Chapter 6 3D *K* **From Quantized Coordinate Ring of Type B**

Abstract For the quantized coordinate ring $A_q(B_n)$, fundamental representations of the generators associated with the spin representation of B_n are presented. Reflecting the equivalence of the spin representation of B_2 and the vector representation of C_2 , the equivalence $A_q(B_n) \simeq A_q(C_n)$ holds for $n = 2$ but not for $n \geq 3$. In particular $A_a(B_3)$ leads to another solution to the 3D reflection equation different from Chap. 5. The *RTT* relation for the fundamental representations are proved by making use of the tetrahedron equation of type $MMLL = LLMM$ (Theorem 3.25) and a matrix product formula of the quantum *R* matrix for the spin representation (Chap. 12).

6.1 Quantized Coordinate Ring $A_q(B_n)$

Like $A_q(A_{n-1})$ and $A_q(C_n)$ treated in the preceding chapters, the quantized coordinate ring $A_q(B_n)$ ($n \ge 2$) we consider in this chapter is the $\mathfrak{g} = B_n$ case of the Hopf algebra A_q (g) defined in Sect. 10.2 in a universal manner. On general grounds, $A_q(B_n)$ has generators t_{ab} associated with the spin representation $V(\varpi_n)$ of $U_q(B_n)$. Here the indices **a**, **b** range over

$$
\{0,1\}^n = \{\mathbf{a} = (a_1,\ldots,a_n) \mid a_1,\ldots,a_n \in \{0,1\}\},\tag{6.1}
$$

which is a natural labeling set of the base of $V(\varpi_n)$. A feature that distinguishes it from the A_{n-1} and C_n cases is that the complete set of defining relations among the $2^n \times 2^n$ generators $T = (t_{ab})$ have not been identified explicitly in the literature. They include the *RTT* relation and the ρ*T T* relation at least:

¹ See the explanations around (10.22). *V*(ϖ_n) denotes the irreducible $U_q(B_n)$ module whose highest weight is the *n*th fundamental weight ϖ_n . $A_q(B_n)$ here is different from (in a sense "finer" than) Fun(SO_q (2*n* + 1)) in [127] based on $(2n + 1)^2$ generators associated with the vector representation.

$$
\sum_{\mathbf{l},\mathbf{m}} R_{\mathbf{l}\mathbf{m}}^{\mathbf{ab}} t_{\mathbf{l}\mathbf{c}} t_{\mathbf{m}\mathbf{d}} = \sum_{\mathbf{l},\mathbf{m}} t_{\mathbf{b}\mathbf{m}} t_{\mathbf{a}\mathbf{l}} R_{\mathbf{c}\mathbf{d}}^{\mathbf{l}\mathbf{m}},\tag{6.2}
$$

$$
\sum_{\mathbf{b}} \rho_{\mathbf{b}} t_{\mathbf{a}\mathbf{b}} t_{\mathbf{l'}\mathbf{b'}} = \sum_{\mathbf{c}} \rho_{\mathbf{c}} t_{\mathbf{c}\mathbf{a}} t_{\mathbf{c'}\mathbf{l'}} = \rho_{\mathbf{a}} \delta_{\mathbf{a}\mathbf{l}},\tag{6.3}
$$

where \mathbf{a}' is defined by

$$
\mathbf{a}' = (1 - a_1, \dots, 1 - a_n). \tag{6.4}
$$

The *RTT* relation is known to be valid from the general argument leading to (10.15). The relation ([6.3](#page-1-0)) originates in the fact that $V(\varpi_n) \otimes V(\varpi_n) \supset V(0)$, which is also the case for $A_q(C_n)$ as in (5.12). The structure constants R_{ij}^{ab} and ρ_a are related by (5.12) , and given as

$$
R_{ij}^{ab} = \lim_{x \to \infty} x^{-2n} R(x)_{ij}^{ab}, \tag{6.5}
$$

$$
\rho_{\mathbf{a}} = q^{-\frac{n^2}{2}} \prod_{k=1}^n ((-1)^k q^{2k-1})^{a_{n+1-k}}.
$$
\n(6.6)

In [\(6.5\)](#page-1-1), $R(x)_{ij}^{ab}$ is an element of the quantum *R* matrix of the spin representation. See (6.61) (6.61) and the explanation around it for a precise description. In (6.5) , one is picking the coefficient of the highest order power of x from it as in (3.4) and (5.6) . From $\rho_{a}\rho_{a'} = (-1)^{n(n+1)/2}$, [\(6.6\)](#page-1-2) corresponds to $\varepsilon = (-1)^{n(n+1)/2}$ in (5.10).

Remark 6.1 Under the equivalence $U_q(C_2) \simeq U_q(B_2)$, the vector representation of the former corresponds to the spin representation of the latter. Reflecting this fact, $A_q(B_2)$ here is isomorphic to $A_q(C_2)$ in Chap. 5 via the rescaling of generators explained in Remark 5.1. Concretely, the indices 1, 2, 3, 4 for $A_a(C₂)$ correspond to $(0, 0)$, $(0, 1)$, $(1, 0)$, $(1, 1)$ for $A_q(B_2)$, and the generators are identified by (5.13) with $(g_1, g_2, g_3, g_4) = (i, 1, 1, i)$ satisfying (5.14).

6.2 Fundamental Representations

Let $\text{Osc}_q = \langle \mathbf{a}^+, \mathbf{a}^-, \mathbf{k}, \mathbf{k}^{-1} \rangle$ be the *q*-oscillator algebra (3.12) and $\text{Osc}_{q^2} =$ $\langle \mathbf{A}^+, \mathbf{A}^-, \mathbf{K}, \mathbf{K}^{-1} \rangle$ be the *q*²-oscillator algebra (5.15). As before, they are identified with elements of $\text{End}(\mathcal{F}_{q_i})$. The embedding in Theorem 3.3 enables one to write down the fundamental representations

$$
\pi_i: A_q(B_n) \to \text{End}(\mathcal{F}_{q_i}) \qquad (1 \le i \le n), \tag{6.7}
$$

$$
q_1 = \dots = q_{n-1} = q^2, \ q_n = q \tag{6.8}
$$

containing a non-zero parameter μ_i . Note the difference of (6.8) from (5.18) .

