SCIs accurately. Specifically, we 
measure the PLCC between the SQMS and SIQM ratio on each of the 800 images. 
Figure 2.14 exhibits the plots of 800 images. It can be observed that the overwhelm-
ing most PLCC values are very high and only several values are under 0.9, as shown 
in red in Fig. 2.14. We hypothesize the low PLCC values as “noisy”, then remove 
these images’ content and their corresponding training images. 

Complexity Reduction 

The hybrid filter implements in local regions, which causes the SIQE inefficient. For 
an image of size 2560 × 1440, the time cost of calculating four kinds of features 
is exhibited in Table 2.1. For high-definition images, the SIQE’s operating time is 
approximately 804 s. The time to estimate image complexity is over 600 times that 
of the other three feature categories. 

There are two useful methods to reduce the computational complexity of the hybrid 
filter. One way is a simplified version of the simplified screen image quality evaluator 
(SSIQE), which removes the AR model while reserving the BL filter. The SSIQE 
only needs 42.2 and 0.19 s to operate on the image with the size of 2560 × 1440. Then 
the other way is to simulate the output of the hybrid filter by using highly efficient 
algorithms. Calculating the entropy of the difference Δyq between an image and its 
corresponding estimation, which is sufficiently associated with predictive coding [8, 
19]. Based on this idea, we deploy an image’s compressibility to measure complexity.
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Table 2.1 Computation time of fifteen types features 

We tested five compression methods: JPEG, J2, H.264, HEVC, and SC. To make a 
good balance between effectiveness and efficiency, we use JPEG compression in the 
“lossless” mode. Meanwhile, we utilize the derived bit per pixel (BPP) value as an 
alternative correlated approach of image complexity measurement. By utilizing the 
100,000 training images, we draw the scatter plot between the JPEG-based bpp values 
Br and the image complexity estimate Er calculated through the hybrid filter. This 
scatter plot shows a broad linear relationship, which surpasses 95%. Like Eq. (2.87), 
we establish this linear model and explore the two parameters observed by least 
squares. Using the compression-backed Br and Bd to replace the image complexity 
estimates Er and Ed , we derive an alternate and quicker model named the accelerated 
screen image quality evaluator (ASIQE). For the same size image, the calculation 
only needs 0.125 and 0.022 s when calculating Br and Bd separately, or approximately 
6400 and 150 times the computational efficiency correlative to calculating Er and 
Ed . 

2.3 Comparison and Analysis of Algorithm Performance 

In this section, we introduce an image database that is specific to SCIs and analysis of 
some modern reference-free and reference-based image QA methods. We concentrate 
on comparing and measuring the performance of the introduced QA models in this 
chapter with these methods. The analysis results show that the performance of these 
models in this chapter is quite well.
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2.3.1 Testing Database 

To verify the performance of the introduced SCIs QA models, we utilize the SIQAD 
[6] to compare and analyze. This database was established by Nanyang Technology 
University in 2015 and composes of 20 pristine screen images and 980 contaminated 
images. These 980 images are obtained by corrupting the original images with seven 
kinds of distortions at seven intensity grades according to those 20 reference images. 
The seven distortions include CC, GB, MB, GN, LC, JP, and J2. Over 20 subjects are 
invited to participate in the subjective scoring and rate these 980 corrupted images 
in 11 grades from zero to ten. The image with a higher score means a better quality, 
and the highest ten means the best quality. This scoring procedure is implemented in 
a quiet environment and the viewing distance is set to 2.25 times the screen height. 
The DMOS value of each image in the database is normalized to [24.2, 90.1]. 

2.3.2 Performance Comparison and Analysis 

In order to reflect the validity and superiority of the models introduced in this chapter, 
we compare the introduced models with the state-of-the-art image QA models. They 
can be divided into three categories in Table 2.2. The first category is composed of 
18 FR image QA models. The second category is composed of 10 RR image QA 
models. The third category is composed of 7 NR image QA models. 

When we compare the above modern image QA methods, four commonly used 
metrics, namely PLCC, SRCC, KRCC, and RMSE, are used. The evaluation accuracy 
can be measured by PLCC and RMSE, while the monotonicity of the prediction can 
be found by SRCC and KRCC. A higher value of PLCC, SRCC, and KRCC and 
a lower value of RMSE represent better quality evaluation methods. The objective 
assessment scores are nonlinearity obtained by PLCC, SRCC, KRCC, and RMSE, 
so we use a logistic function to increase the linearity. We compute the image QA 
scores using these four criteria by the mapping including five parameters as follows: 

f (x) = τ1( 
1 

2 
− 1 

1 + expτ2(x−τ3) 
+ τ4x + τ5), (2.95) 

where τi,i=1,2,3,4,5 represents the fitted parameter; f (x) and x are subjective scores 
and its corresponding objective scores which are assessed by image QA algorithms. 

The performance results of 28 competing image QA techniques are illustrated in 
Table 3.2 for comparison. We find the best-performing model in each category. The 
comparison results of the proposed introduced metrics in this chapter with existing 
image QA algorithms including three categories are presented. By analyzing the 
superiority of these models, we are able to derive some important conclusions as 
follows: 

(1) Among these tested FR image QA models, the SQMS algorithm outperforms 
other models according to the value of SRCC, KRCC, PLCC, and RMSE, respec-
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Table 2.2 Information of the metrics involved in the comparative experiment 

Category Abbreviation Full Name Refs. 

FR GSI Gradient Similarity [55] 

FR IGM Internal Generative Mechanism [66] 

FR VSI Visual Saliency-induced Index [5] 

FR PSIM Perceptual SIMilarity [40] 

FR ADD-GSIM Analysis of Distortion Distribution GSIM [67] 

FR SIQM Structure-Induced Quality Metric [68] 

FR SQMS Saliency-guided Quality Measure of Screen content [8] 

FR NQM Noise Quality Measure [53] 

FR SSIM Structural SIMilarity [2] 

FR VIFP Visual Information Fidelity in Pixel domain [31] 

FR VSNR Visual Signal-to-Noise Ratio [54] 

FR FSIMC Feature SIMilarity in Color domain [3] 

FR GSM Gradient Similarity Measurement [55] 

FR GMSD Gradient Magnitude Similarity Deviation [4] 

FR SPQA Screen Perceptual Quality Assessment [6] 

FR SVQI Structural Variation-based Quality Index [1] 

FR SQI SCI Quality Index [29] 

FR Xia et al. – [39] 

RR DNT-RR Divisive NormalizaTion domain Reduced-Reference 
quality model 

[57] 

RR VIF-RR Visual-Information-Fidelity-based Reduced-Reference 
model 

[58] 

RR WNISM Wavelet-domain Natural Image Statistic Model [59] 

RR FTQM Fourier Transform-based scalable image Quality Metric [60] 

RR SDM Structural Degradation Model [61] 

RR BMPRI Blind Multiple Pseudo-Reference Image [62] 

RR BPRI Blind Pseudo-Reference Image [63] 

RR RWQMS Reduced-reference Wavelet-domain Quality Measure of 
Screen content pictures 

[21] 

RR RQMSC Reduced-reference Quality Measure of Screen Content 
pictures 

[22] 

RR PBM Prediction Backed Model [65] 

NR NIQE Natural Image Quality Evaluator [47] 

NR IL-NIQE Integrated Local-NIQE [48] 

NR BQMS Blind Quality Measure for Screen content images [44] 

NR UCA Unified Content-type Adaptive [42] 

NR SIQE Screen Image Quality Evaluator [13] 

NR SSIQE Simplified Screen Image Quality Evaluator [13] 

NR ASIQE Accelerated Screen Image Quality Evaluator [13]
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tively. SRCC and KRCC are widely used evaluation metrics that reflect the mono-
tonicity of the measurements. From the viewpoint of this index, the proposed FR 
SVQI metric drives a remarkably high performance. The SRCC, KRCC, and PLCC 
value of the SVQI is significantly higher than all the three types of models on the 
SIQAD database. 

(2) Since the RR image QA models use less reference information, the four metric 
value of this type of model is worse than FR image QA models. Among the ten RR 
image QA models, the RWQMS attains the best performance in the value of SRCC, 
KRCC, PLCC, and RMSE. From statistics, we can observe that the performance of 
the RR image QA models used for comparison is not only lower than that of the FR 
image QA models proposed, but also worse than that of the NR image QA models 
proposed. It is worth mentioning that SIQE is statistically superior to all the tested 
RR image QA models, even some FR image QA models. 

(3) Considering the blind image QA model, the BQMS achieves the optimal 
results in the tested methods according to the value of SRCC, KRCC, PLCC, and 
RMSE. The SIQE is the best model in the proposed NR image QA model, whose 
SRCC, KRCC, and PLCC values are higher than the ones of BQMS. 

2.4 Conclusion 

SCIs are mainly generated by computers and mobile phone screens. Different from 
NSIs, their color change is not obvious and their shape is relatively simple. Thus, 
the QA metrics designed for NSIs may be difficult to show good performance on 
SCIs. This chapter introduces three types of methods to assess the quality of SCIs, 
namely FR, RR, and NR QA methods. Two FR image QA methods based on struc-
tural information are introduced. One of them not only associates perceived quality 
with structural variation, but also takes into account the HVS characteristics and the 
limitations of color change. The other one constructs a local QA based on structural 
similarity, which considers visual field adaptation and information content. Second, 
in order to accurately estimate image quality from a limited number of reference infor-
mation, we introduce a RR image QA method with feature differences. It extracts 
the macrostructure of SCIs and calculates the feature difference between them and 
the corresponding distorted versions. Using similar processing for the microstruc-
ture, the overall image quality can be evaluated from these information. Finally, we 
introduce two NR QA methods of SCIs. One approach is to incorporate changes in 
human perception attributes into different image contents on a multi-scale weighted 
framework. The other method obtains the image quality score by four types of fea-
tures: image complexity, screen content statistics, overall brightness quality, and 
detail clarity. Experimental results show that the FR, RR, and NR SCI QA models 
are better than the traditional SCI QA models. Despite the good performance of the 
measures described, there is still work to be done. In future work, we will consider 
how to develop universal image QA models that can accurately assess the visual 
quality of natural scenes and SCIs simultaneously.
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Chapter 3 
Quality Assessment of 3D-Synthesized 
Images 

3.1 Introduction 

The recent decade has witnessed the rapid development of three-dimension (3D) 
video applications, such as 3D-TV and free viewpoint video (FVV), and this makes 
3D imaging and display technologies draw an immense amount of consideration in 
a broad scope of fields, including remote education, entertainment, remote monitor-
ing, and so on. Among them, FVV uses the depth image-based rendering (DIBR) 
technology to synthesize new viewpoint images of the same scene from a limited 
number of multiple views with no-reference (NR) images, and this can solve the 
problems of high cost and complexity caused by camera settings [1]. However, the 
introduction of DIBR brings distortion to 3D-synthesized images, particularly the 
geometric distortion, making the image appear unforeseeable degradation. With this 
concern, it is necessary to conduct objective QA models which can more effectively 
and efficiently compute the quality of 3D-synthesized images generated with DIBR. 

In the past decades, various image QA models have received extensive attention. 
For example, after designing the image QA of structural similarity (SSIM) [2], Wang 
et al. further proposed the model and weighting strategy of information weighted 
SSIM (IW-SSIM) [3] with the model of natural scene statistics (NSS). However, 
most of these traditional image QA models were designed for specific scenes or 
typical distortions (such as noise and blurriness). By contrast, when DIBR uses 
depth information to transfer occluded areas that mainly appear on the foreground 
object contour to the virtual view, the resultant image inevitably introduces geometric 
distortion due to technical deficiencies. This distortion, belonging to local distortion, 
is more likely to destroy the semantic structure of an image than typical distortions, 
and cannot be captured effectively using traditional image QA models. 

To address the above-mentioned issues, researchers have done a lot of work on 
the design of 3D-synthesized image QA based on DIBR. For example, in [4], Battisti 
et al. developed a new full-reference (FR) image QA model called 3D synthesized 
view image quality metric (3DSWIM) by comparing the statistical characteristics of 
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wavelet subband of the original image and the synthetic image via DIBR. In [5], Li 
et al. designed a new algorithm by estimating local geometric distortion and global 
sharpness changes to infer the quality of 3D-synthesized images. In [6], the influences 
of direction, contrast, and texture were used to correct the distorted view or similarity 
view from the composite view and the associated reference view, so as to design the 
view synthesis quality prediction (VSQA) measure of view comprehensive QA. In 
[7, 8], the morphological wavelet peak signal-to-noise ratio (MW-PSNR) model was 
designed by applying morphological wavelet decomposition on DIBR composite 
image, and then the morphological pyramid peak signal-to-noise ratio (MP-PSNR) 
model was developed by using morphological pyramid instead of morphological 
wavelet to obtain better performance. Apart from the FR QA model, the reduced-
reference (RR) QA model is also followed. In [9], through improving MP-PSNR, a 
RR image QA algorithm, namely morphological pyramid peak signal-to-noise ratio 
(MP-PSNR-RR), with better performance was proposed to solve DBIR influence 
and effectively overcome geometric distortion in 3D-synthesized image quality. All 
the above-mentioned QA models require the participation of reference images, but 
FVV images synthesized based on DIBR are carried out in the absence of reference 
images, so it is necessary to design NR QA models for evaluating 3D-synthesized 
images. 

Considering the aforementioned real scenarios, new progress has also been made 
in QA of 3D-synthesized images based on DIBR without reference. First, the model 
of NSS is used in modeling NR QA of 3D-synthesized images. In [10], Gu et al. 
proposed a NR image QA model with local image description based on autoregres-
sion (AR), where the geometric distortion can be obtained from the residual value 
between one 3D-synthesized image and its AR reconstructed image. In [11], Gu et 
al. devised a blind image QA model based on multi-scale natural scene statistical 
analysis (MNSS) using two new NSS models. In [12], a high efficiency view synthe-
sis quality prediction (HEVSQP) model was designed to gauge the effects of depth 
and color distortion on the perceptual quality of 3D-synthesized image, towards 
achieving automatic prediction of 3D-synthesized images. Note that local geometric 
distortion is the major distortion introduced by DIBR and global information influ-
ences the quality of 3D-synthesized images as well, so some work has also been 
done on local and global structures. In [13], Yue et al. proposed a new image QA 
model, which combined local and global models to evaluate geometric distortion and 
sharpness changes, solving the problem that the traditional NR model is not effec-
tive for DIBR correlation distortion. In [14], Yan et al. measured the quality of NR 
3D-synthesized views by extracting local changes in structure and color and global 
changes in brightness. In [15], in addition to geometric distortion and global sharp-
ness, Wang et al. also considered image complexity to design NR synthetic image 
QA model. For evaluating the performance of those QA models, we also compared 
them with state-of-the-art competitors using four extensive employed standards, i.e., 
Spearman rank correlation coefficient (SRCC), Kendall rank correlation coefficient 
(KRCC), Pearson linear correlation coefficient (PLCC), and root mean square error 
(RMSE).
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The organization of this chapter is arranged below. Section 3.2 introduces in detail 
the modeling process and experimental analysis of three types of NR 3D-synthesized 
image QA models, namely the model based on NSS, transform domain and structural 
variation. Section 3.3 illustrates the comparison with those state-of-the-art image QA 
models of 3D-synthesized images. Section 3.4 finally draws the conclusive remarks 
and provides future applications. 

3.2 Methodology 

In this section, we introduce six state-of-the-art NR QA models of 3D-synthesized 
images generated based on DIBR. We divide these QA models into three categories, 
namely the models relying on NSS, the models based on domain transformation, and 
the models based on structural transformation. More specifically, we first introduce 
two NR models based on NSS for evaluating the quality of images. The natural 
features of the image are affected by geometric distortion. Second, we introduce 
two NR models based on domain transformation. The models are by combining 
pixels’ change with human perception. Third, we introduce two NR models based 
on structural transformation for evaluating the quality of synthetic image from the 
perspective. DIBR may not only cause local geometric distortion but also affect global 
clear information. We compare and analyze their performance with the typically 
methods by indices of PLCC, SRCC, KRCC, and RMSE. 

3.2.1 NSS-Based NR 3D-Synthesized Image QA 

The geometric distortion introduced due to the use of DIBR is very likely to seriously 
damage the natural characteristics of images. The NSS can be used to capture envi-
ronmental statistical characteristics changes caused by distortion, and make further 
measurement distortion information [16, 17]. Specifically, based on NSS modeling 
and reliable visual perception, image QA model can strengthen the consistency with 
subjective evaluations [18]. NSS-based image QA model has become one of the most 
important models of image QA and has been widely used in NR image QA tasks [16, 
19]. In the following content, we will introduce two kinds of NR 3D-synthesized 
image QA based on NSS models. 

NR 3D-Synthesized Image QA Using Local Image Description 

The geometric distortion of 3D-synthesized images is a key problem affecting the 
quality of 3D-synthesized images [20], which usually causes serious damage to the 
natural attributes of the image. It is natural to consider using the NSS model to solve 
the above problems. However, most of the current NSS models were designed to
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extract the structural corruption, unable to accurately extract the geometric corrup-
tion commonly occurred in the synthesized image. Therefore, we proposed a NR 
QA model of 3D-synthesized image called AR-plus threshold (APT), which is based 
on local AR model and an adaptive threshold can effectively catch the geometric 
distortion. The implementation details of our proposed model mentioned above will 
be elaborated as follows. 

AR-Based Neighborhood Relationship 

In natural images’ local region, there is a certain correlation between surrounding 
image pixels, which is very akin to the correlation of other adjacent pixels. On 
this basis, the introduction of local image similarity can help to solve the image 
degradation problem such as disproportion and distortion of synthesized images. 
There are many models used to describe local similarity, such as AR operator, bilateral 
filter, and non-local mean filter. The AR model has good invariance to translation, 
rotation, scaling and other transformations, and can describe local similarity well of 
an input 3D-synthesized image. In addition, free energy theory [21] states that the 
human brain divides an input image into ordered and disordered components in a 
constructive way. The process of minimizing free energy can be seen as predictive 
coding [22], which can well simulate quality assessment and saliency detection based 
on AR models. The above content also facilitates the selection of AR operator for 
local image description [23, 24]. So, the AR operator is employed to capture the 
local similarity of the synthetic image. 

Autocorrelation means there exists the serial correlation between one signal and 
itself. In a natural image I , we denote the index and value of a specific pixel’s location 
to be k and xk . The relationship between pixels and their neighborhood can be defined 
as 

xk = Ωθ(xk)s + dk, (3.1) 

where Ωθ(xk) is a neighborhood vector of the θ pixels region. The patch size is√
θ + 1 × 

√
θ + 1; the  s = (s1, s2, . . . ,  sθ)T forms a vector of AR parameters need 

to be confirmed; the dk indicates the error discrepancy of the values between the cur-
rent pixel and the associated AR predicted version. Increasing the size of local patch 
adjacent to more pixels greatly increases the computational cost, and moreover, it 
cannot achieve the higher performance. With this view, we consider a maximum of 
8 pixels adjacent to the current pixel in this algorithm, and set θ = 8. 

Determination of AR Parameters 

After obtaining the pixel neighborhood relationship, we focus on the value of AR 
parameters. Towards estimating the reliable AR parameters’ vector, we use a matrix 
to define the linear system: 

ŝ = arg min 
s 

||x − Xs ||2, (3.2)
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Fig. 3.1 Local AR model implementation process 

where x = (xi,1, xi,2, . . . ,  xi,ϕ)T , X ( j, :) = Ωθ(xi, j ), and j = {1, 2, . . . ,  ϕ}. After  
that the least square method is used to derive the linear system above and deduce the 
best estimation of the AR parameter as 

ŝ = 
( 
X T X 

)−1 
X T x, (3.3) 

where ϕ = 48 represents the pixels surrounding the present pixel. The 48 pixels can 
be used to confirm the relationship among pixels by using Eq. (3.1), and further 
utilize Eq. (3.3) to predict the vector of AR parameters ŝ. For better understanding, 
we exhibit Fig. 3.1 as an implementation schematic diagram of the local AR model. 
Each small block in the figure represents a pixel, and the local patch consists of 
7×7 light blue blocks in the middle. The dark blue blocks are the pixel under the 
processing procedure currently. In the first subgraph, local 3×3 patch includes the 
center dark blue block and adjacent 8 green blocks from the local 

√
θ + 1 × 

√
θ + 1 

patch, where θ = 8. In the subsequent subgraph, the red block and 8 yellow blocks 
also constitute the same local 3×3 patch. Thus, a total of 49 conditions are provided 
within 7×7 patch. 

In general, the AR prediction image can be considered as an ordered whole, but 
the absolute value |di | in the error map between the input image and its predicted 
image with AR is regarded as the disordered part. The AR-based models applied for 
local image description can effectively illustrate the content of natural image, such as 
smoothness, texture, and edge. Consequently, the value of error map is significantly 
reduced to a very small range. In Fig. 3.2a, we labeled three typical natural image 
blocks and one geometric distortion block with a smooth block in red, a texture block 
in green, a edge block in orange, and a geometric distortion block in blue. There are 
four corresponding error histograms illustrated in Fig. 3.2b, e. One can observe from 
Fig. 3.2b, d that the majority values in the three error histograms are zero and the small 
numerical cannot exceed 20. In terms of the errors maps’ histogram of geometric 
distortion shown in Fig. 3.2e, we can observe that graph includes big values of error 
difference, even outstrips 100. 

Based on the observation, we reach the following two conclusions: (1) Natural 
images ordinarily contain disorder parts, and the size of disordered parts depends on 
the type of natural image contents, e.g., smoothness, texture, or edge; the values in 
the error histograms are rarely non-zero, and in most cases are small values beneath 
twenty; (2) The geometric distortion destroy the local image similarity. In geometric
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(a) 

(b) Red patch (c) Green patch(d) Orange patch (e) Blue patch 

Fig. 3.2 Comparison of geometric distortion patches and its associated natural image patches: a 
is a typical 3D-synthesized distortion image with edge, texture, smooth, and geometric distortion 
patches’ labels; b–e are the error histograms of red, green, orange, and blue patches, respectively, 
where NNP represents the normalized pixel number (©[2021] IEEE. Reprinted, with permission, 
from [10].) 

distortion regions, the values of the error suddenly accelerate, some of which are 
even larger than one hundred. We can observe an interesting thing is the AR predic-
tor has very strong ability to describe local image and highlight geometric distortions. 

AR-Based Thresholding 

The distribution of error difference values shown in the histogram of Fig. 3.2e reveals 
the AR model cannot predict regions with geometric distortion effectively. Some 
values in the histogram even outstrip 100, and indicate that the AR predictor is 
sufficient to emphasize geometric distortion. Based on these phenomena and analyses
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provided above, the AR model can be used to ascertain the quality of 3D-synthesized 
image effectively. Furthermore, a few modifications are necessary to modify the 
calculated error map. We utilize the AR model to estimate the input image synthesized 
with DIBR, derive the error map from that procedure. Firstly, we adopt Gaussian filter 
for deleting some single small “noise” in the error map. Secondly, the FES model 
[24] is used to detect the most salient regions for removing the corresponding parts 
in the error map, because these regions without geometric distortion probably have 
large error values that should be set aside. Finally, a threshold is adopted to obtain a 
“0–1” binary filtered error map: 

Md =
⎧
1 , if Me < γt 
0 , otherwise 

(3.4) 

where Me is the error map after the Gaussian filter processing; γt is a fixed threshold. 
The burrs of Md are then removed by a median filter. 

Estimation of Quality Score 

Towards estimating the final quality score, we pool the binary maps Md generated 
by Eq. (3.4). The majority of the existing image QA models have been devised 
based on NSS models. Several FR image QA models are realized by computing 
the difference of structural change between the corrupted images and their original 
(natural) images. The RR image QA metrics estimate the image quality by computing 
the distance between the two feature vectors, which are extracted from the corrupted 
and original images. In the absence of reference images, NR image QA model can 
generally extract certain statistical rules from natural images and estimate the quality 
of distorted images according to the deviation between them and the above natural 
statistical rules. Thus, we observe a reliable method to evaluate the visual quality 
by comparing the distance between the distorted image and its related natural image 
statistics (i.e., natural image structure, RR vector, and statistic domains). In Eq. (3.4), 
the error map’s small values are correlated to the natural image parts. Based on this, 
when geometric distortion occurs in the image, its value derived from Eq. (3.4) should 
be set to zero, and all the undistorted natural image should be set as one. We achieve 
the 3D-synthesized image quality prediction by comparing Md with the binary map 
of natural images Mr . 

In order to obtain the differences between the binary map of geometric distortion 
images Md and the binary maps of natural images Mr . The natural image can generate 
the binary map of reference Mr with Eqs. (3.1)-(3.4). The quality model of distorted 
3D-synthesized images is defined as follows: 

Qs = 
1 

H 

H⎲

h=1

⎬
2Md (h) · Mr (h) + ε 
Md (h)2 + Mr (h)2 + ε

⎫α 
, (3.5)
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where H means the number of the image pixels; h is the index of image pixel; α is a 
non-negative indicator correlated with the Minkowski summation; ε is a small fixed 
number to avoid the issue of dividing by zero. Typical values of α range from one to 
four. 

In the natural images without the corrupt of geometric distorted, the residual error 
values are below the threshold. We hypothesis that all values of Mr are a unity and 
set the value to 1. The ε is a small variable. It is obvious that the denominator cannot 
be zero, since the Md (h)2 + 1 not less than 1. So we subtract ε and the Eq. (3.5) can 
be simplified as 

Qs = 
1 

H 

H⎲

h=1

⎬
2Md (h) 

Md (h)2 + 1

⎫α 

= 
1 

H

⎲

h∈H0

⎬
2Md (h) 

Md (h)2 + 1

⎫α 
+ 

1 

H

⎲

h∈H1

⎬
2Md (h) 

Md (h)2 + 1

⎫α 
, 

(3.6) 

where H0 and H1 represent regions with and without geometric distortion, in which 
the corresponding values are 0 and 1, respectively, and H = H0 + H1; when α is 
positive, Eq. (3.6) can be simplified as 

Qs = 
1 

H

⎲

l∈H0

⎬
2 · 0 
0 + 1

⎫α 
+ 

1 

H

⎲

l∈H1

⎬
2 · 1 
1 + 1

⎫α 
= 

H1 

H 
. (3.7) 

We remove the α since the Minkowski pooling has no effect on the image quality 
predicting. The quality score can be easily derived to be the ratio of the single pixels 
to the size of the entire map. In a 3D-synthesized image, the similarity of the binary 
maps between the distorted image and its pure natural image can be obtained from 
the region without geometric distortion to the whole pixel region. The score Qs refers 
to the 3D-synthesized image quality, the closer the value is to 1, the higher the image 
quality. Figure 3.3 presents the block diagram of the proposed blind APT model. The 
AR model is used to predict the input image, and remove some unnecessary noise 
with the Gaussian filter. The saliency detection model is used to avoid the geometric 
distorted free region with large value error being misjudged as distortion region. 
After these steps, a preliminary modified error map is obtained. Then, we adopt a 
threshold to implement binary error map, and further remove burrs with the median 
filtering. Finally, we pool the binary map generated by Eq. (3.7) to obtain the quality 
score. 

Multi-scale NSS Analysis for NR 3D-Synthesized Image QA 

Another NR QA for 3D-synthesized images was developed by combining two new 
NSS models, both of which were designed for 3D-synthesized image QA task. The 
first NSS model extracts local statistical features according to the self-similarity of
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Fig. 3.3 Block diagram of our proposed APT model 

natural images, and the second NSS model extracts global statistical features based 
on the consistency of the main structure of natural images. With the features extracted 
from the two NSS models, we propose a new blind image QA model based on multi-
scale statistical natural scenes analysis. This method has obtained greater accuracy 
than each of its two components and modern image QA models. The implementation 
details of the proposed model mentioned above will be elaborated as follows. 

Self Similarity-Based NSS Modeling 

Local self-similarity is an important characteristic of natural images, which has been 
widely used in the image description, compression, and other fields [3]. Compared 
with the effects of Gaussian blur or white noise on the global self-similarity of 
images, geometric corruption only varies the characteristics of self-similarity in some 
commonly seen local areas but does not affect other regions. 

As shown in Fig. 3.4, Y is a 3D-synthesized image generated from its reference 
one X . When they are analyzed at multiple scales, the distance between them rapidly 
shrinks as the scale decreases. Among them, SSIM value [25] can accurately reflect 
the above variation trend. This is more obvious in scenes with reference images, but 
practice reference images are usually hard to obtain when synthesizing images by 
DIBR. Therefore, finding an approximate reference to replace the reference image 
can be considered as a simple and effective model. 

As shown in Fig. 3.4, X5 and Y5 have high SSIM values, namely high similar-
ity. Considering Y5 as a reference and taking X3 and Y3 division as an example, the
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Fig. 3.4 Comparison of a 3D-synthesized image and its associated reference one at multi-scales. 
2↓ is downsampling by 2. 4↑ is upsampling by 4 (©[2021] IEEE. Reprinted, with permission, from 
[11].) 

following approximate relation D(Y3, X3) = D(Y3, X̂5) ≈ D(Y3, Ŷ5) can be deduced, 
where ‘ˆ’ is an upsampling operator that can fully recover details lost due to down-
sampling and makes the two inputs match in size. In other words, Xi can be replaced 
by Y5, i = {1, 2, . . . ,  5}. This similarity measure can be used to approximate replace 
the relationship between the synthesized image and its associated original version 
when the original image is missing. 

In the human visual system (HVS), the multi-scale analysis is an important char-
acteristic. It has been broadly leveraged in many image processing tasks, e.g., quality 
assessment [26] and significance detection [27]. According to the multi-scale analysis 
model in [26], each similarity map is integrated to derive: 

S j = 
NΠ 

i=1 

[Sj (Y1, ̂Yi )]γi , (3.8) 

where j indicates the pixel index and N = 5; S(Y1, Ŷi ) is the similarity measure 
between Y1 and upsampled Yi . γi ∈ {γ1, γ2, γ3, γ4, γ5}, and they are defined as 
{0.0448, 0.2856, 0.3001, 0.2363, 0.1333} according to psychophysical experiments 
[27]. Then, the common similarity measure (not SSIM) having the three advantages 
of unique maximum, boundedness and symmetry, are used as the measure of distance: 

S(Y1, ̂Yi ) = 
2Y1 · Ŷi + ε 
Y 2 1 + Ŷ 2 i + ε 

(3.9)
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where ε is a fixed number to avoid being divided by zero. The range of Eq. (3.9) 
belongs to [0, 1] and it equals 1 when two inputs are identical. Therefore, this equation 
can also be simplified as 

S j = 
NΠ 

i=2 

[Sj (Y1, ̂Yi )]γi . (3.10) 

In the 3D-synthesized image, there are isolated noises that have effect on the 
perceived quality. So there should be a median filter to remove the noisy pixels in S j 
and generate Ṡ. For natural images, the fused S j will contain distortion that is not 
present in the original. So, a threshold value is added to the filtered graph to extract 
the geometric distortion region: 

S̈ j =
⎧
0 , if Ṡ j < T 
1 , otherwise 

(3.11) 

where T is a threshold below which the geometric distortion region will be retrained 
and the blur distortions will be deleted. The value of T depends on a new NSS 
regularity. 300 high-quality natural images were randomly selected from Berkeley 
image segmentation database [28] and their Ṡ j images were calculated. Assuming 
that there are no geometric distortion areas in most selected natural images, that is, 
most pixels (about 50 million) are higher than T . A histogram of all pixel Ṡ values 
are shown in Fig. 3.5, and we can obviously find that the pixels with Ṡ values above 
0.1 account for 99.85% of the overall pixels, so set T to 0.1. 

Finally, we extract local statistical features from the self-similarity of natural 
images to evaluate the quality fraction Q1 of the input 3D-synthesized image: 

Q1 = 
1 

K 

K⎲

k=1 

S̈k, (3.12) 

where L is the number of the overall pixels in S̈. When Q1 and the subjective average 
opinion score is larger, the geometric distortion is smaller. 

Main Structure Consistency-Based NSS Modeling 

The structure in the image conveys important visual information, which is of great 
significance for analyzing and understanding scenes. The structure diagram with 
different measurement values (such as gradient and covariance) is applied in some 
classical image QA models, such as SSIM, feature similarity (FSIM) index, and gra-
dient magnitude standard deviation (GMSD). Damaged structure, especially major 
structures, such as contour, will have a large impact on image quality and may lead 
to the reduction of semantic information [29]. The geometric distortion is the key 
corruption of the 3D-synthesized image. Occlusion is an inevitable issue in image 
rendering on account of the limited number of cameras available to capture the view.
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Fig. 3.5 Distribution of From Ṡ values of about fifty million pixels from three hundreds natural 
images (©[2021] IEEE. Reprinted, with permission, from [11].) 

This usually produces some holes, such as geometric corruption, in binary synthe-
sized images, particularly at the contour of foreground objects, even the application 
of advanced repair and interpolation techniques to fix these holes does not work very 
well. 

If possible, it is a simple way to directly compare the main structure consistency 
between one 3D-synthesized image and its corresponding reference version. How-
ever, in most cases, due to the fact that only a limited number of cameras are available 
for view capture, images with reference-free viewpoints cannot be accessible. There-
fore, a new NSS model should be devised carefully to obtain the consistency of the 
main structures. By comparing the differences between the main structure of 3D-
synthesized images and the NSS model based on a huge number of natural images 
with high quality, we can estimate the degradation degree of the main structure caused 
by the DIBR model and infer the quality of the 3D-synthesized image. 

The distortion intensity and even the quality of 3D-synthesized images can be esti-
mated by using the difference of major structure degradation between 3D-synthesized 
images and reference images at multiple scales. It is a simple model to directly com-
pare the differences of the main structure diagrams at various scales. Due to the mis-
match issue caused by occlusion, we need distortion operation to solve the problem. 
In this case, there must be reference images to adjust the 3D-synthesized views so 
that they can match well. Towards achieving the design of image QA models without 
any reference information, alternative solutions were considered. More specifically, 
we gauge the degeneration similarity between the 3D-synthesized images and its
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reference versions on major structures with the distance measure: 

Q2(Y, X ) = 
1 

U 

U⎲

u=1

⎬
2mY (u) · mX (u) + ε 
mY (u)2 + mX (u)2 + ε

⎫
, (3.13) 

where ε is a small constant that avoids being divisible by zero; U = 5 represents five 
scales; u is a measure of similarity; mY is the degradation vector in the main structure 
of Y ; mX is similarly defined for X . The similarity between the two main structure 
maps on the U th scale and the uth scale is compared. It is defined as follows: 

mY (u) = 
V⎲

v=1 

MU (v) ⊕ Mu(v) (3.14) 

where Mu is the uth main structure map; V is the number of all pixels; v stands for 
pixels’ index in Mu and there are only two values for v, 1 or 0, indicating whether 
the main edge is included. It is not difficult to find that Eq. (3.13) contains mX , that 
is, the calculation of Q2 still depends on some information of the reference image. 
We need to find other factors to replace mX , so that Q2 can get good results even in 
the absence of a reference image. 

The vector mX is also obtained based on three hundred natural images from the 
Berkeley segmentation database. Then the major structural degradation curves of 
three hundred images on 5 scales were drawn in the same image. Finally, the median 
value of 300 values at five scales are calculated, and the NSS vector m P is derived. 
The better the image quality, the closer the curve to the median value. On this basis, 
Q2 is modified to 

Q2(Y, X ) = 
1 

U 

U⎲

u=1

⎬
2mY (u) · m P (u) + ε 
mY (u)2 + m P (u)2 + ε

⎫γu 

, (3.15) 

where {γ1, γ2, γ3, γ4, γ5} are also defined as {0.0448, 0.2856, 0.3001, 0.2363, 
0.1333}. Like Q1, the  Q2 means that the more similar between reference image 
X and 3D-synthesized image Y , and the higher image quality. 

Estimation of Quality Score 

In the previous part, we introduced two new NSS models for 3D-synthesized image 
QA and obtained the corresponding quality scores Q1 and Q2. The first NSS model 
extracts local statistical features based on self-similarity of natural images. The sec-
ond model is to extract global statistical features based on the consistency of the main 
structure of natural images. If these two models are combined together, a better blind 
image QA model can be constructed. We use a simple product to combine them, and 
their weighted multiplication is in the same range as Q1 and Q2, which is [0, 1]. The 
final model for MNSS is
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QMN  SS  = Qφ 
1 · Q2, (3.16) 

where φ is a positive constant parameter used for balancing the relative weight of 
each component. The larger the QMN  SS , the higher the quality of the composite 
image. 

3.2.2 Transform Domain-Based NR 3D-Synthesized Image 
QA 

The HVS is the final receiver of visual information such as images and videos, so the 
most reliable evaluation method should be subjective assessment. Objective QA by 
using mathematical models for simulating the HVS is more efficient than the expen-
sive and time-consuming subjective assessment. The human eye is more sensitive to 
low-frequency errors than high-frequency ones. As for the image, the pixel in the 
image with mutation or rapid change belongs to the high-frequency part, while the 
flat part belongs to the low-frequency part. Considering these, image quality evalua-
tion models based on transform domain design have been widely studied [30]. A new 
information entropy calculation model based on the improved reconstructed discrete 
cosine transform (RDCT) domain has been developed for evaluating the quality of 
RR images [31]. The improved RDCT was used to decompose the reference image 
into 10 subbands, which was consistent with the channel decomposition characteris-
tics of the HVS. Sendashonga and Labeau [32] used an image measurement model 
based on the discrete wave transform (DWT) domain, which requires the participa-
tion of the reference image. In the following content, we will introduce two kinds of 
NR image QA models based on transform domain. 

NR 3D-Synthesized Video QA with Color-Depth Interactions 

In a system of 3D-synthesized video, many data formats have been used to express 
3D scenes. Among these formats, there is a format of multi-view video plus depth 
(MVD) that can merely encode typical 2 or 3 views of color and depth videos. From 
an arbitrary viewpoint, the DIBR technique can generate the virtual view. In order 
to provide users a good quality of experience (QoE), the perceptual quality is a 
significant index for evaluating the merit of 3D-synthesized videos based on MVD. 
Therefore, we introduce an automatical and blind QA model of 3D-synthesized video 
directly from the input color and depth videos, namely HEVSQP. Such model has 
great accuracy measured based on the whole synthesized video QA dataset, as com-
pared to classical FR and NR video QA models. The implementation details of the 
proposed model mentioned above will be elaborated in the following paragraphs.
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View Synthesis Quality Prediction Model 

The distortions in color and depth independently lead to the uncertainty of human 
scoring. The distortions in color and depth together also lead to the difference between 
subjective rating. Therefore, measuring the quality of synthesized video seems more 
challenging than straightforwardly measuring the color or depth sequences. We need 
to find the relationship between the distortions in color and depth and even their 
interactions. The view synthesis quality prediction (VQSP) model was developed to 
resolve such problem. It explains the impacts of distortions in color and depth on the 
quality and their interactions [33, 34]. 

Let Iv represents a virtual view composed of the original depth maps and the 
primeval/undistorted color images, Ĩv represents a virtual view composed of the 
distorted depth maps and the original color images, Ĭv represents a virtual view 
composed of the original depth maps and the distorted color images, and Îv represents 
a virtual view composed of the distorted depth maps and the distorted color images. 
Since color distortion directly affects the synthesized view, it can be assumed that the 
virtual view synthesized from the distorted color image adds color distortion ΔDc to 
the original synthesized image. So, Ĩv ≈ Iv + ΔDc, Îv ≈ Ĭv + ΔDc. Then the view 
synthesis distortion (VSD) can be described approximately as 

Dv = E
⎧(

Iv − Îv
⎫2

}
≈ E 

⎡(
Iv − Ĩv

⎫2 
⅂

︸ ︷︷ ︸
Dc 

v 

+ E 
⎡(

Iv − Ĭv
⎫2 

⅂

︸ ︷︷ ︸
Dd 

v 

, (3.17) 

where Dc 
v is the VSD caused by color video coding error, D

d 
v is the VSD caused by 

depth map coding error. The former part is the color-involved VSD (CI-VSD), the 
latter part is the depth-involved VSD (DI-VSD). Since E[(Iv − Îv)2] is the error of 
the color images, Dc 

v is independent of D
d 
v [35]. 

In a NR manner, it is essential to build the specific relation between the VSD 
and the quality of 3D-synthesized view. Considering that Dc 

v and D
d 
v may affect 

the quality of synthesized view, such as subjective score ϑ, we want to describe the 
relationship between the perceived quality and CI-VSD (or DI-VSD). Based on the 
Bayesian model, the process of quality prediction can be modeled as a posterior 
probability 

P(ϑ|Dv ) = ωc 
v · pϑ|Dc 

v︸ ︷︷ ︸
Color quality 

+ ωd 
v · pϑ|Dd 

v︸ ︷︷ ︸
Depth quality 

− 

ωc,d 
v · pϑ|Dc 

v · pϑ|Dd 
v︸ ︷︷ ︸

Quality related to color − dept interactions 

, 
(3.18) 

where ωc 
v , ω

d 
v , and ω

c,d 
v are the weights of color, depth, and their interactions, respec-

tively. This can be considered as a typical VSQP model. The first term is VSQP (CI-
VSQP) involved in color, the second term is VSQP (DI-VSQP) involved in depth, 
and the third is their color-depth interaction term. The key idea of the VSQP model is
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that, although the distortions in color and depth are independent, the effects of them 
on the perceptual quality of 3D-synthesized view are not independent. Therefore, 
the proposed VSQP is flexible in dealing with color and depth distortion and their 
interaction by decomposing into three independent terms. 

The VSQP model in Eq. (3.18) still requires synthesized images to predict per-
ceived quality, but we do not know the view synthesis process in the practical applica-
tions. It is significant to evaluate the synthesized view by arbitrary compressed color 
and depth sequences. It is efficient to evaluate the quality without view synthesis. 
Such approaches would considerably reduce the amount of computation required 
to make more accurate predictions. Therefore, the above-mentioned VSQP model 
needs to be improved. 

Due to the fact that the intermediate reference view is applied to compose both the 
left and right virtual views, and that the distance between the intermediate reference 
view and the virtual view is the equivalent, let’s redefine the total Dc 

v and D
d 
v in 

another form: 
Dc 

v = Dc 
v,L + Dc 

v,R �
⎲

φ 

ω2 
φ · Dc,φ, (3.19) 

Dd 
v = Dd 

v,L + Dd 
v,R �

⎲

φ 

(ωφ · kφ · ∇  Ic,φ)2 · Dd,φ, (3.20) 

where φ ∈ {1, 2, 3};  Dc,φ and Dd,φ are the coding distortion of color map and depth 
map, respectively; ωφ is the weight associated with the synthetic view position; ∇ Ic,φ 
is a parameter related to the color content, which can be calculated according to the 
gradient of the reconstructed color image. The CI-VSD and DI-VSD models men-
tioned above still require the participation of original virtual view to calculate the 
distortion. To solve the problem, we suppose the HEVSQP model, in which the fea-
ture vectors can represent the distortions. 

