
Chapter 13
Trace Reductions of RRRR = RRRR

Abstract Like RLLL = LLLR, the tetrahedron equation RRRR = RRRR admits
various reductions to the Yang–Baxter equation leading to several families of solu-
tions in matrix product forms. In this chapter we focus on the trace reduction as
done for RLLL = LLLR in Chap. 11. We identify the solutions with quantum R
matrices of Uq(A

(1)
n−1), present their explicit formulas, construct commuting layer

transfer matrices, and demonstrate that the birational versions reproduce the distin-
guished example of set-theoretical solutions to the Yang–Baxter equation known as
geometric R.

13.1 Preliminaries

Let n ≥ 2 be an integer. We retain the notations for the sets B(n) = (Z≥0)
n, B(n)

k ,
the vector spaces W(n) = F ⊗n

q and W(n)
k having bases |a〉 labeled with n-arrays

a = (a1, . . . , an) in (11.8)–(11.13). We will also use |a| = a1 + · · · + an , a∨ =
(an, . . . , a1) in (11.4) and the elementary vector ei in (11.1). As for the q-oscillator
algebra Oscq and the Fock space Fq , see Sect. 3.2. Except in Sect. 13.8, n is fixed,
hence the superscript “(n)” will be suppressed.

In Chap. 3, we have introduced a linear operator R123 ∈ End(
1
F q ⊗ 2

F q ⊗ 3
F q)

which we called a 3D R.
In Theorem 3.20 it was shown to satisfy the tetrahedron equation

R124R135R236R456 = R456R236R135R124, (13.1)

which is an equality in End(
1
F q ⊗ · · · ⊗ 6

F q).
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13.2 Trace Reduction Over the Third Component of R

The following procedure is quite parallel with that in Sect. 11.2. Consider n copies
of (13.1) in which the spaces labeled with 1, 2, 3 are replaced by 1i , 2i , 3i with
i = 1, 2, . . . , n:

(R1i2i4R1i3i5R2i3i6) R456 = R456 (R2i3i6R1i3i5R1i2i4).

Sending R456 to the left by applying this relation repeatedly, we get

(R11214R11315R21316) · · · (R1n2n4R1n3n5R2n3n6) R456

= R456 (R21316R11315R11214) · · · (R2n3n6R1n3n5R1n2n4).
(13.2)

One can rearrange this without changing the order of operators sharing common
labels, hence by using the trivial commutativity, as

(R11214 · · · R1n2n4)(R11315 · · · R1n3n5)(R21316 · · · R2n3n6)R456

= R456(R21316 · · · R2n3n6)(R11315 · · · R1n3n5)(R11214 · · · R1n2n4).
(13.3)

The weight conservation (3.49) of the 3D R may be stated as

R456 x
h4(xy)h5 yh6 = xh4(xy)h5 yh6R456 (13.4)

for arbitrary parameters x and y. See (3.14) for the definition of h. Multiplying this
by (13.3) from the left and applying R2 = 1 from (3.60), we get

R456 x
h4(R11214 · · · R1n2n4)(xy)

h5(R11315 · · · R1n3n5)y
h6(R21316 · · · R2n3n6)R456

= yh6(R21316 · · · R2n3n6)(xy)
h5(R11315 · · · R1n3n5)x

h4(R11214 · · · R1n2n4).

(13.5)
This relation will also be utilized in the boundary vector reduction in Chap. 14
(Fig. 13.2).

Take the trace of (13.5) over
4
F q ⊗ 5

F q ⊗ 6
F q using the cyclicity of trace and

R2 = 1. The result reads as

123 =
1

2

3

Fig. 13.1 A graphical representation of the 3D R, where 1, 2, 3 are labels of the blue arrows. Each
on them carries a q-oscillator Fock space Fq
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Tr4
(
xh4R11214 · · · R1n2n4

)
Tr5

(
(xy)h5R11315 · · · R1n3n5

)
Tr6

(
yh6R21316 · · · R2n3n6

)

= Tr6
(
yh6R21316 · · · R2n3n6

)
Tr5

(
(xy)h5R11315 · · · R1n3n5

)
Tr4

(
xh4R11214 · · · R1n2n4

)
.

(13.6)
Let us denote the operators appearing here by

Rtr3
1,2(z) = Tr4(z

h4R11214 · · · R1n2n4) ∈ End(
1
W ⊗ 2

W),

Rtr3
1,3(z) = Tr5(z

h5R11315 · · · R1n3n5) ∈ End(
1
W ⊗ 3

W),

Rtr3
2,3(z) = Tr6(z

h6R21316 · · · R2n3n6) ∈ End(
2
W ⊗ 3

W).

(13.7)

The superscript tr3 indicates that the trace is taken over the 3rd (rightmost) component
of R, whereas Tr j in RHSs signifies the label j of a space. A similar convention will
be employed in the subsequent sections.

Those appearing in (13.7) are the same operators acting on different copies of

W specified as
1
W =

11Fq ⊗ · · · ⊗
1nFq ,

2
W =

21Fq ⊗ · · · ⊗
2nFq and

3
W =

31Fq ⊗ · · · ⊗
3nFq .

Now the relation (13.6) is stated as the Yang–Baxter equation:

Rtr3
1,2(x)R

tr3
1,3(xy)R

tr3
2,3(y) = Rtr3

2,3(y)R
tr3
1,3(xy)R

tr3
1,2(x). (13.8)

Suppressing the labels 1, 2 etc., we set

Rtr3(z)(|i〉 ⊗ |j〉) =
∑

a,b∈B
Rtr3(z)abi j |a〉 ⊗ |b〉. (13.9)

4
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11 12 1
21

31 32 3

22 2

Fig. 13.2 A graphical representation of (13.2) and (13.3). It is a concatenation of Fig. 2.1 which
corresponds to the basic RRRR = RRRR relation. Each blue arrow carries Fq
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Fig. 13.3 Matrix product
construction by the trace
reduction (13.10) is depicted
as a concatenation of Fig.
13.1 along the blue arrow
corresponding to the third
component of R. It is closed
cyclically reflecting the trace

•h

1

1

1

1

2

2

2

2

Then the construction (13.7) implies the matrix product formula

Rtr3(z)abi j = Tr
(
zhRa1b1

i1 j1
· · · Ranbn

in jn

)
(13.10)

in terms of the operator Rab
i j ∈ Oscq introduced in (2.4) and (2.5). In our case of the

3D R, it is explicitly given by (3.69).
By the definition, the trace is given by Tr(X) = ∑

m≥0
〈m|X |m〉
〈m|m〉 = ∑

m≥0
〈m|X |m〉
(q2)m

.
See (3.12)–(3.17). Then (13.10) is evaluated by using the commutation relations of
q-oscillators (3.12) and the formula (11.27). The matrix product formula (13.10)
may also be presented as

Rtr3(z)abi j =
∑

c1,...,cn≥0

zc1Ra1b1c1
i1 j1c2

Ra2b2c2
i2 j2c3

· · · Ranbncn
in jnc1

(13.11)

in terms of the elements Rabc
i jk of the 3D R in the sense of (3.47). Explicit formulas

of Rabc
i jk are available in Theorems 3.11, 3.18 and (3.84) (Fig. 13.3).

From the weight conservation (3.48), cβ in (13.11) is reducible to c1 as

cβ = c1 +
∑

1≤α<β

(bα − jα), (13.12)

therefore (13.11) is actually a single sum over c1.
From (3.63), (3.48) and (3.70) it is easy to see

Rtr3(z)abi j = 0 unless a + b = i + j and |a| = |i|, |b| = |j|, (13.13)

Rtr3(z)abi j = Rtr3(z)i
∨ j∨
a∨ b∨

n∏

k=1

(q2)ik (q
2) jk

(q2)ak (q2)bk
, (13.14)

Rtr3(z)abi j = z j1−b1Rtr3(z)σ(a)σ (b)

σ (i) σ (j) , (13.15)

where σ(a) = (a2, . . . , an, a1) is a cyclic shift. The property (13.13) implies the
decomposition
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Rtr3(z) =
⊕

l,m≥0

Rtr3
l,m(z), Rtr3

l,m(z) ∈ End(Wl ⊗ Wm). (13.16)

The Yang–Baxter equation (13.8) is valid in each finite-dimensional subspaceWk ⊗
Wl ⊗ Wm of

1
W ⊗ 2

W ⊗ 3
W. In the current normalization we have

Rtr3
l,m(z)(|lek〉 ⊗ |mek〉) = �l,m(z, q) |lek〉 ⊗ |mek〉 (13.17)

for any 1 ≤ k ≤ n, where the factor �l,m(z, q) is given by

�l,m(z, q) =
∑

c≥0

zc Rlmc
lmc = (−1)mqm(l+1) (q−l−mz; q2)m

(ql−mz; q2)m+1
. (13.18)

The second equality is shown by means of the general identity like (13.82). General
elements Rtr3

l,m(z)abi j also become rational functions of q and z.

Example 13.1 Substituting the formulas in Example 3.17 into (13.10) and evaluat-
ing the trace we get

Rtr3
m,1(z)

a eb
i e j =

⎧
⎪⎨

⎪⎩

(qm−a j z − qaj+1)/D j = b,

z(1 − q2ab+2)qm−a j−a j+1−···−ab/D j < b,

(1 − q2ab+2)qab+1+ab+2+···+a j−1/D j > b,

where D = (1 − qm−1z)(1 − qm+1z), and a, i ∈ Bm and a + eb = i + e j are
assumed.

From the remark after (3.71), this should coincide with (11.36) divided by
�tr3(z)|α=1 in (11.33) provided that a, i ∈ sm

1 and a j = i j = 0 when j = b. This
can be checked directly.

