
Chapter 17
Reductions of Quantized G2 Reflection
Equation

Abstract Spectral parameters in the Yang–Baxter and the reflection equations cor-
respond to the positive roots of A2 and B2/C2, respectively. They appear as angles,
or relative rapidity, of the world lines of particles that undergo factorized scattering in
integrable (1 + 1)D quantum field theories in the bulk and at the boundary. There is
an analogous equation associated with G2, which we call the G2 reflection equation
in this book. It describes the three-body scattering related to the geometry of the
Desargues–Pappus theorem. In addition to the usual two-body collision in the bulk,
it involves the special three-particle event in which a two-body collision takes place
at exactly the same instant as the boundary reflection of the third particle. In this
chapter we construct infinite families of trigonometric solutions to the G2 reflection
equation by the 3D approach parallel with Chaps. 11–16.We start from the quantized
G2 reflection equation and its solution in Theorem 8.6, and perform the trace and
the boundary vector reductions. The resulting solutions to the G2 reflection equation
involve quantum R matrices of A(1)

n−1 and D(2)
n+1, and they are coupled with the scat-

tering amplitude of the special three-particle event expressed by a matrix product
formula.

17.1 Introduction

Thus far we have presented a 3D approach to the Yang–Baxter and the reflection
equations, which are presented in terms of additive spectral parameters as

R12(α1)R13(α1 + α2)R23(α2) = R23(α2)R13(α1 + α2)R12(α1), (17.1)

R12(α1)K2(α1 + α2)R21(α1 + 2α2)K1(α2)

= K1(α2)R12(α1 + 2α2)K2(α1 + α2)R21(α1). (17.2)

They are spectral parameter dependent versions (sometimes referred to as Yang–
Baxterizations) of the cubic and the quarticCoxeter relations for the simple reflections
s1, s2 of the root systems of A2 and B2/C2:
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s1s2s1 = s2s1s2, �+ = {α1, α1 + α2, α2},
s1s2s1s2 = s2s1s2s1, �+ = {α1, α1 + α2, α1 + 2α2, α2}.

Here α1, α2 are the simple roots and �+ denotes the set of positive roots which
formally correspond to the spectral parameters. They are so ordered that the kth one
from the left is si1 · · · sik−1(αik ) with ik = 1 (k: odd) and ik = 2 (k: even). See (10.3).

In this chapter we consider a natural G2 analogue of them as

R12(α1)X132(α1 + α2)R23(2α1 + 3α2)X213(α1 + 2α2)R31(α1 + 3α2)X321(α2)

= X231(α2)R13(α1 + 3α2)X123(α1 + 2α2)R32(2α1 + 3α2)X312(α1 + α2)R21(α1),

(17.3)

which we call the G2 reflection equation. Based on the results on Aq(G2) in Chap. 8,
we construct infinite families of solutions by extending the 3D approach further. The
basic ingredient is the quantized G2 reflection equation (8.2):

(L12 J132L23 J213L31 J321)F = F(J231L13 J123L32 J312L21). (17.4)

It is a generalization of the constant G2 reflection equation R12X132R23X213R31

X321 = X231R13X123R32X312R21 to a conjugacy equivalence by the intertwiner F .
The contents are parallel with those for the Yang–Baxter and the reflection equations
in Chaps. 11–16.

17.2 The G2 Reflection Equation

Let V be a vector space and consider the operators

R(z) ∈ End(V ⊗ V), X (z) ∈ End(V ⊗ V ⊗ V) (17.5)

depending on the spectral parameter z.We assume that R(z) satisfies theYang–Baxter
equation by itself:

R12(x)R13(xy)R23(y) = R23(y)R13(xy)R12(x) ∈ End(V ⊗ V ⊗ V). (17.6)

We consider theG2 reflection equation in End(V ⊗ V ⊗ V)withmultiplicative spec-
tral parameters:1

R12(x)X132(xy)R23(x
2y3)X213(xy

2)R31(xy
3)X321(y)

