
Chapter 16
Boundary Vector Reductions
of (LGLG)K = K (GLGL)

Abstract This chapter is a continuation of the 3D approach to the reflection equation
from the previous one. We start from the n-concatenation of the quantized reflection
equation (LGLG)K = K (GLGL) and perform the boundary vector reduction. The
L part gives rise to the quantum R matrices for the spin representations of gr,r

′ =
B(1)
n , D(1)

n , D(2)
n , B̃(1)

n , which have been detailed in Chap. 12. The G part generates
the companion K matrices that satisfy the reflection equation. They are expressed
by a matrix product formula in terms of G and characterized as the intertwiners of
various Onsager coideals of the quantum affine algebras Up(g

r,r ′
). The final list of

the solutions is summarized in Table 16.1.

16.1 Preliminaries

We keep the setting in Sect. 15.1 and continue to work with the solution (L ,G, K )

to the quantized reflection equation L123G24L215G16K3456 = K3456G16L125G24L213

summarized there. Thus L and G are given by

⎛
⎜⎜⎜⎜⎜⎝

L00
00 L00

01 L00
10 L00

11

L01
00 L01

01 L01
10 L01
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00 L10
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10 L10
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L11
00 L11

01 L11
10 L11

11

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 −q2α−1K A− 0

0 A+ αK 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠

,

(
G0

0 G0
1

G1
0 G1

1

)
=

(
a+ −qβ−1k

βk a−

)
.

(16.1)
The 3D K has been detailed in Chap. 5. Note that

(L in (16.1)) = (L in (11.14))|q→q2 = (L in (12.1))|q→q2 . (16.2)

Our starting point is the n-concatenation of the quantized reflection equation
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(L11213 · · · L1n2n3)(G214 · · ·G2n4)(L21115 · · · L2n1n5)(G116 · · ·G1n6)K3456

= K3456(G116 · · ·G1n6)(L11215 · · · L1n2n5)(G214 · · ·G2n4)(L21113 · · · L2n1n3)

(16.3)

and the weight conservation of the 3D K

K3456(xy
−1)h3xh4(xy)h5 yh6 = (xy−1)h3xh4(xy)h5 yh6K3456, (16.4)

which are quoted from (15.10) and (15.11). The operator hi is the number operator
h (3.14) acting on the i th Fock space.

16.2 Boundary Vector Reduction

Recall the boundary vectors in (5.118) and (5.119):

〈ηr | =
∑
m≥0

〈rm|
(qr2)m

, |ηr 〉 =
∑
m≥0

|rm〉
(qr2)m

, (16.5)

〈χr | =
∑
m≥0

〈rm|
(q2r2)m

, |χr 〉 =
∑
m≥0

|rm〉
(q2r2)m

, (16.6)

where r = 1, 2. The second line is obtained by setting q → q2 in the first line.
The vectors (16.5) (resp. (16.6)) are elements of a completion of F∗

q and Fq (resp.
F∗

q2 and Fq2 ).1 We invoke Proposition 5.21, which states that they yield particular
eigenvectors of the 3D K as

(〈χr | ⊗ 〈ηk | ⊗ 〈χr | ⊗ 〈ηk |)K = 〈χr | ⊗ 〈ηk | ⊗ 〈χr | ⊗ 〈ηk |,
K (|χr 〉 ⊗ |ηk〉 ⊗ |χr 〉 ⊗ |ηk〉) = |χr 〉 ⊗ |ηk〉 ⊗ |χr 〉 ⊗ |ηk〉, (16.7)

where 1 ≤ r ≤ k ≤ 2.
Multiply (xy−1)h3xh4(xy)h5 yh6 from the left by (16.3) and sandwich the result by

the boundary vectors as

〈 3
χr | ⊗ 〈 4

ηk | ⊗ 〈 5
χr | ⊗ 〈 6

ηk |(· · · )| 3
χr ′ 〉 ⊗ | 4

ηk ′ 〉 ⊗ | 5
χr ′ 〉 ⊗ | 6

ηk ′ 〉.

