
Chapter 9
Comments on Tetrahedron-Type
Equation for Non-crystallographic
Coxeter Groups

Abstract This short chapter is a supplement recalling some basic facts on non-
crystallographic finite Coxeter groups and raising questions concerning a possible
tetrahedron-type equation.

9.1 Finite Coxeter Groups

The list of finite Coxeter groups1 is given by [59]:

An (n ≥ 1), Bn (n ≥ 2), Dn (n ≥ 4), E6, E7, E8, F4, G2,

H2, H3, H4, I2(m) (m ≥ 3).
(9.1)

The indices are called ranks. The alphabetically last one I2(m) is the dihedral group
which is the order 2m group of symmetry of a regularm-gon consisting of orthogonal
transformations. It has overlap with the other rank 2 members for m = 3, 4, 6. See
Fig. 9.2. Rank n Coxeter groups have a presentation in terms of generators s1, . . . , sn
obeying the relations (si s j )mi j = 1 with mii = 1 and mi j = m ji ∈ {2, 3, . . .} ∪ {∞}
for i �= j , where mi j = ∞ is to be understood as no relation. The data {mi j } is
customarily encoded in the Coxeter graph. Its vertex set is {1, 2, . . . , n}, and the two
vertices i and j are connected by an unlabeled edge ifmi j = 3 and by an edge labeled
withmi j if 4 ≤ mi j < ∞. The case ∀mi j ∈ {2, 3, 4, 6} is called crystallographic, and
has a realization as the Weyl group of the corresponding Lie algebras. Thus those
on the second line in (9.1), except m = 3, 4, 6, are the non-crystallographic finite
Coxeter groups (Fig. 9.1).

1 In this chapter, symbols like An are used to mean Coxeter groups instead of Lie algebras, unlike
elsewhere in the book.
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Fig. 9.1 Coxeter graphs of (9.1). Unlike the Dynkin diagrams, there is no arrow and Cn has been
merged into Bn

The dihedral groups I2(m) and H2, H3, H4 admit various embeddings as shown
in Fig. 9.2.

Fig. 9.2 Various
embeddings concerning
non-crystallographic Coxeter
groups

The embedding of type Xn ↪→ Xn+1 just means that Xn is a parabolic subgroup
of Xn+1. Denoting the generators in the image by ti ’s, the other cases are given as
follows [134]:

I2(m) ↪→ Am−1 : s1 
→
∏

1≤ j≤m−1
j :odd

t j , s2 
→
∏

1≤ j≤m−1
j :even

t j , (9.2)

G2 ↪→ D4 : s1 
→ t1t3t4, s2 
→ t2, (9.3)

H3 ↪→ D6 : s1 
→ t3t5, s2 
→ t2t4, s3 
→ t1t6, (9.4)

H4 ↪→ E8 : s1 
→ t4t8, s2 
→ t3t5, s3 
→ t2t6, s4 
→ t1t7. (9.5)
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The embedding B2 ↪→ A3 is a folding by the order 2 diagram automorphism, and has
the generalization to Bn ↪→ A2n−1 (n ≥ 2) as si 
→ ti t2n−i (1 ≤ i < n) and sn 
→ tn .

9.2 Tetrahedron-Type Equation for the Coxeter Group H3

For any element w of a Coxeter group, one can consider a reduced expression (rex)
graph. The vertices are reduced expressions of w and the two are connected by an
edge if and only if they are transformed by a single application of the Coxeter relation
(si s j )mi j = 1 (i �= j). According to [126, Theorem 2.17], any non-trivial loop in a
rex graph is generated from the loops in the rex graph of the longest element in the
parabolic subgroups of rank 3. See also [44, Sect. 1.4.3]. In this sense, rank 3 cases
are essential. In fact, we have seen that the A3 and B3 cases led to the tetrahedron
and the 3D reflection equations2 in earlier chapters, respectively. The remaining case
is H3, which we shall consider in what follows.