= X231(y)R13(xy
3)X123(xy

2)R32(x
2y3)X312(xy)R21(x). (17.7)

1 In the solutions that we will obtain later, V has the structure V = V⊗n , hence bold font will be
used there for the indices.
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Fig. 17.1 Scattering diagram for the RHS of (17.7)

To clarify the notation, write temporarily as R(z) = ∑
r (1)
l ⊗ r (2)

l and X (z) =
∑

x (1)
l ⊗ x (2)

l ⊗ x (3)
l in terms of sums over l.2 Then

R12(z) =
∑

r (1)
l ⊗ r (2)

l ⊗ 1, R21(z) =
∑

r (2)
l ⊗ r (1)

l ⊗ 1,

R13(z) =
∑

r (1)
l ⊗ 1 ⊗ r (2)

l , R31(z) =
∑

r (2)
l ⊗ 1 ⊗ r (1)

l ,

R23(z) =
∑

1 ⊗ r (1)
l ⊗ r (2)

l , R32(z) =
∑

1 ⊗ r (2)
l ⊗ r (1)

l ,

Xi jk(z) =
∑

x (i)
l ⊗ x ( j)

l ⊗ x (k)
l . (17.8)

Let us illustrate the special three-particle scattering diagram corresponding to the
G2 reflection equation. Consider the three particles 1,2,3 coming from A1,A2,A3

and being reflected by the boundary at O1, O2, O3, respectively. See Fig. 17.1. The
bottom horizontal line is the boundary which may also be viewed as the time axis.
The vertical direction corresponds to the 1D space. Each arrow carries V which
specifies internal degrees of the freedom of a particle. So a three-particle state at a
time is described by an element in V ⊗ V ⊗ V.

One can arrange the three particle world lines so that the two-particle scattering
P1, P2, P3 happens exactly at the same instant as the boundary reflection O1, O2,
O3 of the other particle, respectively. This is non-trivial. For instance, suppose there
were only particles 2 and 3. They already determine the reflecting points O2, O3 and
the intersection P1 (and Q1) and its projection O1 onto the boundary. Let P2, P3 be
the points on the world lines of particles 3 and 2 whose projection are O2 and O3,
respectively. In order to be able to draw the world line for the last particle 1, the three
points P2, P3 and O1 must be collinear. This is guaranteed by a special case of the
Pappus theorem from the fourth century.

2 Although these expansions do not specify r (i)
l , x (i)

l uniquely, it suffices to make (17.8)
unambiguous.
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One can state itmore symmetrically just by starting fromP1, P2 and their projection
O1, O2 onto the boundary. Let P′

1, P
′
2 be the mirror image of P1, P2 with respect to the

boundary. Then the three intersections P1O2 ∩ O1P2, P1P′
2 ∩ P′

1P2 and O1P′
2 ∩ P′

1O2

are collinear; in fact they are P3, O3 and the mirror image of P3.
Let us call the so arranged scattering diagram a Pappus configuration. The reflec-

tion at Oi with the simultaneous two-particle scattering at Pi will be referred to as a
special three-particle event (i = 1, 2, 3). Up to translation in the horizontal direction
and the overall scale a Pappus configuration is parameterized by two real numbers,
for instance, by the reflection angles ∠P3O2O3 and ∠P3O1O3. Set

u = ∠P3O2O3, w = ∠P2O3O2, v = ∠P3O1O3,

θ1 = ∠A2Q3A1, θ2 = ∠A3P2A1, θ3 = ∠A3Q1O2,

θ4 = ∠A1P3O2, θ5 = ∠A1Q2O3, θ6 = ∠O2P1O3. (17.9)

Then it is elementary to see

tanw = tan u + tan v, (17.10)

θ1 = u − v, θ2 = w − v, θ3 = u + w, θ4 = u + v, θ5 = v + w, θ6 = w − u.

