
Chapter 3
3D R From Quantized Coordinate Ring
of Type A

Abstract Letgbe a classical simpleLie algebra andUq(g)be the quantizeduniversal
enveloping algebra of g. There is a Hopf algebra dual toUq(g) which corresponds to
a q deformation of the algebra of functions on the Lie group of g. It will be called the
quantized coordinate ring and denoted by Aq(g) in this book. We assume that q is
generic throughout. In this chapter, Aq(g) forg of typeA is treated based on a concrete
realization by generators and relations, deferring a more universal formulation to
Sect. 10.2. It turns out that an intertwiner of certain Aq(g)modules leads to a 3D R, a
solution of the tetrahedron equation. It has set-theoretical and birational counterparts
which satisfy the tetrahedron equation in the respective setting. The birational case
admits bilinearization in terms of tau functions.

3.1 Quantized Coordinate Ring Aq(An−1)

Let n ≥ 2 be an integer. This chapter is devoted to the type A case g = An−1.1

The quantized coordinate ring Aq(An−1) is a Hopf algebra [1] with n2 generators
(ti j )1≤i, j≤n . In terms of the n by n matrix T = (ti j ), their relations are presented in
the so-called RT T = T T R form and the unit quantum determinant condition:

∑

m,p

Ri j
mptmktpl =

∑

m,p

t jptim R
mp
kl , (3.1)

∑

σ∈Sn

(−q)l(σ )t1σ1 · · · tnσn = 1. (3.2)

The former is called the RT T relation. The symbolSn denotes the symmetric group
of degree n and l(σ ) is the length of the permutation σ . The structure constant Ri j

kl
is specified by

1 Although, Theorem 3.3 is valid for general classical simple Lie algebra g.
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22 3 3D R From Quantized Coordinate Ring of Type A

∑

i, j,k,l

Ri j
kl Eik ⊗ E jl = q

∑

i

Eii ⊗ Eii +
∑

i �= j

Eii ⊗ E j j + (q − q−1)
∑

i> j

Ei j ⊗ E ji ,

(3.3)

where the indices are summed over {1, 2, . . . , n}, and Ei j is a matrix unit. The matrix
(3.3) is extracted as

∑

i, j,m,l

Ri j
ml Eim ⊗ E jl = q lim

x→∞ x−1R(x)|k=q−1 (3.4)

from the quantum R matrix R(x) for the vector representation of Uq(A
(1)
n−1) given

in [64, Eq. (3.5)].2 Explicitly, the relation (3.1) reads as

[tik, t jl] =
{
0 (i < j, k > l),

(q − q−1)t jk til (i < j, k < l),

tik t jk = qt jk tik (i < j), tki tk j = qtk j tki (i < j).

(3.5)

The coproduct or co-multiplication is given by

�(ti j ) =
∑

k

tik ⊗ tk j . (3.6)

We will use the same symbol � flexibly to also mean the multiple coproducts like
(� ⊗ 1) ◦ � = (1 ⊗ �) ◦ �, etc. The antipode S and the counit ε are given by

S(ti j ) = (−q)i− j
∑

σ∈Sn−1

(−q)l(σ )t1,σ1 · · · t j−1,σ j−1 t j+1,σ j+1 · · · tn,σn , (3.7)

ε(ti j ) = δi j . (3.8)

The sum in (3.7) is the quantum minor which extends over permutations of
{1, . . . , n} \ {i}.
Example 3.1 The simplest case n = 2 is Aq(A1). It is generated by t11, t12, t21, t22
with the relations

t11t21 = qt21t11, t12t22 = qt22t12, t11t12 = qt12t11, t21t22 = qt22t21,

[t12, t21] = 0, [t11, t22] = (q − q−1)t21t12, t11t22 − qt12t21 = 1.
(3.9)

The quantum determinant t11t22 − qt12t21 appearing in (3.9) is central. The rule (3.6)
implies that the coproduct � is obtained by formally replacing the product in matrix
multiplication by ⊗ as

2 In Chaps. 3, 5, 6 and 8, the quantum Rmatrices and their elements Ri j
ml appear only as the structure

constant in the RT T relation. They should not be confused with those of the 3D R.
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(
t11 t12
t21 t22

)
�
→

(
t11 ⊗ t11 + t12 ⊗ t21 t11 ⊗ t12 + t12 ⊗ t22
t21 ⊗ t11 + t22 ⊗ t21 t21 ⊗ t12 + t22 ⊗ t22

)
. (3.10)

The multiple coproduct is similar. It is easy to check that � is an algebra homo-
morphism, for example, �(t11)�(t21) = q�(t21)�(t11) by using (3.9) and (3.10). A
defining axiom m ◦ (1 ⊗ S) ◦ � = ι ◦ ε for example,3 is checked as

(3.10)
1⊗S
→

(
t11 ⊗ t22 + t12 ⊗ (−qt21) t11 ⊗ (−q−1t12) + t12 ⊗ t11
t21 ⊗ t22 + t22 ⊗ (−qt21) t21 ⊗ (−q−1t12) + t22 ⊗ t11

)

m
→
(
t11t22 − qt12t21 −q−1t11t12 + t12t11
t21t22 − qt22t21 −q−1t21t12 + t22t11

)
=

(
1 0
0 1

)
. (3.11)

A sketch of “derivation” of the relations (3.9) from the dual Uq(sl2) is available in
Example 10.2.

Remark 3.2 Themap t jk 
→ ξ−1
j ξk t jk with non-zero parameters ξ1, . . . , ξn is aHopf

algebra automorphism.

3.2 Representation Theory

Let Oscq = 〈a+, a−,k,k−1〉 be the q-oscillator algebra, i.e. an associative algebra
with the relations

k a+ = q a+k, k a− = q−1a−k, a−a+ = 1 − q2k2, a+a− = 1 − k2 (3.12)

and those following from the obvious ones k k−1 = k−1k = 1. It has an irreducible
representation on the Fock space Fq = ⊕

m≥0 C(q)|m〉:

k|m〉 = qm |m〉, a+|m〉 = |m + 1〉, a−|m〉 = (1 − q2m)|m − 1〉. (3.13)

In particular a−|0〉 = 0. The generators a± and k±1 will be identified with the ele-
ments of End(Fq) defined by (3.13) unless otherwise stated. We will also use the
diagonal operators h and Dq such that

h|m〉 = m|m〉, (3.14)

Dq |m〉 = (q2)m |m〉. (3.15)

Thus we may identify k as k = qh. An eigenvalue of h will be referred to as a mode
of the q-oscillator. For the notation (q2)m = (q2; q2)m , see (3.65).

3 ι and m are the unit and the multiplication of the Hopf algebra Aq (A1) under consideration.
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We will also be concerned with the dual Fock space F ∗
q = ⊕

m≥0 C(q)〈m|whose
pairing with Fq is specified by

〈m|m ′〉 = (q2)mδm,m ′ . (3.16)

The q-oscillators act on F ∗
q as

〈m|k = 〈m|qm, 〈m|a+ = 〈m − 1|(1 − q2m), 〈m|a− = 〈m + 1| (3.17)

and 〈m|h = 〈m|m. In particular 〈0|a+ = 0. They satisfy (〈m|X)|m ′〉 = 〈m|(X |m ′〉)
and

〈m|X1 · · · X j |m ′〉 = 〈m ′|X j · · · X1|m〉, (3.18)

where (· · · ) is defined by a± = a∓, k = k and h = h.
The algebra Aq(A1) in Example 3.1 has the irreducible representation π on Fq

depending on a non-zero parameter μ as follows:

π :
(
t11 t12
t21 t22

)

→

(
a− μk

−qμ−1k a+

)
. (3.19)

For Aq(An−1), there are similar representations

πi : Aq(An−1) → End(Fq) (1 ≤ i ≤ n − 1). (3.20)

It contains a non-zero parameter μi and factors through (3.19) via the surjective
map Aq(An−1) � Aq(sl2,i ). Here, sl2,i denotes the A1 = sl2-subalgebra of An−1
associated with i . It is given by

πi :

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t11 t1n
. . .

ti−1,i−1
ti,i ti,i+1
ti+1,i ti+1,i+1

ti+2,i+2

. . .

tn1 tnn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


→

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
a− μik

−qμ−1
i k a+

1
. . .

1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.21)

where all the blanks on the RHS are to be understood as 0. It is easy to see that
π1, . . . , πn−1 are all inequivalent and irreducible. Starting from them, one can con-
struct tensor product representations πi1 ⊗ · · · ⊗ πil : Aq(An−1) → End(F ⊗l

q ) via
f 
→ (πi1 ⊗ · · · ⊗ πil )(�( f )) using the multiple coproduct � obtained by iterating
(3.6) l − 1 times. A natural question at this stage is, what is the totality of irreducible
representations up to equivalence and how they can be realized. The answer has been
known for Aq(g) associated with any classical simple Lie algebra g.
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Theorem 3.3 (i) For each vertex i of the Dynkin diagram of g, Aq(g) has an
irreducible representation πi factoring through (3.19) via Aq(g) � Aqi (sl2,i ).

(ii) Irreducible representations of Aq(g) up to equivalence are in one-to-one cor-
respondence with the elements of the Weyl group W of g.

(iii) Let w = si1 · · · sil ∈ W be a reduced expression in terms of the simple reflec-
tions. Then the irreducible representation corresponding to w is isomorphic to
πi1 ⊗ · · · ⊗ πil .

In (i),qi = q(αi ,αi )/2,whereαi is a simple root.4 The assertions (ii) and (iii) actually
hold up to the degrees of freedom of the parameters as μi in (3.19). See [138, 139,
146] for the detail. We call πi (i = 1, . . . , rank g) the fundamental representations.
We will often denote πi1 ⊗ · · · ⊗ πil by πi1,...,il for short.

