Chapter 9 Comments on Tetrahedron-Type Equation for Non-crystallographic Coxeter Groups

Abstract This short chapter is a supplement recalling some basic facts on noncrystallographic finite Coxeter groups and raising questions concerning a possible tetrahedron-type equation.

9.1 Finite Coxeter Groups

The list of finite Coxeter groups^{[1](#page-0-0)} is given by $[59]$:

$$
A_n (n \ge 1), B_n (n \ge 2), D_n (n \ge 4), E_6, E_7, E_8, F_4, G_2,H_2, H_3, H_4, I_2(m) (m \ge 3).
$$
\n(9.1)

The indices are called ranks. The alphabetically last one $I_2(m)$ is the dihedral group which is the order 2*m* group of symmetry of a regular *m*-gon consisting of orthogonal transformations. It has overlap with the other rank 2 members for $m = 3, 4, 6$. See Fig. [9.2.](#page-1-0) Rank *n* Coxeter groups have a presentation in terms of generators s_1, \ldots, s_n obeying the relations $(s_i s_j)^{m_{ij}} = 1$ with $m_{ii} = 1$ and $m_{ii} = m_{ii} \in \{2, 3, ...\} \cup \{\infty\}$ for $i \neq j$, where $m_{ij} = \infty$ is to be understood as no relation. The data $\{m_{ij}\}$ is customarily encoded in the Coxeter graph. Its vertex set is $\{1, 2, \ldots, n\}$, and the two vertices *i* and *j* are connected by an unlabeled edge if $m_{ij} = 3$ and by an edge labeled with m_{ij} if $4 \le m_{ij} < \infty$. The case $\forall m_{ij} \in \{2, 3, 4, 6\}$ is called crystallographic, and has a realization as the Weyl group of the corresponding Lie algebras. Thus those on the second line in (9.1) (9.1) (9.1) , except $m = 3, 4, 6$, are the non-crystallographic finite Coxeter groups (Fig. [9.1](#page-1-1)).

¹ In this chapter, symbols like A_n are used to mean Coxeter groups instead of Lie algebras, unlike elsewhere in the book.

[©] The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 A. Kuniba, *Quantum Groups in Three-Dimensional Integrability*, Theoretical and Mathematical Physics, https://doi.org/10.1007/978-981-19-3262-5_9

Fig. [9.1](#page-0-1) Coxeter graphs of (9.1). Unlike the Dynkin diagrams, there is no arrow and C_n has been merged into *Bn*

The dihedral groups $I_2(m)$ and H_2 , H_3 , H_4 admit various embeddings as shown in Fig. [9.2.](#page-1-0)

The embedding of type $X_n \hookrightarrow X_{n+1}$ just means that X_n is a parabolic subgroup of X_{n+1} . Denoting the generators in the image by t_i 's, the other cases are given as follows [134]:

$$
I_2(m) \hookrightarrow A_{m-1} : s_1 \mapsto \prod_{1 \le j \le m-1 \atop j \text{ odd}} t_j, \quad s_2 \mapsto \prod_{1 \le j \le m-1 \atop j \text{ even}} t_j,
$$
\n
$$
(9.2)
$$

$$
G_2 \hookrightarrow D_4: s_1 \mapsto t_1t_3t_4, \quad s_2 \mapsto t_2,\tag{9.3}
$$

$$
H_3 \hookrightarrow D_6: s_1 \mapsto t_3t_5, \qquad s_2 \mapsto t_2t_4, \quad s_3 \mapsto t_1t_6,\tag{9.4}
$$

$$
H_4 \hookrightarrow E_8: s_1 \mapsto t_4t_8, \qquad s_2 \mapsto t_3t_5, \quad s_3 \mapsto t_2t_6, \quad s_4 \mapsto t_1t_7. \tag{9.5}
$$

The embedding $B_2 \hookrightarrow A_3$ is a folding by the order 2 diagram automorphism, and has the generalization to $B_n \hookrightarrow A_{2n-1}$ $(n \ge 2)$ as $s_i \mapsto t_i t_{2n-i}$ $(1 \le i < n)$ and $s_n \mapsto t_n$.