(17.11)

We formally consider the infinitesimal angles, hence replace (17.10) by w = u + v.
By a further substitution u = α1 + α2 and v = α2, (17.11) becomes

θ1 = α1, θ2 = α1 + α2, θ3 = 2α1 + 3α2, θ4 = α1 + 2α2, θ5 = α1 + 3α2, θ6 = α2.

(17.12)

Regard the symbols α1, α2 formally as the simple roots of G2. They are transformed
by the simple reflections s1, s2 of the Weyl group W (G2) as

s1(α1) = −α1, s1(α2) = α1 + α2, s2(α1) = α1 + 3α2, s2(α2) = −α2.

(17.13)

Thus we find

θk = si1 · · · sik−1(αik ), (i1, i2, i3, i4, i5, i6) = (1, 2, 1, 2, 1, 2), (17.14)

and {θ1, . . . , θ6} yields the set of the positive roots of G2.
The RHS of the G2 reflection equation (17.7) is obtained by attaching R(eθk ) to

the two particle scattering at Qi and G(eθk ) to the special three particle event at PiOi

if it is the kth event starting from the left in Fig. 17.1. Setting eα1 = x and eα2 = y,
the assignment reads as
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Fig. 17.2 Scattering diagram for the LHS of (17.7)

R21(x) : two-particle scattering at Q3,

X312(xy) : special three-particle event at P2O2,

R32(x
2y3) : two-particle scattering at Q1,

X123(xy
2) : special three-particle event at P3O3,

R13(xy
3) : two-particle scattering at Q2,

X231(y) : special three-particle event at P1O1.

The indices for each operator correspond to the ordering of the relevant particles
before the process. For instance, just before the special three-particle event at P2O2,
the incoming particles are 3,1,2 from the top to the bottom, which is encoded in
X312(xy). The LHS of the G2 reflection equation (17.7) represents the Pappus con-
figuration in which the time ordering of the processes are reversed. See Fig. 17.2.

Applications of the G2 reflection equation to integrable systems are yet to be
explored.

17.3 Quantized G2 Reflection Equation

Let us recall the quantizedG2 reflection equation and its solutionobtained inSect. 8.5.
The quantized G2 reflection equation (8.50) is

L124 J1325L236 J2137L318 J3219F456789 = F456789 J2319L138 J1237L326 J3125L214.

(17.15)
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It is an equality of linear operators on
1
V ⊗ 2

V ⊗ 3
V ⊗ 4

Fq3 ⊗ 5
Fq ⊗ 6

Fq3 ⊗ 7
Fq ⊗

8
Fq3 ⊗ 9

Fq .
Let us recall L , J and F appearing here. First, L ∈ End(V ⊗ V ⊗ Fq3) is the 3D

L in (8.32)–(8.33) depicted as

(17.16)

A± and K̂ are q3-oscillators (8.7) including the zero point energy as in (8.13). This
L is precisely equal to ((11.14)|α=q1/2)|q→q3 .

Second, J ∈ End(V ⊗ V ⊗ V ⊗ Fq) is the quantized G2 scattering operator. It
is a collection of the operators Jabci jk ∈ End(Fq) expressed by q-oscillators with zero
point energy as (8.40)–(8.44). The quantized amplitude Jabci jk is depicted by the dia-
gram which corresponds to the 90◦ rotation of the special three-particle events in
Figs. 17.1 and 17.2:

(17.17)

Finally, F ∈ End(Fq3 ⊗ Fq ⊗ Fq3 ⊗ Fq ⊗ Fq3 ⊗ Fq) is the intertwiner of the
Aq(G2) modules detailed in Sect. 8.4.

17.4 Reduction of the Quantized G2 Reflection Equation

Starting from the quantized G2 reflection equation (17.15), one can perform two
kinds of reductions to construct solutions to the G2 reflection equation (17.7) in the
matrix product form.