Returning to the g = An−1 case, the representationsπ1, . . . , πn−1 defined in (3.21)
are the fundamental representations of Aq(An−1) in the above sense. TheWeyl group
W (An−1) = 〈s1, . . . , sn−1〉 is generated by the simple reflections s1, . . . , sn−1 obey-
ing the Coxeter relations

s2i = 1, si s j = s j si (|i − j | ≥ 2), si s j si = s j si s j (|i − j | = 1). (3.22)

From the second relation here and Theorem 3.3 (iii) it follows that πi ⊗ π j � π j ⊗
πi for |i − j | ≥ 2. This isomorphism is simply provided as the transposition of
components:

P(x ⊗ y) = y ⊗ x . (3.23)

In order to show this, one should check that

P(πi ⊗ π j )(�( f )) = (π j ⊗ πi )(�( f ))P (|i − j | ≥ 2) (3.24)

holds for any f ∈ Aq(An−1). Since � is an algebra homomorphism, it suffices to
consider the f = tkm case:

P
(∑

l

πi (tkl) ⊗ π j (tlm)
)

=
(∑

l

π j (tkl) ⊗ πi (tlm)
)
P for |i − j | ≥ 2, (3.25)

which is equivalent to

∑

l

π j (tlm) ⊗ πi (tkl) =
∑

l

π j (tkl) ⊗ πi (tlm) for |i − j | ≥ 2. (3.26)

This indeed holds thanks to the simple and sparse structure of (3.21).

Remark 3.4 Not only for An−1 but for general g, the equivalence of πi ⊗ π j �
π j ⊗ πi for i, j such that si s j = s j si is always assured by the transposition P in
(3.23).

4 We normalize the simple root so that qi = q when g is simply-laced or αi is short.
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By virtue of Remark 3.2, all the parameters μ1, . . . , μn−1 in the fundamental
representations π1, . . . , πn−1 are removed by the choice ξ j = ∏ j−1

k=1 μk . Henceforth
we set μ1 = · · · = μn−1 = 1 in the rest of the chapter without loss of generality.

3.3 Intertwiner for Cubic Coxeter Relation

The isomorphismof the two irreducible representationswill be called the intertwiner.
By Schur’s lemma, it is unique up to the overall normalization. The transposition P
in (3.23) is the intertwiner corresponding to the quadratic Coxeter relation.

Let us proceed to the cubic one. In view of the structure (3.21), it suffices to
consider Aq(A2) and the equivalence π121 � π212 reflecting the Coxeter relation
s1s2s1 = s2s1s2. Let


 : Fq ⊗ Fq ⊗ Fq −→ Fq ⊗ Fq ⊗ Fq (3.27)

be the associated intertwiner. It is characterized by the relations:


 ◦ π121(�( f )) = π212(�( f )) ◦ 
 (∀ f ∈ Aq(A2)), (3.28)


(|0〉 ⊗ |0〉 ⊗ |0〉) = |0〉 ⊗ |0〉 ⊗ |0〉. (3.29)

The latter just fixes the normalization. The absence of terms other than |0〉 ⊗ |0〉 ⊗ |0〉
in its RHS is assured by the weight conservation. See (3.48), (3.47) and (3.30).

It is convenient to work with R defined by

R = 
P13 : Fq ⊗ Fq ⊗ Fq −→ Fq ⊗ Fq ⊗ Fq . (3.30)

Here P13 is the interchanger of the first and the third components defined before
(2.20). We also call R the intertwiner. It will be shown to satisfy the tetrahedron
equations of type RRRR = RRRR in Theorem 3.20 (and also RLLL = LLLR in
Theorem 3.21), therefore R is a 3D R in the sense of Sect. 2.1. From (3.28) and
(3.29), R is characterized by

R ◦ π121(�̃( f )) = π212(�( f )) ◦ R (∀ f ∈ Aq(A2)), (3.31)

R(|0〉 ⊗ |0〉 ⊗ |0〉) = |0〉 ⊗ |0〉 ⊗ |0〉, (3.32)

where �̃( f ) = P13(�( f ))P13. From (3.6) we have

�(ti j ) =
∑

1≤l1,l2≤3

til1 ⊗ tl1l2 ⊗ tl2 j , �̃(ti j ) =
∑

1≤l1,l2≤3

tl2 j ⊗ tl1l2 ⊗ til1 . (3.33)

According to (3.21), the image of the 9 generators T = (ti j )1≤i, j≤3 by the fundamen-
tal representations reads as
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π1(T ) =
⎛

⎝
a− k 0

−qk a+ 0
0 0 1

⎞

⎠ , π2(T ) =
⎛

⎝
1 0 0
0 a− k
0 −qk a+

⎞

⎠ . (3.34)

From (3.33), π121(�(T )) is expressed as

⎛

⎝
a− ⊗ 1 ⊗ a− − qk ⊗ a− ⊗ k k ⊗ a− ⊗ a+ + a− ⊗ 1 ⊗ k k ⊗ k ⊗ 1

−q(a+ ⊗ a− ⊗ k + k ⊗ 1 ⊗ a−) a+ ⊗ a− ⊗ a+ − qk ⊗ 1 ⊗ k a+ ⊗ k ⊗ 1
q21 ⊗ k ⊗ k −q1 ⊗ k ⊗ a+ 1 ⊗ a+ ⊗ 1

⎞

⎠ .

(3.35)

π121(�̃(T )) is given by reversing the order of the tensor product as

⎛

⎝
a− ⊗ 1 ⊗ a− − qk ⊗ a− ⊗ k a+ ⊗ a− ⊗ k + k ⊗ 1 ⊗ a− 1 ⊗ k ⊗ k

−q(k ⊗ a− ⊗ a+ + a− ⊗ 1 ⊗ k) a+ ⊗ a− ⊗ a+ − qk ⊗ 1 ⊗ k 1 ⊗ k ⊗ a+
q2k ⊗ k ⊗ 1 −qa+ ⊗ k ⊗ 1 1 ⊗ a+ ⊗ 1

⎞

⎠ .

(3.36)

π212(�(T )) takes the form

⎛

⎝
1 ⊗ a− ⊗ 1 1 ⊗ k ⊗ a− 1 ⊗ k ⊗ k

−qa− ⊗ k ⊗ 1 a− ⊗ a+ ⊗ a− − qk ⊗ 1 ⊗ k a− ⊗ a+ ⊗ k + k ⊗ 1 ⊗ a+
q2k ⊗ k ⊗ 1 −q(k ⊗ a+ ⊗ a− + a+ ⊗ 1 ⊗ k) a+ ⊗ 1 ⊗ a+ − qk ⊗ a+ ⊗ k

⎞

⎠ .

(3.37)

Thus the intertwining relation (3.31) reads as

t11 : R(a− ⊗ 1 ⊗ a− − qk ⊗ a− ⊗ k) = (1 ⊗ a− ⊗ 1)R, (3.38)

t12 : R(a+ ⊗ a− ⊗ k + k ⊗ 1 ⊗ a−) = (1 ⊗ k ⊗ a−)R, (3.39)

t13 : R(1 ⊗ k ⊗ k) = (1 ⊗ k ⊗ k)R, (3.40)

t21 : R(k ⊗ a− ⊗ a+ + a− ⊗ 1 ⊗ k) = (a− ⊗ k ⊗ 1)R, (3.41)

t22 : R(a+ ⊗ a− ⊗ a+ − qk ⊗ 1 ⊗ k) = (a− ⊗ a+ ⊗ a− − qk ⊗ 1 ⊗ k)R,

(3.42)

t23 : R(1 ⊗ k ⊗ a+) = (a− ⊗ a+ ⊗ k + k ⊗ 1 ⊗ a+)R, (3.43)

t31 : R(k ⊗ k ⊗ 1) = (k ⊗ k ⊗ 1)R, (3.44)

t32 : R(a+ ⊗ k ⊗ 1) = (k ⊗ a+ ⊗ a− + a+ ⊗ 1 ⊗ k)R, (3.45)

t33 : R(1 ⊗ a+ ⊗ 1) = (a+ ⊗ 1 ⊗ a+ − qk ⊗ a+ ⊗ k)R, (3.46)

where the left column specifies the choice of f in (3.31).
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The intertwiner R is regarded as a matrix R = (Rabc
i jk ) acting on F ⊗3

q as

R(|i〉 ⊗ | j〉 ⊗ |k〉) =
∑

a,b,c

Rabc
i jk |a〉 ⊗ |b〉 ⊗ |c〉. (3.47)

The normalization condition (3.29) becomes Rabc
000 = δa0δ

b
0δ

c
0. The simplest equations

(3.40) and (3.44) imply

Rabc
i jk = 0 unless (a + b, b + c) = (i + j, j + k). (3.48)

This property will be referred to as theweight conservation. It may also be rephrased
as

[R, zh ⊗ zh ⊗ 1] = [R, 1 ⊗ zh ⊗ zh] = 0, (3.49)

where h is the number operator (3.14) and z is a non-zero parameter. The other
equations lead to recursion relations of the matrix elements as follows:

t11 : qi+k+1(1−q2 j )Ra,b,c
i, j−1,k + (1−q2b+2)Ra,b+1,c

i, j,k = (1−q2i )(1−q2k)Ra,b,c
i−1, j,k−1, (3.50)

t12 : qk(1−q2 j )Ra,b,c
i+1, j−1,k + qi (1−q2k)Ra,b,c

i, j,k−1 = qb(1−q2c+2)Ra,b,c+1
i, j,k , (3.51)

t21 : qi (1−q2 j )Ra,b,c
i, j−1,k+1 + qk(1−q2i )Ra,b,c

i−1, j,k = qb(1−q2a+2)Ra+1,b,c
i, j,k , (3.52)

t22 : q(qa+c−qi+k)Ra,b,c
i, j,k + (1−q2 j )Ra,b,c

i+1, j−1,k+1 = (1−q2a+2)(1−q2c+2)Ra+1,b−1,c+1
i, j,k ,

(3.53)

t23 : q j Ra,b,c
i, j,k+1 − qa Ra,b,c−1

i, j,k − qc(1−q2a+2)Ra+1,b−1,c
i, j,k = 0, (3.54)

t32 : qcRa−1,b,c
i, j,k − q j Ra,b,c

i+1, j,k + qa(1 − q2c+2)Ra,b−1,c+1
i, j,k = 0, (3.55)

t33 : qa+c+1Ra,b−1,c
i, j,k − Ra−1,b,c−1

i, j,k + Ra,b,c
i, j+1,k = 0. (3.56)

The relations (3.54), (3.55) and (3.56) can be used to reduce k, i and j , respectively.
Consequently, an arbitrary Rabc

i jk satisfying (3.48) is attributed to R000
000 = 1. Thus R is

determined only by these relations. Since the intertwiner exists, compatibility of the
reduction procedure and validity of the other relations is guaranteed. The resulting
explicit formula will be presented in (3.67).