13.3 Trace Reduction Over the First Component of R

The following procedure is quite parallel with that in Sect. 11.3. Consider n copies of
the tetrahedron equation (13.1) in which the spaces 3, 5, 6 are replaced by 3i , 5i , 6i
with i = 1, . . . , n:

R45i6i R23i6i R13i5i R124 = R124R13i5i R23i6i R45i6i .

Sending R124 to the left by applying this repeatedly, we get

1 See (11.3) for the definition of sm .
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Fig. 13.4 A graphical representation of (13.19) and (13.20)

(R45161R23161R13151) · · · (R45n6n R23n6n R13n5n )R124

= R124(R13151R23161R45161) · · · (R13n5n R23n6n R45n6n ),
(13.19)

which can be rearranged as (Fig. 13.4)

(R45161 · · · R45n6n )(R23161 · · · R23n6n )(R13151 · · · R13n5n )R124

= R124(R13151 · · · R13n5n )(R23161 · · · R23n6n )(R45161 · · · R45n6n ).
(13.20)

Multiply xh1(xy)h2 yh4R−1
124 from the left by (13.20) and take the trace over

1
F q ⊗

2
F q ⊗ 4

F q . Using the weight conservation (13.4) we get the Yang–Baxter equation.

Rtr1
5,6(y)R

tr1
3,6(xy)R

tr1
3,5(x) = Rtr1

3,5(x)R
tr1
3,6(xy)R

tr1
5,6(y) ∈ End(

3
W ⊗ 5

W ⊗ 6
W),

(13.21)

where
3
W =

31Fq ⊗ · · · ⊗
3nFq

5
W =

51Fq ⊗ · · · ⊗
5nFq and

6
W =

61Fq ⊗ · · · ⊗
6nFq . The

superscript tr1 signifies that the trace is taken over the 1st (leftmost) component
of the 3D R as

Rtr1
5,6(z) = Tr4(z

h4R45161 · · · R45n6n ) ∈ End(
5
W ⊗ 6

W), (13.22)

Rtr1
3,5(z) = Tr1(z

h1R13151 · · · R13n5n ) ∈ End(
3
W ⊗ 5

W), (13.23)

Rtr1
3,6(z) = Tr2(z

h2R23161 · · · R23n6n ) ∈ End(
3
W ⊗ 6

W). (13.24)
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These are the same operators acting on different copies of W ⊗ W. We will often
suppress the labels 3, 5 etc. The expression (13.22) has already appeared in (11.40)
and it is depicted as the left diagram in Fig. 11.5. The operator Rtr1(z) acts on the
basis in (11.13) as

Rtr1(z)(|i〉 ⊗ |j〉) =
∑

a,b∈B
Rtr1(z)abi j |a〉 ⊗ |b〉, (13.25)

Rtr1(z)abi j =
∑

k1,...,kn≥0

zk1Rk1a1b1
k2i1 j1

Rk2a2b2
k3i2 j2

· · · Rknanbn
k1in jn

. (13.26)

Comparing this with (13.11) and using (3.62), we find that Rtr1(z) is simply related
to Rtr3(z) as

Rtr1(z)abi j = Rtr3(z)baj i i.e. Rtr1(z) = PRtr3(z)P, (13.27)

where P(u ⊗ v) = v ⊗ u is the exchange of the components. Consequently, all the
properties in (13.14)–(13.17) are valid beside minor changes in (13.15) and (13.17):

Rtr1(z)abi j = 0 unless a + b = i + j and |a| = |i|, |b| = |j|, (13.28)

Rtr1(z) =
⊕

l,m≥0

Rtr1
l,m(z), Rtr1

l,m(z) ∈ End(Wl ⊗ Wm), (13.29)

Rtr1
l,m(z)(|lek〉 ⊗ |mek〉) = �m,l(z, q) |lek〉 ⊗ |mek〉, (13.30)

Rtr1(z)abi j = Rtr1(z)i
∨ j∨
a∨ b∨

n∏

k=1

(q2)ik (q
2) jk

(q2)ak (q2)bk
, (13.31)

Rtr1(z)abi j = zb1− j1Rtr1(z)σ(a)σ (b)

σ (i) σ (j) , (13.32)

where �m,l(z, q) in (13.30) is given by (13.18)l↔m . The Yang–Baxter equation
(13.21) holds in each finite-dimensional subspaceWk ⊗ Wl ⊗ Wm ofW ⊗ W ⊗ W.

13.4 Trace Reduction Over the Second Component of R

The following procedure is quite parallel with that in Sect. 11.4. Consider n copies of
the tetrahedron equation (13.1) in which the spaces 1, 4, 5 are replaced by 1i , 4i , 5i
with i = 1, . . . , n:

R4i5i6R1i24i R1i35i R236 = R236R1i35i R1i24i R4i5i6.

Here we have relocated R by using R = R−1 (3.60). Sending R236 to the left by
applying this repeatedly, we get
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Fig. 13.5 A graphical representation of (13.33) and (13.34)

(R41516R11241R11351) · · · (R4n5n6R1n24n R1n35n )R236

= R236(R11351R11241R41516) · · · (R1n35n R1n24n R4n5n6),
(13.33)

which can be rearranged as (Fig. 13.5)

(R41516 · · · R4n5n6)(R11241 · · · R1n24n )(R11351 · · · R1n35n )R236

= R236(R11351 · · · R1n35n )(R11241 · · · R1n24n )(R41516 · · · R4n5n6).
(13.34)

Multiply xh2(xy)h3 yh6R−1
236 from the left by (13.34) and take the trace over

2
F q ⊗

3
F q ⊗ 6

F q . Using the weight conservation (13.4) we get the Yang–Baxter equation.

Rtr3
4,5(y)R

tr2
1,4(x)R

tr2
1,5(xy) = Rtr2

1,5(xy)R
tr2
1,4(x)R

tr3
4,5(y) ∈ End(

1
W ⊗ 4

W ⊗ 5
W),

(13.35)

where
1
W =

11Fq ⊗ · · · ⊗
1nFq

4
W =

41Fq ⊗ · · · ⊗
4nFq and

5
W =

51Fq ⊗ · · · ⊗
5nFq .

The superscript tr2 signifies that the trace is taken over the second (middle) compo-
nent as (Fig. 13.6)

Rtr2
1,4(z) = Tr2(z

h2R11241 · · · R1n24n ) ∈ End(
1
W ⊗ 4

W), (13.36)

Rtr2
1,5(z) = Tr3(z

h3R11351 · · · R1n35n ) ∈ End(
1
W ⊗ 5

W). (13.37)

These are the same operators acting on different copies of W ⊗ W. We will often
suppress the labels like 1, 4. The operator Rtr3(y) has already appeared in (11.40).
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•
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Fig. 13.6 Agraphical representation of (13.36). The one for (13.37) just corresponds to a relabeling
of the arrows

The operator Rtr2(z) acts on the basis as

Rtr2(z)(|i〉 ⊗ |j〉) =
∑

a,b∈B
Rtr2(z)abi j |a〉 ⊗ |b〉, (13.38)

Rtr2(z)abi j =
∑

k1,...,kn≥0

zk1Ra1k1b1
i1k2 j1

Ra2k2b2
i2k3 j2

· · · Ranknbn
ink1 jn

. (13.39)

Comparing (13.39) and (13.11) using (3.86) and (3.62), we find

Rtr2(z)abi j = (−q)−l+∑n
k=1 k( jk−bk )

(
n∏

k=1

(q2) jk

(q2)bk

)

Rtr3((−q)nz)j ab i (13.40)

for a, i ∈ Bl and b, j ∈ Bm . One can derive properties similar to Rtr1(z) as follows:

Rtr2(z)abi j = 0 unless a − b = i − j and |a| = |i|, |b| = |j|, (13.41)

Rtr2(z) =
⊕

l,m≥0

Rtr2
l,m(z), Rtr2

l,m(z) ∈ End(Wl ⊗ Wm), (13.42)

Rtr2
l,m(z)(|le1〉 ⊗ |me2〉) = |le1〉 ⊗ |me2〉

1 + (−1)n+1ql+m+nz
, (13.43)

Rtr2(z)abi j = Rtr2(z)baj i , (13.44)

Rtr2(z)abi j = z j1−b1Rtr2(z)σ(a)σ (b)

σ (i) σ (j) , (13.45)

Rtr2(z)abi j = Rtr2(z)i
∨ j∨
a∨ b∨

n∏

k=1

(q2)ik (q
2) jk

(q2)ak (q2)bk
. (13.46)
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13.5 Explicit Formulas of Rtr1(z), Rtr2(z), Rtr3(z)

The main result of this section is the explicit formulas in Theorem 13.3 which are
derived from the matrix product construction by a direct calculation. The detail of
the proof will not be used elsewhere and can be skipped. It is included in the light
of the fact that the relevant quantum R matrices (Theorems 13.10, 13.11 and 13.12)
are very fundamental examples associated with higher rank type A quantum groups
with higher “spin” representations.