17.4.1 Concatenation of Quantized G2 Reflection Equation

Consider n copies of (17.15) in which the spaces labeled with 1, 2, 3 are replaced by
1i , 2i , 3i with i = 1, 2, . . . , n:
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(L1i2i4 J1i3i2i5L2i3i6 J2i1i3i7L3i1i8 J3i2i1i9)F456789

= F456789(J2i3i1i9L1i3i8 J1i2i3i7L3i2i6 J3i1i2i5L2i1i4). (17.18)

Write this as Zi F456789 = F456789 Z̃i . Then repeated use of it leads to Z1Z2 · · ·
ZnF456789 = F456789 Z̃1 Z̃2 · · · Z̃n , namely,

(L11214 J1131215L21316 J2111317L31118 J3121119) · · ·
· · · (L1n2n4 J1n3n2n5L2n3n6 J2n1n3n7L3n1n8 J3n2n1n9)F456789

= F456789(J2131119L11318 J1121317L31216 J3111215L21114) · · ·
· · · (J2n3n1n9L1n3n8 J1n2n3n7L3n2n6 J3n1n2n5L2n1n4). (17.19)

This can be rearranged without changing the order of operators sharing common
labels as

(L11214 · · · L1n2n4)(J1131215 · · · J1n3n2n5)(L21316 · · · L2n3n6)

× (J2111317 · · · J2n1n3n7)(L31118 · · · L3n1n8)(J3121119 · · · J3n2n1n9)F456789

= F456789(J2131119 · · · J2n3n1n9)(L11318 · · · L1n3n8)(J1121317 · · · J1n2n3n7)
× (L31216 · · · L3n2n6)(J3111215 · · · J3n1n2n5)(L21114 · · · L2n1n4). (17.20)

Now we utilize the weight conservation (8.21) of F in the form

F−1
456789x

h4(xy)h5(x2y3)h6(xy2)h7(xy3)h8 yh9

= yh9(xy3)h8(xy2)h7(x2y3)h6(xy)h5xh4F−1
456789. (17.21)

Multiply it by (17.20) side by side from the left. The result reads as

F−1
456789

(
xh4L11214 · · · L1n2n4

)(
(xy)h5 J1131215 · · · J1n3n2n5

)

× (
(x2y3)h6L21316 · · · L2n3n6

)(
(xy2)h7 J2111317 · · · J2n1n3n7

)

× (
(xy3)h8L31118 · · · L3n1n8

)(
yh9 J3121119 · · · J3n2n1n9

)
F456789

= (
yh9 J2131119 · · · J2n3n1n9

)(
(xy3)h8L11318 · · · L1n3n8

)

× (
(xy2)h7 J1121317 · · · J1n2n3n7

)(
(x2y3)h6L31216 · · · L3n2n6

)

× (
(xy)h5 J3111215 · · · J3n1n2n5

)(
xh4L21114 · · · L2n1n4

)
. (17.22)
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17.4.2 Trace Reduction

Taking the trace of (17.22) over
4
Fq3 ⊗ 5

Fq ⊗ 6
Fq3 ⊗ 7

Fq ⊗ 8
Fq3 ⊗ 9

Fq , we obtain

Tr4
(
xh4L11214 · · · L1n2n4

)
Tr5

(
(xy)h5 J1131215 · · · J1n3n2n5

)

× Tr6
(
(x2y3)h6L21316 · · · L2n3n6

)
Tr7

(
(xy2)h7 J2111317 · · · J2n1n3n7

)

× Tr8
(
(xy3)h8L31118 · · · L3n1n8

)
Tr9

(
yh9 J3121119 · · · J3n2n1n9

)

= Tr9
(
yh9 J2131119 · · · J2n3n1n9

)
Tr8

(
(xy3)h8L11318 · · · L1n3n8

)

× Tr7
(
(xy2)h7 J1121317 · · · J1n2n3n7

)
Tr6

(
(x2y3)h6L31216 · · · L3n2n6

)