Lemma 3.5 Set Xi j = (−q)i− j (S(t4− j,4−i )|q→q−1)′ ∈ Aq (A2) (1 ≤ i, j ≤ 3), where S
is the antipode (3.7) and the prime reverses the order of product of generators. Explicitly we
have

X11 = t22t11 − q−1t21t12, X12 = q−2(t31t12 − qt32t11),

X13 = q−3(−t31t22 + qt32t21), X21 = t21t13 − qt23t11,

X22 = t33t11 − q−1t31t13, X23 = q−2(t31t23 − qt33t21),

X31 = q(−t22t13 + qt23t12), X32 = t32t13 − qt33t12,

X33 = t33t22 − q−1t32t23.
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Then the following relations are valid:

π212(�(Xi j )) = π121(�̃(ti j )), π212(�̃(Xi j )) = π121(�(ti j )). (3.57)

Proof The two relations are equivalent by the conjugation by P13. Let us illus-
trate a direct check of π212(�(X23) = π121(�̃(t23)). The LHS is q−2π212(�(t31t23 −
qt33t21)). Substituting (3.36) and (3.37), we find that the relation to be shown is given
by

(k ⊗ k ⊗ 1)(a− ⊗ a+ ⊗ k + k ⊗ 1 ⊗ a+)

+ (a+ ⊗ 1 ⊗ a+ − qk ⊗ a+ ⊗ k)(a− ⊗ k ⊗ 1) = 1 ⊗ k ⊗ a+.

To check this by (3.12) is straightforward. The other cases are similar. �

By definition, the transpose t Y of an operator Y ∈ End(Fq) is specified by
t Y |m〉 = ∑

m ′ cmm ′ |m ′〉 for Y |m〉 = ∑
m ′ cm

′
m |m ′〉. Similar notations will be used also

for operators on the tensor product of Fock spaces.
Set

DA = Dq ⊗ Dq ⊗ Dq , (3.58)

where Dq is defined by (3.15).

Lemma 3.6 The transposed representations are related to the original ones as

t (π212(�(ti j ))) = DAπ121(�̃(t j ′i ′))D−1
A ,

t (π121(�̃(ti j ))) = DAπ212(�(t j ′i ′))D−1
A

for i, j ∈ {1, 2, 3}, where i ′ = 4 − i .

Proof The two relations are equivalent. See (3.33). From (3.13) and (3.15), we see
t (a±) = Dqa∓D−1

q and tk = DqkD−1
q . They lead to

tπ1(ti j ) = Dqπ2(t j ′i ′)D
−1
q , tπ2(ti j ) = Dqπ1(t j ′i ′)D

−1
q

for the fundamental representations (3.34). The assertion is a corollary of this prop-
erty. �

Proposition 3.7 The intertwiner R has the following properties concerning the con-
jugation by P13, the inverse R−1 and the transpose t R:

R = P13RP13, (3.59)

R−1 = R, (3.60)
tR = DARD−1

A . (3.61)
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Proof These properties are proved by invoking the uniqueness of the intertwiner
satisfying (3.31) and (3.32). To show (3.59), it suffices to recognize that the set of
relations (3.38)–(3.46) are invariant under the conjugation by P13.

Next we show (3.60). Comparison of the two choices f = ti j and f = Xi j in
(3.31) using Lemma 3.5 shows that R and R−1 satisfy the same set of intertwining
relations. The normalization condition (3.32) is also invariant under the exchange
R ↔ R−1, hence (3.60) follows.

Finally, we show (3.61). Take the transpose of (3.31). From Lemma 3.6 we find
that D−1

A
t RDA again satisfies (3.31). The normalization condition (3.32) is also

invariant under the exchange R ↔ D−1
A

tRDA, hence (3.61) follows. �

In terms of the matrix elements, the properties (3.59) and (3.61) are rephrased as

Rabc
i jk = Rcba

k ji , (3.62)

Rabc
i jk = (q2)i (q2) j (q2)k

(q2)a(q2)b(q2)c
Ri jk
abc. (3.63)

Remark 3.8 One may introduce another parameter ν by replacing the latter two
formulas in (3.13) by a+|m〉 = ν|m + 1〉, a−|m〉 = ν−1(1 − q2m)|m − 1〉 keeping
(3.12) invariant. It corresponds to changing the normalization of |m〉 depending on
m. The resulting 3D R is (1 ⊗ νh ⊗ 1)R(1 ⊗ ν−h ⊗ 1).

Remark 3.9 If one switches from k to k̂ := q1/2k including the zero point energy of
theq-oscillator (see (3.13)), all the “non-autonomous”q’s in (3.38)–(3.46) disappear.
It opens an avenue toward another class of 3D R associatedwith the so-calledmodular
double of q and q̃-oscillators. This topic is not covered in this book. See [97]. The
same feature will be observed for the 3D K in Remark 5.5.

Remark 3.10 From (3.16), (3.47) and (3.63), the 3D R acts on the dual Fock space
as

(〈i | ⊗ 〈 j | ⊗ 〈k|)R =
∑

a,b,c

Rabc
i jk 〈a| ⊗ 〈b| ⊗ 〈c|. (3.64)

3.4 Explicit Formula for 3D R

In this section we present explicit formulas of the matrix elements Rabc
i jk (3.47) of the

intertwiner R characterized by (3.31) and (3.32).
We assume that q is generic and use the notation
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(z; q)m =
m∏

j=1

(1 − zq j−1), (q)m = (q; q)m,

{
r1, . . . , rm
s1, . . . , sn

}

q

=
{∏m

i=1(q)ri∏n
i=1(q)si

∀ri , si ∈ Z≥0,

0 otherwise,
(
m

n

)

q

=
(

m

m − n

)

q

=
{

m

n,m − n

}

q

.

(3.65)

Unless stated otherwise, the abbreviation (q)m = (q; q)m will be used also for (qk)m
with k ∈ Z. Thus (q2)m for instance means (q2; q2)m . The two-storied symbol
in the second line will be used without assuming a “well-poisedness” constraint∑m

i=1 ri = ∑n
i=1 si . The non-vanishing condition ∀ri , si ∈ Z≥0 is quite important

and will impose non-trivial constraints on the summation variables in what follows.

The special case
{

j1+···+ jn
j1,..., jn

}

q
is a q-multinomial coefficient belonging to Z≥0[q]. In

particular the n = 2 case in the third line is called the q-binomial.
The Kronecker delta will be written either as δab or δab . We will also use the

notation

(x)+ = max(x, 0) = x − min(x, 0) (x ∈ R). (3.66)

Theorem 3.11

Rabc
i jk = δa+b

i+ j δ
b+c
j+k

∑

λ+μ=b

(−1)λqi(c− j)+(k+1)λ+μ(μ−k) (q
2)c+μ

(q2)c

(
i

μ

)

q2

(
j

λ

)

q2

, (3.67)

where the sum is over λ,μ ∈ Z≥0 such that λ + μ = b. (Thus (3.67) is actually a
single sum over (b − i)+ ≤ λ ≤ min(b, j) or (b − j)+ ≤ μ ≤ min(b, i).)

Proof The prefactor δa+b
i+ j δ

b+c
j+k represents the weight conservation (3.48). The recur-

sion relations (3.55) and (3.56) can be iterated m times to reduce i and j indices as

Rabc
i jk = δa+b

i+ j δ
b+c
j+k

m∑

r=0

q(m−r)(c− j)+r(a− j−m+r) (q
2)c+r

(q2)c

(
m

r

)

q2

Ra−m+r,b−r,c+r
i−m, j,k ,

Rabc
i jk = δa+b

i+ j δ
b+c
j+k

m∑

r=0

(−1)r qr(a+c−2m+2r+1)

(
m

r

)

q2

Ra−m+r,b−r,c−m+r
i, j−m,k .

By combining them, general elements are reduced to R00k
00k . The relation (3.54) shows

that R00k
00k = R000

000 = 1. The result of these reductions is given by (3.67). �
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Example 3.12 The following is the list of all the non-zero Rabc
314 .

R041
314 = −q2(1 − q4)(1 − q6)(1 − q8),

R132
314 = (1 − q6)(1 − q8)(1 − q4 − q6 − q8 − q10),

R223
314 = q2(1 + q2)(1 + q4)(1 − q6)(1 − q6 − q10),

R314
314 = q6(1 + q2 + q4 − q8 − q10 − q12 − q14),

R405
314 = q12.

Remark 3.13 From (3.67) we have

(−1)b Rabc
i jk |q→q−1

= δa+b
i+ j δ

b+c
j+k

∑

λ+μ=b

qi( j−c)−(k+1)b+2λ(λ− j)−2μa (q2)c+μ

(q2)c

(
i

μ

)

q2

(
j

λ

)

q2

.
(3.68)

From (q2)c+μ/(q2)c = (q2c+2; q2)μ, it follows that (−1)b Rabc
i jk ≥ 0 in the regime

q > 1.

Remark 3.14 Set R(x, y) = (1 ⊗ xh ⊗ 1)R(1 ⊗ y−h ⊗ 1), where x, y are non-
zero parameters and h is defined by (3.14). Thanks to the weight conservation
(3.49), R(x, y) also satisfies the tetrahedron equation R124(x, y)R135(x, y)R236(x, y)
R456(x, y) = R456(x, y)R236(x, y)R135(x, y)R124(x, y). In particular, R(−1, 1) has
the elements (−1)b Rabc

i jk . Thus Remark 3.13 shows that R(−1, 1) is a 3D R whose
elements are all non-negative for q ≥ 1.

Example 3.15

Ra0c
i jk = qikδai+ jδ

c
j+k, Rabc

i0k = qac (q2)i (q2)k

(q2)a(q2)b(q2)c
δa+b
i δb+c

k ,

Rabc
0 jk = (−1)bqb(k+1)

(
j

b

)

q2

δa+b
j δb+c

j+k, R0bc
i jk = (−1) j q j (c+1) (q

2)k

(q2)c
δbi+ jδ

b+c
j+k,

R11k
11k = 1−(1+q2)q2k .