13.5.1 Function A(z)abi j

For integer arrays α = (α1, . . . , αk),β = (β1, . . . , βk) ∈ Z
k of any length k, we use

the notation

|α| =
∑

1≤i≤k

αi , α = (α1, . . . , αk−1), (13.47)

〈α,β〉 =
∑

1≤i< j≤k

αiβ j , (α,β) =
∑

1≤i≤k

αiβi , (13.48)

where |α| appeared also in (11.4) for α ∈ {0, 1}n .
For parameters λ,μ and arrays β = (β1, . . . , βk), γ = (γ1, . . . , γk) ∈ Z

k
≥0 of any

length k, define

	q(γ |β; λ,μ) = q〈β−γ ,γ 〉
(μ

λ

)|γ |
	q(γ |β; λ,μ), (13.49)

	q(γ |β; λ,μ) = (λ; q)|γ |(μ

λ
; q)|β|−|γ |

(μ; q)|β|

k∏

i=1

(
βi

γi

)

q

. (13.50)

From the definition of the q-binomial in (3.65), 	q(γ |β; λ,μ) = 0 unless γi ≤ βi

for all 1 ≤ i ≤ k. We will write this condition as γ ≤ β.
Given n component arrays a, i ∈ Bl and b, j ∈ Bm (see (11.10) for the definition

of Bk), we introduce a quadratic combination of (13.49) as

A(z)abi j = q〈i,j〉−〈b,a〉

×
∑

k

	q2(a − k|a + b − k; qm−l z, q−l−mz)	q2(k|j; q−l−mz−1, q−2m),

(13.51)
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where the sum ranges over k ∈ Z
n−1
≥0 .2 Due to the remark after (13.50), it is actually

confined into the finite set 0 ≤ k ≤ min(b, j) meaning that 0 ≤ kr ≤ min(br , jr ) for
1 ≤ r ≤ n − 1. A characteristic feature of the formula (13.51) is that 	q2 depends
on a = (a1, . . . , an) ∈ Bl via a = (a1, . . . , an−1) and l by which the last component
is taken into account as an = l − |a|. Dependence on b and j is similar. Substituting
(13.49) and (13.50) into (13.51) we get

A(z)abi j = (−1)bn− jn qϕ (q2) jn

(q2)bn

∑

k

q2〈j−b−k,k〉+(l+m)|k|
n−1∏

α=1

(
aα + bα − kα

bα

)

q2

(
jα
kα

)

q2

× z|k| (q
m−l z; q2)|a−k|(ql−mz; q2)|j−k|(q−l−mz−1; q2)|k|

(q−l−mz; q2)|a+b−k|
, (13.52)

ϕ = 〈i, j〉 + 〈b, a〉 + man + l jn + (bn − jn)(in + jn + 1) − 2ml. (13.53)

The factor (q2) jn/(q
2)bn here originates in (q−2m)|b|/(q−2m)|j| contained in (13.51).

Remark 13.2 By an induction on k, it can be shown that

∑

γ∈(Z≥0)k , γ≤β

	q(γ |β; λ,μ) = 1 (∀β ∈ (Z≥0)
k). (13.54)

This property has an application to stochastic models, where it plays the role of the
total probability conservation. It can also be derived from Proposition 13.13 and
(13.132).

13.5.2 A(z)abi j as Elements of Rtr1(z), Rtr2(z) and Rtr3(z)

Theorem 13.3 For a, i ∈ Bl,b, j ∈ Bm, the following formulas are valid:

�l,m(z, q)−1Rtr3(z)abi j = δa+b
i+j A(z)abi j , (13.55)

�m,l (z, q)−1Rtr1(z)abi j = δa+b
i+j A(z)baj i , (13.56)

�m,l ((−q)nz, q)−1Rtr2 (z)abi j = (−q)−l+∑n
α=1 α( jα−bα)

( n∏

α=1

(q2) jα
(q2)bα

)

δ
a+j
b+i A((−q)nz)j ab i,

(13.57)

where �l,m(z, q) is defined by (13.18).

2 k is just an array of summation variables. We have not introduced an n component array k which
is related to it as in (13.47).
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13.5.3 Proof of Theorem 13.3

The formulas (13.56) and (13.57) follow from (13.55) by virtue of (13.27) and
(13.40). Therefore we concentrate on (13.55) in the sequel. The following lemma is
nothing but a quantum group symmetry (13.105) with Rtr3(z) replaced by the matrix
having the elements A(z)abi j .

Lemma 13.4 Suppose n ≥ 3. For 1 ≤ r ≤ n − 2, the function A(z)abi j satisfies the
relation

[br+1 + 1]q2 A(z)a,b−r̂
i, j + qbr−br+1 [ar+1 + 1]q2 A(z)a−r̂ ,b

i, j

− [ir+1]q2 A(z)a,bi+r̂ , j − qir−ir+1 [ jr+1]q2 A(z)a,bi, j+r̂ = 0
(13.58)

for a + b = i + j + r̂ . Here r̂ = er − er+1 with er being an elementary vector in
(11.1). The symbol [m]q2 is defined in (11.57).

Proof Let k = (k1, . . . , kn−1) in (13.52). It turns out that (13.58) holds for the partial
sum of (13.52) in which kα(α �= r, r + 1) and |k| are fixed. Under this constraint
A(z)abi j is proportional to

q〈i,j〉−〈b,a〉 ∑ q2( jr−br−kr )kr+1
∏

α=r,r+1

(
aα + bα − kα

bα

)

q2

(
jα
kα

)

q2

(13.59)

up to a common overall factor. The sum here is taken over kr , kr+1 ≥ 0 under the
condition kr + kr+1 = k for any fixed k. There is no dependence on the spectral
parameter z owing to the assumption r �= 0, n − 1. Substituting this into (13.58) and
using 〈r̂ , j〉 = jr+1 and 〈b, r̂〉 = −br , we find that (13.58) follows from

q−a2−b2−1(1 − q2b2+2)
∑

q2( j1−b1−k1+1)k2

×
(
a1 + b1 − k1 − 1

b1 − 1

)

q2

(
a2 + b2 − k2 + 1

b2 + 1

)

q2

(
j1
k1

)

q2

(
j2
k2

)

q2

+ q2b1−b2−a2−1(1 − q2a2+2)
∑

q2( j1−b1−k1)k2

×
(
a1 + b1 − k1 − 1

b1

)

q2

(
a2 + b2 − k2 + 1

b2

)

q2

(
j1
k1

)

q2

(
j2
k2

)

q2

− q j2−i2(1 − q2i2)
∑

q2( j1−b1−k1)k2

×
(
a1 + b1 − k1

b1

)

q2

(
a2 + b2 − k2

b2

)

q2

(
j1
k1

)

q2

(
j2
k2

)

q2

− q−i2− j2(1 − q2 j2)
∑

q2( j1−b1−k1+1)k2

×
(
a1 + b1 − k1

b1

)

q2

(
a2 + b2 − k2

b2

)

q2

(
j1 + 1

k1

)

q2

(
j2 − 1

k2

)

q2

= 0,

(13.60)
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wherewe have denoted ar , ar+1 by a1, a2 for simplicity and similarly for the other let-
ters. Thus in particular, a1 + b1 = i1 + j1 + 1 and a2 + b2 = i2 + j2 − 1, reflecting
the assumption a + b = i + j + r̂ .

The sums in (13.60) are taken over k1, k2 ≥ 0 with the constraint k1 + k2 = k
for any fixed k. Apart from this constraint, the summation variables k1 and k2 are
coupling via the factor q−2k1k2 . Fortunately this can be decoupled by rewriting the
q2-binomials as

(
aα + bα − kα

bα

)

q2

(
jα
kα

)

q2

= (−1)kαq−k2α+(2 jα−2bα+1)kα
(q2bα+2; q2)aα

(q−2aα ; q2)kα
(q−2 jα ; q2)aα

(q2; q2)aα
(q−2aα−2bα ; q2)kα

(q2; q2)kα

.

(13.61)

In fact, this converts the quadratic power of k1 and k2 into an overall constant
q−k21−k22−2k1k2 = q−k2 which can be removed. Consequently, each sum in (13.60)
is rewritten in the form

∑
k1+k2=k(

∑
k1≥0 Xk1)(

∑
k2≥0 Yk2) for any fixed k. Thus intro-

ducing the generating series
∑

k≥0 ζ k(· · · ) decouples it into the product
(
∑

k1≥0 ζ k1Xk1)(
∑

k2≥0 ζ k2Yk2). Each factor here becomesq2-hypergeometric defined
in (3.73).After somecalculation onefinds that the explicit form is given, up to anover-
all factor, by the LHS of (13.62) with the variables replaced as q → q2, uα → q−2aα ,
vα → q−2aα−2bα , wα → q−2 jα for α = 1, 2. This also means q−2i1 = q2v1/w1 and
q−2i2 = q−2v2/w2. Therefore the proof is reduced to Lemma 13.5. �

Lemma 13.5 The q-hypergeometric φ
(
a,b
c ; ζ

)
:= 2φ1

(
a,b
c ; q, ζ

)
in (3.73) satis-

fies the quadratic relation involving the six parameters uα, vα,wα(α = 1, 2) in addi-
tion to q and ζ :

u1(1 − u−1
1 v1)(q − v2)φ

(
u1, w1

qv1
; qζ

)
φ

(
u2, w2

q−1v2
; u−1

2 v2w
−1
2 ζ

)

+ (1 − u1)(q − v2)φ

(
qu1, w1

qv1
; ζ

)
φ

(
q−1u2, w2

q−1v2
; u−1

2 v2w
−1
2 ζ

)

− (1 − v1)(q − v2w
−1
2 )φ

(
u1, w1

v1
; ζ

)
φ

(
u2, w2

v2
; u−1

2 v2w
−1
2 ζ

)

− v2w
−1
2 (1 − v1)(1 − w2)φ

(
u1, q−1w1

v1
; qζ

)
φ

(
u2, qw2

v2
; u−1

2 v2w
−1
2 ζ

)
= 0.

