
Chapter 18
Application to Multispecies TASEP

Abstract This chapter is an exposition of a 3D approach to an integrable Markov
process called the n species totally asymmetric simple exclusion process (n-TASEP).
The main result is a matrix product formula of the stationary probability involving
layer transfer matrices of the q = 0-oscillator-valued five-vertex model on an n ×
n lattice. The stationary condition is translated into their quadratic relations, the
so-called Faddeev–Zamolodchikov algebra, which are highly non-local from the
viewpoint of the five-vertex model. They are shown to be a far-reaching consequence
of the single tetrahedron equation of type MMLL = LLMM in Sect. 2.6 and its
solution in Theorem 3.25.

18.1 Introduction

The totally asymmetric simple exclusion process (TASEP) is a continuous-time
Markov process of particles obeying a stochastic dynamics governed by a master
equation. We consider the n-TASEP on the 1D periodic lattice ZL , where each site
variable assumes {0, 1, . . . , n} (Fig. 18.1).

The first basic problem is the determination of the stationary state, which is anal-
ogous to the ground state of quantum spin chains. The probability of finding a given
particle configuration in the stationary state is called the stationary probability. It
is an analogue of the amplitude of a configuration in the ground state for quan-
tum spin chains. In integrable situations, the amplitude should be obtained by the
Bethe ansatz, therefore it is transcendental in general since the Bethe roots are so.
On the other hand, the stationary state is the unique null eigenvector of the Markov
matrix, implying that it should be algebraicwith respect the parameters of themodel.
These arguments suggest that stationary probabilities of integrableMarkov processes
should be something between transcendental and algebraic, and it is the place where
the matrix product structure emerges naturally.
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Fig. 18.1 A configuration of particles in n-TASEP (n ≥ 4)

The n-TASEP considered in this chapter is indeed integrable, being a special case
of a more general partially asymmetric simple exclusion process or the A(1)

n vertex
model with the standard nested Bethe ansatz solution, e.g. [4]. However, providing
a full combinatorial description with the stationary probabilities is another problem,
which we are going to address in this chapter by a 3D approach. As we will note in
Remark 18.7, it leads to an intriguing duality between A(1)

n and A(1)
L−1 exchanging the

role of internal and external spaces.

18.2 n-TASEP

18.2.1 Definition of n-TASEP

Consider the periodic 1D chain with L sites ZL . Each site i ∈ ZL is populated with a
local state σi ∈ {0, 1, . . . , n}. It is interpreted as a species of the particle occupying
the site i .1 We assume 1 ≤ n < L . Consider a stochastic model on ZL such that
neighboring pairs of local states (σi , σi+1) = (α, β) are interchanged as α β → β α

if α > β with the uniform transition rate. The space of states is given by

(Cn+1)⊗L �
⊕

(σ1,...,σL )∈{0,...,n}L
C|σ1, . . . , σL〉. (18.1)

Let P(σ1, . . . , σL; t) be the probability of finding the configuration (σ1, . . . , σL) at
time t , and set

|P(t)〉 =
∑

(σ1,...,σL )∈{0,...,n}L
P(σ1, . . . , σL; t)|σ1, . . . , σL〉. (18.2)

By n-TASEPwemean the stochastic system governed by the continuous-timemaster
equation

d

dt
|P(t)〉 = H |P(t)〉, (18.3)

1 σi = 0 is may be regarded as an empty site. In such an interpretation, there are n species of
particles.
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where H is a Markov matrix defined by

H =
∑

i∈ZL

hi,i+1, h|α, β〉 =
{ |β, α〉 − |α, β〉 (α > β),

0 (α ≤ β).
(18.4)

Here hi,i+1 is the local Markov matrix that acts as h on the i th and the (i + 1)th
components and as the identity elsewhere. The master equation (18.3) preserves the
total probability.

The Markov matrix H preserves the subspaces, called sectors, consisting of the
configurations with prescribed multiplicity m = (m0, . . . ,mn) ∈ (Z≥0)

n+1 of parti-
cles:

S(m) = {σ = (σ1, . . . , σL) ∈ {0, . . . , n}L |
∑

1≤ j≤L

δk,σ j = mk,∀k}. (18.5)

The space of states (18.1) is decomposed as
⊕

m

⊕
σ∈S(m) C|σ 〉, where the outer

sum ranges over mi ∈ Z≥0 such that m0 + · · · + mn = L . A sector
⊕

σ∈S(m) C|σ 〉
such that mi ≥ 1 for all 0 ≤ i ≤ n is called basic. Non-basic sectors are equivalent
to a basic sector for n′-TASEP with some n′ < n by a suitable relabeling of species.
Thus we shall exclusively deal with basic sectors, therefore n < L is assumed as
mentioned before. The spectrum of H is known to exhibit a remarkable duality
described by a Hasse diagram [4].

18.2.2 Stationary States

In each sector
⊕

σ∈S(m) C|σ 〉 there is a unique vector |P̄(m)〉 up to normalization,
called the stationary state, satisfying H |P̄(m)〉 = 0. The stationary state for 1-
TASEP is trivial under the periodic boundary condition in the sense that all the
monomials have the same coefficient, i.e. all the configurations are realized with an
equal probability.

