Chapter 10 ®)
Connection to PBW Bases of Nilpotent oo
Subalgebra of U,

Abstract For a finite-dimensional simple Lie algebra g, let U, ;f (g) be the positive
part of the quantized universal enveloping algebra U, (g) with respect to the triangu-
lar decomposition. It has the Poincaré—Birkhoff-Witt (PBW) base labeled with the
longest element of the Weyl group W of g. Let A,(g) be the quantized coordinate
ring of g. In this chapter, the intertwiner of the irreducible A, (g) modules labeled
with two different reduced expressions of W is identified with the transition matrix of
the corresponding PBW bases of U ;f (g). It leads to an alternative proof of the tetra-
hedron and 3D reflection equations within U, (;r (g). The boundary vectors in Sects.
3.6.1, 5.8.1 and 8.6.1 give rise to invariants of an anti-algebra involution in U, ; (9)
in an infinite product form.

10.1 Quantized Universal Enveloping Algebra U, (g)

10.1.1 Definition

In this chapter g stands for a finite-dimensional simple Lie algebra. Its simple roots,
simple coroots, fundamental weights are denoted by {«;}icr,{h;}icr, {Di}icr, Where
I is the index set of the Dynkin diagram of g. The weight lattice is P = ®;¢;Zw;
and the Cartan matrix (a;;); jes i given by a;; = (h;, oj) = 2(oy, ;) /(e @;).

The quantized universal enveloping algebra U, (g) is an associative algebra over
Q(q) generated by {e;, f;, kijEl | i € I} satisfying the relations:

kikj = kjki, kik7' =k 'k =1,

-1
—(hi,aj) ki_k,‘
" fis [€i,fj]=5ijm,

kiek ' =q"" e, kifik ' =

1—a;j 1—a;;

Z( Deejel M7 = Z( DO FETTT =0 G # ). (10.)
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Here we use the following notations: ¢; = ¢“*/2_ [m]; = (¢" —q;™)/(qi —q; ")s
(n)! = 10—, Imli, e = e Jn),), £ = f7/[n];!. We normalize the simple roots
so that ¢; = g when «; is a short root. The relation (10.1) is called g-Serre relation.
The algebra U, (g) is a Hopf algebra. For the comultiplication (or coproduct), we

adopt the following':

Ak) =k ®ki, Ae)=e;@1+k®e, Af)=/f k' +18 f.
(10.2)

10.1.2 PBW Basis

Let W be the Weyl group of g. It is generated by simple reflections {s; | i € I}
obeying the relations: 552 =1, (s;s))™ =1 (i # j), where m;; =2,3,4,6 for
(hi,aj)(hj, a;) =0,1,2,3, respectively. Let wy be the longest element of W and
fix a reduced expression wy = s;,5;, - - - §;,. Then every positive root occurs exactly
once in

Bi =i, Bo=si (@), ..., B =sisi, i, (@) (10.3)
Correspondingly, define elements eg, € U,(g) (r =1, ...,[) by
e, =T, Ti,--- T, (e;,). (10.4)

Here T; is the action of the braid group on U, (g). It is an algebra automorphism and
is given on the generators {e;} by

—ajj

Tie) = —kifi. Tiep) =Y (—1Vqlee;e ™™ (i #j). (105
r=0

Let U; (g) be a subalgebra of U, (g) generated by {e; | i € I}. The only relation
among them is the g-Serre relation (10.1) for ¢;’s. It is known that eg, € U;'(g) holds

foranyr. U ; (g) has the PBW basis. It depends on the reduced expression s;, s;, - - - 8,

of wy. Seti = (i, ip, ..., ;) and define for A = (a;, a», ..., q;) € (Zzo)l
E = Vel . el (10.6)

Then {E{* | A € (Z=)'} forms a basis of U, (g). We warn that the notations e;, with
i € I and eg, with a positive root B, should be distinguished properly from the

context. In particular egj’) = (eg)"/T1or_, ’;'"ti::" with p, = g#-#)/2,

! This convention will be kept throughout the book.
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10.2 Quantized Coordinate Ring A, (g)

10.2.1 Definition

Let us give the definition of the quantized coordinate ring A, (g).” The relation to the
concrete realization by generators and relations in earlier chapters will be explained
later.

