Chapter 12 ®)
Boundary Vector Reductions e
of RLLL =LLLR

Abstract This chapter presents yet another reduction of an n-concatenation of the
tetrahedron equation RLLL = LLLR different from the previous chapter. We elim-
inate the 3D R not by taking the trace but by evaluation with respect to the boundary
vectors using Proposition 3.28. We call it the boundary vector reduction. In contrast
to the trace reduction that led to the quantum R matrices of U -1 (Afll_)l) (Chap.
11), it leads to the quantum R matrices for the spin representations of U_,-1 (B{),
U_,1(D{") and U_,-1(D?))). These algebras have Dynkin diagrams with double
outward arrows or double branches. It turns out that the two kinds of the boundary
vectors correspond to the two choices of the end shape of the relevant Dynkin dia-
grams. For simplicity, we treat the reduction with respect to the g-oscillator Fock
space only.

12.1 Boundary Vector Reductions

‘We retain the notations s, s+, V, V, Vi, v, etc. and 3D L in Sect. 11.1:

Lgo Loy LY LY 10 00
g it | |0 —ga ka0 o
LY LY L9 L1 0 at akoO]’ '
WpayLieyt) 000

In(11.21) we have obtained an n-concatenation of the tetrahedron equation RLLL =
LLLR as

Ryse x™ (xy)™y (Ly 2,4+ -~ Li,2,a)(L13,s - - L1,3,5)(La,3,6 - La,3,6) Rase

= x™y)SyP(Loy36 - Lays,6) (Liysys - Li,a,s)(Li2ga - - Liy,a)-
(12.2)
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Recall the boundary vectors (3.132) and (3.133) given as'

=y = o1 a2

rZ ? rZ
mZO (q )ITL sz (q )I?‘l
Sandwich (12.2) between them as
4 5 6 4 5 6 ,
(1@ (el @ DG Un) @ ) @ |mpr)) (" =1, 2). (12.4)

Thanks to Proposition 3.28, the two Rys¢’s disappear, leading to

4 45 5
(e |xX™ Lyoga -+ - Liyg,alne )0 /o)™ Lyj3,s -+ Lys,s1ne) x

6 6
X (0 1y™ La,3,6 - - La,a,6070)

6 6 s S (12.5)
= (e 1Y™Loysi6 -+ Lo,3,6000) (1 (x3)™ L35+ - Ly 3,5000) %
4 4
X (N X™ Ly 24+ Lio,alne).
Let us denote the operators appearing here by
ror’ r,r’ 4 hy 4 ! 2
S12@ =0"" (@ |z Liga -+ Li,n,4ln-) € End(V V),
rr rr 5 5 1 3
S15 @) = 0" ()12 L1y3,5 -+ Lu,3,500) € End(V® V), (12.6)

rr/ r}" 6 6 2 3
$55(2) = 0" () (1™ La36 -+ Lo3,6ln) € End(V @ V),

where r, ¥’ = 1, 2. The normalization factor 0" (z) will be specified in (12.15). They

12 3
are the same operators acting on different copies of V, V, Vof Vin (11.5) and (11.6).
Now the relation (12.5) is stated as the Yang—Baxter equation:

S13 (ST S5 () = SE ISR ST () (nr' =1, (12.7)
Suppressing the labels 1, 2 etc., we set

ST D@V = Y S () va ® v (12.8)

a,bes

! There is no decent meaning of r2 in this fitting formula which makes sense only for r = 1, 2.
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e\

Fig. 12.1 The boundary vector reduction. The matrix product formula (12.9) is depicted as a
concatenation of Fig. 11.1 along the blue arrow carrying F; sandwiched by the boundary vectors
(nr| and |n,+) in (12.3). It is a BBQ stick with X-shaped sausages and extra caps at the two ends.
The dual pairing is defined by (3.16)

Then the construction (12.6) implies the matrix product formula

ST @ = 0" @ L L ) (rr=1,2) (12.9)

in terms of the components of the 3D L in (12.1) (Fig. 12.1).
From the g-oscillator relations (3.12) and the dual pairing rule (3.16), calculation
of the quantities (1, |(---)|n,+) is reduced to the following:

(0,12 @5 K" w"|n,) = (WK™ @F) Py, L =1,2),
(=7 zw; ¢) oo
(g"zw; @)oo

mlZ"@") K" wh|n) = 2/ (—q; q);

3

2i4t2m+1,2,,2. 2
Li(i+1-2)) (@) (=q" " 2w %) oo

J
(ml"@) K" whln) =277 ) (=D)ig2 . ,
Z (@i (@) j—i(g* T 2w?; ¢?)

i=0
! 2i4+2m+1,2,,2. 2
(771|Zh(a+)fk’"wh|;72> =7/ qzl(1+1) A ’
; @i (@) j—i(g*mz2w?; ¢?) o
(C]2j+2m+2Z2w2; q4)oo

h,+\im,, h O j 2. 4y

(mlz" @) K" wn2) =0(j € 22)2/(q7:97) 2 P
(12.10)

See (3.65) for the notation. The symbol 6 is defined after (6.66). These formulas are

easily derived from the elementary identity (3.82). From (12.9) we see

Sr,r'(z)?‘]!’ = a|a\—\j\(Sr,,-/(z)?;)|a=1)’ (12.11)
S"" (2 =0 unless a+b=i+]j, (12.12)
S”(Z)?}’ =0 unless |a| =|i|] and |b| = |j| mod 2. (12.13)

The «-dependence (12.11) is a direct consequence of (12.1), the weight conservation
(12.12) follows from (11.15) and the parity constraint (12.13) is due to the fact that
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the boundary vectors (1,[, |72) in (12.3) contain “even modes” only. It leads to the
decomposition

@)= P 7@, 57 (:)€End(V, ® V). (12.14)

0,0'=+,—

When (r, ") = (2, 2), the Yang-Baxter equation (12.7) is valid in each subspace
Vo ® Vo @ Vor of VO V® V. The scalar 0>%(z) in (12.9) may be chosen as
QU’J, (z) depending on the summands in (12.14). We take them as

(Zmax(r,r ); qrr )oo

0" (2) = R — ((r,r) =(1,1),(1,2), (2, ),
(=2 g; g™ oo
(12.15)
2. 4 2. 2. 4
ot Q) = (2% 9" oEF () = (z2°975 4o
(226%: qMoo’ (22q* qMoo
Then S (z)?}’ becomes a rational function of ¢ and z” normalized as
S)(va®ua) = V2 ® v, (@acs, §S=80 §H2 g2 ghty (12.16)
ST (2)(Ve, ® Ve,) = Ve, @ Ve, (12.17)

ST (2)(v0 @ ve,) = —ga 0o ® Ve, ST (2)(Ve, ® Vo) = v, ® vg. (12.18)
From (3.18), (11.15) and (11.16), we also have
Sr,r/ (Z)i’l}) — Z|j|_|b‘Si”,r (Z);vv‘i:v — Sr,r/ (Z {)ia|a_)_qa71 ) (1219)

Example 12.1 We consider the simplest case n = 1. ™ (2) with (r, r') = (1, 1),
(1,2), (2, 1) are given as follows:

ViU vy ((i=0,1),
g1 =2Hv®vi  (1+¢)vi®u

Vg Q v > —
0 : a(l +gz°) 14+qgz*
A+ 'vo@v  all —z%)v @ vy
V1 (Y Vg
14gz* 14+qgz*

where s = max(r, ). $>2(z) with n = 1 reads as
ViU v®v (i=0,1), vyQuv > —qa71v0®v1, V] @ vg = av;  vg.

Examples of the case n = 2 are available in Sect. 12.4.
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12.2 Identification with Quantum R Matrices

1 1 2
of B,", D, D

12.2.1 Quantum Affine Algebra U,(g"" b

We will be concerned with the affine Kac-Moody algebras’

L1 _ n®
g - Dn+1’

gl = Bn(1)7 g = B21)7 g2 = D}gl)’ (12.20)
where the notation g”" will turn out to fit to $”"'(z) in the previous section.