(13.62)

Proof First, we apply

φ

(
a, b

c
; ζ

)
= (c − abz)

c(1 − z)
φ

(
a, b

c
; qζ

)
+ z(a − c)(b − c)

c(1 − c)(1 − z)
φ

(
a, b

qc
; qζ

)

(13.63)
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to the left φ’s in the second and the third terms to change their argument from ζ to qζ

to adjust to the first and the fourth terms. The resulting sum is a linear combination
of

X = φ

(
u1, w1

qv1
; qζ

)
, Y = φ

(
qu1, w1

qv1
; qζ

)
, (13.64)

φ

(
qu1, w1

q2v1
; qζ

)
, φ

(
u1, w1

v1
; qζ

)
, φ

(
u1, q−1w1

v1
; qζ

)
. (13.65)

Second, we express (13.65) in terms of X and Y bymeans of the contiguous relations:

φ

(
qu1, w1

q2v1
; qζ

)
= − v1(1 − qv1)

u1(qv1 − w1)ζ
X + (1 − qv1)(v1 − u1w1ζ )

u1(qv1 − w1)ζ
Y, (13.66)

φ

(
u1, w1

v1
; qζ

)
= (u1 − v1)

u1(1 − v1)
X + (1 − u1)v1

u1(1 − v1)
Y, (13.67)

φ

(
u1, q

−1w1

v1
; qζ

)

= (u1 − v1)
(
v1(q − w1) − q(1 − v1)w1ζ

)

qu1(1 − v1)(qv1 − w1)ζ
X

+ (v1 − u1w1ζ )
(
(u1 − v1)(q − w1) − q(1 − v1)(qu1 − w1)ζ

)

qu1(1 − v1)(qv1 − w1)ζ
Y.

(13.68)

As the result, the LHS of (13.62) is cast into the form AX + BY where A and B
are linear combinations of the four right φ’s all having the argument u−1

2 v2w
−1
2 ζ .

The coefficients of the linear combinations are Laurent polynomials of ζ . Then it
is straightforward to check A = B = 0 by picking the coefficient of each power
of ζ . �

In the remainder of this section, (ζ )m always means (ζ ; q2)m for any ζ .3

Lemma 13.6 The formula (13.55) is valid provided that a = (a1, . . . , an) has van-
ishing components as a2 = · · · = an−1 = 0.

Proof Throughout the proof a should be understood as the special one a =
(a1, 0, . . . , 0, an). We also keep assuming a, i ∈ Bl,b, j ∈ Bm and a + b = i + j
following Theorem 13.3. Then we have the relations like

l = a1 + an = in + |i|, m = bn + |b| = jn + |j|, (13.69)

aα + bα = iα + jα (α = 1, n), bα = iα + jα (α �= 1, n). (13.70)

3 This is cautioned since the convention (3.65) may wrongly indicate (q−2k)k1 = (q−2k; q−2k)k1
for example.
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Substitute (3.87) into the sum (13.11) for Rtr3(z)abi j with a2 = · · · = an−1 = 0. The
result reads as

Rtr3(z)abi j = (−1)mqm−(a,j)
∑

c1,k1,kn

(−1)k1+kn zc1qϕ1
∏

α=1,n

(
aα + bα − kα

bα

)

q2

(
jα
kα

)

q2

,

(13.71)

ϕ1 = (a + j, c) +
∑

α=1,n

kα(kα − 2cα − 1), (13.72)

cβ = c1 +
∑

1≤α<β

(bα − jα), (13.73)

where the sum (13.71) extends over c1 ∈ Z≥0 and k1, kn ∈ Z≥0. See (13.48) for
the definition of (a, j) and (a + j, c). The relation (13.73) is quoted from (13.12).
It leads to (a + j, c) = 〈b − j, a + j〉 + (l + m)c1 and cn = c1 + |b| − |j| = c1 +
jn − bn due to (13.69). Thus the sum over c1 yields

Rtr3(z)abi j = (−1)mqϕ3
∑

k≥0

(−1)k

1 − zql+m−2k

∑

k1≥0

qϕ2
∏

α=1,n

(
aα + bα − kα

bα

)

q2

(
jα
kα

)

q2

,

(13.74)

ϕ2 = k21 + (k − k1)
2 − k + 2(bn − jn)(k − k1), (13.75)

ϕ3 = m − (a, j) + 〈b − j, a + j〉. (13.76)

Here and in what follows, kn is to be understood as kn = k − k1. Both sums are
actually finite due to the non-vanishing condition of the q2-binomials.4 For example,
from kα ≤ min(aα, jα), k is bounded as k = k1 + kn ≤ min(l,m) ≤ m at most.

Rewrite the q2-binomial factor with α = n as

(
an + bn − kn

bn

)

q2

(
jn
kn

)

q2

= (q2) jn (q
2an−2kn+2)bn

(q2)bn (q2)kn (q2) jn−kn

, (13.77)

1

(q2)kn
= (−1)k1qk1(2k−k1+1) (q

−2k)k1

(q2)k
, (13.78)

1

(q2) jn−kn

= (−1)kqk(2m−k+1) (q
−2m)k(q2 jn−2kn+2)m− jn−k1

(q2)m
. (13.79)

Then (13.74) is expressed as

Rtr3(z)abi j = (−1)mqϕ3(q2) jn

(q2)bn (q2)m

m∑

k=0

1

1 − zql+m−2k

(q−2m)k

(q2)k
P(q2k), (13.80)

4 Conditions like k ≥ k1 can formally be dispensed with since the negative kn kills
( jn
kn

)
q2
.
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P(w) = wm+bn− jn

min(b1, j1)∑

k1=0

(−1)k1qk21+(2 jn−2bn+1)k1(w−1)k1

× (w−1q2an+2k1+2)bn (w
−1q2 jn+2k1+2)m− jn−k1

(
a1 + b1 − k1

b1

)

q2

(
j1
k1

)

q2

.

(13.81)

The upper bound k1 ≤ min(b1, j1) in (13.81) is necessary and sufficient for the
q2-binomials and (w−1q2 jn+2k1+2)m− jn−k1 to survive individually since m − jn ≥ j1
because of j ∈ Bm . Obviously,P(w) is a polynomial ofwwith degP(w) ≤ m + bn −
jn . In Lemma 13.7 we will show degP(w) ≤ m even if bn > jn due to a non-trivial
cancellation. Thanks to this fact, the sum in (13.80) is taken either for bn ≤ jn or
bn > jn as

m∑

k=0

1

1 − zql+m−2k

(q−2m)k

(q2)k
P(q2k) = (−1)mq−m(m+1)(q2)m

(zql−m)m+1
P(zql+m), (13.82)

which is just a partial fraction expansion. Consequently (13.80) gives

�l,m(z, q)−1Rtr3(z)abi j = (−1)mqϕ3−m(l+m+2)(q2) jn

(q2)bn (zq−l−m)m
P(zql+m), (13.83)

where we have used �l,m(z, q) in (13.18). On the other hand, the formula (13.53)
of Atr3(z)abi j for the special case a2 = · · · = an−1 = 0 is simplified considerably. In

fact the multidimensional sum over k = (k1, . . . , kn−1) is reduced to the single sum
over k1 entering k = (k1, 0, . . . , 0). The result reads as

A(z)abi j = (−1)bn− jn
qϕ(q2) jn

(q2)bn

∑

k1≥0

(zql+m)k1
(
a1 + b1 − k1

b1

)

q2

(
j1
k1

)

q2

× (qm−l z)l−an−k1(q
l−mz)m− jn−k1(q

−l−mz−1)k1

(q−l−mz)l+m−an−bn−k1

,

(13.84)

where ϕ is defined in (13.53). By using (13.81) and relations like

(a, j) = lm − (l − an) jn − (m − jn)an − 〈a, j〉, 〈i, j〉 = 〈a + b − j, j〉, (13.85)

〈b − j, a + j〉 = ( jn − bn)(an + jn) + 〈b − j, j〉, (13.86)

the two expressions (13.83) and (13.84) can be identified directly. �

Apart from q, the polynomial P(w) (13.81) depends on m and aα, bα, jα with
α = 1, n. From (13.69) and (13.70), we have a1 + an = l ≥ i1 + in = a1 + an +
b1 + bn − j1 − jn and m ≥ j1 + jn .
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Lemma 13.7 The polynomial P(w) (13.81) satisfies degP(w) ≤ m.

Proof From the preceding remark we assume

b1 + bn ≤ j1 + jn ≤ m, bn > jn, (13.87)

where the last condition selects the non-trivial case of the claim. Up to an overall
factor independent of w, P(w) is equal to

∑

k1≥0

(−1)k1qk1(k1−1)(wq−2k1+2)k1(xwq−2k1)bn (wq−2m)m− jn−k1(yq
−2k1)b1

(
j1
k1

)

q2

(13.88)

at x = q−2an−2bn and y = q2a1+2. This is further expanded into the powers of x and
y as

bn∑

r=0

b1∑

s=0

(−1)r+s xr ysqr(r−1)+s(s−1)

(
bn
r

)

q2

(
b1
s

)

q2

wrFr+s(w), (13.89)

Fd(w) =
j1∑

k1=0

(−1)k1qk1(k1−1−2d)(wq−2k1+2)k1(wq−2m)m− jn−k1

(
j1
k1

)

q2

. (13.90)

The variable d has the range 0 ≤ d = r + s ≤ b1 + bn ≤ j1 + jn due to (13.87).
Thus it suffices to show degFd(w) ≤ m − d. The reason we consider this slightly
stronger inequality rather than degFd(w) ≤ m − r is of course that Fd(w) depends
on d instead of r . It is a non-trivial claim when jn < d(≤ j1 + jn).