Let Oin(g) be the category of integrable left U,(g) modules M such that, for
any v € M, there exists / > O satisfying ¢;, - - - ¢;,v = O for any iy, ..., i; € I. Then
Oin(g) is semisimple and any simple object is isomorphic to the irreducible module
V (1) with dominant integral highest weight A. Similarly, we can consider the category
Oin (g°P) of integrable right U, (g) modules M" such that, forany u € M", there exists
[ > 0 satisfying uf;, --- f;, = 0 for any iy, ..., i; € I. The superscript op signifies
“opposite”. Oiy (g°P) is also semisimple and any simple object is isomorphic to the
irreducible module V" (A) with dominant integral highest weight L. Let v, (resp. ;)
be a highest weight vector of V(1) (resp. V" (1)). Then there exists a unique bilinear
form (, )

Vi) @ V(a) — Q(q)

satisfying

(u,\, U)\) =1 and
(ug,v) = (u, gv) forue V'), ve V(h), g € Uy(g).

Let U, (g)* be Homg,) (U, (g), Q(q)) and (, ) be the canonical pairing between
Uy(9)* and U,(g). The comultiplication A of U,(g) induces a multiplication of

U, (g)* by
(p¢', 8) = (@@ ¢, A(g)) forg e U,(g), (10.7)

thereby giving U, (g)* the structure of Q(g)-algebra. It also has a U, (g) bimodule
structure by
(x@y. g) = (p.ygx) forx,y, g e Uyg). (10.8)

We define the subalgebra A, (g) of U, (g)* by
Aq(®) = {p € Ug()"; Uqg(9)9 belongs to Oin(g) and ¢Uy (g) belongs to Oin ()},

and call it the quantized coordinate ring.
The following theorem is the g-analogue of the Peter—Weyl theorem.

2 The definition and Theorem 10.1 are valid for any symmetrizable Kac—Moody algebra.
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Theorem 10.1 As a U,(g) bimodule, A,(g) is isomorphic to D, V' (M) V()
where A runs over all dominant integral weights, by the homomorphisms

U Vi) @ V(L) — Ay(g)

given by
(U (u®v), g) = (u, gv)

forue V'(A),ve V(A),and g € Uq(g).3

In our case of a finite-dimensional simple Lie algebra g, A,(g) turns out to be a
Hopf algebra. See for example [66, Chap. 9]. Its comultiplication is also denoted by
A.

Let R be the universal R matrix for U, (g). For its explicit formula see [29, p. 273]
for example. For our purpose it is enough to know that

Req™ " P WU ® U)-p, (10.9)
peQ*

where ¢™"") is an operator acting on the tenor product v; ® v, of weight vectors
Vs, v, of weight A, by g™ ¥ (v, @ v,) = ¢*M v, @ vy, O = P, Zsow;, and

) ;E)iﬁ is the subspace of U ;E (g) spanned by root vectors corresponding to £8.
Fix A, let {u;} and {v}'} be bases of V" (1) and V (1) such that (u}, v}) = §;;. Set

ol =W @ v}) € Ay(g). (10.10)

Let R be the so-called constant R matrix for V(1) ® V(). Denoting the homo-
morphism U, (g) — End(V (X)) by p,, itis given as

R o< (pr ® pp) (PR), (10.11)
where P stands for the exchange of the first and second components. The scalar
multiple is determined appropriately depending on g. The reason we apply P is to
fit the so-called RT T relation in (10.15). The dependence of R on X and p has been

suppressed in the notation. R satisfies

RA(g) = A(g)R  forany g € U,(g), (10.12)
where A°® = P o A o P. Define matrix elements R,?I by

R; @ v}) =Y Rgv} @ v, (10.13)

iJ

3 Of course this W;_ has nothing to do with the intertwiners in (5.33), (6.22) and (7.5).
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Define the right action of R on V" (1) ® V" (1) in such a way that ((u} ® u)R, v} ®
v = e u'f, R(v} ® v/")) holds. Then we have

W @uHR =Y Rju} ®ul". (10.14)

Now for any x € U,(g), we have

Z Rmp (pmk(ppl’ Z R (pmk ® (ppl’ A(x»

m,p m,p

=Y R (W (u}, ® v}) @ W, (uk @ v]"), Ax))
m,p

= Z R (u), @ uk, A (v ® v])) = ((u} @ )R, A(x)(v ® v]"))

= (ui ® uj, RA(X) (v @ vi') = (ul ® u’;, A®P(X)R(v} @ v)"))
=Y W @u, AP @ VIR =D W @ ul, AX)(Wh @ v)) R

m,p m,p
=D (), ® 0l AR =} (4], 01, VIR
m,p m,p
Thus we get
Z R oo =D oh ol R € Ay(g). (10.15)
m,p

We call such a relation an RT T relation. It forms a large family containing conven-
tional ones as the special case where A = = @, for some specific fundamental
weight @, .