Example 18.1 Let us present (unnormalized) stationary states in small sectors of
2-TASEP and 3-TASEP in the form

|P̄(m)〉 = |ξ(m)〉 + C |ξ(m)〉 + · · · + CL−1|ξ(m)〉 (18.6)

respecting the translational symmetry HC = CH under the ZL cyclic shift
C |σ1, σ2, . . . , σL〉 = |σL , σ1, . . . , σL−1〉. The choice of the vector |ξ(m)〉 is not
unique.
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|ξ(1, 1, 1)〉 = 2|012〉 + |102〉,
|ξ(2, 1, 1)〉 = 3|0012〉 + 2|0102〉 + |1002〉,
|ξ(1, 2, 1)〉 = 2|0112〉 + |1012〉 + |1102〉,
|ξ(1, 1, 2)〉 = 3|1220〉 + 2|2120〉 + |2210〉,
|ξ(1, 2, 2)〉 = 3|11220〉 + 2|12120〉 + |12210〉

+ 2|21120〉 + |21210〉 + |22110〉,
|ξ(2, 1, 2)〉 = |00221〉 + 2|02021〉 + 3|02201〉

+ 3|20021〉 + 5|20201〉 + 6|22001〉,
|ξ(2, 2, 1)〉 = 3|00112〉 + 2|01012〉 + 2|01102〉

+ |10012〉 + |10102〉 + |11002〉,
|ξ(1, 1, 1, 1)〉 = 9|0123〉 + 3|0213〉 + 3|1023〉

+ 5|1203〉 + 3|2013〉 + |2103〉,
|ξ(2, 1, 1, 1)〉 = 24|00123〉 + 6|00213〉 + 12|01023〉 + 17|01203〉

+ 8|02013〉 + 3|02103〉 + 4|10023〉 + 7|10203〉
+ 9|12003〉 + 6|20013〉 + 3|20103〉 + |21003〉,

|ξ(1, 2, 1, 1)〉 = 12|01123〉 + 5|01213〉 + 3|02113〉 + 4|10123〉
+ 3|10213〉 + 4|11023〉 + 7|11203〉 + 5|12013〉
+ 2|12103〉 + 3|20113〉 + |21013〉 + |21103〉,

|ξ(1, 1, 2, 1)〉 = 12|01223〉 + 5|02123〉 + 3|02213〉 + 3|10223〉
+ 5|12023〉 + 7|12203〉 + 4|20123〉 + 3|20213〉
+ |21023〉 + 2|21203〉 + 4|22013〉 + |22103〉,

|ξ(1, 1, 1, 2)〉 = 24|12330〉 + 12|13230〉 + 4|13320〉 + 6|21330〉
+ 8|23130〉 + 6|23310〉 + 17|31230〉 + 7|31320〉
+ 3|32130〉 + 3|32310〉 + 9|33120〉 + |33210〉.

The red underlines are put for convenience for Example 18.3. As these coefficients
indicate, stationary states are non-trivial for n ≥ 2. The theme of this chapter is to
elucidate a 3D integrability behind them, which will ultimately be related to the
tetrahedron equation.

18.2.3 Matrix Product Formula

Consider a stationary state

|P̄(m)〉 =
∑

σ∈S(m)

P(σ )|σ 〉 (18.7)
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and postulate that the stationary probability P(σ ) is expressed in the matrix product
form

P(σ1, . . . , σL) = Tr(Xσ1 · · · XσL ) (18.8)

in terms of some operators X0, . . . , Xn . Introduce the notations for the matrix ele-
ments of the local Markov matrix (18.4) and the associated product of Xi ’s as

h|α, β〉 =
∑

γ,δ

hγ,δ

α,β |γ, δ〉, (hX X)α,β :=
∑

γ,δ

hα,β

γ,δ Xγ Xδ, (18.9)

where both sums range over γ, δ ∈ {0, 1, . . . , n}. Then we have

H |P̄(m)〉 =
∑

i∈ZL

∑

σ∈S(m)

P(. . . , σi , σi+1, . . .)hi,i+1| . . . , σi , σi+1, . . .〉

=
∑

i∈ZL

∑

σ∈S(m)

∑

σ ′
i ,σ

′
i+1

Tr(· · · Xσi Xσi+1 · · · )hσ ′
i ,σ

′
i+1

σi ,σi+1 | . . . , σ ′
i , σ

′
i+1, . . .〉

=
∑

σ∈S(m)

∑

i∈ZL

Tr(· · · (hX X)σi ,σi+1 · · · )| . . . , σi , σi+1, . . .〉. (18.10)

Therefore if there is another set of operators X̂0, . . . , X̂n obeying the so-called hat
relation

(hX X)α,β = Xα X̂β − X̂αXβ, (18.11)

the stationary condition H |P̄(m)〉 = 0 holds thanks to the cyclicity of the trace. Then
the trace (18.8), if convergent, must coincide with the actual stationary probability
up to overall normalization due to the uniqueness of the stationary state in every
sector. Note, on the other hand, that X̂i satisfying the hat relation with a given Xi is
not unique. For instance, X̂i → X̂i + cXi leaves (18.11) unchanged.

From (18.4) and (18.9), the hat relation (18.11) is given concretely as

[Xi , X̂ j ] = [X̂i , X j ] (0 ≤ i, j ≤ n), (18.12)

Xi X j = X̂i X j − Xi X̂ j (0 ≤ j < i ≤ n). (18.13)

Suppose we have the operators X0(z), . . . , Xn(z)which depend on a spectral param-
eter z and satisfy

[Xi (x), X j (y)] = [Xi (y), X j (x)] (0 ≤ i, j ≤ n), (18.14)

x Xi (y)X j (x) = yXi (x)X j (y) (0 ≤ j < i ≤ n). (18.15)
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Then the hat relations (18.12) and (18.13) are realized by setting

Xi = Xi (z = 1), X̂i = d

dz
Xi (z)|z=1 (0 ≤ i ≤ n). (18.16)

The relations (18.14) and (18.15) are rearranged as

Xi (x)X j (y) =
⎧
⎨

⎩

Xi (y)X j (x) + (1 − x
y )X j (y)Xi (x) i < j,

Xi (y)Xi (x) i = j,
x
y Xi (y)X j (x) i > j.