The w-dependent factors in (13.90) are expanded as

(wq−2k1+2)k1(wq−2m)m− jn−k1

=
m− jn∑

t=0

wm− jn−t
∑

α+β=t

Cα,βq
2( jn+β+1)k1

(
k1
α

)

q2

(
m − jn − k1

β

)

q2

, (13.91)

(
k1
α

)

q2

=
α∑

u=0

fuq
2uk1 ,

(
m − jn − k1

β

)

q2

=
β∑

v=0

gvq
−2vk1 , (13.92)

where
∑

α+β=t denotes the finite sumover (α, β) ∈ {0, 1, . . . , t}2 under the condition
α + β = t . In the following argument, precise forms of the coefficients Cα,β, fu, gv

do not matter and only the fact that they are independent of k1 is used. Substituting
(13.91) and (13.92) into (13.90) we get

Fd(w) =
m− jn∑

t=0

wm− jn−t
∑

α+β=t

α∑

u=0

β∑

v=0

Dα,β
u,v (q2( jn−d+1+β+u−v); q2) j1 (13.93)
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for some coefficient Dα,β
u,v . Thus it is sufficient to show that all the q2-factorials

appearing here are zero for t = 0, 1, . . . , d − jn − 1. It amounts to checking

(i) jn − d + 1 + β + u − v ≤ 0, (ii) j1 + jn − d + β + u − v ≥ 0 (13.94)

for all the terms for t = 0, 1, . . . , d − jn − 1. For (i), the most critical case is v = 0
and β + u = t = d − jn − 1 for which the LHS is exactly 0. Therefore it is satisfied.
For (ii), the most critical case is β − v = 0 and u = 0 for which the LHS is j1 +
jn − d. This is indeed non-negative according to the remark after (13.90). �

Proof of Theorem 13.3. Consider the relation (13.58)with a replaced by a + r̂ . The
result is a recursion formula which reduces a = (a1, . . . , ar , ar+1, . . . , an) in A(z)a•••
to a + r̂ = (a1, . . . , ar + 1, ar+1 − 1, . . . , an) for r = n − 2, . . . , 2, 1. Thus a can
ultimately be reduced to the form (a1, 0, . . . , 0, an). As remarked before Lemma
13.4, the quantum group symmetry (13.105) in Theorem 13.10 shows that Rtr3(z)a,bi,j
also satisfies the same relation as (13.58). Therefore Lemma 13.4 reduces the proof of
Theorem 13.3 to the situation a = (a1, 0, . . . , 0, an). Since this has been established
in Lemma 13.6, the proof is completed. �

13.6 Identification with Quantum R Matrices of A(1)
n−1

LetUp(A
(1)
n−1) be the quantum affine algebra. We keep the convention specified in the

beginning of Sect. 11.5. We take p = q throughout this section, hence the relevant
algebra is always Uq(A

(1)
n−1).

Consider the n-fold tensor product Osc⊗n
q of q-oscillators and let a+

i , a−
i ,ki ,k−1

i

be the copy of the generators a+, a−,k,k−1 (3.12) corresponding to its i th compo-
nent. By the definition, generators with different indices are trivially commutative.

Proposition 13.8 The following maps for i ∈ Zn define algebra homomorphisms
Uq(A

(1)
n−1) → Osc⊗n

q depending on a spectral parameter x:

ρ(3)
x : ei 
→ xδi0qa+

i a
−
i+1k

−1
i+1

1 − q2
, fi 
→ x−δi0qa−

i a
+
i+1k

−1
i

1 − q2
, ki 
→ kik−1

i+1, (13.95)

ρ(1)
x : ei 
→ xδi0qa−

i a
+
i+1k

−1
i

1 − q2
fi 
→ x−δi0qa+

i a
−
i+1k

−1
i+1

1 − q2
, ki 
→ k−1

i ki+1.

(13.96)

Proof The relations (11.56) with p = q are directly checked by using (3.12). �

Themapsρ(1)
x andρ(3)

x are interchanged via the algebra automorphism ei ↔ fi , ki ↔
k−1
i up to the spectral parameter.
By (3.13) one can further let Osc⊗n

q act on W = F ⊗n
q = ⊕

a∈B C|a〉 in (11.11).
Since (13.95) and (13.96) preserve |a| in (11.4), the representation space can be
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restricted toWk (11.12) for any k ∈ Z≥0. Let us denote the resulting representations
by

π̃k�1,x : Uq(A
(1)
n−1)

ρ
(3)
x−→ Osc⊗n

q [x, x−1] → End(Wk), (13.97)

π̃k�n−1,x : Uq(A
(1)
n−1)

ρ
(1)
x−→ Osc⊗n

q [x, x−1] → End(Wk), (13.98)

where the second arrow is given by (3.13) for each component. Explicitly they are
given by

ei |m〉 = xδi0 [mi+1]q |m + ei − ei+1〉,
π̃k�1,x : fi |m〉 = x−δi0 [mi ]q |m − ei + ei+1〉, (13.99)

ki |m〉 = qmi−mi+1 |m〉,
ei |m〉 = xδi0 [mi ]q |m − ei + ei+1〉,

π̃k�n−1,x : fi |m〉 = x−δi0 [mi+1]q |m + ei − ei+1〉, (13.100)

ki |m〉 = qmi+1−mi |m〉

for m ∈ Bk and i ∈ Zn .5 As a representation of the classical part Uq(An−1) without
e0, f0, k

±1
0 , π̃k�1,x (resp. π̃k�n−1,x ) is the irreducible highest weight representation

with the highest weight vector |ke1〉 (resp. |ken〉) with highest weight k�1 (resp.
k�n−1). They are q-analogues of the k-fold symmetric tensor of the vector and the
anti-vector representations.

Remark 13.9 The representations π̃k�1,x in (13.99), (13.95) and the earlier one
πk�1,x in (11.67) with p = q are equivalent. In fact, by an automorphism

a+
j 
→ a+

j k j , a−
j 
→ k−1

j a−
j , k j 
→ k j (13.101)

of Oscq induced by the conjugation a±
j 
→ qh j (h j−1)/2a±

j q
−h j (h j−1)/2, we get another

algebra homomorphism Uq(A
(1)
n−1) → Osc⊗n

q as

ρ(3)′
x : ei 
→ xδi0q2a+

i a
−
i+1kik

−2
i+1

1 − q2
, fi 
→ x−δi0q2a+

i+1a
−
i k

−2
i ki+1

1 − q2
, ki 
→ kik−1

i+1.

(13.102)

Employing this ρ(3)′
x in (13.97) instead of ρ(3)

x yields (11.67)|p=q .

5 The definition of [m]q is in (11.57).
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13.6.1 Rtr3(z)

Let π̃k�1,x : Uq(A
(1)
n−1) → End(Wk) be the representation (13.99). Let �x,y =

(π̃l�1,x ⊗ π̃m�1,y) ◦ � and �
op
x,y = (π̃l�1,x ⊗ π̃m�1,y) ◦ �op be the tensor product

representations, where the coproducts� and�op are specified in (11.58) and (11.59).
Let Rl�1,m�1(z) ∈ End(Wl ⊗ Wm) be the quantum R matrix ofUq(A

(1)
n−1) which

is characterized, up to normalization, by the commutativity

Rl�1,m�1(
x
y )�x,y(g) = �op

x,y(g)Rl�1,m�1(
x
y ) (∀g ∈ Uq(A

(1)
n−1)), (13.103)

where we have taken into account the obvious fact that Rl�1,m�1 depends only on
the ratio x/y. The relation (13.103) is a generalization of (10.12)|q→p including the
latter as the classical part g ∈ Uq(An−1).

Theorem 13.10 Up to normalization, Rtr3
l,m(z) by the matrix product construction

(13.9)–(13.11) based on the 3D R coincides with the quantum R matrix of Uq(A
(1)
n−1)

as

Rtr3
l,m(z) = Rl�1,m�1(z

−1). (13.104)

Proof It suffices to check

Rtr3( y
x )(er ⊗ 1 + kr ⊗ er ) = (1 ⊗ er + er ⊗ kr )R

tr3( y
x ), (13.105)

Rtr3( y
x )(1 ⊗ fr + fr ⊗ k−1

r ) = ( fr ⊗ 1 + k−1
r ⊗ fr )R

tr3( y
x ), (13.106)

Rtr3( y
x )(kr ⊗ kr ) = (kr ⊗ kr )R

tr3( y
x ) (13.107)

under the image by π̃l�1,x ⊗ π̃m�1,y . Actually, they can be shown by using (13.95)
instead of (13.99), which means that the commutativity holds already in Osc⊗n

q ⊗
Osc⊗n

q without taking the image in End(Wl ⊗ Wm). Due to the Zn symmetry of
(13.95) and (13.7) up to the spectral parameter, it suffices to check this for r = 0.6

The relevant part of (13.11) is Ranbncn
in jnc1

zc1Ra1b1c1
i1 j1c2

, which we regard as an element of
the product R123zh3R1′2′3 of 3D R. The indices here are labels of the corresponding
spaces as in Fig. 13.7.

In terms of the labels, the image by (13.95) reads as

e0 ⊗ 1 = xda+
1 a

−
1′k−1

1′ , 1 ⊗ e0 = yda+
2 a

−
2′k−1

2′ ,

f0 ⊗ 1 = x−1da+
1′a−

1 k
−1
1 , 1 ⊗ f0 = y−1da+

2′a−
2 k

−1
2 ,

k0 ⊗ 1 = k1k−1
1′ , 1 ⊗ k0 = k2k−1

2′ ,

(13.108)

6 The case r �= 0 corresponds to the special case x = y = 1.
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Fig. 13.7 The part of the matrix product construction (13.11) relevant to the commutation relations
with e0, f0, k0

where d = q(1 − q2)−1. Then (13.105)–(13.107) are attributed to

Rzh3R′(xa+
1 a

−
1′k−1

1′ + yk1k−1
1′ a+

2 a
−
2′k−1

2′ )

= (ya+
2 a

−
2′k−1

2′ + xa+
1 a

−
1′k−1

1′ k2k−1
2′ )Rzh3R′, (13.109)

Rzh3R′(y−1a+
2′a−

2 k
−1
2 + x−1a+

1′a−
1 k

−1
1 k−1

2 k2′)

= (x−1a+
1′a−

1 k
−1
1 + y−1k−1

1 k1′a+
2′a−

2 k
−1
2 )Rzh3R′, (13.110)

Rzh3R′k1k−1
1′ k2k−1

2′ = k1k−1
1′ k2k−1

2′ Rzh3R′, (13.111)

where z = yx−1 and we have set R = R123 and R′ = R1′2′3 for short. To show these
relations we invoke the intertwining relations (3.127)–(3.131),7 i.e.

