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Abstract Kalman filter (KF) has gained wide adoption in system identification of 
engineering systems. It is a recursive estimation method under linear and Gaussian 
assumptions. In practice, a single model based on KF may not be able to capture the 
structural performance well for complex systems. To address this problem, KF esti-
mation using multiple models is proposed. This method employs KF with different 
transition and measurement matrices, each of which can be assigned (if necessary) 
with different initial states, process and measurement noises to describe the system. 
The outputs of these models are then integrated to obtain the overall estimates through 
a weighted combination, where the weights are determined using the likelihood func-
tion. A numerical model is employed to illustrate the procedure and evaluate the 
accuracy of the proposed KF estimation with multiple models. The estimated results 
indicate that the proposed method is robust and reliable, with potential for system 
identification under a wider variety of situations. 

Keywords System identification · Kalman filter · Multiple model estimation ·
Likelihood function 

1 Introduction 

Structural health monitoring (SHM) has been extensively used to evaluate the perfor-
mance and health condition of civil infrastructure [1]. One approach in SHM focuses 
on the system identification from measured responses. The methods employed in 
system identification can be classified under frequency-domain or time-domain. 
Frequency-domain methods usually obtain the modal parameters of frequency, 
damping ratio and mode shape through the Fourier transform (FT) of the responses. 
The identified modal parameters can be further used to update the finite element 
model [2] and diagnose for structural damage [3]. To avoid the energy leakage in FT, 
time-domain methods are developed as alternatives. Time-domain methods not only
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can estimate the modal parameters from the time-history data, they can also reflect the 
time-variation of the physical parameters. Among the algorithms developed within 
time-domain methods, the Kalman filter (KF) [4] is one of the most effective estima-
tors for linear dynamic systems, which has been employed for parameter estimation, 
model updating and damage identification. KF techniques have been extended for 
systems that are nonlinear and/or non-Gaussian. For example, the extended KF and 
unscented KF have been proposed for nonlinear systems, and the Particle filter is 
applicable for non-Gaussian cases. Although these techniques under the family of 
KF have enriched the adoption of system identification in engineering, the perfor-
mance of state estimation may still be difficult and inaccurate for complex systems, 
such as the coupled translational and torsional responses in asymmetric structures, 
some of which can be difficult to uncouple. It is envisaged that for such systems, a 
single KF model may not be sufficient. Hence, the use of multiple models is explored. 

The multiple model estimation (MME) technique employs multiple KFs, each 
of which represents peculiar patterns of dynamics, to better characterize the system. 
This concept was originally proposed by Blom and Shalom [5] for linear system with 
Markovian coefficients. Subsequently, the challenge of designing the appropriate 
set of models and how these sets can be integrated have been pursued by many 
researchers with the aim of improving the performance and robustness of the MME 
approach. To investigate the influence of the number and type of models in the set 
on the estimation results, the model classes based on extended KF, unscented KF, 
and Particle filter have been pursued and compared [6]. The results indicate that 
there is an appropriate number of models for optimal performance. To combine the 
multiple outputs from the models, Li et al. [7] put forward an exponential decay term 
to determine the weights of the filters. Kottath et al. [8] assumed that all the models 
had equal weights initially and updated the model weights based on the measured 
data, in which those with low weight factors were eliminated. 

The afore-mentioned studies focused on the fields of maneuvering target, control 
system in fault tolerance, and radar system, and there seems to be no publicly 
published works in the field of structural engineering. In this work, the MME method 
is developed for coupled structures. The algorithm is extended to jointly estimate 
the model parameters and state vector from the measured response. A numerical 
model with torsional and translational coupled responses is employed to illustrate 
the estimation process. 

2 Framework of Multiple Model Estimation (MME) 

In Sect. 2.1, the Kalman filter (KF) for optimal state estimation of a linear input– 
output Gaussian system in time-domain is briefly introduced. Due to the presence of 
uncertainties, the estimation is characterized probabilistically, which for Gaussian 
processes, the mean and covariance of the estimates are obtained. Section 2.2 intro-
duces the concept of decomposing a system into multiple KF models and how they 
can be combined using weights which changes with each time step. The weights at
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each time step are derived based on the likelihood of the measured data and the prior 
probabilities associated with the models. In Sect. 2.3, the MME technique is extended 
to jointly estimate the state vector and model parameters. The detailed procedure of 
MME for parameter estimation is then described. 