LetU, = U,(DS)) (n > 2),U,(BM) (n = 3),U,(B"") (n > 3),U, (D) (n >
3) be the quantum affine algebras. They are Hopf algebras generated by {e;, fi, kijtl |
i €{0,1,...,n}} satisfying the relations (10.1) with g replaced by p (and the index
set I there understood as {0, 1, ..., n}). Beside the commutativity of kijEl and the
p-Serre relations, they include

- - a ki — k!
k,-ejki ! = pi ’ej, kifjki ! = pi Ifj, [6,’, fj] = 8i,jﬁ? (1221)
where the constants p; (0 < i < n) are taken as’
pi = p exceptfor po=p’% p,=p'> (12.22)

Thus the actual exceptions are py = p, = p'/2 for DY), p, = p'/? for B{D and

n+1°
po = p'/* for BV,

The affine Lie algebra BV is just B{") with different enumeration of the vertices
as shown in Fig. 12.2. We keep it for uniformity of the description. The Cartan
matrix (a;j)o<i, j<n 18 determined from the Dynkin diagrams of the relevant affine
Lie algebras according to the convention of [67]. Thus for instance in U ,,(D,(j:l),
one has ayg; = —2, ajo = —1 and koeg = peoko, koe; = p_'elko, kieg = p_leokl
and kje; = p2e k. Forgetting the Oth node in the Dynkin diagrams yields the clas-
sical subalgebras U,(B,) C U,,(D,(i)l), U,(B,) C U,(B"), U,(D,) C U,(B)
and U,(D,) C U,(D{V).

2 Some symbols including o here and Sect. 14.2.1 are apparently the same, but they should be
understood as redefined in each place.

3 This normalization agrees with (14.19). The normalization mentioned after (10.1) for U, (g) with
non-affine g has not been adopted here.
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ghl = D;ZI) 0@\ g2 = Bfll)
o=0—------ —C=0 O—------ —C==0
0 1 n—1 n IO/2 n-1 n

5(1 1

12_3’(1) 22 _ Sl)

Fig. 12.2 Dynkin diagrams of (12.20) with enumeration of vertices

12.2.2  Spin Representations of Up,(g™" )

Let 7y, » 1 Up (g""") — End(V) be the representations

_ 1_

€OVm = XUm—e;s  foUm =% 'Umie;s KoUm = P2 "'Um r=1),
(12.23)

€)Um = xzvm—el—ezv f()vm = x72Um+e1+e2, kovm = plimlimzvm (r =2),
(12.24)

€iVm = Umte—eir>  JiVm = Um—eiteyr  Kivm = P "oy (0 <i < n),
(12.25)

CaVm = Umie,,  foUm = Um-es  kiUm=p" ium (' =1), (1226)

1 =1 _
€1Um = Um+te, ;+e,» JnUm = Um—e, |—e,» KnUm = Pm‘+m" Tom (1 =2),
(12.27)

where m € s. See Sect. 11.1 for the definitions of V, vy, s and e;. In the LHSs, ¢; for
example actually means 75, . (e;). In the RHSs, the vector vy should be understood
as 0 if m ¢ 5. The choice of x*" rather than x*! in (12.23) and (12.24) is the option
leading to a uniform description of the results in Theorem 12.2.

The algebras U, (g"!) and U, (g*') have a common classical subalgebra U ,(B,)
without ey, fo, k(jf. As a U,(B,) module, V is already irreducible and is isomorphic
to the highest weight module V(@) in the notation of Sect. 10.1.1 with highest
weight vector ve, 1.1, . It is called the spin representation.*

The algebras U, (g"?) and U, (g*?) have a common classical subalgebra U, (D)
without ey, fo, koi. As a U,(D,) module, V decomposes into two irreducible

YAsalU p(gl’ YorU » (g>") module, it is a Kirillov—Reshetikhin module Wl(") up to specification
of the spectral parameter.
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components V, and V_ in (11.6). The space V(i) (resp. V(_jy-1) is isomor-
phic to the highest weight module V () (resp. V (w,—1)) in the notation of Sect.
10.1.1 whose highest weight vector is Ve, +...4¢, (X€SP. Ve,+-..te,_,)- Both V() and
V (w,-1) are called spin representations. As a U,(g"?) module, V is irreducible.
As a U,(g*?) module, each V, remains individually irreducible since the parity of
m| =m; + - - 4+ m, in vy is preserved.’ We will simply refer to T, .« as the spin
representation of U, @").