For $1 \le i \le n - 1$, let the image of the generators $(t_{ab})_{a,b \in \{0,1\}^n}$ by π_i be as follows:

$$
\begin{pmatrix}\nt_{\alpha 00\tilde{\alpha},\alpha 00\tilde{\alpha}} & t_{\alpha 00\tilde{\alpha},\alpha 01\tilde{\alpha}} & t_{\alpha 00\tilde{\alpha},\alpha 11\tilde{\alpha}} & t_{\alpha 00\tilde{\alpha},\alpha 11\tilde{\alpha}} \\
t_{\alpha 01\tilde{\alpha},\alpha 00\tilde{\alpha}} & t_{\alpha 01\tilde{\alpha},\alpha 01\tilde{\alpha}} & t_{\alpha 01\tilde{\alpha},\alpha 10\tilde{\alpha}} & t_{\alpha 01\tilde{\alpha},\alpha 11\tilde{\alpha}} \\
t_{\alpha 10\tilde{\alpha},\alpha 00\tilde{\alpha}} & t_{\alpha 10\tilde{\alpha},\alpha 01\tilde{\alpha}} & t_{\alpha 10\tilde{\alpha},\alpha 10\tilde{\alpha}} & t_{\alpha 10\tilde{\alpha},\alpha 11\tilde{\alpha}}\n\end{pmatrix} \mapsto \begin{pmatrix}\n1 & 0 & 0 & 0 \\
0 & A^- & \mu_i \mathbf{K} & 0 \\
0 & -q^2 \mu_i^{-1} \mathbf{K} & A^+ & 0 \\
0 & 0 & 0 & 1\n\end{pmatrix},
$$
\n
$$
(6.9)
$$
\notherwise $t_{\mathbf{a},\mathbf{b}} \mapsto 0$,\n
$$
(6.10)
$$

where $\alpha \in \{0, 1\}^{i-1}$ and $\tilde{\alpha} \in \{0, 1\}^{n-i-1}$ are arbitrary in [\(6.9\)](#page-2-0). For π_n , the image of the generators is specified as

$$
\begin{pmatrix} t_{\alpha 0, \alpha 0} & t_{\alpha 0, \alpha 1} \\ t_{\alpha 1, \alpha 0} & t_{\alpha 1, \alpha 1} \end{pmatrix} \mapsto \begin{pmatrix} \mathbf{a}^- & \mu_n \mathbf{k} \\ -q \mu_n^{-1} \mathbf{k} & \mathbf{a}^+ \end{pmatrix}, \tag{6.11}
$$

otherwise
$$
t_{\mathbf{a},\mathbf{b}} \mapsto 0
$$
,
$$
(6.12)
$$

where $\alpha \in \{0, 1\}^{n-1}$ is arbitrary in ([6.11](#page-2-1)).

Example 6.2 For $A_q(B_2)$, let $T = (t_{ab})$ be the array with row **a** and column **b** ordered as $(0, 0)$, $(0, 1)$, $(1, 0)$, $(1, 1)$ from the top let. Then its image reads as

$$
\pi_1(T) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \mathbf{A}^- & \mu_1 \mathbf{K} & 0 \\ 0 & -q^2 \mu_1^{-1} \mathbf{K} & \mathbf{A}^+ & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \pi_2(T) = \begin{pmatrix} \mathbf{a}^- & \mu_2 \mathbf{k} & 0 & 0 \\ -q \mu_2^{-1} \mathbf{k} & \mathbf{a}^+ & 0 & 0 \\ 0 & 0 & \mathbf{a}^- & \mu_2 \mathbf{k} \\ 0 & 0 & -q \mu_2^{-1} \mathbf{k} & \mathbf{a}^+ \end{pmatrix}.
$$
\n(6.13)

Remark 6.3 Denote the fundamental representations of $A_q(B_2)$ in Example [6.2](#page-2-2) by $\pi_1^{B_2}$ and $\pi_2^{B_2}$. Similarly, denote the fundamental representations of $A_q(C_2)$ in (5.24) by $\pi_1^{C_2}$ and $\pi_2^{C_2}$. Then $\pi_i^{B_2}$ coincides with $\pi_{3-i}^{C_2}$ via the adjustment explained in Remark [6.1](#page-1-4) with a suitable redefinition of μ_i parameters.

From Remark 5.1, the parameters μ_1, \ldots, μ_n are removed by switching to the rescaled generators \tilde{t}_{ab} in (5.13) with $g_a = \prod_{1 \le k \le n} \mu_k^{a_1 + \dots + a_k - k/2}$ satisfying (5.14) with $g_a g_{a'} = 1$. Thus we set $\mu_1 = \cdots = \mu_n = 1$ in the rest of the chapter without loss of generality.

Example 6.4 Let $T = (t_{a,b})$ be the 8-by-8 matrix of generators of $A_q(B_3)$, where the row index **a** and the column index **b** are ordered from the top left corner as 000, 001, 010, 011, 100, 101, 110, 111. Then their image by the fundamental representations π_1 , π_2 , π_3 according to ([6.9](#page-2-0))–([6.12](#page-2-3)) reads as follows:

$$
\pi_1(T) = \begin{pmatrix}\n1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & A^- & 0 & K & 0 & 0 & 0 \\
0 & 0 & -q^2 K & 0 & A^+ & 0 & 0 & 0 \\
0 & 0 & 0 & -q^2 K & 0 & A^+ & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -q^2 K & A^+ & 0 & 0 & 0 & 0 & 0 \\
0 & -q^2 K & A^+ & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -q^2 K & A^+ & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\n\end{pmatrix}, \quad (6.15)
$$
\n
$$
\pi_2(T) = \begin{pmatrix}\n1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & A^- & K & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\n\end{pmatrix}, \quad (6.16)
$$

Proposition 6.5 *The image of the generators by the maps* π_1, \ldots, π_n *in* [\(6.9\)](#page-2-0)–[\(6.12\)](#page-2-3) *satisfies the RTT relation* ([6.2](#page-1-5)) and the ρTT *relation* [\(6.3\)](#page-1-0)*.*

We will present an intriguing proof in Sect. [6.6](#page-9-0) making use of the tetrahedron equation of type $MMLL = LLMM$ (3.122), where the MM part yields the structure constant and the *LL* part the generators.

Let us turn to the tensor products of the fundamental representations. We write $\pi_{i_1} \otimes \cdots \otimes \pi_{i_l}$ as π_{i_1,\dots,i_l} for short. The Weyl group $W(B_n)$ is the same as $W(C_n)$ explained in (5.26) and (5.27) . Then Theorem 3.3 asserts the same equivalence as (5.28) – (5.30) :

$$
\pi_{i,j} \simeq \pi_{j,i} \qquad (|i-j| \ge 2), \qquad (6.17)
$$

$$
\pi_{i,i+1,i} \simeq \pi_{i+1,i,i+1} \qquad (1 \le i \le n-2), \tag{6.18}
$$

$$
\pi_{n-1,n,n-1,n} \simeq \pi_{n,n-1,n,n-1}.\tag{6.19}
$$

6.3 Intertwiners

By Remark 3.4, the intertwiner responsible for the isomorphism [\(6.17\)](#page-3-0) is just the exchange of components *P* defined in (3.23). See the explanation around (3.24).