Thanks to the commutativity (16.4) and the eigen-property (16.7), the 3D K disap-
pears and the result becomes

1 From (3.16), dual pairing of F∗
q2

and Fq2 should be calculated by 〈m|m′〉 = (q4)mδm,m′ .
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〈 3
χr |(xy−1)h3L11213 · · · L1n2n3| 3

χr ′ 〉〈 4
ηk |xh4G214 · · ·G2n4| 4

ηk ′ 〉×
× 〈 5

χr |(xy)h5L21115 · · · L2n1n5| 5
χr ′ 〉〈 6

ηk |yh6G116 · · ·G1n6| 6
ηk ′ 〉

= 〈 6
ηk |yh6G116 · · ·G1n6| 6

ηk ′ 〉〈 5
χr |(xy)h5L11215 · · · L1n2n5| 5

χr ′ 〉×
× 〈 4

ηk |xh4G214 · · ·G2n4| 4
ηk ′ 〉〈 3

χr |(xy−1)h3L21113 · · · L2n1n3| 3
χr ′ 〉. (16.8)

Up to scalar multiples, the factors 〈χr |(· · · )|χr ′ 〉 involving L yield Sr,r
′
(z)|q→q2

in (12.6). In the identification one uses (16.2) and 〈χr | = 〈ηr ||q→q2 and |χr 〉 =
|ηr 〉|q→q2 in (16.6). Since they appear frequently, we adopt the convention:

Sr,r
′
(z) in this chapter = (Sr,r

′
(z) in (12.8)–(12.9))q→q2 . (16.9)

By Theorem 12.2|q→q2 , we know that Sr,r
′
(z) is the quantum R matrix for the spin

representation of Up(g
r,r ′

) at p = −q−2.
Returning to (16.8), the other factors emerging from G have the form

Kk,k ′
1 (z) = κk,k ′

(z)〈 6
ηk |zh6G116 · · ·G1n6| 6

ηk ′ 〉 ∈ End(
1
V), (16.10)

Kk,k ′
2 (z) = κk,k ′

(z)〈 4
ηk |zh4G214 · · ·G2n4| 4

ηk ′ 〉 ∈ End(
2
V), (16.11)

where k, k ′ = 1, 2. The scalar κk,k ′
(z) will be specified in (16.17). They are the

same linear operators (16.13) acting on the different copies of V⊗n given as
1
V =

11
V ⊗ · · · ⊗ 1n

V and
2
V = 21

V ⊗ · · · ⊗ 2n
V .

In terms of (16.10)–(16.11) and (12.6)|q→q2 , the relation (16.8) is stated as the
reflection equation

Sr,r
′

1,2 (xy−1)Kk,k ′
2 (x)Sr,r

′
2,1 (xy)Kk,k ′

1 (y) = Kk,k ′
1 (y)Sr,r

′
1,2 (xy)Kk,k ′

2 (x)Sr,r
′

2,1 (xy−1)

(16.12)
for 1 ≤ r ≤ k ≤ 2 and 1 ≤ r ′ ≤ k ′ ≤ 2.

The construction (16.10)–(16.11) yields the matrix product formula for each ele-
ment as

Kk,k ′
(z)va =

∑
b∈s

Kk,k ′
(z)ba vb,

Kk,k ′
(z)ba = κk,k ′

(z)〈ηk |zhGb1
a1 · · ·Gbn

an |ηk ′ 〉. (16.13)

See (11.1)–(11.7) for the notations s, va,V etc. From (16.1), we see that it depends
on the parameter β in (16.1) as the conjugation:

Kk,k ′
(z) = βh1+···+hn

(
Kk,k ′

(z)|β=1
)
β−h1−···−hn . (16.14)
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From (3.18) and the fact that κk,k ′
(z) = κk ′,k(z) in (16.17), it can be shown that