(18.17)

This exchange rule satisfies the Yang–Baxter relation in the sense that the two ways
of rewriting Xi (x)X j (y)Xk(z) as linear combinations of Xk ′(z)X j ′(y)Xi ′(x) with
{i ′, j ′, k ′} = {i, j, k} lead to the identical result. Such a quadratic exchange rule,
which is sometimes referred to as Faddeev–Zamolodchikov algebra, is a signal of the
integrable structure of the n-TASEP. In this way, seeking the matrix product formula
(18.8) of the stationary probability is transformed to the problem of constructing the
operator Xi (z) satisfying (18.17).

18.2.4 Matrix Product Operator Xi (z)

We will show that the following operator Xi (z) fulfills (18.17):

(18.18)

It represents a configuration sum, i.e. the partition function of theOscq=0-valued five-
vertex model on the size n triangular shape region with a prescribed condition along
the SE boundary. The Oscq=0-valued five-vertex model has the local “Boltzmann
weight” 1,b+,b−, t assigned to each vertex as

(18.19)
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Each edge of (18.18) takes 0 or 1 and the sum (except those fixed on the SE boundary)
extends over all the configurations such that every vertex is one of the above five
types.2 In (18.19), edges assuming 0 and 1 are colored in black and red respectively.
This convention will apply in the rest of the chapter.3 Given such a configuration, the
summand is the tensor product of the local Boltzmann weights 1,b+,b−, t. They
are linear operators on the Fock space F = ⊕

m≥0 C|m〉4 defined by

b+|m〉 = |m + 1〉, b−|m〉 = |m − 1〉, t|m〉 = δm,0|m〉, (18.20)

which obey the relations

t b+ = 0, b− t = 0, b+ b− = 1 − t, b− b+ = 1. (18.21)

The relations (18.20) and (18.21) are identified with the q-oscillator ones (3.13) and
(3.12) in the well defined limit

b± = lim
q→0

a±, t = lim
q→0

k, (18.22)

where an extra relation t2 = t is acquired. The Oscq=0 operators b±, t attached to
different vertices act on different copies of F . Thus Xi (z) ∈ End(F⊗n(n−1)/2).

The trace in (18.8) is taken over F⊗n(n−1)/2, where each component is calculated
by TrF (X) = ∑

m≥0〈m|X |m〉 with 〈m|m ′〉 = δm,m ′ . See (3.16) and the explanation
after Fig. 11.3. Finally, the summands in (18.18) are attached with the overall factor
zα1+···+αn , where αi = 0, 1 is the variable on the i th vertical edge from the left on the
top.

The matrix product operator Xi (z) has the form of a corner transfer matrix [10,
Chap. 13] of the Oscq=0-valued five-vertex model, although it acts along the per-
pendicular direction to the layer as opposed to the usual 2D setting. Equivalently,
one may view it as a layer transfer matrix of the 3D lattice model where the edges
perpendicular to the plane (18.18) are assigned with F . The stationary probability
(18.8) is then interpreted as a partition function of the 3D system of prism shape
which is periodic along the third direction.

Remark 18.2 The result (18.8) with Xi defined by (18.16) and (18.18) corresponds
to the integer normalization

P(σ1, . . . , σL) = 1 for σ1 ≥ · · · ≥ σL.

In this normalization P(σ ) ∈ Z≥1 holds for all the state σ ∈ S(m).

2 At the SE boundary in (18.18), we do not assign 1,b+,b−, t, and just let arrows make 90◦ left
turns without changing the edge variable. See Examples 18.3 and 18.4.
3 Although, in some formulas like (18.18), those black edges not on the SE boundary should be
understood as taking both 0 or 1.
4 The ket vector here should not be confused with the TASEP states in Sects. 18.2.1–18.2.3. We
take |−1〉 = 0, 1|m〉 = |m〉 for granted.
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Example 18.3 For n = 2 the operators X0(z), X1(z), X2(z) are given by

From (18.16) we have X̂0 = b+, X̂1 = t, X̂2 = b− + 2. For instance,

P(00221) = Tr(X0X0X2X2X1) = Tr
(
(1 + b+)(1 + b+)(1 + b−)(1 + b−)t

)= 1,

P(20201) = Tr(X2X0X2X0X1) = Tr
(
(1 + b−)(1 + b+)(1 + b−)(1 + b+)t

)= 5,

which reproduce the coefficients in the underlined terms in |ξ(2, 1, 2)〉 in Example
18.1. As this example indicates, for the convergence of the trace, it is sufficient to
have at least one t for every F component of TrF⊗n(n−1)/2(Xσ1 · · · XσL ).

Example 18.4 For n = 3, the operators X0(z), . . . , X3(z) are given by

Here and in what follows, the components of the tensor product will always be
ordered so that they correspond, from left to right, to the vertices from the top to the
bottom and from the left to the right.
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To summarize so far, we are to show:

Theorem 18.5 The operators X0(z), . . . , Xn(z) defined by (18.18) satisfy the
Faddeev–Zamolodchikov algebra relations (18.14) and (18.15).

From the viewpoint of the five-vertex model, this is a highly non-local property.
Our goal in the rest of the chapter is to reveal that Theorem 18.5 is a far-reaching
consequence of the single local relationwhich is nothing but the tetrahedron equation.

Remark 18.6 The five vertices in (18.19) are identified with those for the 3D L
L(z = 1)abi j in (18.25) at q = 0. See (18.22). Therefore each Fock space component

of the trace (18.8) takes the form TrF (L(1)a1,b1i1, j1
· · ·L(1)aL ,bL

iL , jL
). It coincides with the

matrix product formula (11.26) of a quantum R matrix Str3(z) at z = 1, q = 0 up to
an overall factor and the conjugation by (σ ⊗ σ).5 The coincidence leads to a further
reformulation of the stationary probability in terms of a composition of the quantum
R matrices at q = 0 [89]. An important consequence of it is the convergence of the
trace. In fact, it assures that at least one t is included in L(1)a1,b1i1, j1

, . . . ,L(1)aL ,bL
iL , jL

for
every Fock space F provided that we are in a basic sector defined after (18.5).