Next we consider the intertwiner for (6.18) (6.18) , which corresponds to the cubic Coxeter relation. It is an element $\Phi^B \in \text{End}(\mathcal{F}_{q^2}^{\otimes 3})$ characterized by

$$
\Phi^B \circ \pi_{i,i+1,i}(\Delta(f)) = \pi_{i+1,i,i+1}(\Delta(f)) \circ \Phi^B \quad (1 \le i < n, \ \forall f \in A_q(B_n)),\tag{6.20}
$$

 $\Phi^{B}(0\otimes 0\otimes 0) = |0\rangle \otimes 0\rangle \otimes 0.$ (6.21)

The latter just fixes the normalization. Set $R^B = \Phi^B P_{13}$ as in (3.30). Then the Eq. ([6.20](#page-4-0)) is identical, as a set, with (3.38) – (3.46) for the 3D *R* with *q* replaced by q^2 . Therefore, the intertwiner for ([6.18](#page-3-1)) is provided by $\Phi^B = R^B P_{13}$ with $R^B = R|_{a \to a^2}$, where *R* in the RHS is the 3D *R* in Chap. 3. As before, R^B will also be called the intertwiner. We know that R^B satisfies the tetrahedron equation of type $RRRR =$ *RRRR* (2.6).

Finally, we consider the intertwiner for the equivalence ([6.19](#page-3-2)), which corresponds to the quartic Coxeter relation. Due to the nested structure of the representations (6.9) (6.9) (6.9) – (6.12) (6.12) (6.12) with respect to rank *n*, the problem reduces to $\pi_{1212} \simeq \pi_{2121}$ for $A_q(B_2)$. Thus we consider the linear map

$$
\Psi^B : \mathcal{F}_{q^2} \otimes \mathcal{F}_q \otimes \mathcal{F}_{q^2} \otimes \mathcal{F}_q \to \mathcal{F}_q \otimes \mathcal{F}_{q^2} \otimes \mathcal{F}_q \otimes \mathcal{F}_{q^2}
$$
(6.22)

characterized by

$$
\pi_{2121}(\Delta(f)) \circ \Psi^B = \Psi^B \circ \pi_{1212}(\Delta(f)) \quad (\forall f \in A_q(B_2)), \tag{6.23}
$$

$$
\Psi^{B}(|0\rangle \otimes |0\rangle \otimes |0\rangle \otimes |0\rangle) = |0\rangle \otimes |0\rangle \otimes |0\rangle \otimes |0\rangle, \tag{6.24}
$$

where the latter specifies the normalization. Set

$$
K^{B} = \Psi^{B} P_{14} P_{23} \in \text{End}(\mathcal{F}_{q} \otimes \mathcal{F}_{q^{2}} \otimes \mathcal{F}_{q} \otimes \mathcal{F}_{q^{2}}), \tag{6.25}
$$

where $P_{14}P_{23}$ reverses the order of the 4-fold tensor product. Note a slight difference from the 3D *K* of $A_a(C_2)$ in (5.36).

Theorem 6.6 *The intertwiner* K^B *is given by* $K^B = P_{14}P_{23}K P_{14}P_{23}$ *, where K in the RHS is the 3D K for* $A_q(C_2)$ *in Chap.* 5.

Proof From Remark [6.3,](#page-2-4) the Eq. [\(6.23\)](#page-4-1) is equivalent to $\pi_{1212}^C(\Delta(f)) \circ \Psi^B$ $\Psi^B \circ \pi_{2121}^C(\Delta(f))$. Comparing this with the type C case $\pi_{2121}^C(\Delta(f)) \circ \Psi = \Psi \circ \pi_{1212}^C(\Delta(f))$ in (5.34) and from the unique existence of Ψ^B , we have $\Psi^B = \Psi^{-1}$ taking the normalization into account. Thus we find $K^B P_{14} P_{23} = \Psi^B = \Psi^{-1} \stackrel{(5.36)}{=}$ $(K P_{14} P_{23})^{-1} \stackrel{(5.72)}{=} P_{14} P_{23} K.$

Let us summarize the relation of intertwiners that originate in the cubic and the quartic Coxeter relations exhibiting the types B and C as superscripts.

Cubic
\n
$$
\Phi^B = \Phi^C \qquad , \qquad \Psi^B = (\Psi^C)^{-1}
$$
\n(6.26)

$$
\Phi^B = \Phi^C|_{q \to q^2}, \qquad \Psi^B = (\Psi^C)^{-1}, \qquad (6.26)
$$

$$
R^B = R^C|_{q \to q^2}, \qquad K^B = P_{14} P_{23} K^C P_{14} P_{23}. \qquad (6.27)
$$

The last result implies

$$
K^{B}(|i\rangle \otimes |j\rangle \otimes |k\rangle \otimes |l\rangle) = \sum_{a,b,c,d} K_{lkji}^{dcba} |a\rangle \otimes |b\rangle \otimes |c\rangle \otimes |d\rangle \tag{6.28}
$$

in \mathcal{F}_q ⊗ \mathcal{F}_{q^2} ⊗ \mathcal{F}_{q^2} in terms of the matrix elements K_{ijkl}^{abcd} of $K = K^C$ in (5.57). We note that (5.72) also implies

$$
K^B = (K^B)^{-1}.
$$
\n(6.29)

6.4 3D Reflection Equation

To be explicit, we set

$$
S = R^B = R|_{q \to q^2}, \qquad K_{4321} = K_{1234}^B = P_{14} P_{23} K_{1234} P_{23} P_{14}
$$
(6.30)

according to ([6.27](#page-5-0)).

Theorem 6.7 *The intertwiners* R^B *and* K^B *satisfy the 3D reflection equation (4.3), which is presented in terms of the above S and K as*

$$
S_{689}K_{9753}S_{249}S_{258}K_{8741}K_{6321}S_{456} = S_{456}K_{6321}K_{8741}S_{258}S_{249}K_{9753}S_{689}.
$$
 (6.31)

It is an equality of linear operators on

$$
\stackrel{1}{\mathcal{F}}_q \otimes \stackrel{2}{\mathcal{F}}_{q^2} \otimes \stackrel{3}{\mathcal{F}}_q \otimes \stackrel{4}{\mathcal{F}}_{q^2} \otimes \stackrel{5}{\mathcal{F}}_{q^2} \otimes \stackrel{6}{\mathcal{F}}_{q^2} \otimes \stackrel{7}{\mathcal{F}}_q \otimes \stackrel{8}{\mathcal{F}}_{q^2} \otimes \stackrel{9}{\mathcal{F}}_{q^2}.
$$
 (6.32)

Proof Since $W(B_3) \simeq W(C_3)$, the same proof as the one for Theorem 5.16 remains valid. \Box

Note that the replacement $q \rightarrow q^2$ in ([6.27](#page-5-0)) is done only for *R*. Therefore, the solution (R^B, K^B) is *not* reducible to (R, K) for type C in Chap. 5.