It is an easy exercise to deduce a formula for the operator Rab
i j ∈ End(Fq) in the

general scheme (2.4) by comparing it with (2.2) and using Theorem 3.11. The result
reads as5

Rab
i j = δa+b

i+ j

∑

λ+μ=b

(−1)λqλ+μ2−ib

(
i

μ

)

q2

(
j

λ

)

q2

(a−)μ(a+) j−λki+λ−μ, (3.69)

5 This Rab
i j is not the structure constants in (3.1)–(3.4).
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where the sum extends over λ,μ ∈ Z≥0 such that λ + μ = b. As a consequence of
the weight conservation (3.49), Rab

i j is homogeneous in the sense that

zhRab
i j = Rab

i j z
h+ j−b. (3.70)

Example 3.16

⎛

⎜⎜⎜⎜⎜⎝

R00
00 R00

01 R00
10 R00

11

R01
00 R01

01 R01
10 R01

11

R10
00 R10

01 R10
10 R10

11

R11
00 R11

01 R11
10 R11

11

⎞

⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

1 0 0 0

0 −qk a− 0

0 a+ k 0

0 0 0 a−a+ − k2

⎞

⎟⎟⎟⎟⎠
. (3.71)

Except for the bottom right element, this coincides with the corresponding matrix
from of the 3D L in (11.14)|α=1. Its consequence will be mentioned in Example 13.1.

⎛

⎜⎜⎝

R02
02 R02

11 R02
20

R11
02 R11

11 R11
20

R20
02 R20

11 R20
20

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

q2k2 −a−k (a−)2

−q(1 + q2)a+k a−a+ − k2 q−1(1 + q2)a−k

(a+)2 a+k k2

⎞

⎟⎟⎠ . (3.72)

Reversing the order of the columns of this matrix coincides with the central three-
by-three block in (8.8) up to coefficients.

Example 3.17 The following formulas will be used in Example 13.1:

Rm,0
m,0 = km, Rm,1

m+1,0 = q−m

(
m + 1

1

)

q2

a−km,

Rm+1,0
m,1 = a+km, Rm,1

m,1 = q1−m
((

m

1

)

q2

a−a+ − k2
)
km−1.

Let us present another formula in terms of the q-hypergeometric function [50]:

2φ1

(
α, β

γ
; q, w

)
=

∑

n≥0

(α; q)n(β; q)n

(γ ; q)n(q; q)n
wn. (3.73)

Theorem 3.18

Rabc
i jk = δa+b

i+ j δ
b+c
j+k

q(a− j)(c− j)

(q2)b
Pb(q

2i , q2 j , q2k), (3.74)

Pb(x, y, z) = (q2−2bz; q2)b 2φ1

(
q−2b, q2−2b yz

q2−2bz
; q2, q2x

)
, (3.75)
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Pb(x, y, z) = q−b(b−1)(q2)b

∮
du

2π iub+1

(−q2−2bxyzu; q2)∞(−u; q2)∞
(−xu; q2)∞(−zu; q2)∞

, (3.76)

where the integral encircles u = 0 anti-clockwise picking up the residue.

Proof From (3.39) and R = R−1 we have R(1 ⊗ k ⊗ a−) = (k ⊗ 1 ⊗ a− + a+ ⊗
a− ⊗ k)R. In terms of matrix elements it reads as

q j (1−q2k)Ra,b,c
i, j,k−1 = qa(1−q2c+2)Ra,b,c+1

i, j,k + qc(1−q2b+2)Ra−1,b+1,c
i, j,k . (3.77)

Substituting (3.74) into (3.77) and (3.50), we get the recursion relations

(1 − z)Pb(x, y, q
−2z) = q−2bx(1 − q−2b yz)Pb(x, y, z) + Pb+1(x, y, z), (3.78)

q−2bxz(1 − y)Pb(x, q
−2y, z) + Pb+1(x, y, z) = (1 − x)(1 − z)Pb(q

−2x, y, q−2z).
(3.79)

The initial condition should be set as P0(x, y, z) = 1 since Ra0c
i jk = δai+ jδ

c
j+kq

ik from
(3.67). Obviously, both formulas (3.75) and (3.76) satisfy the initial condition. The
remaining task is to show that they satisfy either one of the above recursion relations.
It is straightforward to check that (3.75) satisfies (3.78) by comparing coefficients of
the powers of x . To show (3.76), substitute it into (3.79) and replace u by q2u in the
RHS. Then the relation to be shown becomes

∮
du(−q−2bxyzu; q2)∞(−q2u; q2)∞

ub+2(−xu; q2)∞(−zu; q2)∞
X = 0,

X = xz(1 − y)u(1 + u) − (1 − x)(1 − z)u + (1 − q2b+2)(1 + u).

By setting f (u) = (−q−2−2bxyzu; q2)∞(−u; q2)∞/((−xu; q2)∞(−zu; q2)∞), this
is identified with the identity

∮
du
ub+2 ( f (q2u) − q2b+2 f (u)) = 0. �

Note that (3.75) is a terminating series due to the entry q−2b. In fact, Pb(x, y, z) is
a polynomial belonging to q−2b(b−1)

Z[q2, x, y, z] with the symmetry Pb(x, y, z) =
Pb(z, y, x) reflecting (3.59).

Example 3.19

P0(x, y, z) = 1, P1(x, y, z) = 1 − x − z + xyz,

q4P2(x, y, z) = x2y2z2 − (1 + q2)xyz(−1 + x + z)

+ q2(q2 − x − q2x + x2 − z − q2z + xz + q2xz + z2),

R405
314 = q12P0(q

6, q2, q8), R314
314 = q6P1(q6, q2, q8)

1 − q2
, R223

314 = q2P2(q6, q2, q8)

(1 − q2)(1 − q4)
.

This agrees with Example 3.12.
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The formula (3.76) is also presented in terms of the generating series:

∑

b≥0

qb(b−1)ub

(q2)b
Pb(x, q

2b−2y, z) = (−xyzu; q2)∞(−u; q2)∞
(−xu; q2)∞(−zu; q2)∞

. (3.80)

Due to (3.76), matrix elements of the 3D R are expressed as

Rabc
i jk = δa+b

i+ j δ
b+c
j+k q

ik+b
∮

du

2π iub+1

(−q2+a+cu; q2)∞(−q−i−ku; q2)∞
(−qa−cu; q2)∞(−qc−au; q2)∞

. (3.81)

Note that the ratio of the four infinite products equals (−q−i−ku; q2)i/

(−qc−au; q2)a+1 because of a − c = i − k. By means of the identity

(zx; p)∞
(z; p)∞ =

∑

k≥0

(x; p)k
(p; p)k z

k, (3.82)

it is expanded as

(
∑

λ≥0

(
λ + a

λ

)

q2

(−u)λqλ(c−a)

) ⎛

⎝
∑

0≤μ≤i

(
i

μ

)

q2

qμ(μ−i−k−1)uμ

⎞

⎠ . (3.83)

Collecting the coefficients of ub, one gets

Rabc
i jk = δa+b

i+ j δ
b+c
j+k

∑

λ+μ=b

(−1)λqik+b+λ(c−a)+μ(μ−i−k−1)

(
λ + a

a

)

q2

(
i

μ

)

q2

(3.84)

summed over λ,μ ∈ Z≥0 under the constraint λ + μ = b. Thus it is actually the
single sum over (b − i)+ ≤ λ ≤ b or 0 ≤ μ ≤ min(b, i).

Both formulas (3.67) and (3.84) show that Rabc
i jk is a Laurent polynomial of q with

integer coefficients. On the other hand, Example 3.12 suggests that it is actually a
polynomial in q. In Lemma 3.29, a stronger claim identifying the constant term of
the polynomial will be presented which will lead to further aspects.

One can express (3.84) in terms of the terminating q-hypergeometric as

Rabc
i jk = δa+b

i+ j δ
b+c
j+k (−1)bqik+b(k−i+1)

(
a + b

a

)

q2
2φ1

(
q−2b, q−2i

q−2a−2b
; q2, q−2c

)
,

(3.85)

which is a different formula from (3.74)–(3.75). It manifests the symmetry

Rabc
i jk = (−q)b−i (q

2)i (q2) j

(q2)a(q2)b
R jic
bak = (−q)b−i (q

2)k

(q2)c
Rbak

jic , (3.86)
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where the second equality is due to (3.63). In Chap. 13 we will use

Rabc
i jk = δa+b

i+ j δ
b+c
j+k(−1) j q(1−a) j+(a+ j)c (q

2)k

(q2)c

×
∑

0≤μ≤min(a, j)

(−1)μqμ(μ−2c−1)

(
a + b − μ

b

)

q2

(
j

μ

)

q2

,

(3.87)

which is derived from (3.84) by applying the latter transformation in (3.86).

3.5 Solution to the Tetrahedron Equations

Recall that we have characterized R as the intertwiner of Aq(A2) modules in (3.31)
and (3.32). Various explicit formulas for it are presented in the previous section. Now
we proceed to the proof of the tetrahedron equations.

3.5.1 RRRR = RRRR Type

Theorem 3.20 The intertwiner R satisfies the tetrahedron equation of RRRR =
RRRR type in (2.6).

Proof Consider Aq(A3) and let π1, π2, π3 be the fundamental representations given
in (3.21). The Weyl group W (A3) is generated by simple reflections s1, s2, s3 with
the relations

s2i = 1, s1s3 = s3s1, s1s2s1 = s2s1s2, s2s3s2 = s3s2s3. (3.88)

According to Theorem 3.3, the equivalence of the tensor product representations
π13 � π31, π121 � π212 and π232 � π323 are valid. (πi1,...,ik is a shorthand for πi1 ⊗
· · · ⊗ πik as mentioned after Theorem 3.3.) By Remark 3.4, the intertwiner for π13 �
π31 is just the transposition of the components. Let 
(1) and 
(2) be the intertwiners
for the latter two, i.e.