12.2.3 S""'(z) as Quantum R Matrices for Spin
Representations

Let Ayy = (T, x ® Ty, y) 0 A and APy = (T, x ® 7y, y) © AP be the tensor
product of the spin representations, where A and A°P are the coproduct (11.58) and
its opposite (11.59). For (r, ") # (2, 2), let R (z) € End(V ® V) be a quantum R
matrix of U, (g""") which is characterized, up to normalization, by the commutativity

R () Ary(9) = AP (R (1) (Vg € Up(@™)). (12.28)
For (r, r") = (2, 2), we set
R =R"T@QORT @) DR T (@) ®R(z) e End(VRV), (12.29)

where R%¢'(z) € End(V, ® Vo) (e, &' = %) is a quantum R matrix of U,(g>?)
which is characterized, up to normalization, by the commutativity

RO () Ay () = AP (R (2) (Vg € Up(g™?). (12.30)

‘We have taken the obvious fact that the R matrices depend only on the ratio x/y into
account. The relations (12.28) and (12.30) are generalizations of (10.12) including
the latter as the classical part. The main result in this chapter is the following.

Theorem 12.2 Up to normalization, S"" (z) by the matrix product construction
(12.8)—(12.9) based on the 3D L (12.1) with o = p_l/2 coincides with the quantum
R matrix of U, (g"”") as

Sr.r’(z) — :Rr,r/(zfl) at g = _pfl. (12.31)

3 They are Kirillov—Reshetikhin modules Wl(") and Wl("_l) up to specification of the spectral param-
eters.
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Proof 1t suffices to check

ST (e ®1+k ®e) = (1®es+e,@k)S™ (2), (12.32)
STOAR fi+ £ RN = (f®1+k7® £S5 (2), (12.33)
S () ks @ ky) = (ks @ ks)S™ (2) (12.34)

under the image by 774, « ® 74, , for0 < s <n.For0 < s < n, the formula (12.25)
coincides with (11.60) for i # 0. Therefore it is indeed valid if ¢ = —p~' thanks to
the proof of Theorem 11.3. Let us illustrate the proof of (12.32) for s = n using the
properties of the boundary vectors. The other relations can be treated similarly.

First we consider the case 7’ = 1. Then up to the normalization factor o"!(2), the
vector S”! (2)(en ® 1+ k, ® e,)(vi ® vj) is calculated by using (12.26) as

h i1
e 1(2) L2, -+ L1,2, Im) (Vige, ® vj 4+ P75 @ Vjse,)
= Y e IX L+ P LYY D0 va ® vp,

a,bes

(12.35)

where X = (g)hL;’l‘,’;’]‘ .. .L?"“:l"’jb"’:'. Similarly, (1 ®e, +e, ® k,)S"1(2)(v; ® vj)
yields

A @en+en @ka) D (XL 1) (va @ vp)

— - (1236)
= Y O XLE 7 Im) (Wa ® Vbse, + P 2 vate, © V).
a,bes
From the comparison of the coefficient of v, ® vy, it suffices to show
L+ P 2L = Ly = p L ) = (12.37)

where a,, b, i,, j, are denoted by a,b,i, j. As an example for (a,b,i, j) =
(1,1, 0, 1), it reads, from (11.14), as

0= (L =LY — p L) = (1 —a*™ — p> (—ga~"'K)) ). (12.38)

From g = —p~! this is indeed valid at « = p~'/? due to the property (3.134) of the
boundary vector |7, ). With the choice (g, o) = (—p~!, p~!/?), all the other relations
in (12.37) can be similarly checked by also using (3.135).

Next we consider the case r' = 2. The main difference from the ' = 1 case is
that (12.27) concerns the “two boundary sites” n — 1 and . Thus a similar argument
comparing the coefficients of v_ 4., 4, ® V.5, .5, leads to a quadratic relation
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Fig. 12.3 Correspondence 0 n

between the boundary (m| O:é é:@ [71)

vectors and the end shape of
the Dynkin diagrams. These
data are relevant to the LHS
and the RHS of (12.31) in

Theorem 12.2, respectively n-1

0
O
(n O> <@ Im2)
O
1 n

b a' b’ i+i'—1yab a' b
(L&D LOb g piti=tped  pat
i+1, i'+1,j' L j+1=i, ) +1
/ ! ! / (12.39)

ab—1yd b—1 btb' —1ya—1.bya—1b _
—LI.’J. Ll-,,j, —p Li,j Li,’j, )n2) = 0.