R k2a+
1 = (k3a+

1 + k1a+
2 a

−
3 )R, R k2a−

1 = (k3a−
1 + k1a−

2 a
+
3 )R, (13.112)

R a+
2 = (a+

1 a
+
3 − qk1k3a+

2 )R, R a−
2 = (a−

1 a
−
3 − qk1k3a−

2 )R, (13.113)

R k2a+
3 = (k1a+

3 + k3a−
1 a

+
2 )R, R k2a−

3 = (k1a−
3 + k3a+

1 a
−
2 )R, (13.114)

R k1k2 = k1k2R, R k2k3 = k2k3R (13.115)

and their copy where R and the indices 1, 2 are replaced with R′ and 1′, 2′. The
relation (13.111) follows from (13.115) immediately. By multiplying k1′k2′ from the
right by (13.109) and k1k2 from the left to (13.110) and using the commutativity
with R and R′ by (13.115), they are slightly simplified into

Rzh3R′(xa+
1 a

−
1′k2′ + yk1a+

2 a
−
2′ ) = (ya+

2 a
−
2′k1′ + xa+

1 a
−
1′k2)Rzh3R′, (13.116)

Rzh3R′(y−1a+
2′a−

2 k1 + x−1a+
1′a−

1 k2′) = (x−1a+
1′a−

1 k2 + y−1k1′a+
2′a−

2 )Rzh3R′.
(13.117)

To get (13.117) we have used k ja±
j = q±1a±

j k j . All the terms appearing here can be
brought to the form Rzh3(· · · )R′ bymeans of zh3a± = a±zh3±1, R = R−1, (13.112)–
(13.115) and the corresponding relations for R′. Explicitly, we have the following
for (13.116):

7 The relation (3.130) can be dispensed with.
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Rzh3R′xa+
1 a

−
1′k2′ = x Rzh3a+

1 (k3a−
1′ + k1′a−

2′a+
3 )R′,

Rzh3R′yk1a+
2 a

−
2′ = yRzh3k1a+

2 (a−
1′a−

3 − qk1′k3a−
2′ )R′,

ya+
2 a

−
2′k1′ Rzh3R′ = yR(a+

1 a
+
3 − qk1k3a+

2 )zh3a−
2′k1′ R′

= yRzh3(z−1a+
1 a

+
3 − qk1k3a+

2 )a−
2′k1′ R′,

xa+
1 a

−
1′k2Rzh3R′ = x R(k3a+

1 + k1a+
2 a

−
3 )zh3a−

1′ R′

= x Rzh3(k3a+
1 + zk1a+

2 a
−
3 )a−

1′ R′.

As shown by the underlines, (13.116) is indeed valid at z = yx−1. A similar calcu-
lation casts the four terms in (13.117) into

Rzh3R′y−1a+
2′a−

2 k1 = y−1Rzh3a−
2 k1(a

+
1′a+

3 − qk1′k3a+
2′ )R′,

Rzh3R′x−1a+
1′a−

1 k2′ = x−1Rzh3a−
1 (k3a+

1′ + k1′a+
2′a−

3 )R′,

x−1a+
1′a−

1 k2Rz
h3R′ = x−1Rzh3(k3a−

1 + z−1k1a−
2 a

+
3 )a+

1′ R′,

y−1k1′a+
2′a−

2 Rz
h3R′ = y−1Rzh3(za−

1 a
−
3 − qk1k3a−

2 )k1′a+
2′ R′,

which are again valid at z = yx−1. �

13.6.2 Rtr1(z)

Let π̃k�n−1,x : Uq(A
(1)
n−1) → End(Wk) be the representation (13.100). Let �x,y =

(π̃l�n−1,x ⊗ π̃m�n−1,y) ◦ � and�
op
x,y = (π̃l�n−1,x ⊗ π̃m�n−1,y) ◦ �op be the tensor prod-

uct representations, where the coproducts � and �op are specified in (11.58) and
(11.59).

Let Rl�n−1,m�n−1(z) ∈ End(Wl ⊗ Wm) be the quantum R matrix of Uq(A
(1)
n−1)

which is characterized, up to normalization, by the commutativity

Rl�n−1,m�n−1(
x
y )�x,y(g) = �op

x,y(g)Rl�n−1,m�n−1(
x
y ) (∀g ∈ Uq(A

(1)
n−1)), (13.118)

where we have taken into account the fact thatRl�n−1,m�n−1 depends only on the ratio
x/y.

Theorem 13.11 Up to normalization, Rtr1
l,m(z) by the matrix product construction

(13.25)–(13.26) and (13.29) based on the 3D R coincides with the quantum R matrix
of Uq(A

(1)
n−1) as

Rtr1
l,m(z) = Rl�n−1,m�n−1(z

−1). (13.119)
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Fig. 13.8 The part of the matrix product construction (13.39) relevant to the commutation relations
with e0, f0, k0

Proof This follows from the relation (13.27), Theorem 13.10, the commutativity
(13.105)–(13.107) and the fact that π̃k�1,x (13.99) and π̃k�n−1,x−1 (13.100) are inter-
changed via the algebra automorphism ei ↔ fi , ki ↔ k−1

i . �

13.6.3 Rtr2(z)

Let π̃k�1,x and π̃k�n−1,x be the representationsUq(A
(1)
n−1) → End(Wk) in (13.99) and

(13.100). Let�x,y = (π̃l�1,x ⊗ π̃m�n−1,y) ◦ � and�
op
x,y = (π̃l�1,x ⊗ π̃m�n−1,y) ◦ �op

be the tensor product representations, where the coproducts � and �op are specified
in (11.58) and (11.59).

LetRl�1,m�n−1(z) ∈ End(Wl ⊗ Wm) be the quantum Rmatrix ofUq(A
(1)
n−1)which

is characterized, up to normalization, by the commutativity

Rl�1,m�n−1(
x
y )�x,y(g) = �op

x,y(g)Rl�1,m�n−1(
x
y ) (∀g ∈ Uq(A

(1)
n−1)), (13.120)

where we have taken into account the fact that Rl�1,m�n−1 depends only on the ratio
x/y.

Theorem 13.12 Up to normalization, Rtr2
l,m(z) by the matrix product construction

(13.38)–(13.39) and (13.42) based on the 3D R coincides with the quantum R matrix
of Uq(A

(1)
n−1) as

Rtr2
l,m(z) = Rl�1,m�n−1(z). (13.121)

Proof The proof is similar to the one for Theorem 13.10. So we shall list the corre-
sponding formulas along the labeling in Fig. 13.8 without a detailed explanation.

We are to investigate the commutation relation of Rzh2 R′ = R123zh2R1′23′ and

e0 ⊗ 1 = xda+
1 a

−
1′k−1

1′ , 1 ⊗ e0 = yda+
3′a−

3 k
−1
3 ,

f0 ⊗ 1 = x−1da+
1′a−

1 k
−1
1 , 1 ⊗ f0 = y−1da+

3 a
−
3′k−1

3′ ,

k0 ⊗ 1 = k1k−1
1′ , 1 ⊗ k0 = k−1

3 k3′ ,

(13.122)
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where d = q(1 − q2)−1. The relation (13.118) with g = e0 becomes, after multiply-
ing k1′k2k3 from the right,

Rzh2 R′(xk2k3a+
1 a

−
1′ + yk1k2a+

3′a−
3 ) = (ya+

3′a−
3 k2k1′ + xa+

1 a
−
1′k2k3′)Rzh2 R′.

(13.123)

The four terms here are rewritten by means of (13.112)–(13.115) as

Rzh2 R′xk2k3a+
1 a

−
1′ = x Rzh2k3a+

1 (k3′a−
1′ + k1′a−

2 a
+
3′ )R′,

Rzh2 R′yk1k2a+
3′a−

3 = yRzh2k1a−
3 (k1′a+

3′ + k3′a−
1′a+

2 )R′,

ya+
3′a−

3 k2k1′ Rzh2 R′ = yRzh2(k1a−
3 + zk3a+

1 a
−
2 )a+

3′k1′ R′,

xa+
1 a

−
1′k2k3′ Rzh2 R′ = x Rzh2(k3a+

1 + z−1k1a+
2 a

−
3 )a−

1′k3′ R′.

Thus (13.123) is valid at z = xy−1. The relation (13.118) with g = f0 becomes, after
multiplying k1k2k3′ from the left,

Rzh2 R′(y−1k1k2a
+
3 a

−
3′ + x−1a+

1′a−
1 k2k3) = (x−1k2a

+
1′a−

1 k3′ + y−1k2k1′a+
3 a

−
3′ )Rzh2 R′.

(13.124)

The four terms here are rewritten by means of (13.112)–(13.115) as

Rzh2 R′y−1k1k2a+
3 a

−
3′ = y−1Rzh2k1a+

3 (k1′a−
3′ + k3′a+

1′a−
2 )R′,

Rzh2 R′x−1a+
1′a−

1 k2k3 = x−1Rzh2a−
1 k3(k3′a+

1′ + k1′a+
2 a

−
3′ )R′,

x−1k2a+
1′a−

1 k3′ Rzh2 R′ = x−1Rzh2(k3a−
1 + zk1a−

2 a
+
3 )a+

1′k3′ R,

y−1k2k1′a+
3 a

−
3′ Rzh2 R′ = y−1Rzh2(k1a+

3 + z−1k3a−
1 a

+
2 )k1′a−

3′ R′.