Kk,k ′
(z)ba = zn−|a|−|b|Kk ′,k(z)e1+···+en−a∨

e1+···+en−b∨ , (16.15)

where (a1, . . . , an)∨ = (an, . . . , a1) is the reverse ordered array as in (11.4). Noting
the factor θ( j ∈ 2Z) in the last formula in (12.10), one can show

K 2,2(z)ba = 0 unless |a| + |b| ≡ n mod 2 (16.16)

by an argument similar to the one for deriving (15.20). Consequently, the direct sum
decomposition

K 2,2(z) = K 2,2
+ (z) ⊕ K 2,2

− (z), K 2,2
σ (z) : Vσ → Vσ(−1)n

holds, where V± was defined in (11.6). As for Kk,k ′
(z) with (k, k ′) �= (2, 2), there is

no selection rule like (15.20) or (16.16). We choose the scalar κk,k ′
(z) as

κk,k ′
(z) = q− n

2
((zqn)t ; qkk ′

)∞
((−q)s(zqn)t ; qkk ′

)∞
, s = min(k, k ′), t = max(k, k ′),

(16.17)
which is the inverse ofq

n
2 〈ηk |zhkn|ηk ′ 〉 calculated from (12.10). In this normalization,

Kk,k ′
(z)ve1+···+el = (−1)l(q− 1

2 β)n−2lvel+1+···+en + · · · (16.18)

for 0 ≤ l ≤ n, 1 ≤ k, k ′ ≤ 2 holds, and general elements are rational functions of
β, q

1
2 and z.

As seen from (16.13) and also in Example 16.1 below, the K matrix Kk,k ′
(z) is

dense in the sense that all the elements are non-zero (for K 2,2 non-zero within each
sector implied by (16.16)).

Example 16.1 We present Kk,k ′
(z) with β = q

1
2 for n = 1, 2 and (k, k ′) = (1, 1),

(1, 2), (2, 2). The general β case and (k, k ′) = (2, 1) can be deduced from them by
(16.14) and (16.15). We write v0 ⊗ v1 as |01〉 etc.

For n = 1, Kk,k ′
(z)|

β=q
1
2
acts on the basis as

K 1,1(z) : |0〉 �→ −q− 1
2 (1 + q)z|0〉
−1 + z

+ |1〉, |1〉 �→ −|0〉 − q− 1
2 (1 + q)|1〉
−1 + z

,

K 1,2(z) : |0〉 �→ −q− 1
2 (1 + q)z|0〉
−1 + z2

+ |1〉, |1〉 �→ −|0〉 − q− 1
2 (1 + q)z|1〉
−1 + z2

,

K 2,2(z) : |0〉 �→ |1〉, |1〉 �→ −|0〉.

For n = 2, K 1,1(z)|
β=q

1
2
acts on the basis as
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|00〉 �→ q−1(1 + q)(1 + q2)z2|00〉
(−1 + z)(−1 + qz)

− q− 1
2 (1 + q)z|01〉
(−1 + qz)

− q
1
2 (1 + q)z|10〉

−1 + qz
+ |11〉,

|01〉 �→ q− 1
2 (1 + q)z|00〉
−1 + qz

+ q−1(1 + q)z(1 + q − qz + q2z)|01〉
(−1 + z)(−1 + qz)

− |10〉 − q− 1
2 (1 + q)|11〉
−1 + qz

,

|10〉 �→ q
1
2 (1 + q)z|00〉

−1 + qz
− |01〉 + q−1(1 + q)(1 − q + qz + q2z)|10〉

(−1 + z)(−1 + qz)

− q
1
2 (1 + q)|11〉
−1 + qz

,

|11〉 �→ |00〉 + q− 1
2 (1 + q)|01〉
−1 + qz

+ q
1
2 (1 + q)|10〉
−1 + qz

+ q−1(1 + q)(1 + q2)|11〉
(−1 + z)(−1 + qz)

.