9.2 Tetrahedron-Type Equation for the Coxeter Group *H***³**

For any element w of a Coxeter group, one can consider a reduced expression (rex) graph. The vertices are reduced expressions of w and the two are connected by an edge if and only if they are transformed by a single application of the Coxeter relation $(s_i s_j)^{m_{ij}} = 1$ ($i \neq j$). According to [126, Theorem 2.17], any non-trivial loop in a rex graph is generated from the loops in the rex graph of the longest element in the parabolic subgroups of rank 3. See also [44, Sect. 1.4.3]. In this sense, rank 3 cases are essential. In fact, we have seen that the A_3 and B_3 cases led to the tetrahedron and the 3D reflection equations^{[2](#page-2-0)} in earlier chapters, respectively. The remaining case is H_3 , which we shall consider in what follows.

The Coxeter group H_3 is known as the symmetry of the icosahedron or equivalently the dual dodecahedron [59]. The relations of the generators s_1 , s_2 , s_3 read as $s_1^2 =$ $s_2^2 = s_3^2 = 1$ and

$$
s_1 s_3 = s_3 s_1, \quad s_2 s_3 s_2 = s_3 s_2 s_3, \quad s_1 s_2 s_1 s_2 s_1 = s_2 s_1 s_2 s_1 s_2. \tag{9.6}
$$

Unlike the case of crystallographic Coxeter groups, the approach by a quantized coordinate ring is not available. However, one can formulate a compatibility equation formally by an argument similar to those for the crystallographic cases. We attach operators to the transformations in ([9.6](#page-2-1)), denoted by only indices, as follows:

$$
P = P^{-1} : 13 \to 31, \ 31 \to 13,\tag{9.7}
$$

$$
\Phi: 232 \to 323, \quad \Phi_{ijk} = R_{ijk} P_{ik}, \tag{9.8}
$$

$$
\Omega: 21212 \to 12121, \quad \Omega_{ijklm} = Y_{ijklm} P_{im} P_{jl}, \tag{9.9}
$$

where, as before, the lower indices i , j , k , \ldots of the operators specify the components that they act on non-trivially. The operators Ω and *Y* are the characteristic ones which are expected to come from *H*2.

A reduced expression of the longest element of H_3 is

$$
s_1 s_2 s_1 s_2 s_1 s_3 s_2 s_1 s_2 s_1 s_3 s_2 s_1 s_2 s_3,
$$
\n
$$
(9.10)
$$

which has the length 15. Now the process analogous to (3.93) , (5.106) and (7.16) reads as

² We have actually encountered a fine difference between B_3 and C_3 versions originating in the relevant quantized coordinate rings.

121213212132123
$$
P_{5,6}
$$

\n121231212132123 $Q_{6,7,8,9,10}^{-1}$
\n121232121232123 $\Phi_{4,5,6}\Phi_{10,11,12}$
\n121323121323123 $P_{3,4}P_{6,7}P_{9,10}P_{12,13}$
\n123121323121323 $\Phi_{7,8,9}^{-1}\Phi_{13,14,15}^{-1}$
\n123121232121232 $Q_{9,10,11,12,13}$
\n1231212312121232 $P_{8,9}P_{13,14}$
\n123121231212312 $P_{8,9}P_{13,14}$
\n123212123212312 $\Phi_{2,3,4}\Phi_{8,9,10}$
\n132312132312312 $P_{4,5}P_{7,8}P_{10,11}$
\n132132312132312 $P_{12}\Phi_{567}^{-1}\Phi_{11,12,13}^{-1}$
\n312123212123212 $\Phi_{6,7}P_{11,12}$
\n3121231212123212 $\Phi_{6,7}P_{11,12}$
\n3121231212121212 $P_{6,7}P_{11,12}$
\n312123121231212 $\Phi_{6,7,8}$
\n321212321231212 $\Phi_{6,7,8}$
\n321213231231212 $\Phi_{6,7,8}$
\n32121323121212 $\Phi_{6,7,8}$
\n321231213231212 $\Phi_{1,11,12,13,14,15}$
\n32123121231212121