Example 10.2 Consider the simplest case g = A; with A = u = @w;. We write

u”', v”" simply as u;, v; (i = 1, 2). The U, (sl,) module structure is

i Vi

fivi=v, fiv, =0, ejv; =0, ejvy = vy, kjv; = qui, kv, =g ‘v,
(10.16)

urfi =0, usfi = uy, urey = us, uze; =0, uky = quy, urky = q 'us.
(10.17)

The R matrix (3.3) acts as
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Rwi®uv)=qu®v;, RUI®u)=v®v+(@—g Hva®v;, (10.18)

R, ®v) =100, R Q) =quvQ v, (10.19)

i ®u)R=qui ®u;, WuNR=u@ui+(q—q Hui @us,
(10.20)

(U1 @ u2)R = u1 Q@ uy, (U @ ur)R = quy Q uy. (10.21)

Sett;; =W, (u; ® vj) € A;(Ar). Then we have

(tita, x) = (W, (U1 @ v1) @ Wy, (2 @ 12), A(X)) = (U1 @ uz, A(x)(v) ® v2))
= (1 @u2)R, A(x)(v1 ® v2)) = (U1 ® uz, AP(x)R(v1 ® v2))
= () @ uz, AP(X) (V1 ® 2+ (¢ — g~ Hv2 @ vy))
=W Qui, AW @ v+ (¢ —q v @ 1))
= (Vo2 @ 12) @ W, (U1 ® v1)
(G = ¢ )W, (2 ® v1) ® Wy, (1) ® 1), Ax))
= (@t + (g —q i @ 112, A(x))
= (ot + (g — g Diatia, x),

which reproduces the relation [, ©2] = (¢ — g Dtyt12in (3.9). Similarly, we have

(i1t — qtintar, x) = (t11 @ trn — qt12 @ ta1, A(x))
= (u1 @ uaz, A(x) (v ® v12)) — q(u1 Q uz, A(x)(v2 ® vy))
= (u1 Q@ uz, A(x)(v1 @ V2 — g2 @ v1)).

Suppose x = ek fI' € Uy(slh) (I, m, n € Zo) without loss of generality. Since
v? =1 @ vy — qvy @ vyisa U, (sly)-singlet annihilated either by A(ey) and A(f),
one has A(x)v? = 5108,,011‘1). Thus the RHS of the above calculation is equal to
8106011 ® us, v(l)) = 8106n0 = (1, x). This yields t11t0 — gti12t1 = 11in (3.9).

Let us mention the relation to the formulation of A, (g) in earlier chapters using
specific generators and relations. Suppose @ is a fundamental weight such that any
V()) is included in the tensor power V (z;)®" for some m.* Denoting the base of
V(@) and V (w;) by u; and v;, set

tij = W, (u; @ vj) € Ag(9). (10.22)

4 For example, in type B, it is the spin representation that qualifies this postulate rather than the
vector representation. For type D, the argument in the text needs a slight modification since the
two kinds of spin representations V (z,—1) and V (@) are necessary, but it does not influence the
results in the chapter.
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We know that f;; satisfies the RTT relation (10.15) whose structure con-
stant is the constant R matrix for A = pu = @w;. Any vectors u € V(1) and
..... Ui & -+ ® ujy, and
v=73 Dj vy ®: - ®uvj,. Theorem 10.1 shows that an arbitrary element of
A, (g) is constructed as W, (# ® v). A calculation similar to Example 10.2 leads
to V,(u®v)=> C; Dj .. i.tij -t ;.. which says that #;;’s are certainly
generators. They satisfy RT'T and additional relations reflecting a fine structure
of the Grothendieck ring of g like V (zw;)®" D V(0) and V (=))®" D V (w), etc.
Our individual treatment in the earlier chapters corresponds to the choice / = 1 for
A,_1,C,, Gyand ! = n for B,

..... im

10.2.2 Right Quotient Ring A4(9)s

Here we prepare the necessary ingredients for the proof of Theorem 10.6. The point
is to assure the well definedness of the division in (10.39).

Recall that wy € W is the longest element of the Weyl group. For any [ € I, let
Uyem, € V(1) be a lowest weight vector. Similarly, let u,, € V" (z;) be a highest
weight vector. The following element will play a key role:

01 = Vo, (U, ® Vi) € Ay(9). (10.23)

Example 10.3 For g = A, treated in Example 10.2, one has o1 = ¥, (1 ® v2) =
tp.

Proposition 10.4 The commutativity o,04 = 050, holds forany r,s € I.