2.1 Brief Review of Kalman Filter 

A linear dynamic system can be expressed as a second-order governing differential 
equation, that is, 

M ẍk + C ẋk + Kxk = f k . (1) 

in which M, C and K are matrices of mass, damping and stiffness, respectively; xk , 
ẋk and ẍk are vectors of nodal displacement, velocity and acceleration responses at 
time step k; and f k is the external dynamic force vector. 

Let the state vector xk = (xk, ẋk)T . Equation (1) can be rewritten in the state 
space form as 

ẋk+1 = Axk + B f k . (2) 

in which the transition matrix A is given by 

A = 
[ 
0 1  
−M−1 K M−1 C 

] 
. (3) 

where I is the identity matrix, and the external force matrix B is given by 

B = 
[ 

0 
M−1 

] 
. (4) 

The measurement equation of the response (output), denoted by yk =[
xk, ẋk, ẍk 

]T 
, is formulated as 

yk = Hxk . (5) 

in which the measurement matrix H is given by 

H = 

⎡ 

⎣ I 0 
0 I 
−M−1 K M−1 C 

⎤ 

⎦. (6)
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For linear systems with process and measurement noise, each following the Gaus-
sian distribution with zero mean and respective covariance denoted by Q and R, the  
equations to predict and update the mean state vector and covariance are as follows: 

x̃k+1|k = Ax̂k|k + Buk . (7) 

P̃k+1|k = A P̂k|k AT + Q. (8) 

K k+1 = P̃k+1|k HT
(
H P̃k+1|k HT + R

)−1 
. (9) 

x̂k+1|k +1 = x̃k+1|k + K k+1
(
yk+1 − H x̃k+1|k

)
. (10) 

P̂k+1|k +1 = (I − K k+1 H) P̃k+1|k . (11) 

where x̂k|k and x̂k+1|k +1 are the posterior state vector at time step k and k + 1 
respectively; P̂k|k and P̂k+1|k +1 are the posterior estimate covariance at time step k 
and k +1 respectively; x̃k+1|k and P̃k+1|k are the prior state vector and prior estimate 
covariance respectively at time step (k + 1); K k+1 and yk+1 are the Kalman gain and 
measurement response respectively at time step (k + 1); uk is the external excitation 
at time step k. 

The KF uses an innovation term (term in brackets in Eq. (10)) to incorporate the 
measured data and provide optimal estimates (given by Eqs. (10) and (11)) of the 
system states using the Kalman gain K k+1 in Eq. (9). In MME, the sub-models are 
linear systems and these equations are used as part of the solution procedure. 

2.2 Multiple Model Estimation 

Conceptually, KF, being a recursive estimator under both linear and Gaussian condi-
tions, admits the use of the principle of linear superposition. Hence, a complex linear 
and Gaussian system may be decomposed into a set of simpler KF models, each of 
which can be first solved as described in Sect. 2.1. The output from each individual 
model can then be integrated to provide the overall system output. The quality of 
the output hinges strongly on the combination rule which is dependent on how the 
system is decomposed. 

The simplest method of weighted average is adopted for each time step, with the 
weights (where their sum is 1) updated at each time step. The updating is done using 
the likelihood function of the innovations (which are the deviations of the prediction 
from the measured responses) at the current time step (k + 1) through the equation
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μ j k+1 =
(
μ j kL j 

k+1

)
∑m 

j=1

(
μ j kL j 

k+1

) . (12) 

where μ j k and μ j k+1 denote the weights for model j at time steps k and k + 1, m is 
the number of models and the likelihood function is given by 

L j 
k+1 =

1√
2π · det(S) 

exp 

[ 
− 
1 

2 
rT S−1 r 

] 
. (13) 

in which S = H P̃k+1|k HT + R is the covariance matrix of the innovations and 
r = yk+1 − H x̃k+1|k is the innovation or residual vector associated with model 
j. An initial (time step k = 0) set of weights is assumed to be known, denoted by 

μ0 =
[
μa 
0, μ

b 
0, · · ·  , μ  j 0, · · ·  , μm 

0

]
, with the weight vector at time step k + 1 denoted 

by μk+1 =
[
μa 
k+1, μ

b 
k+1, · · ·  μ j k+1, · · ·  , μm 

k+1

]
. 