It reverses the initial reduced word. There is another route achieving the reverse ordering which is related to (9.11) (9.11) (9.11) , similarly to (7.17) and (7.18) . Equating the two ways, substituting (9.7) , (9.9) (9.9) (9.9) and assuming that $P_{i,j}$ just exchanges the indices as $P_{4,7}Y_{1,3,4,9} = Y_{1,3,7,9}P_{4,7}$ etc., we get the *H*₃ analogue of the tetrahedron equation:

$$
Y_{11,12,13,14,15}R_{15,10,9}^{-1}R_{5,7,15}Y_{15,6,4,3,2}^{-1}Y_{2,5,8,10,14}R_{14,7,3}^{-1}R_{13,9,2}^{-1}R_{1,6,14}
$$

\n
$$
\times R_{3,8,13}Y_{13,10,7,4,1}^{-1}Y_{1,3,5,9,12}R_{12,8,4}^{-1}R_{11,2,1}^{-1}R_{6,10,12}R_{4,5,11}Y_{11,9,8,7,6}^{-1}
$$

\n
$$
= Y_{6,7,8,9,11}R_{11,5,4}^{-1}R_{12,10,6}^{-1}R_{1,2,11}R_{4,8,12}Y_{12,9,5,3,1}^{-1}Y_{1,4,7,10,13}R_{13,8,3}^{-1}
$$

\n
$$
\times R_{14,6,1}^{-1}R_{2,9,13}^{-1}R_{3,7,14}Y_{14,10,8,5,2}^{-1}Y_{2,3,4,6,15}R_{15,7,5}^{-1}R_{9,10,15}Y_{15,14,13,12,11}^{-1}.
$$

\n(9.12)

There are 6 *Y*^{± 1}'s and 10 *R*^{± 1}'s on each side. If $Y_{ijklm}^{-1} = Y_{ijklm} = Y_{mlkji}$ and $R_{ijk}^{-1} = Y_{ijk}$ $R_{ijk} = R_{kji}$ are valid, the above equation reduces to

$$
Y_{11,12,13,14,15}R_{9,10,15}R_{5,7,15}Y_{2,3,4,6,15}Y_{2,5,8,10,14}R_{3,7,14}R_{2,9,13}R_{1,6,14}
$$

\n
$$
\times R_{3,8,13}Y_{1,4,7,10,13}Y_{1,3,5,9,12}R_{4,8,12}R_{1,2,11}R_{6,10,12}R_{4,5,11}Y_{6,7,8,9,11}
$$
 (9.13)
\n= product in reverse order.

A diagrammatic representation of the reduced version (9.13) (9.13) (9.13) of the H_3 compatibility equation is available in [44, Eq. (4.9)].

9.3 Discussion on the Quintic Coxeter Relation

The operator *Y* has been introduced formally in [\(9.9\)](#page-2-3) in association with the quintic Coxeter relation. It is natural to seek it in the parabolic subgroup $H_2 \subset H_3$. In this section, we study a composition of the birational 3D *R* (Sect. 3.6.2) corresponding to the transformation of $s_1 s_2 s_1 s_2 s_1$ into $s_2 s_1 s_2 s_1 s_2$ in H_2 under the embedding $H_2 \hookrightarrow A_4$.