× Tr5
(
(xy)h5 J3111215 · · · J3n1n2n5

)
Tr4

(
xh4L21114 · · · L2n1n4

)
. (17.23)

Here Tr4(· · · ),Tr6(· · · ),Tr8(· · · ) involving the 3D L are identified with

Str(z) := (Str3(z) in (11.26))|q→q3 (17.24)

up to a scalar multiple. The replacement q → q3 takes into account the comment
after (17.16). It satisfies the Yang–Baxter equation (11.24) and is identified with
the quantum R matrix ofU−q−3(A(1)

n−1) for the anti-symmetric tensor representations
according to (Theorem 11.3)|q→q3 .

The other factors emerging from J have the form

X tr
123(z) = Tra(z

ha J112131a · · · J1n2n3na) ∈ End(
1
V ⊗ 2

V ⊗ 3
V), (17.25)

where
k
V = k1

V ⊗ · · · ⊗ kn
V � (C2)⊗n for k = 1, 2, 3. The trace is taken over

a
Fq and

evaluated by means of (3.12) and (11.27). Now the relation (17.23) is rephrased as

Str12(x)X
tr
132(xy)S

tr
23(x

2y3)X tr
213(xy

2)Str31(xy
3)X tr

321(y)

= X tr
231(y)S

tr
13(xy

3)X tr
123(xy

2)Str32(x
2y3)X tr

312(xy)S
tr
21(x). (17.26)

Thus the pair (Str(z), X tr(z)) yields a solution to the G2 reflection equation (17.7)
for any n ≥ 1. Elements of X tr(z) are rational functions of q1/2 and z.

17.4.3 Boundary Vector Reduction

Recall the boundary vectors in (8.60) and (8.61):

〈η1| =
∑

m≥0

〈m|
(q)m

, |η1〉 =
∑

m≥0

|m〉
(q)m

, (17.27)
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〈ξ | =
∑

m≥0

〈m|
(q3)m

, |ξ 〉 =
∑

m≥0

|m〉
(q3)m

. (17.28)

Sandwich the relation (17.22) between 〈4ξ | ⊗ 〈 5
η1| ⊗ 〈6ξ | ⊗ 〈 7

η1| ⊗ 〈8ξ | ⊗ 〈 9
η1| and

|4ξ〉 ⊗ | 5
η1〉 ⊗ |6ξ〉 ⊗ | 7

η1〉 ⊗ |8ξ〉 ⊗ | 9
η1〉. Assuming Conjecture 8.9 and using F = F−1

(8.22), we get

〈4ξ |xh4L11214 · · · L1n2n4|
4
ξ〉〈 5

η1|(xy)h5 J1131215 · · · J1n3n2n5| 5
η1〉

× 〈6ξ |(x2y3)h6L21316 · · · L2n3n6|
6
ξ〉〈 7

η1|(xy2)h7 J2111317 · · · J2n1n3n7| 7
η1〉

× 〈8ξ |(xy3)h8L31118 · · · L3n1n8|
8
ξ〉〈 9

η1|yh9 J3121119 · · · J3n2n1n9| 9
η1〉

= 〈 9
η1|yh9 J2131119 · · · J2n3n1n9| 9

η1〉〈
8
ξ |(xy3)h8L11318 · · · L1n3n8|

8
ξ〉

× 〈 7
η1|(xy2)h7 J1121317 · · · J1n2n3n7| 7

η1〉〈
6
ξ |(x2y3)h6L31216 · · · L3n2n6|

6
ξ〉

× 〈 5
η1|(xy)h5 J3111215 · · · J3n1n2n5| 5

η1〉〈
4
ξ |xh4L21114 · · · L2n1n4|

4
ξ〉. (17.29)

The operators arising from 〈ξ |(· · · )|ξ 〉 involving L are identified, up to a scalar
multiple, with