In the reminder of this section we present another proof of Theorem [6.7](#page-5-1) based on the quantized reflection equation introduced in Sect. 4.4. Define *L* by (5.110), *G* by (5.111) and $K = K^C$ to be the 3D *K* for type C in Chap. 5. Then Theorem 5.18 shows

that *L*, *G* and *K* satisfy the quantized reflection equation (4.12) with $\mathcal{F}' = \mathcal{F}_{q^2}$ and $\mathcal{F} = \mathcal{F}_q$. We know $K = K^{-1}$ by (5.72). Thus *J* in (4.14) and (4.15) coincides with K^B in ([6.27](#page-5-0)). From Theorem 3.21, (3.59) and (3.60), we see that R^B in [\(6.27\)](#page-5-0) and the above *L* satisfy the quantized Yang–Baxter equations $(2.19)|_{R\rightarrow R^B}$ and $(2.20)|_{S\rightarrow R^B}$. In this way we have a concrete realization of all the operators appearing in (4.19) and (4.20) in which $R = S = R^B$ and $J = K^B$. Thus the argument leading to (4.23) proves Theorem [6.7](#page-5-1) provided that the operators (4.18) act irreducibly on the space (4.22) , which is (6.32) (6.32) (6.32) in the present setting.

The last point of the irreducibility is established by identifying the quantized three-body reflection amplitude with the representation of $A_q(B_3)$ corresponding to the longest element of $W(B_3)$. To state it precisely, we set

They stand for the quantized three-body reflection amplitudes

$$
\mathcal{M}_{ijk}^{lmn}, \tilde{\mathcal{M}}_{ijk}^{lmn} \in \text{End}(\mathcal{F}_q \otimes \mathcal{F}_{q^2} \otimes \mathcal{F}_q \otimes \mathcal{F}_{q^2} \otimes \mathcal{F}_{q^2} \otimes \mathcal{F}_{q^2} \otimes \mathcal{F}_{q^2} \otimes \mathcal{F}_{q} \otimes \mathcal{F}_{q^2} \otimes \mathcal{F}_{q^2}).
$$
\n(6.35)

They allow us to express the first and the last operators in (4.19) and (4.20) as

$$
\overset{9}{L}_{bc}\overset{8}{L}_{ac}\overset{7}{G}_{c}\overset{6}{L}_{ab}\overset{5}{L}_{cb}\overset{4}{L}_{ca}\overset{3}{G}_{b}\overset{2}{L}_{ba}\overset{1}{G}_{a}=\sum\overset{a}{E}_{li}\otimes\overset{b}{E}_{mj}\otimes\overset{c}{E}_{nk}\otimes\mathcal{M}_{ijk}^{lmn},\qquad(6.36)
$$

$$
\overset{1}{G}_a \overset{2}{L}_{ab} \overset{3}{G}_b \overset{4}{L}_{ac} \overset{5}{L}_{bc} \overset{6}{L}_{ba} \overset{7}{G}_c \overset{8}{L}_{ca} \overset{9}{L}_{cb} = \sum \overset{a}{E}_{li} \otimes \overset{b}{E}_{mj} \otimes \overset{c}{E}_{nk} \otimes \overset{7}{\mathcal{M}}_{ijk}^{lmn}, \tag{6.37}
$$

where the sums extend over *i*, *j*, *k*, *l*, *m*, *n* \in {0, 1} and E_{ij} is the matrix unit on *V*.

Proposition 6.8 *The quantized three-body reflection amplitudes are identified with the representation of* $A_a(B_3)$ *corresponding to the longest element of* $W(B_3)$ *as follows:*

$$
\mathcal{M}_{ijk}^{lmn} = (-q)^{i+j+k-l-m-n} \pi_{323121321}(\Delta(t_{\mathbf{a},\mathbf{b}})),\tag{6.38}
$$

$$
\tilde{\mathcal{M}}_{ijk}^{lmn} = (-q)^{i+j+k-l-m-n} \pi_{323121321}(\tilde{\Delta}(t_{\mathbf{a},\mathbf{b}})),\tag{6.39}
$$

$$
\mathbf{a} = (1 - k, 1 - j, 1 - i), \quad \mathbf{b} = (1 - n, 1 - m, 1 - i). \tag{6.40}
$$

This can be verified directly. From this proposition and Theorem 3.3, it follows that \mathcal{M}_{ijk}^{lmn} and \mathcal{M}_{ijk}^{lmn} act irreducibly on ([6.32](#page-5-2)). Therefore the argument in (4.21)– (4.23) proves that (R^B, K^B) satisfies the 3D reflection equation (4.3). We note that the reduced word 323121321 has been encoded in (6.33) (6.33) (6.33) as the sequence of "heights" of the points $1, 2, \ldots, 9$, where the bottom level is set to be 3.

Example 6.9

$$
\mathcal{M}_{011}^{000} = q^2 \mathbf{a}^+ \otimes \mathbf{K} \otimes \mathbf{k} \otimes \mathbf{K} \otimes \mathbf{K} \otimes 1 \otimes \mathbf{k} \otimes 1 \otimes \mathbf{k},
$$
\n
$$
\mathcal{M}_{110}^{111} = q^4 \mathbf{a}^- \otimes 1 \otimes \mathbf{a}^- \otimes \mathbf{K} \otimes \mathbf{K} \otimes 1 \otimes \mathbf{k} \otimes 1 \otimes \mathbf{k}
$$
\n
$$
-q^5 \mathbf{k} \otimes \mathbf{A}^- \otimes \mathbf{k} \otimes \mathbf{K} \otimes \mathbf{K} \otimes 1 \otimes \mathbf{k} \otimes 1 \otimes 1,
$$
\n
$$
\tilde{\mathcal{M}}_{000}^{010} = -q^2 \mathbf{a}^+ \otimes \mathbf{A}^- \otimes \mathbf{a}^+ \otimes \mathbf{A}^+ \otimes \mathbf{K} \otimes 1 \otimes \mathbf{k} \otimes 1 \otimes 1
$$
\n
$$
-q^2 \mathbf{a}^+ \otimes \mathbf{K} \otimes \mathbf{a}^- \otimes 1 \otimes \mathbf{A}^+ \otimes 1 \otimes \mathbf{k} \otimes 1 \otimes 1
$$
\n
$$
-q^2 \mathbf{a}^+ \otimes \mathbf{K} \otimes \mathbf{k} \otimes 1 \otimes 1 \otimes 1 \otimes \mathbf{a}^+ \otimes 1 \otimes 1.
$$
\n(6.43)