Proof From (10.9) and (10.11) we have

(e, @ Up )R = ¢ty @ U1y, (10.24)

RWuym, ® Vuyw,) = 47 Vi, ® Vi, (10.25)

where (wy@,, wow,) = (@,, @y) has been used. Consider the RT T relation (10.15)
with A = @,, u = @y, and take the indices i, j, k, [ so as to specify the following
bases:

A mo_ A no_
Up =Ug,, U; =Up, Vi =Vum, U = Vum,- (10.26)

Then (10.24) and (10.25) indicate R}, = g™ ™8 80 and R = q ™8]
Thus the RT T relation (10.15) reduces to

PO =0 e (10.27)

5 As for Fy we did not present specific generators and relations.
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The proof is finished by noting ¢;;" = o, and gpﬁs = o, by comparing (10.10) and
(10.23). ]

Since A, (g) is aright U, (g) module, we have an element o;¢; € A, (g). Later in
Sect. 10.3.2, we will need the division (o;¢;)/0o; fori € I.The following localization
is known to be possible making sense of it.

Theorem 10.5 Let n be the rank of g. For the multiplicatively closed subset S =

m

{oy "' o) | my,...,m, € Zso} C Ay(g), the right quotient ring A,(g)s exists.

Elements of A,(g)s are expressed in the form /s with r € A,(g) and s € S. The-
orem 10.5 guarantees the well-defined ring structure, namely, the addition and the
multiplication of r; /s; and r»/s, in A4(g)s as

ri/si+ra/sy = (ru+ru)/(siw),  (ri/s)(r2/s2) = (riv')/(s2v),  (10.28)
where u, u’, v, v" are so chosen that sju = s,u’ (u € S, u’ € A,(g)), v =51V (v €

S, v € A,(9)).

10.3 Main Theorem

In this section we fix two reduced words i = (i1, ..., %), j= (ji, ..., ji) of the
longest element wy = s;, ---5;, =5, ---5; € W.

10.3.1 Definitions of yl_{? and <I>g

In the U, (g) side, we defined the PBW bases E{*, E® of U (g) in Sect. 10.1.2. We
define their transition coefficient y; by

EiA = ZV?EJB-
B

Inthe A, (g) side, we have the intertwiner @ : ¥, ® --- Q@ Fy, — Fy, ® - Q@ Fy,
satisfying
mi(g)o® =Dom(g) (Vg€ Ay g)). (10.29)

We take the parameters p; as in (3.21) and (5.19) to be 1. The intertwiner & is nor-

malized by ®(]0) ® --- ® [0)) = ]0) ® - - - ® |0). Under these conditions a matrix
element ®% of @ is uniquely specified by

®|B) =) ®}3lA),
A
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where A = (a1,...,a) € (Z=0)" and |A) =la)) ® - ®la) € Fy, @ -+ @ F,
and similarly for |B) € ¥y, ® --- ® ¥, . The main result of this chapter is
Theorem 10.6

Vs = 3.

For any pair (i, j), from i one can reach j by applying Coxeter relations (for indices
of the simple reflections). In view of the uniqueness of y and ® and the fact that the
braid group action 7; is an algebra homomorphism, the proof of this theorem reduces
to establishing the same equality for the rank 2 case g = A,, C, and G,.° This will
be done in the sequel.

10.3.2 Proof of Theorem 10.6 for Rank 2 Cases

In the rank 2 cases, there are two reduced expressions s;, - - - s;, for the longest element
of the Weyl group. Denote the associated sequences i = (i1, ..., ;) by 1,2 and set
1’ = 2,2’ = 1. Concretely, we take them as

Ay 1=(1,2,1), 2=(2,1,2), (a1, 92) = (4, 9),
(10.30)

Cr:1=(1,2,1,2), 2=(2,1,2,1), (q1,q2) = (¢, 9%,
(10.31)

Gy:1=(1,2,1,2,1,2), 2=12,1,2,1,2,1),  (q1.92) = (q.9"),
(10.32)

where ¢g; defined after (10.1) is also recalled. In order to simplify the formulas in
Sect. 10.4, we use the PBW bases and the Fock states in yet another normalization
as follows:

E} = (lan]y)! - [l DE! = €f) el (10.33)
|A) i=diy gy - - dip Ay dia =g TR, =1 —g)7, (1034)

where A = (ay, ..., a;). See after (10.1) for the symbol [a];!. The root vector eg_is
defined in (10.4). Accordingly, we introduce the matrix elements 7 and &Dg by

Ef =) "FiES. ®B) =) dhlA), (i=12) (10.35)
B A

It follows that y2 = 7 [Ti_, ([bx)i,!/[ax)i,) and @4 = A TTi_, (diy.a /diy.1,) for
B = (b1, ..., b).Onthe other hand, we know &4 = <D§ H2=1((Qi)bk/(‘1i)ak) from

6 The B, case reduces to C, by the interchange of indices 1 <> 2 € I.
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(3.63), (5.75) and (8.30). Due to the identity (qiz)mdi,m = [m];!, the assertion yg‘ =
@4 of Theorem 10.6 is equivalent to