High-efficiency View Synthesis Quality Prediction Model 

Figure 3.6 illustrates the framework of the the HEVSQP model that automatically 
predicts the quality of 3D-synthesized video based on the input of color and depth 
video. First, a color and depth dictionary was constructed during the training phase, 
which contained a set of feature vectors and associated human evaluation scores. 
The dictionary revealed their relationship. For the color and depth videos tested, 
we calculate their sparse code on the constructed dictionary and predict CI-VSQP 
and DI-VSQP indexes, respectively. Then, the HEVSQP exponent is obtained by 
combining the CI-VSQP exponent and DI-VSQP exponent based on the derived 
VSQP model. There are three steps to explain details. 

In feature representation step, we extract perceptual quality features which can 
well stand for the view synthesis quality prediction. Considering that spatial and 
temporal distortions in color and depth sequences can affect the quality of composite 
view, we extract spatial and temporal features from the sequences, respectively,
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Fig. 3.6 The framework of the HEVSQP model 

and combine them to obtain overall features. In the previous section, we used the 
likelihood function to reveal the relationship between VSD and perceived quality. 
Therefore, we calculate the feature vectors from the color and depth sequences with 
the same weights in Eqs. (3.19) and (3.20) for predicting the feature vectors of the 
synthesized views induced by color or depth distortions. For purpose of exploring 
spatial and temporal redundancy simultaneously, video sequences need to be divided 
into non-overlapped group of frames (GoFs), within which spatial and temporal 
distortions are analyzed. In order to extract the spatial features of the view, the 
magnitude of gradient is calculated by the gradient vector of each frame: 

∇ I spatial  x,y,t =
/

(
−→∇ I hor x,y,t )

2 + (−→∇ I ver x,y,t )
2, (3.21) 

where 
−→∇ I hor x,y,t and 

−→∇ I ver x,y,t respectively represent the horizontal and vertical gradient 
vectors of the pixel point (x, y) at frame t . Then, the following three parts are 
calculated: 

(1) With reference to [18], 16 asymmetric generalized Gaussian Distribution 
(AGGD) fitting parameters are calculated according to the gradient magnitude map; 

(2) By convolving each frame with a Laplacian of Gaussian (LOG) operator, 16 
similar AGGD fitting parameters are calculated; 

(3) Calculate 16-dimensional local binary mode features for each frame. 
Consequently, each frame will generate a 48-dimensional spatial and temporal 

feature vector. The average spatial feature vector of all frames in a GoF is repre-
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sented by f spatial . Likewise, we extract the temporal features using the frame error−→∇ I temporal  
x,y,t = I (s, y, t) − I (x, y, ,  t − 1) as temporal gradient vector. The average 

temporal feature vector of all frames in a GoF is represented by f temporal . They  
constitute the 96-dimensional GoF feature vector, f GoF is defined as follows: 

f GoF = [  f spatial  , f temporal ], (3.22) 

In this research, we use temporal gradient information to derive the similar sta-
tistical features, which is different from the existing video QA methods [34, 36] to  
design the temporal feature representation by spatio-temporal complexity or activity. 
By the way, an open framework for NR VSQP model is provided. 

In the dictionary construction step, the training data were obtained from 42 combi-
nations of compressed color and original depth sequence pairs and 42 combinations 
of original color and compressed depth sequence pairs. Due to the relatively small 
number of training data in sparse representation, they do not follow the general dictio-
nary learning process to generate dictionaries. Instead, the color dictionary and depth 
dictionary are directly defined as the feature vectors of N training color samples and 
N training depth samples. 

More than 90 dimensions of features are extracted from each sequence, and 
inevitably, some features may be associated with other features. In order to reduce the 
feature dimension, principal component analysis (PCA) is performed on the feature 
vector. Then, the dictionary learning process is simplified to directly combine the 
feature vectors of the training samples and the opinion scores of the related people. 
For example, the color dictionary [ D̃c, qc] can be defined: 

⎡ 
D̃c 

qc 

⅂ 
=̇ 

⎡ 
f̃c,1 f̃c,2 ... f̃c,N 
ϑc,1 ϑ fc,2 ... ϑ fc,N 

⅂ 
, (3.23) 

where D̃c denotes the dimension-reduced color dictionary; ϑc,i represents the human 
opinion score corresponding to reduced feature vector fc,i . By the same way, we can 
obtain the depth dictionary learning model D̃d . These similar deep lexicographical 
learning models establish the relationship between the feature distribution and the 
perceived quality score. They can be regarded as regression models for p(ϑ|Dc 

v) and 
p(ϑ|Dd 

v ). 
In the quality pooling step, it is assumed that the three-view MVD data have 

no prior information about the distortion strengths. Then, we compute the feature 
vectors of the color and depth sequences from the reference views with the same 
weights in Eqs. (3.19) and (3.20). Based on the assumption that videos with the 
same quality value will have similar feature distributions, the quality prediction 
process only needs to weigh the human opinion scores of the training samples based 
on the sparse coefficient. After acquiring the CI-VSQP index QGoF 

c and DI-VSQP
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index QGoF 
d , we need to integrate them together to predict the overall quality score. 

According to Eq. (3.18), the three weights, ωc, ωd and ωc,d , are combined into a 
quality score to calculate the final HEVSQP index of a GoF: 

QGoF = ωc 
v · QGoF 

c + ωd 
v · QGoF 

d − ωc,d 
v · QGoF 

c · QGoF 
d (3.24) 

Finally, the average of all GoF is taken to calculate the perceived quality of full 
sequences: 

QSeq = 
1 

M 

M⎲

m 

QGoF 
m , (3.25) 

where M is the number of GoF in the full sequences. The HEVSQP model has the 
following features: 

(1) Trained CI-VSQP or DI-VSQP models attempt to establish the relationship 
between feature distribution and quality score, rather than relying on synthesized 
views to evaluate the perceived quality; 

(2) By evaluating the quality scores based on CI-VSQP or DI-VSQP models and 
using different weights of color or depth quality scores to integrate them together, 
which reveals the interaction of color-depth. We achieve an efficient QA method of 
the 3D-synthesized view without view synthesis; 

(3) Since the HEVSQP model refers to the distortion of the view to predict VSD, 
the estimated parameters will lead to certain deviation from the actual VSD. The 
same parameters are also used to combine the feature distributions, which can lead 
to inaccurate predictions. The effect of the above approximation can be reduced by 
using the same rules to predict VSD during training and testing, but we should try to 
train separate models of CI-VSQP and DI-VSQP. 

NR 3D-Synthesized Image QA in the DWT Domain 

FVV has aroused a huge amount of attention for its wide applications. Because they 
are synthesized through a DIBR procedure without reference images, a real-time 
and reliable QA metric is desperately required. Existing QA methods failed to reach 
the requirements since they are not able to detect the geometric distortion caused 
by DIBR. To address aforementioned problem, [37] proposed a novel blind method 
of 3D-synthesized images. To begin with, in order to quantize the geometric distor-
tions, the image is decomposed into wavelet subbands via DWT. To be followed, the 
global sharpness is obtained by calculating the log-energies of the wavelet subbands. 
Finally, image complexity is calculated through a hybrid filter. The overall assess-
ment depends on the normalized result of geometric distortion and global sharpness 
by image complexity. This method has made remarkable improvements on exist-
ing NR image QA models, and proved to be especially adaptive for 3D-synthesized 
images. The implementation details of the proposed model mentioned above will be 
elaborated in the following paragraphs.
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Detection and Quantization of Geometric Distortion 

In order to accurately detect geometric detection, we utilize the Cohen-Daubechies-
Feauveau 9/7 filter [38] on 3D-synthesized images to decompose the image into low-
frequency (LL) and high-frequency (LH,HL,HH) subbands as shown in 
Fig. 3.7. To further extract the edges of the geometric distortion from LL subband, it 
needs to be binarized as shown in Fig. 3.7f. Then we utilized the Canny operator [39] 
to detect the edges of the binarized LL (BLL) subband as well as high-frequency 
wavelet subbands through Eq. (3.26) 

Csub = Canny(sub), (3.26) 

in which sub denotes the BLL, HL, LH, and HH subbands. 
It can be seen from Fig. 3.7g–j that the edges of BLL subband only consists 

of geometric distortion edges, while the high-frequency subbands’ (HL, LH, and 
HH) edges are a mixture of both 3D-synthesized view itself and geometric distor-
tions. Therefore, digging into the edge similarity between BLL and high-frequency 
subbands can be of crucial importance to calculate how much geometric distortion 
account for the overall effect of DIBR-synthesis images. To simulate HVS, we quan-
tized the geometric distortion from horizontal, vertical and diagonal directions, and 
the similarity between CBL  L  and CHL , CLH  , CHH  is obtained by the functions listed 
below 

SH = 
1 

L 

L⎲

l=1 

( 
2CBL  L  (l) · CHL  (l) + ε 
CBL  L  (l) + CHL  (l) + ε 

), (3.27) 

SV = 
1 

L 

L⎲

l=1 

( 
2CBL  L  (l) · CLH  (l) + ε 
CBL  L  (l) + CLH  (l) + ε 

), (3.28) 

Fig. 3.7 An example of 3D-synthesized image and its wavelet subbands. a 3D-synthesized image, 
b–e are LL, HL, LH, and HH subbands of (a) respectively, f is LL subband after binarization, g–j are 
edge detection results of the subbands (f) and (c)–(e) (©[2021] IEEE. Reprinted, with permission, 
from [15].)
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SD = 
1 

L 

L⎲

l=1 

( 
2CBL  L  (l) · CHH  (l) + ε 
CBL  L  (l) + CHH  (l) + ε 

), (3.29) 

where L stands for the number of pixels in an image and l is the index of pixels, ε is 
a constant in case the denominator is zero. The final quantization that combined the 
calculation results above is as follows: 

Q1 =
⎲

(αi · Si ), (3.30) 

where i = H , V and D; αi denotes the weight coefficient used to adjust the propor-
tions of similarities in each direction. 

Evaluation of Global Sharpness 

The process of 3D-synthesis also brings inevitable image quality problems like blur-
ring which mainly happens around the transitions of background and foreground. 
Thus, we also evaluated the factor of sharpness. Unlike some mainstream methods 
[25, 42] that only analyze high-frequency information of the blurred images (for blur-
ring mainly occurs in the high-frequency part), we took low-frequency information 
into consideration by imposing different weights to the log-energies of low-frequency 
and high-frequency subbands. 

There are two steps to evaluate global sharpness, to begin with, we calculate the 
log-energy at each wavelet subband, and the major operation follows the equation 
below: 

EXY  = log10(1 + 
1 

L 

L⎲

l=1 

XY  2 (l)), (3.31) 

where XY  refers to LL, LH, HL, or HH subband; l is the pixel index; L denotes the 
number of wavelet coefficients in each subband. Furthermore, we measured the total 
logarithmic energies of all decomposed wavelet subbands via Eq. (3.32). Q2 is used 
to evaluate the global sharpness of 3D-synthesized images, and HH subband plays 
a more important role in blurring, the parameters are arranged as a = 0.5, b = 0.3, 
and c = 0.2. 

Q2 = a · EHH  + b · EHL  + ELH  

2
+ c · ELL  . (3.32) 

Image Complexity Estimation 

Image complexity is of key importance when assessing 3D-synthesized image qual-
ity, for it relates to the effects of gaze direction and spatial masking. Generally 
speaking, higher-complexity images contain more high-frequency information com-
pared to low-complexity images, such as edges and textures. A hybrid filter is used to
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estimate image complexity by combining AR filter and BL filter, since the AR filter 
performs well on texture regions and on the contrary, BL filter is more satisfied in 
edge-preserving function. The hybrid filter plays as a tradeoff towards better results 
on the two aspects. The hybrid filter is defined as follows: 

ŷi = 
φn(xi ) ̂a + kφn(xi )b 

1 + k 
, (3.33) 

where xi denotes the i th pixel value, while φn(xi ) contains the n pixels of the neigh-
borhood of the center xi . â is a set of AR parameter vector, calculated by model 
[24], in the form of (a1, a2, . . . ,  an)T . This gives a description of predicted image 
result by AR filtering. In addition, b is a set of coefficients produced by BL filtering, 
which followed the assignment in [40]. This term provides the prediction image by 
BL filter, which gives more explicit results around luminance edges than AR ones. k 
adjusts the proportion of the responses of AR and BL filters, here we define k = 9. 
The specific process and parameter settings of parameter k can be seen in [41]. 

The final image complexity is estimated as follows: 

Q3 = −
∫

H
' 
(ρ)logH

' 
(ρ)dρ, (3.34) 

where H
' 
(ρ) represents the probability density of grayscale ρ in the error map between 

the synthesized image and its filtered result, i.e., δyi = yi − ŷi ; yi is the value of pixel 
xi . 

Estimation of image QA 

From the metrics above, we can integrate geometric distortion (Q1), global sharpness 
(Q2) and image complexity (Q3) to form a overall quality score. Higher Q1 implies 
more severe geometric distortion of the image, and higher Q2 value denotes higher 
degree of global sharpness. To eliminate the interference of the variety of image 
content, image complexity Q3 is induced to normalize the quantized geometric dis-
tortion and global sharpness, based on aforementioned consideration, we defined 
overall quality score function: 

Q = 
Q1 + p · Q2 

1 + p
· 1 

Q3 
, (3.35) 

where p is a normalized parameter which adjusts the contributions of Q1 and Q2. 
Lower Q indicates better quality for having less geometric distortions and global 
sharpness. The overall architecture of proposed 3D-synthesized image QA metric is 
shown in Fig. 3.8.



3.2 Methodology 75

Fig. 3.8 The overview of the proposed QA model of 3D-synthesized images 

3.2.3 Structure Variation-Based NR 3D-Synthesized Image 
QA 

There are two stages to DIBR synthesis: First, the aim of warping is to map the 
reference view to a 3D Euclidean space by the supervision of depth information. Then, 
the target view is generated from the 3D Euclidean space through inverse mapping. 
These operations may produce geometric displacement in the form of the disoccluded 
regions. DIBR usually introduces blur, discontinuity, blocking, stretching, and other 
effects that reduce the quality of the synthetic images. Many work has been done 
to solve these problems [6–8]. These methods only consider the changes from the 
global scope and ignore the effect of local distortion on image quality. Here, we will 
introduce two NR image QA models that consider both local and global structural 
changes. 

Fusing Local and Global Measures for NR 3D-Synthesized Image QA 

The measurement of geometric distortion and global sharpness are considered as the 
key problems to evaluate the quality of synthetic images. In the proposed method, the 
geometric distortion is measured by three methods: disoccluded region evaluation, 
stretching strength evaluation, and global sharpness evaluation. Figure 3.9 systemat-
ically describes the framework of the proposed approach. This method is better than 
all competing methods except APT in terms of effectiveness, but greatly exceeds 
APT in terms of implementation time. The implementation details of the proposed 
model mentioned above will be elaborated in the following paragraphs. 

Disoccluded Region Evaluation 

Digital images have complex structures and textures, and there is a strong correlation 
between pixels, which means that one pixel is very similar to its neighbors within a 
local region. We try to detect the disoccluded regions by analyzing the similarity of
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Fig. 3.9 The framework of the proposed scheme 

local images. Figure 3.10 provides a brief illustration about the analysis procedure. 
In the image, the light blue circle refers to the central pixel, while the rest of the 
circles are its adjacent pixels. In this part, local binary pattern (LBP) is used to 
measure local correlation. Although some work has used LBP to solve image QA 
problems [42–45], there are inherent differences compared to this work. Comparing 
with others, this method only uses LBP to the disoccluded region. First of all, we 
encode the surrounding pixels. According to different positions, the gray value of the 
central pixel I (nc) is taken as the threshold value, and the gray value of the adjacent 
8 pixels  I (ni ) is compared with it. If the surrounding pixel value is greater than or 
equal to the central pixel value, the position of the pixel is marked as 1, otherwise, 
it is marked as 0. These comparison results can be encoded using binomial factor 2i 

according to their location: 

ΛP = 
P−1⎲

i=0 

s(I (ni ), I (nc)) · 2i . (3.36) 

LBP only has gray level invariance, but lacks good object transformation prop-
erty, i.e., the rotation invariance. To compensate for this, we use a rotation invariant 
uniform LBP, which are defined as follows:
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Fig. 3.10 The process of measuring the relationship between a pixel and its neighboring pixels 
(©[2021] IEEE. Reprinted, with permission, from [13].) 

Λriu2 
P = 

⎧ 
⎪⎨ 

⎪⎩ 

P−1Σ

i=0 
s(I (ni ), I (nc)) , if μ(ΛP ) ≤ 2 

P + 1 , otherwise 
(3.37) 

where μ is the number of bitwise transitions. 
Generally speaking, LBP clarifies different natural images or patches by analyz-

ing texture information, and can be used as an effective tool to distinguish natural 
and disoccluded image patches. In addition, LBP can effectively detect disoccluded 
regions. After the LBP map is obtained, the disoccluded region map Dr can be 
obtained by a binary operation: 

Dr =
⎧
0 , if Λpriu2 = 8 
1 , otherwise 

, (3.38) 

where value 0 represents the dissociation region. After getting the disoccluded region 
map Dr , our next concern is how to use it to estimate image quality. In this part, we 
simulate the benchmark work (that is SSIM) and define a quality evaluator for the 
disoccluded region. The quality (Q1) of the synthesized image in terms of measuring 
the disoccluded region can be calculated as follows: 

Q1 = 
1 

K 

K⎲

k=1 

( 
2Dr (k) · DR(k) + ε 
Dr (k)2 · DR(k)2 + ε 

) (3.39)
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where k indicates the pixel index, K is the total number of pixels in an image, and is a 
small positive constant to ensure the stability. All the values of Dr are one. Equation 
(3.39) can be rewritten as follows: 

Q1 = 
1 

K

⎲

k∈K0 

2Dr (k) 
Dr (k)2 + 1

︸ ︷︷ ︸
Non−disoccludedregion  

+ 
1 

K

⎲

k∈K1 

2Dr (k) 
Dr (k)2 + 1

︸ ︷︷ ︸
Disoccludedregion  

(3.40) 

K0 is the pixel set of the non-disoccluded region, K1 is the disoccluded region, 
K = K 0 + K 1. We further simplify the equation: 

Q1 = 
1 

K

⎲

k∈K0 

2 · 1 
12 + 1 

+ 
1 

K

⎲

k∈K1 

2 · 0 
02 + 1 

= 
K0 

K 
= 1 − 

K1 

K 
(3.41) 

From this equation, we can see that the value of Q1 does not require reference 
information. In addition, the synthesized quality Q1 depends on the area K1 of the 
disoccluded region. K1 gets bigger as Q1 gets smaller. 

Stretching Strength Evaluation 

The stretching caused by the failure of in-painting operation mainly occurs on the 
left or right side of the image. A case in point is given in Fig. 3.11a. In this part, we 
propose a simple and effective measurement to evaluate the stretching strength. 

First, given an image, we calculate its LBP map. Then, the LBP mapping is 
binarized to obtain the coarse stretch region map: 

Ds =
⎧
1 , if Λpriu2 = 8 
0 , otherwise 

. (3.42) 

It can be seen that in Fig. 3.11b, the outline of the stretch region is mainly drawn 
by the white regions. In natural regions, almost all elements are zero. From this 
observation, the average values of the elements in each column are calculated to 
detect fine stretch regions. As shown in Fig. 3.11c, the average value of elements in 
the stretched region is very high compared with the natural region. After capturing 
the stretching region, our next concern is how to evaluate its strength, which indicates 
its impact on perceptual quality. Since the HVS is more sensitive to structures, we 
calculate similarity in the gradient domain. Given a stretching region SI , its gradient 
can be calculated as 

Gs =
/

(SI ⊗ px )2 + (SI ⊗ py)2, (3.43) 

where py and px are filter the kernel in vertical and horizontal directions, respectively. 
Through the above Eq. (3.43), we can also obtain the gradient map Gn of the adjacent



3.2 Methodology 79

(a) (b) (c) 

Fig. 3.11 Illustration of the stretching region. a One typical image contains a stretching region. 
Two sub-regions are highlighted by colorful rectangles: b Coarse stretching region map. c Average 
element values of each column in (b) (©[2021] IEEE. Reprinted, with permission, from [13].) 

natural region with the same size as the stretching region. Then, the similarity between 
them is estimated: 

Sg = 
2Gs · Gn + T2 
G2 

s + G2 
n + T2 

, (3.44) 

where T2 = 0.01. Finally, the standard deviation Q2 of Sg is used to evaluate tensile 
strength. 

Q2 =
⎾||⎷ 1 

J 

J⎲

j=1 

(Sj − Sg)2, (3.45) 

where Sj is the j th element in Sg , which including J elements. 

Global Sharpness Evaluation 

In the quality evaluation of 3D-synthesized images based on DIBR, besides disoc-
cluded region and stretched region, sharpness is another factor that cannot be ignored. 
Here, we provide a simple and efficient method to measure the global sharpness 
of synthesized images. The key strategy of this method is the estimation of self-
similarity between scales. Given an image I0, let’s just get a condensed version I1 of 
it by a down sampling operation with factor 2. Then there’s global sharpness (Q3) of  
I0 is evaluated by estimating its self-similarity, i.e., measuring the standard deviation 
distance between I0 and I1: 

Q3 = 
1 

N 

N⎲

n=1

/
|δ2 0,n − δ2 1,n|, (3.46) 

where N represents the total number of non-overlapping blocks. δ2 0,n and δ
2 
1,n rep-

resent the standard deviation of the i th given image and the downsampling image, 
respectively.
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Estimation of Quality Score 

In the previous part we obtained the quality scores of the disoccluded region Q1, 
stretching strength Q2, and global sharpness Q3. It can be seen from the above 
formulas that these scores remain monotonic with the perceived quality. So we can 
effectively integrate these three quality scores linearly: 

Q = α1 · Q1 + α2 · Q2 + α3 · Q3, (3.47) 

where α1, α2, and α3 are used to allocate the relative contribution of the quality 
scores of each part. 

NR 3D-Synthesized Image QA by Local Structure Variation and Global 
Naturalness Change 

Yan et al. proposed an effective NR QA algorithm for 3D-synthesized images based 
on local structure variation and global naturalness change [14]. In terms of local varia-
tion, Gaussian derivative is used to extract structural features and chromatic features. 
Then, LBP operator is used to encode the two feature maps. Finally, quality-aware 
features are calculated through these feature maps to measure the local structure 
distortion and chromatic distortion. In the global change aspect, the luminance map 
is calculated by local normalization, and then the naturalness of the 3D-synthesized 
image is represented by the fitted Gaussian distribution parameters. After obtaining 
these features, random forest regression is used to train quality prediction models 
from visual features to human ratings. It demonstrates the superior performance of 
the proposed metric against state-of-the-art image QA metrics and the effectiveness 
of the proposed metric by combining local and global features. The implementation 
details of the proposed model mentioned above will be elaborated in the following 
paragraphs. 

Structure Features 

It is shown that the local structure of an image can be represented by local Taylor 
series expansion from local Gaussian derivative [46]. The Gaussian derivative of an 
image I is defined as follows: 

I σ 
xm yn = 

∂m+nGσ (x, y, σ) 
∂m x∂n y

∗ I (x, y), (3.48) 

where m and n with non-negative values are the orders of derivatives along the x 
(horizontal) and y (vertical) directions, respectively. ‘∗’ is the convolution operation. 
The Gaussian function Gσ (x, y, σ) with standard deviation σ can be defined as 
follows:
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Gσ (x, y, σ) = 1 

2πσ2 
exp

⎬
− 
x2 + y2 

2σ2

⎫
. (3.49) 

Inspired by researches [47] and [48], the second-order Gaussian derivative is used 
to extract the structural features. First, we calculate the resulting matrix J σ 

m,n obtained 
by the Gaussian derivative when 1 ≤ m + n ≤ 2: 

J σ 
m,n = [J σ 

m,n(x, y)|(x, y) ∈ I, 1 ≤ m + n ≤ 2]. (3.50) 

Then, we can calculate the uniform local binary pattern (ULBP) value of each 
pixel of J σ 

m,n , and use local rotation invariant ULBP operator [47] to achieve its 
rotational invariability. Applying the absolute value of J σ 

m,n , we calculate the feature 
maps SW s m,n: 

SW s m,n = LBPriu2 
D,E (|J σ 

m,n|), (3.51) 

where s ∈ {s1, s2, s3, s4, s5}, LBP  is the LBP operator, riu2 represents uniform 
patterns with rotation invariant. D and E are the number of adjacent elements and 
their radius, respectively. After setting D = 8, E = 1 and 1 ≤ m + n ≤ 2, we can 
obtain five feature maps, they are SW s1 1,0, SW s2 0,1, SW s3 2,0, SW s4 1,1 and SW s5 0,2. Eq. (3.51) 
describes the relationship between the central pixel and adjacent pixels of a local 
region. Complex degradation caused by different distortion types can be captured 
effectively by using local detail information. 

LBP can detect differences between the center pixel and its neighbors. It cannot 
accurately obtain magnitude information. Using LBP to encode differences among 
adjacent pixels weakens LBP’s ability to distinguish local changes. However, that are 
highly correlated with the visual quality of the image. Therefore, we add the pixels 
in SW s m,n with the same LBP pattern to obtain a weighted histogram, which can be 
defined as 

Hs (k) = 
N⎲

i=1 

ws 
i (x, y)Γ (SW s m,n(x, y), k), (3.52) 

Γ (x, y) =
⎧
1 , x = y 
0 , otherwise 

, (3.53) 

where N represents the number of image pixels; k represents the possible LBP index, 
k ∈ [0, D + 2]; ws 

i denotes the weight assigned to the LBP value. According to the 
intensity value of LBP map, we aggregate the pixel values in Gaussian derivative 
[46], fuse LBP map with Gaussian derivative, and obtain the feature vector by nor-
malization. Through these operations, image regions with high contrast changes can 
be enhanced.
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Chromatic Features 

Two color photometric-invariant descriptors are used on the first-order Gaussian 
derivative of the chromatic channels [49, 50] to extract the chromatic features. Here, 
the first part of chromatic features representing hue information is defined as 

χ1 = 1 

(O1)2 + (O2)2 
, (3.54) 

where O1 = R−G√
2 
, O2 = R+G−2B√

6 
. R, G, and B represent red, green, and blue channels 

in RGB color space, respectively. 
The operator LBPriu2 is used to extract feature map CW c1 m,n on χ1, where 

CW c1 m,n = LBPriu2 
D,E (χ1). The feature maps are converted into feature vectors by the 

following formula: 

Hc1 
m,n(k) = 

N⎲

i=1 

ωc1 
i (x, y)Γ (CW c1 m,n(x, y), k), (3.55) 

where ωc1 
i is the weight assigned to the LBP value corresponding to feature map 

CW c1 m,n . 
The second feature is the color angle χ2 [49], defined as follows: 

χ2 = arctan 
φ 
ψ 

, (3.56) 

where 

φ = 
R × (B ' − G ') + G × (R' − B ') + B × (G ' − R')
⎷
2(R2 + G2 + B2 − R × G − R × B − G × B) 

, (3.57) 

and 

ψ = R × ρ + G × δ + B × τ
⎷
6(R2 + G2 + B2 − R × G − R × B − G × B) 

, (3.58) 

R', G ', and B ' are the first-order values of the Gaussian derivatives along horizontal 
direction with R, G, and B channels. And ρ = 2R' − G ' − B ', δ = 2G ' − R' − B ', 
τ = 2B ' − R' − G '. 

Then the operator LBPriu2 is used to extract feature map CW c2 m,n on χ2 where 
CW c2 m,n = LBPriu2 

D,E (χ2). And its corresponding weighted histogram Hc2 
m,n is calcu-

lated as follows: 

Hc2 
m,n(k) = 

N⎲

i=1 

ωc2 
i (x, y)Γ (CW c2 m,n(x, y), k), (3.59)
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where ωc2 
i is the weight assigned to the LBP value corresponding to feature map 

CW c2 m,n . Finally, combining the above two features, a single feature vector represent-
ing the image chroma information can be calculated: 

Hc (k) = [Hc 
m,n|m + n = 1, c ∈ {c1, c2}]. (3.60) 

Note that color features are invariant to accidental effects of scenes (such as shad-
ows) related to luminosity and illumination. Therefore, they are almost unaffected 
by illumination and can convey robust structural information. In addition, image 
distortion caused by independent factors (such as ambiguity) may destroy the image 
structure, but they are not necessarily related to the influence of illumination. 

Image Naturalness 

In a 3D-synthesized view, the loss of brightness may affect naturalness. It is assumed 
that a high-quality 3D-synthesized view looks more natural than a low-quality view. 
We use quality-aware features based on luminance to evaluate the naturalness of 3D-
synthesized view. Considering that the luminance coefficient of natural image obeys 
Gaussian distribution [19], we use the luminance coefficient to compute the natu-
ralness of synthetic view. The definition for luminance coefficient L ' is as follows: 

L(i, j)' = 
L(i, j ) − μ(i, j ) 

σ(i, j ) + 1 
, (3.61) 

where 

μ(i, j ) = 
3⎲

a=−3 

3⎲

b=−3 

ωa,b La,b(i, j), (3.62) 

and 

σ(i, j ) =
⎾||⎷

3⎲

a=−3 

3⎲

b=−3 

ωa,b[La,b(i, j) − μa,b(i, j )]2, (3.63) 

where (i, j ) represents the spatial indices, i ∈ {1, 2, . . . ,  H} and j ∈ {1, 2, . . . ,  W }, 
H and W is the image height and width. ω is a 2D circularly symmetric Gaussian 
weighting function, which is sampled out to three standard deviations and re-scale 
to unit volume, ω = {ωa,b|a ∈ [−3, 3], b ∈ [−3, 3]}. 

Zero-mean general Gaussian distribution (GGD) [47] can also model the lumi-
nance coefficient: 

f (x; α, σ2 ) = α 
2βΓ (  1 

α ) 
exp[−(

|x | 
β 

)α], (3.64) 

where β = α
/

Γ (1/α) 
3/α and Γ (x) = ⎰ ∞ 

0 t x−1e−1dx(x > 0). α affects the shape of 
the distribution, and σ adjusts the variance. We can obtain the two parameters by
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Table 3.1 Summary of features for NR image QA of 3D synthesized views 

fitting the GGD model. The kurtosis and skewness of the luminance coefficients are 
calculated by empirical distribution on five scales, resulting in a total of 20 features. 

In addition, using the difference between the synthesized image and the low-pass 
filter image can calculate the Laplace pyramid image (LPI). The distribution of pixel 
values in LPI can be fitted by a GGD model. The estimated parameters (α, σ2) and 
the kurtosis and skewness of LPI are used as features. A total of 20 quality-sensitive 
features are extracted from 5 scales, respectively. 

Regression Model and Quality Prediction 

The study [26] has shown that when we perceive visual information, there are multi-
scale features in HVS. So, the authors use multi-scale to extract the visual features 
of the image for better representing it. Through feature extraction, they can get a 
310-dimensional feature vector, as shown in Table 3.1, in which 270-dimensional 
features (structure and color) are used for local change, and 40-dimensional features 
(naturalness) are used for global naturalness. Then, the visual quality prediction 
model is trained by RFR [51], and the quality-aware features are mapped to sub-
jective evaluation. In the experiment, the 3D-synthetic view quality database was 
randomly divided into training set and test set for 1000 times, of which 80% of the 
image samples and corresponding subjective scores were used for training, and the 
remaining 20% of the samples were used for testing. 

The framework of the proposed model is shown in Fig. 3.12, which is divided 
into training stage and test stage. In the training phase, quality perception features 
representing structure, color, and naturalness information were extracted, and the 
visual quality prediction model of 3D-synthesized view was trained using RFR. In 
the test phase, we input the features of the test images into the trained RFR model 
to calculate the estimated quality score. 

3.3 Comparison and Analysis of Algorithm Performance 

In this section, we introduce an image database aiming at 3D-synthesized image 
QA and some modern reference-free and reference-based image QA methods. We 
concentrate on comparing and analyzing the performance of the proposed quality
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Fig. 3.12 The framework of the proposed model 

assessment models in this chapter with these methods. The analysis results show that 
the performance of these models in this chapter performs quite well. 

3.3.1 DIBR-Synthesized Image Database 

There are 12 original images and its corresponding 84 DIBR-synthesized images 
on the IRCCyN/IVC DIBR-synthesized database [20]. The 84 DIBR-synthesized 
images were generated by 7 different DIBR algorithms which are represented by 
A1-A6 [52–57] and A7 (warping without rendering). The subjective evaluation of the 
IRCCyN/IVC DIBR database [20] was denoted by mean opinion score (MOS) form 
according to the absolute category rating-hidden reference (ACR-HR) algorithm 
[58]. Every observer used a discrete category rating scale to score the test image. 

3.3.2 Performance Comparison and Analysis 

In order to reflect the models introduced in this chapter validity and superiority, 
we compare the proposed introduced models with the state-of-the-art image QA 
models, which can be divided into five categories in Table 3.2. The first category is 
composed of nine FR image QA models of natural scene images. The second category 
is composed of four RR image QA models of natural scene images. The third category 
is composed of seven NR image QA models of natural scene images. The fourth 
category is composed of eight image QA models of 3D-synthesized images. The 
fifth category is composed of six NR image QA models of 3D-synthesized images.
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Table 3.2 The introduced algorithms with modern developed QA models for both natural and 
DIBR-Synthesized images 

Desiged for Category Abbreviation Full Name Refs. 

Natural image FR PSNR Peak signal-to-noise ratio [60] 

Natural image FR SSIM Structural similarity [2] 

Natural image FR IW-SSIM Information weighted SSIM [3] 

Natural image FR ADD-SSIM Analysis of distortion 
distribution-based SSIM 

[17] 

Natural image FR VSNR Visual signal-to-noise ratio [61] 

Natural image FR FSIM Feature similarity [62] 

Natural image FR GMSD Gradient magnitude standard deviation [83] 

Natural image FR PSIM Perceptual similarity [29] 

Natural image FR MAD Most apparent distortion [63] 

Natural image RR RRED Reduced-reference algorithms [64] 

Natural image RR FEDM Free energy-based distortion metric [65] 

Natural image RR OSVP Orientation selectivity-based visual 
pattern 

[66] 

Natural image RR FTQM Fourier transform-based quality 
measure 

[67] 

Natural image NR NIQE Natural image quality evaluator [68] 

Natural image NR IL-NIQE Integrated local NIQE [69] 

Natural image NR QAC Quality-aware clustering [70] 

Natural image NR NIQMC No-reference image quality metric for 
contrast distortion 

[71] 

Natural image NR ARISM AR-based image sharpness metric [72] 

Natural image NR SISBLIM Six-step blind metric [73] 

Natural image NR BIQME Blind image quality measure of 
enhanced images 

[74] 

DIBR-
Synthesized 

FR VSQA View synthesis quality assessment [6] 

DIBR-
Synthesized 

FR 3DSWIM 3D synthesized view image quality 
metric 

[4] 

DIBR-
Synthesized 

FR Bosc11 – [20] 

DIBR-
Synthesized 

FR MW-PSNR Morphological wavelet peak 
signal-to-noise ratio 

[75] 

DIBR-
Synthesized 

FR MP-PSNR Morphological pyramid peak 
signal-to-noise ratio 

[5] 

DIBR-
Synthesized 

FR LOGS Local geometric distortions and global 
sharpness 

[5] 

DIBR-
Synthesized 

RR MW-PSNR-
RR 

Reduced version of MW-PSNR [76] 

DIBR-
Synthesized 

RR MP-PSNR-
RR 

Reduced version of MP-PSNR [76] 

(continued)
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Table 3.2 (continued) 

Desiged for Category Abbreviation Full Name Refs. 

DIBR-
Synthesized 

NR NIQSV No-reference image quality 
assessment of synthesized views 

[77] 

DIBR-
Synthesized 

NR NIQSV+ No-reference image quality 
assessment method for 3-D 
synthesized views 

[78] 

DIBR-
Synthesized 

NR NRSL No-reference quality assessment using 
statistical structural and luminance 
features 

[79] 

DIBR-
Synthesized 

NR GM-LOG Gradient magnitude map and the 
Laplacian of gaussian response 

[80] 

DIBR-
Synthesized 

NR CLGM Combining local and global measures [13] 

DIBR-
Synthesized 

NR OUT Outliers in 3-D synthesized images [81] 

DIBR-
Synthesized 

NR APT Autoregression plus threshold [10] 

DIBR-
Synthesized 

NR MNSS Multi-scale natural scene statistical 
analysis 

[11] 

DIBR-
Synthesized 

NR Wang et al. – [15] 

DIBR-
Synthesized 

NR Yue et al. – [13] 

DIBR-
Synthesized 

NR Yan et al. – [14] 

When we compare the above modern image QA methods, four commonly used 
metrics, namely PLCC, SRCC, KRCC, and RMSE, are used. The evaluation accuracy 
can be measured by PLCC and RMSE, while the monotonicity of the prediction can 
be found by SRCC and KRCC. A higher value of PLCC, SRCC, and KRCC and a 
lower value of RMSE represent a better quality evaluation methods. The objective 
assessment scores are nonlinearity obtained by PLCC, SRCC, KRCC, and RMSE, 
so we use a logistic function to increase the linearity. We compute the image QA 
scores using these four criteria by the mapping including five parameters as follows: 

f (x) = τ1( 
1 

2 
− 1 

1 + expτ2(x−τ3) 
+ τ4x + τ5), (3.65) 

where τi,i=1,2,3,4,5 represents the fitted parameter; f (x) and x are subjective scores 
and its corresponding objective scores which are assessed by image QA algorithms. 

The performance results of 34 competing image QA techniques are illustrated 
in Table 3.2 for comparison. We find the best-performing model in each category. 
The comparison results of the proposed introduced metrics in this chapter with exist-
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ing image QA algorithms including five categories are presented. By analyzing the 
superiority of these models, we are able to derive some important conclusions as 
follows: 

(1) Those existing image QA algorithms designed for NSIs (in the first cate-
gory), which perform effectively in natural image processing, cannot be adopted in 
DIBR-Synthesized image satisfactorily. We employ four widely employed evalua-
tion criterion to evaluate the performance of these methods, among which SRCC 
is one of the most significant index. From the viewpoint of this index, we analyze 
the performance of FR image QA methods. The most apparent distortion (MAD) 
algorithm [63] performs the best, and the analysis of distortion distribution based 
structural similarity (ADD-SSIM) in second place on SRCC index among nine FR 
image QA models of NSIs. The proposed NR MNSS metric achieves performance 
improvement compared with FR MAD algorithm and gets higher performance gains 
beyond the ADD-SSIM. 

(2) Across four RR image QA metrics, those methods have a visible performance 
degradation. The Fourier-transform-based scalable image quality metric (FTQM) 
methods lead to the optimal results in its personal type from the viewpoint of PLCC. 
However, it is unable to perform better than the introduced methods in this chapter. 

(3) For NR image QA, the blind image quality measure of enhanced images 
(BIQME) method in the third category of image QA metrics leads to the optimal 
results from SRCC, PLCC, and RMSE perspective, respectively, while the value of 
SRCC still does not exceed one of introduced models in this chapter. 

The above methods, including FR, RR, and NR metrics, are designed for natural 
2D images. That maybe explain why they don’t work very well on DIBR-Synthesized 
images. More specifically, those existing algorithms in the first three categories can-
not catch the geometric distortions. And badly, geometric distortions are the predom-
inant artifacts contained in the DIBR-synthesized images. 

(4) The image QA methods in the fourth category are designed for the DIBR-
synthesized images, and they gain better average performance than those designed 
for natural images. For example, the 3DSWIM (not the best algorithm in this cat-
egory) algorithm performs better than all of the algorithms designed for natural 
images except BIQME, and the other methods show the same trend. In spite of this, 
compare with the methods introduced in this chapter, the performance indices of 
those algorithms are not sufficient yet. For instance, as a reduced-reference method, 
the morphological pyramid peak signal-to-noise ratio (MP-PSNR-RR) gets the best 
performance among the image QA models designed for DIBR-synthesized views. 
But values of its PLCC, SRCC, and KRCC are still smaller than the values acquired 
by APT algorithm. For FR image QA, the local geometric distortions and global 
sharpness (LOGS) method obtain the best overall performance as compared with 
other competing image QA algorithms in the first four categories. Furthermore, for 
LOGS, it belongs to FR image QA algorithms, which means it requires complete 
information about the reference synthesized views, but that information is generally 
not accessible in most real application scenarios, which makes it less significant than 
the reference-free image QA models for DIBR-synthesized views.
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(5) Finally, we have validated the NR image QA methods for DIBR-Synthesized 
images. Except for the last five methods introduced in this chapter, the OUT method 
achieves the best performance among the remaining NR methods. Overall, the meth-
ods proposed in this chapter obtain higher performance than almost all other meth-
ods. More specifically, the above-proposed methods achieve inspiringly high value 
of PLCC and SRCC and low value of RMSE, which makes it greater than all image 
QA algorithms considered in the first four categories except for LOGS. As com-
pared with Wang et al. proposed method, although the performance of APT and 
MNSS algorithm leave a slight gap to the Wang et al. proposed method, they are 
still greater than all methods in the first four categories except for LOGS. The index 
values acquired by the method proposed by Yue et al. are not as high as APT or 
MNSS, but it is still greater than most methods in the first four categories. While 
ensuring low implementation time, it still achieves high-performance values. Yan 
et al. proposed method obtains the greatest superiority in the overall 34 image QA 
methods. The method learns from local and global features adaptively to acquired 
quality scores, which lets the method overcome the shortcomings of simple weight-
ing scheme for aggregating local quality scores in current related research. Besides, 
the structure, chromatic, and naturalness features extracted from an image can rep-
resent the local distortion of 3D synthesized views than other existing related works. 
Combining these advantages, Yan et al. proposed method obtains the best values of 
PLCC, SRCC, KRCC, and RMSE, respectively. 