Remark 18.7 Another notable feature of the observation in Remark 18.6 is that
the relevant quantum affine algebra becomes Up(A

(1)
L−1) rather than Up(A(1)

n ). Thus,
dealing with n-TASEP on the periodic latticeZL eventually leads to the size n system
(18.18) with “symmetry algebra” of rank L − 1. It is another manifestation of the
duality mentioned in the second last paragraph of Sect. 15.6.

18.3 3D L, M Operators and the Tetrahedron Equation

We invoke the results in Sect. 3.5.3. LetV = Cv0 ⊕ Cv1 and L(z), M(z) ∈ End(V ⊗
V ⊗ Fq) be the 3D L and M operators defined in (3.118)–(3.121). They contain the
parameters μ and ν, respectively. In this chapter, for reasons of convention, we will
work with

L(z) = (σ ⊗ σ ⊗ 1)L(z)|μ=1(σ ⊗ σ ⊗ 1) =
∑

a,b,i, j

Eai ⊗ Ebj ⊗ L(z)abi j , (18.23)

M(z) = (σ ⊗ σ ⊗ 1)M(z)|ν=1(σ ⊗ σ ⊗ 1) =
∑

a,b,i, j

Eai ⊗ Ebj ⊗ M(z)abi j ,

(18.24)

where σ(vk) = v1−k and the other notations are parallel with (3.118) and (3.119).
From (3.120), their non-zero matrix elements are given as follows:

5 σ is defined after (18.24), which just interchanges the indices 0 and 1.
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(18.25)

Here a±,k are q-oscillators (3.13) and k̃ = k|q→−q as defined in (3.121). The oper-
ators L(z) andM(z) are simply related byM(z) = L(z)|q→−q . From Theorem 3.25
they also satisfy the tetrahedron equation

M126(z12)M346(z34)L135(z13)L245(z24)

= L245(z24)L135(z13)M346(z34)M126(z12), (18.26)

where zi j = zi/z j . In terms of the 3D diagram representation (cf. Sect. 2.6) as

(18.27)

the tetrahedron equation is expressed as
Let us introduce the dual of V by

V ∗ = Cv∗
0 ⊕ Cv∗

1 , 〈v∗
i , v j 〉 = δi j . (18.28)

We let M(z) act on V ∗ ⊗ V ∗ ⊗ F∗
q from the right as

(v∗
a ⊗ v∗

b ⊗ 〈ξ | )M(z) =
∑

i, j=0,1

v∗
i ⊗ v∗

j⊗〈ξ |M(z)abi j . (18.29)

Set

|χ(z)〉 =
∑

m≥0

zm

(−q;−q)m
|m〉, 〈χ(z)| =

∑

m≥0

zm

(−q;−q)m
〈m|. (18.30)

Proposition 18.8 The vectors

v0 ⊗ v0⊗|ξ 〉, v1 ⊗ v1⊗|ξ 〉, (μv1 ⊗ v0 + νv0 ⊗ v1)⊗|χ(
μz
ν

)〉, (18.31)

v∗
0 ⊗ v∗

0⊗〈ξ |, v∗
1 ⊗ v∗

1⊗〈ξ |, (μv∗
1 ⊗ v∗

0 + νv∗
0 ⊗ v∗

1)⊗〈χ(
μ

νz )| (18.32)
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are right and left eigenvectors ofM(z)with eigenvalue 1 for any |ξ 〉 ∈ Fq , 〈ξ | ∈ F∗
q ,

and μ, ν( �= 0) ∈ C.

Proof. The non-trivial cases are verified by directly checking

∑

i+ j=1

μiν jM(z)kli j |χ(
μz
ν

)〉 = μkνl |χ(
μz
ν

)〉, (18.33)

∑

i+ j=1

μiν j 〈χ(
μ

νz )|M(z)i jkl = μkνl〈χ(
μ

νz )|. (18.34)

One can utilize (3.134), (3.135), (3.138) and (3.139) with q → −q. �

As a corollary of Proposition 18.8, we have the following equality for any k, l = 0, 1:

∑

i, j

M(z)kli j |χ(z)〉 = |χ(z)〉, 〈χ(z−1)|
∑

i, j

M(z)i jkl = 〈χ(z−1)|. (18.35)

18.4 Layer Transfer Matrices

18.4.1 Layer Transfer Matrices with Mixed Boundary
Condition

Fix positive integers m, n. Given the arrays a = (a1, . . . , am), i = (i1, . . . , im) ∈
{0, 1}m and b = (b1, . . . , bn), j = ( j1, . . . , jn) ∈ {0, 1}n , define a linear operator
T (z)a,bi,j on F⊗mn

q graphically as follows:

It represents the sums over {0, 1} for all the internal edges under the prescribed
boundary condition. Each arrow, either horizontal or vertical, carries V . Each vertex
represents L(z)abi j in (18.25) including the spectral parameter z. Penetrating each
vertex from back to front, the Fock space Fq runs along a blue arrow as in the left
diagram in (18.27). When this feature is to be emphasized, we depict T (z)a,bi,j , say
for (m, n) = (3, 4), as
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In our working below, the following object plays the central role:

(18.36)

The sum
∑

i,b extends over i ∈ {0, 1}m and b ∈ {0, 1}n . The operators T (z)a,bi,j and
S(z)aj are the layer transfer matrices of size m × n with fixed and mixed (NW-free
and SE-fixed) boundary conditions, respectively.

Example 18.9 Consider the simplest case (m, n) = (1, 1), where T (z)abi j = L(z)abi j .
Therefore from (18.24) we have

S(z)00 = 1 + za+, S(z)11 = 1 + z−1a−, S(z)01 = k, S(z)10 = −qk.