7 = 0B, (10.36)

Let pj(x) = (pi(x)4p) be the matrix for the left multiplication of x € U q+ ():
x Bt =Y "EPpi(x)a. (10.37)
B

Let further 7;(g) = (7i(g) ap) be the representation matrix of g € A, (g):

mi()A) =Y |B)mi(g)pa- (10.38)
B

The following element in the right quotient ring A, (g)s (see Theorem 10.5) will
play a key role in our proof:

& = ri(oie))/o; (i =1,2). (10.39)

We recall that the general definition of o; is (10.23). Its concrete form in the rank 2
case will be given in Lemmas 10.10, 10.12 and 10.14. In Sect. 10.4 we will check
the following statement case by case. It says that the “conjugation” of ¢; by o; on
A, (g) modules (o;e;)/0; corresponds to (1 — qiz)ei in U; (9).

Proposition 10.7 For g of rank 2, wi(o;) is invertible and the following equality is
valid:

pile)ap =mi)ap (G =1,2), (10.40)
where the RHS means \;mi(o;e;)mi(0;) "

Proof of Theorem 10.6 for rank 2 case. We write both sides of (10.40) as M ﬁ, g and
the term for i’ instead of i as M} ;. From

D EiMigyy = ey Elvi =eEl =) ElMy, =) Efvi My,
B,C B B B,C

wehave Y, Mipyi = p vE ML ,. On the other hand, the actions of the two sides
of (10.29) with g = §&; and j = i’ are calculated as

Ty (E) 0 A = 1y (&) Y [B)DE = [CYM, b
B

B,C

and
Dom(E)A) =D Y |[BYMj, = Y [CHPGM},.
B B,C
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Hence Y, M, ®8 =5, ®GME,. Thus 77 and @5 satisfy the same relation.
Moreover, the maps m; and p; are both homomorphisms, i.e. mi(gh) = mi(g)mi(h)
and pi(xy) = pi(x)0i(y). We know that ® is the intertwiner of the irreducible A, (g)
modules and (10.36) obviously holds as 1 =1 at A= B = (0,...,0). Thus it is
valid for arbitrary A and B. (]

Remark 10.8 The equality (10.40) is valid for any g.

10.4 Proof of Proposition 10.7

Here we present the explicit formulas of (10.37) with x = ¢; and (10.38) with g =
o;, 0;e; that allow one to check Proposition 10.7. In each case, there are two i-
sequences, 1 and 2 = 1’ corresponding to the two reduced words. Define

x = the anti-algebra involution of UqJr (g) such that x (¢;) = e;. (10.41)
Then both E;* in (10.6) and E;* in (10.33) satisfy
X(EN=E},  x(EM=E", (10.42)

where AY = (ay, ..., a2, a;) denotes the reversal of A = (a1, as, ..., a;). Apply-
ing x to (10.37) with x = ¢; yields the right multiplication formula E{,‘v cep =
> Ei‘?v pi(e;)pa for the i’-sequence. In view of this fact, we shall present the left
and right multiplication formulas for i = 2 only.

As for (10.38) with g = &; in (10.39), explicit formulas for o;, o;¢; € A,(g) and
their image by both representations 71y and 7, will be given. We include an exposition
on how to use these data to check (10.40) along the simplest A, case. The C, and
G, cases are similar.

Following (10.34), we write |m})) := d; ,,|m) € ¥, for each component. From the
choice (10.30)—(10.32), the action of the g;-oscillator on F, (i = 1, 2) takes the form

atlm) =27 gl lm + 1), a~|m) = [mlilm — 1), kim) = g{"Im),

.\ 2 B (10.43)
AT m) =1, qy'lm+ 1), A7 |m) =[ml|m — 1), K|m) = gy'Im)).

See (10.34) and (3.13). We also use the shorthand

(m)y=¢q™ —q™". (10.44)
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10.4.1 Explicit Formulas for A;
Consider g = A,.

b by

b3

The g-Serre relations are

6%62 — [2]ie1e2e1 + 626‘% =0, e%el — [2]ie2e162 + eleg =0, (10.45)

where [m]; = (m)/(1). For simplicity we write the positive root vectors eg, in (10.4)
with (i1, i, i3) = 2 (10.30) as

b1 = ép, = €3, bz =ép, = €163 —(geyey, b3 =ép;, = €. (1046)

The corresponding positive roots are (81, 82, 83) = («2, &1 + a2, ). In particular,
by = T»(ey). Their commutation relations are

byby = q~'biby, bsby = by + qbibs, b3by = g 'bab;. (10.47)

Lemma 10.9 For Eg’b‘c = bi‘bé’bg, we have

b,c o) = Eg.b,c-‘rl

)

,b,c c—b a+1,b,c ~a,b+1,c—1
cer=q" ' E, + [ch E, ,

ra,b,c —b a,b,c+1 ~a—1,b+1,c
er- Ey7" =q“E, +[a] E; ,

a

2

Proof By induction, we have

b3b = q"bbs 4 [n]1b] by, b3k = g "bbs,
biby = q"bib} + [nlibaby~", biby = g "bib5.