3.4 Conclusion 

3D-synthesized images are the basis of 3D-related technologies such as FVV, 3D 
TV, and so on. In this chapter, we introduce three NR QA models of 3D-synthesized 
images based on NSS, domain transformation, and structure transformation, respec-
tively. Considering that geometric distortion caused by DIBR can seriously damage 
the natural characteristics of images, we first introduce a NSS model based on AR 
and a MNSS model based on two new NSS models for DIBR-synthesized images. 
Secondly, in order to better combine the pixel changes in images with human percep-
tion, we introduce two models based on transform domain to evaluate the quality of 
3D-synthesized images. One model is to extract temporal and spatial features from 
color and depth sequences to represent quality perception features. Another model is 
to evaluate the quality of 3D-synthesized images by calculating the edge similarity 
and logarithmic energy level of wavelet subbands obtained after processing the syn-
thetic image with discrete wavelet transform. Finally, considering that DIBR not only 
introduces local geometric distortion, but also affects global sharpness, we introduce 
two evaluation models from local and global structures. One is to infer the over-
all perceived quality from the similarity between local similarity and model scale. 
The other one evaluates 3D-synthesized images quality based on DIBR by extract-
ing structure, color, and brightness features. Experimental results show that the NR 
3D-synthesized image QA model based on geometric distortion design introduced
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by DIBR is better than the traditional DIBR model. Despite the good performance 
of the measures described, there is still work to be done. In future work, we will 
consider how to effectively evaluate high-quality 3D-synthesized images or videos 
while reducing the complexity of models. 
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Chapter 4 
Quality Assessment of Sonar Images 

4.1 Introduction 

In recent years, sonar has been more and more widely applied in underwater naviga-
tion, ocean exploration and underwater acoustic communication, and so on. Sonar 
images contain much important information such as submarine geomorphology, 
marine life, and wreck debris, which can well reflect underwater scenes acquired 
in relatively dim light. In the aforementioned applications [1, 2], sonar images will 
be transmitted by the underwater acoustic channel (UAC) to users for further anal-
ysis. The UAC is one of the most complicated channels. The reason is that (1) the 
sonar signal takes multiple paths to transfer because of reflections on the surface 
and the bottom of the sea; (2) the UAC itself has instability and random change 
resulting in the loss of information; (3) the bandwidth provided by the current under-
water acoustic communication technology is limited and the link is unstable [3, 4]. 
All these factors can cause distortions such as noise blur and structure degradation 
of the sonar images in the transmission process, reducing the quality of the col-
lected images and affecting the further analysis. Therefore, the sonar image quality 
assessment (SIQA) plays an important role in maintaining the satisfactory quality of 
received sonar images. 

Many image quality assessment (QA) models have been proposed specifically for 
camera-captured natural scene images (CC-NSIs). According to the accessibility of 
reference information, image QA methods can be divided into three categories. The 
first one is full-reference (FR) image QA methods, which can compare the complete 
reference information with the test image to improve the quality score of images [5– 
7]. The second one is reduced-reference (RR) image QA methods, which are further 
categorized into semi-reference image QA methods and partial-reference (PR) image 
QA methods. The quality score of the image can be obtained by comparing the subset 
of the reference images with the test images [8–10]. The third one is no-reference 
(NR) image QA methods, which can assess quality without reference images [11– 
15]. Despite the previously mentioned efforts, the state-of-the-art natural scene image 
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(NSI) QA models are not suitable for assessing sonar images [16]. The reasons can be 
discussed from the following points: (1) CC-NSIs are generated by light reflection, 
while sonar images are formed by converting echo into a digital image; (2) the 
pixels of CC-NSIs have a very high dynamic variation range, however, sonar images 
reflect tiny pixel changes; (3) CC-NSIs are commonly used in human recreation, 
and the aesthetic elements contained in them have attracted more attention, while 
observers pay more attention to the information contained therein as sonar images 
are usually applied to underwater missions; (4) compared with the formation and 
transmission of CC-NSIs, the sonar images collected and transmitted underwater 
have a higher distortion rate due to the harsh environment; (5) CC-NSIs show the 
scene that photographers see, while sonar images show the turbid underwater scene 
that photographers cannot see directly. 

From the perspective of sonar equipment, some SIQA methods are based on 
specific equipment. Considering the application of synthetic aperture sonar (SAS) 
images, [17] calculated the quality of SAS images by measuring the motion of the 
sonar platform, the level of navigation error, and environmental characteristics. In 
[18], an image QA metric was constructed based on the degree of navigation errors. 
From the characteristics of images, a lot of information contained in the sonar images 
is reflected by the structure, which has a great influence on QA of grayscale sonar 
images. In [19], a no-reference sonar image quality metric (NSIQM) was proposed 
to evaluate image quality by measuring the degree of contour degradation between 
the test image and the filtered image. In [4], Han et al. proposed a sparse wave-
plate transformation matrix, which is able to represent the image in the sparsest 
representation while retaining the edge information of the image well. In [20], Zhang 
et al. presented a new SIQA algorithm, which carries out pixel fusion on the extracted 
multi-scale structure. 

In fact, little effort has been devoted to quality metrics of sonar images in accor-
dance with the characteristics of human visual system (HVS). Chen et al. proposed 
four categories of SIQA methods, namely FR SIQA methods, semi-reference SIQA 
methods, PR SIQA methods, and NR SIQA methods. In [24], Chen et al. put for-
ward an FR image QA method which measures the similarity information between 
the distorted image and the reference image from both global and detailed aspects. 
In [25], a RR SIQA method was proposed. It simultaneously considered the features 
of sonar images and the HVS, and used base learners to get the image quality metric. 
In [26], Chen et al. proposed a semi-reference task- and perception-oriented SIQA 
(TPSIQA) method to achieve a better estimation of high-resolution sonar images’ 
utility quality. In [27], a no-reference contour degradation measurement (NRCDM) 
for SIQA was designed. For evaluating the performance of those QA models, we also 
compared them with state-of-the-art competitors using four typically used metrics, 
namely Pearson linear correlation coefficient (PLCC), Spearman rank correlation 
coefficient (SRCC), Kendall rank correlation coefficient (KRCC), and root mean 
square error (RMSE). 

The organization of this chapter is arranged as below. Section 4.2 introduces 
a sonar image quality database (SIQD) in detail and the modeling process of four 
types of SIQA models, namely the FR SIQA, the semi-reference SIQA, the PR SIQA,
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and the NR SIQA. Section 4.3 illustrates the comparison of the state-of-the-art QA 
methods of sonar images. Section 4.4 finally draws the conclusion and provides the 
future work. 

4.2 Methodology 

In this section, we first present a sonar image database named SIQD, and then intro-
duce some SIQA methods. We divide these SIQA methods into four categories 
according to the accessibility of reference information, namely FR SIQA methods, 
semi-reference SIQA methods, PR SIQA methods, and NR SIQA methods. Specif-
ically, we first introduce an FR image QA method, which measures the similarity 
information between the distorted image and the reference image from both global 
and detailed aspects. Second, we illustrate two RR SIQA methods that simultane-
ously consider the features of sonar images and the HVS. One of them uses base 
learners to get the final quality metric. The other method utilizes a watermarking 
strategy that replaces the auxiliary channel and generates quality scores combining 
information, comfort, and structural similarity (SSIM). Finally, an NR SIQA method 
is introduced to judge the quality of sonar images from the degree of contour degrada-
tion. We compare and analyze their performance with the typical methods by indices 
of PLCC, SRCC, KRCC, and RMSE. 

4.2.1 Full-Reference QA of Sonar Images 

With the development of underwater detection technology, more and more sonar 
images are used to analyze underwater scene information. The distortion often occurs 
during the formation and transmission of sonar images. In order to ensure that the 
images contain sufficient information, we need to evaluate the quality of the captured 
image. The FR image QA method is introduced in this part, which can compare 
the complete reference information obtained with the test image. FR image QA, 
as a method with the longest research time, has the advantages of high accuracy, 
strong robustness, and low operation difficulty. To the best of our knowledge, the 
establishing turbid underwater image quality dataset is still at an initial stage. This 
part mainly introduces a sonar image database created by Chen et al. [16] and the 
sonar image quality predictor (SIQP) method. 

The Sonar Image Quality Database 

The SIQD database contains 840 images, each of which is an 8-bit grayscale image, 
and has the same fixed resolution. Among them, 800 images are test images, and 
their distortions from the actual compression coding and image transmission process.



98 4 Quality Assessment of Sonar Images

(a) (b) (c) 

Fig. 4.1 Examples of sonar image quality database (©[2021] IEEE. Reprinted, with permission, 
from [24, 25, 27].) 

The remaining 40 images captured by various sonar are reference images. Underwater 
life, shipwrecks, seabed, and other scenarios are covered in the database. In addition, 
it also includes the existence of target (EOT) information in each image to indicate 
whether the target is present in the subjective opinion of the sonar image. Figure 4.1 
shows several sample diagrams of the database. The SIQA methods mentioned in 
this chapter are all experimented on this database. 

In actual scenes, every transfer chain is the main source of errors and perceptual 
distortion. So the source compression before transmission and packet loss during 
transmission need to be considered when building the database. The SIQD database 
uses set partitioning in hierarchical trees (SPIHT) [21] and ComGBR [22] to generate 
compressed images. It also simulates packet loss by making imitated bit errors on 
coding streams of two aforementioned compression coding methods. The bit error 
information is collected according to the recent exploits about UAC. We divide each 
distortion into four or five levels to produce 20 distorted images from a single pristine 
image. 

Subjective SIQA for Underwater Acoustic Transmission 

The single stimulus with multiple repetitions method described in [23] is adopted in 
the SIQD database. All the images in the database are divided into 20 groups, and 
each group has 42 images, including reference images and distorted images. The 
same image does not appear twice in a row. In order to obtain a stable result, each 
audience evaluates the quality of the same image at two different stages. The sequence 
of images displayed at each stage is different. The score of the image is calculated 
by averaging the data from the two stages. In addition, each session consists of two 
presentations. The first one shows five different images from the group of 42. The 
second presentation is composed of the above 42 images awaiting subjective ratings 
and 5 images with repeated rejections. As viewing sonar images requires certain 
prior knowledge, the 25 selected viewers are all engaged in the UAC field. They are
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asked to take subjective tests based on their viewing habits. When the target in the 
image can be clearly seen, the observer can use the “with target” tag to mark the 
image. When the target cannot be recognized or does not exist, the observer can use 
the “without target” tag to mark the image. 

The marking effort metrics above reflect the EOT metrics. In order to test the label 
with the largest probability of image selection, the EOT can be defined as follows: 

EOT  = arg max 
L 

PL (i ), (4.1) 

where i denotes the test image. PL (·) is the proportion of viewers using the label 
L to mark image i . It approximates the label L of image I . In addition to the EOT, 
the mean opinion score (MOS) of the image can also be utilized as an indicator to 
evaluate the image quality. It shows the visual perception of each viewer about the 
test image. 

Objective SIQA for Underwater Acoustic Transmission 

Chen et al. presented a new objective sonar image quality predictor. It can predict 
the image quality of sonar transmitted in harsh UAC based on the sonar image fea-
tures from statistical information and structural information [24]. In this part, we 
will introduce the SIQP method from both global and detailed aspects. In the global 
aspect, we extract the similarity of the local entropy map between the distorted image 
and corresponding reference image as statistical information. In the detailed aspect, 
we extract the similarity of edge map between distorted image and corresponding 
reference image in the salient region as structural information. Finally, the sonar 
image quality can be predicted by integrating statistical information and structural 
information. Compared with the traditional QA model, the proposed SIQP has a 
better performance. The framework of this method is shown in Fig. 4.2. 

Statistical Information Extraction 

The formation and transmission principles of sonar images are shown in Fig. 4.3. Due  
to the uncertainty of the sonar object, we can model the object as a random source 
and its reflected echo as the output of the random source according to the information 
theory [28]. The amount of information sent by a random source will increase as its 
uncertainty increases. Entropy can measure the disorder degree of random source 
information. If the distortion does not occur during transmission, the entropy of the 
received graph is equal to the information contained in the object. Otherwise, the 
entropy of the received image is not consistent with that of the original object. In other 
words, the distortion will add some useless information or reduce useful information. 
Most of the existing algorithms based on image entropy regard image entropy as a 
statistical feature [29–33]. These methods ignore the characteristics of sonar images



100 4 Quality Assessment of Sonar Images

Fig. 4.2 Block diagram of the proposed SIQP metric 

Fig. 4.3 The formation and transmission principles of sonar images 

in the design. In order to evaluate the quality of sonar images effectively, we first 
extract the local entropy map containing statistical information about sonar images. 

Some studies have shown that the HVS can recognize targets through feature 
detection and combination [34]. When objects are packed too closely together, several 
of their features tend to get jumbled up. The phenomenon of “crowding” occurs. 
Usually, most of the human vision field is crowded, except for a central “uncrowded 
window”. At a specific viewing distance, only the local area of the “uncrowded 
window” can be clearly distinguished, while the area far away from it cannot be 
distinguished. We have to move our eyes and place our window on an object outside 
the window so that we can capture information outside the window [35]. Based 
on these, we apply local entropy in the SIQP method to measure the amount of 
information in the local area. 

In the image block of size (2m + 1) × (2m + 1), the local entropy of its central 
position (x, y) is defined as follows: 

EntI (x, y) = −  
255Σ

i=0 

di logdi , (4.2) 

where di is the gray-level distribution of the image block. m can be any number of 
window sizes, and its value is related to the content and resolution of the sonar image. 
When m = 4, the results show the best performance. This equation distributes the
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output entropy to the center position. So we can move the region of size (2m + 1) × 
(2m + 1) pixel by pixel to the entire image to get the local entropy map. Then we 
use a feature mask to mark key positions, which is implemented by the edge detector 
followed by the dilation operation. The feature mask is defined as 

Mr (x, y) = hs ◦ Edger , (4.3) 

Md (x, y) = hs ◦ Edged , (4.4) 

where Edger is the result of edge detection on the reference image, and Edged is 
the result of edge detection on the distorted image. hs denotes a structural element, 
and “◦” is the AND operation between the structural element and the binary edge 
map. Based on the local entropy and feature mask, we can obtain the mask entropy 
maps ∧Ent  Ir and ∧Ent  Id for the reference image Ir and the distorted image Id . The  
specific expressions are as follows:

∧Ent  Ir (x, y) = EntIr (x, y) · Mr (x, y), (4.5)

∧Ent  Id (x, y) = EntId (x, y) · Md (x, y). (4.6) 

As shown in Fig. 4.4, (a) is the reference image, (b)–(e) are four distorted images. 
(f)–(j) and (k)–(o) are the corresponding local entropy mapping and feature mask, 
respectively. It can be seen from the above images that the local entropy map of the 
reference image is in an ordered state with clear edges. However, when the image 
distortion occurs, the image changes from the ordered state to the disordered state 
[36]. This means that the change of entropy caused by distortion can affect the 
extraction of useful information. When the quality of the sonar image is lower, the 
information represented by the local entropy map is more chaotic. 

Finally, we can use∧Ent  Ir and∧Ent  Id to derive the similarity between the entropy 
map of the reference image and the distorted image. The similarity of the global 
information of the image can be given by 

Ŝ(x, y) = 
2∧Ent  Ir (x, y) ·∧Ent  Id (x, y) + a1
∧Ent  

2 

Ir (x, y) +∧Ent  
2 

Id (x, y) + a1 
, (4.7) 

where a1 is specified as a small constant in order to avert instability when
∧Ent  

2 

Ir (x, y) +∧Ent  
2 

Id (x, y) is very close to zero. It is easy to overlook the small 
changes of information in the information clustered area since they cannot affect the 
extraction of most information in the high entropy image block. For an image block 
with low entropy, the small information changes will be easily detected. Because they 
account for a large percentage of the total information, that is, they have more influ-
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(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 

(k) (l) (m) (n) (o) 

Fig. 4.4 a is a reference image, b–e are four distorted images, f–j represent the local entropy graphs 
corresponding to sonar images a–e, k–o represent the feature masks corresponding to sonar images 
a–e; b is a distorted image with MOS value of 61.31, c is a distorted image with MOS value of 30.4, 
and d is a distorted image whose MOS value is 57.15 (©[2021] IEEE. Reprinted, with permission, 
from [24].) 

ence on the extraction of information in this block. The a1 is revised in consideration 
of visual masking: 

a1 = K ∗ min(EntIr , EntId ), (4.8) 

where the value of K should be set within a reasonable range, otherwise the degree 
of image distortion may be overestimated because of visual masking. Some studies 
have shown that the reasonable value range of K is between 40 and 90, and the 
performance difference caused by the change of K value is very small. Specific 
theoretical analysis can be referred to in [6]. 

Structural Information Extraction 

We have used the entropy of images to measure statistical information from the global 
perspective in the above-mentioned method. Structural information plays a vital role 
in quantifying image quality when considering the HVS features. For high-quality 
sonar images, HVS tries to extract global information. For low-quality sonar images, 
HVS pays more attention to structural information. The contour of the main object 
in the image can also be regarded as a kind of structural information, which can
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Fig. 4.5 Examples of the most active regions in different sonar images (©[2021] IEEE. Reprinted, 
with permission, from [24].) 

be extracted by edge mapping. In order to be closer to the HVS features of sonar 
images with low quality, we combine the method based on edge with the local entropy 
method mentioned above. 

The first step of this approach is to extract salient regions. In most cases, active 
areas containing important information are more salient than inactive areas. Here, 
image activity measurement (IAM) is used to detect the active area of a sonar image 
[37]. The activity of an image block I (represented by I AM0) with the size of m × n 
is defined as 

I AM0 = 1 

m × n
[ 
m−1Σ

i=1 

nΣ

j=1 

|I (i, j ) − I (i + 1, j )| 

+ 
mΣ

i=1 

n−1Σ

j=1 

|I (i, j ) − I (i, j + 1)|]. 
(4.9) 

The sonar image is divided into k1 × k1 blocks, represented by I AM(b1), 
I AM(b2), …,  I AM(bn), respectively. I AM(bn) can be computed by Eq. (4.9). 
bi represents the image block (i = 1, 2, . . . ,  n) and n is the number of image blocks 
in the sonar image. I AM(·) denotes the active operator that evaluates I AM0. Con-
sidering the content and resolution of the selected sonar image, we set k1 to 64 for 
the best results. 

The most active areas in different sonar images are highlighted in Fig. 4.5, includ-
ing swimmers, aircraft wreckage, and ship wreckage. The Canny edge detector is 
utilized for edge mapping extraction of the most active image block blm . m refers 
to the block with the largest I AM0 value. The edges of the original sonar image 
and the contaminated version are represented as Er = Edgem r and Ed = Edgem d , 
respectively. The SIMM can be defined as follows:

∧Edge(x, y) = 
Er (x, y)&Ed (x, y) + a2 
Er (x, y)∥Ed (x, y) + a2 

, (4.10)
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Fig. 4.6 Examples of activity maps for different sonar images (©[2021] IEEE. Reprinted, with 
permission, from [24].) 

where a2 is the small constant to avoid instability as the denominator goes to zero. 
Er (x, y) and Ed (x, y) are logical mapping. “&” represents logical AND, and “||” 
is logical OR. 

Feature Integration 

In this part, we first introduce the pooling method based on saliency to obtain two 
feature parameters. And then a quadratic polynomial model is established to integrate 
the extracted features. 

Salient areas should be given more attention, since the HVS is more likely to 
be attracted to salient features. In this method, the image activity theory is used to 
reflect the saliency of images. It is deduced that the saliency level of pixels in the 
same type of window is very similar. The activity operator is applied to each image 
block with the size of k2 × k2. The  I AM0 value of the block is assigned to each pixel 
in the block as its activity. Then the I AMmap of the activity map of the image can be 
obtained. k2 is equal to 4 here. The normalized activity map I AMmap can be used as 
the weight function of the feature pool: 

I AMmap(x, y) = I AMmap(x, y)Σ
x

Σ
y 
I AMmap(x, y) 

. (4.11) 

The activity diagram of Fig. 4.5 is shown in Fig. 4.6, where brighter pixels rep-
resent higher activities. The normalized activity graph is used to calculate statistical 
information feature s and structural information feature e, respectively: 

s =
Σ

x

Σ

y 

Ŝ(x, y)I AMmap(x, y), (4.12) 

e =
Σ

x

Σ

y

∧Edge(x, y)I AM '
map(x, y), (4.13)
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where I AM '
map(x, y) is the normalized activity map of the most active block of the 

sonar image. 
In the end, the quadratic polynomial model with the best performance is selected 

from different parameter models. And the extracted features are integrated to generate 
SIQP metrics: 

SI  Q  P  = 
2Σ

n=1

(
α1ns

n + α2ne
n
) + α3se, (4.14) 

where α1n, α2n and α3 are the parameters of quadratic polynomial model, n = 1, 2. 

4.2.2 Semi-Reference QA of Sonar Images 

As mentioned before, image QA methods can be classified into three categories. 
The first type is FR image QA, in which the test image can compare with complete 
reference information. In underwater transmission scenarios, it is difficult to obtain 
a reference map without damage. The use of FR image QA is limited. The second 
type is RR image QA, in which the test image can compare with a subset of reference 
information. To be specific, the RR image QA is divided into two groups, namely 
semi-reference image QA and PR image QA. They are generally inferior to FR image 
QA because of no prior knowledge of the content. The third type is NR image QA, 
in which there is no reference information for the comparison of test images. In poor 
conditions of UAC, it is difficult to obtain complete reference image information. 
Without any reference information, the performance of the metrics designed may 
not be as good as expected. After balancing the accuracy of the assessment with the 
amount of reference data required, we introduce an SR approach. 

Toward Accurate Quality Evaluation of Sonar Images Based on Task 
and Visual Perception 

Some task-oriented image QA methods are proposed to solve the problem of image 
low accuracy and resolution in SAS and forward-looking sonar. For example, the 
image quality of SAS can be represented by the information of sonar platform 
motion, environment characteristics, and navigation error [17, 18]. In underwater 
missions, sonar image-related tasks require analysis and decision-making by pro-
fessionals. Sonar images need to be analyzed and decisions made by professionals. 
So, the perception information is also very important for the evaluation of sonar 
image quality. Perception-oriented SIQA methods have been emerging worldwide 
in [24, 25, 27]. In order to better evaluate the quality of sonar image, the SIQA 
method needs to add perceptual information and also consider the task situation. We 
will introduce a TPSIQA method, whose pipeline is shown in Fig. 4.7.
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Fig. 4.7 The pipeline of the TPSIQA method 

Task- and Perception-Aware Feature Extraction 

The structures of the image can be divided into two parts, the global structure and 
the local structure. The former is very important for the representation of the target 
in the image, while the latter affects the visual effect of an image [27]. Considering 
the requirements of target recognition, features extracted in this method should be 
related to the global structural [38–41]. In addition, according to the content of sonar 
images, we extract contour information as one of the main representations of the 
global structure. 

As one of the main features of global structure, contour is often used as an index 
to evaluate the quality of images. 2D wavelet can be used to capture directional 
information, but its power is limited. To get better results, the methods that use 
contourlet construction to describe the shape and directions of images are proposed 
in [42, 43]. Contourlets provide sets of directionality and geometry. Contours can be 
represented by contourlet transform. The schematic diagram of feature extraction is 
shown in Fig. 4.8. As we can see from the first column, each image has 10 subbands, 
all of which contain reference information on the contours. 

In order to compress the amount of reference information, the statistical character-
istics Enti , the energy fluctuation Ei , and the amplitude magnitude of the contourlet 
transform coefficients ηi are calculated, respectively:
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Fig. 4.8 A general framework for feature extraction 

Enti = 
MΣ

x=1 

NΣ

y=1 

d(ci (x, y))logd(ci (x, y)), (4.15) 

Ei = 1 

MN  

⎛ 

⎝ 
MΣ

x=1 

NΣ

y=1 

log|ci (x, y) − 1 

MN  

MΣ

x=1 

NΣ

y=1 

ci (x, y)| 
⎞ 

⎠ , (4.16) 

ηi = 1 

MN  

MΣ

x=1 

NΣ

y=1 

log|ci (x, y)|. (4.17) 

In the i th (i ∈ [1, 10]) subband, ci (x, y) is the coefficient at position (x, y), and 
d(ci (x, y)) refers to the probability distribution of the coefficients in the subband of 
size M × N . We stack the reference information including Enti , Ei , and ηi , which 
are extracted from the reference image: 

Gr = {Ent1, Ent2, . . . ,  Ent10; E1, E2, . . . ,  E10; η1, η2, . . . , η10}, (4.18) 

ΔG = |Gr − Gd |, (4.19) 

where the above information Gr is obtained from the reference image, and the infor-
mation Gd is extracted from the test image in the same way. It is known from this 
equation that ΔG is related to the quality of distorted sonar image.
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Selective Ensemble Learning 

During the process of model training, not all features are equally important to image 
contour. Using all feature sets will not only make the quality prediction overfitting 
but also reduce the efficiency of the algorithm. Based on the above reasons, we use 
partial subsets of features to generate the base learner ensemble. The feature selection 
and base learner training process are repeated m times. In this part, we exclude 
lower performing base learners using a selection technique. The generalization error 
is employed as the performance indicator to get the corresponding performance 
threshold. Bi (x) is the output of the i th base learner, where i ∈ [1, m]. x follows 
a distribution Ψ (x), and x̃ and Bi (x) are expected and actual outputs, respectively. 
The ensemble output on x is calculated as follows: 

B̂(x) = 
mΣ

i=1 

ωi Bi (x), (4.20) 

where 0 ≤ ωi ≤ 1 and
Σm 

i=1 ωi = 1. The generalization error of the i th base learner 
(eri (x)) and the ensemble on x (∧eri (x)) are defined as follows: 

eri (x) = (Bi (x) − x̃)2 , (4.21)

∧eri (x) = ( B̂i (x) − x̃)2 . (4.22) 

The correlation between the i th and the j th base learners can be defined as 

cori j  =
∫

Ψ (x)(Bi (x) − x̃)(Bj (x) − x̃)dx . (4.23) 

It is easy to prove that cori j  = cor j i  and corii  = eri . Combining Eqs. (4.20)– 
(4.22), ∧eri (x) can be given by

∧er(x) =
(

mΣ

i=1 

ωi Bi (x) − x̃

) ⎛ 

⎝ 
mΣ

j=1 

ω j B j (x) − x̃ 

⎞ 

⎠ . (4.24) 

We make all the base learners with the same initial weights, namely ωi = 1 m (i = 
1, 2, . . . ,  m); we obtain

∧er = 
1 

m2 

mΣ

i=1 

mΣ

j=1 

cori j  . (4.25) 

Then, we examine each base learner to determine whether it should be excluded. 
When testing kth learners, the generalization error after excluding some base learners 
can be defined as
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Fig. 4.9 The general framework of the selective ensemble learning technique

∧er+ = 1 

(m − 1)2 
mΣ

i=1 
i /=k 

mΣ

j=1 
j /=k 

cori j  . (4.26) 

After excluding the kth base learner to make the final ensemble better, ∧er should 
be greater than ∧er+ or equal to ∧er+. We can derive 

erk ≥ 
2m − 1 
m2 

mΣ

i=1 

mΣ

j=1 

cori j  − 2 
mΣ

i=1 
i /=k 

corik . (4.27) 

The threshold Te is defined as 

Te = 
2m − 1 
m2 

mΣ

i=1 

mΣ

j=1 

cori j  − 2 
mΣ

i=1 
i /=k 

corik . (4.28) 

If the generalization error of the base learner is greater than this threshold, the base 
learner will be discarded. After excluding some negative base learners, the output 
of the remaining positive base learners is averaged to achieve the ensemble. Figure 
4.9 depicts a general framework of selective ensemble learning technology. gi is a 
component of ΔG of the features extracted from all training images, i ∈ [1, 30]. 
After selecting the feature set of Gi , the base learners trained by the i th selected 
feature group are screened to obtain the positive base learners, which can be used to 
integrate and realize the TPSIQA methods.
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4.2.3 Partial-Reference QA of Sonar Images 

The poor environment of UAC prevents the receiver from obtaining the reference 
image. However, part of the original image information can be sent to the receiver 
through the auxiliary channel as reference information or as a robust watermark hid-
den in the transmitted image. Based on this, a partial-reference sonar image quality 
predictor (PSIQP) [25] can be used to remit the adverse effects of UAC on the trans-
mission. This method also takes into account the clarity, information, and comfort 
of sonar images. In this part, we will mainly introduce a novel PR SIQA method. 

PR SIQA for Underwater Transmission 

In the first stage of this method, the information and comfort index are extracted to 
reflect the perceived quality of the sonar images. In the second stage, we use the 
structure similarity between the original and distorted sonar images to reflect the 
validity of the sonar images. In the third stage, we utilize the image information, 
the comfort index, and the structure similarity index to predict the image quality. 
For reference signals, most previous efforts have been made to protect them by 
assuming a low data rate error-free auxiliary channel. 

RR Image QA-Based Underwater Transmission System 

In practice, captured sonar images need to be sent to a remote location for fur-
ther analysis by professionals. However, the communication environment of UAC is 
more restricted than that of terrestrial channels, which makes the transmitted image 
quality not always efficient. As Fig. 4.10 shows, a three-bit error in a compressed 
stream can seriously impair image quality. Since not all reference signals can be used 
for underwater transmission, RR image QA is used here to monitor the quality of 
sonar images transmitted through UAC. The application of RR image QA to moni-
tor real-time video quality on wireless communication channels was first proposed 
by [44]. Subsequently, this principle is then extended to different applications [9, 
45]. For underwater transmission systems, RR image QA can be used as a guide 
for post-processing. At the sender side, the reference signal of the sonar image is 
first extracted. Then the image is compressed and transmitted via UAC to a remote 
location for further analysis. At the receiver side, we perform feature extraction on 
the received distorted image. The features extracted from both the original and dis-
torted sonar images are used for sonar image QA methods. Finally, we perform a 
post-processing operation according to the results of the RR sonar image QA method 
[46, 47].
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Fig. 4.10 Framework of a sonar image transmission system based on RR image QA 

Information and Comfort Indices 

In the first stage, we consider two factors: the amount of information extracted from 
the image and the comfort of the image. The information content can be measured 
by image entropy, and the comfort degree is related to some higher order statistics. 
We first calculate the entropy of the sonar image I : 

Q1 = −  
255Σ

i=0 

di log di , (4.29) 

where i is the pixel value, and di represents the gray-level distribution of the sonar 
image I . 

Recent studies in neuroscience have found that higher order statistics are associ-
ated with human “comfort”. Skewness measures the direction and degree of skewness 
of the data distribution. There is a relationship between skewness statistics and glossi-
ness [48]. When the sonar image has negative skewed statistics, it is often brighter and 
smoother than similar images with higher skewness. We use the following definition 
of skewness in the PSIQP metric as the first comfort index: 

Q2 = E

[(
I − E(I ) 

σ(I )

)3
]

, (4.30) 

where σ(I ) is the variance value of the sonar image I . In mathematics, kurtosis 
is used to measure the “tailedness” of the probability distribution of a real-valued 
random variable. In this part, we use kurtosis as the second comfort index, which is 
defined as 

Q3 = E

[(
I − E(I ) 

σ(I )

)4
]

− 3. (4.31)



112 4 Quality Assessment of Sonar Images

We extract the information and the comfort index at the receiver side. They 
are separately integrated into the proposed quality predictor with structural similarity. 

Structural Similarity 

According to the source image category, there are many QA methods. For example, 
there are QA methods based on natural scene images (NSIs), screen content images 
(SCIs), stereo images, and medical images. Generally speaking, different types of 
images acquired in different scenes have different characteristics. For example, 3D 
images have higher dimensional information. Sonar images are mostly grayscale 
images and the structure of sonar images is more prominent, etc. The image QA 
metrics designed according to these characteristics have their own advantages and 
corresponding limitations, so the traditional image QA method may not be suitable for 
sonar images. Therefore, it is very important to design the QA metric for underwater 
sonar image according to the application scenes and image characteristics. 

In sonar images, the structure is the key to target recognition. We take the struc-
ture as the evaluation index of image quality, and utilize edge mapping to represent 
the structure information of the sonar image. Among the existing edge detection 
algorithms, Canny is adopted in PSIQP for its good performance. In addition, con-
sidering the interaction between adjacent pixels, the median filter F is used to reduce 
the influence of “blocking” artifacts. The edge graph E of sonar images extracted by 
the Canny operator can be expressed as 

EF = E ∗ Fn, (4.32) 

where n represents the size of the filter and “∗” is the convolution operator. The 
distribution of EF is represented by a normalized histogram. Here, we select the 
probability of “edges” to represent the normalized histogram of each block. The 
normalized histograms of reference sonar image and distorted image edge maps are 
represented by H f (i) and Hd (i ). Finally, we calculate the similarity between H f (i ) 
and Hd (i ) to measure the structural similarity S(i ) of each block I : 

S(i ) = 
2H f (i ) · Hd (i) + δ 
H 2 

f (i ) · H 2 
d (i ) + δ 

, (4.33) 

where δ is a constant with small value that prevents division by zero. 
Active areas will attract more visual attention on account of their greater salience. 

We can assign weights according to the activities of the corresponding image blocks. 
IAM is used to calculate the activity diagram I AMmap for each block in the received 
image. The standardized activity graph I AMmap is implemented as a weighting 
function of S. 

I AMmap(i ) = I AMmap(i ) 
nΣ

i=1 
I AMmap(i ) 

. (4.34)
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Fig. 4.11 Framework of the proposed PSIQP metric 

The weighted structural similarity of the received sonar image is obtained by using 
the normalized activity map, shown as follows: 

Q4 = Ŝ = 
nΣ

i=1 

S(i)IAMmap(i). (4.35) 

Integration 

Finally, the above information indicators, namely comfort index and structural sim-
ilarity index, are integrated to obtain PSIQP: 

PS  I  Q  P  = 
4Σ

i=1 

βi · Qi , (4.36) 

where βi is the weight of the four indicators. The proposed PSIQP measurement 
framework is shown in Fig. 4.11.
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4.2.4 No-Reference QA of Sonar Images 

In the above content, we have introduced the image QA methods based on reference 
images, which possess better performance in assessing the quality of NSIs. However, 
due to the limitation of the underwater detection environment, not all reference image 
information can be obtained. In this case, it is more appropriate to adopt an NR image 
QA model to assess the underwater image effectively. Most NR image QA methods 
rely on a learning-based predictive model to explore the relationship between the 
image features and image quality. The recent NR methods have been designed based 
on other scenarios, which perform poorly in evaluating the acoustic lens and side-
scan sonar images. In addition, the human visual perception system and brain visual 
cognitive mechanism also have certain defects in water acoustic transmission and 
transmitted image restoration. It’s necessary to find an SIQA model with better 
performance and suitable for underwater environment detection. In this part, we 
mainly introduce a novel NR SIQA method. 

Reference-Free QA of Sonar Image via Contour Degradation 
Measurement 

Due to the difference between NSIs and sonar images in color change, texture struc-
ture, pixel change, and so on, many classical image QA algorithms based on reference 
images fail to evaluate the quality of sonar images. In order to accurately evaluate the 
quality of sonar images, we present an NRCDM metric [27]. We can infer whether 
there is a target or terrain according to the macroscopic structure in the image. In 
addition, contour is an important form of macroscopic structure; its integrity can 
determine the practical quality of sonar image to a large extent [49, 50]. The perfor-
mance of the NRCDM metric is superior to other NR image QA models. 

In Fig. 4.12, we depict the overall framework of the NRCDM metric. First, we 
extract the features reflecting contour information. Then, we compare the features 
between the test image I and its filtered version I ' to obtain the contour degradation 
degree. Finally, the quality of the test image is evaluated by the degree of contour 
degradation in the QA model. Following the above framework, each of the parts 
will be presented separately. 

Feature Extraction 

The image quality depends on the response of HVS to spatial frequency decom-
position [51, 52]. This hypothesis has been successfully applied to simple pattern 
recognition systems and spatial frequency-based HVS models [53]. Different compo-
nents of the image correspond to different frequencies, among which image contour 
constitutes the intermediate frequency component. As shown in Fig. 4.13, most of the  
distortion types make up the rest of the low- and high-frequency components, which 
can destroy the contour of sonar images. As some types of distortion are introduced,
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Fig. 4.12 A general framework of the proposed NRCDM metric 

the high-frequency component increases and the image brightens. Instead, a decrease 
in the low-frequency component makes the image darker. It can be seen from the 
above description that the sonar image contour with low-frequency distortion usu-
ally has a low degradation rate. In this method, we adopt this theory to assess the 
practical quality of sonar images based on the recognition and detection of contour 
degradation measurement. 

For obtaining the contour information, we extract features with discrete cosine 
transform (DCT), Cohen-Daubechies-Feauveau 9/7 wavelet transform (C-D-F 9/7), 
and singular value decomposition (SVD). The flowchart of the feature extraction 
process is shown as in Fig. 4.14. The first two transforms can collect contour infor-
mation from the frequency domain, the last one can collect contour information 
from the spatial domain. In the process of feature extraction, we transform the sonar 
image I into the three domains. The coefficient matrices of DCT and C-D-F 9/7 
transform are represented by D and C , respectively. S represents the diagonal matrix 
of the SVD transform. These three matrices are sparse, and their sparsity depends 
on the coefficients with large values. We use the sparsity of different transformation 
coefficient matrices to represent contour information. When the low-frequency or 
high-frequency components increase, the sparsity of the three matrices (D, C , and 
S) will get higher.
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(a) (b) (c) 

(d) (e) (f) 

Fig. 4.13 The relationship between distortion and frequency component. When the distortion 
destroys the sonar image contour, the frequency spectrum will become brighter or darker. a Refer-
ence image; b Distorted sonar image with “CC”; c Distorted sonar image with “TS”; d–f Frequency 
spectrum of (a)–(c) (©[2021] IEEE. Reprinted, with permission, from [54].) 

The sparse metric should satisfy six criteria, namely Scaling, Bill Gates, Rising 
Tide, Robin Hood, Babies, and Cloning. When the sparsity number is fixed, the Gini 
index and Hoyer measure meet all standards and perform better than other sparsity 
indicators (i.e., l0, −l1, and l

2 

l1 ). Here, we use the Gini index [55] and Hoyer measure 
[56] to describe contour information more comprehensively. The Hoyer measure and 
Gini index are calculated as follows: 

H(v) = 

√
N −

(
NΣ
i=1 

|vi |
)

/ 
√
N − 1 

,

/
NΣ
i=1 

v2 i 
(4.37) 

G(v) = 1 − 2 
NΣ

k=1 

v(k)

∥v∥1

(
N − k + 1 2 

N

)
, (4.38) 

where v = [v1, v2, . . . ,  vN ] is a 1D vector transformed from a 2D transforma-
tion coefficient matrix. We rank the order of v from the smallest to largest, 
v(1) ≤ v(2) ≤ ... ≤ v(N ). N represents the total number of coefficient matrices.
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Fig. 4.14 The flowchart of 
the feature extraction process 

Figure 4.14 shows the feature extraction process of sonar images. The features 
[HD, HC , HS] and [G D, GC , GS] are Hoyer measure and Gini index of transform 
domain coefficient matrices D, C , and S, which contain most contour information 
of sonar images. 

Contour Degradation Measurement 

We adopt a guided image filter [57] to establish the degradation model, which 
degrades sonar images by smoothing. This model can measure the degree of image 
degradation. The kernel weight value of the filter is defined as follows: 

Wi j  (I ) = 
1 

|p|2
Σ

k:(i, j )∈ωk

(
1 + 

(Ii − μk)(I j − μk) 
σ 2 k + ∈

)
, (4.39) 

where |p| is the number of pixels in the window pk , and μk and σ 2 k represent the 
mean and variance of the guide image I in pk , respectively. Whether the current 
pixel should be the average of the nearby pixels or the original average is retained is 
determined by the regularization parameter ∈. The degradation intensity of the guided 
image filter is adjusted by ∈, which has a positive correlation with extracted features. 
It is obvious that the sparsity of different transform coefficient matrices grows with
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the increase of ∈. In other words, the sparsity of different transform coefficients is 
related to the degradation. 

We set the value of ∈ to 0.01, and use a regression model to construct the connection 
between the degradation degree and the distortion of test images. The degree of 
degradation F is measured by 

F = 
f2 
f1 

=
[
H '

D 

HD 
, 
H '
C 

HC 
, 
H '

S 

HS 
, 
G '

D 

G D 
, 
G '

C 

GC 
, 
G '

S 

GS

]
, (4.40) 

where H '
D, H '

C , H '
S , and G

'
D, G '

C , G '
S denote the Hoyer measure and the Gini index 

of three transform coefficients in the filtered test sonar image I ', respectively. F 
reflects the impact of the image distortion. Figure 4.15 shows the changes of H

'
S 

HS 

and G
'
S 

GS 
when distortion occurs in the test image. The first image is the original 

image without distortion. The remaining images are the distorted images, which are 
affected by “TC”, “CC”, “TS”, and “CS”, respectively. 

Bagging-Based Support Vector Regression Module 

Different from the traditional image QA model, we adopt a bagging algorithm to 
construct an SVR model that can describe the relationship between the features and 
the quality of sonar images. Besides, it can transform the features into the sonar 
image quality index. The method is tested on several base learners and the results are 
aggregated, which improves the stability and accuracy of this algorithm [58]. The 
NRCDM algorithm expression is given by 

N RC  DM  = 
1 

n 

nΣ

i=1 

Bi (t), (4.41) 

where N denotes the size of standard training set T . Bagging generates n new training 
sets Ti ; all of the sizes is N '. When N = N ', we utilize n samples to fit base learners 
B1(·), B2(·), . . . ,  Bn(·) and combine the average outputs to get the final image quality 
index. 

We conduct various experiments on the SIQD database, including 840 sonar 
images. Specifically, 672 images in the SIQD database are used for model train-
ing, and the remaining 168 images are test samples. The training sets and test sets 
are different. This method can not only improve the stability and accuracy of machine 
learning algorithms, but also reduce the variance and avoid overfitting caused by a 
small training set [59].
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Fig. 4.15 The variation of a 
H '
S 

HS 
and b 

G'
S 

GS 
when distortion is added to the image (©[2021] IEEE. 

Reprinted, with permission, from [27]) 

4.3 Comparison and Analysis of Algorithm Performance 

In this section, we will introduce the specific parameter settings of images in the 
SIQD. Then, some excellent SIQA models based on different reference information 
are briefly introduced. Finally, we focus on comparing and analyzing their perfor-
mance with the quality evaluation model introduced in this chapter. The analysis 
results show that these models presented in this chapter have good performance.
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4.3.1 The Sonar Image Database 

First, we introduce the specific parameter settings of images in the SIQD. Considering 
that distorted images will be affected by compression and packet loss, we used SPIHT 
and ComGBR to generate compressed images with different compression ratios. 
Specifically, SPIHT can generate compressed images with different compression 
ratios by adjusting the wavelet decomposition level and parameter rate. Here, the 
parameter level was set to 6, and the rates were set to 0.01, 0.03, 0.1, 0.3, and 3, 
respectively. ComGBR compression ratios were set to 0.1, 0.2, 0.3, 0.4, and 0.5 
separately. After this encoding process, we model the different situations of UAC by 
changing the bit errors generated in the bitstream with level 5 bit error rate (BER) to 
collect distorted images. Besides, we designed a random variable c ∈ {0, 1}, where 
the probability of c = 1 is BER, and the probability of 0 is 1-BER. Each packet 
contains 8 bits. When c = 0, the current packet is transmitted correctly. 