K 1,2(z)|
β=q

1
2
acts on the basis as

|00〉 �→ q−1(1 + q)z2(1 + q2 − q2z2 + q3z2)|00〉
(−1 + z2)(−1 + q2z2)

− q− 1
2 (1 + q)z|01〉
−1 + q2z2

− q
1
2 (1 + q)z|10〉
−1 + q2z2

+ |11〉,

|01〉 �→ q− 1
2 (1 + q)z|00〉
−1 + q2z2

+ q−1(1 + q)z2(1 + q2 − q2z2 + q3z2)|01〉
(−1 + z2)(−1 + q2z2)

− |10〉 − q
1
2 (1 + q)z|11〉
−1 + q2z2

,

|10〉 �→ q
1
2 (1 + q)z|00〉
−1 + q2z2

− |01〉 + q−1(1 + q)(1 − q + qz2 + q3z2)|10〉
(−1 + z2)(−1 + q2z2)

− q
3
2 (1 + q)z|11〉
−1 + q2z2

,

|11〉 �→ |00〉 + q
1
2 (1 + q)z|01〉
−1 + q2z2

+ q
3
2 (1 + q)z|10〉
−1 + q2z2

+ q−1(1 + q)(1 − q + qz2 + q3z2)|11〉
(−1 + z2)(−1 + q2z2)

.

K 2,2(z)|
β=q

1
2
acts on the basis as
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|00〉 �→ q−1(−1 + q2)z2|00〉
−1 + z2

+ |11〉, |01〉 �→ q−1(−1 + q2)z2|01〉
−1 + z2

− |10〉,

|10〉 �→ −|01〉 + q−1(−1 + q2)|10〉
−1 + z2

, |11〉 �→ |00〉 + q−1(−1 + q2)|11〉
−1 + z2

.

16.3 Characterization as the Intertwiner of the Onsager
Coideal

Wekeep the definitions of the quantum affine algebrasUp(g
r,r ′

) (r, r ′ = 1, 2) in Sect.
12.2, where

g1,1 = D(2)
n+1, g2,1 = B(1)

n , g1,2 = B̃(1)
n , g2,2 = D(1)

n (16.19)

as in (12.20).We use the spin representation π�n ,x : Up(g
r,r ′

) → End(V) in (12.23)–
(12.27), which we quote here for convenience:

e0vm = xvm−e1 , f0vm = x−1vm+e1 , k0vm = p
1
2 −m1vm (r = 1),

(16.20)

e0vm = x2vm−e1−e2 , f0vm = x−2vm+e1+e2 , k0vm = p1−m1−m2vm (r = 2),
(16.21)

eivm = vm+ei−ei+1 , fivm = vm−ei+ei+1 , kivm = pmi−mi+1vm (0 < i < n),

(16.22)

envm = vm+en , fnvm = vm−en , knvm = pmn− 1
2 vm (r ′ = 1), (16.23)

envm = vm+en−1+en , fnvm = vm−en−1−en , knvm = pmn+mn−1−1vm (r ′ = 2),
(16.24)

where m ∈ s. As mentioned before, it is irreducible except for g2,2 = D(1)
n , where

V = V+ ⊕ V− as defined in (11.6) corresponding to the two kinds of spin represen-
tations.
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According to the remark after (16.9), we will be concerned with Up(g
r,r ′

) with
p = −q−2. In the rest of the chapter we set

p
1
2 = −iεq−1, ε = ±1 (16.25)

and allow the coexistence of the letters p, q and ε.