On the other hand, for instance, we have

$$
\pi_{323121321}(\Delta(t_{001,111}))
$$
\n
$$
= \pi_{323121321}(t_{001,001} \otimes t_{001,010} \otimes t_{010,011} \otimes t_{011,101} \otimes t_{101,110}
$$
\n
$$
\otimes t_{110,110} \otimes t_{110,111} \otimes t_{111,111} \otimes t_{111,111} + \cdots)
$$
\n
$$
= \mathbf{a}^+ \otimes \mathbf{K} \otimes \mathbf{k} \otimes \mathbf{K} \otimes \mathbf{K} \otimes 1 \otimes \mathbf{k} \otimes 1 \otimes 1,
$$
\n(6.44)

where all the other $+\cdots$ terms are vanishing upon evaluation by $\pi_{323121321}$. Thus we see $\mathcal{M}_{011}^{000} = q^2 \pi_{323121321}(\Delta(t_{001,111})).$

One can similarly define the *n*-body quantized reflection amplitudes generalizing ([6.33](#page-6-0)) and ([6.34](#page-6-1)) by arranging the *n* reflecting arrows. They are linear operators on $\mathcal{F}_q^{\otimes n} \otimes \mathcal{F}_{q^2}^{\otimes n(n-1)}$. Thus the total number of the components is n^2 , which is equal to the length of the longest element of $W(B_n)$. The formulas [\(6.38](#page-7-0))–[\(6.40\)](#page-7-1) suggest a natural extension to general *n*. It is an interesting problem to establish a result like Proposition [6.8](#page-6-2) for general *n* hopefully more intrinsically.

6.5 Combinatorial and Birational Counterparts

In view of (6.27) it is natural to set

$$
K_{\text{combinatorial}}^{B} = P_{14} P_{23} K_{\text{combinatorial}} P_{14} P_{23}, \qquad (6.45)
$$

$$
K_{\text{birational}}^B = P_{14} P_{23} K_{\text{birational}} P_{14} P_{23} \tag{6.46}
$$

in terms of (5.153) and (5.160) for type C. On the other hand, we simply set $R^B_{\text{combinatorial}} = R_{\text{combinatorial}}$ in terms of (3.150) and $R^B_{\text{birational}} = R_{\text{birational}}$ in terms of (3.151). These definitions lead to another triad of the 3D *R* analogous to (5.162):

$$
K_{\text{quantum}}^B \xrightarrow{q \to 0} K_{\text{combinatorial}}^B \xleftarrow{\text{UD}} K_{\text{birational}}^B. \tag{6.47}
$$

The 3D reflection equation also remains valid both at combinatorial and birational level. However, it should be stressed that the equation defines *different* transformations for type B and C. See Example 5.24 for comparison in the combinatorial case.

In the rest of the section, we mention a slight variant of the upper triangular matrices relevant to $K_{\text{birational}}^B$ adapted to the natural (rather than spin) representation of B_n . Define the $2n + 1$ by $2n + 1$ upper triangular matrices

$$
Y_i(x) = 1 + x E_{i,i+1} - x E_{2n+1-i,2n-i+2} \quad (1 \le i < n), \tag{6.48}
$$

$$
Y_n(x) = 1 + x E_{n,n+1} - x E_{n+1,n+2} - \frac{x^2}{2} E_{n,n+2},
$$
\n(6.49)

where *x* is a parameter and $E_{i,j}$ is a matrix unit. The matrix $Y_i(x)$ is a generator of the unipotent subgroup of SO(2*n* + 1). It satisfies $Y_i(x)^{-1} = Y_i(-x)$ and $Y_i(a)Y_i(b) =$ $Y_i(b)Y_i(a)$ for $|i - j| > 1$. Given parameters *a*, *b*, *c*, *d*, each of the matrix equations

$$
Y_i(a)Y_j(b)Y_i(c) = Y_j(\tilde{c})Y_i(\tilde{b})Y_j(\tilde{a}) \quad (|i - j| = 1, i, j < n), \tag{6.50}
$$

$$
Y_{n-1}(a)Y_n(b)Y_{n-1}(c)Y_n(d) = Y_n(d'')Y_{n-1}(c'')Y_n(b'')Y_{n-1}(a'')
$$
(6.51)

has the unique solution. For (6.50) it is given by (3.151) . The second equation (6.51) determines $K_{\text{birational}}^B$: $(a, b, c, d) \mapsto (a'', b'', c'', d'')$. It essentially reduces to the $n = 2$ case:

$$
Y_1(z) = \begin{pmatrix} 1 & z & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & -z & 1 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}, \qquad Y_2(z) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & z & -z^2/2 & 0 \\ 1 & -z & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}.
$$

In accordance with (6.46) , the solution is given in terms of a', b', c', d' in (5.159) as

$$
(a'', b'', c'', d'') = (d', c', b', a')|_{(a,b,c,d)\to (d,c,b,a)}
$$

= $\frac{ab^2c}{\mathcal{B}}, \frac{\mathcal{B}}{\mathcal{A}}, \frac{\mathcal{H}^2}{\mathcal{B}}, \frac{bcd}{\mathcal{A}},$

$$
\mathcal{A} = ab + ad + cd, \quad \mathcal{B} = ab^2 + 2abd + ad^2 + cd^2.
$$
 (6.52)

6.6 Proof of Proposition [6.5](#page-3-3)

6.6.1 Matrix Product Formula of the Structure Function

Let us collect the necessary definitions and facts for the proof of Proposition [6.5.](#page-3-3) Following (2.24) and (2.25) we set

$$
L = \sum_{a,b,i,j} E_{ai} \otimes E_{bj} \otimes L_{ij}^{ab}, \qquad M = \sum_{a,b,i,j} E_{ai} \otimes E_{bj} \otimes M_{ij}^{ab}, \tag{6.53}
$$

where the sums are taken over $a, b, i, j \in \{0, 1\}$ and E_{ij} is a matrix unit on $V =$ $\mathbb{C}v_0 \oplus \mathbb{C}v_1$. The operators L_{ij}^{ab} and M_{ij}^{ab} are defined by

$$
L_{ij}^{ab} = M_{ij}^{ab} = 0 \text{ if } a + b \neq i + j,
$$
\n(6.54)

$$
L_{00}^{00} = L_{11}^{11} = 1, \quad L_{10}^{10} = -q^2 \mathbf{K}, \quad L_{01}^{01} = \mathbf{K}, \quad L_{01}^{10} = \mathbf{A}^+, \quad L_{10}^{01} = \mathbf{A}^-, \tag{6.55}
$$

$$
M_{00}^{00} = M_{11}^{11} = 1
$$
, $M_{10}^{10} = q\tilde{\mathbf{K}}$, $M_{01}^{01} = q\tilde{\mathbf{K}}$, $M_{01}^{10} = \mathbf{A}^+$, $M_{10}^{01} = \mathbf{A}^-$. (6.56)