The lemma is a direct consequence of these formulas. (]

Set E{PC = x(ESP) = x (0D x (00) x (bS) = b3bPbS, where bl := x(by) =
eye1 — geyep. By applying x to the first two relations in Lemma 10.9, we get

e - Eit,b,c — Eiﬂrl,b,c’ e - szll,b,c — qabeit,b,cH + [a]lE”vilfl.bJrl,c. (1048)
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Thus we find py (e;) = pj(es—;). This property is only valid for A, and not in C, and
G,.
Let u; (i = 1,2, 3) be the bases of the right U,(A>) module V" () such that
uj =uer---ej_ie;. Similarly, let v; (i =1, 2, 3) be the bases of the left U, (A>)

module V() such thatv; = f; fj_1--- fivi.

ky ko V' (w1) V(w1)
q 1 Ui V]
1 e fid
g q Uy v
e fal
1 q’1 us U3

The left two columns specify the weights for example as urk; = g~ 'u,, kjv; = quv;.

For the coproduct (10.2), the bases of V" (@) and V () are similarly given as

k1 ka V' (w2) V(w2)

1 q Uy @ uz — qus Q uy v ® v — qu2 @ vy
e 2

q g U Quz —quz u; VI ® V3 —qu3 @ Vg
e Nl

g 1 U @ uz — quz Q@ up vy ® VU3 —qu3 Q@ 1y

Here g = k;, ¢;, f; are to be understood as A(g) in (10.2).
Following (10.22) with [ = 1 we set

lij = Vo, (i @ ;) (10.49)

for 1 <i, j < 3. They satisfy the relations (3.5) and (3.2) of the earlier definition of
A, (A2). The formula (10.23) reads

o1 = Vg, (1) ® v3), (10.50)
1

= qzwm((ul ®Quy—qua ®u) ® (1 ®v3 —qus @), (10.51)

o2

where (1 + qz)’1 is the normalization factor.” Thus we see o = ;3. On the other
hand, from

7 The normalization of o; actually does not matter since only o;e; /o; will be used.
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1 ®ur —qua Qui, Ax)(v2 @ v3 — qu3 ® 12))

<027x>_ 1+q2
(1) ® 13 — 113 ® 1y — i @ 113 + G713 @ 12, A(X))
1 +¢q?
tiats — qtistn — qints + ¢ tst,
_ {tohs — qtistn — qintis + 4" st X) (Vx € Uy (Ar)),
1442

we find o, = (1 + C]Z)_l(l‘121‘23 — qtizty — qint;z + q21‘23t12).8 Using the relations
[ti2, 3] = (q — qil)tzgtlg, and [fy;, t;3] = 0 from (3.5), this is 51mphﬁed into o, =
tiatys — qtpti3, which is the (3, 1)-quantum minor of () 1<, j<3.

Let us turn to o;e;. First we note

(tijkr, x) = (ike, xv;) = @ 7%+ (g, xvj) = g% 7% (g, ), (10.52)
(tijer, x) = (uiey, xvj) = 8ir Uiy1, Xv;) = 8ip (tiy1,j, X). (10.53)

They imply
titky = @ 7 by = Sitign (10.54)

Using this and the coproduct A in (10.2), we see

(o1e1, x) = (tizer, x) = (t3, x),

(
(1 ® 13 — gt @ 113) Alez), A(x))
(
{

(o2e2, X)

tioky ® tzey — qtyper ® ti3, Ax))
= ({112 ® 133 — q132 ® 113, A(x)) = (t12l33 — qt32113, X).

In these calculations, one should distinctively recognize that #;3e; for instance is
an action of e; € U,;(A3) on t3 € A, (A;) viewed as an element of a right U, (A>)
module, whereas #1133 is just a multiplication within A, (A;). To summarize, we
have shown:

Lemma 10.10 For A,(A), the following relations are valid:
o1 =13, 02 =Iphs —qinhs, o1l =hs, 0 = otz —qtnhs. (10.55)
From (3.35) and Lemma 10.10, we find
mi(o1) =kiky, mi(oje)) =aky, mi(0n) =koks, m(o2er) = aj ajks +kjaf,

where a notation like kjaj =k ® 1 ® a™ has been used. Since k € End(¥F,) is
invertible, so is mj(o;) and we may write

8 The calculation is displayed to illustrate how this could be concluded directly from (10.51) and
the definition (10.23).
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mE) = malky!, m&) =@rak ' +kik; alky ),
where Ay = A, = (1 — qz)’l. Thus (10.43) leads to

ﬂ1($1)|a,b, C» = |a+1,b,c)), (1056)
mE)la, b, c) =[alila—1,b+1,¢) +q°la, b, c+1). (10.57)

These formulas agree with (10.48) proving (10.40) fori = 1. The other casei = 2 also
holds due to the symmetry 7 (&;) = m1(&3—;). Thus Proposition 10.7 is established
for A,.