(1) ◦ π121(�( f )) = π212(�( f )) ◦ 
(1),


(2) ◦ π232(�( f )) = π323(�( f )) ◦ 
(2)
(3.89)

for any f ∈ Aq(A3). By inspection of (3.21), they are both given by the same 
 as
the Aq(A2) case characterized in (3.27)–(3.29). Therefore from (3.30) we get


(1) = RP13, 
(2) = RP13, (3.90)
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which means that they are the copies of the same operator acting on the respective
spaces.

Let w0 ∈ W (A3) be the longest element. We pick two reduced expressions, say,

w0 = s1s2s1s3s2s1 = s3s2s1s3s2s3, (3.91)

where the two sides are interchanged by replacing si by s4−i and reversing the order.
According to Theorem 3.3, we have the equivalence of the two irreducible represen-
tations of Aq(A3):

π121321 � π321323. (3.92)

Let Pi j and 

(1)
i jk,


(2)
i jk be the transposition P (3.23) and the intertwiners 
(1), 
(2)

that act on the tensor components specified by the indices. These components must
be adjacent (i.e. j − i = k − j = 1) to make the relations (3.25) and (3.89) work.
With this guideline, one can construct the intertwiners for (3.92) by following the
transformation of the reduced expressions by the Coxeter relations (3.88). There are
two ways to achieve this. In terms of the indices, they look as follows:

121321 

(1)
123 121321 P34

212321 

(2)
345 123121 


(1)
456

213231 P23P56 123212 

(2)
234

231213 

(1)
345 132312 P12P45

232123 

(2)
123 312132 


(1)
234

323123 P34 321232 

(2)
456

321323 321323 (3.93)

The underlines indicate the components to which the intertwiners given on the right
are to be applied. (Note that they are completely parallel with those in (2.22)–(2.23).)
Thus the following intertwining relations are valid for any f ∈ Aq(A3):

P34

(2)
123


(1)
345P23P56


(2)
345


(1)
123π121321(�( f ))

= π321323(�( f ))P34

(2)
123


(1)
345P23P56


(2)
345


(1)
123, (3.94)



(2)
456


(1)
234P12P45


(2)
234


(1)
456P34π121321(�( f ))

= π321323(�( f ))
(2)
456


(1)
234P12P45


(2)
234


(1)
456P34. (3.95)

Since the representation (3.92) is irreducible, the intertwiner is unique up to an overall
constant factor. The factor is one because both constructions send |0〉⊗6 to itself by
the normalization (3.29). Therefore we have

P34

(2)
123


(1)
345P23P56


(2)
345


(1)
123 = 


(2)
456


(1)
234P12P45


(2)
234


(1)
456P34. (3.96)
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In the current setting, (3.90) implies that both 

(1)
i jk and 


(2)
i jk are equal to Ri jk Pik ,

leading to
P34R123P13R345P35P23P56R345P35R123P13
= R456P46R234P24P12P45R234P24R456P46P34.

Sending all the Pi j ’s to the right by using P34R123 = R124P34, etc., we find

R124R135R236R456σ = R456R236R135R124σ
′,

where σ = P34P13P35P23P56P35P13 and σ ′ = P46P24P12P45P24P46P34. One can
check that σ = σ ′, which gives the reverse ordering of the components |m1〉 ⊗ · · · ⊗
|m6〉 
→ |m6〉 ⊗ · · · ⊗ |m1〉. Thus they can be canceled, completing the proof of The-
orem 3.20. �

In terms of the 3D R, the intertwining relations (3.94) and (3.95) take the form:

R124R135R236R456π121321(�̃( f )) = π321323(�( f ))R124R135R236R456, (3.97)

R456R236R135R124π121321(�̃( f )) = π321323(�( f ))R456R236R135R124, (3.98)

where �̃( f ) = σ ◦ �( f ) ◦ σ . For a generator f = ti j it reads as

�̃(ti j ) =
∑

1≤k1,...,k5≤4

tk5 j ⊗ tk4k5 ⊗ tk3k4 ⊗ tk2k3 ⊗ tk1k2 ⊗ tik1 . (3.99)

Wehave started from the two particular reduced expressions of the longest element
in (3.91). One can play the same game for any pair of the “most distant” reduced
expressions which are related by si → s4−i and the reverse ordering. The result can
always be brought to the form (2.6) by using (3.59) and (3.60).

In general for Aq(An−1) with n ≥ 5, similar compatibility conditions on the
intertwiners can be derived from reduced expressions of the longest element of
W (An−1) along the transformation si1 · · · sil → sn−il · · · sn−i1 by the Coxeter rela-
tions (3.22), where l = n(n − 1)/2. Since any reduced expression is transformed to
any of the others by the Coxeter relations [119], the compatibility conditions for any
s j1 · · · s jl → sn− jl · · · sn− j1 are equivalent to each other by a conjugation.

As an illustration, consider the n = 5 case. The longest element of W (A4) has
length 10 and the compatibility for π1234123121 � π4342341234 leads to

R123R145R246R356R178R279R389R470R580R690 = product in reverse order. (3.100)

This can be derived by using the original tetrahedron equation (2.6) five times in
addition to the trivial commutativity as
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R123R145R246R356R178R279R389R470R580R690

= R356R246R145R123R178R279R389R470R580R690

= R356R246R145R389R279R178R123R470R580R690

= R356R246R389R279R145R178R470R580R690R123

= R356R246R389R279R580R470R178R145R690R123

= R356R389R580R246R279R470R690R178R145R123

= R356R389R580R690R470R279R246R178R145R123

= R690R580R389R356R470R279R246R178R145R123

= R690R580R470R389R279R178R356R246R145R123,

(3.101)

where the underlines indicate the places to which the tetrahedron equation is applied.
The first and the last expressions in (3.101) fit the geometric interpretation as the
transformations between the 5-line diagrams in Fig. 3.1 in the same manner as in
Fig. 2.2.

For general n, the compatibility condition arising from πi1,...,il � πn−il ,...,n−i1
allows a similar geometric interpretation in terms of generic positioned n-line dia-
gramswithn(n − 1)/2vertices. They are all reducible to the the tetrahedron equation.
This last claim follows from [126, Theorem 2.17], which states that any non-trivial
loop in a reduced expression (rex) graph (see Sect. 9.2) is generated from the loops
in the one for the longest element in the parabolic subgroups of rank 3, hence A3 in
the present case.

3.5.2 RLLL = LLLR Type

Let us introduce the operator L along the scheme (2.12). In (2.11), we choose V =
Cv0 ⊕ Cv1 and F = Fq = ⊕

m≥0 C(q)|m〉 which is the Fock space introduced in
(3.13) as an irreducible module over the q-oscillator algebra (3.12). Then L = (Lab

i j )

is specified for a, b, i, j = 0, 1 as

1 2 4 7

3

5

86

90 7 124

9

0

8

5

6

3

Fig. 3.1 The 5-line diagrams connected by (3.101) in the same manner as Fig. 2.2
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1

1

0

1

0

0

1

1 1 k − k a+ a−

Fig. 3.2 3D L as an Oscq -valued six-vertex model. The last two relations in (3.12) corresponds to
a quantization of the so-called free Fermion condition [10, Fig. 10.1, Eq. (10.16.4)|ω7=ω8=0]

Lab
i j = 0 if a + b �= i + j, (3.102)

L00
00 = L11

11 = 1, L10
10 = k, L01

01 = −qk, L10
01 = a+, L01

10 = a−. (3.103)

The property

hLab
i j = Lab

i j (h + a − i) (3.104)

is valid, where h is the number operator (3.14). From (3.13) and (2.13), non-trivial
matrix elements Labc

i jk read as

L0,0,c
0,0,k = L1,1,c

1,1,k = δck , L1,0,c
1,0,k = δckq

k, L0,1,c
0,1,k = −δckq

k+1,

L1,0,c
0,1,k = δck+1, L0,1,c

1,0,k = δck−1(1 − q2k).
(3.105)

The operator L may be regarded as an Oscq -valued six-vertex model [10, Sect. 8] as
in Fig. 3.2.

Theorem 3.21 The intertwiner R and the above L satisfy the tetrahedron equation
of RLLL = LLLR type in (2.15).

Proof The equations (2.18) coincide with the intertwining relations (3.38)–(3.46)
for R and R−1 = R. (See (3.60).) This is shown more concretely in Lemma 3.22
below. �

Let us write the quantized Yang–Baxter equation (2.18) as

RLabc
i jk = L̃abc

i jk R, (3.106)

Labc
i jk =

∑

α,β,γ

(Lαβ

i j ⊗ Laγ

αk ⊗ Lbc
βγ ), (3.107)

L̃abc
i jk =

∑

α,β,γ

(Lab
αβ ⊗ Lαc

iγ ⊗ Lβγ

jk ). (3.108)

The objects Labc
i jk and L̃abc

i jk are End(F ⊗3
q )-valued quantized three-body scattering

amplitudes. They are non-vanishing onlywhen a + b + c = i + j + k due to (3.102)
andnon-trivial onlywhena + b + c = i + j + k = 1, 2 due to (3.103). For example,
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L001
100 = L01

10 ⊗ L00
00 ⊗ L01

10 + L10
10 ⊗ L01

10 ⊗ L01
01 = a− ⊗ 1 ⊗ a− − qk ⊗ a− ⊗ k,

L̃001
100 = L00

00 ⊗ L01
10 ⊗ L00

00 = 1 ⊗ a− ⊗ 1.

Observe that these operators are exactly those appearing in the intertwining relation
(3.38). This happens generally. One can directly check:

Lemma 3.22 The quantized three-body scattering amplitudes Labc
i jk and L̃abc

i jk with
a + b + c = i + j + k = 1, 2 coincide with the representations (3.36)–(3.37) of
Aq(A2) as follows:

π121(�̃(ti j )) = L̃ē j
ē4−i

= (−q)i− jLe4−i
e j , (3.109)

π212(�(ti j )) = Lē j
ē4−i

= (−q)i− j L̃e4−i
e j . (3.110)

Here ei , ēi are arrays of 0, 1 with length three specified by

ei =
i−1︷ ︸︸ ︷

0, . . . , 0, 1, 0, . . . , 0, ēi =
i−1︷ ︸︸ ︷

1, . . . , 1, 0, 1, . . . , 1. (3.111)

From (3.109) and (3.110), the intertwining relation (3.31) and the tetrahedron
equation (2.15) are identified.