The system response statistics x̂S 
k+1|k+1 and P̂ 

S 
k+1|k+1 at time step (k + 1) are 

obtained by integrating the response statistics x̂ j k+1|k +1 and P̂ 
j 
k+1|k+1 at time step 

(k + 1) using the weight μ j k+1 of each model j to yield 

x̂S 
k+1|k+1 =

∑m 

j=1 
μ j k+1 x̂ 

j 
k+1|k+1 . (14) 

P̂ 
S 
k+1|k+1 =

∑m 

j=1 
μ j k+1 

[ 
P̂ 
j 
k+1|k+1 +

(
x̂ j k+1|k +1 − x̂S k+1|k+1

)(
x̂ j k+1|k+1 − x̂S k+1|k+1

)T] 
. 

(15) 

2.3 Parameter Estimation Using Multiple Model Estimation 

Besides predicting response (state vector), one may be interested in estimating some 
unknown parameters of the system concurrently. The formulation remains valid for 
this purpose by regarding the unknown system parameters as additional states that 
are augmented to the state vector, that is, Xk = [xk, θ k]. If the model parameters 
are time-invariant, the corresponding first differential state is Ẋk = 

[ 
Ẋk, 0

]
. The  

augmented state vector expands the state-space model to 

Ẋk+1 = Aaug Xk + Baug f k . (16) 

Y k = Haug Xk . (17)
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in which the new transition matrix Aaug , external force matrix Baug and output matrix 
Haug are augmented as 

Aaug = 
[ 
0 I 0 
−(M)−1 K (M)−1 C 0 

] 
. (18) 

Baug = 

⎡ 

⎣ 0 
(M)−1 

0 

⎤ 

⎦. (19) 

Haug = 
[−(M)−1 K (M)−1 C 0

]
. (20) 

Adding the unknown parameters to the state-space representation enlarges the 
state vector without changing the system property, which means the algorithm of KF 
is still valid for the augmented state vector estimation, including for MME systems. 
The solution process of MME is summarized as follows: 

1. Build a set of sub-models with weights μ j , j = a, b, · · ·  , m, to represent the 
system of interest 

Ẋ 
j 
k+1 = Aaug, j X j k + Baug, j f k + v j k , v j k ∼ N (

0, Q j
)
, 

Y j k = Haug, j X j k + w j k , w j k ∼ N (
0, R j

)
. 

2. Initial values are given by. 

a. each filter weight μ j 0 = 1/m, 

b. MME state estimate X̂ 
S 
0 , 

c. MME state covariance P̂ 
S 
0 , 

d. each filter process noise Q j , 
e. each filter measurement noise R j . 

3. For each model: 

a. Propagate the next state (prediction) 

X̃ 
j 
k+1|k = Aaug, j X̂ 

S 
k|k + Baug, j uk, 

P̃ 
j 
k+1|k = Aaug, j P̂ 

S 
k|k

(
Aaug, j)T + Q j . 

b. Calculate the Kalman gain 

K j k+1 = P̃ j k+1|k
(
Haug, j)T(Haug, j P̃ 

j 
k+1|k

(
Haug, j)T + R j

)−1 
,
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c. Update the prediction 

X̂ 
j 
k+1|k+1 = X̃ j k+1|k + K j k+1

(
yk+1 − Haug, j X̃ 

j 
k+1|k

)
, 

P̂ 
j 
k+1|k+1 =

(
I − K j k+1 H

aug, j
)
P̃ 

j 
k+1|k . 

d. Calculate the likelihood 

L j 
k+1 =

1√
2π · det(S) 

exp 

[ 
− 
1 

2

(
r j

)T(
S j

)−1(
r j

)] 
. 

e. Update the weights 

μ j k+1 = μ j kL j 
k+1. 

Repeat steps (a − e) for all the KF models. 

4. Normalize the weights 

μ̂ j k+1 =
μ j k+1∑m 

j=1

(
μ j k+1

) . 