Example 18.10 Consider the case (m, n) = (2, 2). S(z)0000 consists of the following
8 terms:

Thus we have

S(z)0000 = 1⊗1⊗1⊗1 + za+⊗1⊗1⊗1 + zk⊗a+⊗1⊗1 + za−⊗a+⊗a+⊗1

+ z21⊗a+⊗a+⊗1 − qz1⊗k⊗k⊗a+ − qz2a+⊗k⊗k⊗a+ − qzk⊗1⊗a+⊗1.
(18.37)
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Example 18.11 Consider the case (m, n) = (2, 2). S(z)1010 consists of the following
8 terms:

Thus we have

S(z)1010 = z−11⊗a−⊗a−⊗a+ + a+⊗a−⊗a−⊗a+ + k⊗1⊗a−⊗a+ + a−⊗1⊗1⊗a+

+ z1⊗1⊗1⊗a+ − q1⊗k⊗k⊗1 − qk⊗a−⊗1⊗a+ − qz−1a−⊗k⊗k⊗1. (18.38)

18.4.2 Commutativity

Proposition 18.12 The layer transfer matrices S(z)aj with the common SE boundary
condition a, j form a commuting family, i.e.

[S(x)aj , S(y)aj ] = 0. (18.39)

Proof. This is a consequence of the tetrahedron equation (18.26) and the trivial
eigenvectors of M(z) in Proposition 18.8. Consider the following two operators on
F⊗mn

q ⊗ Fq :

∑

b,b′

(
M( x

x ′ )
am ,am
am ,am · · ·M( x

x ′ )
a1,a1
a1,a1

)(
M(

y
y′ )

cn ,c′
n

bn ,b′
n
· · ·M(

y
y′ )

c1,c′
1

b1,b′
1

)
T ( xy )

a,b
i,j T ( x

′
y′ )

a,b′
i′,j ,

(18.40)
∑

k,k′
T ( x

′
y′ )

a,c′
k′,jT ( xy )

a,c
k,j

(
M(

y
y′ )

jn , jn
jn , jn

· · ·M(
y
y′ )

j1, j1
j1, j1

)(
M( x

x ′ )
km ,k ′

m
im ,i ′m

· · ·M( x
x ′ )

k1,k ′
1

i1,i ′1

)
,

(18.41)

where i = (i1, . . . , im), etc. The left blocks (M(·)•••• · · ·M(·)••••) both in (18.40) and
(18.41) are actually the identities but it is better to keep them temporarily for the
explanation. The operators in (18.40) and (18.41) actually coincide. To see this we
depict them as follows.
Here T (z)a,bi,j acts on F⊗mn

q (blue arrows) and M(z)abi j acts on the extra single Fock
spaceFq (green arrow). In the upper diagram, the front and the back layers correspond
to T ( xy )

a,b
i,j and T ( x

′
y′ )

a,b′
i′,j in (18.40), respectively. Similarly, in the lower diagram,

the front and the back layers represent T ( x
′
y′ )

a,c′
k′,j and T ( xy )

a,c
k,j in (18.41), respectively.

Starting from the top right corner of the upper diagram, using the tetrahedron equation
(Figure 18.2) repeatedly, one can push the green arrow all theway down to the bottom
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1

2

3
4

56

Fig. 18.2 A graphical representation of the tetrahedron equation (18.26). The parameter zi j has
been suppressed

left. It transforms the upper diagram into the lower, showing that they are equal as
operators on F⊗mn

q ⊗ Fq .
Now we rephrase the equality of (18.40) and (18.41) as

∑

b,b′

(
M(

y
y′ )

cn ,c′
n

bn ,b′
n
· · ·M(

y
y′ )

c1,c′
1

b1,b′
1

)
T ( xy )

a,b
i,j T ( x

′
y′ )

a,b′
i′,j

=
∑

k,k′
T ( x

′
y′ )

a,c′
k′,jT ( xy )

a,c
k,j

(
M( x

x ′ )
km ,k ′

m
im ,i ′m

· · ·M( x
x ′ )

k1,k ′
1

i1,i ′1

)
(18.42)

removing the identity parts. Evaluate (18.42) between 〈χ(
y′
y )| ∈ F∗

q and |χ( x
x ′ )〉 ∈

Fq , where these vectors are on the green arrows on which only the block of M(z)’s
act. Taking a further sum over i, i′, c, c′ on both sides eliminates M(z)’s by means
of (18.35), leading to

〈χ(
y
y′ )|χ( x

x ′ )〉
∑

i,i′,b,b′
T ( xy )

a,b
i,j T ( x

′
y′ )

a,b′
i′,j = 〈χ(

y
y′ )|χ( x

x ′ )〉
∑

k,k′,c,c′
T ( x

′
y′ )

a,c′
k′,jT ( xy )

a,c
k,j .

(18.43)
Since 〈χ(

y′
y )|χ( x

x ′ )〉 = ∑
m≥0

(q2;q2)m
(−q;−q)2m

(
xy′
x ′ y )

m �= 0 by (3.16), it can be removed. From

the definition of S(z)aj in (18.36), the resulting equality is stated as S( xy )
a
j S( x

′
y′ )

a
j =

S( x
′
y′ )

a
j S( xy )

a
j . �

One can check the commutativity (18.39) for those S(z)aj in Examples 18.9, 18.10
and 18.11. The latter two are already quite non-trivial.

18.4.3 Bilinear Identities of Layer Transfer Matrices

In the proof of Proposition 18.12, we have only used the trivial eigenvectors ofM(z)
given in Proposition 18.8. A similar argument utilizing the non-trivial eigenvectors
(the rightmost ones includingμ and ν) leads to a family of bilinear identities of S(z)aj
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mixing different boundary conditions a, j. They include the commutativity (18.39)
as the simplest case. To describe the general case we prepare some notation.