In terms of the 3DR in Chap. 3, Theorem 10.6 implies

E{" = 3" Rib EpO (10.58)

1 T
i,jk

This is valid either for (i,i’) = (1, 2) or (2, 1) thanks to (3.62). The weight conser-
vation (3.48) assures the equality of weights of the two sides.

10.4.2 Explicit Formulas for C;

Consider g = C».
by by b3

by

The g-Serre relations are

e?ez — [3]lefeze1 + [3]161626f - 626? =0, (10.59)
el — [2hererer + ere; =0, |

where [m]; = (m)/(1) and [m], = (2m)/(2). For simplicity we write the positive
root vectors eg, in (10.4) with (i1, ..., i) = 2 (10.31) as

2
by =ep =ey, by=ep =ejer—q-ere,

1 (10.60)
b3=6‘/33 Zﬁ(ele_bZKI)’ b4=€ﬂ4 =e].

Their commutation relations are
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byby = q7*by by,

bsby = by + q2b1b4,
byby = [211b3 + babs, bsbs = g 2b3by.

Lemma 10.11 For E{"“¢ = bib5bsbe, we have

ra,b,c.d
E2 el =

Ea,b,c,d .

2 € =

r~a.b,c,d+1
EZ

’

[d]lqd—ZC—IEg,bJrl,c,d—l +q2(d—b)£~;z+l,b,c,d

10  Connection to PBW Bases of Nilpotent Subalgebra of U,

bsby = —q~(1)[2];'b3 + by b3, (10.61)

b3by = q~*bybs,

(10.62)
(10.63)

_ (1)q2d—2c+1 [0]2[2]171531,b+2,6—1,d + [d _ l]l[d]lég,h,(ﬂ-l,d—z’

Proof By induction, we have

by} = bibsg™ + [n]2b}~", by,

bub"
byb.
blb,

bib,

The lemma is a direct consequence of these formulas.

= [21i[n]1b5 " b3g ™" + biby,

= q*2”b§'b4,

= [n]ibab} ' "+ bybig™" + [n — 114 [n]ibsb} 2,
biby = —q' () [nh[2]] 6305 + byibh,

biby = g~ "byb},

=q *"bib}.

,b,c,d — [2]1[b]quaberlEvg,b—l,c-H,d + q2a72cE-z21,b,c,d+l + [a]zE"vg—l.b+l,c,d’

_ pa+lb.cd
= E¢ .

O

Set E f’h’c’d =y (Eg ¢:0:4) The left multiplication formula for this basis is deduced
from the above lemma by applying x.
Let u; and v; i =1,2,3,4) be bases of V" (w;) and V(w) such that u; =

uey---ej_1ejand v; = f; fi_1--- fivi, where e3 = ey, f3 = fi just temporarily.
ky ko V(1) V(@)
q 1 U U1
| e fil
g q uz V2
e 2l
q q! us v3
le fid
g 1 g V4



10.4 Proof of Proposition 10.7 163

The left two columns specify the weights as in the A, case. For the coproduct (10.2),
the bases of V() and V' (@) are similarly given as

ki ko V(@) V(@)

1 q U @ uy — qua ® uj V1 QU2 — qU2 ® v
le 2y

q2 q’l U @ us — qusz Q@ u V1 @ U3 —qu3 Qg
1 e Sid

| | Uy @ Uz +quy Uy vy ® U3+ qU Q@ vy

—qus @ uy — q°u3z @ us —qus ® V1 — %3 ® vy

e Sid

g7’ q Uy Q@ uqg — qus Q Uy V2 @ Vs —qus @ vy
le 2l

1 g U3 @ us — qus ® u3 V3 ® Vs — qUs @ V3

Arrows here indicate the images only up to overall normalization.