16.3.1 Generalized p-Onsager Algebra Op(g
r,r ′

)

For each gr,r
′
in (16.19) we consider the quantum affine algebra Up(g

r,r ′
) (12.20)

and the Onsager algebra Op(g
r,r ′

).
For comparison we write down the p-Serre relations in Up(g

r,r ′
) which were not

displayed together with (12.21):

ei e j − e j ei = 0 (ai j = 0), (16.26)

e2i e j − (p + p−1)ei e j ei + e j e
2
i = 0 (ai j = −1), (16.27)

e3i e j − (p + 1 + p−1)e2i e j ei + (p + 1 + p−1)ei e j e
2
i − e j e

3
i = 0 (ai j = −2).

(16.28)

The same relations are imposed also for f j ’s. The data (ai j )0≤i, j≤n is the Cartan
matrix of the affine Lie algebra gr,r

′
. The Onsager algebra Op(g

r,r ′
) is generated by

b0, . . . , bn obeying the modified p-Serre relations:

bib j − b jbi = 0 (ai j = 0), (16.29)

b2i b j − (p + p−1)bib jbi + b jb
2
i = b j (ai j = −1), (16.30)

b3i b j − (p + 1 + p−1)b2i b jbi + (p + 1 + p−1)bib jb
2
i − b jb

3
i

= (p
1
2 + p− 1

2 )2(bib j − b jbi ) (ai j = −2). (16.31)

Except for (16.31) which are void for the simply-laced case g2,2 = D(1)
n , these rela-

tions are formally the same with (15.25) for Op(A
(1)
n−1).

In terms of commutators [X,Y ] = [X,Y ]1, [X,Y ]r = XY − rY X , the relations
(16.29)–(16.31) are written more compactly as

[bi , b j ] = 0 (ai j = 0), (16.32)

[bi , [bi , b j ]p]p−1 = b j (ai j = −1), (16.33)

[bi , [bi , [bi , b j ]p]p−1 ] = (p
1
2 + p− 1

2 )2[bi , b j ] (ai j = −2). (16.34)

There is an embedding Op(g
r,r ′

) ↪→ Up(g
r,r ′

), depending on integer indices k, k ′
satisfying 1 ≤ r ≤ k ≤ 2 and 1 ≤ r ′ ≤ k ′ ≤ 2, given by
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b0 �→ g0 := e0 + pr/2k0 f0 + drk k0, (16.35)

bi �→ gi := ei + pki fi + 1

q + q−1
ki (0 < i < n), (16.36)

bn �→ gn := en + pr
′/2kn fn + dr

′
k ′ kn, (16.37)

d1
1 = ε

q
1
2 + q− 1

2

q + q−1
, d1

2 = 0, d2
2 = 1

q + q−1
, (16.38)

where ε = ±1 has been introduced in (16.25). Define

Br,r ′
k,k ′ = the subalgebra of Up(g

r,r ′
) generated by g0, . . . , gn in (16.35)–(16.37).

(16.39)
By the remark on (15.28), it becomes a left coideal; �Br,r ′

k,k ′ ⊂ Up(g
r,r ′

) ⊗ Br,r ′
k,k ′ .

Henceforth Br,r ′
k,k ′ will be referred to as an Onsager coideal.

16.3.2 K k,k′
(z) as the Intertwiner of Onsager Coideal

Recall that π�n ,x : Up(g
r,r ′

) → End(V) denotes the spin representation in (16.20)–
(16.24).

Theorem 16.2 The K matrix (16.13) with β = iq
1
2 is characterized, up to normal-

ization, as the intertwiner of the Onsager coideal Br,r ′
k,k ′ ⊂ Up(g

r,r ′
) at p

1
2 = −iεq−1

(16.25) as

K k,k ′
(z)π�n ,z−1(g) = π�n ,z(g)K

k,k ′
(z) (∀g ∈ Br,r ′

k,k ′), (16.40)

where 1 ≤ r ≤ k and 1 ≤ r ′ ≤ k ′.