Remark 3.23 As an equation for R, the tetrahedron equation RLLL = LLLR
(3.106) is invariant under the change Lab

i j → αa− j Lab
i j by a parameter α by virtue of

(3.102).

Remark 3.24 Let Lα = (αa− j Lab
i j ) be the 3D L in Remark 3.23 including a param-

eter α. It is invertible with the inverse

(Lα)−1 = Lα−1 , (3.112)

This is easily verified by means of (3.12).

As an application of Theorem 3.21, let us present another proof of Theorem
3.20, i.e. RRRR = RRRR. We invoke the argument in Sect. 2.5 which establishes
RRRR = RRRR by using RLLL = LLLR up to the irreducibility. For the 3D L
under consideration, we can make the irreducibility argument precise. Recall the

initial and final elements
6
Lab

5
Lac

4
Lbc

3
Lad

2
Lbd

1
Lcd and

1
Lcd

2
Lbd

4
Lbc

3
Lad

5
Lac

6
Lab in (2.22)

and (2.23), which are linear operators on

a
V ⊗ b

V ⊗ c
V ⊗ d

V ⊗ 1
F q ⊗ 2

F q ⊗ 3
F q ⊗ 4

F q ⊗ 5
F q ⊗ 6

F q .
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Let us call their matrix elements for the transition vi1 ⊗ v j1 ⊗ vk1 ⊗ vl1 
→ vi4 ⊗
v j4 ⊗ vk4 ⊗ vl4 as Li4 j4k4l4

i1 j1k1l1
and L̃i4 j4k4l4

i1 j1k1l1
, respectively. Then (2.22) and (2.23) are the

totality of the relations

R124R135R236R456Li4 j4k4l4
i1 j1k1l1

= L̃i4 j4k4l4
i1 j1k1l1

R124R135R236R456, (3.113)

R456R236R135R124Li4 j4k4l4
i1 j1k1l1

= L̃i4 j4k4l4
i1 j1k1l1

R456R236R135R124 (3.114)

for i1, . . . , l4 = 0, 1. Here we have substituted S = R for our 3D R according to
the comment after (2.20). The matrix elements Li4 j4k4l4

i1 j1k1l1
and L̃i4 j4k4l4

i1 j1k1l1
are End(F ⊗6

q )

valued and, from the diagrams (2.21) and (2.14), they are given by

Li4 j4k4l4
i1 j1k1l1

=
∑

Lk2l2
k1l1

⊗ L j2l3
j1l2

⊗ Li2l4
i1l3

⊗ L j3k3
j2k2

⊗ Li3k4
i2k3

⊗ Li4 j4
i3 j3

, (3.115)

L̃i4 j4k4l4
i1 j1k1l1

=
∑

Lk4l4
k3l3

⊗ L j4l3
j3l2

⊗ Li4l2
i3l1

⊗ L j3k3
j2k2

⊗ Li3k2
i2k1

⊗ Li2 j2
i1 j1

, (3.116)

where the sums are taken over ir , jr , kr , lr = 0, 1 for r = 1, 2. These are depicted as
follows:

�

�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
��

l2 l3

k2
j2

j3
k3 i2

i3

i1
j1

k1

l1

i4
j4

k4

l4

�

�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
��

k1
j1 i1

i2
j2

k2i3
j3 k3

l2
l1 l4l3

i4
j4

k4

By substituting (3.102), (3.103) and using (3.99), (3.21), one can directly check

π121321(�̃(ti j )) = (−q)i− jLēi
ē5− j

, π321323(�(ti j )) = (−q)i− j L̃ēi
ē5− j

(1 ≤ i, j ≤ 4),

(3.117)

where ēi is length four array given by (3.111). Since the representations π121321 and
π321323 are irreducible by Theorem 3.3, and the relations (3.97)–(3.98) with gen-
erators f = ti j are reproduced, the equality R124R135R236R456 = R456R236R135R124

follows.
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3.5.3 MMLL = LLMM Type

Let us present a solution to the tetrahedron equation of type MMLL = LLMM in
Sect. 2.6. We take V = Cv0 ⊕ Cv1,F = Fq in the setting therein and consider a
slight generalization of (2.24)–(2.25) including a spectral parameter:

L(z) =
∑

a,b,i, j

Eai ⊗ Ebj ⊗ L(z)abi j , (3.118)

M(z) =
∑

a,b,i, j

Eai ⊗ Ebj ⊗ M(z)abi j , (3.119)

where the sums extend over {0, 1}4 and both belong to End(V ⊗ V ⊗ Fq). The
operators L(z)abi j , M(z)abi j ∈ End(Fq), which are nonzero only when a + b = i + j ,
are specified by

��i a

b

j

L(z)abi j

��0 0

0

0

1

��1 1

1

1

1

��1 1

0

0

μk

��0 0

1

1

−qμ−1k

��0 1

0

1

z a+

��1 0

1

0

z−1a−

M(z)abi j 1 1 νk̃ qν−1k̃ z a+ z−1a−

(3.120)

Here a±,k are q-oscillators in (3.13), and k̃ is k with q replaced by −q, i.e.

k̃|m〉 = (−q)m |m〉. (3.121)

See (3.13). In (3.120), μ, ν are fixed parameters and suppressed in the notation. On
the other hand, z will play a similar role to the spectral parameter below. We note a
simple relation M(z) = L(z)|q→−q,μ→ν .

Theorem 3.25 For any μ, ν, the operators L(z) and M(z) defined in (3.118)–
(3.121) satisfy the tetrahedron equation of type MMLL = LLMM in End(V⊗4 ⊗
F ⊗2
q ) as

M126(z12)M346(z34)L135(z13)L245(z24)

= L245(z24)L135(z13)M346(z34)M126(z12),
(3.122)

where zi j = zi/z j .

See Fig. 2.5 for a graphical representation.
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Proof A direct calculation. As an illustration, let us compare X ∈ End(
5
F q ⊗ 6

F q)

occurring in (LHS or RHS)(v0 ⊗ v0 ⊗ v1 ⊗ v1 ⊗ 1 ⊗ 1) = v1 ⊗ v0 ⊗ v0 ⊗ v1 ⊗
X + · · · . The X is given by

L(z13)
01
01L(z24)

10
01 ⊗ M(z12)

10
01M(z34)

01
10 + L(z13)

10
01L(z24)

01
01 ⊗ M(z12)

10
10M(z34)

01
01

= −qμ−1z13(ka+ ⊗ a+a− + qa+k ⊗ k̃2)

for the LHS and

L(z24)
01
01L(z13)

10
01 ⊗ M(z34)

11
11M(z12)

00
00 = −qμ−1z13ka+ ⊗ 1

for the RHS. Their difference is proportional to ka+ ⊗ a+a− + qa+k ⊗ k̃2 − ka+ ⊗
1, which is zero due to (3.12), (3.13) and (3.121). �

Theorem 3.25 will be utilized for Aq(Bn) in Chap. 6 and for multispecies TASEP
in Chap. 18.

The solution in Theorem 3.25 consists of the 3D L and its slight variant M . There
is a parallel solution consisting of the 3D R and its variant, which we write as S
below.6 Set

R(z)123 = z−h2 R123z
h2 = zh1R123z

−h1 , S(z)123 = z−h2 R213z
h2 = zh1R213z

−h1 ,

(3.123)
where h is defined in (3.14), and the second equalities are due to the weight conser-

vation (3.49). The indices 1, 2, 3 specify the components in
1
F q ⊗ 2

F q ⊗ 3
F q . In the

notation (3.47), they are described as

R(z)(|i〉 ⊗ | j〉 ⊗ |k〉) =
∑

a,b,c

z j−b Rabc
i jk |a〉 ⊗ |b〉 ⊗ |c〉, (3.124)

S(z)(|i〉 ⊗ | j〉 ⊗ |k〉) =
∑

a,b,c

z j−b Rbac
jik |a〉 ⊗ |b〉 ⊗ |c〉. (3.125)

Theorem 3.26 R(z) and S(z) satisfy the tetrahedron equation of type MMLL =
LLMM in End(F ⊗6

q ) as

S(z12)126S(z34)346R(z13)135R(z24)245
= R(z24)245R(z13)135S(z34)346S(z12)126,

(3.126)

where zi j = zi/z j .

Proof By substituting (3.123) into (3.126) and applying (3.49), one finds that the
similarity transformation z−h1

13 z−h2
23 zh434(3.126)z

h1
13z

h2
23z

−h4
34 removes the z-dependence,

completely reducing it to R216R436R135R245 = R245R135R436R216. Exchanging the

6 This S will not be used elsewhere. It is different from the one in (2.20).
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indices as 1 ↔ 5, 2 ↔ 4 gives R456R236R531R421 = R421R531R236R456. From (3.59)
this is equivalent to R456R236R135R124 = R124R135R236R456, which is indeed valid
due to Theorem 3.20. �

3.6 Further Aspects of 3D R

Let us quote (3.38)–(3.46) in the form of the adjoint action of the 3D R:

R−1k2a±
1 R = k3a±

1 + k1a±
2 a

∓
3 , (3.127)

R−1a±
2 R = a±

1 a
±
3 − qk1k3a±

2 , (3.128)

R−1k2a±
3 R = k1a±

3 + k3a∓
1 a

±
2 , (3.129)

R−1(a±
1 a

∓
2 a

±
3 − qk1k3)R = a∓

1 a
±
2 a

∓
3 − qk1k3, (3.130)

R−1k1k2R = k1k2, R−1k2k3R = k2k3. (3.131)

The fact that R = R−1 (3.60) has been taken into account. We have written a+ ⊗
k ⊗ 1 as k2a+

1 for example. Thus the q-oscillator operators with different indices are
commutative.

3.6.1 Boundary Vector

We define

|η1〉 =
∑

m≥0

|m〉
(q)m

, |η2〉 =
∑

m≥0

|2m〉
(q4)m

, (3.132)

〈η1| =
∑

m≥0

〈m|
(q)m

, 〈η2| =
∑

m≥0

〈2m|
(q4)m

, (3.133)

and call them boundary vectors. They will play an important role in the reduction
procedure in Chaps. 12–17. They actually belong to a completion of Fq and F ∗

q
since infinite sums are involved. Nonetheless, we will refer to them as |ηs〉 ∈ Fq and
〈ηs | ∈ F ∗

q for simplicity.