5. Obtain the estimate results 

X̂ 
S 
k+1|k+1 =

∑m 

j=1 
μ̂ j k+1 X̂ 

j 
k+1|k+1 , 

P̂ 
S 
k+1|k+1 =

∑m 

j=1 
μ̂ j k+1 

[ 
P̂ 

j 
k+1|k+1 +

(
X̂ 

j 
k+1|k +1 − X̂ S k+1|k+1

)(
X̂ 

j 
k+1|k+1 − X̂ S k+1|k+1

)T 
] 
. 

6. Repeat steps (3–5) until all the measurements are depleted. 

3 Numerical Example 

3.1 Case Study 

To demonstrate the effectiveness of MME algorithm, a two-floor building under 
bidirectional earthquake excitation is presented in Fig. 1a. The concentrated mass of 
floor 1 and 2 are 600× 1e3 kg and 500× 1e3 kg, respectively. The polar moments of 
inertia are J t = [J1, J2] = [7.2, 5.6] × 1e7

(
kg · m2

)
. The lateral stiffness of floors 

1 and 2 in x and y directions, respectively, are kx = [kx1, kx2] = [0.55, 0.43] × 
1e9(kN/m), and ky = 

[
ky1, ky2 

] = [0.48, 0.39] × 1e9(kN/m). It is assumed that  
Rayleigh damping is appropriate and that the centres of mass are located at the 
geometric centres of floors 1 and 2, while the resultant centre of stiffness of the
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Fig. 1 Geometric information of the model, a diagram of 3D model, b plane of floors 1 and 2 (unit: 
m) 

structure in plan is offset at 0.1 m from the geometric centre in both the x and y 
directions (see Fig. 1b). Because the centres of mass and stiffness do not coincide, 
the equation of motions will lead to coupling in the horizontal and torsional responses. 
The stiffness and mass matrices for a 3-DOFs system (x, y for translational and t for 
rotational DOFs) are modelled as 

Kw = 

⎡ 

⎣ 
K xx  0 K xt  
0 K yy  K yt 
K t x  K t y  K t t  

⎤ 

⎦, Mw = 

⎡ 

⎣ Mxx  0 0  
0 M yy  0 
0 0 J t t  

⎤ 

⎦. (21) 

in which K xx  and K yy  are translational stiffness in x and y directions; K t t  is the 
torsional stiffness about an axis perpendicular to the x–y plane; K xt  and K yt are 
cross translational-torsional terms; Mxx  and M yy  are translational mass in the x and 
y directions, respectively; J t t  is polar moment of inertia. The damping matrix is 
formed using Cw = αMw + β Kw, whose coefficients α and β are determined by 

α = 
2ω1ω2 

ω1 + ω2 
ξ,  β  = 2ξ 

ω1 + ω2 
, (22) 

here ω1 and ω2 are the first two natural frequencies; ξ is the damping ratio set at 3%. 
Two horizontal ground acceleration records from the 1940 El Centro earthquake 

are selected as inputs for the base excitation, whose peak ground accelerations in 
x and y directions are scaled to 0.2 and 0.15 m/s2. The time histories of structural 
response are calculated by the Runge–Kutta method. The accelerations in the x 
and y directions of each floor are measured at points Ax and Ay (see Fig. 1b), 
respectively. To simulate measurement noise, an artificial noise of level NL = 30% 
is superimposed on the exact response as 

aN = aE + NL · NS · σE . (23)
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Fig. 2 Noisy acceleration responses of floor 2 in x and y directions 

where aN and aE are the noisy and exact accelerations; σE is the standard deviation 
of the exact response; NL denotes the noise level and NS denotes the standard normal 
noise generated using the randn function in MATLAB. Figure 2 displays the noisy 
responses of floor 2 in both the x and y directions. 

3.2 Identification Results 

The goal is to estimate unknown system parameters from the noisy acceleration 
responses. Two unknown parameters θ = 

[
kx2, ky1 

]T 
, namely the x-direction stiff-

ness in floor 2 and the y-direction stiffness in floor 1, are to be identified, in which 
the superscript T denotes matrix transpose. Hence, the augmented state vector of 
this system is written as X S = 

[
xx, xy, xt, ẋx , ẋy , ẋt , kx2, ky1 

]T 
, in which xx and 

xy are horizontal displacements in the x and y directions, and xt is the torsional 
displacement along the z direction; ẋx and ẋy are horizontal velocities in the x and 
y directions, and ẋt is the torsional velocity along the z direction. This system is 
decomposed into two linear sub-models. The first model (model a) includes all the 
structural responses related to the x direction, whose state vector is expressed as 
Xa = 