Pictorially, the non-zero cases look like

$$
i \rightarrow a \qquad 0 \qquad 1 \qquad 0 \qquad 1 \qquad 0 \qquad 1 \qquad 0 \qquad 0 \qquad 1 \qquad 0 \qquad 0 \qquad 1 \qquad 0 \qquad 0 \qquad 0 \qquad 1 \qquad 1 \qquad 0
$$
\n
$$
L_{ij}^{ab} \qquad 1 \qquad 1 \qquad 1 \qquad -q^{2} \mathbf{K} \qquad \mathbf{K} \qquad \mathbf{A}^{+} \qquad \mathbf{A}^{-}
$$
\n
$$
M_{ij}^{ab} \qquad 1 \qquad 1 \qquad q\tilde{\mathbf{K}} \qquad q\tilde{\mathbf{K}} \qquad \mathbf{A}^{+} \qquad \mathbf{A}^{-} \qquad (6.57)
$$

The operators A^{\pm} , **K** are q^2 -oscillators in (5.15) and (5.16), and **K** is given by

$$
\tilde{\mathbf{K}}|m\rangle = (-q^2)^m |m\rangle. \tag{6.58}
$$

Thus we have *L*, $M \in \text{End}(V \otimes V \otimes \mathcal{F}_{q^2})$. These definitions are related to the earlier ones as

6.6 Proof of Proposition [6.5](#page-3-3) 101

$$
L_{ij}^{ab} = L(1)_{ij}^{ab}|_{q \to q^2, \mu \to -q^2}, \qquad M_{ij}^{ab} = M(1)_{ij}^{ab}|_{q \to q^2, \nu \to q}, \tag{6.59}
$$

where the RHSs are those in (3.120) and (3.121) .

We will further need the boundary vectors

$$
\langle \tilde{\eta}_2 | = \sum_{m \ge 0} \frac{\langle 2m |}{(q^8; q^8)_m}, \qquad |\tilde{\eta}_1 \rangle = \sum_{m \ge 0} \frac{|m\rangle}{(-q^2; -q^2)_m}, \tag{6.60}
$$

whose pairing is specified by $\langle m|m'\rangle = (q^4; q^4)_m \delta_{m,m'}$. These are obtained from the earlier ones in (3.132) – (3.133) by replacing *q* with $-q^2$.

Now the function $R_{ij}^{ab}(x)$ appearing in [\(6.5\)](#page-1-1) is given by the matrix product formula

$$
R(x)_{ij}^{ab} = (scalar) \times \langle \tilde{\eta}_2 | x^{\mathbf{h}} M_{i_1 j_1}^{a_1 b_1} \cdots M_{i_n j_n}^{a_n b_n} | \tilde{\eta}_1 \rangle, \tag{6.61}
$$

where **h** is the number operator (3.14) and $\mathbf{a} = (a_1, \ldots, a_n)$, etc. according to ([6.1](#page-0-1)). The scalar can be chosen so that $R(x)_{ij}^{ab}$ becomes a polynomial in x^2 with maximal degree exactly *n* in the following sense²:

$$
\max\left\{\deg_{x^2}\left(R(x)^{\text{ab}}_{\mathbf{i}\mathbf{j}}\right) \mid \mathbf{a}, \mathbf{b}, \mathbf{i}, \mathbf{j} \in \{0, 1\}^n\right\} = n. \tag{6.62}
$$

Otherwise the normalization is not essential, being required only to validate (5.11) which does not influence (6.2) (6.2) (6.2) and (6.3) .

Up to normalization and gauge, $R(x)_{ij}^{ab}$ is an element of the quantum *R* matrix of the spin representation of $B_n^{(1)}$ with spectral parameter x ^{[3](#page-10-2)}. This fact and the related results will be explained in detail in Chapter 12.

What we need here is the tetrahedron equation of type $MMLL = LLMM$:

$$
M_{126}M_{346}L_{135}L_{245} = L_{245}L_{135}M_{346}M_{126}.
$$
 (6.63)

This is a corollary of Theorem 3.25 and ([6.59](#page-10-3)). It is an identity in End $(\overrightarrow{V} \otimes \overrightarrow{V} \otimes$ \bigvee^3 \bigvee^4 \otimes \bigvee^5 ${{\cal F}}_{q^2}\otimes$ $\overset{6}{\mathcal{F}}_{q^2}).$

Another necessary fact is a property of the boundary vector

$$
(\mathbf{A}^+ - 1 + \tilde{\mathbf{K}})|\tilde{\eta}_1\rangle = 0, \qquad (\mathbf{A}^- - 1 + q^2 \tilde{\mathbf{K}})|\tilde{\eta}_1\rangle = 0. \tag{6.64}
$$

This is a corollary of (3.134) and (3.135) and the origin of $|\tilde{n}_1\rangle$ mentioned after $(6.60).$ $(6.60).$ $(6.60).$

² It is guaranteed from the fact that the spectral decomposition of the *R* matrix consists of $(n + 1)$ eigenvalues. One can also check the claim in the example of $S^{2,1}(z)$ for $n = 2$ in Sect. 12.4.

³ Equation ([6.61](#page-10-0)) is related to (12.9) as $R(x)_{ij}^{ab} =$ (scalar) $S^{2,1}(x)_{ij}^{ab}|_{q \to -q^2, \alpha \to q}$, where α originates in (12.1). Therefore from Theorem 12.2, it is an element of the quantum R matrix of the spin representation of $U_{q^{-2}}(B_n^{(1)})$.

6.6.2 RTT Relation

This subsection is devoted to the proof of the *RTT* relation ([6.2](#page-1-5)). According the remark after Remark [6.3,](#page-2-4) we take the parameter μ_i in π_i to be 1.

Lemma 6.10 *The image of the generator* $t_{ab} \in A_q(B_n)$ *by* π_i *in* [\(6.9\)](#page-2-0)–[\(6.12\)](#page-2-3) *with* $\mu_i = 1$ (also denoted by t_{ab} for simplicity) satisfies the RTT relation including the *spectral parameter:*

$$
\sum_{\mathbf{l}, \mathbf{m}} R(x)_{\mathbf{l}\mathbf{m}}^{\mathbf{ab}} t_{\mathbf{l}\mathbf{c}} t_{\mathbf{m}\mathbf{d}} = \sum_{\mathbf{l}, \mathbf{m}} t_{\mathbf{b}\mathbf{m}} t_{\mathbf{a}\mathbf{l}} R(x)_{\mathbf{c}\mathbf{d}}^{\mathbf{l}\mathbf{m}} \tag{6.65}
$$

In view of ([6.5](#page-1-1)), the defining *RTT* relation of $A_a(B_n)$ in ([6.2](#page-1-5)) follows from this lemma by picking the highest order terms in *x* since π [']s are independent of it.