Recall that m and n are any positive integers representing the size of the layer
as in (18.36). For a subset I ⊆ {1, . . . ,m} with the complement I = {1, . . . ,m} \ I
and the sequences α ∈ {0, 1}#I , β ∈ {0, 1}#I , let α Iβ I ∈ {0, 1}m be the sequence in
which the subsequence with indices from I is α and the rest is β.6 For instance, for
m = 5 and I = {1, 3, 4}, we set7

α Iβ I = α{1,3,4}β{2,5} = (α1, β1, α2, α3, β2). (18.44)

Likewise for J � J = {1, . . . , n} and γ ∈ {0, 1}#J , δ ∈ {0, 1}#J , the array γ J δ J ∈
{0, 1}n denotes a similar sequence. For any sequence α = (α1, . . . , αk) ∈ {0, 1}k , we
set |α| = α1 + · · · + αk and α = (1 − α1, . . . , 1 − αk).

Theorem 18.13 For any subsets I ⊆ {1, . . . ,m}, J ⊆ {1, . . . , n} and sequences
α ∈ {0, 1}#I and γ ∈ {0, 1}#J , the bilinear relation8

∑

β,δ

y|β|+|δ|x |β|+|δ| S(y)
α Iβ I
γ J δ J

S(x)
α Iβ I

γ J δ J
= (x ↔ y) (18.45)

holds, where the sum runs over β ∈ {0, 1}#I and δ ∈ {0, 1}#J .
The commutativity (Proposition 18.12) is the simplest case of Theorem 18.13

corresponding to I = {1, . . . ,m}, J = {1, . . . , n}, where the sum reduces to a sin-
gle term. As another example, when (m, n) = (4, 3), I = {1, 3}, J = {2, 3},α =
(0, 1), γ = (1, 0), the relation (18.45) reads as

x3S(y)0010010 S(x)0111110 + yx2S(y)0011010 S(x)0110110 + yx2S(y)0110010 S(x)0011110

+ y2xS(y)0111010 S(x)0010110 + yx2S(y)0010110 S(x)0111010 + y2xS(y)0011110 S(x)0110010

+ y2xS(y)0110110 S(x)0011010 + y3S(y)0111110 S(x)0010010 = (x ↔ y). (18.46)

We will present a proof of Theorem 18.13 only for the special case considered in
Corollary 18.14 below since the general case is easily inferred from it. It corresponds
to the choice I = {2, 3, . . . ,m}, α = a, J = {2, 3, . . . , n}, γ = j, which will suffice
for the proof of Theorem 18.5.

Corollary 18.14 For any sequences a ∈ {0, 1}m−1 and j ∈ {0, 1}n−1, we have

x2S(y)0 a0 j S(x)1 a1 j + yxS(y)0 a1 j S(x)1 a0 j

+ yxS(y)1 a0 j S(x)0 a1 j + y2S(y)1 a1 j S(x)0 a0 j = (x ↔ y). (18.47)

6 #I denotes the cardinality of the set I .
7 Note that it is not (α1, α3, α4, β2, β5).
8 (x ↔ y) is shorthand for LHSx↔y .
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Proof. The proof is a slight and naturalmodification of the one for Proposition 18.12.
Consider the following equality of operators on F⊗mn

q ⊗ Fq :

∑

b,b′
a′′
1+a′′′

1 =1

M( x
x ′ )

a1,a′
1

a′′
1 ,a

′′′
1

(
M(

y
y′ )

cn ,c′
n

bn ,b′
n
· · ·M(

y
y′ )

c1,c′
1

b1,b′
1

)
T ( xy )

a′′,b
i,j T ( x

′
y′ )

a′′′,b′
i′,j′

=
∑

k,k′
j ′′1 + j ′′′1 =1

T ( x
′
y′ )

a′,c′
k′,j′′′T ( xy )

a,c
k,j′′M(

y
y′ )

j ′′1 , j ′′′1
j1, j ′1

(
M( x

x ′ )
km ,k ′

m
im ,i ′m

· · ·M( x
x ′ )

k1,k ′
1

i1,i ′1

)
, (18.48)

where a, a′, a′′, a′′′ (resp. j, j′, j′′, j′′′)9 differ from each other only in the first com-
ponents a1, a′

1, a
′′
1 , a

′′′
1 (resp. j1, j ′1, j ′′1 , j ′′′1 ). We take a1 + a′

1 = 1 and j1 + j ′1 = 1
and exhibit the constraints a′′

1 + a′′′
1 = 1, j ′′1 + j ′′′1 = 1 coming from M(z)abi j = 0

unless a + b = i + j . Unlike the previous (18.40) = (18.41), the identity operators
M(z)i,ii,i = 1 have been omitted already. The diagram for (18.48) is Fig. 18.3 except
that the (a1, a1) on the end of the top horizontal arrows are replaced by (a1, a′

1) and
( j1, j1) at the bottom of the leftmost vertical arrows are changed into ( j1, j ′1).

Substitution of μ = xy′, ν = x ′y into (18.33) and (18.34) lead to

∑

i+ j=1

μiν jM(
y
y′ )

kl
i j |χ( x

x ′ )〉 = μkνl |χ( x
x ′ )〉, (18.49)

∑

i+ j=1

μiν j 〈χ(
y′
y )|M( x

x ′ )
i j
kl = μkνl〈χ(

y′
y )|. (18.50)

Multiply (18.48) by μa1+ j1νa′
1+ j ′1 and take the sum over i, i′, c, c′ and a1, a′

1, j1, j
′
1

with the constraints a1 + a′
1 = 1, j1 + j ′1 = 1. Sandwich the resulting operator iden-

tity by 〈χ(
y′
y )|(· · · )|χ( x

x ′ )〉. Thanks to the identities (18.35), (18.49) and (18.50),

allM(z)’s disappear. After canceling 〈χ(
y′
y )|χ( x

x ′ )〉 �= 0 from both sides we are left
with

∑

i,i′,b,b′;a′′
1+a′′′

1 =1, j1+ j ′1=1

μa′′
1+ j1νa′′′

1 + j ′1T ( xy )
a′′,b
i,j T ( x

′
y′ )

a′′′,b′
i′,j′

=
∑

k,k′,c,c′;a1+a′
1=1, j ′′1 + j ′′′1 =1

μa1+ j ′′1 νa′
1+ j ′′′1 T ( x

′
y′ )

a′,c′
k′,j′′′T ( xy )

a,c
k,j′′ . (18.51)