Proof We focus on the existence referring to [104, Sect. 5.2] for the uniqueness.
There are seven cases in (16.40) to verify:

(i) g = gi (0 < i < n),

(ii) g = g0, (r, k) = (1, 2), (v) g = gn, (r ′, k ′) = (1, 2),

(iii) g = g0, (r, k) = (1, 1), (vi) g = gn, (r ′, k ′) = (1, 1),

(iv) g = g0, (r, k) = (2, 2), (vii) g = gn, (r ′, k ′) = (2, 2).

Thanks to (3.18), the cases (v), (vi) and (vii) are attributed to (ii), (iii), and (iv) at
z = 1, respectively. Thus we consider (i)–(iv) below. The case (i) reduces to the
already shown identity (15.36).

(ii) From (16.35) and (16.38), the Eq. (16.40) reads as

K 2,k ′
(z)π�n ,z−1(e0 + p

1
2 k0 f0) = π�n ,z(e0 + p

1
2 k0 f0)K

2,k ′
(z). (16.41)
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From (16.20), this is translated to the relation of the coefficients for the transition
va → vb (a,b ∈ s in (11.1)) as

z−1K 2,k ′
(z)ba−e1 + zp−a1K 2,k ′

(z)ba+e1 = zK 2,k ′
(z)b+e1

a + z−1 p1−b1K 2,k ′
(z)b−e1

a .

(16.42)
One can drop the factors p−a1 and p1−b1 since the attached terms are non-vanishing
only for a + e1,b − e1 ∈ s compelling a1 = 0 and b1 = 1. Then, in view of the
matrix product formula (16.13), the relation in question follows from

〈η2|zh(z−1Gb
a−1 + zGb

a+1) = 〈η2|zh(zGb+1
a + z−1Gb−1

a ) (16.43)

for a, b = 0, 1. From (15.6) this is further reduced to the z-independent relation

〈η2|(Gb
a−1 + Gb

a+1) = 〈η2|(Gb+1
a + Gb−1

a ). (16.44)

It contains two non-trivial cases

0 = 〈η2|(G0
0 − G1

1) = 〈η2|(a+ − a−), (16.45)

0 = 〈η2|(G1
0 − G0

1) = 〈η2|(β + qβ−1)k, (16.46)

where (16.1) is substituted. The first equality holds due to (3.141) and the second
does from the assumption β = iq

1
2 of the theorem.

(iii) By an argument parallel with (ii), the proof reduces to showing

z−1K 1,k ′
(z)ba−e1 + zp−a1K 1,k ′

(z)ba+e1 + d1
1 p

1
2 −a1K 1,k ′

(z)ba

= zK 1,k ′
(z)b+e1

a + z−1 p1−b1K 1,k ′
(z)b−e1

a + d1
1 p

1
2 −b1K 1,k ′

(z)ba . (16.47)

The matrix product formula (16.13) and (15.6) attribute it to

〈η1|(Gb
a−1 + Gb

a+1 + d1
1 p

1
2 −aGb

a) = 〈η1|(Gb+1
a + Gb−1

a + d1
1 p

1
2 −bGb

a) (16.48)

for a, b = 0, 1, where d1
1 is specified in (16.38). This can be checked case by case

by using β = iq
1
2 , (16.25) and the property of 〈η1| given in (3.138) and (3.139).

(iv) By a parallel argument with respect to the representation (16.21), the proof
reduces to showing

z−2K 2,k ′
(z)ba−e1−e2 + z2 p−a1−a2K 2,k ′

(z)ba+e1+e2 + p1−a1−a2

q + q−1
K 2,k ′

(z)ba

= z2K 2,k ′
(z)b+e1+e2

a + z−2 p2−b1−b2K 2,k ′
(z)b−e1−e2

a + p1−b1−b2

q + q−1
K 2,k ′

(z)ba . (16.49)
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Onemay trivialize the coefficients of themiddle terms as p−a1−a2 = p2−b1−b2 = 1 for
the non-zero contributions. The matrix product formula (16.13) and (15.6) attribute
the resulting relation to