Lemma 3.27 Up to normalization, the boundary vector |η1〉 is characterized by any
one of the following three equivalent conditions:

(a+ − 1 + k)|η1〉 = 0, (3.134)

(a− − 1 − qk)|η1〉 = 0, (3.135)

(a− + qa+ − 1 − q)|η1〉 = 0. (3.136)
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Similarly, the boundary vector |η2〉 is characterized, up to normalization, by

(a+ − a−)|η2〉 = 0. (3.137)

Proof Substituting |ηs〉 = ∑
m cm |m〉 into these conditions and using (3.13), one can

check that cm/c0 is determined uniquely as in (3.132). �

A linear combination of (3.134) and (3.135) leads to (3.136). However, the lemma
includes a less trivial reverse that (3.136) implies the preceding two.

From (3.17) the dual boundary vectors (3.133) have similar characterizations:

〈η1|(a− − 1 + k) = 0, (3.138)

〈η1|(a+ − 1 − qk) = 0, (3.139)

〈η1|(a+ + qa− − 1 − q) = 0, (3.140)

〈η2|(a− − a+) = 0. (3.141)

Proposition 3.28 The3D R and the boundary vectors satisfy the following relations:

(〈ηs | ⊗ 〈ηs | ⊗ 〈ηs |)R = 〈ηs | ⊗ 〈ηs | ⊗ 〈ηs | (s = 1, 2), (3.142)

R(|ηs〉 ⊗ |ηs〉 ⊗ |ηs〉) = |ηs〉 ⊗ |ηs〉 ⊗ |ηs〉 (s = 1, 2). (3.143)

Proof From Remark 3.10, it suffices to prove (3.143). First we consider the case
s = 1. By Lemma 3.27, it suffices to check

(a−
2 + qa+

2 − 1 − q)R|η1〉⊗3 = 0, (3.144)

(a+
1 − 1 + k1)R|η1〉⊗3 = (a+

3 − 1 + k3)R|η1〉⊗3 = 0. (3.145)

To show (3.144), we multiply R−1 from the left and apply (3.128) to convert the LHS
into

(
a−
1 a

−
3 − qk1k3a−

2 + q(a+
1 a

+
3 − qk1k3a+

2 ) − 1 − q
)|η1〉⊗3. (3.146)

From (3.134) and (3.135), one may set a+
i = 1 − ki and a−

i = 1 + qki here. The
resulting polynomial in k1,k2,k3 vanishes identically, proving (3.144). By Lemma
3.27, it follows that (a+

2 − 1 + k2)R|η1〉⊗3 = 0 has also been proved. Multiplying
R−1 again by it and applying (3.128), (3.134), (3.135), we get

(−k1 − k3 + (1 − q)k1k3 + qk1k2k3 + k′
2

)|η1〉⊗3 = 0, (3.147)

where k′
2 = R−1k2R. This enables us to show (3.145). In fact, by multiplying R−1k2

by the first relation, its LHS becomes (k3a+
1 + k1a+

2 a
−
3 − k′

2 + k1k2)|η1〉⊗3 owing to
(3.127). Substitution of a+

i = 1 − ki and a−
i = 1 + qki leads to the same expression

as (3.147), hence zero. The second relation in (3.145) can be verified in the same
manner.
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Next we consider the case s = 2. From Lemma 3.27, it suffices to check k2(a+
i −

a−
i )R|η2〉⊗3 = 0 (i = 1, 3) and (a+

2 − a−
2 )R|η2〉⊗3 = 0. The proof is similar to the

s = 1 case and actually simpler in that an intermediate identity like (3.147) need not
be prepared. So we demonstrate the last identity only. By multiplying R−1 and using
(3.128), its LHS becomes

(
(a+

1 a
+
3 − qk1k3a+

2 ) − (a−
1 a

−
3 − qk1k3a−

2 )
)|η2〉⊗3.

From (3.137), we may set a+
i = a−

i here. �

3.6.2 Combinatorial and Birational Counterparts

As remarked after (3.84), we know Rabc
i jk ∈ Z[q, q−1]. Actually a stronger property

holds.

Lemma 3.29 Rabc
i jk is a polynomial in q with the constant term given by

Rabc
i jk

∣∣
q=0 = Ri jk

abc

∣∣
q=0 = δaj+(i−k)+δbmin(i,k)δ

c
j+(k−i)+ . (3.148)

See (3.66) for the definition of the symbol (x)+.

Proof First we show Rabc
i jk ∈ Z[q]. Let A be a ring of rational functions of q regular

at q = 0. In view of Z[q, q−1] ∩ A = Z[q], it suffices to show Rabc
i jk ∈ A. From

(3.50) we have Rabc
i jk ∈ ARa,b−1,c

i, j−1,k + ARa,b−1,c
i−1, j,k−1. By induction on b, this attributes

the claim to Ra,0,c
i jk ∈ A for arbitrary a, c, i, j, k. But this is obviously true since

Ra,0,c
i jk = δai+ jδ

c
j+kq

ik either from (3.67) or (3.74).
Next we show (3.148). The first equality is due to (3.63). Setting q = 0 in (3.50)

and (3.56), we get

Ra,b,c
i−1, j,k−1

∣∣
q=0 = Ra,b+1,c

i, j,k

∣∣
q=0 , Ra−1,b,c−1

i, j,k

∣∣
q=0 = Ra,b,c

i, j+1,k

∣∣
q=0 . (3.149)

From the symmetry (3.62), it suffices to verify the i ≤ k case. Then the first relation
shows that Rabc

i jk

∣∣
q=0 = 0 if b > i . For b ≤ i , we have Rabc

i jk

∣∣
q=0 = Ra,0,c

i−b, j,k−b

∣∣
q=0 =

δa+b
i+ j δ

b+c
j+kq

(i−b)(k−b)
∣∣
q=0 . This is non-vanishing only if b = i because otherwise b <

i ≤ k. Thus we conclude Rabc
i jk

∣∣
q=0 = δa+b

i+ j δ
b+c
j+kδ

b
i = δaj δ

b
i δ

c
j+k−i . �

Lemma 3.29 shows that 3D R at q = 0 maps a monomial to another monomial
as R

∣∣
q=0 (|i〉 ⊗ | j〉 ⊗ |k〉) = | j + (i − k)+〉 ⊗ |min(i, k)〉 ⊗ | j + (k − i)+〉. Moti-

vated by this fact, we define the combinatorial 3D R to be a map on (Z≥0)
3 given

by

Rcombinatorial : (a, b, c) 
→ (b + (a − c)+,min(a, c), b + (c − a)+). (3.150)
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Corollary 3.30 The combinatorial 3D R (3.150) is an involution on (Z≥0)
3. It sat-

isfies the tetrahedron equation of type RRRR = RRRR on (Z≥0)
6.

Proof The assertions follow from (3.60) and Theorem 3.20 by setting q = 0 and
using Lemma 3.29. �

Example 3.31 An example of the tetrahedron equation (2.6) for the combinatorial
3D R. The map R here denotes Rcombinatorial in (3.150). The first SW arrow R124 is
due to Rcombinatorial : (3, 1, 4) 
→ (1, 3, 2), which can be seen in Example 3.12.

(315416)
R124 ↙ ↘ R456

(135216) (315143)

R135 ↓ ↓ R236

(531256) (351147)

R236 ↓ ↓ R135

(513254) (153127)

R456 ↘ ↙ R124
(513527)

Let us proceed to the third 3D R. Regarding a, b, c as indeterminates,we introduce
the map

Rbirational : (a, b, c) 
→ (ã, b̃, c̃) =
(

ab

a + c
, a + c,

bc

a + c

)
. (3.151)

We called it the birational 3D R in the current context. The combinatorial 3D R
(3.150) is reproduced from it by the tropical variable change

ab → a + b,
a

b
→ a − b, a + b → min(a, b), (3.152)

which keeps the distributive law since a(b + c) = ab + ac is replaced by a +
min(b, c) = min(a + b, a + c). One way to materialize (3.152) is a transformation
to logarithmic variables via

− lim
ε→+0

ε log(e− a
ε e∓ b

ε ) = a ± b,

− lim
ε→+0

ε log(e− a
ε + e− b

ε ) = min(a, b),
(3.153)

supposing a, b ∈ R. In this context, (3.152) is also called the ultradiscretization
(UD).
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Set

Zi (x) = 1 + xEi,i+1, (3.154)

where x is a parameter and Ei, j is the n-by-nmatrix unitwhose only non-zero element
is 1 at the i th row and the j th column. Zi (x) is a generator of the unipotent subgroup
of SL(n). The birational 3D R (3.151) is characterized as the unique solution to the
matrix equation

Zi (a)Z j (b)Zi (c) = Z j (c̃)Zi (b̃)Z j (ã) (|i − j | = 1). (3.155)

It essentially reduces to the n = 3, (i, j) = (1, 2) case:

⎛

⎝
1 a 0
0 1 0
0 0 1

⎞

⎠

⎛

⎝
1 0 0
0 1 b
0 0 1

⎞

⎠

⎛

⎝
1 c 0
0 1 0
0 0 1

⎞

⎠ =
⎛

⎝
1 0 0
0 1 c̃
0 0 1

⎞

⎠

⎛

⎝
1 b̃ 0
0 1 0
0 0 1

⎞

⎠

⎛

⎝
1 0 0
0 1 ã
0 0 1

⎞

⎠ . (3.156)

The Rbirational is birational due to R−1
birational = Rbirational. It preserves ab and bc.

The intertwining relation (3.28) is a quantization of (3.155) (with (i, j) = (1, 2)).
Note that Zi (a)Z j (b) = Z j (b)Zi (a) for |i − j | > 1 also holds analogously to the
Coxeter relations.