9 The arrays a and j here have a slightly different meaning from those in (18.47) since the final form
we will reach is (18.52).
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Fig. 18.3 Diagrams representing (18.40) and (18.41)

After dividing by (yy′)2, this is identified with

∑

a′′
1+a′′′

1 =1, j1+ j ′1=1

( xy )
a′′
1+ j1( x

′
y′ )

a′′′
1 + j ′1 S( xy )

a′′
j S( x

′
y′ )

a′′′
j′

=
∑

a1+a′
1=1, j ′′1 + j ′′′1 =1

( xy )
a1+ j ′′1 ( x

′
y′ )

a′
1+ j ′′′1 S( x

′
y′ )

a′
j′′′ S( xy )

a
j′′ (18.52)

in terms of S(z)aj in (18.36), which completes the proof. �

Remark 18.15 The bilinear relation (18.45) can further be generalized by introduc-
ing inhomogeneity of the parameters. In (18.36) we consider horizontal arrows as
carrying x1, . . . , xm from the top to the bottom and vertical ones do y1, . . . , yn from
the left to the right. Set x = (x1, . . . , xm) and y = (y1, . . . , yn). Define S(x; y)aj
by putting L(xi/y j ) on the intersection of the i th horizontal and the j th vertical
arrows. As in Theorem 18.13, let I, J be subsets of {1, . . . ,m}, {1, . . . , n} and take
α ∈ {0, 1}#I , γ ∈ {0, 1}#J . Suppose that (x; y) and (x′; y′) satisfy

x1/x
′
1 = · · · = xm/x ′

m = u, y1/y
′
1 = · · · = yn/y

′
n = v. (18.53)
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Then the following relation is valid:

∑

β,δ

( u
v
)|β|+|δ| S(x; y)α Iβ I

γ J δ J
S(x′; y′)α Iβ I

γ J δ J

=
∑

β,δ

( u
v
)|β|+|δ| S(x′; y′)α Iβ I

γ J δ J
S(x; y)α Iβ I

γ J δ J
, (18.54)

where the sums are over β ∈ {0, 1}#I and δ ∈ {0, 1}#J as in (18.45). The derivation
is similar and outlined in [90, Remark 5.4].

18.5 Proof of Theorem 18.5

We are ready to prove Theorem 18.5 by using the special case m = n and q = 0
of the preceding results. Note that the layer transfer matrix S(z)aj (18.36) remains
well defined at q = 0. In fact, comparison of (18.25) and (18.19) shows that q = 0
is achieved just by excluding the rightmost vertex in the former and replacing a±,k
with b±, t, respectively. See (18.22). For distinction we prepare the notation of it as

S(z)aj = lim
q→0

S(z)aj |m=n. (18.55)

It is still a non-trivial operator on F⊗n2 on which b±, t in each component act as
(18.20).

Proposition 18.16 The matrix product operator Xi (z) (18.18) is contained in the
layer transfer matrices at q = 0 as follows:

S(z)00···000···0 =
n∑

i=0

Xi (z)⊗
i︷ ︸︸ ︷

b+ ⊗ · · ·⊗b+ ⊗
n−i︷ ︸︸ ︷

1⊗· · ·⊗1︸ ︷︷ ︸
diagonal

⊗1⊗· · ·⊗1, (18.56)

S(z)10···010···0 = z−1
n∑

i=0

Xi (z)⊗
i︷ ︸︸ ︷

1⊗· · ·⊗1⊗
n−i︷ ︸︸ ︷

b−⊗· · ·⊗b−
︸ ︷︷ ︸

diagonal

⊗
n−1︷ ︸︸ ︷

b+⊗· · · ⊗ b+ ⊗1⊗· · ·⊗1.

(18.57)

Here “diagonal” signifies the part of the tensor components corresponding to the
vertices on the NE–SW diagonal in (18.36)|m=n.10

Proof. We regard the triangular region in (18.18) as embedded into the n × n square
lattice in (18.36)|m=n . Since the rightmost vertex ofL(z) in (18.25) is absent at q = 0,

10 For the ordering of the components, see the explanation in Example 18.4.
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the red lines tend to be confined to the upper left region. Also, once an edge on the
diagonal boundary in (18.18) becomes black, then the subsequent ones continue to
be black in its further NE region. These properties imply the claimed expansion
formulas. See the following example from n = 3, where the dotted ones are to be
summed over 0 and 1.11 The four diagrams correspond to i = 0, . . . , 3 terms in
(18.56) and (18.57) from the left to the right. The general case is similar.

From (18.25), notice that the weight of z for S(z)aj is calculated by #(1 on the top
edges) − #(1 on the bottom edges), whereas the one for Xi (z) is just #(1 on the top
edges). This explains the extra overall factor z0 and z−1 in (18.56) and (18.57). �

Example 18.17 Consider the case n = 2. Setting q = 0 in Example 18.10, we have

S(z)0000 = (1 + zb+)⊗1⊗1⊗1 + zt⊗b+⊗1⊗1 + (zb− + z21)⊗b+⊗b+⊗1

= X0(z)⊗1⊗1⊗1 + X1(z)⊗b+⊗1⊗1 + X2(z)⊗b+⊗b+⊗1

by Example 18.3 in agreement with (18.56). Similarly, Example 18.11 leads to

zS(z)1010 = (1 + zb+)⊗b−⊗b−⊗b+ + zt⊗1⊗b−⊗b+ + (zb− + z21)⊗1⊗1⊗b+

= X0(z)⊗b−⊗b−⊗b+ + X1(z)⊗1⊗b−⊗b+ + X2(z)⊗1⊗1⊗b+

in agreement with (18.57).