Sbv(z) := (S1,1(z) in (12.9))|q→q3 , (17.30)

where the superscript “bv” indicates the boundary vector reduction. The relation of
the boundary vectors (17.28) = (12.3)|r=1,q→q3 has also been used for the identifica-
tion. The result (12.7)|r=r ′=1 shows that Sbv(z) satisfies the Yang–Baxter equation.
It is identified with the quantum R matrix of Up(D

(2)
n+1) for the spin representation

at p = −q−3 according to Theorem 12.2.
The other factors emerging from J have the form

Xbv
123(z) = κbv(z)〈 a

η1|zha J112131a · · · J1n2n3na| a
η1〉 ∈ End(

1
V ⊗ 2

V ⊗ 3
V), (17.31)

κbv(z) = (z; q)∞
(−qz; q)∞

, (17.32)

where the normalization factor κbv(z) is introduced to make elements of Xbv(z)
rational functions of q1/2 and z. Now the relation (17.29) is rephrased as

Rbv
12(x)X

bv
132(xy)R

bv
23(x

2y3)Xbv
213(xy

2)Rbv
31(xy

3)Xbv
321(y)

= Xbv
231(y)R

bv
13(xy

3)Xbv
123(xy

2)Rbv
32(x

2y3)Xbv
312(xy)R

bv
21(x). (17.33)
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Thus the pair (Rbv(z), Xbv(z)) provides another solution to theG2 reflection equation
(17.7) for any n ≥ 1 provided that Conjecture 8.9 holds.

17.5 Properties of X tr(z) and Xbv(z)

We use notations like s = {0, 1}n , a = (a1, . . . , an), ek , |a| = a1 + · · · + an , va ∈ V
andVk ⊂ V introduced in (11.1)–(11.7). The construction (17.25) and (17.31) imply
the matrix product formula for the elements as

X (z)(vi ⊗ vj ⊗ vk) =
∑

a,b,c∈s
X (z)abci j k va ⊗ vb ⊗ vc (X = X tr, Xbv), (17.34)

X tr(z)abci j k = Tr
(
zh Ja1,b1,c1i1, j1,k1

· · · Jan ,bn ,cnin , jn ,kn

)
, (17.35)

Xbv(z)abci j k = κbv(z)〈η1|zh Ja1,b1,c1i1, j1,k1
· · · Jan ,bn ,cnin , jn ,kn

|η1〉 (17.36)

in terms of Jabci jk specified in (8.39)–(8.44). They are rational functions of z and q1/2.
From (8.46) and (8.47), X tr(z) has the selection rule

X tr(z)abci j k = 0 unless a + b = i + j ∈ Z
n and n + |j| − |k| = |b| + |c| (17.37)

or equivalently the direct sum decomposition:

X tr(z) =
⊕

l,m,k

X tr(z)l,m,k,

X tr(z)l,m,k :Vl ⊗ Vm ⊗ Vk →
⊕

k ′
Vl+k+k ′−n ⊗ Vm−k−k ′+n ⊗ Vk ′ , (17.38)

where the sums extend over l,m, k, k ′ ∈ [0, n] such that the indices l + k + k ′ − n
and m − k − k ′ + n also belong to [0, n].

Similarly, (8.46) leads to the selection rule of Xbv(z) as

Xbv(z)abci j k = 0 unless a + b = i + j ∈ Z
n. (17.39)

Example 17.1 We temporarily write va as |a〉 tomagnify the array a.We set e[1,m] =
e1 + · · · + em . In particular, |0〉 = |0, . . . , 0〉 and |1〉 = |e[1,n]〉 = |1, . . . , 1〉.