Consider the LHS for (a,d’,b,b',i,i’,j,j) =(1,1,1,1,0,0, 1, 1) for example:
(L1 LY — LVLe) — pLOLID ) = (1 — (@")? — p(—ga~'K)D) ).  (12.40)

1

From (g, o) = (—p~', p~/?), this is evaluated as

(3.137) (3.12)

(1 —@"? —Kk)n) (1—a*a™ —K)[np) "= 0. (12.41)
All the other relations in (12.39) can be checked similarly by using (3.137) and

(3.12). ]

Remark 12.3 Theorem 12.2 suggests the following correspondence between the
boundary vectors (n,|, |n,/) in (12.3) and the end shape of the Dynkin diagrams in
Fig. 12.2: (Fig. 12.3)

A similar correspondence is observed in Remark 11.4 and 14.3.

12.3 Commuting Layer Transfer Matrix

This section is a continuation from Sect. 11.6 from which we will borrow some
terminology. Given parameters u = (¢, ..., u,) and w = (wy, ..., w,), consider
the row transfer matrix of the vertex model associated with the spin representation
of Up(g’*”):

/ / 2 2
T(xlu, w) = Try (W S7% (xuy) - S}y (xup)) € End(V@---® V). (12.42)
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1, X:’)m [7:1)
12 ....... . 2mn ......... 32 |77r’>
I . 3 |7]r’>
2m2 ............ 22n
<7]r| Hm 2 [ Lt 21n Wy

el 1 2y

Fig. 12.4 A layer transfer matrix interpretation of the row transfer matrix of the U, (g" ') vertex
model associated with the spin representation. There are n black horizontal arrows 1q,...,1,
carrying V =~ C? which are being traced out corresponding to the periodic boundary condition.
There are also m blue horizontal arrows 31, ..., 3, carrying ¥, which are to be evaluated between
the boundary vectors. The mark e with z signifies an operator z". At the intersection of 1; and 3 js
there is a vertical black arrow 2;; carrying V, which corresponds toa3D L Ly, 2;;,3;. The parameter
Wi is taken as u; = xu; asin (11.84)

To each S (xu;), labels have been attached indicating the spaces it acts. The label
11 1,

1=(,4,...,1,) is the one for the auxiliary space V = VI ®---® V and 2; is the

2, 2 2jn 2 2,

one for the jth component V=V ® ---® V in the quantum space \17 Q- --®V.

For the symbol w*/, see (11.87). The parameters x, u and w are spectral parameters,

their inhomogeneity and the boundary field. From the Yang—Baxter equation (12.7)

and the weight conservation (12.12), it forms a commuting family:
[T (x|u, w), T (x'|u, w)] = 0. (12.43)

Theorem 12.2 endows T (x|u, w) with an interpretation as a layer transfer matrix
of a 3D lattice model with a special boundary condition explained below.

The formula (12.42) corresponds to looking at Fig. 12.4 from the SW, or evaluating
(nr1(- -+ )|n,) first. On the other hand, one can look at it from the SE or first take the
trace over 1y, ..., 1,,. From (11.41), it leads to an alternative interpretation:

T(xlu, w) = (%" ) S35 (wy) -+ $' 3(wy) |0, ) " € End(VE™). (12.44)

33 3,

Here3 = (34, ..., 3,;) is the label of the auxiliary space W = ?Lq ® - ® F4along

which the product of S is taken and (n,|®"(---)|n,)®™ is evaluated. The label
2, 2y 2,

2; = (24, ...,2yj) signifies the jth component V=V@®: -V of the quantum

2 2,
space\l7®---®V: y@mn,
The operator (12.44) arises from the dual pairing between W = F 2" =
@kzo W,(Cm) in (11.11) and its dual. From the weight conservation (11.45) and the
decomposition (11.46), it is expanded as
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T (x|u, w) = &P KT (u, w), (12.45)
k>0,1=(,....[,)€{0,1,...,m}"
Tea(u, w) = (% Ju S (wy) - S (w) In ) € End(V)" ® -~ @ V™),
(12.46)

where the vector |n;7 ;) is the projection of |n,)®™ onto W,((m) in (11.11). The vector
(n’r’fk| is the dual of |77,’,f‘k). From (12.3) they are explicitly given as finite sums:

m |r/d1)®...®|r/dm>
|nr’,k) = Z ( r’z) ( r’2) 5 (1247)