4.3.2 Performance Comparison and Analysis 

In order to reflect the effectiveness and superiority of the SIQA metrics introduced 
in this chapter, we compare them with some excellent image QA models. Their 
basic information is shown in Table 4.1. The models involved in comparison can be 
divided into three categories. The first category consists of 12 FR image QA mea-
sures including the SIQP measures described in this chapter. The second category 
consists of five RR image quality metrics including TPSIQA and PSIQP models pre-
sented in this chapter. The third category consists of 12 NR image quality indicators 
including NRCDM metrics introduced in this chapter. Generally, the performance 
of this objective image QA is verified by PLCC, SRCC, KRCC, and RMSE. The 
evaluation accuracy can be measured by PLCC and RMSE, while the monotonicity 
of the prediction can be found by SRCC and KRCC. A higher value of PLCC, SRCC, 
and KRCC and a lower value of RMSE represent better quality evaluation methods. 

The objective assessment scores are nonlinearity obtained by PLCC, SRCC, 
KRCC, and RMSE, so we use a logistic function to increase the linearity. We compute 
the image QA scores using these four criteria by the mapping including 5 parameters 
as follows: 

f (x) = τ1( 
1 

2 
− 1 

1 + expτ2(x−τ3) 
+ τ4x + τ5), (4.42) 

where τi,i=1,2,3,4,5 represents the fitted parameter; f (x) and x are subjective scores 
and their corresponding objective scores which are assessed by image QA algorithms. 

To facilitate the comparison of the performance of QA metrics for the 29 compet-
ing images, we make a comparison and analysis according to four model types. By 
analyzing the strengths and weaknesses of these models, we can draw some important 
conclusions:
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Table 4.1 Information of the metrics involved in the comparative experiment 

Abbreviation Category Full Name Refs. 

SSIM FR Structural similarity [5] 

VSNR FR Visual signal-to-noise ratio [60] 

FSIM FR Feature similarity [61] 

VSI FR Visual saliency-induced index [62] 

GMSD FR Gradient magnitude similarity deviation [63] 

ADD-SSIM FR Analysis of distortion distribution-based 
SSIM 

[64] 

MAD FR Most apparent distortion [65] 

GMS FR Gradient similarity [6] 

PSIM FR Perceptual similarity [66] 

LTG FR Local-tuned-global model [67] 

LESQP FR Local entropy backed sonar image quality 
predictor 

[16] 

SIQP FR Sonar image quality predictor [24] 

QMC RR Quality assessment metric of contrast [9] 

RWQMS RR RR wavelet-domain quality measure of SCIs [10] 

OSVP RR Orientation selectivity-based visual pattern [68] 

RIQMC RR Reduced-reference image quality metric for 
contrast change 

[8] 

PSIQP RR Partial-reference sonar image quality 
predictor 

[25] 

TPSIQP RR Task- and perception-oriented sonar image 
quality assessment 

[26] 

BLINDS II NR Blind image integrity notator using DCT 
statistics 

[69] 

BRISQUE NR Blind/referenceless image spatial quality 
evaluator 

[58] 

IL-NIQE NR Integrated local natural image quality 
evaluator 

[70] 

ARISM NR AR-based image sharpness metric [71] 

NFERM NR NR free energy-based robust metric [72] 

SISBLM NR Six-step blind metric [73] 

ASIQE NR Accelerated screen image quality evaluator [14] 

BQMS NR Blind quality measure for SCIs [74] 

CourveletQA NR – [75] 

BPRI NR Blind PRI-based [76] 

HOSA NR High order statistics aggregation [77] 

NRCDM NR No-reference contour degradation 
measurement 

[27]
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(1) In the comparison of FR image QA metrics, SIQP introduced in this chapter 
has the best performance. Firstly, we consider the effect of four distortion types on 
image quality. The first is the blur damage of the sonar image caused by ComGBR 
compression. The second is the noneccentricity distortion brought by SPIHT and a 
similar blur distortion. The third is noise caused by artificial bit error distortion in 
ComGBR bitstream. The fourth is a messy and unnatural artifact caused by artificial 
bits errors distortion in the SPIHT bitstream. Except for the SIQP metric, other 
metrics show poor performance in the first type of distortion. This may be due to 
the weak ability of these image quality metrics to evaluate blur distortion. The same 
happens in the second distortion type. We infer that the noneccentricity distortion 
may confuse subjective quality prediction. In the third and fourth types of distortion, 
the models involved in comparison show good and reasonable performance, while 
SIQP is still the best. This shows that they can predict the noise in the image and 
evaluate the structural degradation ability in the image well. Finally, these FR image 
QA metrics are compared on the entire SIQD database. There is no doubt that SIQP 
shows the best performance in assessing the degree of blur, noneccentricity, noise, 
and structural degradation. 

(2) In the comparison of RR image QA metrics, PSIQP introduced in this chapter 
has the best performance, while TPSIQA shows the suboptimal performance in 
SRCC, KRCC, PLCC, and RMSE. It is worth mentioning that the monotone corre-
lation coefficient between MOS and the predicted quality of TSIQP is higher than 
that of PSIQA. The larger the value of this system, the better the effect of the method 
is. In addition, the selective ensemble learning method is added to TPSIQA, which 
makes the model obtain better contour information and significantly improves the 
model’s performance. 

(3) In the comparison of NR image QA metrics, the NRCDM introduced in this 
chapter has the best performance. Compared with blind/referenceless image spa-
tial quality evaluator (BRISQUE) ranked second, the performance of SRCC, KRCC, 
PLCC, and RMSE increased by at least 14%. NRCDM has the best prediction mono-
tonicity and accuracy for noise caused by artificial bits errors in ComGBR bitstream. 
It also has the best predictive consistency for noise caused by artificial bit errors in 
SPIHT bitstream. But when the evaluation is blur, it does not perform well in these 
two aspects. It is poor at predicting confusing and unnatural information. Neverthe-
less, it still shows a clear advantage in NR image QA metrics. 

(4) In general, the four methods introduced in this chapter perform well in the 
test, and the PSIQP metric has the best performance. When the bit error rate is 
below 2 × 10−3, the performance of the PSIQA method is almost unaffected. Since 
then, the performance of the PSIQA method decreases as the bit error rate increases. 
When the bit error rate reaches 3 × 10−3, the performance is lower than NRCDM. 
In addition, although the performance of the NRCDM is superior to many traditional 
image QA methods, there is still much space for improvement compared with the 
other three methods introduced in this chapter. In order to adapt to the SIQA in the 
NR environment, we need to invest more energy in the design task of the NR SIQA 
model.
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4.4 Conclusion 

With the development of underwater detection and image QA technology, more and 
more sonar images are used to analyze underwater scene information. This chapter 
introduces three types of methods to assess the quality of SCIs, namely FR, RR, and 
NR methods. First, we present an FR SIQA approach designed from a global and 
detailed perspective. The similarity of local entropy map and edge map of the signifi-
cant region is used as statistical information and structural information, respectively, 
to predict sonar image quality. Second, considering that the harsh underwater UCA 
environment hinders the acquisition of reference images, we introduce two RR image 
QA methods. One method is to take the contour information as the main representa-
tion of the overall structure, since observers pay more attention to the image content 
related to the global structure in the image QA based on the underwater detection 
task. The other method is to extract statistical information, comfort, and structural 
similarity to predict the sonar image quality from two aspects of quality perception 
and image effectiveness. Finally, considering that the reference image cannot be 
obtained in most cases, we introduce an NR method. It uses sparse features extracted 
from different domains to measure the degradation degree of sonar image contour, 
and obtains the relationship between contour degradation degree and sonar image 
quality by the learning-based method. From the analysis of the model comparison, 
it can be seen that these methods introduced in this chapter have good performance. 
In future work, we will consider more complex underwater factors and focus on the 
design of effective RR and NR image QA methods. 
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Chapter 5 
Quality Assessment of Enhanced Images 

5.1 Introduction 

Images taken by digital cameras or produced by computers can convey informa-
tion and help people express their thoughts and emotions. This information will 
be affected severely due to the incorrect manipulation, poor illumination condi-
tion, and undesirable equipment functionality, resulting in the serious degradation 
of image visual quality. To recover the details of degraded images, various post-
processing operations have been established, such as contrast enhancement, white 
balance adjustment, and exposure correction. Reliable prediction of enhanced image 
quality can optimize post-processing enhancement methods, so it is important to 
construct a well-designed image quality assessment (QA). 

In practical application, according to the different observation methods, the tra-
ditional image QA can be divided into subjective assessment and objective assess-
ment. The subjective evaluation takes human observer rating as the final judgement 
of image visual quality, which can obtain the ultimate ground scores. The research 
focuses on establishing image quality databases, such as LIVE [1], MDID2013 [2], 
and VDID2014 [3]. Although subjective experiment is considered as the most accu-
rate image QA method, it cannot be popularized in practical application since its 
high labor intensity and long time consuming. 

To overcome the limitations of subjective assessment, researchers have turned 
their research priorities to the design of objective assessment. In the past decades, 
various objective image QA have played a vital role in promoting the development 
of fusion [8], enhancement [9, 10], and denoising [11]. In [4], Vu et al. produced 
an enhancement metric, which combined contrast, sharpness, and saturation vari-
ations between the pristine and corrupted photos to achieve a full-reference (FR) 
QA for digital photographs. In [5], an FR image QA model was designed by detect-
ing structure and color differences. The gradient similarity between the original and 
modified images was adopted to measure the structure. For colorfulness and satura-
tion changes, Fang et al. established a no-reference (NR) quality model for contrast
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changed images based on natural scene statistics (NSS) [6]. The NSS model requires 
to be pre-trained by utilizing fair amounts of natural images. In [7], Wang et al. 
presented a contrast quality index based on patch.

Despite the emergence of hundreds of objective image QA models, very few efforts 
have been made for the issue of contrast changed image QA. The aforementioned 
quality metrics are limited in application scenarios, so more general quality models 
for image enhancement were proposed. In [12], Li et al. constructed an enhanced 
image database based on five image enhancement algorithms and three image pro-
cessing software. In addition, a subjective experiment has been implemented to obtain 
the final ground truth of enhanced images. In [13], Gu et al. built a dedicated database 
consisting of 655 images, which were created by five categories of contrast-oriented 
transfer functions. The final mean opinion score (MOS) ranked by 22 inexperienced 
observers, obtained from a dedicated subjective test. In [14], Gu et al. designed the 
first opinion-unaware blind image QA metric named blind image quality measure of 
enhanced images (BIQME). This metric has a novel two step framework considering 
five influencing factors and 17 associated features, which can effectually obtain the 
prediction of enhanced image quality. In [15], a new blind image QA model based 
on the theory of information maximization was proposed to realize the judgement of 
image having better contrast and quality. In [10], an automatic robust image contrast 
enhancement (RICE) model based on saliency preservation was designed. It com-
bines not only the constraints from the pristine image and its histogram equalized 
but also the sigmoid mapping transferred versions to improve images superiorly. In 
[16], Wang et al. built a guided image contrast enhancement framework based on 
cloud images, solving the difficulty of multi-criteria optimization. This model can 
collectively improve the context-sensitive and context-free contrast. For evaluating 
the performance of those QA models, we also compared them with state-of-the-art 
competitors using four extensive employed standards, i.e., Spearman rank correla-
tion coefficient (SRCC), Kendall rank correlation coefficient (KRCC), Pearson linear 
correlation coefficient (PLCC), and root mean square error (RMSE). 

The organization of this chapter is arranged as below. Section 5.2 introduces in 
detail the establishment of two databases and describes the modeling process and 
experimental analysis of two enhanced image quality assessment and two image 
enhancement technology. Section 5.3 compares the performance of state-of-the-art 
enhanced image QA models. Section 5.4 finally draws a conclusion and provides 
future work. 

5.2 Methodology 

In this section, we first establish the contrast-changed image QA database. Second, 
we show the NR QA method of enhance images on the basis of feature extraction 
and regression and present the automatic contrast enhancement technique. Third, 
we introduce the NR QA methods of enhance images based on the fusion of non-
structural information, sharpness, and naturalness. Finally, we illustrate the reduced-
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reference (RR) QA methods of enhance images that are based on phase congruency 
and histogram statistic and present the context-sensitive and context-independent 
image enhancement method. We compare and analyze their performance with the 
typically used indices of PLCC, SRCC, KRCC, and RMSE. 

5.2.1 Database Set-Up 

Nowadays, image/video enhancement is an important aspect of image processing 
study and practical application. Effective enhancement technology can significantly 
improve the visual quality of an image/video, even making them better than the 
original natural image. At present, there are only a few databases that can be used 
to evaluate image quality. In this part, we will introduce two novel enhanced image 
databases, namely enhanced image database (EID) [12] and contrast-changed image 
database (CCID2014) [13]. 

Creation of the CCID2014 and EID 

There are some limitations in the study of enhanced images restricted by database. 
Photoshop is a main method used to construct typical enhanced image databases, but 
it cannot contain the image produced by the image enhancement algorithms. To fill 
this void, [12] set up a database named EID. Li et al. used 40 color images to establish 
the EID, which contains various content, like architectures, plants, animals, people, 
etc. These images in EID have typical characteristics such as low light, low contrast, 
underwater, foggy, as given in Fig. 5.1. To set up enhanced image database, the 
images with eight enhanced versions are obtained by utilizing eight approaches from 
the original images, including five representative image enhancement algorithms 
[10, 17–20] and three popular image processing software (Photoshop, digital photo 
professional (DPP), and ACDSee). After the above procedures, 320 enhanced images 
are obtained in color format. Figure 5.2 shows some examples in the database. 

To get the ground truth of each image quality, a subjective experiment is con-
ducted by adopting a single-stimulus method. In this experiment, 25 inexperienced 
observers are invited, containing 12 males and 13 females with the aged from 20 to 
38. The subjective experiment is conducted in a lab environment with normal lighting 
conditions. A liquid crystal display monitor with resolution 1920 × 1080 is adopted 
to exhibit the images. During the evaluation process, the subjects are required to 
provide their overall perception of quality on an absolute category rating scale from 
1 to 10. A GUI interface is designed based on MATLAB to facilitate rating. In order 
to avoid visual tiredness, all test people are required to finish the test within one hour. 
Then, the methods [21, 22] are used to remove an average of five outliers from the 
evaluation score of every image. The MOS is computed and considered as the ground 
truth. Figure 5.3 shows the final subjective scores and the corresponding standard 
deviations of the enhanced image.
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Fig. 5.1 Ten original images for the establishment of EID database (©[2021] IEEE. Reprinted, 
with permission, from [12].) 

Fig. 5.2 Examples of enhanced images in the EID database (©[2021] IEEE. Reprinted, with 
permission, from [12].) 

In recent decades, there are few papers specializing in image QA about contrast 
changing and only a few image databases related to contrast (i.e., TID2008 [23], 
CSIQ [24], and TID2013 [25]). To fill this gap, we first present a well-designed 
CCID2014. We select 15 representative undamaged color images of the size 768 
× 512 from the Kodak image database [26]. As shown in Fig. 5.4, the 15 natural 
images cover a diverse range of scenes, color, and configurations of foreground and 
backdrop. A total of 655 images in CCID2014 are generated by processing the 15 
original images x with five methods. The five methods contain the gamma transfer, 
convex and concave arcs, cubic and logistic functions, the mean-shifting (intensity-
shifting), and the compound function (mean-shifting followed by logistic function). 
In the following, these methods will be introduced respectively: 

Gamma Transfer The gamma transfer is essentially equivalent to the power law 
function, which can be calculated by:
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Fig. 5.3 MOS values of the enhanced images and the corresponding standard deviations (©[2021] 
IEEE. Reprinted, with permission, from [12].) 

y = [x · 255((1/n)−1)]n , (5.1) 

where x is original image. n = {1/5, 1/3, 1/2, 1/1.5, 1.5, 2, 3, 5}. According to the 
value of n, we divide the gamma transfer into two types. When n is less than or equal 
to 1, it is considered as negative shown in Fig. 5.5a. And when n is greater than 1, it 
is considered a positive transformation shown in Fig. 5.5b. 

Convex and Concave Arcs Convex and concave arcs are quite similar to the 
gamma transfer, except each of them is a small arc with equal derivatives everywhere. 
The transfer curves are exhibited in Fig. 5.5c, d. 

Cubic and Logistic Functions We employ the three-order cubic function and 
the four-parameter logistic function for cubic and logical functions, respectively.



132 5 Quality Assessment of Enhanced Images

Fig. 5.4 15 color photographs that are lossless (©[2021] IEEE. Reprinted, with permission, from 
[13].) 

The cubic function can be obtained by: 

y = Fc(x, a) = a1 · x3 + a2 · x2 + a3 · x + a4, (5.2) 

and the logistic function is as follows: 

y = Fl (x, b) = b1 − b2 
1 + exp(− x−b3 

b4 
) 

+ b2, (5.3) 

where ai and b j (i , j ∈ {1, 2, 3, 4}) are undetermined parameters. In order to deter-
mine these parameters, we use the “nlinfit” MATLAB function to obtain the optimal 
transfer curves getting through four preset points. In Fig. 5.5e, f, the four color curves 
represent four preset points coordinates for cubic and logistic functions and R, G, 
B, and K in the second column. 

Mean-Shifting The mean-shifted image is obtained by y = x + Δ, the value of  
Δ comes from {0, 20, 40, 60, 80, 100, 120}. Note that y represents the original image 
as Δ = 0. 

Compound Functions The composite function appropriately combines the mean 
shift function and the logistic function can enhance images effectively. 

After processing with the transfer functions mentioned above, we remove the 
boundary values in the generated images to the range of 0 ∼ 255. We conduct 
an experiment by adopting a single stimulus (SS) method on a continuous quality 
scale from 1 to 5, representing the observers’ overall perception of quality. In this 
experiment, 22 inexperienced subjects are involved, mostly from college of different 
majors. We have compiled a list of the most important details regarding the testing 
environment in Table 5.1. 

After the evaluation procedure, we clear the outliers in all subjects’ scores due to 
inattention. Then the MOS score is calculated by 1/Ni 

Σ 
i si j  . Where si j  is the score
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Fig. 5.5 (I) Diagram of transfer curves: a negative gamma transfers; b positive gamma transfers; 
c convex arcs; d concave arcs; e cubic functions; f logistic functions. (II) Histograms of MOS: 
g convex arcs; h concave arcs; i cubic functions; j logistic functions; k mean-shifting; l negative 
gamma transfer; m positive gamma transfer; n compound function; o entire database (©[2021] 
IEEE. Reprinted, with permission, from [13].) 

Table 5.1 Subjective experimental conditions and parameters (©[2021] IEEE. Reprinted, with 
permission, from [13].) 

Method Single stimulus (SS) 

Evaluation scales Continuous quality scale from 1 to 5 

Color depth 24-bits/pixel color images 

Image coder Portable network graphic (PNG) 

Subjects 22 inexperienced subjects 

Image resolution 768 × 512 
Viewing distance 3 ∼ 4 times the image height 

Room illuminance Dark 

obtained from subject i to distorted image y j ; i={1, …, 22}, j={1, …, 655}; Ni is 
the number of observers. 

Figure 5.5g–o show the distribution of MOS values for different types of contrast-
changed images. Figure 5.5n indicates that the subjective quality scores of a few 
images processed by compound functions, which subjective quality scores is not 
less than 4. The MOS values of most pristine natural images are just around 3.5. 
This can be revealed by the truth that the logistic transfer elevates the difference 
of adjacent values pixels. In addition, the complementary mean-shifting adjusts the 
image mean luminance to be a proper value, particularly for natural images [27].
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We can draw a conclusion that rational employing of compound function is valuable 
to design contrast enhancement methods. 

5.2.2 Objective QA of Enhanced Images 

In our daily lives, the post processing of images obtained by cameras, smart phones, 
and computer-generated is always required for obtaining better visualization and 
enhanced practical use, such as object recognition and detection. The image sig-
nal processing is used to improve the image quality, including visibility, contrast, 
brightness, and so on. An excellent performance image QA method is designed to 
predict the quality of processed images, which can improve and optimize enhance-
ment algorithms. Thus, image QA is a greatly beneficial and practical task. To our 
knowledge, image QA models are divided into three types: FR, RR, and NR QA. 
It is difficult to derive the original reference information of most enhanced images. 
Thus, FR image QA and RR image QA are not suitable for enhanced images. In the 
following content, we will introduce two NR image QA metrics, namely BIQME 
and NIQMC. 

Evaluating Quality of Enhanced Images with NR Quality Metric 

In many practical applications, such as object detection or recognition, we need to 
enhance original images appropriately to raise the visual quality. We normally think 
raw images have the best visual quality. The quality of images can be improved by a 
suitable enhancement method, even better than original images. In this part, we will 
introduce two important parts. The first part takes into account 17 features of five 
influencing factors, including contrast, sharpness, brightness, color, and naturalness 
of the image. They are used to learning regression to construct an efficient NR image 
QA method. The second part is image enhancement using image QA mentioned 
above. The quality of natural images, low-contrast images, dim light images, and 
deblurred images are improved by the designed method. The implementation details 
of the proposed methods will be elaborated in the following paragraphs. 

Feature Extraction 

The effect of image enhancement is decided by the leading factor that is contrast. A 
common global measurement of image contrast is information entropy. The average 
amount of information included in an image is measured by entropy. In general, 
higher entropy indicates that pictures have more contrast, that is, better visual quality. 
Thus, we use a biologically plausible phase congruence (PC) model to find and 
recognize features in the image [28, 29] and then calculate the entropy based on PC. 

According to [13], Mo 
n filter implements odd-symmetric property and Me 

n filter 
implements even-symmetric property on scales n. At position j on scale n, we use
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quadrature pairs to generate a response vector [en( j), on( j )] = [s( j ) ∗ Me 
n , s( j ) ∗ 

Mo 
n ]. An( j ) = 

√ 
en( j )2 + on( j )2 is the amplitude value of the response vector. PC 

is defined by: 

PC( j ) = 
Σ 

n W ( j )⎣An( j) · Δθn( j) − Tn⎦ 
ε + 

Σ 
n An( j ) 

, (5.4) 

where ⎣·⎦ represents a threshold. If the values inside are negative, they will be deleted 
and equal to 0. Tn evaluates the degree of noise. Δθn( j ) = cos[θn( j ) − θ(  j )] −  
| sin[θn( j ) − θ(  j )]| is the phase deviations. θ(  j ) represents the mean values of phase 
at j . W ( j ) = (1 + exp[(μ − t ( j ))ν])−1 is the weight value. For filter parameters, 
μ is a cutoff value, and ν is a gain variable which is used to regulate the cutoff 
sharpness. So, we define the PC-based entropy as: 

E pc = −  
255Σ 

i=0 

Pi (spc) · log Pi (spc), (5.5) 

where spc includes the pixels of an image signal s. 
Contrast energy is the second measurement, which is used to predict local contrast 

of perceived images [30]. According to [31], contrast energy is calculated on three 
channels of s: 

CFf = α · Y (s f ) 
Y (s f ) + α · θ 

− φ f , (5.6) 

where Y (s f ) = ((sk ∗ fh)2 + (sk ∗ fv)2)1/2. f includes three channels of s which 
are represented by gr , yb and rg  respectively. gr = 0.299R + 0.587G + 0.114B, 
yb = 0.5(R + G) − B, and rg  = R − G [32]. For parameters in Eq. (5.23), α = 
max [Y (s f )], φ f is a threshold which is used to control the noise. θ represents the 
contrast gain. The second-order derivatives of Gaussian function in the horizontal 
and vertical are represented by fh and fv respectively. Thus, contrast-related features 
are Fct = {E pc, CEgr , CEyb, CErg}. 

Actually, sharpness assessment has been studied extensively for these years [33– 
35]. Similar to [34], we compute log-energy on wavelet sub-bands using an effective 
and efficient method. The log-energy on each wavelet sub-band is defined as: 

LEk,l = log10[1 + 
1 

Kl 

Σ 

i 

k2 l (i )], (5.7) 

where i represents the pixel index; k stands for three levels LH , HL , and HH  which 
are obtained by decomposing a grayscale image; Kl is the number of discrete wave 
transform coefficients. Finally, we compute the log-energy at each level as shown 
below: 

LEl = 
1 
2 (LELH,l + LEHL ,l ) + w · (LEHH,l ) 

1 + w 
, (5.8)
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where the parameter w set as four to improve the weights of HH  sub-bands. In this 
part, we choose the second and third levels to obtain more sharp details. Sharpness-
related features are Fs = {LE2, LE3}. 

Brightness affects the effect of image enhancement to a great extent. On the one 
hand, adequate brightness can increase the dynamic range of an image. On the other 
hand, it may include semantic data. Following prior work on picture quality assur-
ance for tone-mapping operators, we define image brightness using a straightforward 
technique [36]. According to this guide, we first produce a set of images by increas-
ing/decreasing the original brightness of the image: 

si = max(min(mi · s, tu), tl ), (5.9) 

where mi stands for the multiplier index, we will elaborate later. The image signal 
is restrained in range of [tl , tu]. 

The variations of the luminance intensity will clear image details. In this part, 
the entropy of luminance changing image is used to infer whether the image 
has proper luminance. When selecting a multiplier index, increasing the index 
is beneficial to improve the performance, but not to improve computing speed. 
Six entropy values {Em1, Em2, . . . ,  Em6} are used to find a good balance between 
efficiency and efficacy, where m = {n, (1/n)|n = 3.5, 5.5, 7.5}. It is important to 
note that, unlike [36], we do not contain the images itself, since we consider a 
similar measure E pc. As mentioned earlier, brightness-related features are Fb = 
{Em1, Em2, Em3, Em4, Em5, Em6}. 

Colorfulness serves a similar purpose to brightness in that it increases the dynamic 
range of color images. Compared with grayscale photos, it can exhibit more details 
and information. Color saturation, which expresses the colorfulness of a color com-
pared to its own brightness, is used to quantify the colorfulness of a picture. In 
addition to considering the above factors, we then calculate the global meaning of 
the saturated channel and then convert the image to the HSV color space: 

S = 
1 

M 

MΣ 

i=1 

TX→S[s(k)], (5.10) 

where TX→S represents a conversion function to transform an X type image into the 
color saturation channel. M is the sum of pixels of s. 

The second measure comes from a classic study dedicated to measuring the col-
orfulness of natural images [32]. Hasler and Suesstrunk have provided a practical 
metric to predict the overall colorfulness of an image, which is highly correlated with 
human perceptions. More specifically, we extract four features including the mean 
and variance of yb and rg  channel (μyb, σ  2 yb, μrg , and μ2 

rg). Then the metric can be 
derived by: 

C = 
/ 

σ 2 yb + σ 2 rg  + κ 
/ 

μ2 
yb + μ2 

rg, (5.11)
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where k is a correction for relative significance which can better match subjective 
opinions. As a result, colorfulness-related characteristics are characterized as Fcl = 
{S, C}. 

Naturalness is the inherent property of natural images, which shows the common 
character of most natural images. We mainly use image naturalness to punish over-
enhancement conditions, which will destroy the naturalness of visual signal seriously. 
We consider the classical and commonly used NSS models [11, 37, 38]. Firstly, local 
mean removal and segmentation normalization are preprocessed: 

s(i )∗ = 
s(i ) − μ(i ) 
σ(i ) + ∈ 

, (5.12) 

where μ(i ) and σ(i ) represent the local mean and standard deviation of the i-th pixel 
respectively; ∈ denotes a positive constant. The generalized Gaussian distribution 
with zero mean is learned to catch the behavior of coefficients of Eq. (5.12), which 
are expressed by follows: 

f (x; ν, σ 2 ) = ν 
2βΓ 

( 
1 
α 
) exp 

( 
− 

( |x | 
β 

ν)) 
, (5.13) 

where β = σ 
/ 

Γ ( 1 ν ) 
Γ ( 3 ν ) and Γ (a) = ∫ ∞ 

0 ta−1e−t when a > 0. The parameter ν controls 

the shape of the distribution, σ 2 denotes the variance of the distribution. ν and σ 2 as 
two features are collected. 

The third metric of naturalness is the recently discovered dark channel prior [39]. 
It reveals that at least one color channel goes to zero in most nonsky parts, indicating 
that the scene is more natural: 

sdark(i ) = min 
q∈{R,G,B} sq (i ), (5.14) 

where q = {R, G, B} indicates the RGB channels. It was obvious that sdark  has 
definite bounds of [0, 255] or [0, 1] for normalized divided by 255. We calculate the 
whole meaning of the dark channel sdark  to determine naturalness measurement Sd . 
Finally, naturalness-related features are characterized as Fn = {ν, σ 2, Sd}. 

In summary, we carefully extracted 17 features based on the five aspects of image 
contrast, sharpness, brightness, colorfulness and naturalness. For the convenience of 
readers, all of the above features are listed in Table 5.2. 

Quality Prediction 

However, these features forementioned cannot directly impress the quality of the 
enhanced image. A regression module that translates 17 characteristics into a quality 
score is required in this scenario. Recently, a novel approach for locating the regres-
sion module in blind image QA designs is developed [40]. To solve the problem of
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Table 5.2 Performance comparison of the most advanced frame rate algorithms based on the 
SIQAD database (©[2021] IEEE. Reprinted, with permission, from [15].) 

overfitting, we use more than 100,000 images as training samples to learn the regres-
sion module. We initially acquire 1642 images. They include 1242 natural scene 
images from the PQD database collected by Berkeley with high-quality subsets, 
and 400 screen content images taken with a custom snapshot technique. Then, we 
use 8 common global based enhancement methods to process the improved original 
image and get 60 enhanced images. The database finally includes 100,162 images 
as training data. 

To avoid the concern of proposed metric does not consider the effect of colorful-
ness, we design the colorfulness-based PCQI (C-PCQI) metric: 

C − PCQI = 
1 

M 

MΣ 

i=1 

Qmi (i ) · Qcc(i ) · Qsd (i ) · Qcs(i ), (5.15) 

where Qmi , Qcc, and Qsd indicate the resemblance between the pristine and deformed 
images in terms of mean intensity, contrast change, and structural distortion, respec-
tively. M is the number of pixels. Qcs measures the similarity of color saturation 
obtained by: 

Qcs(i ) = 
( 
2ST1 · ST2 + ζ 
ST 2 1 + ST 2 2 + ζ 

)ϕ 
, (5.16) 

where ST1 and ST2 denote the color saturation of the pristine and corrupted images. 
ζ is a minor constant number to avoid division by zero. ϕ indicates a fixed pooling 
index to mark the regions which have changes of color saturation. We employ the 
C-PCQI scores of the 100,162 produced images to take the place of human opinion 
ratings. 

The renowned support vector regression is utilized to learn the regression module 
in the designed BIQME metric once the training set is produced [41]. We can translate 
the basic form of support vector regression as:
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minimize 
w,δ,b,b' 

1 
2||w||2 2 + t 

Σr 
i=1 

( 
bi + b' 

i 

) 

s.t. wT φ (xi ) + δ − yi ≤ p + bi 
yi − wT φ (xi ) − δ ≤ p + b' 

i 
bi , b' 

i ≥ 0, i = 1, . . . ,  r 

, (5.17) 

Where K 
( 
xi , x j 

) = φ (xi )T φ 
( 
x j 

) 
represents the kernel function, which is set to be 

the radial basis function kernel defined as K 
( 
xi , x j 

) = exp 
(−k||xi − x j||2 

) 
. Our  

goal is to locate the related regression module based on the training samples and 
calculate t, p, and k. 

Quality-Optimized Image Enhancement 

Since its excellent performance and high efficiency, BIQME metrics can be used 
to guide image enhancement technologies. In the BOIEM algorithm, we mainly 
consider image brightness and contrast, especially adjusting them to an appropriate 
level. We constructed the framework based on RICE for two steps. In the first step, we 
improve two recently proposed enhancement methods, adaptive gamma correction 
with weighting distribution (AGCWD) [42] and RICE [10], to successively rectify 
image brightness and contrast. The AGCWD focuses on weighting the probability 
density function (PDF) of images by: 

PDF'(z) = PDFmax 

( 
PDF(z) − PDFmin 

PDFmax − PDFmin 

)λb 

, (5.18) 

where z = {zmin, zmin + 1, . . . ,  zmax}, PDFmin and PDFmax denote the minimum 
and maximum values in pdf, and λb indicates a weight parameter. Then, we use the 
weighted PDF  to calculate the cumulative distribution function: 

CDF'(z) = 
zΣ 

h=0 

PDF'(h) 
Σ 

PDF' , (5.19) 

and access the enhanced image: 

T (z) = 255 
( z 
255 

)1−CDF'(z) 
. (5.20) 

The RICE method is effective at improving natural photos in contrast to the 
AGCWD algorithm. However, it fails for other sorts of images, such as low-light 
images and videos, due to the RICE approach does not alter brightness. It also 
necessitates the use of original images in the quality-based optimization process. 

During our BOIEM model design process, we first set the parameters of AGCWD 
and RICE. Then, to optimize these three parameters, the suggested blind BIQME 
algorithm is applied as:
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λb, λs, λe = maximize 
λb,λs ,λe 

QB (TR [TA (s, λb) , λs, λe]) , (5.21) 

where QB , TR , and TA are related to BIQME, RICE, and AGCWD respectively. 
After that, we use these characteristics to improve images. The BOIEM runs six 
times for optimization. The first three times figure out three candidates 0.3, 0.5, 0.7 
and choose the optimal λb for image brightness rectification. The last three times 
choose the λs and λe for image contrast improvement. Finally, we produce enhanced 
images using the parameters we’ve chosen. 

Toward Accurate Quality Evaluation of Enhanced Images via Blind 
NIQMC Metric 

In most cases, humans can improve the efficiency of information acquisition through 
specific mechanisms, such as visual saliency. It has been demonstrated to be closely 
related to the neural circuits of primate visual cortex [43]. Based on the basic human 
behavior of obtaining information, a blind NIQMC metric is designed by maximizing 
information. We assume that HVS associates local strategies with global strategies 
to perceive visual signals and judge their quality scores and significant areas. On this 
basis, the blind NIQMC model tries to estimate the visual appearance of contrast-
altered images. 

Local Quality Measure 

Our method first considers the measurement of local details. According to our com-
mon sense, images with high contrast represent a lot of meaningful information. 
However, most images contain a large amount of residual information, such as a 
large area of blue sky or green grass in the background, and predictable components 
in the image. This information is predicted by a semi-parametric model based on 
autoregressive (AR) model and bilateral filtering. 

AR model can simulate various natural scenes simply and effectively by adjusting 
parameters. Its parameters are invariant to object transformation. However, the AR 
model is usually unstable at the edge of the image. Similar results can also be found 
at the edge of the building. As a result, we adopt bilateral filtering, a nonlinear 
filter with high edge preservation properties that is simple to set up and compute. 
As  shown in Fig.  5.6, compared with the input image, it can be seen that bilateral 
filtering can better protect the edge than AR model avoids introducing any ringing 
artifacts. Another example shown in Fig. 5.7 shows that bilateral filtering falls in 
the processing texture region, resulting in a large reduction in spatial frequency. By 
contrast, the AR model is suitable for texture synthesis, so it can preserve the texture 
part well. These two models excel at dealing with smooth regions. Therefore, it is 
natural to combine the advantages of AR model and bilateral filtering to obtain better 
results in edge, texture and smooth areas.
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Fig. 5.6 a Original and filter processed images with b AR model, c bilateral filtering, and d semi-
parametric model (©[2021] IEEE. Reprinted, with permission, from [15].) 

Fig. 5.7 a Original and filter processed images with b AR model, c bilateral filtering, and d semi-
parametric model (©[2021] IEEE. Reprinted, with permission, from [15].) 

The filtered picture may be thought as an approximation of estimative data, which 
can be described using the free energy concept. By employing this model, the human 
brain can divide the input image into orderly and disorderly parts. Based on this 
analysis, Gu et al. identified that the internally generated model can be approximated 
as AR model. In contrast, by introducing bilateral filtering, a more reliable semi 
parametric model is developed, which has good performance in edge, texture and 
smooth region. 

Furthermore, there is still a significant issue in determining the suitable region. 
If you have seen the famous portrait “Mona Lisa”, do you remember what the fore-
ground is? For most people, an elegant lady with a mysterious smile will appear in 
their mind. But if you ask what the background is, most people may not remember 
anything. In other words, although we have enough time to see the whole image, 
humans will pay attention to some important areas. 

According to information maximization, we premise that humans want to select 
maximum-information regions to be perceived. In this part, visual saliency is used 
to select the best region. It is worth noting that visual saliency is a concept different 
from our application in this paper. It only provides several candidate areas that may 
have the largest amount of information. 

More specifically, we consider the newly designed free energy excitation signif-
icance detection technology (FES) [44]. The FES model can adjust the image size 
to a rough 63 × 47 pixel representation in a small range. The FES method predicts 
the error map and generates its local entropy map in each color channel. Then, the 
three filtered and normalized local entropy maps are combined in different color 
channels to generate the final significance map according to the comparability of 
semi-parametric model. If an image has a clear foreground and background, the 
salient regions conveying valuable information will be concentrated. If the salient
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areas are scattered, the valuable information will be scattered. Therefore, valuable 
(unpredictable) information will be expressed by using almost the entire image. 

Global Quality Measure 

Our approach’s second aspect is from the standpoint of global information metrics. 
Entropy is a key term in image contrast because it ignores the impact of pixel positions 
and instead evaluates the pattern of pixel values. Given two probability densities h0 
and h1, the K-L divergence can show in: 

DKL  (h1||h0) = −
∫

h1(t)logh0(t)dt  +
∫

h1(t)logh1(t)dt  

=H (h1, h0) − E(h1) 
, (5.22) 

where H(h1, h0) is the cross entropy of h1 and h0. By utilizing the K-L divergence, 
the interaction between h1 and h0 has been contained. However, the K-L distance is 
asymmetric, which might pose problems in real-world applications. Simple exam-
ples are offered by Johnson and Sinanovic to demonstrate how the sequencing of 
the assumptions in the K-L divergence might generate significantly different out-
comes. As a result, we use the symmetric K-L divergence. We choose a symmetrized 
and smoothed format called the Jensen-Shannon (J-S) divergence, which is a sym-
metrized and smoothed format. Tests reveal that it is quite the contrary to symmet-
ric forms, which are based on arithmetical, geometric, and harmonic means. Apart 
from the three functions mentioned above, the J-S divergence is a symmetrized and 
smoothed format: 

DJS(h0, h1) = 
DKL  (h0||hΔ) + DKL  (h1||hΔ) 

2 
. (5.23) 

The tests reveal that the J-S divergence and 128-bin histogram cause approxi-
mately 2% performance improvements. Hence, given the histogram h and u of pixel 
values, the global quality measure is characterized by: 

QG = DJS(h, u). (5.24) 

It’s worth noting that the created local and global quality measures have the oppo-
site meanings; the higher the local QL (or the smaller global QG), the higher the 
contrast and quality of the picture. 

Combined Quality Measure 

We have presented two quality metrics according to the notion of information maxi-
mization. The former measures the relevant information from the perspective of local 
details by using predictable data reduction and optimum region selection. Inspired 
by the fundamental principle of the practical HE approach, the latter part of our blind
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NIQMC metric employs the symmetrized and smoothed J-S divergence. The above 
operation can determine whether the input histogram is appropriately distributed in 
comparison to the uniform distribution or not. The two elements above serve com-
plimentary functions in terms of working. We can also find that they are combined to 
mimic the HVS impression of contrast-altered image quality. We may easily combine 
these two metrics because they are of the same entropy. As a result, the NIQMC is 
characterized as a straightforward linear fusion of the two quality metrics: 

N I  Q  MC  = 
QL + γ QG 

1 + γ 
, (5.25) 

where γ denotes a constant weight that is utilized to control the relative significance 
between the local and global strategies. 

Finally, we provide the fundamental architecture of the designed blind NIQMC 
technique to assist readers grasp how to dispose of the measure in Fig. 5.8. The  
symmetric and smoothed J-S divergence is used to determine the global quality metric 
of a picture signal. Following that, we do optimum region selection to forecast the 
local quality measure by adopting the semi-parametric model to analyze the pristine 

Fig. 5.8 The fundamental architecture of NIQMC metric
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picture, separately. Finally, the NIQMC score is calculated using a mix of global and 
local estimates. 

5.2.3 Enhanced Image QA Based on the Enhancement 
Technology 

Because of operational error, low-cost imaging sensors, and undesirable equipment 
functions, original images may have inferior contrast and low visual quality. Contrast 
enhancement is the most preferred way among the different solutions to this problem 
since it tries to directly improve visual contrast, further improving users’ experiences. 
However, these methods have side effects such as excessive enhancement and noise 
enhancement that require more attention. In this part, we introduce two methods to 
overcome the above problems, both of which are aimed at automatically generating 
visually-pleasing enhanced images. 

Automatic Enhancement Technology 

A good contrast enhancement method is thought to create more picture details while 
also suppressing motion artifacts. However, for most automatic applications or algo-
rithms, over-enhancement and under-enhancement are such a key problem. To make 
higher image quality, people have to tune parameters manually, which is often dif-
ficult and consumes a lot of time. In this part, we introduce a new automatic RICE 
model with saliency preservation. We generate the algorithm by two steps. We firstly 
pose the cost function regarding the ideal histogram. Then we automatically derive 
the ideal histogram following the instruction of QA metric of contrast, and then 
improve image contrast by mapping histogram. We put the flow diagram of RICE in 
Fig. 5.9 in order to help understand our framework. 