TheCoxeter group H3 is knownas the symmetry of the icosahedronor equivalently
the dual dodecahedron [59]. The relations of the generators s1, s2, s3 read as s21 =
s22 = s23 = 1 and

s1s3 = s3s1, s2s3s2 = s3s2s3, s1s2s1s2s1 = s2s1s2s1s2. (9.6)

Unlike the case of crystallographic Coxeter groups, the approach by a quantized
coordinate ring is not available. However, one can formulate a compatibility equation
formally by an argument similar to those for the crystallographic cases. We attach
operators to the transformations in (9.6), denoted by only indices, as follows:

P = P−1 : 13 → 31, 31 → 13, (9.7)

� : 232 → 323, �i jk = Ri jk Pik, (9.8)

� : 21212 → 12121, �i jklm = Yi jklm Pim Pjl , (9.9)

where, as before, the lower indices i, j, k, . . . of the operators specify the components
that they act on non-trivially. The operators� and Y are the characteristic ones which
are expected to come from H2.

A reduced expression of the longest element of H3 is

s1s2s1s2s1s3s2s1s2s1s3s2s1s2s3, (9.10)

which has the length 15. Now the process analogous to (3.93), (5.106) and (7.16)
reads as

2 We have actually encountered a fine difference between B3 and C3 versions originating in the
relevant quantized coordinate rings.
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121213212132123 P5,6

121231212132123 �−1
6,7,8,9,10

121232121232123 �4,5,6�10,11,12

121323121323123 P3,4P6,7P9,10P12,13

123121323121323 �−1
7,8,9�

−1
13,14,15

123121232121232 �9,10,11,12,13

123121231212132 P8,9P13,14

123121213212312 �−1
4,5,6,7,8

123212123212312 �2,3,4�8,9,10

132312132312312 P4,5P7,8P10,11

132132312132312 P12�
−1
567�

−1
11,12,13

312123212123212 �−1
7,8,9,10,11

312123121213212 P6,7P11,12

312121321231212 �−1
2,3,4,5,6

321212321231212 �6,7,8

321213231231212 P5,6P8,9

321231213231212 �−1
9,10,11

321231212321212 �11,12,13,14,15

321231212312121.

(9.11)

It reverses the initial reduced word. There is another route achieving the reverse
ordering which is related to (9.11), similarly to (7.17) and (7.18). Equating the two
ways, substituting (9.7), (9.9) and assuming that Pi, j just exchanges the indices as
P4,7Y1,3,4,9 = Y1,3,7,9P4,7 etc., we get the H3 analogue of the tetrahedron equation:

Y11,12,13,14,15R
−1
15,10,9R5,7,15Y

−1
15,6,4,3,2Y2,5,8,10,14R

−1
14,7,3R

−1
13,9,2R1,6,14

× R3,8,13Y
−1
13,10,7,4,1Y1,3,5,9,12R

−1
12,8,4R

−1
11,2,1R6,10,12R4,5,11Y

−1
11,9,8,7,6

= Y6,7,8,9,11R
−1
11,5,4R

−1
12,10,6R1,2,11R4,8,12Y

−1
12,9,5,3,1Y1,4,7,10,13R

−1
13,8,3

× R−1
14,6,1R2,9,13R3,7,14Y

−1
14,10,8,5,2Y2,3,4,6,15R

−1
15,7,5R9,10,15Y

−1
15,14,13,12,11.

(9.12)

There are 6 Y±1’s and 10 R±1’s on each side. If Y−1
i jklm = Yi jklm = Ymlk ji and R−1

i jk =
Ri jk = Rkji are valid, the above equation reduces to

Y11,12,13,14,15R9,10,15R5,7,15Y2,3,4,6,15Y2,5,8,10,14R3,7,14R2,9,13R1,6,14

× R3,8,13Y1,4,7,10,13Y1,3,5,9,12R4,8,12R1,2,11R6,10,12R4,5,11Y6,7,8,9,11
= product in reverse order.

(9.13)
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A diagrammatic representation of the reduced version (9.13) of the H3 compatibility
equation is available in [44, Eq. (4.9)].

9.3 Discussion on the Quintic Coxeter Relation

The operator Y has been introduced formally in (9.9) in association with the quintic
Coxeter relation. It is natural to seek it in the parabolic subgroup H2 ⊂ H3. In this
section, we study a composition of the birational 3D R (Sect. 3.6.2) corresponding to
the transformation of s1s2s1s2s1 into s2s1s2s1s2 in H2 under the embedding H2 ↪→ A4.