Thus (13.124) is valid at z = xy−1. �
We note that (13.113) has not been used in the above proof.

13.7 Stochastic R Matrix

This section is a small digression on a special gauge of the R matrix. For l,m ∈ Z≥1,
we introduce S(z) ∈ End(Wl ⊗ Wm) by

S(z)(|i〉 ⊗ |j〉) =
∑

a∈Bl ,b∈Bm

S(z)abi j |a〉 ⊗ |b〉, (13.125)

S(z)abi j = δa+b
i+j A(z)abi j , (13.126)

where A(z)abi j is a slight modification of A(z)abi j (13.51):
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A(z)abi j = q〈b,a〉−〈i,j〉A(z)abi j

=
∑

k

	q2(a − k|a + b − k; qm−l z, q−l−mz)	q2(k|j; q−l−mz−1, q−2m).

(13.127)
From (13.17), (13.55) and Theorem 13.10, S(z) satisfies

Yang–Baxter relation: S12(x)S13(xy)S23(y) = S23(y)S13(xy)S12(x), (13.128)

Inversion relation: S(z)PS(z−1)P = id, (13.129)

Normalization: S(z)(|lek〉 ⊗ |mek〉) = |lek〉 ⊗ |mek〉, (13.130)

where P(u ⊗ v) = v ⊗ u and k ∈ Zn is arbitrary. In fact, it is easy to check that the
extra factor q〈b,a〉−〈i,j〉 in (13.127) does not spoil these properties.8

A notable feature of this gauge is the sum to unity property:

Proposition 13.13

∑

a∈Bl ,b∈Bm

S(z)abi j = 1 (∀(i, j) ∈ Bl × Bm). (13.131)

S(z) has an application to stochastic models where Proposition 13.13 plays the
role of the total probability conservation. In such a context, it is called a stochastic
R matrix.9

From (13.49) and (13.50), one sees 	q2(γ |β, λ = 1, μ) = δγ ,0. Therefore S(z)
has a factorized special value:

S(z = ql−m)abi j = δa+b
i+j 	q2(a|j; q−2l , q−2m). (13.132)

The specialization of (13.131) to (13.132) agrees with (13.54).

13.8 Commuting Layer Transfer Matrices and Duality

This section is parallel with Sect. 11.6. Let m, n ≥ 2 and consider the composition
of m × n 3D R’s as follows:

At the intersection of 1i and 2 j , we have the 3D R L1i ,2 j ,3i j as in Fig. 13.1, where
the arrow 3i j corresponds to the vertical arrows carrying Fq . We take the parameters
μi and ν j as

μi = xui (i = 1, . . . ,m), ν j = yw j ( j = 1, . . . , n). (13.133)

8 See [87, Proposition 4].
9 For reasons of convention, the R matrix Rtr3

l,m(z) = Rl�1,m�1 (z
−1) in (13.104) of this book is

proportional to R(z) in [87, Eq. (6)].



238 13 Trace Reductions of RRRR = RRRR

•

•
2

•
1

•

•
2

•
1

21

22

2 1

12
11

2 2

1

21 12

1

11

Fig. 13.9 Graphical representation of the layer transfer matrix T (x, y). There arem + n horizontal
arrows 11, . . . , 1m and 21, . . . , 2n carrying Fq and being traced out, which corresponds to the
periodic boundary condition. The mark • with μi and ν j signifies an operator μh

i and νhj attached
to 1i and 2 j , respectively. At the intersection of 1i and 2 j , there is a q-oscillator Fock space Fq
depicted with a vertical arrow

Tracing out the horizontal degrees of freedom leaves us with a linear operator acting
alongvertical arrows.Wewrite the resulting layer transfermatrix in the third direction
as10

T (x, y) = T (x, y|u,w) ∈ End(F ⊗mn
q ), (13.134)

u = (u1, . . . , um), w = (w1, . . . , wn). (13.135)

Figure 13.9 shows its action on the basis
⊗

1≤i≤m,1≤ j≤n |li j 〉 ∈ F ⊗mn
q .

We exhibit the n-dependence in the notations in Sect. 11.1 as B(n),W(n),W(n)
k ,

etc. In what follows, uH for u ∈ C
m should be understood as the linear diagonal

operator uh11 · · · uhmm , i.e.11

uH : |a〉 
→ ua11 · · · uamm |a〉 for a = (a1, . . . , am) ∈ B(m). (13.136)

Viewing Fig. 13.9 from the SW, or taking the traces over 11, . . . , 1m first, we find
that it represents the trace of the product of (yw)H and Rtr1(μ1), . . . , Rtr1(μm):

T (x, y) = TrW(n)

(
(yw)H Rtr1(xu1) · · · Rtr1(xum)

)

=
∑

k≥0

ykTrW(n)
k

(
wH Rtr1(xu1) · · · Rtr1(xum)

) ∈ End
(
(W(n))⊗m

)
,

(13.137)

where the matrix product constructed Rtr1(xui ) ∈ End(
2
W(n) ⊗ W(n)) is a quantum

R matrix ofUq(A
(1)
n−1) due to Theorem 13.11 and (13.29). The product is taken with

respect to
2
W(n) =

21F q ⊗ · · · ⊗
2nF q , which corresponds to the first (left) component

of Rtr1 ’s.

10 T(x, y) here is different from the one in (11.85).
11 For H we do not exhibit the number of components m, n as H (m) or H (n).
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Alternatively, Fig. 13.9 viewed from the SE or first taking the traces over
21, . . . , 2n gives rise to the trace of the product of (xu)H and Rtr2(ν1), . . . , Rtr2(νn):

T (x, y) = TrW(m)

(
(xu)H Rtr2(yw1) · · · Rtr2(ywn)

)

=
∑

k≥0

xkTrW(m)
k

(
uH Rtr2(yw1) · · · Rtr2(ywn)

) ∈ End
(
(W(m))⊗n

)
,

(13.138)

where the matrix product constructed Rtr2(yw j ) ∈ End(
1
W(m) ⊗ W(m)) is a quantum

R matrix ofUq(A
(1)
m−1) due to Theorem 13.12 and (13.42). The product is taken with

respect to
1
W(m) =

11F q ⊗ · · · ⊗
1mF q in Fig. 13.9, which corresponds to the first (left)

component of Rtr2 ’s.
The identifications (13.137) and (13.138) correspond to the two complementary

pictures F ⊗mn
q = (W(n))⊗m = (W(m))⊗n . In either case, Rtr1(z) and Rtr2(z) satisfy

the Yang–Baxter equations, which implies the two-parameter commutativity

[T (x, y), T (x ′, y′)] = 0 (13.139)

for fixed u and w.
Due to the weight conservations (13.28) and (13.41), the layer transfer matrix

T (x, y)hasmany invariant subspaces.The resultingdecomposition is againdescribed
as (11.91)–(11.95) for another layer transfer matrix T (x, y) considered in Sect. 11.6.

Consequently, each summand in (13.137) and (13.138) is further decomposed as

TrW(n)
k

(
wH Rtr1(xu1) · · · Rtr1(xum)

)

=
⊕

I1,...,Im≥0

TrW(n)
k

(
wH Rtr1

k,I1
(xu1) · · · Rtr1

k,Im
(xum)

)
, (13.140)

TrW(m)
k

(
uH Rtr2(yw1) · · · Rtr2(ywn)

)

=
⊕

J1,...,Jn≥0

TrW(m)
k

(
uH Rtr2

k,J1
(yw1) · · · Rtr2

k,Jn
(ywn)

)
. (13.141)

In the terminology of the quantum inverse scattering method, each summand in the
RHS of (13.140) is a row transfer matrix of the Uq(A

(1)
n−1) vertex model of size m

whose auxiliary space isW(n)
k and the quantumspace isW(n)

I1
⊗ · · · ⊗ W(n)

Im
having the

spectral parameter x with inhomogeneity u1, . . . , um and the “horizontal” boundary
electric/magnetic fieldw. It forms a commuting familywith respect to x provided that
the other parameters are fixed. In the dual picture (13.141), the role of these data is
interchanged asm ↔ n, x ↔ y, u ↔ w. This is another example of duality between
rank and size, spectral inhomogeneity and field in addition to the one demonstrated
in Sect. 11.6.
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Consider the cube of size l × m × n formed by concatenating Fig. 13.9 vertically
for l times. As in Remark 11.8, one can formulate further two versions of the duality
on the layer transfer matrices in the first and the second directions, which correspond
to the interchanges l ↔ m and l ↔ n.

13.9 Geometric R From Trace Reductions of Birational 3D
R

We have constructed solutions to the Yang–Baxter equation by the trace reduction
of the compositions of the 3D R. They were identified with the quantum R matrices
for specific representations of Uq(A

(1)
n−1). Here we present a parallel story for the

birational 3D R in Sect. 3.6.2 without going into the detailed proof.
Let us write the birational 3D R Rbirational in (3.151) simply as

R : (a, b, c) 
→
(

ab

a + c
, a + c,

bc

a + c

)
. (13.142)

Given arrays of n variables x = (x1, . . . , xn), y = (y1, . . . , yn) and an extra single
variable zn+1, we construct x̃ = (x̃1, . . . , x̃n), ỹ = (ỹ1, . . . , ỹn) and z1, . . . , zn by
postulating the following relations successively in the order i = n, n − 1, . . . , 1:

R : (xi , yi , zi+1) 
→ (x̃i , ỹi , zi ). (13.143)

See Fig. 13.10.
By the construction, z1 is expressed as

z1 = zn+1
∏n

j=1 y j∏n
j=1 x j + zn+1Q0(x, y)

(13.144)

in terms of Q0(x, y) which will be given in (13.146). Reflecting the “trace”, we
impose the periodic boundary condition z1 = zn+1. This determines zn+1 hence every

Fig. 13.10 Trace reduction
of the birational 3D R along
the third component. Each
vertex is defined by (13.143)
and (13.142). The periodic
boundary condition
z1 = zn+1 is imposed •

1

• +1

•

•
2

˜1

1

˜1

1

2

˜2

2

˜2

˜

˜
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zi in terms of x and y. Explicitly, we get zi = (
∏n

k=1 yk − ∏n
k=1 xk)/Qi−1(x, y).