Ideal Histogram for Contrast Enhancement 

HE [10] is a popular contrast enhancement algorithm, which targets generating dis-
tributed histograms with cumulative histograms as mapping functions to improve 
the quality of output images. However, HE also has many problems such as visible 
deterioration caused by over-enhancement. In this part, we define a novel histogram 
modification framework (HMF) to improve the performance of contrast enhance-
ment. The first step of processing an input image Ii is to denote hi by the histogram 
of Ii and by hu a consistently distributed histogram. Next, we find a bicriteria opti-
mization problem that the target histogram h̃ should be closer to hu , but also make 
the distance h̃ − hi small as a precision limit. In experiment, we find that using HE 
to compute the equalized histogram heq has better performance than hu . As a result, 
we express the issue as a weighted average of the two goals:
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Fig. 5.9 Flowchart of the designed RICE contrast enhancement algorithm. hi , heq , and  hsig respec-
tively indicate the histograms of the input image, related histogram equalization and S-shaped 
transfer function based brightness preserving processed versions 

h̃ = arg min 
h 

||h − hi|| + φ 
|| 
||h − heq 

|| 
|| , (5.26) 

where {h̃, h, hi , heq} ∈  R256×1 and φ control over [0, ∞). The Eq. (5.26) discovers 
the balance between the original image’s two histograms and their equalized version. 
The standard HE can be grabbed as φ goes to infinity, while Eq. (5.26) converges to 
the input image when φ is near to zero. However, we find that Eq. (5.26) does not 
include any perceptual quality associated term. We employ a four-arguments logistic 
function to define the sigmoid transfer mapping Tsig(·) and its linked enhanced image 
Isig as: 

Isig = Tsig (Ii , π  ) = π1 − π2 

1 + exp 
( 
− (Ii−π3) 

π4 

) + π2, (5.27) 

where π = {π1, π2, π3, π4} are free parameters. We hypothesis that the transfer 
curves through four points (βi , αi ), i = {1, 2, 3, 4}. We use sigmoid mapping for 
advancing surface quality, which is rolling symmetry with regard to the straight line 
y = x . We fix seven parameters: (β1, α1) = (0, 0), (β2, α2) = (255, 255), (β3, α3) = 
(x, y), where x = y = [mean(Ii )/32] ∗  32, β4 = 25, and let α4 to be the unique free 
parameter. Then, we seek the best control parameters π = {π1, π2, π3, π4} by mini-
mizing the following objective function: 

πopt = arg min 
π 

4Σ 

i=1 

| 
|αi − Tsig (βi , π  ) 

| 
| , (5.28) 

by using the known parameters πopt , we can finally access: 

Isig = max 
( 
min 

( 
Tsig 

( 
Ii , πopt 

) 
, 255 

) 
, 0 

) 
, (5.29)
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Fig. 5.10 Sigmoid curves with four different α4 values (©[2021] IEEE. Reprinted, with permission, 
from [10].) 

where max and min operations are utilized to confine the values of Isig pixel between 
[0,255]. We set α4 = 12, which is the only control parameter to change the curvature 
of the transfer function. To visualize the sigmoid curve, we model four exemplary 
curves with the same (β3, α3) = (128, 128) but different α4 in Fig. 5.10. 

We use sigmoid transfer mapping to process the Matthew sculpture image, exhib-
ited in Fig. 5.11. It is remarkable that the surface quality improves a lot compared 
with the original image. 

Furthermore, we propose a typical natural image red door as well as its histogram 
equalized and sigmoid curve transferred versions in Fig. 5.11a, e, and i. We can also 
observe that the sigmoid mapping generates higher quality images (i) with regard to 
the other two (a) and (e). It is natural to combine the histogram hsig into Eq. (5.26) 
to make the optimization objective function more integrated: 

h̃ = arg min 
h 

||h − hi|| + φ 
|| 
||h − heq 

|| 
|| + ψ 

|| 
||h − hsig 

|| 
|| , (5.30) 

where hsig ∈ R256×1 and ψ is a control parameter similar to φ. Note that a suitable 
selection of {φ, ψ} will result in the optimal tradeoff and produce optimally best 
images. 

We use the squared number of the Euclidean norm to acquire a solution to Eq. 
(5.30): 

h̃ = arg min 
h 

||h − hi||2 2 + φ 
|| 
||h − heq 

|| 
||2 
2 + ψ 

|| 
||h − hsig 

|| 
||2 
2 , (5.31) 

which leads to the quadratic optimization issue:
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(a) (b)

Fig. 5.11 Matthew sculpture processed by our sigmoid transfer map. a pristine sculpture. b pro-
cessed sculpture (©[2021] IEEE. Reprinted, with permission, from [10].) 

h̃ = arg minh 
⎡ 
(h − hi)T (h − hi) + φ 

( 
h − heq 

)T ( 
h − heq 

) 

+ψ 
( 
h − hsig 

)T ( 
h − hsig 

)⎤ . (5.32) 

We can derive the solution of Eq. (5.32) as:  

h̃ = 
hi + φheq + ψhsig 

1 + φ + ψ 
. (5.33) 

Given h̃, the histogram matching function Thm(·) given in [20] is utilized to gen-
erate the enhanced image: 

Ĩ = Thm 

( 
Ii , h̃(φ, ψ) 

) 
. (5.34) 

To see the output more clearly, we exhibited the three enhanced images in Fig. 
5.12c, g, and k. As expected, the enhanced output realizes considerable improvement 
in image quality. 

Automatic Realization of Ideal Histogram 

In the majority of cases, manual parameter tuning isn’t convenient and operable 
since it is such a time-consuming job for real-time systems. We have found that 
suitable contrast enhancement usually reveals indistinguishable image detail while 
keeping the image salience unaltered (Fig. 5.12j–l). It encourages us to think about
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 5.12 a A red door image in Kodak database. e Output of HE. i Output of S-shaped transfer func-
tion based brightness preserving. c–k Outputs of dynamic range separate histogram equalization. 
b–l Saliency maps of (a)–(k) (©[2021] IEEE. Reprinted, with permission, from [10].) 

how saliency preservation may be utilized to fine-tune the performance of contrast 
enhancement techniques. We develop a distance measure for the input picture Ic 
using the ι0 distance of their image features as the first term of QA metric of contrast 
(QMC): 

ΔD = 
|| 
||sign 

( 
DCT 2 

( ̇
Ii 
)) 

, sign 
( 
DCT 2 

( ̇
Ic 

))|| 
|| 
0 , (5.35) 

where İi and İc indicate downsampled images of Ii and Ic by a factor of 4 utilizing 
the bilateral model. This term denotes that the smaller the difference of saliency maps 
between Ii and Ic is, the higher the quality score of Ic will be. 

Then, using a simple linear function, we combine saliency preservation with 
entropy increase to define the QMC as: 

QMC (Ii , Ic) = ΔD + γΔE, (5.36) 

where γ indicates a fixed parameter to alter the relative importance of two compo-
nents. We observe that the value of γ equals to 0.2 is best, which means that saliency 
preservation is more important in the QA of contrast enhancement. 

We also employ QMC to optimize the parameters {φ, ψ} for the contrast enhance-
ment algorithm as:
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Fig. 5.13 Generalized contrast enhancement framework for unified context-free and context-
sensitive methods 

} 
φopt, ψopt 

{ = arg min{φ,ψ} QMC 
( 
Ii , Ĩ 

) 
, 

= arg min{φ,ψ} QMC 

( 
Ii , Thm 

( 
Ii , 

hi + φheq + ψhsig 
1 + φ + ψ 

)) 
. 

(5.37) 

In this approach, we can automatically generate the properly enhanced image Iopt 
with {φopt , ψopt }. 

Unified Contrast Enhancement Framework 

In this part, we introduce a general contrast enhancement framework for context-
sensitive and context-free enhancement methods. In order to upgrade the context-
sensitive contrast, an advanced unsharp masking is performed on images after filter-
ing the input and edge preserving. Context-free contrast enhancement is obtained by 
sigmoid transfer mapping. In order to generate more ornamental images, advantages 
of these methods are integrated into a joint strategy. The framework is shown in 
Fig. 5.13. These two enhancement methods are used to process the input image, and 
then the obtained enhanced image is systematically fused to generate the final image.
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Context-Sensitive Method 

Unsharp masking can realize the function of amplifying the high-frequency part of the 
image signal based on linear or nonlinear filtering [45]. The filtering process can be 
considered as a model connected to the input. The residual signal between the original 
input and the low-pass filtered (such as Gaussian smoothing) image usually contains 
image structure and noise. However, only the image structure should be enhanced 
and the noise cannot be amplified in unsharp masking. Therefore, it is necessary to 
preprocess the image to reduce noise and maintain edges before performing unsharp 
masking. There are many types of edge-preserving filters, each of them can produce 
an unsharp version. The processed image is considered to be a context-sensitive 
enhanced image. For example, Bilateral filter [46] has better edge-preserving ability, 
and is easy to establish and compute [47], but only using edge-preserving filter will 
cause the loss of details. Therefore, we add impulse function to retain the information 
of the input image, while using a bilateral filter. Their combination can balance noise 
robustness and sharpness enhancement well. If you want to handle more complex 
scenarios, you can improve on this strategy by using more than two filters. 

I is a given input image, and unsharp masking can be defined as: 

Is = I + ω1 · Id1 + ω2 · Id2, (5.38) 

where Id1 represents the high-frequency signal generated by the image after the 
pulse function preprocessing. Id2 represents the high-frequency signal generated by 
the image after bilateral filtering. More specifically, we use Gaussian smoothing to 
further process the preprocessed image, which is represented as Id1. We treat the 
residual between the input image and the smoothed image as high-frequency sig-
nal, which is replaced by Id2. ω1 and ω2 are the control factors, and here we set 
ω1 = ω2 = 0.5. 

Context-Free Approach 

The context-free enhancement approach is implemented through sigmoid transfer 
mapping [10, 48]. When the human eye uses skewness or similar histogram asym-
metry to determine surface quality, images with long positive tails in the histogram 
often appear darker and more glossy [49]. Sigmoid mapping can be used to improve 
surface quality to make the enhanced image quality more close to HVS preferences. 
Context-free enhanced image I f is defined as follows: 

I f = fcli p(Ms(I, Φ))  = fcli p 

( 
Φ1 − Φ2 

1 + exp(− (I −Φ3) 
Φ4 

) 
+ Φ2 

) 

. (5.39) 

This function describes a mapping curve, where the fcli p action binds the pixels to 
the [0, 255] area, and Φ = {Φ1, Φ2, Φ3, Φ4} are the optional parameters. To derive 
these parameters, we need to determine four points (x, y) on the mapping curve



5.2 Methodology 151

before the transfer process. x represents the input intensity and y represents the 
transfer output. Since the sigmoid map is rolling symmetric relative to the line y = 
x , we can obtain three pairs of fixed points, namely (x1, y1) = (0, 0), (x2, y2) = 
(lmax , lmax ), and (x3, y3) = ( lmax 

2 , lmax 
2 ). lmax denotes the maximum density of the 

input image, that is, lmax = 255. The remaining (x4, y4) can be fixed to control the 
shape, where the value of x4 is different from that of x1, x2, and x3. When x4 is 
determined, y4 can be obtained. The optimal control parameter can be found by 
searching for the minimum value of the following objective function: 

Φ = arg min 
Φ 

4Σ 

i=1 

|yi − Ms(xi , Φ)|. (5.40) 

Among these parameters, only y4 can change the control parameter of the curva-
ture of the transfer function. Here, we set x4 = 25, y4 = 3. 

Unified Contrast Enhancement Framework 

Both context-sensitive and context-free methods have advantages in terms of optimiz-
ing contrast quality. Using these two models, the contrast enhancement is described 
as a multi-criteria optimization issue here. The purpose is to seek image that is similar 
to the desired enhanced image, while retaining the structure from the input image 
I . Therefore, given parameters α and β that control contrast enhancement level, the 
generalized structure can be obtained by: 

min{D(Ie, I ) + α · D(Ie, I f ) + β · D(Ie, Is)}, (5.41) 

where Ie is the enhanced image under the generalized contrast enhancement frame-
work. I f is an enhanced image generated by a context-free method, and Is is an 
enhanced image generated by a context-sensitive method. When two vectors x and 
y with the same number of elements are given, the Euclidean distance D is defined 
as follows: 

D(x, y) = 
Σ 

i 

(xi − yi )2 . (5.42) 

The quadratic optimization problem can be derived from Eqs. (5.41) and (5.42): 

Ie = arg min 
Ie 

{D(Ie, I ) + α · D(Ie, I f ) + β · D(Ie, Is)}, 
= arg min 

Ie 
{(Ie − I )T (Ie − I ) + α · (Ie − I f )T (Ie − I f ). 

+ β · (Ie − Is)T (Ie − Is)} 
(5.43) 

Finally, these images (i.e., I , I f , Is) are fused to obtain the enhanced image Ie:
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Fig. 5.14 Comparison of the context-sensitive and context-free enhanced images. a Input image 
“Lighthouse”; b Is ; c I f ; d Ie with α = 0.5 and β = 0.5 (©[2021] IEEE. Reprinted, with permis-
sion, from [16].) 

Ie = 
I + α · I f + β · Is 

1 + α + β 
. (5.44) 

According to the above Eq. (5.44), α and β can construct contrast enhancement 
images of different levels and adjust Ie. Ie is almost a globally enhanced image as α 
goes to infinity. When α and β close to zero, Ie is the original input image. 

Figure 5.14 shows the contrast enhancement results, where α = 0.5, β = 0.5. This  
method combines the advantages of both context-free and context-sensitive methods, 
which makes the enhanced image more natural and has better visual effects. It can 
be seen from Fig. 5.14c, the context-free approach implemented through sigmoid 
transfer achieves better quality. 

Guided Contrast Enhancement Scheme 

In general, it is difficult to automatically enhance an image to the desired contrast 
level. If there is an inappropriate level of enhancement, the image will be over-
enhanced, making the image unnatural. To reduce human involvement, we usually 
use the retrieved images to derive the level of automatic contrast enhancement. A 
great quantity of available images in the cloud make the realization of automatic con-
trast enhancement possible. Quality assessment methods based on contrast enhance-
ment are important tasks [50] that still needs to be improved. In order to realize the 
automatic selection of guided images, we use the NR image QA method to reorder 
the images retrieved in the cloud according to the image quality. The images with 
the best quality are referred to as “guidance images”. Subsequently, inspired by the 
simplified reference image quality assessment method, we extract several features 
that can represent the whole image for contrast enhancement, quality comparison 
and matching. Finally, the contrast enhancement image that best matches the guid-
ance image is obtained. Contrast is closely related to image complexity and surface 
quality statistics, which also inspires us to use free-energy to explore the derivation 
of contrast levels.
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Fig. 5.15 Flowchart of the automatic contrast enhancement scheme 

Guidance Image Selection with NR Image QA 

Figure 5.15 shows the selection process of a guidance image. The input images 
are used to retrieve greatly correlated images from the cloud. In order to select the 
one with the best image quality, we use the recently proposed NR image QA method 
[37] that achieves advanced prediction accuracy to sort images with various qualities. 
Theoretically, any advanced NR image QA method can be applied here. 

There exists an approximate linear relationship between the observed structural 
degradation information and the free-energy of the pristine image. On this basis, 
the characteristics of structural degradation SDMi (I ) (i ∈ {μ, σ }) are compared 
with the free-energy F(I ), and the difference between N R  D1(I ) and N R  D2(I ) 
are used to evaluate quality. N R  D  j (I ) = F(I ) − (ξ j · SDMi (I ) + ϕ j ), j ∈ {1, 2}. 
Structural degradation is assessed as follows: 

SDMμ(I ) = E 
( 

σμI μ̄I + C1 

σμI σ μ̄I + C1 

) 
, (5.45) 

SDMσ (I ) = E 
( 

σσI σ̄I + C1 

σσI σ ̄σI + C1 

) 
, (5.46)
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where E(·) is the operator of mathematical expectation, and C1 is the small positive 
stability constant considering saturation effect. μI and σI represent the local mean 
and standard deviation of a 2D circularly symmetric Gaussian weight function. μ̄I and 
σ̄I represent local mean and standard deviation obtained by using the impulse function 
rather than Gaussian weighting function. σμI μ̄I is the local covariance between the 
two vectors. The structural degradation information associates with the cosine of the 
angle between the two mean vectors. σσI σ̄I is the local covariance between vectors 
σI and σ̄I . 

The N R  D1(I ) and N R  D2(I ) values of high quality images with little distortion 
are very close to zero, and will deviate from zero when the distortion becomes large. 
In addition to these characteristics, the size of the image is considered to be the 
criterion for excluding low resolution guidance images. This framework is suitable 
for single contrast enhancement using images retrieved from the cloud. In addition, 
it can be further extended to “photo album contrast enhancement”, which is also 
considered as a special form of cloud storage. 

Alternative strategies based on this framework can also be applied. For example, 
when browsing images, we can first manually select a guide image, then manually 
enhance an image to improve the contrast. Next, we can take this image as a guide 
image, and other information images can automatically enhance the guidance infor-
mation. 

Free-Energy-Based Brain Theory 

In this work, the free-energy is used to derive the contrast enhancement level of 
NR image QA and feature matching. Free energy theory attempts to illustrate and 
unify several brain theories about human behavior, perception and learning in the 
biological and physical sciences [51]. The basic assumption of the free-energy-based 
brain theory is that cognitive processes are controlled by the internal generative 
mechanism (IGM). 

IGM is parameterized here to explain the scene by adjusting the parameter v. In  
the input image I , the entropy-determined “surprise” is assessed by integrating the 
joint distribution P(I, v)  in the model parameter v space [52]: 

− log P(I ) = −  log
∫

P(I, v)dv. (5.47) 

To more accurately represent the joint distribution, we add a dummy term Q(v|I ) 
to the numerator and denominator of the above formula, and rewrite it as: 

− log P(I ) = −  log
∫

Q(v|I ) P(I, v)  
Q(v|I ) dv, (5.48) 

where Q(v|I ) indicates the posterior distribution of the model parameters for a given 
input image signal I . Negative “surprises” can also be interpreted as log evidence of 
the image data given the model. In this case, the minimization of “surprise” equals
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the maximization of model evidence. Jensen’s inequality is used to deduce from 
Eq. (5.49): 

− log P(I ) ≤ −
∫

Q(v|I ) P(I, v)  
Q(v|I ) dv, (5.49) 

and the free-energy can be accessed by: 

F(I ) = −
∫

Q(v|I ) P(I, v)  
Q(v|I ) dv. (5.50) 

The free-energy F(I ) defines the upper limit of input image information through 
− log P(I ) ≤ F(I ). In [52], the free-energy can be proved to be expressed by the 
total description length of the kth order AR model. 

F(I ) = −  log P(I |v) + 
k 

2 
log N with N → ∞, (5.51) 

N is the sum of pixels in the image. The prediction residual entropy between the 
input image and the predicted image plus the model cost can be used to estimate the 
free-energy. Residuals are considered to be disordered information that cannot be 
well explained by the HVS. 

The free-energy theory of human brain reveals that HVS cannot process sensory 
information entirely and tries to avoid some surprises with uncertainties. In actuality, 
the positive contrast changes usually highlights visibility details to get a high quality 
image. But this process produces extra information about the content, which makes 
the image more difficult to describe. The reason for the above problems is that HVS 
is more capable of describing low-complexity images than the higher-complexity 
version [53]. Prior information from guidance can estimate the proper free energy 
of visually pleasing images with great contrast, which is very efficient for deducing 
the level of contrast enhancement. 

The relation between contrast enhancement level and free energy is shown in Fig. 
5.16, where the enhancement level is controlled by context-sensitive parameter β. 
As can be seen from the figure, the free energy increases with the enhancement level. 

Surface Quality Statistics 

Contrast not only provides an effective clue for surface reflectance [54], but also 
shares higher-level attributes with gloss in the dimension of human perception. 
Observers usually employ skewness or histogram asymmetry to determine surface 
quality [49]. Skewness represents a measure of distribution asymmetry, which refers 
to the balance between positive and negative tails. With the increase of gloss, the 
skewness of image histogram tends to increase regardless of albedo. 

Contrast Level Derivation from Guidance
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Fig. 5.16 The relationship 
between the contrast 
enhancement level 
(controlled by parameter ) 
and free-energy (evaluated in 
terms of residual entropy) for 
image “Lighthouse” 
(©[2021] IEEE. Reprinted, 
with permission, from [16].) 

Humans preferentially respond to high-contrast stimuli, while image saliency is sen-
sitive to noise but immune to contrast enhancement. Hence, saliency region detection 
is necessary for both guided images and fused images. Firstly, the threshold is used 
to detect the saliency region of the salient map of guided images and fused images. 
Then, features such as free-energy and surface mass within the salient region are 
extracted. Finally, the final enhanced image is generated by using the parameters 
that can generate the minimum feature distance. 

Various visual saliency detection methods have been successfully applied to image 
processing tasks [55–57]. There is a recently proposed image signature model that 
uses each DCT component image signature to generate saliency maps [58]. This 
means that the model only needs one bit per component, which makes it work effi-
ciently at very low computational complexity costs. Image signatures are defined as 
follows: 

ImgSignature(I ) = sign(DCT 2(I )). (5.52) 

Each input value ξ is entered through sign(·): 

sign(ξ ) = 

⎧ 
⎪⎨ 

⎪⎩ 

1, ξ  >  0 
0, ξ  = 0 

−1, ξ  <  0 
. (5.53) 

Then, the reconstructed image can be obtained by the following way: 

Ī = I DCT  2(ImgSignature(I )), (5.54) 

where DCT2 represents the discrete cosine transform of 2D image signal, and IDCT2 
represents the inverse discrete cosine transform of 2D image signal. Finally, the 
reconstructed image is smoothed to obtain saliency mapping:
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Saliency Map = g ∗ ( ̄I ◦ Ī ), (5.55) 

where g refers to Gaussian kernel. ‘◦’ is the entry-wise and ‘∗’ is the convolution 
operator. In the actual implementation, the saliency map can be converted to intensity 
images in the range of 0.0–1.0, and the salient regions can be classified by the 
threshold, which is determined by experience. 

By analyzing free energy and surface quality statistics, we extract two features 
from the guided image and fused image. This method uses global features instead 
of pixel level or block level to compare image pairs. By doing this, it can achieve 
efficient dimension reduction effect and offer high accuracy in summarizing the 
contrast strength. So, the contrast matching problem can be transformed into an 
optimization problem based on the guided image and fused image: 

(α∗, β∗) = argminα∗,β∗ 
(|F(Ig) − F(Ie)| +  λ|S(Ig) − S(Ie)|

) 
, (5.56) 

where λ balances the magnitude and importance of complexity metric and skewness 
metric. α∗ and β∗ are the optimization values that lead to an appropriate enhancement 
level. For facilitating comparison and reducing the computational complexity, the 
guided image and fused image are downsampled at the same scale, and then the 
feature calculation is carried out. The final enhanced image is obtained by Eq. (5.44) 
using I , I f , Is with parameters α∗ and β∗. 

5.3 Comparison and Analysis of Algorithm Performance 

In this section, we introduce an image database named CCID 2014, and several 
state-of-the-art image QA methods of enhanced images. We focus on comparing 
and measuring the performance of the presented QA approaches in this chapter with 
these methods. The detailed results of the analysis will be illustrated in the following 
sections. It is worth mentioning that the analysis results show that the performance 
of these methods in this chapter perform quite well. 

5.3.1 CCID 2014 Database 

The CCID 2014 database is composed of 655 images derived from 15 natural images 
in Kodak image database [33]. It is dedicated to the distortion category of contrast 
altering. Based on the standard suggested by ITU-R BT.500-13 [21], 22 subjects are 
invited to rate these images on a suitable viewing distance and illumination condition. 
The final scores and the corresponding mean opinion scores (MOSs) of these viewers 
are recorded.
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5.3.2 Performance Comparison and Analysis 

In order to demonstrate the validity and superiority of the methods introduced in this 
chapter, we compare the proposed approaches with the state-of-the-art image QA 
methods. All three types of methods are listed in Table 5.3. Among them, there are 
13 FR methods, 4 RR methods and 9 NR methods, respectively. 

When we compare the above modern image QA methods, four commonly used 
metrics, namely PLCC, SRCC, KRCC, and RMSE, are used. The evaluation accuracy 
can be measured by PLCC and RMSE, while the monotonicity of the prediction can 
be found by SRCC and KRCC. A higher value of PLCC, SRCC, and KRCC and a 
lower value of RMSE represent a better quality evaluation methods. The objective 
assessment scores are nonlinearity obtained by PLCC, SRCC, KRCC, and RMSE, 
so we use a logistic function to increase the linearity. We compute the image QA 
scores using these four criteria by the mapping including 5 parameters as follows: 

f (x) = τ1( 
1 

2 
− 1 

1 + expτ2(x−τ3) 
+ τ4x + τ5), (5.57) 

where τi,i=1,2,3,4,5 represents the fitted parameter; f (x) and x are subjective scores 
and its corresponding objective scores which are assessed by image QA algorithms. 

It is evident that the four introduced models in this chapter have achieved encour-
aging results. We summarize the advantages of proposed models as follows. 

(1) It is obviously found that among the tested FR image QA methods, VIF has 
the best performance with the highest PLCC, SRCC, KRCC, and the lowest RMSE. 
Compared with VIF, MS-SSIM is a bit less powerful, but it is the best performance 
among other methods. 

(2) The performance of QMC introduced in this paper is the best. Compared with 
FTQM, which shows the best performance in the traditional RR method participating 
in the comparative experiment, QMC has increased values of PLCC, SRCC and 
KRCC. 

(3) Among the tested NR image QA methods, BIQME obtains the superior per-
formance than other methods. Compared with the proposed method which shows the 
best performance in the RR method participating in the comparative experiment, the 
PLCC, SRCC and KRCC values of QMC have been upgraded. 

Overall, QMC performed best in this experiment. Compared to the VIF method 
with the best performance in the category of FR image QA model, the values of 
PLCC, SRCC and KRCC of QMC have been increased, respectively. Compared 
with FTQM, which has the optimal performance in RR methods, QMC’s PLCC, 
SRCC and KRCC values have also increased, separately. Compared with BIQME, 
which has the best performance in traditional NR image QA models, the PLCC, 
SRCC, and KRCC values of QMC have increased too. It can be seen that among 
the traditional algorithms used for comparison, the FR image QA algorithm has 
the best performance since it has complete pristine image information. However, 
the semi-reference and even NR algorithms introduced in this chapter obtain opti-
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Table 5.3 The proposed algorithms and modern developed QA models 

Category Abbreviation Full Name Refs. 

FR SSIM Structural similarity [59] 

FR MS-SSIM Structural similarity [60] 

FR VIF Visual information fidelity [61] 

FR MAD Most apparent distortion [62] 

FR IW-SSIM Information weighted SSIM [63] 

FR FSIM Feature similarity [64] 

FR GSIM Gradient similarity index [65] 

FR IGM Internal generative mechanism [66] 

FR SR-SSIM Spectral residual SSIM [67] 

FR VSI VS-based index [68] 

FR WASH Wavelet based sharp features [69] 

FR LTG Local-tuned-global [70] 

RR FEDM Free energy based distortion metric [52] 

RR RRED Reduced-reference algorithms [71] 

RR FTQM Fourier transform based quality 
measure 

[72] 

RR SDM Structural degradation model [73] 

RR RIQMC Reduced-reference image quality 
metric for contrast change 

[13] 

RR QMC Quality assessment metric of contrast [10] 

NR DIIVINE Distortion identification-based image 
verity and integrity evaluation 

[74] 

NR BLIINDS-II Blind image integrity notator using 
DCT statistics 

[75] 

NR BRISQUE Blind/referenceless image spatial 
quality evaluator 

[11] 

NR BIQME Blind image quality measure of 
enhanced images 

[14] 

NR NIQMC No-reference image quality metric for 
contrast distortion 

[15] 

NR NFERM No-reference free energy-based robust 
metric 

[37] 

NR NIQE Natural image quality evaluator [76] 

NR QAC Quality-aware clustering [77] 

NR IL-NIQE Integrated-local NIQE [78] 

NR BQMS Blind quality measure for SCIs [40] 

NR Fang et al. – [6]
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mal performance under the condition of using less reference information, and even 
surpass the traditional FR algorithms. 

5.4 Conclusion 

Image enhancement and QA technology play a significant role in practical appli-
cations such as object detection, recognition, and so on. This chapter introduces 
two databases containing contrast-changed images, two NR images QA methods 
and one RR image QA method. First, considering that there are few databases for 
QA of enhanced images, we establish two novel enhanced image databases, namely 
EID and CCID 2014. Second, in order to improve and optimize enhancement algo-
rithms, we design four excellent performance image QA metrics to predict the quality 
of processed images, including RIQMC, BIQME, NIQMC and QMC. Finally, On 
the basis of the better contrast and visual quality already obtained, we propose two 
methods, both of which target at automatically generating visually-pleasing enhanced 
images. One method is a new automatic RICE model with saliency preservation. The 
other method is a general contrast enhancement framework for context-sensitive and 
context-free enhancement methods. Analysis results show that the image QA models 
including RIQMC, BIQME, NIQMC and QMC are better than the traditional image 
QA models. Despite the good performance of the measures described, there is still 
work to be done. In future work, we will consider how to effectively assess images 
or videos to better improve and optimize enhancement algorithms while reducing 
the complexity of models. 
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Chapter 6 
Quality Assessment of Light-Field Image 

6.1 Introduction 

Nowadays, with the increasing demand for immersive media applications, light-field 
(LF) imaging has widespread applications such as 3D reconstruction, virtual reality, 
and image-based rendering [1–6]. As a type of digital visual signal, LF images are 
inevitably prone to loss of visual details during the various stages of acquisition, 
encoding, denoising, transmission, and rendering to display. The perceived quality 
and the system processing ability of the LF images will be affected by distortion. 
Therefore, it is necessary to obtain the LF image quality and design the corresponding 
image processing system to improve the performance of practical applications of LF 
images. 

From the perspective of the presence or absence of participants, these methods 
are divided into subjective image QA method and objective image QA method. 
The subjective image quality evaluation method aims to obtain the image quality 
through observers’ subjective evaluation, then acquire the final score through the 
mean opinion score (MOS). But this method is laborious, which is unsuitable for 
practical applications such as dynamically monitoring, adjustment of image qual-
ity, and so on. Thus, the objective image QA method has become the mainstream 
QA method. On the basis of the accessibility of reference information, these image 
QA methods can be divided into three types, namely full-reference (FR) image QA 
methods, reduced-reference (RR) image QA methods, and no-reference (NR) image 
QA methods. The FR image QA methods exploit complete information about ref-
erence images and compute the discrepancy between the original images and the 
corrupted images. The RR image QA approaches only refer to part of the original 
image information. The NR image QA models assess the image quality without any 
information of the original image, which makes it more usable in most real-world 
applications. In [9], Yang et al. designed a 3D FR image QA method by using the 
average peak signal-to-noise ratio and the absolute difference between left and right 
views. In [10], Chen et al. presented a 3D NR image QA algorithm by combining 
the features obtained from cyclopean images, disparity maps, and uncertainty maps. 
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In [11], Gu et al. put forward an NR multi-view image QA method named AR-plus 
thresholding, which can employ the autoregression-based local image description. 

While there have been many efforts for researching the image QA, the advanced 
QA approaches are unsuitable for the LF images. Unlike traditional imaging tech-
niques that directly record the light intensity of the camera sensor, the images gener-
ated by the LF imaging technology contain fundamental depth information. Specifi-
cally, LF images contain not only radiation intensity information, but also the direc-
tion information of light rays in the free space [7, 8]. 

To achieve a better quality evaluation result of LF images, a large number of 
researchers have done a lot of work to design different LF image QA approaches. 
For example, in [15], Tian et al. designed an FR image QA model, which measures 
the light-field coherence (LFC) between the pristine LF image and the corrupted LF 
image to evaluate the image quality. In [12], Paudyal et al. put forward a RR image 
QA model that investigates the association between the perceptual quality of LF 
images and the distortion of the estimated depth map. In [13], Shi et al. designed a 
NR LF image QA scheme named NR-LFQA, which derives the quality degradation 
of LF images by assessing the spatial quality and the angular consistency. In [14], 
Zhou et al. put forward a new tensor-oriented no-reference light-field image quality 
evaluator (Tensor-NLFQ) based on tensor theory. In order to evaluate the performance 
of these image QA models, we compared them with state-of-the-art competitors using 
four typically used metrics, namely Pearson linear correlation coefficient (PLCC), 
Spearman rank correlation coefficient (SRCC), root mean square error (RMSE), 
outlier ratio (OR). 

The remainder of this chapter is arranged as follows. Section 6.2 introduces in 
detail the modeling process and comparison and analysis of three types of LF image 
QA models, namely the FR LF image QA, the RR LF image QA, and the NR LF 
image QA. Section 6.3 compares several advanced image QA methods of LF images 
with the introduced approaches. Section 6.4 finally draws the conclusion and provides 
future work. 

6.2 Methodology 

In this section, we mainly introduce various LF image QA methods. These approaches 
can be divided into three types according to the accessibility of original information, 
namely FR, RR, and NR LF image QA method. To be specific, we first introduce 
the FR LF image QA method from different feature extraction methods, i.e., multi-
scale Gabor feature extraction and single-scale Gabor feature extraction. Second, we 
illustrate a RR LF image QA method, which is based on the selected feature infor-
mation. Third, the NR LF image QA methods based on spatial-angular measurement 
and tensor are shown. We validate the performance of the above-mentioned methods 
with the typically used indices of PLCC, SRCC, RMSE, and OR.
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Fig. 6.1 The framework of the LGF-LFC model 

6.2.1 FR QA of LF Images 

Different from the traditional two-dimension (2D) natural images, LF images record 
both the color information of the scene and the depth information of the bottom layer. 
The various image distortions caused by tasks based on LF image will affect the above 
two characteristics. Changes in the first characteristic can be reflected by sub-aperture 
images (SAIs), while changes in the latter can be reflected by epi-polar images (EPIs). 
Hoping to utilize these features to evaluate LF images, we introduce an FR image 
QA model based on log-Gabor feature-based light-field coherence (LGF-LFC). This 
model measures the light-field coherence (LFC) between the pristine LF image and 
the corrupted LF image to evaluate the image quality [15]. The framework of this 
method is exhibited in Fig. 6.1. It includes the following two stages: (1) multi-scale 
Gabor feature extraction for reference and distorted SAIs; (2) single-scale Gabor 
feature extraction for reference and distorted EPIs. 

Multi-Scale Gabor Feature Extraction Based on Sub-Aperture Images 

When the human visual system (HVS) receives visual information, the multi-channel 
mechanism of the human brain processes the information during the transmission 
from retina to the visual cortex. Each channel needs to be adjusted to a specific direc-
tion and scale [16, 17]. Direction information of visual stimuli in the receptive field 
can be reflected and processed by simple cells and complex cells in the visual cortex, 
respectively [18, 19]. Moreover, the details of the image can be better described in 
multi-scale, that is, this method can explain the image content from coarse to fine 
levels [20–22]. Notably, the log-Gabor filter is used in [23, 24], which basically rep-
resents a multi-channel representation that can be adjusted for multi-directional and 
multi-scale cellular responses to visual stimuli. This is consistent with the perceptual
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Fig. 6.2 Multi-scale log-Gabor feature extraction framework of SAIs 

information mechanism of HVS. According to the above analysis, we will introduce 
a SAIs-based multi-scale Gabor feature extraction scheme, which can evaluate the 
image details from the perspective of HVS. 

The proposed method’s framework is shown in Fig. 6.2. Firstly, each reference 
and distorted version of the SAI are screened using the Log-Gabor filter to obtain 
representations with three scales, where each scale contains four directions. Then, 
LFC measures (or the similarity of the two LFs) at each scale are calculated separately, 
the results are weighted and aggregated to calculate the score for each SAI. Finally, 
the average of these scores is taken as the SAI final evaluation score SScore. 

The log-Gabor filter can be defined as: 

Gm,n(r, θ) = exp
(−[log(r/rm)]2 

2[logσm]2
)
exp

⌈−(θ − μn)
2 

2σ2 
n

⎤
, (6.1) 

where m indicates the spatial scale index, and n indicates the orientation index. rm = 
2/3m represents the filter’s center frequency. un represents the various directions 
used in the filter, σm is the radial bandwidth and σn is the angular width. They are 
defined as un = (n − 1)π/4, σm = 1.1, and σn = π/6, respectively. Gabor feature 
maps are obtained from superposition of feature maps in this scale’s four directions. 
The Gabor feature map Rm(x, y) of pristine SAI S(x, y) and the Gabor feature map 
Dm(x, y) of distortion SAI ∧S(x, y) are defined as follows: 

Rm(x, y) =
(

4∑
n=1 

R2 
m,n(x, y)

)1/2 

, (6.2) 

Dm(x, y) =
(

4∑
n=1 

D2 
m,n(x, y)

)1/2 

. (6.3)
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Each feature map is generated under the scale m, where m ∈ {1, 2, 3}. After  the  
decomposition of each SAI for the reference and distorted versions, the corresponding 
filtering results, namely Rm,n and Dm,n , can be obtained by the Log-Gabor filter. They 
are defined as follows: 

Rm(x, y) = F−1 (Gm,n(r, θ) · F(S(x, y))), (6.4) 

Dm(x, y) = F−1 (Gm,n(r, θ) · F(∧S(x, y))), (6.5) 

where F represents for Fourier transform and F−1 represents for inverse Fourier 
transform. 

Studies have shown that Gabor filters with different scales can reflect the distortion 
of SAI. Gabor feature maps with small scale have more detailed information, while 
Gabor feature maps with large scale have more contour information. By using the 
Gabor features extracted at each scale, the coherence map Cohm(x, y) between the 
S(x, y) and the ∧S(x, y) can be calculated with the following expression: 

Cohm(x, y) = 
2Rm(x, y)Dm(x, y) + λm 

R2 
m(x, y) + D2 

m(x, y) + λm 
, (6.6) 

where m ∈ {1, 2, 3}, λm is a positive constant defined to avoid potential numerical 
instability. 

Simply averaging the coherent map Cohm(x, y) can obtain the Gabor feature 
score easily, but that does not take into account the different contributions of different 
regions to the overall perception. Considering this, weight strategy is added into the 
process of calculating feature scores below. 

In HVS, visual resolution decays spatially from a point in the human retina [25]. 
The points in the images are usually very different from the points around them, 
which makes HVS more sensitive to the pixels in the object contour [26]. 

In [27] and [28], they mentioned a Hession matrix that can accurately locate the 
feature points in scale points. These feature points can be utilized as the key point 
of the object contour. Based on the above considerations, the Hessian matrix feature 
pool is developed here. Hessian matrix can be obtained by 

H (x, y) =
⌈

d2 y 
dx2 

d2 y 
dxdy 

d2 y 
dxdy 

d2 y 
dy2

⎤
, (6.7) 

where d
2 y 

dx2 , 
d2 y 
dxdy , and 

d2 y 
dy2 are the second-order derivatives of the input image along the 

x and/or y directions. They can be calculated by a Gaussian function with standard 
deviation σH = 2. Then, the Hessian feature map W (x, y) can be defined as 

W (x, y) = 
d2 y 

dx2 
d2 y 

dy2 
− ( 

d2 y 

dxdy 
)2 . (6.8)
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Through Eq. (6.8), the Hessian feature maps W (x, y) and ∧W (x, y) corresponding 
to the pristine SAI S(x, y) and the distortion SAI∧S(x, y) can be obtained, separately. 
HVS is more sensitive to pixel position (x, y) that produces larger Hessian feature 
response. Based on this, the maximum value is selected from the Hessian feature 
map to generate the weight map ω(x, y): 

ω(x, y) = max{W (x, y), ∧W (x, y)}. (6.9) 

Therefore, the weighted Gabor feature score on m scale can be calculated by 

W _Cohm =
∑

(x,y)∊Ω Cohm(x, y) · ω(x, y)∑
(x,y)∊Ω ω(x, y) 

. (6.10) 

The final score of distorted SAI can be derived by 

SSore  = (W _Coh1)
α · (W _Coh2)

β · (W _Coh3)
γ , (6.11) 

where α, β, and γ are three positive integers, which are utilized to control the relative 
importance of the three terms. Here they are set to 1, which means they have the same 
importance. 

The weighted consistency score of each SAI is calculated separately. The weighted 
coherence scores are then averaged as the final quality score of the distorted LF image. 
The calculation is carried out as follows: 

LFC_SAI  = 
1 

U 

U∑
u=1 

SScore(u), (6.12) 

where u = {1, 2, . . . ,  U }, and U is the total number of SAIs in an LF image. 

Single Scale Gabor Feature Extraction Based on Epi-Polar Images 

EPI is a special 2D data, which can be constructed from the 2D slicing of 3D LF 
images. The moving 2D slice window across all SAIs, which is the same as projecting 
each scenic spot onto a straight line. Therefore, the oblique line is an important part 
of EPI, and the slope of the oblique line reflects the depth information of the scene 
[1, 29]. 

When distortion happened in LF image, the nature of the oblique line is affected. 
More importantly, the rapid change of content in EPI image usually corresponds 
to the target boundary. The method introduced in this part only needs the single-
scale Gabor features of EPI, and the slash can be checked with lower computational 
complexity to calculate the quality change. Specifically, the response in horizontal 
direction (H (x, u), ∧H (x, u)) and in vertical direction (V (x, u), ∧V (x, u)) are obtained 
by using the reference EPI E(x, u) and distortion EPI ∧E(x, u). The value  rm of
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logarithmic Gabor filter is set to 2/9, and the corresponding Gabor features can be 
generated by using these responses. 

F(x, u) = (H 2 (x, u) + V 2 (x, u))1/2 , (6.13)

∧F(x, u) = ( ∧H 2 (x, u) + ∧V 2 (x, u))1/2 , (6.14) 

where F(x, u) is Gabor feature of reference EPIs, ∧F(x, u) is Gabor feature of dis-
torted EPIs. 

Then the Gabor characteristic coherence CohEP  I  (x, u) between the reference 
EPI and the corrupted EPI is calculated by the following equation: 

CohEP  I  (x, u) = 2F(x, u)∧F(x, u) + λE 

F2(x, u) + ∧F2(x, u) + λE 
. (6.15) 

In order to avoid potential numerical instability, a positive constant λE is used. 
The distortion EPI score can be calculated as follows: 

EScore  = 1 

X × U

(
X∑

x=1 

U∑
u=1 

CohEP  I  (x, u)

)
, (6.16) 

where X refers to the width of an SAI or EPI. After considering all the EPIs, the final 
score can be obtained by 

LFC_EP  I  =
∑Y 

y=1(EScore(y) − Ē)2 

Y − 1 
, (6.17) 

where y = {1, 2, 3, . . . ,  Y }. Y is the height of an SAI and is same as the total number 
of EPI in an LF diagram. Ē is the average value of all EScore(y). 

Finally, after acquiring the SAI and EPI of the pristine image and the correspond-
ing distorted LF image, the LGF-LFC model can be obtained according to Eq. (8.12) 
and Eq. (6.17). 

LG  F  − LFC  = (LFCS AI  )
ρ (LFCE P I  )1−ρ , (6.18) 

where ρ is employed to balance the importance of the LFC_SAI and LFC_EPI. 