(dy,edp)EB™ q" )a, ",

(rd1| ®® (rdm|
= Z 2 2 . (12.48)

@ dm)EB]fm) (q )d] e (q )dm

See (11.10) for the notation B,Em)_ Now the commutativity (12.43) implies

[Tea, W), Tea@, W] =0 (kK € Zs). (12.49)

In 2D terminology, the 3D picture in Fig. 12.4 and Theorem 11.5, 12.2 show the
equivalence of the spectral problem for row transfer matrices of the vertex models
associated with the spin representations of U_;-1 (B,(ll)), U_j (Dr(ll)), U_j (D,(IZJ:])
on length m system with the periodic boundary condition and the U, (Afnl)A) vertex
model associated with the (anti-symmetric tensor rep.) ® (symmetric tensor rep.) on
a length n system with a special boundary condition.

12.4 Examples of S1(z), $*1(z), §*2(z) for n = 2

Let us present explicit formulas of §""'(z) for n = 2.
S1:1(z) is given as follows:

vij @ vij = v;; Qi (i, j €{0,1}),
q(z — D ® vor (g + 1)zvo1 ® voo

Voo @ Vg1 —>

algz+1) qgz+1
q(z— D ®vip (g + 1)zvio ® voo
Voo ® vio + )
algz+ 1) qz+1
(z—1(gz — Dq*voo ® vi1  g*(g + D(z — Dzvg @ vig
Voo & V11 > 3 2 2
@2(qz + 1) (z* + 1) algz+ 1) (zg* +1)

q(g+ D@ —Dzvp®va @+ 1) (g% + 1) 2%v11 @ voo
a(gz+1) (zq*> +1) (qgz+1) (zg>+ 1)

’
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(@ 4+ Do @vor  a(z — Dvor ® voo
Vo1 @ Vg > - )

qz+1 gz +1
q(g+1D(z—Dvp®vi1 gz —1)(gz — 1)vor @ vio
Vo1 Q@ V1o H> -
a(gz+1) (zq> 4+ 1) (qz+ 1) (zq> +1)
L @tz (20> —zg +g+ 1 vie®vor (g + Dz = Dzoi ® oo
(gz+1) (z¢*+1) (gz+1) (z¢*+1)
q(z— Dy ®vi1 (g + Dz ® vy
Vo1 Q@ V11 >
algz+1) qz+1
(@ + Do ®vio  alz— 1vio @ voo
V1o ® Voo > - )
qz+1 qz+1
> g+ Dz —Du®vii gz — gz — Dvig ® vy
V0 @ Vo1 H> -
a(qz+1) (zq> +1) (qz+1)(zq> +1)
_qlg+Daz—Dzvy ®ve | (g +1 (2¢* +2g — g + 1) v @ vy
(qz+1) (z¢*+1) (qgz+ 1) (z¢*+1) ’
gz —Dvig®vir (g + Dzvyg ® vig
vy ® V11 >
algz+1) qz+1
a’(z—D(gz— Doy ®veo  q(g + Da(z — Dvgr ® vig
V11 ® Voo > -
(qgz+ 1) (zq*> +1) (gz+ 1) (zq*>+1)
@+ Daz=Dv®vyr  (g+1) (g% + 1) voo ® v1y
(gz+ 1) (z¢*>+1) (qz+1(z¢>+1)
(g + Dvor ® v alz — Dy @ vor
v @ vop > — )
qz+1 qgz+1
(g+Dvo®vyr  alz—Dv Q@
V11 Q vip > - .
qz+1 qz+1