The embedding is the m = 5 case of (9.2), which reads as s1 
→ t1t3, s2 
→ t2t4.
One way to realize s1s2s1s2s1 = s2s1s2s1s2 in the image is the following transforma-
tion of the reduced expression of the longest element of A4:

1324132413 P1,2P4,5P8,9
3121432143 �2,3,4

3212432143 P4,5
3214232143 �5,6,7

3214323143 P7,8
3214321343 �8,9,10

3214321434 P6,7P7,8
3214342134 �4,5,6

3213432134 P3,4
3231432134 �1,2,3

2321432134 P8,9
2321432314 �6,7,8

2321423214 P5,6
2321243214 �3,4,5

2312143214 P6,7P5,6
2312431214 P4,5�7,8,9

2314232124 �5,6,7

2314323124 P7,8P2,3
2134321324 �3,4,5

2143421324 P2,3P5,6
2413241324.

(9.14)
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As before, we have assigned an operator to each step, where Pi j is the transposition
and�i jk = Ri jk Pik with Ri jk = Rλ

i jk being the λ-deformed biraitonal 3D R (3.159).3

The composition of the operators in (9.14) is rearranged as Ỹσ , where σ is a product
of Pi j ’s giving the reverse ordering permutation in S10, and Ỹ has the form

Ỹ = R2,4,6R2,5,8R2,7,9R3,8,9R3,5,7R1,6,9R1,4,7R1,3,10R4,5,10R6,8,10. (9.15)

This is a totally positive involutive rational map of 10 variables (x1, . . . , x10). Set
(x ′

1, . . . , x
′
10) = Ỹ ((x1, . . . , x10)). Then examples of simplest components are

x ′
2 = x2x4x5x7

x2x4x5 + x2x4x9 + x2x8x9 + x6x8x9 + λx2x4x9(x5x7 + x5x8 + x6x8)
,

(9.16)

x ′
10 = x ′

2|x1↔x9,x2↔x10,x3↔x7,x4↔x8 . (9.17)

One can directly check:

Proposition 9.1 The map Ỹ preserves the following:

x2x4x5x7, x3x5x8x10, x1x3x4x5x6x8, x4x5x6x7x8x9, (9.18)

{(x1, . . . , x10) | x7 = x3, x8 = x4, x9 = x1, x10 = x2}. (9.19)

One can get totally positive involutive maps of 5 variables by restricting the 6-
dimensional space (9.19) by a conserved quantity. For instance, imposing
a = x2x4x5x7 in the space (9.19) leads to the map (x1, x2, x3, x4, x6) 
→
(x ′′

1 , x
′′
2 , x

′′
3 , x

′′
4 , x

′′
6 ) defined by

(x ′′
1 , x

′′
2 , x

′′
3 , x

′′
4 ,

a

x ′′
2 x

′′
3 x

′′
4

, x ′′
6 , x

′′
3 , x

′′
4 , x

′′
1 , x

′′
2 )

= Ỹ ((x1, x2, x3, x4,
a

x2x3x4
, x6, x3, x4, x1, x2))

(9.20)

depending on the parameter a. However, there is no canonical way of doing such a
reduction, and construction of a solution to the H3 compatibility equation (9.12) or
(9.13) remains as a challenge.

These features, especially the discrepancy of (9.19) from the desired dimension 5,
stem from the fact that H2 viewed as a subgroup A4 is not an invariant of the diagram
automorphism. In contrast, for the embedding B2 ↪→ A3 respecting the diagram
automorphism, the composition of the birational 3D R’s corresponding to the length
6 longest element of A3 admits a natural restriction to the 4-dimensional subspace

3 �−1 = � has been taken into account due to P−1 = P, R−1 = R, Ri jk = Rkji .
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matching the 3D K [152] and reproduces [110, Remark 5.1]. Another example of
such an embedding is G2 ↪→ D4, which allows one to construct a λ-deformation of
the birational 3D F (8.74).4

4 Private communication with the author of [152].
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