6.2.2 RR QA of LF Images 

The LF imaging has been considered as the next generation imaging technology that 
offers the possibility of providing novel services, containing six degree-of-freedom 
videos. This technique requires the development of new compression systems and
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ad-hoc perceptual quality evaluation methods. Among three different image QA cat-
egories, the FR metric is rarely applicable in an image communication environment. 
In addition, its applicability is further confined in LF imaging technology due to the 
size of the reference LF image. In RR methods, only partial information is required, 
which is suitable for QA of LF images. 

Evaluating Quality of LF Images with Selected Feature Information 

This part will introduce a RR LF image QA metric, which is called LF image QA 
metric (LF-IQM). This method firstly estimates the pristine and corrupted depth 
maps from the pristine and corrupted LF images. Then the perceptual quality of LF 
images is evaluated utilizing the distortion on the depth map. It is essential to point 
out that depth information is an important feature of many LF applications, such as 
refocused view synthesis and 3D visualization. Since even minor errors in depth can 
lead to significant differences in rendering views, this method uses depth mapping 
to predict the overall quality of LF images. 

Proposed RR QA Framework 

A. Background 

Depth Map as a Reduced Information of LF Images In order to study the per-
ceptual QA method of 2D/3D images, different image features such as natural scene 
statistics (NSS) [30], visual saliency map [31], depth/disparity map [32] are  devel-
oped. To estimate the LF images’ perceptual quality, the depth map information is 
used as the reduction information feature of LF content. With more views of a scene 
recorded by an LF camera, it is possible to better estimate the depth map. This choice 
is made for the following causes. (1) Compared to 2D or 3D images, LF content pro-
vides many view point images, which has the ability to employ the features of each 
image results in a greater amount of information. It is important to recognize that 
dimensional reduction is part of the process of extracting a grayscale depth map from 
a color image. The size of the predicted depth map is 576 KB, which is obviously 
below the size of the original LF image 46656 KB. Obviously, the depth map is much 
smaller than a single view point image of the LF content. (2) By choosing different 
view points in LF images, many depth maps can be obtained, however, only one depth 
map is sufficient to estimate the quality. (3) The pristine depth map can be adopted 
for many applications such as refocused view synthesis, 3D visualization, and so 
on. It can also be utilized to reconstruct the LF at the sink or receiver terminal. The 
accuracy of the most advanced 2D and 3D image/video measurement relies on the 
accuracy of the feature estimation used. Similarly, the accuracy may also be related 
to the depth map estimation system in the introduced measurement. 

Depth Map Quality and Overall Image Quality of Experience In the past 
decades, people have made a lot of efforts to develop 3D technology. Perceptual 
dimensions such as picture quality, depth quality, and visual comfort are considered 
to be the most important factors contributing to the quality of experience (QoE)
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provided by stereoscopic systems. Some recent studies show the depth quality is 
an indispensable part of QoE of stereoscopic 3D images. According to the fact that 
the depth map quality is highly associated with the overall QoE of 3D image/video, 
a conclusion can be drawn. The conclusion is that there is a semblable trend in 
the relationship between LF image depth map quality and QoE of LF image. The 
designed QA framework of LF images relied on the hypothesis that distortion in the 
depth map is highly associated with QoE in LF images. That is 

QoELF  = f (Dist), (6.19) 

where QoELF  is the predicted LF image’s QoE. Dist denotes the measure of the 
distortion between the depth maps. f (·) indicates the proposed function reflecting 
the correlation between QoE and Dist . 

B. QA Framework 

In this part, we introduce a LF image QA framework named LFI Q  M . This method is 
based on the correlation between the depth map quality of a pristine LF image and 
a distorted image (e.g., distorted by transmission or coding problems). 

It can be divided into four steps. Firstly, we can estimate the reference depth 
map (DMre  f  ) from the reference LF image. Then, we compute the distorted depth 
map (DMdist ) from the distorted LF image. After that, we can compute the level of 
distortion in depth map as 

Dist = f
(
DMre  f  , DMdist

)
, (6.20) 

where Dist measures the distortion on the depth map and f (·) is the function rep-
resenting the selected FR image quality metric such as SSIM. Finally, a mapping 
model is employed to predict the perceptual quality of test LF image from Dist . 

Depth Map Estimation For assessing the designed framework, DMre  f  and 
DMdis need to be computed. Various methods for estimating depth maps have been 
developed. In order to checkout the null hypothesis (H0) and the established QA 
method, three specially introduced depth map prediction models are picked out. 
They respectively are multi-resolution depth map (MRDM) [33], stereo-like taxon-
omy depth map (SLTDM) [34], and accurate depth map (ADM) [35]. 

MRDM uses multiple views of a scenario to predict the depth map. A random 
function without employing the depth of field divides the conditional joint probability 
from a pair of sub-aperture views (center view and other views) for the given field 
depth. Maximum likelihood (ML) is used for estimating the depth of the functional, 
and a weighted median filter is adopted to refine the predicted depth map. 

SLTDM employs the taxonomy of stereo algorithms. A pair of stereo cameras 
is used to find the distance to a point such as seeking for the disparity between the 
images obtained from two reflected cameras. By making comparison between every 
pixel in a sub-aperture image and every pixel in other sub-apertures, the cost volume 
is computed. After aggregating the costs, disparity is picked out according to the 
minimum cost per pixel.
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ADM proposes stereo matching between sub-aperture images. By using the phase 
shift theorem in the Fourier domain, the pixel shifts of sub-aperture images are 
predicted. A cost volume is calculated to assess the matching cost of disparity levels 
by utilizing sub-aperture images and central view sub-aperture images shifted at 
different sub-pixel locations. The gradient matching costs are adaptively aggregated. 
Then, a weighted median filter is used to clear noise out of the cost volume, and 
multi-label optimization is used to predict disparity in weak texture regions. In the 
final, iterative polynomial interpolation is implemented to improve the predicted 
depth map. 

Distortion Measure in Depth Maps The distortion measure of Dist on DMdist  

is measured by adopting DMre  f  . The target is to make a comparison between the two 
depth maps, DMre  f  and DMdist , and to estimate the degree of similarity between 
them. In the following, DMre  f  is hypothesized as the reference depth map and DMdist  

represents distorted depth map, which is corrupted by noise. A primary test shows 
that SSIM is a related measurement, since structural information plays a vital role 
in the depth map. SSIM contains three elements, that are luminance, contrast, and 
structure. In addition, SSIM relies on the hypothesis that the HVS collects structural 
information from the region of images’ text. With regard to 2D images, SSIM is 
highly correlated with subjective scores compared with other algorithms, like mean 
square error (MSE) and PSNR. Hence, the distortion of depth maps can be predicted 
by calculating the SSIM between DMre  f  and DMdist : 

Dist = SS  I  M
(
DMre  f  , DMdist

)
, (6.21) 

Dist =
(
2μx μy + c1

) (
2σxy

) + c2
)

(
μ2 
x + μ2 

y + c1
) (

σ2 
x + σ2 

y + c2
) , (6.22) 

where c1 and c2 represent two variables employed to achieve the stabilization of 
division with weak denominator. μx , μy and σx , σy denote the mean and standard 
deviation, and σxy  indicates the covariance of DMre  f  and DMdist . 

6.2.3 NR LF Image QA Based on Spatial-Angular 
Measurement 

Most methods proposed recently use the pristine LF image information showing 
good performance, but their application scenarios are confined. In practical appli-
cations, it may be more practical to use the NR LF image QA method considering 
various influential factors. In [13], Shi et al. designed an NR LF image QA method 
named NR-LFQA. It qualities the quality degradation of LF images by assessing the 
spatial quality and the angular consistency. In [14], Zhou et al. put forward a new
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Fig. 6.3 The functional diagram of NR-LFQA method 

tensor-oriented NR LF image quality evaluator named Tensor-NLFQ based on tensor 
theory. In this part, these two image quality schemes will be introduced in detail. 

Spatial-Angular Measurement-Based NR LF Image QA 

The functional diagram of NR-LFQA method is exhibited in Fig. 6.3. First, the binoc-
ular fusion and competition are simulated to produce light-field cyclopean image 
array (LFCIA), and then its naturalness is analyzed. Besides spatial quality, angle 
consistency is also significant to LF image perception. Based on EPI containing LF 
image angle information, the degradation degree of angle consistency on EPI can be 
measured by extracting features. There are two key points, one is to construct a novel 
gradient direction distribution that can represent the global distribution to estimate 
the distribution of EPI gradient direction map. The other one is to describe the corre-
lation between different SAIs with a weighted local binary pattern descriptor. Finally, 
the extracted features can be utilized to reflect the change of angle consistency. 

LF Panoramic Image Array Naturalness 

Generally speaking, HVS determines LF image perceptual quality. On this basis, 
LF image quality can be quantified by simulating the human perception procedure. 
This method uses the binocular fusion and binocular competition theory to assess the 
spatial quality of the LF image. Most scenes are observed in the comfort zone where 
binocular fusion occurs due to the small disparity between the left and right views 
of the LF image [36]. However, a failure of binocular fusion can lead to binocular 
competition when there is a significant difference between the perception of the left 
and right eyes [37]. 

This method uses human perceptual theory to effectively simulate the visual per-
ceptual process. When an observer sees a stereoscopic image, it is formed in the
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brain accordingly. The image includes both the information of the left view and the 
right view, and it considers the characteristics of binocular fusion and binocular com-
petition. On this basis, it can effectively represent the perceptive image quality [37, 
38]. 

The horizontally adjacent SAIs in the LF image are considered as the left and 
right viewing angles. The left angle of view is v(s, t), which indicates the spatial 
coordinates of SAI located at (s, t). (u, v)  represents the angular coordinates of the 
LF image. The central eye image array of the LF image can be synthesized according 
to the following equation: 

Cu,v(s, t) = Wu,v(s, t) × Iu,v(s, t) + Wu+1,v(s, t) × Iu+1,v
(
(s, t) + ds,t

)
, (6.23) 

where Cu,v is the sub-ring image located at angular coordinates (u, v). ds,t is the 
horizontal disparity between Iu,v and Iu+1,v located at (s, t). The disparity map d is 
produced by utilizing a simple stereo disparity prediction algorithm, in which SSIM 
is regarded as the matching standard [38]. The weights Wu,v and Wu+1,v can be 
calculated by 

Wu,v(s, t) = ε
⌈
Su,v(s, t)

⎤ + α1 

ε
⌈
Su,v(s, t)

⎤ + ε
⌈
Su+1,v

(
(s, t) + ds,t

)⎤ + α1 
, (6.24) 

Wu+1,v(s, t) = ε
⌈
Su+1,v

(
(s, t) + ds,t

)⎤ + α1 

ε
⌈
Su,v(s, t)

⎤ + ε
⌈
Su,v+1

(
(s, t) + ds,t

)⎤ + α1 
, (6.25) 

where α1 is a small value set to ensure stability. ε[Su,v(s, t)] denotes the spatial 
activation value in Su,v(s, t). The spatial activation map can be obtained according 
to the following formula: 

ε
⌈
Su,v(s, t)

⎤ = log2
⌈
var2 u,v(s, t) + α2

⎤
, (6.26) 

where varu,v(s, t) represents the variance of the unit item to prevent non-positive 
activities. Commonly, it is necessary to ensure the quantities of Su+1,v(s, t), 
varu+1,v(s, t), and [Su,v(s, t)] on the  Iu+1,v(s, t). 

After deriving LFCIA, local mean subtracted and contrast normalized (MSCN) 
coefficients can be used to estimate their naturalness. For each sub-cyclopean image, 
the MSCN coefficients can be computed as follows:

∧Iu,v(s, t) = 
Iu,v(s, t) − μu,v(s, t) 

σu,v(s, t) + 1 
, (6.27) 

where Iu,v(s,t) and Iu,v(s,t) denote the MSCN coefficient and sub-cyclopean value 
of the image located at the spatial position (s,t), separately. μu,v(s, t) and σu,v(s, t), 
respectively, represent the local mean and standard deviation of the local patch cen-
tered at (s, t). They can be obtained by
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μu,v(s, t) = 
K∑

k=−K 

L∑
l=−L 

zk,l Ik,l (s, t), (6.28) 

σ(s, t) =
⌈II√ K∑

k=−K 

L∑
l=−L 

zk,l
(
Ik,l (s, t) − μ(s, t)

)2 
, (6.29) 

where z = {zk,l |K = −K , ..., K , L = −L , ..., L} represents a 2D circularly-
symmetric Gaussian weighting function. The values of K and L are 3. 

In order to estimate the spatial quality of LF images, the naturalness distribution 
of LFCIA and MSCN coefficients of all images are considered. Then, a zero-mean 
asymmetric generalized Gaussian distribution model (AGGD) model is used to fit 
the distribution of MASVN coefficient. The distribution can be produced by 

f
(
χ; α, σ2 

l , σ
2 
r

) = 

⎧⎪⎪⎨ 

⎪⎪⎩ 

α 
(βl + βr )Γ

(
1 
α

) exp(−(
−x 

βl 
)α )χ <0 

α 
(βl + βr )Γ

(
1 
α

) exp(−(
−x 

βr 
)α )χ ≥0 

, (6.30) 

where βl = σl

/
Γ ( 1 α ) 
Γ ( 3 α ) and βr = σr

/
Γ ( 1 α ) 
Γ ( 3 α ) , in which α is a shape parameter that 

controls the shape of the statistical distribution. σl and σr represent scale parameters 
on the left and right sides, separately. In addition, the above three parameters are used 
to calculate another feature η, which can be generated by the following equation: 

η = (βr − βl ) / 
Γ

(
2 
α

)
Γ

(
1 
α

) . (6.31) 

The kurtosis and skewness characteristics are further supplemented. Besides, a 
down-sampling factor of 2 is used on SAIs, which indicates that the relationship 
between model estimation and subjective evaluation can be improved [39]. Eventu-
ally, LFCIA naturalness FLC N is derived. 

Global Direction Distribution 

Spatial quality and angular consistency affect the LF image’s quality. In general, 
angular reconstruction operations destroy angle consistency. Feature extraction from 
EPI can obtain the angle information of LF image, so it is an executable method to 
measure the deterioration of angle consistency. 

Generally, the depth information of the scene can be captured from the slope of the 
line in EPI. Based on this special property, a lot of LF image processing missions have 
been done, such as super-resolution and depth map prediction [1, 40]. The feature is 
also found in [13], in which angular deformation destroys the existing structure and 
significantly changes the distribution of linear slope in EPI. In other words, the EPI 
with the unified distortion category has similar distribution, which indicates angular
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distortion is insensitive to the depth and content of the pristine LF image. Hence, the 
degradation degree of LF image angle distortion can be measured by the slope of the 
line in the distortion EPI. 

Firstly, the gradient direction map of EPIs is calculated, and next its distribution is 
analyzed to obtain the gradient direction distribution (GDD) characteristics. Here, the 
vertical EPI is defined as Eu∗,s∗ (v, t), and the horizontal EPI is defined as Ev∗,s∗ (u, s), 
where u∗, s∗ and v∗, t∗ denote determined coordinates. The EPI direction distribution 
can be obtained by computing the EPI gradient map: 

Gv∗,s∗ = atan2(−Eyu∗,s∗ , Exu∗,s∗ ) ∗ 
180 

π 
, (6.32) 

where 
Exu∗,s∗ = Eu∗,s∗ ⊗ hx , (6.33) 

and 
Eyu∗,s∗ = Eu∗,s∗ ⊗ hy, (6.34) 

hx = 

⎡ 

⎣−1 0  1  
−2 0 2  
−1 0  1  

⎤ 

⎦ , (6.35) 

hy = 

⎡ 

⎣−1 −2 −1 
0 0 0  
1 2 1  

⎤ 

⎦ . (6.36) 

Like the calculation procedure of Gu∗,s∗, Gv∗,t∗ can be obtained for the gradient 
pattern of horizontal projection. Then, the gradient pattern is quantified into 360 
panels, that is, from −180◦ to 179◦. Different types of distortion have different effects 
on EPIs. To be specifical, the nearest neighbor (NN) and LINEAR interpolation 
distortion lead EPI to present a ladder shape, and its direction is primarily concerned 
at −180◦ and 0◦. The optical flow estimation (OPT) and quantitative depth map (DQ) 
distortions have high peaks at −150◦ and 30◦. On the whole, the GDD can effectively 
measure angle consistency degradation. In the final, the mean, entropy, skewness, 
and kurtosis of Gu∗,s∗ and Gv∗,t∗ are calculated separately. Then averaging the above 
values yields the characteristic FGD  D . 

Weighted Local Binary Pattern 

The relationship between SAIs can be reflected by the correlation between pixel 
rows from different SAIs. Based on this property, the change of angle consistency 
can be measured by analyzing the relative relationship of pixels in EPI. In addition, 
local angle consistency information can be measured by pixel relations of different 
distances. Therefore, a weighted local binary pattern (WLBP) is described to cap-
ture the relationship between different SAIs. LBP is very useful for extracting the
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information of local distribution, and has good performance in evaluating the QA 
task of 2D image [41–46]. The local rotation-invariant uniform LBP operator L R,P 

u∗,s∗ 

of vertical EPI is calculated as 

L R,P 
u∗,s∗ (Ec 

u∗,s∗ ) = 

⎧⎪⎪⎨ 

⎪⎪⎩ 

p−1∑
p=0 

θ(E p u∗,s∗ − Ec 
u∗,s∗ ) ψ( ̂L R,P 

u∗,s∗ ) ≤ 2 

P + 1 other wise  

, (6.37) 

where R represents the value of radius, and P is the sum of adjacent points. Ec 
u∗,s∗ is a 

central pixel corresponding to the position (xc, yc) in EPIs, and E p u∗,s∗ is the adjacent 
pixel around Ec 

u∗,s∗ . 

xp = xc + Rcos(2π 
p 

P 
), (6.38) 

and 
yp = yc + Rsin(2π 

p 

P 
), (6.39) 

where p is the sum of adjacent pixels sampled from Ec 
u∗,s∗ to E 

p 
u∗,s∗ distance R, 

p ∈ {1, 2, ...}. At this time, θ(z) is a step function that can be expressed by 

θ(z) =
(
1 z ≥ T 
0 other wise  

, (6.40) 

where T denotes the threshold. ψ indicates the sum of bitwise transformations: 

ψ() =||θ(E P−1 
u∗,s∗ − Ec 

u∗,s∗ ) − θ(E0 
u∗,s∗ − Ec 

u∗,s∗ )|| 

+ 
p−1∑
p=0 

||θ(E p u∗,s∗ − Ec 
u∗,s∗ ) − θ(E p u∗,s∗ − Ec 

u∗,s∗ )||. (6.41) 

where L̂ R,P 
u∗,s∗ is rotation-invariant operator: 

L̂ R,P 
u∗,s∗ (Ec 

u∗,s∗ ) = min{RO  R( 
P−1∑
p=0 

θ(E p u∗,s∗ − Ec 
u∗,s∗ )2p , k)}, (6.42) 

where RO  R(β, k) represents a circular bit-wise right shift operator, which shifts the 
tuple β by k position, k ∈ {0, 1, 2...,P−1}. After that, L R,P 

u∗,s∗ (Ec 
u∗,s∗ ) of length P + 2  

can be obtained. 
For LF images, there are a lot of EPIs in vertical and horizontal directions. If each 

EPI-derived LBP feature is derived, this can lead to dimension disaster. Reducing 
feature dimension is always necessary. Considering that the LBP features of some 
EPIs with less information are mainly focused on the statistical directions, entropy
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weighting is used here. That is, these EPIs include less angle consistency information, 
and their entropy value is extremely close to zero. So, the vertical EPI WLBP can be 
obtained by 

LverR,P = 

U∑
u=1 

S∑
s=1 

ωR,P 
u,s . ∗ L R,P 

u,s 

U∑
u=1 

S∑
s=1 

ωR,P 
u,s 

. (6.43) 

The entropy of L R,P 
u,s is regarded as the weight ωR,P 

u,s . Using the same operation, 
the WLBP feature LhorR,P of EPI Ev∗,t∗ is obtained. 

In the implementation, R = 1, 2, 3, P = 3 × R, T = R 2 . Finally, all features are 
combined to obtain FWLBP as 

FW  L  B  P  = {LverR,P , LhorR,P}. (6.44) 

6.2.4 Tensor Oriented NR LF Image QA 

Due to the high-dimensional characteristics of the LF image, LF image QA has 
become a multi-dimensional problem. LF image quality is influenced by the spatial-
angle resolution, spatial quality, and angular consistency. On the basis of tensor 
theory, a new tensor-oriented image QA device without reference information is 
proposed. We consider the influence of brightness and chroma, and the effect of 
angular consistency in different directions on the LF image quality using the proposed 
device. 

The details of the framework of the tensor-nonlinear finite difference algorithm 
are as follows. First, the SAI color space in RGB is converted to CIELAB color space. 
Second, the Tucker decomposition is utilized to produce the main elements of the 
view stack in different directions. Third, principal component spatial characteristics 
(PCSC) features, tensor angular variation index (TAVI) metric space quality degra-
dation, and angle consistency are all extracted, respectively. Finally, the regression 
model is employed to estimate the sensing LF image quality. 

Color Space Conversion 

Color information is an important and dense natural visual cue, without which the 
human brain would not be able to achieve visual perception. In order to know what 
effect the brightness and chroma have on the image quality, a lot of research work 
has been done before [47–49]. These works have proved that color information 
has a definite role in determining image quality. On this basis, using color spa-
tial information to assess the spatial quality of the LF image is reasonable. The 
color difference of different SAI may destroy the angular consistency of LF image, 
and color information can estimate the deterioration of the LF image angle 
consistency [14].
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In order to better approach the color perception of the HVS, the color SAI of each 
LF image is converted to the CIELAB-related color space, which is more in line with 
human perception [50]. 

View the Stack 

The light in nature is continuous. In practical applications, according to the hypothesis 
of the angular resolution (S × T ) of the LF image, each SAI has four-direction 
angular consistency, namely 0◦, 45◦, 90◦, and 135◦. Then, SAI is stacked along these 
four directions to generate the following view stack: 

C0◦ 

n,s = {Cn(s, 1, :, :), Cn(s, 2, :, :), . . . , Cn(s, T , :, :)} , (6.45) 

C90◦ 

n,t = {Cn(1, t, :, :), Cn(2, t, :, :), . . . , Cn(S, t, :, :)} , (6.46) 

C45◦ 

n,s+t−1 ={Cn(s, t, :, :), Cn(s + 1, t + 1, :, :), . . .  ,  
Cn(s + min{S − s, T − t}, t + {min{S − s, T − t}, :, :)}, (6.47) 

C45◦ 

n,s+t−1 ={Cn(s, t, :, :), Cn(s + 1, t − 1, :, :), . . .  ,  
Cn(s + min{S − s, T − t}, t − {min{S − s, T − t}, :, :)}, (6.48) 

where s = {1, 2, ..., S} and t = {1, 2, ..., T } represent angular coordinates. n = 
{1, 2, 3} represents the luminance and two chroma channels. For the LF image with 
angle resolution of S × T , the view stack can be extracted in four directions. The 
first two of these four directions are a horizontal stack with S angular resolution T 
and T vertical stacks with resolution S. The latter two are (S + T − 1) left and right 
diagonal stacks with angular resolution raised from 1 to min{S, T }, respectively. 
Tucker Decomposition 

The different images in the view stack have high structural similarity (SSIM), which 
indicates that there is a lot of information redundancy in the angle dimension. In order 
to solve this issue, tensor decomposition is used to clear redundant information out of 
the angle dimension [51]. The Tucker decomposition factorizes a tensor into a core 
tensor multiplied by a matrix on each dimension. That is to say, the three dimension 
LF signal is decomposed into the core tensor and the principal elements of spatial 
dimension and angular dimension. For the horizontal view stack C0◦ 

n , it can be defined 
as: 

C0◦ 

n ≈ CT  ×1 U1 ×2 U2 ×3 U3, (6.49) 

where CT  ∈ J J1×J2×J3 represents the core tensor, indicating the level of interaction 
between different elements. When i = 1, 2, Ui ∈ J ki×Ji represent the factor matrices
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in the spatial dimension. When i = 3, Ui ∈ J ki×Ji represents the angular dimension 
factor matrix. 

For C0◦ 

n , the angle decomposition component can be obtained by multiplying the 
kernel tensor with each mode of the factor matrices U1 and U2 along the spatial 
dimension. 

A0◦ 

n = CT  ×1 U1 ×2 U2, (6.50) 

where C0◦ 

n ≈ A0◦ 

n ×3 U3. To reconstruct spatial information and get the decomposi-
tion vector of angular dimension, U3 must be removed. In a similar process, the cor-
ner decomposition components of the view stack in other directions can be obtained. 
Besides, the angular decoupling position components of view stack in other direc-
tions can be obtained using same methods, such as A45◦ 

n , A
90◦ 

n , A
135◦ 

n . 
In addition, the factor matrix here can be seen as a principal component represent-

ing the stack of the decomposed 3D tensors on the angular dimension [51]. The first 
principal component is the highest energy component, which includes basic texture 
information. 

Feature Extraction and Quality Regression 

It can be seen from the previous part that the first principal component includes the 
most basic information of each view stack. Based on this, the features extracted from 
principal components can be used to estimate the degradation degree of LF image 
spatial quality. To be specific, PCSC is extracted from the first principal component, 
which uses the global naturalness and local frequency distribution characteristics 
to assess the distortion of spatial quality. Besides spatial quality, angle consistency 
also influences LF image quality. The TAVI captures angle consistency distortion by 
calculating the SSIM between the first principal component in the view stack and 
each view. 

Principal Component Spatial Characteristics In order to effectively measure 
the naturalness of the image, the local MSCN coefficient can be modeled. Gener-
ally speaking, local MSCN coefficients can be modeled to effectively measure the 
naturalness of images, and the calculation method can refer to Eqs. (6.27)–(6.29). 
Subsequently, the distribution of MSCN coefficients is quantified by using the zero-
mean AGGD model according to Eq. (6.30). The another feature η is calculated by 
Eq. (6.31). 

After combining the above conditions, the multivariate generalized Gaussian dis-
tribution (MGGD) [53, 54] is used to fit the joint distribution. It can be expressed as 
follows: 

f (x | M, γ, ϕ) = 1 

|M| 1 
2 

gγ,ϕ

(
xT M−1 x

)
, (6.51) 

where x ∈ J N and M indicate an N × N symmetric scattering matrix. γ and ϕ denote 
scale and shape parameters, separately. gγ,ϕ () represents the density generator:
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gγ,ϕ(χ) = ϕΓ
(
N 
2

)
(
2 

1 
ϕ πγ

) N 
2

Γ
(

N 
2ϕ

)e− 1 
2

(
χ 
γ

)ϕ 

, (6.52) 

where x ∈ J + and Γ are dual gamma functions. The parameters of MGGD model 
are estimated by [52]. The local distribution of principal components changes due 
to the degradation of LF image space quality. The entropy E of DCT coefficients 
without DC component is used to extract the local features of each color channel 
principal component. The calculation process of E is as follows: 

E = −  
L∑
l 

H∑
h 

( plhlog( plh)), (6.53) 

where L indicates the width of the DCT block, H represents the height of the DCT 
block. plh represents the DCT coefficients located in (l, h). Entropy is calculated 
from three aspects, that is the overall DCT block, three frequency bands and three 
directions. So, the fitting parameters of AGGD and MGD, and three average entropy 
features are fused to obtain fPC SC . In addition, the feature dimension of PCSC is set 
to 57, and the entropy feature includes 15 dimensions. The characteristic dimensions 
of AGGD parameters and MGGD parameters based on MSCN are 36 and 6, respec-
tively. Apart from the brightness information, the distribution of chromaticity space 
is also calculated. 

Tensor Angle Variation Index (TAVI) In addition to spatial quality, there is also 
angle consistency that affects LF image quality. Angle reconstruction operations 
(such as interpolation) usually break the angle consistency. Here, the tensor angle 
change index is used to estimate the degradation degree of angle consistency. Firstly, 
the SSIM between each view and its corresponding first principal component in the 
view stack is calculated as 

ssd n (i ) = F
(
Cd 
n (i ), Md 

n

)
. (6.54) 

Among them, Cd 
n represents the input view stack. M

d 
n indicates the corresponding 

first principal component. i represents the angular coordinate of C , n ∈ {1, 2, 3} and 
d ∈ {0◦, 45◦, 90◦, 135◦}. F represents a function to compute the SSIM between Cd 

n (i) 
and Md 

n . SSIM distribution has good ability to measure various types and degrees of 
distortion. 

A second-order polynomial is then used to fit the SSIM distribution, as shown 
below 

ssd n (i ) = f1i2 + f2i + f3, (6.55) 

where i indicates the angular coordinate. f1, f2, and f3 are fitting parameters for sim-
ulating consistent changes in angle. Several complementary features including con-
trast, angular second moment, entropy, and inverse different moments are extracted 
[55] to reflect the degradation information. The size of the feature TAVI is set to 30
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by connecting the fitting parameters ( f1, f2, f3) and complementary features. After 
combining the above conditions, the final features are modeled in the following ways: 

ffinal = w1f0◦ + w2f45◦ + w3f90◦ + w4f135◦ , (6.56) 

where wi i∈{1, 2, 3, 4} represents the corresponding weights in the four directions. 
Let w1 = w2 = w3 = w4 = 1 4 . The final result is trained with the average features 
of each stack in the uniform direction, and next all directions are weighted. In the 
final, a regression model is trained to map the final feature vector to the quality 
score. Support vector regression (SVR) is employed to achieve this. To be specific, 
the LIBSVM package is adopted to implement a SVR machine with a radial basis 
function kernel. 

6.3 Comparison and Analysis of Algorithm Performance 

In this section, we introduce an image database for LF image QA and some modern 
reference-free and reference-based image QA methods. We concentrate on compar-
ing and measuring the performance of the QA models introduced in this chapter with 
these methods. The analysis results show that the performance of these models in 
this chapter performs quite well. 

6.3.1 Elaborated SMART Database 

The database includes 16 pristine LF images obtained by the Lytro Illum. It con-
tains 256 contaminated LF images which are generated by introducing four different 
categories of distortion with four distortion levels to each pristine LF image. The 
distortion types consist of HEVC Intra, JPEG, JPEG2000 and system-sparse set and 
disparity coding (SSDC). Similar to MPI-LFA, the PC approach is utilized to obtain 
the subjective scores and offer the Bradley-Terry scores. 

6.3.2 Performance Comparison and Analysis 

In order to reflect the models introduced in this chapter validity and superiority, we 
compare the introduced models (LGF-LFC [15], LF-IQM [12], NR-LFQA [13], and 
Tensor-NLFQ [14]) with the 22 classical image QA models. They can be divided 
into three categories in Table 6.1. All the 26 models include 17 full-reference image 
QA models and 8 free reference image QA models. Only the introduced LF-IQM 
utilizes partial information from original reference.
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Table 6.1 The introduced algorithms with modern developed QA models for LF images 

Category Abbreviation Full Name Refs. 

FR PSNR Peak signal-to-noise ratio [9] 

FR IFC Information fidelity criterion [56] 

FR NQM Noise quality measure [57] 

FR VSNR Visual signal-to-noise ratio [21] 

FR HDR-VDP2 Visual difference predictor for high 
dynamic range images 

[58] 

FR Chen et al – [38] 

FR SSIM Structural similarity [59] 

FR MS-SSIM Multi-scale SSIM [60] 

FR VIF Visual information fidelity [61] 

FR IW-SSIM Information content weighting SSIM [20] 

FR FSIM Feature similarity [62] 

FR LGF-LFC Log-Gabor feature-based light-field 
coherence 

[15] 

FR MP-PSNR Full Morphological pyramid PSNR Full [63] 

FR MP-PSNR 
Reduc 

Morphological wavelet peak 
signal-to-noise ratio Reduc 

[64] 

FR MW-PSNR Full Morphological wavelet peak 
signal-to-noise ratio Full 

[63] 

FR MW-PSNR 
Reduc 

Morphological wavelet peak 
signal-to-noise ratio Reduc 

[63] 

FR 3DSWIM 3D synthesized view image quality metric [65] 

RR LF-IQM Light-field image quality assessment 
metric 

[12] 

NR BRISQUE Blind/referenceless image spatial quality 
evaluator 

[39] 

NR FRIQUEE Feature maps-based referenceless image 
quality evaluation engine 

[47] 

NR NIQE Natural image quality evaluator [66] 

NR SINQ S3D integrated quality [36] 

NR BSVQE Binocular vision theory [67] 

NR BELIF Blind quality evaluator of light-field 
image 

[68] 

NR NR-LFQA No-reference light-field image quality 
assessment 

[13] 

NR Tensor-NLFQ Tensor oriented no-reference light-field 
image quality evaluator 

[14]
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To assess these models’ performance on the SMART database described above, 
we select 4 evaluation criteria, SRCC, PLCC, RMSE, and OR. The SRCC reflects the 
monotonicity, PLCC reflects the linear relationship. The RMSE and OR, respectively, 
denote the prediction accuracy and consistency. The higher the SRCC and PLCC 
values, the better the model performance is. On the contrary, the lower values of 
RMSE and OR indicate the model has better performance. Before computing the 
values of SRCC, PLCC, RMSE, and OR, a nonlinear function is applied as below 

f1 = α1{ 1 
2 

− 1 

1 + exp[α2(p − α3)] + α4 p + α5}, (6.57) 

where p is the predicted score. The parameter α j , j ∈ {1, 2, 3, 4, 5} are optimized 
to minimize the number of squared errors between p and the subjective score. After 
mapping, we split each image database into two parts, 80% images for training, the 
remaining 20% for testing. Cross validation with 1000 iterations is conducted on the 
SMART database. 

From the experiment, we obtain the final performance of the introduced models on 
the SMART database by using four quality performance metrics including SRCC, 
PLCC, RMSE, and OR. We find the best-performing model in each category. By 
analyzing the superiority of these models, we are able to derive some important 
conclusions as follows. 

(1) For FR image QA metrics, we employ four widely employed evaluation cri-
terion to assess the performance of these methods. By analyzing the results of the 
experiment, we observe that the typical MP-PSNR Full is the best FR image QA 
model among all the FR QA models, which has the largest SRCC, PLCC, and lowest 
values of RMSE. The performance of the introduced LGF-LFC model is in second 
place. In addition, the semi-reference algorithm LF-IQM proposed also achieves 
good performance. 

(2) Across four NR image QA metrics, the introduced NR-LFQA has the best 
performance on all SRCC, PLCC, RMSE and the introduced Tensor-NLFQ is ranked 
second place. The NR image QA model has more obvious performance disadvantages 
than FR and RR image QA models, since it doesn’t utilize any reference image 
information. But there are still exceptions. The SRCC, PLCC, RMSE value of the 
introduced NR image QA model named NR-LFQA and Tensor-NLFQ is significantly 
superior than MP-PSNR Full. 

In these algorithms, all the FR QA models are established by the process of 
equations modeling, whereas most of the free reference models are obtained by 
supervised learning methods. Furthermore, we use the uniformed percentages to train 
these learning-based models, same as the introduced models on the SMART database. 
Based on the procedure above mentioned, we derive accurate statistics. All the results 
indicate the proposed models have excellent ability in accuracy, monotonicity, and 
linear correlation.
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6.4 Conclusion 

To better realize the guidance of the acquisition, processing, and application of 
immersive media, LF image QA is becoming more and more significant. This chapter 
researches the QA approaches for LF images from three perspectives: FR, RR, and 
NR QA methods. 

First, considering that Gabor feature can well represent the perception of HVS, 
an FR LF image QA method based on multi-scale and single-scale Gabor feature 
extraction is introduced. Second, we describe a RR LF image QA based on the 
relationship between the quality of LF image depth map and the overall quality. 
Finally, considering the spatial quality and angle consistency quality, two NR LF 
image QA methods are presented. One of them uses image naturalness to predict 
degradation of spatial-dimensional quality and utilizes the slope of a line contained 
in the EPI to reflect angular information. The other one uses global inherent and 
local frequency characteristics to measure the spatial dimension quality of LF image, 
while the angle consistency quality is measured by analyzing the structural similarity 
distribution among the views of the first principal component in the view stack. 
Extensive results of comparison experiments demonstrate that the RR image QA 
method based on spatial-angular measurement and tensor outperforms the state-of-
the-art LF image QA approaches. In the future work, it is believed that the LF image 
QA methods with better performance can come up with through the joint effort of 
researchers. 
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Chapter 7 
Quality Assessment of Virtual Reality 
Images 

7.1 Introduction 

Recently, with the rapid evolution of multimedia technology, virtual reality (VR) 
technique has attracted great interest from audiences and researchers because of 
its enormous application range, likely gaming, 360-degree images, video viewing, 
and so on [1]. As the significant form of VR content, 360-degree images can be 
presented to viewers in the format of spherical images through VR devices such 
as a head-mounted display (HMD), enhancing the immersive and realistic viewing 
experience for people [2]. For this purpose, full range of content needs high spatial 
resolution (such as 4K or 8K), huge storage space and wide bandwidth [3]. The VR 
images that present the content are inevitably distorted during acquisition, transmis-
sion, and preservation, which affects the visual quality of these images [4]. Therefore, 
it is crucial to assess the perceptual quality of immersive VR images before image 
processing such as image restoration and enhancement, which has significant impli-
cation in leading the development of VR image applications. 

In the past decades, there have been a tremendous number of research scholars who 
have designed numerous QA approaches, which are divided into subjective image 
quality assessment (QA) methods and objective image QA methods. Subjective VR 
image QA is the process in which the VR images perceived quality is evaluated 
by human subjects. To be specific, in the subjective QA methods, various experi-
ments are carried out to obtain the mean opinion scores (MOSs) from observers. 
According to ITU-R BT50011 [11], the subjective testing methodologies proposed 
to assess the quality of VR images include single-stimulus (SS), double-stimulus 
impairment scale (DSIS), and paired comparison (PC). Based on the accessibility of 
reference information, the objective VR image QA methods are classified into full-
reference (FR), reduced-reference (RR), and no-reference (NR). The FR VR image 
QA methods require all the information of the pristine images. The RR VR image 
QA methods need some information of the original images. The NR VR image QA 
methods can directly assess the perceived quality of VR images with no need for any 
pristine reference images. Unlike the traditional planar images that are displayed on
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computer or TV screens, the 3D VR images are much larger and need substantially 
greater computing power. Besides, the pixels of images in the 2D projection domain 
do not correspond linearly to the pixels in the spherical domain [5]. By this token, 
the existing 2D image QA methods are difficult to accurately evaluate the 3D VR 
images’ visual quality since they do not take the characteristics of the 3D VR images 
into account. Therefore, it is necessary to study the QA method of 3D VR images.

As far as we know, there are a large number of VR databases that contain subjective 
measurements. Most of them contain traditional image distortions and VR-specific 
stitching distortions, such as image compression artifacts, GN, and Gaussian blur. In 
[12], Upenik et al. constructed an immersive image database with JPEG compres-
sion and proposed a mobile testbed for assessing immersive images. In [3], Sun et al. 
established a compressed VR image quality database, which includes five pristine 
images and corresponding compressed images generated by adopting three cod-
ing techniques, namely JPEG, H.264/AVC, and H.265/HEVC. In [13], Duan et al. 
constructed an omnidirectional image QA database that contains four distortion cat-
egories (i.e., JPEG compression, JPEG2000 compression, Gaussian blur, and GN) 
and head and eye tracking data. On the basis of the databases mentioned above, 
many researchers have proposed various subjective VR image QA approaches [6– 
10]. In [14], Yu et al. presented the spherical peak signal-to-noise ratio (PSNR) 
model named spherical peak signal-to-noise ratio (S-PSNR), which can average the 
observed quality in all directions. In [15], Zakharchenko et al. proposed a craster 
parabolic projection based PSNR (CPP-PSNR) VR image QA method. In [9], Xu et 
al. introduced two types of perceptual video QA (P-VQA) models, which are a non-
content-based PSNR (NCP-PSNR) model and a content-based PSNR (CP-PSNR) 
model, respectively. 

Except these researches mentioned above, more dedicated and deep research for 
3D VR images are introduced in this chapter. In [19], Chen et al. studied the immersive 
3D subjective image QA. They invited 42 observers to rate the 450 corrupted images 
in a controlled VR setting and recorded these data and eye tracking data. In [22], Yu et 
al. established an omnidirectional image dataset composing stitched images, which 
can be considered as ground-truth for VR images’ stitching regions. In [28], Sun et 
al. designed blind 360-degree image quality assessment by employing multi-channel 
CNN. In [27], Hak Gu Kim et al. proposed a deep learning-based VR image QA 
method that can quantify omnidirectional images by adopting positional and visual 
information. For evaluating the performance of those QA models, we compared 
them with state-of-the-art competitors using four extensive employed standards, i.e., 
Spearman rank correlation coefficient (SRCC), Kendall rank correlation coefficient 
(KRCC), Pearson linear correlation coefficient (PLCC), and root mean square error 
(RMSE). 

The remainder of this chapter is arranged as follows. Section 7.2 introduces in 
detail the modeling process of four types of VR image QA approaches, namely sub-
jective VR image QA method, objective VR image QA method, subjective-objective 
VR image QA method, and cross-reference stitching QA method. Section 7.3 finally 
draws the conclusion and provides future work.
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7.2 Methodology 

In this section, we mainly introduce several VR image QA models. These models can 
be separated into two types, namely subjective VR image QA model and objective 
VR image QA model from the perspective of the presence or absence of participants. 
Specifically, we first introduce the subjective VR image QA approaches on the basis 
of different databases that contain various types of distortion. Second, we introduce 
the objective VR image QA approaches according to the accessibility of original 
reference information. Third, an approach that combines the above two methods 
together is introduced. 

7.2.1 Subjective QA of VR Images 

During transmission, compression, and storage, the resolution of VR images/videos 
is usually reduced and the various distortions (such as projection distortion and 
compression distortion) are introduced. They often make viewers uncomfortable 
and even suffer from VR diseases [17]. In order to assess the quality of VR images, 
it is necessary to conduct a subjective QA before designing objective image/video 
QA metrics. The obtained MOSs reflect human subjective feelings and provide a 
criterion for the design of objective QA metrics. This part first introduces a more 
comprehensive 3D immersed image database constructed by Chen et al, which is 
called LIVE VR IQA database [18]. It is the first database used to assess gaze-tracked 
quality of stereoscopic 3D VR images. A detailed description of the subjective testing, 
design, and training based on this database will be illustrated [19]. 

Creation of Database 

The LIVE VR IQA database includes 15 immersive 3D 360◦ pristine images with 
high quality captured by Insta360 Pro cameras. These images contain a variety of 
scenes, such as sunny/cloudy, daytime/night, and indoor/outdoor, rather than simply 
capturing colorful and highly saturated images. In order to ensure that an image with 
the fewest motion blur and stitching errors can be selected, four or five raw images 
were captured for each scene. In addition, a 3D image of over-under equirectangular 
was generated for each scene. From the perspective of spatial information and color 
information, these selected images have a wide range of space and rich colors. Figure 
7.1 shows some examples from the LIVE VR IQA database. 