The embedding is the $m = 5$ case of [\(9.2\)](#page-1-2), which reads as $s_1 \mapsto t_1t_3$, $s_2 \mapsto t_2t_4$. One way to realize $s_1 s_2 s_1 s_2 s_1 = s_2 s_1 s_2 s_1 s_2$ in the image is the following transformation of the reduced expression of the longest element of *A*4:

As before, we have assigned an operator to each step, where P_{ij} is the transposition and $\Phi_{ijk} = R_{ijk} P_{ik}$ with $R_{ijk} = R_{ijk}^{\lambda}$ being the λ -deformed biraitonal [3](#page-5-0)D *R* (3.159).³ The composition of the operators in ([9.14\)](#page-4-0) is rearranged as $\tilde{Y}\sigma$, where σ is a product of P_i *s* giving the reverse ordering permutation in \mathfrak{S}_{10} , and \tilde{Y} has the form

$$
\bar{Y} = R_{2,4,6} R_{2,5,8} R_{2,7,9} R_{3,8,9} R_{3,5,7} R_{1,6,9} R_{1,4,7} R_{1,3,10} R_{4,5,10} R_{6,8,10}.
$$
(9.15)

This is a totally positive involutive rational map of 10 variables (x_1, \ldots, x_{10}) . Set $(x'_1, \ldots, x'_{10}) = Y((x_1, \ldots, x_{10}))$. Then examples of simplest components are

$$
x'_{2} = \frac{x_{2}x_{4}x_{5}x_{7}}{x_{2}x_{4}x_{5} + x_{2}x_{4}x_{9} + x_{2}x_{8}x_{9} + x_{6}x_{8}x_{9} + \lambda x_{2}x_{4}x_{9}(x_{5}x_{7} + x_{5}x_{8} + x_{6}x_{8})},
$$
\n(9.16)
\n
$$
x'_{10} = x'_{2}|_{x_{1} \leftrightarrow x_{9}, x_{2} \leftrightarrow x_{10}, x_{3} \leftrightarrow x_{7}, x_{4} \leftrightarrow x_{8}}.
$$

One can directly check:

Proposition 9.1 *The map* \tilde{Y} *preserves the following:*

*x*2*x*4*x*5*x*7, *x*3*x*5*x*8*x*10, *x*1*x*3*x*4*x*5*x*6*x*8, *x*4*x*5*x*6*x*7*x*8*x*9, (9.18)

$$
\{(x_1, \ldots, x_{10}) \mid x_7 = x_3, x_8 = x_4, x_9 = x_1, x_{10} = x_2\}.
$$
 (9.19)

One can get totally positive involutive maps of 5 variables by restricting the 6 dimensional space [\(9.19\)](#page-5-1) by a conserved quantity. For instance, imposing $a = x_2 x_4 x_5 x_7$ in the space [\(9.19\)](#page-5-1) leads to the map $(x_1, x_2, x_3, x_4, x_6) \mapsto$ $(x_1'', x_2'', x_3'', x_4'', x_6'')$ defined by

$$
(x_1'', x_2'', x_3'', x_4'', \frac{a}{x_2''x_3''x_4''}, x_6'', x_3'', x_4'', x_1'', x_2'')
$$

= $\tilde{Y}((x_1, x_2, x_3, x_4, \frac{a}{x_2x_3x_4}, x_6, x_3, x_4, x_1, x_2))$ (9.20)

depending on the parameter *a*. However, there is no canonical way of doing such a reduction, and construction of a solution to the H_3 compatibility equation ([9.12\)](#page-3-2) or ([9.13](#page-3-1)) remains as a challenge.

These features, especially the discrepancy of (9.19) (9.19) (9.19) from the desired dimension 5, stem from the fact that H_2 viewed as a subgroup A_4 is *not* an invariant of the diagram automorphism. In contrast, for the embedding $B_2 \hookrightarrow A_3$ respecting the diagram automorphism, the composition of the birational 3D *R*'s corresponding to the length 6 longest element of *A*³ admits a natural restriction to the 4-dimensional subspace

 $3 \Phi^{-1} = \Phi$ has been taken into account due to $P^{-1} = P$, $R^{-1} = R$, $R_{ijk} = R_{kji}$.

matching the 3D *K* [152] and reproduces [110, Remark 5.1]. Another example of such an embedding is $G_2 \hookrightarrow D_4$, which allows one to construct a λ -deformation of the birational 3D \overline{F} (8.7[4](#page-6-0)).⁴

⁴ Private communication with the author of [152].