[
xx, xt, ẋx , ẋt , kx2, ky1 

]T = Ea X S , where the state vector position matrix 
Ea = [1, 0, 1, 1, 0, 1, 1, 1]. Since the augmented state vector Xa contains 

unknown parameters, the state space equation is formulated as 

Ẋ 
a 
k = Aa Xa 

k + Ba f k + va 
k . (24)
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in which va 
k is the process noise (accounting for model error) that is assumed to have 

zero mean and covariance matrix Qa 
k ; and the transition matrix Aa in Eq. (24) is  

augmented by 

Aa = 
[ 
0 I 0 
−(Mx)

−1 K x (Mx)
−1 Cx 0 

] 
. (25) 

here the matrices of stiffness K x and mass Mx are given by 

K x = 
[ 
K xx  K xt  
K t x  K t t  

] 
. (26) 

M x = 
[ 
Mxx  0 
0 J t t  

] 
. (27) 

The external force matrix Ba in Eq. (24) is extended to 

Ba = 

⎡ 

⎣ 0 
(Mx)

−1 

0 

⎤ 

⎦. (28) 

When only the horizontal acceleration data in the x and y directions, denoted by 
ẍx and ẍy , is recorded Y = 

[
ẍax , ẍay

]T 
. The measurement equation is formulated 

as 

Y a 
k = Ha Xa 

k + wa 
k . (29) 

in which Y a 
k = Fa Y , here the measurement position matrix Fa = [1, 0]; wa 

k is the 
measurement noise, assumed to have zero mean and covariance matrix Ra 

k ; H
a is 

given by 

Ha = 
[−(Mx)

−1 K x(Mx)
−1 Cx0

]
. (30)
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In the second model (model b), all the structural responses related to the y direction 
are considered, whose state vector is given by Xb = 

[
xy, xt, ẋy , ẋt , kx2, ky1 

]T = 
Eb X S , where the state vector position matrix Eb = [0, 1, 1, 0, 1, 1, 1, 1]. Since the 
models a and b are linear systems, the form of state equation (Eq. 24) is the  same,  
that is, 

Ẋ 
b 
k = Ab Xb 

k + Bb f k + vb 
k . (31) 

where the values of the process noise vb 
k can be different from the values of va 

k ; and 
the augmented transition matrix Ab is given by 

Ab =
[
0 I 0 

−(
M y

)−1 
K y

(
M y

)−1 
C y 0

]
. (32) 

where the matrices of stiffness K y and mass M y are given by 

K y = 
[
K yy  K yt 
K t y  K t t  

] 
. (33) 

M y = 
[ 
M yy  0 
0 J t t  

] 
. (34) 

The corresponding measurement equation is expressed as 

Y b 
k = Hb Xb 

k + wb 
k . (35) 

in which Y b 
k = Fb Y , where the measurement position matrix Fb = [0, 1]; wb 

k is the 
measurement noise that can be different with wa 

k ; H
b is given by 

Hb =
[
−(

M y
)−1 

K y
(
M y

)−1 
C y0

]
. (36) 

The initial weights of each model are set as μ̂0 = [0.5, 0.5]T . The initial state 
estimate X̂ 

S 
0 =

[
0, θ̂ 0

]T 
, where θ̂ 0 =

(
1.2∗kExact x2 , 0.85∗kExact y1

)
is an initial guess 

of exact values of the parameters (alternatively, can use the nominal values of the 
parameters). The process noise of the two filters are Qa = Qb = (1e−8) * I10×10, 
in which I10×10 is a 10 × 10 identity diagonal matrix. The measurement noise of 
the two filters are Ra = Rb = (1e−8) * I8×8. According to the procedure of MME 
described in Sect. 2.3, the estimated accelerations are obtained presented in Fig. 3 
(only the first 15 s shown). The estimated accelerations capture exact responses well. 
Figure 4 shows that the estimated time-history parameters converge to exact values 
within 3 s.
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Fig. 3 Comparison of accelerations between exact and estimated results 