Proof First we treat π_i with $1 \leq i \leq n-1$. Then it is easy to see

$$
t_{ab} = \theta(a_k = b_k \text{ for } k \neq i, i+1) L_{b_{i+1}b_i}^{a_i a_{i+1}}, \tag{6.66}
$$

where θ (true) = 1 and θ (false) = 0. Compare $(6.9)|_{u=1}$ $(6.9)|_{u=1}$ $(6.9)|_{u=1}$ – (6.10) (6.10) with [\(6.55\)](#page-9-1). Thus **l** and **m** in the LHS (resp. RHS) of ([6.65](#page-11-0)) are restricted to those $(l_k, m_k) = (c_k, d_k)$ $(\text{resp. } (l_k, m_k) = (a_k, b_k)) \text{ for } k \neq i, i + 1.$

Let us write down the $\text{End}(\widehat{\mathcal{F}})$ ${\cal F}_{q^2}\otimes$ \mathcal{F}_{q^2}) component of the tetrahedron equation ([6.63](#page-10-5)) corresponding to the transition

$$
v_{c_{i+1}} \otimes v_{d_{i+1}} \otimes v_{c_i} \otimes v_{d_i} \to v_{a_i} \otimes v_{b_i} \otimes v_{a_{i+1}} \otimes v_{b_{i+1}}.
$$

The result reads as

$$
\sum M_{l,m_i}^{a_ib_i} M_{l_{i+1}m_{i+1}}^{a_{i+1}b_{i+1}} L_{c_{i+1}c_i}^{l_{i}l_{i+1}} L_{d_i+d_i}^{m_im_{i+1}} = \sum L_{m_{i+1}m_i}^{b_ib_{i+1}} L_{l_{i+1}l_i}^{a_i a_{i+1}} M_{c_id_i}^{l_im_i} M_{c_{i+1}d_{i+1}}^{l_{i+1}m_{i+1}},\qquad(6.67)
$$

where the sums are taken over l_i , m_i , l_{i+1} , $m_{i+1} \in \{0, 1\}$ on both sides. The operators L^{\bullet} and M^{\bullet} act on a different components \mathcal{F}_{q^2} and \mathcal{F}_{q^2} , respectively. One can check that (6.67) agrees with (2.30) .

Putting [\(6.67\)](#page-11-1) in a sandwich in the space \mathcal{F}_{q^2} as

$$
\langle \tilde{\eta}_2 | x^{\mathbf{h}} M_{c_1 d_1}^{a_1 b_1} \cdots M_{c_{i-1} d_{i-1}}^{a_{i-1} b_{i-1}} (\cdots) M_{c_{i+2} d_{i+2}}^{a_{i+2} b_{i+2}} \cdots M_{c_n d_n}^{a_n b_n} | \tilde{\eta}_1 \rangle
$$
 (6.68)

and applying (6.66) and (6.61) (6.61) , we obtain (6.65) .

The essence of this derivation is that the matrix product structure (6.61) makes things*local*with respect to *i*, and the local structure is exactly the tetrahedron equation of type $MMLL = LLMM$. Up to this point, the boundary vectors $\langle \tilde{\eta}_2 | x^{\text{th}} \rangle$ and $|\tilde{\eta}_1 \rangle$ have not played any role.

6.6 Proof of Proposition [6.5](#page-3-3) 103

Next we consider π_n . From ([6.11](#page-2-1)) and ([6.12](#page-2-3)) we only have to concern the last factor $M_{i_n j_n}^{a_n b_n}$ in the matrix product formula [\(6.61\)](#page-10-0) and the effect of the boundary vector $|\tilde{\eta}_1|\rangle$. Moreover, the common indices α in [\(6.11\)](#page-2-1) can be suppressed. Therefore it suffices to check

$$
\sum_{l_n,m_n} \mathsf{t}_{l_n c_n} \mathsf{t}_{m_n d_n} \otimes M_{l_n m_n}^{a_n b_n} |\tilde{\eta}_1\rangle = \sum_{l_n,m_n} \mathsf{t}_{b_n m_n} \mathsf{t}_{a_n l_n} \otimes M_{c_n d_n}^{l_n m_n} |\tilde{\eta}_1\rangle \tag{6.69}
$$

for the temporarily defined symbols

$$
\begin{pmatrix} t_{00} & t_{01} \\ t_{10} & t_{11} \end{pmatrix} := \begin{pmatrix} t_{\alpha 0, \alpha 0} & t_{\alpha 0, \alpha 1} \\ t_{\alpha 1, \alpha 0} & t_{\alpha 1, \alpha 1} \end{pmatrix} = \begin{pmatrix} \mathbf{a}^- & \mathbf{k} \\ -q\mathbf{k} & \mathbf{a}^+ \end{pmatrix},\tag{6.70}
$$

which is independent of $\alpha \in \{0, 1\}^{n-1}$. We have set $\mu_n = 1$ in [\(6.11\)](#page-2-1). The rela-tion [\(6.69\)](#page-12-0) represents 16 identities in End(\mathcal{F}_q) $\otimes \mathcal{F}_{q^2}$ corresponding to the choices $(a_n, b_n, c_n, d_n) \in \{0, 1\}^4$. It is elementary to verify them case by case. Here we shall only illustrate the two instructive examples. The other cases are similar.

Case $(a_n, b_n, c_n, d_n) = (0, 1, 0, 0)$. The difference LHS – RHS is

$$
t_{00}t_{10} \otimes M_{01}^{01}|\tilde{\eta}_1\rangle + t_{10}t_{00} \otimes M_{10}^{01}|\tilde{\eta}_1\rangle - t_{10}t_{00} \otimes M_{00}^{00}|\tilde{\eta}_1\rangle
$$

= $\mathbf{a}^-(-q\mathbf{k}) \otimes q\tilde{\mathbf{K}}|\tilde{\eta}_1\rangle + (-q\mathbf{k})\mathbf{a}^- \otimes \mathbf{A}^-|\tilde{\eta}_1\rangle - (-q\mathbf{k}\mathbf{a}^-) \otimes |\tilde{\eta}_1\rangle$
= $q\mathbf{k}\mathbf{a}^- \otimes (-q^2\tilde{\mathbf{K}} - \mathbf{A}^- + 1)|\tilde{\eta}_1\rangle = 0,$

where the last equality is due to (6.64) (6.64) .