X tr(z)(|e[1,l]〉 ⊗ |e[1,m]〉 ⊗ |0〉)

= (q
1
2 )m−l+n

1 − zqm−l+n
|e[1,l]〉 ⊗ |e[1,m]〉 ⊗ |1〉 + · · · (l ≤ m), (17.40)
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X tr(z)(|e[1,l]〉 ⊗ |e[1,m]〉 ⊗ |1〉)

= (−q
1
2 )l−m+n

1 − zql−m+n
|e[1,l]〉 ⊗ |e[1,m]〉 ⊗ |0〉 + · · · (l ≥ m), (17.41)

Xbv(z)(|e[1,l]〉 ⊗ |e[1,m]〉 ⊗ |0〉)
= q

m−l+n
2

(z; q)m−l+n

(−qz; q)m−l+n
|e[1,l]〉 ⊗ |e[1,m]〉 ⊗ |1〉 + · · · (l ≤ m), (17.42)

Xbv(z)(|e[1,l]〉 ⊗ |e[1,m]〉 ⊗ |1〉)
= (−q

1
2 )l−m+n (z; q)l−m+n

(−qz; q)l−m+n
|e[1,l]〉 ⊗ |e[1,m]〉 ⊗ |0〉 + · · · (l ≥ m). (17.43)

Example 17.2 Let us present examples of X tr(z).We temporarilywriteva ⊗ vb ⊗ vc
as |a,b, c〉 for short. For n = 1, X tr(z) acts on V⊗3 = V⊗3 as

|0, 0, 0〉 �→ q
1
2 |0, 0, 1〉
1 − qz

, |0, 0, 1〉 �→ −q
1
2 |0, 0, 0〉
1 − qz

, |0, 1, 0〉 �→ q|0, 1, 1〉
1 − q2z

,

|0, 1, 1〉 �→ −u1u3(q2 − z)|0, 1, 0〉
ρ(1 − z)(1 − q2z)

− u3u4(q2 − z)|1, 0, 1〉
ρ(1 − z)(1 − q2z)

,

|1, 0, 0〉 �→ −u1u2(q2 − z)|0, 1, 0〉
ρ(1 − z)(1 − q2z)

− u2u4(q2 − z)|1, 0, 1〉
ρ(1 − z)(1 − q2z)

,

|1, 0, 1〉 �→ q|1, 0, 0〉
1 − q2z

, |1, 1, 0〉 �→ q
1
2 |1, 1, 1〉
1 − qz

, |1, 1, 1〉 �→ −q
1
2 |1, 1, 0〉
1 − qz

,

where ρ defined in (8.45) and u1, u2, u3, u4 are to obey (8.10). The two kinds of the

denominators 1 − qz and 1 − q2z originate in J 001
000 = k̂ and J 011

010 = k̂
2
.

For n = 2, it is too lengthy to present all the data. So we give just a few examples:

|00, 00, 00〉 �→ q|00, 00, 11〉
1 − q2z

, |00, 00, 01〉 �→ (1 − q2)z|00, 00, 01〉
(1 − z)(1 − q2z)

− q|00, 00, 10〉
1 − q2z

,

|00, 10, 11〉 �→ q
3
2 u1u3(q − z)|00, 10, 00〉

ρ(1 − qz)(1 − q3z)
− q

1
2 (1 − q2)u3z|10, 00, 01〉

(1 − qz)(1 − q3z)

+ q
3
2 u3u4(q − z)|10, 00, 10〉

ρ(1 − qz)(1 − q3z)
,

|10, 01, 01〉 �→ u21u2u3(q
4 + z − 2q2z − 2q4z + q6z + q2z2)|00, 11, 00〉)

ρ2(1 − z)(1 − q2z)(1 − q4z)

+ u1u2u3u4(q
4 + z − 2q2z − 2q4z + q6z + q2z2)|01, 10, 01〉

ρ2(1 − z)(1 − q2z)(1 − q4z)

− q(1 − q2)u2u3|01, 10, 10〉
(1 − q2z)(1 − q4z)

− q(1 − q2)u2u3z|10, 01, 01〉
(1 − q2z)(1 − q4z)



296 17 Reductions of Quantized G2 Reflection Equation

+ u1u2u3u4(q
4 + z − 2q2z − 2q4z + q6z + q2z2)|10, 01, 10〉

ρ2(1 − z)(1 − q2z)(1 − q4z)

+ u2u3u
2
4(q

4 + z − 2q2z − 2q4z + q6z + q2z2)|11, 00, 11〉
ρ2(1 − z)(1 − q2z)(1 − q4z)

.