3.3 Effect of Response Noise 

To investigate the robustness of the MME algorithm, four cases with different noise 
levels are added to the exact acceleration responses, namely, cases A: NL = 20%; B: 
NL = 30%; C: NL = 40%; and D: NL = 50%. These noisy responses are used as the 
measured data from which the accuracy in determining the unknown system param-
eters are inferred. Since the system parameters are assumed to be time-invariant, 
the determination of the unknown parameters is affected by the process noise (see 
Eqs. 24 and 31), Qa (and Qb ) = (1e−8) * I10×10. The process covariance is kept as 
the same for all the four cases, while the measurement covariance may change due 
to the different levels of measurement noise. For cases A and B, the measurement 
covariance are assumed to be Ra (and Rb ) = (1e−8) * I8×8, and Ra (and Rb ) = 
(1e−7) * I8×8 for cases C and D. The estimated acceleration responses for the four 
cases are compared in Fig. 5. All the four cases can track the exact accelerations 
well. 

To further quantify the estimated time-history responses, the relative root mean 
square error (RRMSE) is employed, defined as 

RRMSE =

√
1 
N

∑N 
k=1

(
Rk − R̂k

)2

√
1 
N

∑N 
k=1(Rk)

2 
∗ 100%. (37) 

in which Rk and R̂k are the exact and estimated structural response, respectively; N 
is the total number of time steps used in the structural responses. Table 1 reports the
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Fig. 4 Comparison of estimated parameters with exact values, a time history of kx2, b time history 
of ky1

RRMSE of the accelerations between the estimated and exact results. The RRMSE 
of all the four cases are less than 9%. As the noise level increases from cases A to 
D, the values of RRMSE increase as expected. 
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Fig. 5 Comparison of time-history accelerations between exact and estimated results for four cases 

Table 1 RRMSE (%) of accelerations between exact and estimated results for four cases 

Case Case A Case B Case C Case D 

Floor 1 in x 0.78 1.85 4.29 6.18 

Floor 2 in x 0.97 2.85 5.70 8.24 

Floor 1 in y 0.90 2.12 5.06 6.80 

Floor 2 in y 0.70 2.82 6.12 8.85 

Figure 6 presents the time-history of the parameters estimated by the four cases. 
All the estimated parameters fluctuate initially but gradually converge to the exact 
values within 3 s. The temporal average over the last five seconds are taken as the final 
estimated values, as reported in Table 2. The relative error between the estimated and 
exact parameters are within 1%. Although this study uses a simple case to illustrate 
the procedure of MME, the estimated results indicate that the proposed method seems 
robust and reliable, with potential for system identification under a wider variety of 
situations.
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Fig. 6 Comparison of estimated parameters with exact values for four cases, a time history of kx2, 
b time history of ky1 

Table 2 Relative error (RE) of parameters between exact and estimated results for four cases 

Parameters Case Case A Case B Case C Case D 

Exact Estimate RE 
(%) 

Estimate RE 
(%) 

Estimate RE 
(%) 

Estimate RE 
(%) 

kx2(kN/m) 4.3e8 4.295e8 0.11 4.294e8 0.15 4.327e8 0.63 4.299e8 0.03 

ky1(kN/m 4.8e8 4.798e8 0.04 4.799e8 0.03 4.825e8 0.52 4.788e8 0.25 

4 Concluding Remarks 

This paper introduces the multiple model estimation (MME) method to jointly esti-
mate the unknown parameters and the state vector for complex structures. This 
method constructs a bank of sub-models, each of which uses different state equa-
tions to represent the different characteristics of the dynamical system. The multiple 
outputs are fused to give an overall estimate through a linear combination of the
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responses obtained from the sub-models using time-variant weights. These weights 
are updated probabilistically in time using the likelihood value of the innovations (that 
is, deviation of prediction from measurement values). Numerical simulated struc-
tural responses from a three-dimensional translation and torsion coupled two-storey 
building are used to illustrate the performance of the proposed MME algorithm. The 
estimated response and system parameters agree well with the exact responses and 
values, indicating that the MME algorithm has potential for applications in complex 
structures. The effect of measurement noise (up to 50%) on the estimated results is 
also investigated. Nevertheless, more work is currently ongoing before confidence 
can be gained for application to real complex systems in practice. 
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