〈η2|(Gb
a−1G

b′
a′−1 + Gb

a+1G
b′
a′+1 + p1−a−a′

q + q−1
Gb

aG
b′
a′)

= 〈η2|(Gb+1
a Gb′+1

a′ + Gb−1
a Gb′−1

a′ + p1−b−b′

q + q−1
Gb

aG
b′
a′) (16.50)

for a, a′, b, b′ = 0, 1. We have set (a, a′, b, b′) = (a1, a2, b1, b2). This can be
checked similarly by using β = iq

1
2 , (16.25) and the property of 〈η2| in (3.141).

In particular it involves a maneuver like 〈η2|(a+)2 = 〈η2|a−a+ = 〈η2|(1 − q2k2),
etc. �

One can give an alternative derivation of the reflection equation (16.12) based on
the Onsager coideal Br,r ′

k,k ′ by an argument parallel with Sect. 15.4.3.
Let us summarize the solutions to the reflection equation obtained by the 3D

approach in Chaps. 15 and 16. There are nine cases in (16.12), where the conditions
1 ≤ r ≤ k ≤ 2 and 1 ≤ r ′ ≤ k ′ ≤ 2 originate in Proposition 5.21.

Table 16.1 The quantum affine algebra Up(g) with g = A(1)
n−1 and gr,r

′
(16.19), the associated R

matrices Str(z) and Sr,r
′
(z), the associated K matrices K tr(z) and Kk,k′

(z). There are a few choices
of Kk,k′

(z) that can be paired with Sr,r
′
(z) to jointly constitute a solution to the reflection equation

depending on (r, r ′)
g R matrix K matrix

A(1)
n−1 Str(z) K tr(z)

D(2)
n+1 S1,1(z) K 1,1(z), K 1,2(z), K 2,1(z), K 2,2(z)

B(1)
n S2,1(z) K 2,1(z), K 2,2(z)

B̃(1)
n S1,2(z) K 1,2(z), K 2,2(z)

D(1)
n S2,2(z) K 2,2(z)

16.4 Bibliographical Notes and Comments

The boundary vector reduction of the quantized reflection equation was introduced
in [105], where the property (16.7) of the boundary vector remained as a conjecture.
The first proof of the reflection equation (16.12) was done independently in the
quantum group framework based on the Onsager coideal Br,r ′

k,k ′ and the argument like
Sect. 15.4.3 [104]. Later the property (16.7) was proved in [106, Appendix B], which
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completed the 3D approach. Its detail has been reproduced in Proposition 5.21 of
this book.

In the 3D approach to the reflection equation, either by the trace reduction
(Chap. 15) or the boundary vector reduction (this chapter), the 3D K disappears
at an early stage. In fact “reduction” more or less means eliminating it to return to
2D from 3D. However, the 3D K essentially controls the construction behind the
scene in the sense that it guides precisely how the local operators L and G should
be combined, how the spectral parameters should be arranged and what kind of
boundary vectors are acceptable.

Concerning the generalized Onsager algebras, the quartic relation of the form
(16.34) with p2 = 1 is often referred to as the Dolan–Grady condition [41]. It is typ-
ical for the situation ai j = −2,whichwas utilized to reformulate the originalOnsager
algebra for A(1)

1 [122] by only a few generators. The Onsager algebra Op(D(1)
n ) with

p = 1was introduced in [34]. It is an interesting open question if there is an analogue
of Remark 15.2 for g �= A(1)

n−1 related to a boundary extension of the Temperley–Lieb
algebra like [35].

Generalized Onsager algebras Op(g
r,r ′

) have a natural classical part without the
generator b0. The commutativity in Theorem 16.2 interchanging z and z−1 implies
the usual commutativity with the classical part. The corresponding spectral decom-
position of Kr,r ′

(z) has been described in [106, Sec.10,11].
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