5%1(z) depends on z only via z2. It is given as follows:

vij @ uij = vij Qv (i, j €{0,1}),
(g + Dz%v01 ®voo | q(z2 — Do ® voi

Voo ® vo1
00 ® Vo1 | « (@2 +1)
(q+ DZ2vio®voo | q(z2 — Dvgo ® vio
Voo ® V10 > 3 3
gz +1 a gz +1)
o0 @ V11 s (g + D2 = D @i | ¢* (& = D(g*z> — Do ® vi
a(gz2+1) (227 +1) a?(qz2 +1) (z2¢° + 1)
@+ D2 = Do v (g + D (¢ + 22 —q + 1) vi1 ® voo
a (g2 +1) (¢ +1) (@2* +1) (Zq* +1)

(¢ + Do ® w1 (z* = Dvor ® voo
qz? +1 qz? +1

vo1 ® Voo >
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Vo1 ® vip >

@+ D2 (¢ =2 + > + Do ® v gq(g + Daz’(2 = Dvi & voo

(922 +1) (Z¢° +1) (a2* +1) (Za* +1)
q(q + (@ = D ® v _ q(z* — 1)(¢?z* — Do ® vio

vo1 @ Vi1 >

v10 ® voo >

v10 ® vo1 >

a(gz2 +1) (24 +1) (g2 +1) (2¢° + 1)

(g + Dvi ® vorz?

5

q(z% — Dvor ® vpy

qz? +1

)

alg+1)

(g+ Do ®vio a(z2 — Dvip ® voo

g2 +1

5

qz? +1

q%(q + D% — Dugo ® vy _ g%(g + Daz?(z2 — D1 ® voo

a(qz2+1) (4% + 1) (qz2+1) (243 +1)
(22 =)@ = Dup®vor . @+ 1) (24> + 2% — g + 1) vo1 ® vio

V1o ® V1] >

V11 ® voo >

(a2 +1) (Z2¢° + 1) (a2 +1) (22¢* + 1)

(g + DZ2v11 ® vig

)

4@ — Dvig @ vy

g2 +1

)

@l +1)

(@ = 1)(@*2 = Do ® vy ¢(g + Dz = Dvor ® vig

(922 +1) (¢ + 1) (a2 +1) (Zq* +1)
@+ e =Dugeva | @+ (¢’ —2¢* +¢* + v @

V11 @ vo1 >

V1] @ vip >

(q2% +1) (2¢* +1) (g2 +1) (2¢° + 1)

(g + Dvor ® v1y

5

a(z2 — Durr ® vor

g2 +1

5

g2 +1

(g+Dvio®@vir a(z2 — Do ® vio

g2 +1

g2 +1

§'2(z) can be obtained from the above S>!(z) by applying (12.19).

§22(z) depends on z and « only via z? and «

vij ® vij >

2 up to overall a*!. It is given as follows:

vij @i (1, j €{0,1}),

—1 —1
Voo ® Vo1 > —qa voo ® Vo1, Voo ® V1o > —ga Voo @ vio, Vo1 & voo > vl & Voo,

Voo ® V11 >
vo1 ® vig >
Vo1 @ Vi1 >
V10 ® Vo1 >

vio ® vy >

v11 ® vgo >

¥ =D ®vi1 (g% — Dz?v11 ® vo

(g7 = 1)

)

q2z2 -1

(¢> = DZvio®vo1 gz = Dugi ® vi

q2Z2 —1

-1
—qo Vo1 @ vy,

5

qzzz —1

V10 ® voo > av1p ® oo,

(¢> = Duor ®vio (2> = Do ® vo1

qZZZ —1

5

q2z2 —1

-1
—qo Vo @ vir, Vi @ vl > avil ® vor, Vi1 ® vip > avy) @ vio,

2@ — Do ®@vo | (g% — Do ® vy

q222 —1

q2z2 —1
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12.5 Bibliographical Notes and Comments

The content of this chapter, save for Sect. 12.3, is based on [107] where the reduction using the
boundary vectors was introduced with a proof of Proposition 3.28. As for the relevant quantum R
matrices for the spin representations, a description in terms of spectral decomposition was shown
earlier for UP(B,(ll)) and U,,(D,(ll)) in [121]. The eigenvalues in the spectral decomposition for the
U p(D,(lZJ:I) case is available in [107, Eq. (6.15)]. The matrix product form (12.9) provides a most
handy and programmable formula for these R matrices via (12.31). It indicates a recursive structure
of the R matrices with respect to rank n observed in earlier works including [121].
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