The selected 15 pristine VR content was processed by using six distortions (i.e., 
Gaussian noise, Gaussian blur, downsampling, stitching distortion, VP9 compres-
sion, and H.265 compression). These distortions were mainly divided into three 
categories, namely traditional distortion, VR-specific distortion, and compression 
processing. Each distortion processing is set to a different degree of distortion to
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Fig. 7.1 Examples from the LIVE VR IQA database (Copyright (c) 2019 The University of Texas 
at Austin. Reprinted, with permission, from [18].) 

distinguish perceptual differences. 360◦ images were produced through Insta360 
Stitcher. In order to match the resolution of VR headset, the original resolution of 
7680 × 3840 was reduced to 4096 × 2048. Next the six distortion settings are 
described in detail. 

Gaussian Noise The Gaussian noise was used for unit normalized RGB channel. 
It is standard deviation μ ∈ [0.002 ∼ 0.03]. 

Gaussian Blur The left and right images were separated. Then the standard 
deviation in the [0.7–3.1] pixel range was used to blur the RGB channel of the 
separated image using the circular symmetric two-dimensional Gaussian kernel.
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Downsampling After separating the left and right images, bicubic interpolation 
was used to down sample each original immersed image to one of five reduced spatial 
resolutions. According to [20, 21], the maximum total resolution is 4096 × 2048 and 
the minimum resolution is 820 × 820, which covers an extensive range of quality. 

Stitching Distortion Similar to the above process, the left and right images should 
be divided before other operations. MATLAB was utilized to capture 14 perspective 
images from each image and let them spread over the complete spherical image. This 
can simulate the 14 panoramic cameras put in the central part of each scene [16]. 
After deriving a set of images taken with the virtual lens, they were sewn together 
with the stitching tool Nuke. Each spliced image was aligned in the direction of 
the reference image. Finally, stitching parameters such as convergence distance and 
error threshold were adjusted to produce different degrees of distortion. It is worth 
noting that the stitching distortion of the left and right images should be at the same 
position to avoid further discomfort caused by binocular competition. 

VP9 Compression VP9 compression was implemented by using FFmpeg and 
libvpxvp9 encoders. Here, the constant quality score factor in the range of [50, 63] 
is changed. The lower their value represents the better their quality. 

H.265 Compression H. 265 (HEVC) compression distortion was adopted by 
utilizing FFmpeg libx265 encoder which QP value ranges from 38 to 50. If this 
value is higher, the degree of compression is greater, which means worse quality. 

Subject Testing Design, Display, and Training 

Subject Testing Design 

The single stimulus continuous QA method described in [23] was used in subjective 
tests. The rating scale ranges from 0 to 100. Subjects can adjust the quality by entering 
scores. A higher score indicates higher quality. 

To guarantee the reliability of data, the adaptability of 3D environment, visual 
acuity, pupil spacing, and depth perception of subjects should be tested before the 
subjective test. Subjects who are uncomfortable with virtual reality or 3D environ-
ments will be excluded. The subjects’ visual acuity was tested by the Snellen test, 
and they were required to wear corrective eyeglasses to obtain normal vision while 
taking the subjective test. Limited by the HTC Vive’s pupil spacing, subjects may 
feel uncomfortable if their pupil spacing exceeds the range of 60.3–73.7 mm. These 
subjects were permitted to undergo the HMD trial for a period of time. They will be 
advised not to undergo the test if the subjects feel uncomfortable. Deep perception 
and stereoscopic vision were tested using the RanDot Stereoscopic test. If the test 
shows impairment, the subject will also be advised to abandon the test and their 
results will be discarded even if they continue to take the test. In addition, the data 
will be abandoned when the subjects do not follow the instructions. 

Each subject was required to participate in three sessions, each spaced at least 24 h 
apart. The average observing time per session was 27 min, and the average observing 
time and rating time per image was 23 s. Each round of testing randomly selected 9
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contents and 60 distorted images. In order to avoid the influence of memory, there 
should be at least 5 different images of the same content. 

Subject Testing Display 

To track the direction of gaze, it uses a corneal reflex technique at the center of the 
pupil. Its tracking accuracy is 0.5◦, with a delay of about 10 ms and a sampling 
frequency of 120 Hz. Image playback is performed by dedicated high-performance 
servers. Device and system timestamps, fixation starting point, fixation orientation, 
pupil location, and absolute pupil size are all data outputs for testing the human eye. 
The detailed process of subjective testing is presented as follows. 

Eye tracking is performed at the beginning of each stage. Five red dots will flash 
in sequence at different locations in the HMD, which are located at the four corners 
and the center of the rectangle. Mapping these points to normalized coordinates, the 
upper left and lower right corners of the front viewport were represented by (0, 0) 
and (1, 1), respectively. Each observer was required to gaze at every dot until the 
last dot departure. This system uses the obtained point fixation to standardize the 
eye tracker. If the standardization is unsuccessful, the process is repeated. And if 
standardization is still fails after 5 tests, subjects will be required to participate in the 
experiment next time. 

In order to unify the viewing time, the interface will automatically pop up the 
quality scale after the subjects watch the image for 20 s. In addition, the background 
is set to gray, which could prevent the subjects from continuing to view the image 
when filling out the quality scale. The quality scale was marked with five labels, 
“Bad”, “Poor”, “Fair”, “Good”, and “Excellent”, as the rating range. Subjects can 
make choices using a hand-held controller. Click “Submit Next” to view the next 
picture, and the submitted score will be written into the file with the picture name. 
The other function of the submission time is confirming the correspondence between 
gaze data and images. Subsequent images were selected at random from the entire 
images during the session, in the order in which they are displayed as described 
above. Tobii Pro output detailed gaze data at the end time of experiment. 

Subjects and Training 

The whole 40 subjects are undergraduates from the University of Texas at Austin 
who had little experience in image QA. About 15 students were assigned to grade 
each image. 

In addition to oral presentations on research objectives, detailed procedures were 
described in writing for subjects. The subjects also signed consent forms. Each subject 
was asked to look at as many images as possible and rate them based on image quality 
without considering the attractiveness of content. Before the actual test, the subjects 
looked at 10 images that were not included in the database that had the same distortion 
pattern and quality range. At the same time, they were asked to use the same test 
process to familiarize themselves with controllers and virtual headsets.
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7.2.2 Objective QA of VR Images 

With the progress of science and technique, VR has been widely studied by many 
image and video processing researchers. But recently proposed QA models for VR 
video are poor in efficiency and performance due to the lack of suitable databases. For 
improving the above mentioned limitation, an VR QA method with high efficiency 
was designed in [22]. 21 subjects were invited to establish the VR video QA database, 
and two projection formats were introduced to the obtained database. Subsequently, 
a 3D convolutional neural network (CNN) was proposed to estimate the quality of 
VR videos without pristine videos. The preprocessed video blocks are input to this 
network, and various quality rate strategies are adopted to derive the final score 
value. The 3D-CNN achieves an excellent performance, which can be improved by 
calculating weights via the combination of the two projection formats. 

The Panoramic Video Database Set-Up 

Database Set-Up 

For establishing this database, seven typical panoramic videos were selected from 
the recommendation of IEEE1857.9M1053 proposal [23], which have been set as 
pristine sequences. All these standard panoramic videos’ resolution is 4096 × 2048, 
with the 30 fps frame rate and yuv420p format. 

To construct the VR video database, these pristine sequences are primarily pro-
cessed by the following two steps. First, the pristine sequences’ equirectangular pro-
jection (ERP) projection format is transformed into the equal-area projection (EAP) 
projection format by utilizing the 360lib official software. Second, the pristine videos 
of two formats (ERP and EAP) are compressed by two kinds of encoding methods, 
which are H.264/AVC [24] and H.265/HEVC [25]. The quantization parameters 
QP  are set from 30 to 50 with an interval of 5. Finally, the VR video database was 
obtained, which is composed of a total of 147 panoramic videos. 

For assessing the derived database, a subjective experiment was conducted. Con-
sidering the brain’s viewing behavior for video, every test only focuses on one 
sequence using the HTC-VIVE helmet. A single stimulus suggested by the ITU-R 
BT500-13 [26] was adopted in this experiment. Unlike traditional subjective image 
QA experiments, the test requires an empty and silent environment. It is not affected 
by external conditions such as viewing distance, luminance, the resolution of dis-
played screen, and so on. 21 observers with an average age of 24.2 years (eleven 
boys and ten girls with normal or corrected vision) were invited to this subjective 
test that lasted fourteen days. 

From this experiment, all the values of observers’ MOSs were gathered. According 
to the recommendation of the international telecommunication union [11], many 
parameters are computed, including individual mean, standard deviation, kurtosis 
coefficient, and so on. The final results show that the excessive deviation of individual
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value was cleaned. For each distortion a, the MOS can be derived by: 

MO  Sa = 
1 

M 

M∑

b=1 

mab, (7.1) 

where M denotes the number of observers and mab represents the score given by 
observer b under the distortion condition a. 

After calculating the MOS values for all video sequences, it can be concluded that 
the 5 levels of scores are comparatively specific. More specifically, the subjective 
experience of ERP projection format resembles that of EAP projection format. 

Neural Network-Based Objective QA Algorithm 

3D Convolutional Neural Network (3D-CNN) 

A novel 3D-CNN network is proposed to implement objective QA. Compared with 
the 2D convolutional neural network (2D-CNN) methods, this method can retain the 
input time information, indicating that this network can derive better video analysis 
performance. The network’s input is defined as (X (t) , q(t) , w(t) )T t=1, in which X

(t) 

denotes the t th block’s data of the tested video. The block is split into 10 frames 
drawn in equal parts of the video. After merging them, a non-overlapping and non-
interval approach was adopted to segment them into 128 × 128 blocks. Since the 
video consists of three channels, that is RGB channels, a block’s size is 3 × 10 × 
128 × 128. q(t) denotes the objective MOS values of video’s t th block. w(t) means 
the discrepancy between the central Y-axis of the t th block and the Y-axis of the 
video central spot. Figure 7.2 exhibits the frame of this network. The input block 
gets through the network with 6 layers, including 3 convolutional layers and 2 fully 
connected layers. There exists a combination of ReLU activation function and a 
maximum pooling layer after every 3 convolutional layers. After the block across 
3 convolutional layers, the feature map is derived. Passing the first fully connected 
layer, the feature map accesses a 256 dimensional vector. Then the dropout strategy 
is adopted to pass the second fully connected layer. After passing all these layers, a 
fractional output is obtained. When estimating the values and the mean squared error 
(MSE) of the MOS, the loss function can be expressed as follows: 

l = 
1 

N 

N∑

t=1 

(q(t) − q̂(t) )2 , (7.2) 

where q(t) indicates the MOS value of the video at the location of the block. q̂(t) 

denotes the output block’s estimated score obtained from the network. The stochastic 
gradient descent (SGD) is utilized to assign the training parameters of the network.
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Fig. 7.2 The framework of 3D-CNN 

Specifically, the primal learning rate is set to 0.001, the momentum factor is set to 
0.9, and the size of block is set to 128. 

In the projecting process, the VR video’s spatial distribution is non-uniformed. 
Different projection formats have their weights calculated in different ways. The 
weight of the ERP projection format can be derived as follows: 

S f = 
(
∑

x

∑
y SsyWxy)∑

x

∑
y Wxy  

, (7.3) 

W = cos(π 
h′

h 
), (7.4) 

where S f means the final score value. Sxy  indicates the total VR video blocks’ 
objective fraction. h′ is the distance in the vertical direction between the video patch’s 
central location and the entire video center point. h is the VR video’s height in the 
vertical direction. In addition, the EAP is an equal domain projection format with 
video blocks assigned a weight of 1. 

7.2.3 Subjective-Objective QA of VR Images 

A deep network is used to assess the visual quality of omnidirectional images. The 
network is composed of VR quality predictor and perception guide. The designed 
VR quality predictor encodes the position and visual features of the upper slice 
of omnidirectional images to learn the location and visual features. The designed 
perception guider assesses the obtained score by using adversarial learning with 
reference to human subjective scores. There are both subjective and objective QA in
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Fig. 7.3 The overall framework of the proposed Deep VR image QA method with adversarial 
learning 

the network which is sufficient to understand the characteristics of omnidirectional 
images that affect visual quality. 

VR Image QA with Human Perception Guider for VR Image 

As shown in Fig. 7.3, the whole process of omnidirectional image QA in training is 
based on deep networks, which consists of VR quality predictor and human percep-
tion guider [27].
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Fig. 7.4 The architecture of the proposed VR quality score predictor for the i th patch, pi 

As illustrated in the Fig. 7.3, the input of VR quality predictor is the patches 
divided by the distorted image I d . Each patch includes the positional feature and 
visual feature. The [θi , φi ] denotes the central point of pi . The positional feature 
ci and visual feature vi are obtained respectively after the patches pass through the 
positional feature encoder and visual feature encoder. The patch weight and patch 
quality score estimators are set after the positional feature encoder and visual feature 
encoder. They can be used to obtain the weight wi and score si of each patch. Finally, 
all patches’ weights and scores are aggregated and the predicted quality score ŝ  is 
derived. 

One input of human perception guider is the MOS value sh accessed by observers. 
Other outputs are distorted images I d and reference image I r . The visual V d and V r 

can be acquired after processing the I d and I r by visual feature encoder. The proposed 
guider feeds back the prediction score to the predictor according to the subjective 
score. Based on the visual characteristics of corrupted image and pristine image, a 
comprehensive QA system can achieve more accurate performance evaluation.
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According to above analysis, the distorted omnidirectional I d is divided into 256 
× 256 N patches (N = 32). The whole structure of designed VR quality predictor 
for i th path pi is shown in Fig. 7.4. 

In Fig. 7.4, the positional feature encoder consists of 3 fully connected layers, 
that is, 512-d, 64-d, and 8-d fully connected layers. ci is a positional feature vector 
of pi , which can be obtained by: 

ci = f cpos([θi ; φi ]), (7.5) 

where f cpos(.) denotes the function of the fully connected layers for encoding 
the position information. The architecture of visual feature encoder on the basis of 
ResNet50 is shown in Table 7.1. Conv  a_x (a = 1, 2, 3, 4, 5) represent five convo-
lutional stages in visual feature encoder. 

Vi can be calculated in following formulation: 

vi (d) = 
8∑

m=1 

8∑

n=1 

f 5 i (m, n, d), d ∈ {1, ....., 2048}, (7.6) 

where f 5 i represents the last convolutional layer’s feature map. After processing the 
encoder, positional features and visual features can be obtained. The weight of the 
patch is determined by the positional and visual features, so the position and visual 
information is the input of the patch weight estimator. However, visual information 
is the only input to the patch quality estimator to obtain the predicted patch quality 
score ŝ. The predicted quality score of omnidirectional image can be calculated by: 

ŝ =  P(I d ) =
∑N 

i=1 Wi Si∑N 
i=1 Wi 

. (7.7) 

The detailed architecture of perception guider is exhibited in Fig. 7.5. 
Human subjective score Sh and predicted score ŝ are two inputs of human per-

ception guider. The other input is |vd − vr | obtained from source input distorted 
image I d and reference image I r , respectively. The total input of human perception 
guider is defined as q = [s; vd; vr ; |vd − vr |]. The perception guider contains 4 fully 
connected layers, that is 512-d, 64-d, 8-d, and 1-d fully connected layers. In addi-
tion, there is a sigmoid function in this model. The final output of the guider can be 
accessed by: 

G(s|I d , I r ) = 1 

1 + e−q 
, (7.8) 

where G( · ) indicates the perception guider, and q represents the last fully connected 
layer’s value of the perception guider. The objective function of the predictor EP can 
be defined as: 

E p = (P(I d ) − Sh )2 + γ J (G(P(I d )|I d , I r ), 1), (7.9)
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Fig. 7.5 The architecture of the proposed human perception guider 

Table 7.1 Visual feature encoder architecture 

J (x, y) = −ylnx − (1 − y)ln(1 − x), (7.10) 

where J (x, y) represents cross entropy loss. P(I d ) indicates the predicted score, 
which is treated as the subjective score. The objective function of perception guider 
EG can be written as: 

EG = −J (G(Sh |I d , I r ), 1) − J (G(P(I d )|I d , I r ), 0). (7.11) 

By minimizing the objective function of the predictor EP , the prediction accuracy 
and efficiency of the VR quality predictor can be further improved.
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Evaluating Subjective-Objective Quality of VR Images via VR QA 
System 

To assess the 360-degree image quality, a new multi-channel CNN-based model 
named multi-channel neural network for blind 360-degree image quality assessment 
(MC360IQA) is established [28]. In this model, a 360-degree image is first projected 
into six viewport images, and then the six viewport images and itself are transferred 
to the CNN. The model extracts and fuses the features via the multi-channel CNN 
from input images. By regressing these features, the objective quality score can be 
attained. The projection and QA procedure will be described in detail as follows. 

Projection Method 

In the VR device, the 360-degree image is shown as a sphere in 3D spherical coor-
dinates. The content of image is rendered as plane segment tangential to the sphere, 
determined by the observing angle and the field of view (FoV) of the device. When 
the observers view the 360-degree image by utilizing the VR device, they should 
rotate their head to look at all the angles of image to watch the entire image. 

On this basis, viewport-based images are designed to implement the omnidirec-
tional image QA. To obtain the best predict pixel, the mapping backward procedure 
[14] is used to compute pixel value in the spherical image. In the above processing, 
the FoV is set to 90 degree, which is the same protocol as for typical VR devices 
(i.e., HTC VIVE, Gear VR and so on). To convey all the visual content, an omnidi-
rectional image presents six viewport images covering the entire 360-degree image. 
The six view port images are derived from front, back, right, left, top and down 
views, which can be represented by V f ront , Vback , Vright , Vle f  t , Vtop, and Vdown . In  
addition, different observers view the image from different angles, which inspires 
us to consider different starting viewing angles in the training process. Hence, the 
longitude of the observing angle is rotated from 0 degree to 360 degree on the front 
view and its interval is set to α degree. The omnidirectional images are then projected 
to six viewport images at each front viewing angle. Finally, the one omnidirectional 
image generates N sets of viewport images, which are defined as V n viewport , where 
the viewport = { f ront , back, right , le  f  t , top, down}, n = {1, 2,..., N }, and N =
360 
α . This method can effectively prevent the overfitting of the constructed model. 

MC360IQA 

The ResNet [29] as the most famous CNN has the strong ability to realize general-
ization without too much memory consumption. Hence, the introduced MC360IQA 
model chooses it as the base CNN-channel. These features extracted from center lay-
ers are fused to achieve image QA. The structure of the MC360IQA can be introduced 
in detail as follows. 

This MC360IQA model is composed of multi-channel CNN and image QA regres-
sor. Its structure is presented in Fig. 7.6. The multi-channel CNN adopts 6 parallel 
ResNet to extract useful features from corresponding six viewport images. Further-
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Fig. 7.6 The network structure of the MC360IQA 

Fig. 7.7 A building block for ResNet34 on the 56 × 56 feature maps 

more, the ResNet employs residual learning to deepen the CNN network, which is 
normally shown in the format of several deeper building blocks. Depending on the 
sum of layers, ResNet can be classified into ResNet18, ResNet34, ResNet50, and 
ResNet101. To improve the accuracy of the model and reduce the time consumed, 
the ResNet34 is considered as the base CNN-channel. All the building blocks of 
ResNet34 contain two convolution layers, where the kernels’ dimension is 3 × 3. 
The identity short cut connection is inserted from the building block’s input to the 
output. The Fig. 7.7 shows the building block. The ResNet34 can be expressed by 
five parts (conv1, conv2i , conv3i , conv4i , and conv5i ). In the conv1, convolution 
kernels’s dimension is 7 × 7 and 64 channels are implemented by using stride 2. The 
conv2i,i=1,2,3 denote three repeated building blocks. In conv2i , there exists a 3 × 3 
max pooling with stride 2. The conv3i , conv4i and conv5i have four, six and three 
repeated building blocks, respectively. The only difference between building blocks 
in these parts is the kernel channels. From conv3i to conv5i , the kernel channels are 
128, 256, and 512 separately. The designer takes place the last layer of each baseline 
ResNet34 with ten output features via average pooling. 

After acquiring the feature maps from low layers, the hyper-ResNet architecture 
with hierarchical element-wise addition is used to fuse these valuable features from 
conv2i , conv3i , conv4i , and conv5i . Since the feature maps obtained from different 
stages have different channels and dimensions, this model adopts two convolution 
operations to downscale the dimension and supplement the channels. As described
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in Fig. 7.7, the features extracted from conv2i are first reduced in resolution by 3 × 3 
convolution kernel with stride 2. Then the number of channels is increased by 1 × 1 
convolution layers with stride 1. Hence, the dimension size and channel number can 
match the conv3i in the next stage. The element-wise addition is conducted between 
the feature maps extracted from these two stages 2 and 3 to generate the fused 
feature maps. The fused feature maps will repeat the same steps above mentioned, 
downscaling its resolution, increasing its channels number, and applying element-
wise addition. The same steps are conducted to emerge the novel fused feature maps 
and the feature maps from conv5i . In the final, average pooling is employed to 
generate the feature vector with a dimension of 10 × 1. 

The six hyper-ResNet34 channels have uniform weights and are trained to extract 
the same features for different compression distortions. The image quality regres-
sor first obtains the fused features maps by connecting the outputs of multi-channel 
CNNs. Then, it allocates weights to images from different viewport. Finally, the 
image quality regressor utilizes a fully connected layer to compute the quality pre-
diction. For end-to-end training, the loss function can be defined as: 

Loss  = (Qestimate − Qlable)
2 , (7.12) 

where Qestimate is the estimated value, and Qlable  is the MOS value. 
Two metrics are designed for predicting the 360-degree images’ quality. The 

MC360I Q  Aprestine metric utilizes the score computed by the MC360IQA using 
viewport images without longitude rotating. The MC360I Q  Aaverage metric utilizes 
the mean score of N groups of viewport images computed by the MC360IQA 

The two metrics can be defined as follows: 

MC360I Q  Aprestine = MC360I Q  A(V 1 viewport ), (7.13) 

MC360I Q  Aaverage = 
N∑

n=1 

MC360I Q  A(V n viewport ), (7.14) 

where viewport = {  f ront , back, right , le  f  t , top, down} and n = {1,2,...,N }, N =
360 
α . 

7.2.4 Cross-Reference Stitching QA 

Due to the rapid growth of immersive multimedia content in VR, the omnidirectional 
images with high quality are necessary to create a natural immersion of real-world 
settings in head-mounted displays. A considerable requirement for stitched omnidi-
rectional images QA has arisen as a result of the advancement of stitching methods. 
To obtain a high-quality ground-truth pristine information for the connected areas, a
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novel cross-reference omnidirectional stitching dataset (CROSS) firstly established. 
Second, an omnidirectional stitching images QA algorithm is suggested to properly 
measure sewing regions quality as well as the image global experience of environ-
mental absorption. 

The Cross-Reference Database 

The cross-reference omnidirectional image database is constructed first contains 292 
quaternions of fisheye images as well as the stitched images created by seven meth-
ods. To improve the robustness, a series of fisheye cameras are utilized to record data 
in diverse situations. 

Omnidirectional Database Collection 

The CROSS database is made up of photos from ten different scenarios that may 
be divided into two groups. The indoor groups include photos of the meeting room, 
reading room, staircase, and so on. The outdoor groups include streets, wilderness, 
housing estates, and basketball grounds. Because each scene is made up of photos 
recorded at different angles, the composite areas contain real ground observation 
data for assessment. It is significant to ensure that the image content does not alter 
in time of the obtaining process. 

Cross-Reference Grouping 

For acquiring omnidirectional photos of high quality, a series of fisheye cameras 
are used to gather data in the form of image groups. Each group consists of four 
photographs taken at the same camera position from different orthogonal types (0◦, 
90◦, 180◦, 270◦) degrees. When stitching two photos in opposing orientations, there 
are always two images that may serve as reference information without any damage. 
The fisheye photos in orthogonal degrees are referred to as the cross-reference for 
stitched image QA at a given degree. 

The Quality Assessment Algorithm 

Based on the cross-reference database, a novel omnidirectional stitching images QA 
algorithm has been designed. This QA algorithm considers three stitching regions 
including histogram statistics, perceptual hash, and sparse representation. Apart from 
that, two global factors are introduced as well, which are global color difference and 
blind zone. After weighting the above five factors, a linear regressor is employed to 
match the weighted value with the human subjective judgment.
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Stitching Region Attentive Sampling 

The major distortions in stitching photographs are most likely near stitching areas, 
whereas areas remote from stitching areas normally have less distortions and other 
optical errors. On this basis, a simple but effective attentive sampling technique has 
been devised to place a premium on stitching areas during the QA procedure. 

The Gaussian criterion is adopted to sample more patches around the stitching 
area, which can be expressed by: 

At(x) = 
1√
2πσ 

exp

(
− 

(x − μ)2 

2σ2

)
, (7.15) 

where x and At (x) are the coordinates of where the stitching line and where the 
sampled patches are. As an example, the region indicators μ for stitching areas and 
reference areas are determined to 0.5 times their width. The region indicators σ for 
stitching areas are fixed to be 220 and 350, respectively. In particular, the reference 
information is sampled more often than the stitching area in order to lower the chance 
of misregistration. 

Stitching Region Assessment Metrics 

Three local indicators have been established to implement the stitching area QA, 
where distortions are most likely to arise in omnidirectional pictures. Histogram 
Feature The histogram of oriented gradient (HOG) features are the most common 
metrics for assessing picture similarity. The histogram between the stitching area and 
the reference area is used to determine the gray level divergence. The N represents 
the sum of observations. The gray level divergence between two histogram vectors 
mi, mj can be expressed by: 

Lh =
∑

i

∑

j 

cos
(
mi , m j

) ‖mi‖2 F
∥∥m j

∥∥2 
F . (7.16) 

The gray value range is divided into N bins, and the sum of gray values in each 
bin is counted on the picture area. In this way, a vector denotes stitching area and 
reference area are obtained, which computes the cosine similarity of sampled blocks 
between mi and mj. 

Perceptual Hash Although the texture information is lost in stitching zones, the 
gamma correction may have a significant impact on the histogram feature. As a 
result, disparities in the picture’s pixel level estimated by using the perceptual hash 
technique concerning image details are erased, and only structure and shading are 
left. 

The size of stitching and reference areas are altered to 64 × 64 followed with 
the discrete cosine transform (DCT). The hash fingerprint is computed after filtering 
the high-frequency elements to provide a 4096-dimensional vector for stitching and
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reference areas, separately. The hash distance Lha between the stitching area and 
reference area is considered as the final similarity metrics. 

Sparse Reconstruction The sparse reconstruction errors are utilized to reliably 
quantify region similarity at various degrees of detail. In particular, the visual weight 
processing module obtains the matching stitching area and sample area. The Gaussian 
sampling result of reference area is then employed as a dictionary, and the stitching 
results are used as the transmission data. The ground-truth picture is represented by 
minimum vectors from the lexicon. The finest stitching photos should have the most 
information in common. Based on this, sparse reconstruction is employed to discover 
the best stitched pictures with the fewest pieces. 

The D is a super-completed dictionary which is composed of stitching patches of 
the cross-referenced omnidirectional image. The stitched images are represented as 
R and the process of the minimal X∗ can be expressed as follows: 

X∗ = argminX 
1 

2
‖R − DX‖2 F + λ‖X‖1. (7.17) 

Then SVD decomposition is used to get the principal element. The final score can 
be obtained by: 

X∗ = 
r∑

i=1 

Ui ΣiVT 
i , 

Ls = −  
r∑

i=1

‖FPC A  (Σi )‖1 . 
(7.18) 

By using the principal element analysis FPC A, the summarization of the sum of 
vectors for sparse reconstruction is adopted to represent the final score. 

Global Assessment Metrics 

To improve stitching performance, several stitching models are employed to modify 
the optical parameters of the pictures, which normally introduces some chromatic 
aberrations. Furthermore, these systems frequently overlook blind areas. Hence, two 
global measures are created to assess the global experience of stitching omnidirec-
tional photos, which can evaluate the environmental immersion appropriately. 

Color Difference To explore the difference of image color, scale invariant feature 
transform (SIFT) [30] matching is adopted to seek out pixel correspondences between 
the stitching area and the reference area. Then K nearest neighbors are computed for 
each matched point pair to remove mismatches. S and R are indicate the sampled 
block of stitching areas and reference areas, separately. The following is a formula 
for the sift matching procedure: 

R∗ = argminR ‖S − Hsif t (Ri )‖2 F , i = 1 . . .  K . (7.19)
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After matching every S and R, the color difference can be computed as: 

Lc = −  
N∑

i=1 

C∑

k=1 

λ 
Sik  − R∗ 

ik  

N × C 
, (7.20) 

where N represents the sum of sampled patches, C denotes the sum of channels and 
the λ is set to 100 for balancing score. 

Blind Zone The stitched areas below the image without any information are 
named blind zones, and they have a significant impact on the visual comfort of the 
immersive experience. A subjective review is undertaken to determine the impact 
of blind zones. The observers are invited to rate from 1 to 10, representing the 
influence of the blind zone on the performance of omnidirectional stitching measures. 
Standardization will immediately assign a relative score to the average value. 

Considering the human visual saliency of omnidirectional pictures, the following 
options are set. Since most stitching methods produce blind areas that are rectangular 
in shape, the fraction of blind areas in the pictures may be calculated by integrating 
the subjective visual saliency values. To be specific, the integration D(x, y) indicates 
human gaze region in I image, ranging from the rectangles region. The final blind 
zone assessing value Lb can be calculated by: 

Lb = 1 −
∫∫

D(x,y) P(x, y)dxdy
∫∫

I P(x, y)dxdy  
, (7.21) 

where P(x, y) is the integral function on the basis of visual-times distribution. 

Human Guided Classifier Learning 

The next step is incorporating human subjective assessments to oversee classifier after 
obtaining the local and global evaluation metrics in the preceding part. It is difficult 
for participants to judge the quality of single images without making comparisons. 
When comparing two photos, a specific method is utilized, in which participants 
chose the superior quality image based on perception, and the timings during the 
experiment are recorded. The classifier aspires to be as close to human observation 
as feasible. To this goal, the human subjective ground-truth is fitted by using multiple 
linear regression (MLR) [31]. The human assessing values are set as the ground-truth 
G. The weight-balance parameters α can be learned by generalized least squares 
predicting: 

G = α · y, 
α∗ = argminα

(
yT γ−1y

)−1 
yT γ−1G, 

(7.22) 

where γ represents the covariance matrix of residual error. The final QA result can 
be obtained via R̂ = α∗ · y, which can rank different stitching results.
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7.3 Comparison and Analysis of Algorithm Performance 

In this section, we introduce several state-of-the-art image QA methods of VR 
images. We focus on comparing and measuring the performance of the presented 
QA approaches in this chapter with these methods. The detailed results of the anal-
ysis will be illustrated in the following sections. It is worth mentioning that the 
analysis results show that the performance of these methods in this chapter perform 
quite well. 

7.3.1 Performance Comparison and Analysis 

In order to demonstrate the validity and superiority of the methods introduced in this 
chapter, we compare the proposed approaches with the state-of-the-art image QA 
methods. All methods are listed in Table 7.2. Among them, there are 12 FR methods 
and 10 NR methods, respectively. 

When we compare the above modern image QA methods, three commonly used 
metrics are utilized, namely PLCC, SRCC and RMSE. The evaluation accuracy can 
be measured by PLCC and RMSE, while the monotonicity of the prediction can be 
found by SRCC. A higher value of PLCC and SRCC, and a lower value of RMSE 
represent the QA method with the better performance. The objective assessment 
scores are nonlinearity obtained by PLCC, SRCC and RMSE, so a logistic function 
is utilized to increase the linearity. We compute the image QA scores using these 
three criteria by the mapping including 5 parameters as follows: 

f (a) = δ1( 
1 

2 
− 1 

1 + expδ2(a−δ3) 
+ δ4a + δ5), (7.23) 

where δi,i=1,2,3,4,5 represents the fitted parameter. f (a) and a are subjective scores 
and its corresponding objective scores which are assessed by image QA approaches. 
It is apparent that the models presented in this chapter have achieved encouraging 
results. We summarize the advantages of proposed models as follows. 

(1) It can be seen that the OS-IQA metric has the best performance compared to 
other methods, which is more sensitive to evaluate the quality of stitching regions. 
To be specific, the OS-IQA metric is more sensitive to the local distortions and 
global color difference even under the complicated lightness conditions and various 
scenarios. 

(2) For the ERP projection format, the performance of the 3D-CNN with added 
weight calculation is better than other approaches. 

(3) The MC360I Q  Aorigin and MC360I Q  Amean outperform the state-of-the-art 
FR and NR QA models of VR images. The MC360I Q  Amean is slightly worse than 
the MC360I Q  Aorigin due to the reason that the mean score of viewport images
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Table 7.2 The proposed algorithms and modern developed QA models 

Category Abbreviation Full Name Refs. 

FR S-PSNR Spherical peak signal-to-noise ratio [14] 

FR CPP-PSNR Craster parabolic projection based 
peak signal-to-noise ratio 

[15] 

FR NCP-PSNR Non-content-based peak 
signal-to-noise ratio 

[9] 

FR CP-PSNR Content-based peak signal-to-noise 
ratio 

[9] 

FR SSIM Structural similarity index [32] 

FR MS-SSIM Multiscale-structural similarity [33] 

FR S-SSIM Spherical SSIM [34] 

FR VSI Visual saliency-induced Index [35] 

FR GMSD Gradient magnitude similarity 
deviation 

[36] 

FR FSIM Feature similarity [37] 

FR MDSI Mean deviation similarity index [38] 

FR OS-IQA Omnidirectional stitching image 
quality assessment 

[39] 

NR BRISQUE Blind/referenceless image spatial 
quality evaluator 

[40] 

NR QAC Quality-aware clustering [41] 

NR GMLF The gradient magnitude and 
laplacian of gaussian 

[42] 

NR SISBLIM Six-step blind metric [43] 

NR NIQE Natural image quality evaluator [44] 

NR 3D-CNN 3D convolutional neural network [22] 

NR 3D-CNN (ERP) 3D-CNN Equirectangular [22] 

NR MC360IQAorigin Multi-channel CNN for blind 
360-degree image quality 
assessment origin 

[28] 

NR MC360IQAmean MC360IQA mean [28] 

NR DeepVR-IQA Deep virtual reality image quality 
assessment 

[27] 

is more stable and less susceptible to abnormal predictive scores. In short, the 
MC360I Q  Aorigin is more generalizable and accomplishes tasks more efficiently. 

(4) The DeepVR-IQA provides good prediction performance compared to the 
conventional omnidirectional image quality metrics, which are S-PSNR and CPP-
PSNR. Specifically, it has the highest values of PLCC and SRCC.
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7.4 Conclusion 

Along with the development of virtual reality, omnidirectional images play a signif-
icant role in the production of multimedia content with immersive experiences. That 
is to say, the better the quality of VR images, the better the user experience will be. 
In this chapter, we introduce two QA methods for VR images from the perspective 
of the presence or absence of participants, namely subjective VR image QA method 
and the objective VR image QA method. The subjective image QA method on the 
basis of LIVE VR IQA database that contains various types of distortion. The sub-
jective QA can obtain more accurate results, but it is time consuming, expensive, and 
unsuitable for practical applications such as 3D positioning tracking, etc. In contrast, 
the objective image QA method is based on a mathematical model of the subjec-
tive visual system. One model is a blind 360-degree image quality assessment by 
employing multi-channel CNN. The other one is a deep learning-based VR image 
QA method that can quantify omnidirectional images by adopting positional and 
visual information. Despite the good performance of the models introduced, there 
is still work to be done. In the future, it is believed that the VR image QA methods 
with better performance can be put forward through the joint effort of researchers. 
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Chapter 8 
Quality Assessment of Super-Resolution 
Images 

8.1 Introduction 

Image super-resolution (SR) has extensively been utilized in a wide variety of appli-
cations, which contain infrared imaging, medical image processing, face recognition, 
and so on. This technology intends to generate a high-resolution (HR) image from one 
or several given low-resolution (LR) images. Many image SR algorithms have been 
presented in the past decades [1–6]. These SR algorithms can be divided into two 
categories based on the availability of LR images, namely multi-frame SR method 
and the single-frame SR method. Until now, there have been several single-image 
SR approaches proposed from different perspectives. Bilinear interpolation, bicu-
bic interpolation, and Lanczos resampling [7] are the representative approaches that 
intend to simply utilize the information of LR images to acquire HR images. In 
general, the methods mentioned above are simple and efficient. However, there exist 
severe blending artifacts and blurring distortion in the edge and high-frequency areas 
due to pixel interpolation operations. They will reduce the image perception quality 
and affect image processing such as image enhancement and restoration. Hence, it is 
necessary to use the image quality assessment (QA) method to assess the SR image 
perceptual quality. 

Recently, image QA has attracted extensive researchers’ interest. The image QA 
approaches can be divided into subjective image QA method and objective image 
QA method based on whether humans are involved in quality evaluation. To the best 
of our knowledge, subjective QA approaches are expensive and time-consuming 
since they set human spectators as the ultimate recipient of images. This design has a 
weak ability to evaluate the system and optimize related parameters. Objective image 
QA methods utilize computational models to automatically assess the perceived 
quality of images. This kind of method is preferred by a wide range of researchers 
because of its high accuracy and strong robustness. The objective QA approaches 
can be categorized into three kinds, which are the full-reference (FR) approach, 
reduced-reference (RR) approach, and no-reference (NR) approach, separately. The 
FR image QA method needs the full information of the original reference image. 
The NR image QA method predicts the perceived quality of the distorted image 
when the original image is unavailable. The RR image QA method [8, 9] provides 
a balance between the FR and NR methods, which requires only a few features 
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or a lot of information from the original reference image. For example, in [10], the 
visual signal-to-noise-ratio takes advantage of the near-threshold and supra-threshold 
properties of human vision. In [11], Larson et al. proposed a method called most 
apparent distortion, which autonomously utilized Fourier transformation and log-
Gabor filtering to extract visual features on the basis of distortion visibility. In [12], 
Mittal et al. presented a completely blind image quality analyzer by employing natural 
scene statistics (NSS) features. 

Unlike the traditional images, the details in SR images are more important. In addi-
tion, existing image QA methods do not take into account several artifacts that may 
occur in SR images. Therefore, it is imperative to propose some image QA approaches 
that are specific to SR images. There exists an assumption that the human visual sys-
tem (HVS) is extremely adaptive to the statistics of the natural visual environment, 
and deviation from such statistics is an unnatural feature of the image. To better per-
form the objective QA of SR images, NSS methods are proposed on the basis of the 
assumption. With the fast advancement of deep learning in image recognition tasks, 
a large number of researchers have established many deep learning-based methods 
for evaluating SR images, especially convolutional neural networks (CNNs)-based 
methods [13]. Besides, in [14], Gao et al. presented a deep similarity (DeepSim) 
metric that utilizes different levels of feature maps extracted from pre-trained deep 
CNN models to calculate the similarity. In [15], Liang et al. established a dual-
stream Siamese network for assessing the distorted image perceptual quality score. 
In [16], Kim et al. constructed a deep image quality assessment (DeepQA) model, 
which searches for the best visual weights according to the understanding of database 
information itself without prior knowledge. In [17], Ma et al. designed an NR image 
QA method for single-image SR with a two-stage regression model and constructed 
an SR image QA database. On the basis of this database, Fang et al. [18] and Bare 
et al. [19] presented different CNN models for NR image QA problem of single-
image SR. For evaluating the performance of those QA models, we also compared 
them with state-of-the-art competitors using four extensive employed standards, i.e., 
Spearman rank correlation coefficient (SRCC), Kendall rank correlation coefficient 
(KRCC), Pearson linear correlation coefficient (PLCC), and root mean square error 
(RMSE). 

The organization of this chapter is arranged below. Section 8.2 introduces in detail 
the modeling process of two types of SR image QA approaches, namely the deep 
learning-based SR image QA method and the natural statistics-based SR image QA 
method. Section 8.3 finally draws the conclusion and provides the future work. 

8.2 Methodology 

In this section, we focus on two QA methods based on deep learning and a QA method 
based on NSS of SR images presented recently. One of the deep learning-based QA 
methods of SR images is the method based on a cascade regression, which establishes 
the mapping relationship between multiple natural statistical features and visual
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perception scores by learning a two-layer regression model. The other deep learning-
based QA method of SR images is the method based on the combination of SR image 
QA loss function and L2 Norm, which can effectively assess the visual perceptual 
quality of SR images. The NSS-based QA method of SR images is the method that 
quantifies the degradation of image quality using deviations from statistical models 
of frequency energy falloff and spatial continuity of high-quality natural images. 

8.2.1 Creation of the QA Database for SR Image 

Visual QA of SR Image: Databases and Methods 

The commonly used image QA database contains most of the noise, such as blur 
noise, JPEG, JPEG2000, and so on which basically do not appear in SR images. 
This section will introduce a public QA database called quality assessment database 
for super-resolution images (QADS), and a subjective assessment method for SR 
images. The QADS database is open and publicly available from [20]. In addition, it 
is considered that the artifacts of the distorted SR image often appear in the texture 
region, while the other artifacts appear in the structure region. Here, a selective 
structure-texture decomposition (STD)-based technique is used to divide the image 
into texture region and structure region with separate scores for the quality of the 
two regions [21]. 

QA Database for SR Images 

The reference images in QADS can also be called source images, and in SR image 
they are also HR. To select clean and diversified images as reference images in 
QADS, 20 reference images are selected from the multiply distorted image database 
(MDID) [22]. The above images contain broader spatial information (SI) and color-
fulness [23] than other image QA databases, while, in subsequent experiments, it is 
found that the SI values of the two reference images are small. It leads to different SR 
methods generating similar visual results, which makes the subjective score unreli-
able. Consequently, two reference images commonly used in SR tests are selected 
to replace the two source images with small SI values. The size of all source images 
is controlled to 504 × 384 without scaling or rotation. 

SI  plays a vital role in the background of SR, because the goal of SR is to improve 
spatial resolution. The range of SI  and the type of image content in the database are 
positively correlated. As they increase, the utilization value of the image increases. 
The SI  for measuring the applicability of the reference image can be given by 

SI  = √
mean(d) · range(d), (8.1) 

where d is the SI value defined in [23]. mean(·) returns the mean value of reference 
images, and range(·) returns the value range of reference images’ arguments.
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In order to obtain an SR image, the size of reference images is first reduced by k 
times (k ∈ {2, 3, 4}) using bicubic downsampling. Then reduced images are restored 
to their original size by 21 SR methods, including 11 dictionary-based SR methods, 
6 DNN-based SR methods, and 4 interpolation-based methods separately. In order 
to avoid the visual effects of image boundaries, the image is cut into blocks with the 
size of 500 × 380. Finally, 980 SR images were generated by repeating the above 
process. 