Proof of Theorem 18.5. Substituting (18.56) into the commutativity (18.39) and
collecting the coefficient of

j︷ ︸︸ ︷
(b+)2⊗· · ·⊗(b+)2 ⊗

i− j︷ ︸︸ ︷
b+⊗· · ·⊗b+ ⊗1⊗· · ·⊗1 (0 ≤ j ≤ i ≤ n), (18.58)

we get (18.14).

11 Some of them are actually fixed to 0 or 1, but they are left dotted for the sake of exposition.
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Next we show (18.15). Set a = (0, . . ., 0), j = (0, . . ., 0) in Corollary 18.14 and
use the obvious property S(z)10···000···0 = 0 to derive

x2S(y)00···000···0S(x)10···010···0 + y2S(y)10···010···0S(x)00···000···0
− y2S(x)00···000···0S(y)10···010···0 − x2S(x)10···010···0S(y)00···000···0 = 0. (18.59)

Write the diagonal parts in (18.56) and (18.57) as Yi and Wi , i.e. we set

S(z)00···000···0 =
n∑

i=0

Xi (z) ⊗ Yi ⊗ 1 ⊗ · · · ⊗ 1, Yi = (b+)⊗i ⊗ 1⊗n−i , (18.60)

zS(z)10···010···0 =
n∑

i=0

Xi (z) ⊗ Wi ⊗ (b+)⊗n−1 ⊗ 1 ⊗ · · · ⊗ 1, Wi = 1⊗i ⊗ (b−)⊗n−i .

(18.61)

Substitution of them into (18.59) generates the terms all having the common off-
diagonal tail (b+)⊗n−1 ⊗ 1 ⊗ · · · ⊗ 1. It therefore reduces to the identity without the
tail. Explicitly it is given by

∑

0≤i, j≤n

(
x Xi (y)X j (x) ⊗ YiWj + yXi (y)X j (x) ⊗ WiY j

− yXi (x)X j (y) ⊗ YiWj − x Xi (x)X j (y) ⊗ WiY j

)
= 0, (18.62)

where Yk,Wk correspond to the diagonal part in Proposition 18.16. Now let us pick
the coefficients of the terms whose diagonal part is

j︷ ︸︸ ︷
b+⊗· · ·⊗b+ ⊗

i− j︷ ︸︸ ︷
t⊗· · ·⊗t⊗

n−i︷ ︸︸ ︷
b−⊗· · ·⊗b− (0 ≤ j < i ≤ n). (18.63)

In view of (18.21), such a term does not arise from WiY j but only comes from the
expansion of

YiWj = (

i︷ ︸︸ ︷
b+ ⊗ · · · ⊗ b+ ⊗

n−i︷ ︸︸ ︷
1 ⊗ · · · ⊗ 1)(

j︷ ︸︸ ︷
1⊗· · ·⊗1⊗

n− j︷ ︸︸ ︷
b− ⊗ · · · ⊗ b−)

=
j︷ ︸︸ ︷

b+ ⊗ · · · ⊗ b+ ⊗
i− j︷ ︸︸ ︷

(1 − t)⊗· · ·⊗(1 − t) ⊗
n−i︷ ︸︸ ︷

b− ⊗ · · · ⊗ b− (18.64)

with a fixed coefficient (−1)i− j . Thus (18.62) gives x Xi (y)X j (x) = yXi (y)X j (x)
for 0 ≤ j < i ≤ n, which is (18.15). This completes the proof of Theorem 18.5. �
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18.6 Bibliographical Notes and Comments

Matrix product construction of the stationary probability was initiated in [39] for
the single species TASEP subject to non-trivial boundary reservoirs. For a general
introduction to the subject, see for example [23, 32, 140] and the references therein.
As mentioned in the main text, the stationary probabilities become non-trivial even
under the periodic boundary condition for the n-TASEP with n ≥ 2. The first sys-
tematic result about it was obtained in [47], where the combinatorial construction,
called the Ferrari–Martin (FM) algorithm, was put forward. Many works followed
it, seeking an operator formulation and/or generalization to multispecies partially
asymmetric simple exclusion processes, e.g. [45, 124].

This chapter, which is mainly based on [90], presents a unique approach from the
3D integrability. It identifies the tetrahedron equation of type MMLL = LLMM
(Sects. 2.6 and 3.5.3) as the ultimate structure validating the matrix product formula
based on Xi (z) in (18.18). As noted in Remark 18.6, the quantum group theoretical
origin of the FM algorithm is a composition of the quantum R matrices (11.26) at
q = 0 [89].

There is another class of stochastic models known as the totally asymmetric zero
range process (TAZRP). See for instance [46] for a general background. Among
them, there is a special example, n-TAZRP, which admits results quite parallel to
this chapter [91, 92]. A contrasting feature of the n-TAZRP is that it allows occu-
pancy of more than one particle at a site with some combinatorial constraint on
their hopping rule. The n-TASEP and the n-TAZRP are sister models. The quantum
R matrices relevant to the FM-like algorithms are those associated with the anti-
symmetric tensor representations (11.26) and the symmetric tensor representations
(13.10), respectively. The solutions to the tetrahedron equation relevant to the layer
transfer matrices (matrix product operators) are those consisting of the 3D L (The-
orem 3.25) and the 3D R (Theorem 3.26), respectively. The n-TAZRP [91, 92] is
a special limit of the integrable Markov process associated with the stochastic R
matrix [87] quoted in Sect. 13.7. The latter contains numerous models which have
been studied extensively. A bird’s eye view of their degeneration scheme is given in
[81, Figs. 1 and 2]. A survey from the 3D viewpoint is available in [100].
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