Substituting it back to x̃ and ỹ, we obtain a map of 2n variables

R(3) : (x, y) 
→ (ỹ, x̃), x̃i = xi
Qi (x, y)

Qi−1(x, y)
, ỹi = yi

Qi−1(x, y)

Qi (x, y)
, (13.145)

where the superscript (3) signifies that the third component is used for the trace
reduction. The function Qi (x, y) is defined by

Qi (x, y) =
n∑

k=1

(k−1∏

j=1

xi+ j
)( n∏

j=k+1

yi+ j
)
. (13.146)

The indices of Qi , xi , yi , x̃i , ỹi are to be understood as belonging to Zn .

Example 13.14 For n = 2, 3, we have

n = 2 : Q0(x, y) = x2 + y1, Q1(x, y) = x1 + y2, (13.147)

n = 3 : Q0(x, y) = x1x2 + x1y3 + y2y3, (13.148)

Q1(x, y) = x2x3 + x2y1 + y1y3, (13.149)

Q2(x, y) = x1x3 + x3y2 + y1y2. (13.150)

One can construct similar maps R(1) and R(2) by replacing the elementary step
(13.143) by

R : (zi+1, xi , yi ) 
→ (zi , x̃i , ỹi ), (13.151)

R : (xi , zi+1, yi ) 
→ (x̃i , zi , ỹi ), (13.152)

respectively, and applying them still in the order i = n, n − 1, . . . , 1. For (13.151),
z1 is given by (13.144) with the interchange x ↔ y reflecting the symmetry (3.59)
of the birational 3D R (13.142). Thus we have

R(1) : (x, y) 
→ (ỹ, x̃); x̃i = xi
Qi−1(y, x)

Qi (y, x)
, ỹi = yi

Qi (y, x)

Qi−1(y, x)
. (13.153)

For (13.152), zi becomes much simpler as zi = xi + yi , leading to

R(2) : (x, y) 
→ (ỹ, x̃); x̃i = xi
xi+1 + yi+1

xi + yi
, ỹi = yi

xi+1 + yi+1

xi + yi
. (13.154)

We also introduce

R∨(2) : (x, y) 
→ (ỹ, x̃); x̃i = xi
xi−1 + yi−1

xi + yi
, ỹi = yi

xi−1 + yi−1

xi + yi
. (13.155)
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It is obtained by the reverse procedure forR(2) where R : (xi , zi , yi ) 
→ (x̃i , zi+1, ỹi )
is applied in the order i = 1, 2, . . . , n followed by zn+1 = z1. It is related to R(2) as

R(2) : (x∨, y∨) 
→ (u, v) ⇔ R∨(2) : (x, y) → (u∨, v∨), (13.156)

where ∨ denotes the reverse ordering of the n component arrays as in (11.4).
The maps R(1),R(2),R∨(2) and R(3) are examples of geometric R of type A.12

They satisfy the inversion relations and the Yang–Baxter equations. To describe
them uniformly, we introduce a temporary notation

R3,3 = R(3), R1,3 = R(2), R3,1 = R∨(2), R1,1 = R(1). (13.157)

Then the inversion relations read as

Rα,βRβ,α = id (13.158)

for α, β ∈ {1, 3}. Thus these geometric R’s are birational maps. They form set-
theoretical solutions to the eight types of the Yang–Baxter equations

(
1 ⊗ Rα,β

)(Rα,γ ⊗ 1
)(
1 ⊗ Rβ,γ

) = (Rβ,γ ⊗ 1
)(
1 ⊗ Rα,γ

)(Rα,β ⊗ 1
)

(13.159)

labeled with α, β, γ ∈ {1, 3}. Here for instance (
1 ⊗ Rα,β

)
(u, x, y) = (u, ỹ, x̃) and(Rα,β ⊗ 1

)
(x, y, u) = (ỹ, x̃, u) in terms of the x̃ and ỹ corresponding to Rα,β given

by (13.145), (13.153), (13.154) or (13.155). One can bilinearize Rα,β in terms of tau
functions by incorporating the result in Sect. 3.6.3 into the trace reduction here.

Remark 13.15 The trace reduction considered here admits a two-parameter
deformation leading to Rα,β(λ, ω). The parameter λ is introduced by replacing
the birational 3D R (13.142) with the λ-deformed one in (3.159). The parame-
ter ω is introduced by replacing the periodicity z1 = zn+1 of the auxiliary vari-
able by the quasi-periodicity condition z1 = ωzn+1. Then the inversion relation
Rα,β(λ, ω)Rβ,α(λ, ω) = id persists for any λ and ω. The Yang–Baxter equations
remain valid for Rα,β(λ, 1) and Rα,β(0, ω).

13.10 Bibliographical Notes and Comments

The trace reduction of the 3D R with respect to the first component was considered
in [18, Eq. (36)], and the identification with the type A quantum R matrices for
symmetric tensor representations was announced in [18, Eq. (54)]. See also [75].
A proof of a similar identification concerning the third component was given in

12 Some early publications refer to them as “tropical R”.
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[96, Proposition 17]. This chapter provides a unified treatment of the trace reductions
along the three possible directions. They are symbolically expressed, for n = 3, as

Tr•
(
zh• R•◦◦R•◦◦R•◦◦

)
, Tr•

(
zh• R◦•◦R◦•◦R◦•◦

)
. Tr•

(
zh• R◦◦•R◦◦•R◦◦•

)
.

Other variations mixing the components like Tr•
(
zh• R•◦◦R◦◦•R•◦◦

)
also yield

solutions to the Yang–Baxter equation. Their quantum group symmetry has been
described in [86] using the appropriate automorphisms of q-oscillator algebra inter-
changing the creation and the annihilation operators.

Even if the auxiliaryFock space• to take the trace is limited to the third component,
there are more significant generalizations mixing the 3D R and 3D L as

Tr
(
zhR(ε1) · · ·R(εn)

)
, (R(0) = R, R(1) = L) (13.160)

for ε1, . . . , εn = 0, 1. These 2n objects are easily seen to satisfy the Yang–Baxter
equation by a mixed usage of the tetrahedron equations of type RRRR = RRRR
and RLLL = LLLR [95, Theorem 12]. Chapter 11 and the present one corre-
spond to the two special cases without the coexistence of the 3D L and 3D R.
In order to characterize them as the intertwiner, one is naturally led to an algebra
UA(ε1, . . . , εn) interpolating UA(0, . . . , 0) = U−q−1(A(1)

n−1) in Theorem 11.3 and

UA(1, . . . , 1) = Uq(A
(1)
n−1) in Theorem 13.10 via some quantum superalgebras in

between [98]. The algebraUA(ε1, . . . , εn) has been identified as an example of gen-
eralized quantum groups. This notion emerged in [56] through the classification of
pointed Hopf algebras [2, 55] and it has been studied further in [3, 6, 9, 57]. For
recent developments related to the content of this book, see [108, 109].

The algebra homomorphism fromUq to q-oscillators as in Proposition 13.8 goes
back to [54] for example. The proof of Theorem 13.10 utilizing such a homomor-
phism is simpler and is due to [97].

The explicit formula A(z)abi j in Theorem 13.3was presented in [26]. Unfortunately
the derivation therein has a gap when |i| > |i′| in [26, Eq. (3.15)]. Section 13.5.3
provides the first complete proof of (13.55). It fills the gap effectively byLemma13.7,
and provides a new insight that the quantum group symmetry is translated into a
bilinear identity of q-hypergeometric as in Lemma 13.5.

Section 13.7 is based on [87], where the building block	q (13.49) of the R matri-
ces was extracted which plays the role of local hopping rate of an integrable Markov
process of multispecies particles subject to a particular zero-range-type interaction.
The case n = 2 of	q first appeared in [123]. See also [25, 81, 100] for the subsequent
developments.

The 3D lattice model in Sect. 13.8 has been considered in [17]. The layer transfer
matrix corresponds to a quantization of the earlier work [68], where the 3D R is
replaced by the birational 3D R and the description in terms of geometric R was
adopted in accordance with Sect. 13.9. In such a setting, the duality shows up as the
W (A(1)

m−1 × A(1)
n−1) symmetry.
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One of the earliest appearances of the birational map R(1) is [150]. The maps
R(3), R(2), R∨(2) and R(1) in (13.145)–(13.155) are the geometric lifts of R, R∨,
∨R and R∨∨ in [101, Eqs. (2.1)–(2.4)], respectively. R(3), R(2) and R(1) are also
contained in the first example of set-theoretical solutions to the reflection equation
[101, Appendix A]. Associated with the type A Kirillov–Reshetikhin (KR) module
W (r)

s with 1 ≤ r ≤ n − 1, s ≥ 1, one has the geometric crystalB(r). Themost general
geometric R Rr,r ′ : B(r) × B(r ′) → B(r ′) × B(r) has been constructed in [49]. See
also [99]. The four examples in Sect. 13.9 are the special cases of it as R3,3 =
R1,1,R3,1 = R1,n−1,R1,3 = Rn−1,1,R1,1 = Rn−1,n−1. Set-theoretical solutions to the
Yang–Baxter equation are also called Yang–Baxter maps [145]. Geometric R’s form
an important class in it having the quantum and combinatorial counterparts which
are connected to the KR modules and integrable soliton cellular automata known as
(generalized) box–ball systems [60].
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