Owing to the low sampling rate, aliasing occurs in the high-frequency region when 
generating images. The extraction of high-frequency information after aliasing is the 
key to obtaining SR images. If the high-frequency information in SR images cannot 
be restored, the image will become blurred. Another common artifact in SR images 
is jaggies. It is generated by the incorrect high-frequency component in the anti-
aliasing operation of SR. In addition, some other types of artifacts are included in 
QDAS, which makes QDAS different from other image QA databases. 

Subjective Evaluation 

The most significant step in the process of constructing an image database is sub-
jective assessment. A total of 100 subjects with normal vision are asked to complete 
their assessment in an indoor environment without any light. The display device is a 
23.8-inch liquid crystal display monitor with a spatial resolution of 1440 × 900 and 
default values for the rest of the display configuration. 

During the subjective evaluation, the display will show 4 windows at the same 
time. The first row is the SR image to be evaluated, and the lower right corner is 
the reference image. In the psycho-visual assessment, subjects are able to make 
decisions faster and more accurately by looking at different images in the same 
location. Subjects were asked to view images in a window in the lower left corner, 
which could be switched between two distorted images and a reference image. During 
the evaluation process, subjects can click “>”, “<”, and “=” to select. The pair 
comparison sorting (PCS) algorithm is adopted here [22]. After ranking each SR 
image score, we can get a number that represents its quality indicator. Since each 
reference image in QADS has 49 SR images, the numbers range from 1 to 49. The 
lower the number, the worse the image quality. 

The reliability of the final score can be measured by the standard deviation (SD), 
while the applicability can be measured by the homogeneity of MOS values [23]. The 
SD value is negatively correlated with the consistency of different image perception 
quality, so a smaller SD value means a more reliable final score. 

Image QA for SR Images Using Structure-Texture Decomposition 

Some artifacts in SR images appear mainly in the texture part, followed by the 
structure part. Some artifacts have little effect on the structure during the construction 
of QADS, but can be easily observed in the visual psychological evaluation. Inspired 
by this, an FR image QA algorithm based on STD for SR images is proposed. 
It divides the image into structural regions and texture regions, and evaluates SR 
images, respectively, to test image QA scores of different artifact types.
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If the textures of two areas belong to one category, it is difficult to detect the 
difference between them even if the difference between the fixed image position is 
large. In contrast, it is easy to detect large structural differences at fixed locations. 
The texture component and the structural component will then be grouped together 
separately, where the structural component will occur at a specific structural location. 
Since the HVS is more sensitive to structural changes than texture changes, most FR 
image QA methods concentrate on structural distortions. Nevertheless, it is vital for 
SR images to study the artifacts on the texture. 

Textural Similarity 

The HVS focuses on texture types. When two areas have completely different texture 
types, the difference between them is easily perceived. And when they have similar 
texture distribution, the visual perception is similar. So the texture distribution can 
be calculated by statistical descriptors. The scale-invariant feature transform (SIFT) 
descriptor [24] is applied to obtain a quality map with spatial variation for rendering 
the SI of artifacts. It can calculate the scale and rotation-free SIFT features for each 
pixel of the texture components. This is not only more efficient than considering both 
scale and rotation, but also satisfies the purpose of describing texture distribution. 
The dense SIFT feature is essentially a series of histograms that describe the gradient 
distribution of image regions. Using histogram-based features, the texture similarity 
measure of the i th pixel St (i ) is computed by 

St (i ) =
/

fr 
||fr (i)||2 , 

f fu (i ) 
||fu (i)||

\
+ Vt (i ) 

1 + Vt (i ) 
, (8.2) 

where || · || is L2-norm, and < ·, · > represents inner product. fr (i ) and fu(i ) are the 
histogram feature vectors of the i th pixel in the texture component of the pristine 
image and the SR image, separately. The adaptive variable Vt is defined as 

Kt (i ) = Ct 

m(v(tr (i )), v(t (i ))) 
, (8.3) 

where tr (i ) and tu(i ) denote the patches and SR image centered on the i th pixel in 
the reference image texture component. Ct is a positive number used to constantly 
calibrate the range of Vt . The function of Vt is somewhat similar to the shielding 
parameter in [25]. v(·) and m(·) are variances in parameters and maximum values of 
parameters, respectively. 

From the above two equations, it can be seen that texture similarity St has the 
following three characteristics. (1) St is between 0 and 1. The higher the correlation 
between normalized fr and fu , the more similar the texture distribution, and the larger 
the value of St . (2) When the reference and SR patches are rich in texture, that is, 
when the variance is large, the effect of Vt on St is small. The value of St is determined 
only by fr and fu . (3) If both the original image and SR patches have small textures, 
the Vt value will be very large, making St to 1. From a psychological point of view, a 
more reasonable approach is to perform frequency analysis and compare sensitivity
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functions to determine texture visibility. But the satisfactory results of Eq. (8.3) can 
already be achieved. After calculating each St , it is possible to get a texture similarity 
map. 

Structural Similarity (SSIM) 

In addition to the texture and checkerboard in the texture component, other artifacts, 
such as jaggies, mainly appear in the structural components of the image. Jaggies 
are a common artifact in SR images, which usually leads to directional distortion of 
the structure. In order to measure it, the dominant direction of gradient comparison 
in structural components is selected here. The semidefinite matrix J [26] can derive 
the dominant direction of plaque, which is defined as follows: 

J (i ) =
⌈
gT x (i )gx (i ) gT x (i)gy(i ) 
gT y (i )gx (i ) gT y (i)gy(i )

⎤
, (8.4) 

where i represents the index of the patch center location. gx and gy represent the 
lexicographical gradient vectors along the x-coordinate and y-coordinate, respec-
tively. The matrix J contains two eigenvalues, and the dominant direction can be 
represented by the eigenvector of the next eigenvalue. Similar to Eq. (8.2), the SSIM 
metric of the i th pixel Ss(I ) can be defined as 

Ss(i ) = 
| <nr (i ), nu(i )> | +  Vs(i ) 

1 + Vs(i ) 
, (8.5) 

where | · |  is the absolute value symbol. nr (i) and nu(i) are normally feature vectors. 
The former represents the dominant direction at the i th pixel of the reference image 
structural component, while the latter is the dominant direction at the i th pixel of the 
SR image structural component. Vs is defined as 

Vt (i ) = Cs 

m(gmr (i ), gms(i )) 
, (8.6) 

where gmr (i) and gms(i) are the normalized gradient amplitudes at the i th pixel of 
the reference image and the SR image structure component, separately. Cs is the 
normal number to adjust the range of Vs . It should be noted that if n and −n are 
the normalized eigenvectors corresponding to the given eigenvalues. In brief, the 
absolute value in Eq. (8.5) is very important. 

Since Eqs. (8.2) and (8.5) have the same mathematical formula, Ss has similar 
characteristics to St . To be specific, if the reference image or SR image shows a 
strong structural gradient, the effect of Vs on Eq. (8.5) can be ignored. If they are 
structurally smooth, the estimation of the dominant direction will be affected by 
noise and become unreliable. In this case, Vs will play an important role so that Ss is 
1 to get a reasonable result. The characteristics of Vs and St suggest that the design 
of texture and SSIM qualitatively conform to visual perception.
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High-Frequency Similarity 

SR images will become blurred when high frequency details are lost. Although the 
texture and structure of the image are blurred, the texture similarity defined by Eq. 
(8.2) can distinguish between blurred texture and sharp texture. The high-frequency 
similarity is used to calculate to distinguish Eq. (8.5) due to depend to the structural. 
The following equation is used to calculate the high-frequency energy of the i th pixel 
position: 

h(i ) = 
1 

ND

∑

j∈D(i) 

(s( j ) − sσ( j ))2 , (8.7) 

where j represents the location index. D(i ) indicates the neighborhood of i and its 
number is represented by DN . s is the structural component. In Eq. (8.7), sσ represents 
the low-frequency part of s, which is obtained by convolution s of Gaussian filter 
with SD as σ. Comparing the reference image with the high-frequency energy in SR 
image, the high-frequency similarity of the i th pixel Sh(i ) is given by the following: 

Sh(i ) = 
2hr (i )hu(i ) + Ch 

h2 r (i) + h2 u(i ) + Ch 
, (8.8) 

where hr and hu can be obtained from Eq. (8.7) in the original image and SR image, 
separately. Ch is the positive number set to prevent instability caused by too small 
denominators. In Eq. (8.8), it has been proved to be consistent with the masking 
effect in many previous studies [27–30]. 

Pooling 

When calculating the final quality of SR images, the three quality maps are converted 
into three scores, and then they are fused into one score. The pooling of each map is 
achieved by a weighted average: 

Pq = 
1 

N

∑

i 

wq (i )Sq (i ), (8.9) 

where N refers to the pixel number in an image. q could be t /s/h, which is three 
similar indices. pq is each similarity score, and wq is the weight of each pixel. The 
weight in Eq. (8.9) is calculated by the content in each map: 

wi (i ) = m(v(tr (i )), v(tu(i )))∑
i m(v(tr (i )), v(tu(i ))) 

, (8.10) 

ws(i ) = m(gmr (i ), gmu(i ))∑
i m(gmr (i ), gmu(i )) 

, (8.11)
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wh(i ) = m(hr (i ), hu(i ))∑
i m(hr (i ), hu(i )) 

. (8.12) 

The denominators of Eqs. (8.10)–(8.12) are all used for normalization. If multiple 
quality maps are combined into a single map, the design of weights becomes more 
complex. By integrating the above three scores, the final single score P is obtained: 

p = pα 
i · ( ps · ph)β . (8.13) 

Both α and β are positive to adjust the influence of different similarity degrees. 
Since the structure and high-frequency similarity are both estimated in the structure 
component, their fractions use the parameter β with the same value. The structural 
information is more important in HVS generally, so β is greater than α. In keeping 
with this generality, α is set to 1. The value of β can be acquired by calculating the 
ratio between them: 

β = 
β 
α 

= 
log(mean(|s|)) 
log(mean(|t |)) , (8.14) 

where s is the intensity of image structure component, t represents the intensity of 
image texture component. In Eq. (8.14), the log(·) function is used to follow the 
Weber-Fechner law. Since the structural strength is generally greater than the texture 
strength, the β value is set to be greater than 1. In addition, the parameter β here is 
estimated from an external image, not from an image in QADS. 

Subjective and Perceptual Evaluation of Single-Image SR Reconstruction 

Twenty images of LR nature with diverse contents are selected, containing animals, 
natural landscapes, buildings, humans, and so on. The HR images with different 
distortions are generated by processing the LR images with two interpolation algo-
rithms and six image enhancement algorithms. The above algorithms are separately 
nearest interpolation, bicubic interpolation iterative curvature-based interpolation, 
coupled dictionary training for image SR, Gaussian process regression for SR, and 
so on. When interpolating LR images, three different magnification factors are used, 
namely 2, 4, and 8. It has been experimentally proven that as the magnification 
factor increases, the MOS average value of the SR reconstructed image decreases 
accordingly. Finally, the produced HR images constitute a database. 

The SR enhanced image is enhanced by bicubic interpolation, nearest interpola-
tion, and fuzzy-rule-based approach for single-frame SR. As the magnification fac-
tor increases, the image quality after SR enhancement decreases. SR reconstructed 
images are often affected by a variety of distortions, including blurring, ringing, and 
unnatural local textures. Therefore, it is difficult to evaluate the perceptual quality of 
the SR reconstructed image with the image QA model designed for distortion. 

To conduct a subjective QA method of SR image, twenty non-professional subjects 
are selected to attend the subjective experiment (all without visual impairment). They
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are between 20 and 30 years old. All SR-enhanced images displayed at the original 
resolution are shown to the candidates in a random order. At the commencement of 
the subjective experiment, a set of training examples is used to illustrate the range 
of quality levels. In order to obtain an accurate subjective score, the maximum and 
minimum values of each image are deleted. Then the MOS is calculated as the final 
image quality. 

8.2.2 QA of SR Image Based on Deep Learning 

The single-image SR reconstruction upsamples an LR image to produce a high-
quality HR image with finer details, which cannot be directly captured by a physical 
imaging system. The HR image obtained by HR cameras will result in a lot of 
production costs and manpower. In order to solve this problem, researchers have 
carried out extensive research on the SISR algorithm. SR image quality assessment 
technique as one of the most important parts of the SR technique field can evaluate 
the quality of SR images and the superiority of SR algorithms. Researchers have 
designed many SR QA methods and introduced deep learning techniques to better 
achieve objective QA of SR images. In the following content, we will introduce two 
deep learning-based SR image QA methods based on learning cascade regression 
and specific loss functions. 

Learning Cascaded Regression for NR SR Image QA 

No-reference super-resolution image quality assessment (NR-SRIQA) is not depen-
dent on any information from original images, which makes it more meaningful in 
practical application compared with the FR or RR methods. The NR-SRIQA extracts 
the statistical features of SR images and uses them to train models to estimate the 
quality scores of specific images. It is an effective method to assess the quality of 
SR images. By combining deep learning technology, the model can establish a more 
robust mapping relationship between the multiple natural statistical features and 
the visual perception scores. In this part, we will introduce a new cascaded regres-
sion model consisting of a two-layer regression model, which incorporates ridge 
regression and AdaBoost decision tree regression. The introduced method achieves 
a coarse-to-fine manner to obtain the predicted quality score of SR images by training 
on the multi-perceptual feature extracted from the SR images. 

Multi-Perceptual Feature Modeling 

The key problem is that the NR-SRIQA fails to extract effective visual perceptual 
features that can represent SR image degradation, while this part uses the following 
methods to acquire the features capable of representing the degradation mechanism 
of SR images.
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Local Frequency Features In the local frequency, there are many methods that 
can be utilized to analyze the distribution of discrete cosine transform (DCT) coeffi-
cients. Among them, the generalized Gaussian distribution (GGD) is often utilized, 
and its expression is defined as follows: 

f (z | μ, γ) = 1 

2Γ
(
1 + γ−1

)e−(|z−μ|γ ) , (8.15) 

where z represents a random variable, μ denotes the average of z, γ indicates a 
shape parameter, and Γ is conventionally calculated by Γ (u) = ( ∞ 

0 tu−1e−t dt . The  
first part of local frequency is composed of γ values on different subbands. The 
DCT coefficients in each block are divided into 3 groups, and then the normalized 
deviation σ̄ = σ/μ is calculated. Next, the sum of the normalized deviation in each 
group is computed and these are used as part of the local frequency. The discriminative 
capacity of this model can be increased by using the top and bottom 10% after ranking, 
and those values are taken as another part of the local frequency features. The above 
three components can be assembled together to indicate the local frequency statistical 
feature x1. 

Global Frequency Features Generalized neighborhood wavelet coefficients can 
be obtained by an operable pyramid decomposition method considering global fre-
quency. The shape parameters of different wavelet subbands can be calculated from 
six directions and two scales, which can be used as the first part of the global frequency 
features. In addition, the global degradation degree of the image can be predicted 
by measuring the structural correlation coefficient between the high-pass response 
and the corresponding bandpass response. The structure correlation coefficient can 
be defined as 

ρ = (2σab + c) /
(
σ2 
a + σ2 

b

)
, (8.16) 

where σab represents the cross-covariance variance between the high-pass responses 
and the corresponding bandpass responses. σa is the variances of high-pass response 
and σb is the variances of the corresponding bandpass response, c is a constant 
coefficient. Same as the method used in local frequency features, the global frequency 
statistical features x2 are composed of the aforementioned two statistical features. 

Spatial Features In the spatial domain, singular values of local patches obtained 
by principal component analysis (PCA) can describe the spatial discontinuity of SR 
images. So, the singular values are regarded as spatial feature x3 which measures the 
discontinuous artifacts of the SR images. 

Cascade Regression 

Evaluating Quality with AdaBoost Decision Tree 

The AdaBoost decision tree regression algorithm adopts an addition model that 
combines the basis function in a linear way and a forward stage-wise algorithm. 
AdaBoost can be considered as an additive model with a decision tree as a basis
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function. The local frequency, global frequency, and spatial frequency models q̂M j ∈ 
R ( j = 1, 2, 3) that are independent of the others can be formulated as 

q̂M j

(
x j

) = 
M j∑

m=1 

αmT
(
x j Φm

)
, (8.17) 

where T
(
x j ; Φm

)
denotes the special decision tree, and αm represents the weight of 

the corresponding decision tree that is acquired by running the AdaBoost regression 
algorithm. x j stands for the j th type of feature vectors and Φm is the corresponding 
parameter of mth decision tree. The parameter M j represents the number of decision 
trees. The AdaBoost decision tree regression algorithm uses a forward stage-wise 
way to build the additive model. More specifically, the decision tree model obtained 
at the mth step can be formulated by 

q̂m
(
x j

) = q̂m−1
(
x j

) + αmT
(
x j ; Φm

)
, (8.18) 

where q̂m−1
(
x j

)
represents the current decision tree model. Empirical risk minimiza-

tion is used to determine the parameter Φ∗
m of the next decision tree model, which 

can be calculated by 

Φ∗ 
m = arg min 

Φm 

n∑

i=1 

L
⌈
Qi , q̂m−1

(
xi j

) + T
(
xi j ; Φm

)⎤
, (8.19) 

where Qi denotes the subjective quality score of the i th SR image, and n represents 
the sum of training images. Xi j  stands for the j th feature vectors of the i th SR image. 
L(·) refers to the squared error loss function; in the AdaBoost decision tree model, 
its representation can be described in the following form: 

L
⌈
Qi , q̂m−1

(
xi j

) + T
(
xi j ; Φm

)⎤ = ⌈
Qi − q̂m−1

(
xi j

) − T
(
xi j ; Φm

)⎤2 
. (8.20) 

According to the constructing regression model described in Eq. (8.17), a rough 
image quality score estimation can be obtained by local frequency, global frequency, 
and spatial frequency models, respectively. With the above three models, we can 
obtain a vector q̂ = ⌈

q̂M1 , q̂M2 , q̂M3

⎤T ∈ R3, and the vector values q̂M1 , q̂M2 , q̂M3 rep-
resent perceptual features of local frequency, global frequency, and spatial frequency, 
separately. 

Improving Quality with Ridge Regression 

The above three AdaBoost decision trees produce preliminary results for SR image 
quality scores. These vector values q̂M1 , q̂M2 , q̂M3 can be further optimized to reduce 
the gap between the estimated value and the truth value and to make the assessment 
results more accurate. The linear regression can establish the mapping relationship
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between prediction quality and expected subjective quality score, which can be cal-
culated with L2 Norm. The formula for L2 Norm is as follows: 

b∗ = arg min 
b

⎨IIQ − bq̂II2 2
⎬
, (8.21) 

where Q is the subjective scores of all training images. The first level is the predicted 
score q̂ of the three AdaBoost decision trees for all images in the training set. b is the 
parameters to be learned by the model. Ridge regression is normalized by means of 
linear regression. Adding the regularization term βIIbII2 2 to the cost function makes 
the learning algorithm not only fit the data, but it also makes the model weight as 
small as possible. With the regularization term, the second level of ridge regression 
can be described in the following form: 

b∗ = arg min 
b

⎨IIQ − b q̂II2 2 + βIIbII2 2
⎬
, (8.22) 

where β is a positive integer used to adjust the trade-off of reconstruction error and 
regularization term. The first item in Eq. (8.22) can be explained as the following. 
With the subjective evaluation score obtained by the AdaBoost decision tree regres-
sion, the second layer’s prediction score should be consistent with the subjective 
scores. At the same time, the regularization term aims to acquire a more stable solu-
tion of the learnable parameter b. Equation (8.22) can be solved by calculating a 
closed-form equation, which can be represented as 

b∗ = Qq̂T
(
q̂q̂T + βI

)−1 
, (8.23) 

where I indicates a 3 × 3 identity matrix. 
After getting the value of b, it is possible to acquire the final predicted quality 

score Q̂ for the image. The following is the test procedure. First, local frequency, 
global frequency, and spatial features of the given SR image are extracted. Then, 
these features are put into the first stage of this model named the AdaBoost decision 
tree regression model. Finally, the vector values q̂M1 , q̂M2 , q̂M3 obtained in the first 
stage are input into the second stage to acquire the final predicted quality score Q̂, 
which is calculated by 

Q̂ = q̂b∗. (8.24) 

Single-Image SR Driving Deep Target Quality Evaluation 

In the area of image processing, single-image SR is a valuable research direction. 
By using this technique, an LR image can turn into an HR one. Recently, the pro-
posed methods commonly use L2 Norm as the loss function, based on deep learning. 
These methods substantially improve the PSNR, but it has less effect on image per-
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Fig. 8.1 The structure of the designed model 

ceptual quality. In order to break through this limitation, an objective single-image 
SR QA method has been introduced. 

Proposed FR Image QA Method 

Figure 8.1 shows the structure of this method. It can be learned that the proposed 
single-image SR method utilizes an LR image as input and outputs the HR result. 
The HR image is generated by the guidance of the designed deep FR image QA 
method for SR images and L2 Norm. 

In the training process of single-image SR method based on CNNs, the original 
images can be obtained. On this basis, an advanced SR image QA model based 
on deep learning [31] has been improved in three aspects. Firstly, this method’s 
input is changed by the error map between the original image and the final results. 
Secondly, the normalization process utilized in [31] is elided. That is, the discrepancy
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Fig. 8.2 The framework of the proposed FR image QA method 

between the original image luminance map and the SR result becomes the input of the 
introduced FR image QA method. Finally, it fixed the flexible max pooling layer as 
the second layer after the first fully connected layer. The size of the flexible maximal 
pooling window can be found to be the same as the previous layer’s output feature 
map size. It means that the flexible max pooling can alter the input’s size into a fixed 
value and transmit it back to the first fully connected layer. 

The framework of the FR image QA method is exhibited in Fig. 8.2. The input of 
this method is a 32 × 32 small patch, obtained from the error map. To be specific, 
this FR image QA model first extracts 32 × 32 patches without overlaps. Then, the 
method estimates each patch’s quality score. Finally, all the patches’ quality scores 
are utilized to compute the average score as the final quality score. 

In addition to the differences mentioned above, other parts of this network are the 
same as Bare et al. So, a brief introduction of the overall process of this method is 
given as follows. This model first adopts three residual blocks to extract features. All 
the residual blocks are composed of two convolutional layers, in which the rectified 
linear unit (ReLU) as the activation function is utilized in the first layer. After residual 
blocks, max pooling is employed to expand the region of reception, which will lead 
to the convolutional layer’s feature map size being shrunk by half. To better extract 
features, the channel size is expanded twice as large as before. After the two residual 
blocks, max pooling is added to expand the field of residual. Since the size of the 
pooling window is set to 2 × 2 with stride 2; the max pooling layer can fix the input 
size to better suit the training process of a variety of single-image SR methods. 

Proposed Single-Image SR Method 

To make a comparison of newly proposed methods with other advanced methods, 
the channel size of every convolutional layer is enlarged between 32 and 64. Based 
on previous studies [32], a novel designed loss function is adopted to guide the 
single-image SR network. It outperforms other SR methods in perceptual quality 
and the values of two metrics, i.e., PSNR and SSIM. In addition, the previous work’s 
input is altered into the LR image, and transpose convolution is utilized to conduct 
upsampling in the final.
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Fig. 8.3 The framework of the proposed single-image SR method 

Network Framework 

Figure 8.2 exhibits the model’s structure. To converge faster, this method firstly 
preprocesses an LR image k, and produces a horizontal gradient map, vertical gradient 
map, and luminance map. Then these three maps are used together to generate a new 
signal. The new input signal passes cascaded architecture composed of n highway 
units and transposes the convolution layer to generate a residual map r . Finally, the 
bicubic upsampled version of k image and estimated residual image r are combined 
together to produce an HR image. This process can be defined as follows: 

P = CLout (HWUn(HWUn−1...(HWU1(CLin(I nput))))), (8.25) 

where HWU  indicates the highway unit, and n is the sum of highway units. CLin  and 
CLout represent the input and the output transpose convolutional layer, respectively. 
I nput  is the new signal obtained by combining three maps. The final HR image can 
be produced by 

HR  = Bicubic(LR) + P, (8.26) 

where P represents the learned residual image, and Bicubic(LR) is the upsampled 
version of LR image with bicubic interpolation. 

The cascaded highway unit framework is the single-image SR network’s main 
innovation. Since every pixel of the image has a different perception, a highway unit 
is designed to learn to signal each pixel’s weight value, which is utilized to weightily 
increase both input and output signals. By transmitting the processed version of the 
LR image to the highway unit, an accurate residual image P can be obtained. The 
final HR image is visually pleasing and clear. From Fig. 8.3, it can be found that 
every highway unit composes of two branches. Three convolutional layers with 64 
kernel sizes of 5 × 5 form the lower branch, which is adopted to transform the 
lower feature LF  into the deeper feature DF . It is worth mentioning that the first 
two convolutional layers of the lower branch set the ReLU as an activation function, 
and the third convolutional layer is based on residual learning without nonlinear 
activation. To avoid overfitting, the dropout [33] is added at the beginning of the 
lower branch. The main function of the upper branch is to produce every pixel’s 
weight value of PW. The upper branch only consists of a convolutional layer with 
64 kernels of size 5 × 5 and a sigmoid layer. Since the weight value of each pixel is 
in the region of [0, 1], the sigmoid layer is considered as the nonlinear activation in
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the convolutional layer. The authors use the obtained weight values to combine LF  
and DF  from the union layer. The process of combination can be expressed by 

CO  = PW × DF  + (1 − PW ) × LF, (8.27) 

where CO  indicates the final output of this combination process. 

Novel Loss Function 

The previous work about CNN-based algorithms [34, 35] takes L2 Norm as the 
loss function. With the decreasing of the L2 Norm, the perceived quality of the 
image decreases. To synchronously increase the measured PSNR value and perceived 
quality of the produced image, a novel loss function is constructed. This loss function 
is a weighted number of the L2 Norm and SR image QA loss, whose value is between 
zero and one. A value closer to 0 indicates a worse result and closer to 1 indicates a 
better result. Based on this, the |1-SR  I  Q  A  | is considered as an SR image QA loss. 
The three loss functions can be formulated as follows: 

L2 = ||G(LR  : ω) − GT ||2, (8.28) 

LSR  I  Q  A  = ||1 − SR  I  Q  A(G(LR; ω))||2, (8.29) 

Loss  = LSR  I  Q  A  + βL2, (8.30) 

ω = arg min Loss, (8.31) 

where L2, LSR  I  Q  A, and Loss denote the L2 Norm loss, SR image QA loss, and total 
loss function, respectively. G(LR; ω) represents the HR patch derived from the LR  
via the designed single-image SR network G with weight ω. GT is the ground value 
of HR patch, SR  I  Q  A(·) is the FR image QA model proposed for single-image SR, 
and β is the weight of L2 Norm. In the work, the β is set as 0.1 to make these two 
losses have unified magnitude order. 

8.2.3 Natural Statistics-Based SR Image QA 

Recently, a growing number of image SR methods have been developed to build 
better spatial resolution pictures from LR images. Although automatic or objective 
image QA techniques for image SR are very desirable, little progress has been made 
thus far. Due to the fact that a perfect quality HR image is unavailable to compare 
with, common image QA methods such as SSIM, PCNR are unreliable. This part
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will introduce two image QA algorithms based on the philosophy behind the NSS 
approach. 

Image SR Quality Evaluation Based on Energy Change and Texture 
Variation 

We introduce a new reduced-reference image quality assessment super-resolution 
(RRIQA-SR) based on LR image information in this part. The pixel correspondence 
between LR and HR pictures is first modeled using the Markov random field (MRF). 
The perceived similarity between picture patches of LR and HR images is predicted 
by two components based on the pixel correspondence, namely energy change and 
texture variation. The perceptual similarity between local image patches of LR and 
HR pictures is used to determine the overall quality of HR images. 

Pixel Correspondence 

The pixel connection between the LR and HR pictures is absent because of the 
large size of the HR image generated by the LR image pixels. To compute the local 
distortion in HR images, the MRF [36] in an energy minimization framework is used 
to represent the pixel correspondence between LR and HR images as follows [37]: 

E = ∑
p min d

(
g(p), g

(
p'))+ 

ω
∑

( p,q ')∈Φ min(|μ(p) − μ(q)| + |ν( p) − ν(q)|), (8.32) 

where d(g(p), g(p')) denotes the distance between the features at pixel pair p and p', 
and (μ( p), ν( p)) is the vector at pixel p. Φ is the set including the spatial neighbors 
centering at pixel p, and ω is a parameter that determines the relative importance. 

Energy Change and Texture Variation 

In this part, the energy change and texture variation between image patches in LR 
and HR images are calculated. It can use I MLR  and I MHR  to represent an LR image 
and its corresponding HR image. Their sizes are represented as MLR  × NLR  and 
MHR  × NHR . Then the formula for calculating energy change and texture variation 
between LR and HR images is written. To calculate the energy change and texture 
variation, the authors extract one image patch pair based on the pixel correspondence 
of each image pixel p in the LR image: 

Sk (I MLR, I MHR) =
∑

(b,b') 

fk
(
b, b') , (8.33) 

where k means the energy or texture feature, and fk indicates the function controlling 
the energy change or texture variation. b and b' are the corresponding image patches 
centered on the pixel pair p and p' in LR and HR images, respectively.
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Next, the DCT is introduced in this algorithm. The DC coefficient, which encom-
passes the majority of the image energy, indicates the image’s energy, while the AC 
coefficient represents the frequency components in images [38]. The energy charac-
teristic of each picture patch is represented by the DC coefficient, whereas the texture 
feature is taken from the AC coefficient. 

Given any image patch pair b and b' from LR and HR images, the DC coefficient 
of b and b' is calculated by DCT as D and D', respectively. The mean energy change 
between the image patch pair can be calculated as 

fe
(
b, b') = 

2imDimD' + C1 

im2 
D + im2 

D' + C1 
, (8.34) 

where C1 is a constant, imD and im '
D represent the mean energy values in image 

patches b and b', separately. 
The AC coefficient is employed to express texture variation between picture 

patch pairs in LR and HR images. For any image patch b with size Nb × Nb 

in the LR image, it has N 2 b − 1 AC coefficients: A =
⎨
A1, A2, A3, . . . ,  AN 2 

b −1

⎬
. 

For any image patch Nb' in the HR image, there are N 2 b − 1 AC coefficients: 
A' =

⎨
A'
1, A'

2, A'
3, . . . ,  A'

N 2 
b' −1

⎬
. Differences in the mean and standard deviation 

values of AC coefficients can be used to determine texture variation across pic-
ture patches in LR and HR images. The texture variation by the patch differences 
between image patches b and b' can be calculated as 

ft
(
b, b') = 

(2m Am A' + C2) (2dAdA' + C3)(
m2 

A + m2 
A' + C2

) (
d2 
A + d2 

A' + C3
) , (8.35) 

where m A and m A' are the values of the vectors A and A', separately. dA and dA'

denote the standard deviation of the vectors A and A'. Thus, it is possible to estimate 
the energy change and texture variation of the HR image from the LR image. 

Overall Quality Prediction 

As mentioned earlier, the energy change in HR images degrades the image’s overall 
visual information, whereas texture variation would produce the visual distortion in 
high-frequency regions. As a result, the visual quality of HR images can be evaluated 
by combining these two components with the following equation: 

Q = Fβ 
e F

γ 
t , (8.36) 

where Fe and Ft reflect the sum of predicted energy change and texture variation 
from all LR and HR patch pairs. β and γ are parameters used to adjust the relative 
importance of these two components and are set to 1.
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Objective QA of Image SR: A Statistical Method for Natural Scenes 

This part develops an objective image QA method for a given HR image using the 
available LR image as a reference. The NSS method is utilized. It is based on the idea 
that the HVS is well attuned to the statistics of the natural visual environment, and 
picture unnaturalness is defined by deviations from these statistics. The statistical 
models are created in both the spatial and frequency domains, then are integrated to 
get an overall HR image distortion metric. 

Frequency Energy Falloff Statistics 

The forehead study shows that the amplitude spectrum of natural images falls with 
the spatial frequency approximately following 1/ f p. f is utilized to represent the 
spatial frequency, and p is used to denote image-dependent constant. This aids in 
the development of a statistical model based on frequency energy falloff. A steerable 
pyramid transform is utilized to break down both the HR and LR pictures into dyadic 
scales. The sum of squared transform coefficients in each scale is then computed, 
and the energy is observed as it decreases from rough to fine scales. 

With this theory, we apply the aforementioned algorithm to high-quality LR and 
HR natural photo pairs, and then investigate how well the LR falloff curves predict 
the HR falloff curves. For HR and LR pictures, the slopes of the falloffs between 
the i th and (i+1)th scales are indicated as sH k and sL k . To predict s

H 
k from sL k , the  

direct prediction is precise for the first two slopes, which can be represented as 
ŝ H 1 = sL 1 and ŝ H 2 = sL 2 . The following linear models can accurately forecast the third 
and fourth slopes: 

ŝ H 3 = a0 + a1sL 3 
ŝ H 4 = b0 + b1sL 4 

. (8.37) 

The authors use genuine high-quality natural photos and a simple least square 
regression to generate the prediction coefficients a0, a1, b0, and b. We then use ŝ H 3 
and ŝ H 4 to predict the slope between the scales by 

ŝ H 5 = c0 + c1ŝ H 3 + c2ŝ H 4 . (8.38) 

After predicting all the slopes, we can reconstruct the predicted frequency energy 
decay curve of the HR image. The original HR image is inaccessible when working 
on the SR QA challenge. Depending on the picture and the SR or interpolation 
technique, the falloffs of obtained HR images might be rather varied. As a result, the 
normalized error in frequency energy falloff between the forecast and the slope of 
the HR image at the best scale is 

e f = 
ŝ H 5 − sH 5 

ŝ H 5 

. (8.39) 

When the HR picture is a high-quality original image, e f should be near zero. We 
test this using 1400 high-quality natural images and could fit it well using a GGD 
function:
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pe f
(
e f

) = 
1 

Z f 
exp 

⎡ 

⎣−
(IIe f − μ f

II

α f

)β f 
⎤ 

⎦ , (8.40) 

where Z f = β f 
2α f Γ(1/β f ) is a normalization factor, μ f is the center of the distribution, 

and α f and β f are the width and shape parameters, separately. As β f decreases, this 
density function becomes sharper at the center. 

Spatial Continuity Statistics 

This part studies the continuity-based statistical model in the spatial domain and 
relates it to the naturalness of images. Let f (i ), i ∈ {0, . . . ,  N − 1} be one row (or 
column) of pixels extracted from the image, where N is the number of pixels in 
the row. Calculating an absolute different signal is a simple way to check for signal 
continuity: 

g(i ) = |  f (i + 1) − f (i )|, 0 ≤ i ≤ N − 2. (8.41) 

However, the even and odd samples in f (i ) may exhibit different degrees of 
continuity, which may result in patterns observed in g(i ) computed from high-quality 
natural images. To quantify this, we compute 

es = 
1 

M 

M−1∑

i=0 

[g(2i ) − g(2i + 1)], (8.42) 

where M = N /2. This spatial continuity measure is calculated for each row and 
column in the image. Then all rows and columns are averaged to obtain a single 
overall spatial continuity measure for the whole image. The histogram can be fitted 
with the following GGD model: 

pes (es) = 
1 

Zs 
exp

⌈

−
( |es − μs | 

αs

)βs
⎤

, (8.43) 

where Zs is a normalization factor. 

QA Model 

According to the statistics, a high-quality HR natural picture obtains near-maximum 
values in both parameters with a high probability. The interpolated HR images may 
deviate from these statistics, resulting in lower readings. Assuming that the two 
probability models are independent, the normalized joint probability measure of 
naturalness is calculated by 

pn = 
1 

K 
pe f

(
e f

)
pes (es) . (8.44)
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It is straightforward to find that 

K = 1 

Z f Zs 
. (8.45) 

This probability-based metric is converted to a “surprisal”-based distortion mea-
sure using a well-known approach in information theory: 

Dn = −  log pn. (8.46) 

Then it can finally get 

Dn =
(IIe f − μ f

II

α f

)β f 

+
( |es − μs | 

αs

)βs 

≡ D f + Ds, (8.47) 

where Dn is a straightforward and elegant measure that does not involve any training 
with corrupted pictures (all parameters are generated using just high-quality natural 
images). But it does not consider the differences in visual discomfort to different types 
of distortions. Giving various weights to different attributes is a natural extension 
of this strategy. As a consequence, a weighted distortion measure is calculated as 
follows: 

Dw = (1 + w)D f + (1 − w)Ds, (8.48) 

where the relative importance of D f and Ds is determined by w. 

8.3 Comparison and Analysis of Algorithm Performance 

In this section, we introduce several state-of-the-art SR image QA methods. We focus 
on comparing and measuring the performance of the presented QA approaches in this 
chapter with these methods. The specific analysis will be illustrated in the following 
sections. It is worth mentioning that the analysis results show that the performance 
of these methods in this chapter perform quite well. 

8.3.1 Performance Comparison and Analysis 

In order to demonstrate the validity and superiority of the methods introduced in this 
chapter, we compare the proposed approaches with the state-of-the-art image QA 
methods. All methods are listed in Table 8.1. Among them, there are 17 FR methods, 
1 RR method, and 12 NR methods, respectively.
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Table 8.1 The proposed algorithms and modern developed QA models 

Category Abbreviation Full Name Refs. 

FR PSNR Peak signal-to-noise ratio [50] 

FR SSIM Structural similarity [27] 

FR MS-SSIM Structural similarity [39] 

FR IFC Information fidelity criterion [40] 

FR VIF Visual information fidelity [41] 

FR MAD Most apparent distortion [11] 

FR IW-SSIM Information weighted SSIM [39] 

FR FSIM Feature similarity [42] 

FR GSIM Gradient similarity index [25] 

FR IGM Internal generative mechanism [43] 

FR GMSD Gradient magnitude similarity deviation [7] 

FR SPSIM Superpixel-based similarity [30] 

FR NQM Noise Quality Measure [52] 

FR MAD Most apparent distortion [53] 

FR DASM Directional anisotropic structure 
measurement 

[54] 

FR SIS STD-based image QA method for SRIs [21] 

FR Yan et al. – [33] 

RR RRIQA-SR Reduced-reference quality assessment 
metric for image super-resolution 

[18] 

NR BRISQUE Blind/referenceless image spatial quality 
evaluator 

[44] 

NR NIQE Natural image quality evaluator [45] 

NR NFERM No-reference free energy-based robust 
metric 

[46] 

NR DIIVINE Distortion identification-based image 
verity and integrity evaluation 

[47] 

NR IL-NIQE Integrated-local NIQE [48] 

NR SISBLIM Six-step blind metric [49] 

NR BLIINDS-II Blind image integrity notator using DCT 
statistics 

[51] 

NR BIQI Blind image quality index [55] 

NR CORNIA Codebook representation for no-reference 
image assessment 

[56] 

NR DESIQUE Derivative statistics-based image quality 
evaluator 

[57] 

NR SSEQ Spatial-spectral entropy-based quality [58] 

NR Zhang et al. - [59]
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We employ four commonly used metrics, namely PLCC, SRCC, KRCC, and 
RMSE to compare the above-mentioned QA methods of SR images. The evaluation 
accuracy can be measured by PLCC and RMSE, while the monotonicity of the pre-
diction can be found by SRCC and KRCC. A higher value of PLCC, SRCC, and 
KRCC, and a lower value of RMSE represent the QA method with better perfor-
mance. A logistic function is utilized to become linear, and the objective assessment 
scores are nonlinear by PLCC, SRCC, KRCC, and RMSE. We compute the image 
QA scores using these four criteria by the mapping including 5 parameters as follows: 

f (x) = β1( 
1 

2 
− 1 

1 + expβ2(a−β3) 
+ β4x + β5), (8.49) 

where f (a) and a are the subjective and objective scores, separately. βi,i=1,2,3,4,5 rep-
resents the fitted parameter. It is apparent that the models introduced in this chapter 
have achieved encouraging results. We summarize the advantages of proposed mod-
els as follows. 

(1) It can be found from the comparative experiments performed on the QADS 
database that the SIS metric not only has the highest PLCC, SRCC, and KRCC, 
but also has the lowest RMSE, outperforming the compared image QA approaches. 
In addition, the textural or high-frequency similarity of the SIS metric has already 
achieved similar performance as IFC, which has the highest correlation with the 
perceptual scores in the context of SR evaluation. 

(2) The method proposed by Zhang et al. can achieve better consistency than other 
methods due to the effectiveness of integrating AdaBoost Decision Tree Regression 
and ridge regression for evaluating the visually perceived quality of SR images. 

(3) Among the 17 FR QA methods, the approach presented by Yan et al. achieves 
the highest SRCC, which denotes there is a high correlation between it and the 
HVS. Besides, the approach presented by Yan et al. is significantly faster than other 
methods in terms of the running time of QA methods of SR images. 

(4) The experiments carried out on the basis of the energy change and texture 
variation ingredients demonstrate that the visual distortion in high-frequency regions 
is more obvious than the overall degradation in HR images. Therefore, the RRIQA-
SR method that combines the two ingredients can obtain better performance in the 
quality prediction of HR images than other existing ones. And it is able to predict 
the visual perceptual quality of all SR images consistently with the subjective data. 

In general, the performance of SR image QA models introduced in this chapter 
is much better than the traditional models. Nevertheless, much effort is needed to 
develop efficient and accurate QA methods of SR images that are adapted to the 
complicated and dynamic environment.
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8.4 Conclusion 

More and more image SR algorithms have been designed recently to generate images 
with higher spatial resolution from LR images. In order to ensure high performance 
in subsequent image processing, image QA for SR images is required. This chapter 
introduces the QA methods of SR images based on deep learning and NSS, separately. 
Data-driven deep learning-based methods are mainly divided into two types, namely 
the learning cascaded regression-based methods and the specific loss function-based 
approaches. They have high accuracy, efficiency, and strong robustness in evaluating 
the SR image perceptual quality. The introduced NSS-based SR image QA methods 
depend on energy change and texture variation. They combine the statistical models 
in both frequency and spatial domains to produce the complete distortion measure of 
the HR image. Although the methods introduced in this chapter perform well, there 
still is an effort to be made to improve the effectiveness of these approaches. In the 
future, it is believed that through the joint efforts of researchers, better performing 
SR image QA methods can be proposed. 
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