Given a Weyl group element w ∈ W (An−1) (not necessarily longest), assign
a matrix M = Zi1(x1) · · · Zir (xr ) to a reduced expression w = si1 · · · sir . Then
to any reduced expression w = s j1 · · · s jr one can assign the expression M =
Z j1(x̃1) · · · Z jr (x̃r ), where x̃k is determined independently of the intermediate steps
applying (3.155). This property is the source of the tetrahedron equation for Rbirational

and forms a birational counterpart of the previous calculation (3.93). In fact, the
uniqueness of the map (a, b, c, d, e, f ) 
→ (ã, b̃, c̃, d̃, ẽ, f̃ ) defined by

Z1(a)Z2(b)Z1(c)Z3(d)Z2(e)Z1( f ) = Z3( f̃ )Z2(ẽ)Z1(d̃)Z3(c̃)Z2(b̃)Z3(ã)

(3.157)
implies the tetrahedron equation of type RRRR = RRRR for Rbirational. To summa-
rize, we have:

Proposition 3.32 The birational 3D R (3.151) is an involutive map on the ring of
rational functions of three variables. It satisfies the tetrahedron equation of type
RRRR = RRRR.

Let us denote the 3D R detailed in Sects. 3.3 and 3.4 by Rquantum. Then we have
the triad of the 3D R’s whose relation is summarized as

Rquantum
q→0−→ Rcombinatorial

UD←− Rbirational. (3.158)

Rcombinatorial and Rbirational (and Rλ below) are typical set-theoretical solutions to the
tetrahedron equation.
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Remark 3.33 Define a map Rλ involving a parameter λ by

Rλ : (a, b, c) 
→
(

ab

a + c + λabc
, a + c + λabc,

bc

a + c + λabc

)
(3.159)

The birational 3D R (3.151) corresponds to λ = 0 or equivalently infinitesimal
a, b, c. Then the inversion relation Rλ = (Rλ)−1 and the tetrahedron equation

Rλ
124R

λ
135R

λ
236R

λ
456 = Rλ

456R
λ
236R

λ
135R

λ
124 (3.160)

are valid.

3.6.3 Bilinearization and Geometric Interpretation

The map (3.159) is bilinearized in the following sense. Parameterize a, b, c in terms
of “tau functions” as

a = ττ12

τ1τ2
, b = τ2τ123

τ12τ23
, c = ττ23

τ2τ3
, (3.161)

where indices signify the shifts of independent variables of the tau functions in
the respective directions., say, τ = τ(x), τ12 = τ(x + e1 + e2) etc. Suppose the tau
function satisfies the bilinear equation

τ1τ23 − τ2τ13 + τ3τ12 + λττ123 = 0. (3.162)

Then the image (a′, b′, c′) = Rλ
(
(a, b, c)

)
in the RHS of (3.159) is expressed in the

same format as (3.161) as follows:

a′ = τ3τ123

τ13τ23
, b′ = ττ13

τ1τ3
, c′ = τ1τ123

τ12τ13
. (3.163)

The change (a, b, c) 
→ (a′, b′, c′) corresponds to the shift (+3,−2,+1) of the argu-
ment of the tau functions. It is interpreted as a transformation of the three back faces
of a cube to the front ones as in Fig. 3.3.

The tetrahedron equation (3.160) is bilinearized by using tau functions living
on a four-dimensional cube. We prepare τI with I running over the power set of
{1, 2, 3, 4}. They are supposed to obey

τiτ jk − τ jτik + τkτi j + λττi jk = 0, (3.164)

τilτ jkl − τ jlτikl + τklτi jl + λτlτi jkl = 0, (3.165)
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Fig. 3.3 Birational 3D R corresponds to a transformation generating a cube

where {i, j, k, l} = {1, 2, 3, 4}.7 The latter is a translation of the former in the l
direction.

Now the LHS of the tetrahedron equation (3.160) is described as the successive
transformations

(
ττ12

τ1τ2
,
τ2τ123

τ12τ23
,
τ23τ1234

τ123τ234
,
ττ23

τ2τ3
,
τ3τ234

τ23τ34
,
ττ34

τ3τ4

)

Rλ
456
−→

(
ττ12

τ1τ2
,
τ2τ123

τ12τ23
,
τ23τ1234

τ123τ234
,
τ4τ234

τ24τ34
,
ττ24

τ2τ4
,
τ2τ234

τ23τ24

)

Rλ
236
−→

(
ττ12

τ1τ2
,
τ24τ1234

τ124τ234
,
τ2τ124

τ12τ24
,
τ4τ234

τ24τ34
,
ττ24

τ2τ4
,
τ12τ1234

τ123τ124

)

Rλ
135
−→

(
τ4τ124

τ14τ24
,
τ24τ1234

τ124τ234
,
ττ14

τ1τ4
,
τ4τ234

τ24τ34
,
τ1τ124

τ12τ14
,
τ12τ1234

τ123τ124

)

Rλ
124
−→

(
τ34τ1234

τ134τ234
,
τ4τ134

τ14τ34
,
ττ14

τ1τ4
,
τ14τ1234

τ124τ134
,
τ1τ124

τ12τ14
,
τ12τ1234

τ123τ124

)
.

(3.166)

Similarly, the RHS of (3.160) is realized as

(
ττ12

τ1τ2
,
τ2τ123

τ12τ23
,
τ23τ1234

τ123τ234
,
ττ23

τ2τ3
,
τ3τ234

τ23τ34
,
ττ34

τ3τ4

)

Rλ
124
−→

(
τ3τ123

τ13τ23
,
ττ13

τ1τ3
,
τ23τ1234

τ123τ234
,
τ1τ123

τ12τ13
,
τ3τ234

τ23τ34
,
ττ34

τ3τ4

)

Rλ
135
−→

(
τ34τ1234

τ134τ234
,
ττ13

τ1τ3
,
τ3τ134

τ13τ34
,
τ1τ123

τ12τ13
,
τ13τ1234

τ123τ134
,
ττ34

τ3τ4

)

Rλ
236
−→

(
τ34τ1234

τ134τ234
,
τ4τ134

τ14τ34
,
ττ14

τ1τ4
,
τ1τ123

τ12τ13
,
τ13τ1234

τ123τ134
,
τ1τ134

τ13τ14

)

Rλ
456
−→

(
τ34τ1234

τ134τ234
,
τ4τ134

τ14τ34
,
ττ14

τ1τ4
,
τ14τ1234

τ124τ134
,
τ1τ124

τ12τ14
,
τ12τ1234

τ123τ124

)
.

(3.167)

7 τI is supposed to be independent of the ordering of the indices in I .
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The initial and the final six components correspond to the faces 12, 13, 14, 23, 24, 34
of the 4D cube up to translation. Their tau functions are simply related by the inter-
change τI ↔ τ{1,2,3,4}\I . It means that the two sides of the tetrahedron equation
represent transformations of the “back” six faces of a 4D cube to the “front” ones as
compositions of elementary transformations associated with the 3D cube in Fig. 3.3.
This 4D picture is rather transparent. On the other hand, one can also describe it in 3D
space as a dissection of a rhombic dodecahedron into four quadrilatelal hexahedra.
After all, the 3D R in this chapter provides a quantization of the transformation of
the geometric data associated with such objects.

3.7 Bibliographical Notes and Comments

The RT T realization of the quantized coordinate rings has been presented in many
publications. See for example [43, 127] and [29, Chap. 7]. The fundamental Theorem
3.3 on the representations of Aq(g) was obtained in [138, 139, 146]. Its application
to the tetrahedron equation was found in [77]. In fact, Sect. 3.3, Theorems 3.11 and
3.5 form an exposition of it along [93, Sect. 2]. In particular, the formula (3.67) is a
correction of that for Sabci jk on [77, p. 194] which contained an unfortunate misprint.
The solution of the tetrahedron equation of type RRRR = RRRR was derived later
also from a quantum geometry consideration [16, 18]. It was shown to coincide
with the 3D R in [77] (with the correction of the misprint) at [93, Eq. (2.29)].
The operator version Rab

i j (3.69) of the 3D R was introduced in [84, Eq. (8)]. A
similar operator with respect to the second component of the 3D R is given in [86,
Eqs. (2.68) and (2.70)]. The integral formula (3.76) and Theorem 3.21 are due to
[18, 132], respectively. The solution to the tetrahedron equation of type MMLL =
LLMM (Theorem 3.25) is due to [90, Theorem 3.4] and [18, Eq. (34)] with some
conventional adjustment. Theorem 3.26 is taken from [92, Theorem 3.1]. They have
applications to the multispecies totally asymmetric simple exclusion process (Chap.
18) and multispecies totally asymmetric zero rage process. More comments on them
are available in Sect. 18.6. Proposition 3.28 for the boundary vector was obtained in
[107, Proposition 4.1].

As for the birational and combinatorial 3D R, there aremany relevant publications.
The map (3.151) is a member of a wider list in [70, 71, 130]. It has also appeared in
[112, Proposition 2.5] and [21, Theorem 3.1] for example. It is characterized as the
transition map of parameterizations of the totally positive part of the special linear
group SL(3). Such transitionmaps have been described explicitly for any semisimple
Lie groups, and they all admit the combinatorial counterparts via the tropical variable
change [22, 113]. The deformation (3.159) involving a cubic term (see [69]) has been
linked to “electrical” Lie groups [110]. Sect. 3.6.3 is an exposition of the classical
geometry aspects with an additional perspective concerning tau functions. For related
topics, see [16, 24, 69, 78] and the references therein.


	3 3D upper RR From Quantized Coordinate Ring of Type A
	3.1 Quantized Coordinate Ring upper A Subscript q Baseline left parenthesis upper A Subscript n minus 1 Baseline right parenthesisAq(An-1)
	3.2 Representation Theory
	3.3 Intertwiner for Cubic Coxeter Relation
	3.4 Explicit Formula for 3D upper RR
	3.5 Solution to the Tetrahedron Equations
	3.5.1 upper R upper R upper R upper R equals upper R upper R upper R upper RRRRR=RRRR Type
	3.5.2 upper R upper L upper L upper L equals upper L upper L upper L upper RRLLL=LLLR Type
	3.5.3 upper M upper M upper L upper L equals upper L upper L upper M upper MMMLL=LLMM Type

	3.6 Further Aspects of 3D upper RR
	3.6.1 Boundary Vector
	3.6.2 Combinatorial and Birational Counterparts
	3.6.3 Bilinearization and Geometric Interpretation

	3.7 Bibliographical Notes and Comments