Case $(a_n, b_n, c_n, d_n) = (0, 1, 0, 1)$. The difference LHS – RHS is

$$
t_{00}t_{11} \otimes M_{01}^{01}|\tilde{\eta}_1\rangle + t_{10}t_{01} \otimes M_{10}^{01}|\tilde{\eta}_1\rangle - t_{11}t_{00} \otimes M_{01}^{01}|\tilde{\eta}_1\rangle - t_{10}t_{01} \otimes M_{01}^{10}|\tilde{\eta}_1\rangle
$$

= $(\mathbf{a}^-\mathbf{a}^+ - \mathbf{a}^+\mathbf{a}^-) \otimes q\tilde{\mathbf{K}}|\tilde{\eta}_1\rangle - q\mathbf{k}^2 \otimes (\mathbf{A}^- - \mathbf{A}^+)\tilde{\eta}_1\rangle$
= $(1 - q^2)\mathbf{k}^2 \otimes q\tilde{\mathbf{K}}|\tilde{\eta}_1\rangle - q\mathbf{k}^2 \otimes (1 - q^2)\tilde{\mathbf{K}}|\tilde{\eta}_1\rangle = 0,$

where the second equality is due to (3.12) and (6.64) (6.64) (6.64) .

6.6.3 ρT T Relations

The remaining task for the proof of Proposition [6.5](#page-3-3) is to show:

Lemma 6.11 *The image of the generator* $t_{ab} \in A_a(B_n)$ *by* π_i *in* [\(6.9\)](#page-2-0)–[\(6.12\)](#page-2-3) *with* $\mu_i = 1$ *satisfies* ([6.3](#page-1-0)).

Proof We show

$$
\sum_{\mathbf{b}} \rho_{\mathbf{b}} t_{\mathbf{a}\mathbf{b}} t_{\mathbf{l} \mathbf{b}'} = \rho_{\mathbf{a}} \delta_{\mathbf{b}\mathbf{l}}.
$$
 (6.71)

Another relation in [\(6.3\)](#page-1-0) can be verified similarly. See [\(6.4\)](#page-1-6) for the notation **a** .

First we treat π_i with $1 \le i \le n - 1$. From [\(6.9\)](#page-2-0)–[\(6.10\)](#page-2-5), the relation [\(6.71\)](#page-13-0) is trivially valid as $0 = 0$ unless $a_k = l_k$ for $k \neq i, i + 1$. So we focus on this situation which can be classified into the four cases $(a_i, a_{i+1}) \in \{0, 1\}^2$. The case $a_i = a_{i+1}$ is trivially valid as $0 = 0$ or $\rho_a t_{aa} = \rho_a$. A similar fact holds also for (l_i, l_{i+1}) . Thus the only non-trivial case is

$$
\sum_{b_1, b_2} r_{b_1 b_2} \mathbf{t}_{a_1 a_2, b_1 b_2} \mathbf{t}_{l_1 l_2', b_1' b_2'} = r_{a_1 a_2} \delta_{a_1 l_1} \delta_{a_2 l_2}
$$
 (6.72)

for $(a_1, a_2), (l_1, l_2) \in \{(0, 1), (1, 0)\}$, where $b'_1 = 1 - b_1$, etc. The sum extends over $(b_1, b_2) = (0, 1), (1, 0)$ only. Here we have written a_i, a_{i+1} as a_1, a_2 , etc. for simplicity and introduced the temporary notations

$$
\begin{pmatrix} t_{01,01} & t_{01,10} \\ t_{10,01} & t_{10,10} \end{pmatrix} := \begin{pmatrix} A^- & K \\ -q^2 K & A^+ \end{pmatrix}, \tag{6.73}
$$

$$
r_{01} = 1, \quad r_{10} = -q^2. \tag{6.74}
$$

The former is taken from [\(6.9\)](#page-2-0) and the latter reflects $\rho_{m,10}$... $/\rho_{m,01} = -q^2$ according to (6.6) . Now (6.72) (6.72) (6.72) reads as

$$
t_{01,01}t_{10,10} - q^2 t_{01,10}t_{10,01} = 1, \quad t_{01,01}t_{01,10} - q^2 t_{01,10}t_{01,01} = 0,
$$

\n
$$
t_{10,01}t_{10,10} - q^2 t_{10,10}t_{10,01} = 0, \quad t_{10,01}t_{01,10} - q^2 t_{10,10}t_{01,01} = -q^2.
$$
\n(6.75)

These relations can be checked directly by means of (5.15) . For instance, the first one reduces to $\mathbf{A}^- \mathbf{A}^+ + q^4 \mathbf{K}^2 = 1$.

Next we consider π_n . From [\(6.11\)](#page-2-1)–[\(6.12\)](#page-2-3), the relation ([6.71](#page-13-0)) is trivially valid as $0 = 0$ unless $a_j = l_j$ for $j \neq n$. So we focus on this situation which consists of the four cases $(a_n, l_n) \in \{0, 1\}^2$. In terms of the symbols in (6.70) , they read as

$$
t_{00}t_{11} - qt_{01}t_{10} = 1, \t_{00}t_{01} - qt_{01}t_{00} = 0,t_{10}t_{11} - qt_{11}t_{10} = 0, \t_{10}t_{01} - qt_{11}t_{00} = -q,
$$
\t(6.76)

where the coefficient $-q$ reflects $\rho_{n,1}/\rho_{n,0} = -q$ from ([6.6](#page-1-2)). Comparison of [\(6.73\)](#page-13-2) and ([6.70](#page-12-1)) shows that ([6.76](#page-13-3)) is exactly reduced to ([6.75](#page-13-4)) by replacing *q* with q^2 . \Box

This completes a proof of Proposition [6.5](#page-3-3). We did not use the property of the boundary vector $\langle \tilde{\eta}_2 |$ directly. However, its effect is working implicitly via the fact that the normalization ([6.62](#page-10-7)) is possible. We note that the representation π_i satisfies further relations obtained by taking the coefficients of the non-highest powers of *x* in [\(6.65\)](#page-11-0).

6.7 Bibliographical Notes and Comments

This chapter is an extended exposition of [93, Sect. 4] and [94]. As mentioned in the beginning of Sect. [6.1,](#page-0-2) the algebra $A_a(B_n)$ in this chapter is different from Fun(SO_q(2n + 1)) in [127, Definition 11] which is defined with $(2n + 1)^2$ generators based on the vector representation. For $n = 2$, an explicit embedding $A_q(B_2)(\simeq$ $A_a(C_2)$ \hookrightarrow Fun(SO_{*q*2}(5)) is shown in [94, Theorem 2.1]. The concrete forms of the fundamental representations (6.9) (6.9) (6.9) – (6.12) (6.12) , Proposition [6.5](#page-3-3) and its proof based on the tetrahedron equation $MMLL = LLMM$ are presented for the first time in Sect. [6.6](#page-9-0).