Example 17.3 Sbv(z) with n = 1 is available in Example 12.1 with r = r ′ = 1 and
the replacement q → q3. Let us present examples of Xbv(z) with n = 1 using the
same notation as Example 17.2. It acts on V⊗3 = V⊗3 as

|0, 0, 0〉 �→ (1 + q)z|0, 0, 0〉
1 + qz

+ q
1
2 (1 − z)|0, 0, 1〉

1 + qz
,

|0, 0, 1〉 �→ −q
1
2 (1 − z)|0, 0, 0〉

1 + qz
+ (1 + q)|0, 0, 1〉

1 + qz
,

|0, 1, 1〉 �→ q
3
2 (1 + q)u1(1 − z)z|0, 1, 0〉

(1 + qz)(1 + q2z)
+ q(1 − z)(1 − qz)|0, 1, 1〉

(1 + qz)(1 + q2z)

+ (1 + q)(1 + q2)z2|1, 0, 0〉
(1 + qz)(1 + q2z)

+ q
3
2 (1 + q)u4(1 − z)z|1, 0, 1〉

(1 + qz)(1 + q2z)
,

|0, 1, 1〉 �→ u3(−q2 + z + 2qz + 2q2z + q3z − qz2)(u1|0, 1, 0〉 + u4|1, 0, 1〉)
ρ(1 + qz)(1 + q2z)

+ q
1
2 (1 + q)u3(1 − z)(|0, 1, 1〉 − z|1, 0, 0〉)

(1 + qz)(1 + q2z)
,

|1, 0, 0〉 �→ u2(−q2 + z + 2qz + 2q2z + q3z − qz2)(u1|0, 1, 0〉 + u4|1, 0, 1〉)
ρ(1 + qz)(1 + q2z)

+ q
1
2 (1 + q)u2(1 − z)(|0, 1, 1〉 − z|1, 0, 0〉)

(1 + qz)(1 + q2z)
,

|1, 0, 1〉 �→ −q
3
2 (1 + q)u1(1 − z)|0, 1, 0〉

(1 + qz)(1 + q2z)
+ (1 + q)(1 + q2)|0, 1, 1〉

(1 + qz)(1 + q2z)

+ q(1 − z)(1 − qz)|1, 0, 0〉
(1 + qz)(1 + q2z)

− q
3
2 (1 + q)u4(1 − z)|1, 0, 1〉

(1 + qz)(1 + q2z)
,

|1, 1, 0〉 �→ (1 + q)z|1, 1, 0〉
1 + qz

+ q
1
2 (1 − z)|1, 1, 1〉

1 + qz
,

|1, 1, 1〉 �→ −q
1
2 (1 − z)|1, 1, 0〉

1 + qz
+ (1 + q)|1, 1, 1〉

1 + qz
.



17.6 Bibliographical Notes and Comments 297

17.6 Bibliographical Notes and Comments

This chapter is based on [85]. The G2 reflection equation (17.3) or (17.7) up to
spectral parameters was suggested on [30, p. 982], where the Desargues–Pappus
geometry of the G2 scattering diagram was mentioned instead of the equation itself.
The equation of the form (17.3) for generic symbols R and X without assuming
a tensor product structure of their representation space (i.e. without indices) has
appeared as a defining relation of the root algebra of type G2 in [31, Sect. 2].

The reduction procedures in Sect. 17.4 are parallel with earlier chapters. The
intertwiner F of Aq(G2) is eliminated in an early stage but it controls the matrix
product construction essentially.

It is an outstanding problem whether the solution X tr(z) and the conjectural solu-
tion Xbv(z) admit a characterization analogous to Theorems 15.3 and 16.2 by some
sort of quantum group theoretical structure like coideals.
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