We adopt the definition of #;; in (10.22) with [ =1 for 1 < i, j < 4. Then #;;’s
satisfy the relations (5.1), (5.2) of the earlier definition of A,(C,). The formula
(10.23) reads as

01 = \ijl (ul ® U4)3 (10.64)

1
=173 = W, (1 @ uz — quz @ u1) @ (V3 @ v4 — qua ® v3)).  (10.65)

By a calculation similar to A, (A») using the commutation relations
(124, 113] = (¢ — g Distia, [t 23] =0, (10.66)

we get:

Lemma 10.12 For A,(C»), the following relations are valid:
01 =hy4, 02 =1li3ty —qhatis, O1€] =ltu, 02e) =13t —qtz3tis. (10.67)

Images of the generators #;; by the representations 7y and 775 in (10.31) are avail-
ablein Sect. 5.4 asmy (t;;) = P1aPr3m2121(A(ti;)) Pia Py3 and 2 (1)) = w2121 (A (%)),
where the conjugation by Pj4 P»3 reverses the order of the four-fold tensor product.
See (5.39) and (5.40). From (5.37), the relations (5.41)—(5.56) are displaying the con-
crete form of m(1;;) K = K (P14 P23y (t;j) P14 P23). For convenience, we pick those
generators appearing in Lemma 10.12:
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m(13) = a] k3K, + kjAS af Ky + ki Kpag A,
71(f14) = —k1Kzks,

m(t23) = af A; af Ky + a Kpay AL — gk k3Ky,
m1(f24) = —a?Lsz3,

m1(33) = a; AT ay A} — ¢%a; Koad Ky — gkiksA],
m1(t34) = —a] AT k3 —kjaf,

m(113) = koKsa,,

m2(t14) = —kaK3ky,

ma(t23) = AT aj Kzay +Kjay ATa; — gKikoky,
ma(t2s) = —A] ay Ksks — Kja; AT ks — Kikoay
ma(133) = A a; ATa), — gATkoky — ¢°Kjaf Ksay
ma(t34) = —ATa;A}'k;; - Afrkgaj + q2K1a3K3k4.

From this and Lemma 10.12 we get

m1(o1) = —kiKsks,
mi(o1e1) = —a; Koks,
m1(02) = —Koky?Ky,

(10.68)
(10.69)
(10.70)
(10.71)
(10.72)
(10.73)
(10.74)
(10.75)
(10.76)
(10.77)
(10.78)
(10.79)

_2 _ _ 2
m1(02e2) = —a; "ATks’Ky — [2]1a7 kjaf ks Ky — ki?As al Ky — ATk ’Ky,

A& =afk

— _2 _ _ _ 2y — _ _ _
A 'mE) =a ATK T + K PASK 'al KT+ [2]ha ki Ky tadks !

+ki’ks PATK,
m(01) = —koKsky,
m(o1ey) = —1(11(234+ — Klaz’A;k4 - Afa;K3k4,
(o) = —K|K3Ks,
ma(02e2) = —AT k2K,
-1  A—atp—l =1 A+10-1 1 4y
AL mE) =ATa k, +Kia ki ATKS + KK agk)
M (&) = ATK,

Note that ;(0;) is invertible. Comparing these formulas with Lemma 10.11 by using
(10.43), the equality (10.40) is directly checked. Thus Proposition 10.7 is established

for Cs.
In terms of the 3D K in Chap. 5, Theorem 10.6 implies

a,b,c,d __ abed k. ji
E, = § : Ko Ev7 .
i,j.k,l

(10.80)

The weight conservation (5.65) assures the equality of weights of the two sides.
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10.4.3 Explicit Formulas for G,

Consider g = G».

by by by bs

be

The g-Serre relations are

eler — [4liejerer + [411[311/12]; 'eteret — [4]1e1eze] + eref = 0,

2

2 (10.81)
eye; — [2]rexe1ep +e1e5 =0,

where [m]; = (m)/(1) and [m], = (3m)/(3). For simplicity we write the positive
root vectors eg, in (10.4) with (i1, ..., ig) =2 (10.32) as

3
by =ep = e, by =ep =erer—q ere,

1 1 |
b4 == ﬁ(ele N qbzel)’ bS =eép, = ﬁ(elbél —q b4el)v (1082)
1
by = ep, = ——(bsby — q " 'byby), b = ep, = ey.
(31
Their commutation relations are
byby = bibag ™, biby = (1’3 Bl +bibsg™,  (10.83)
bibi = biba —b3(1)g ™", (10.84)
bsbi = bibsq® — babs(1)g ™" — (¢* +q* — Dbsg ™, (10.85)
bgby = b]b6q3 + by, biby = b2b3q_3, (10.86)
baby =babsq ™' +b[31i, bsby = babs — bi(l)g ", (10.87)
beba = qbabs + bal2]1, babs = bsbsq ™, (10.88)
bsbs = (1)°b3q 1317 + babsq ™. (10.89)
bebs = b3bg — bi(])q_l’ bsby = b4b5q_3, (1090)

bebs = [311bs + babeq ™", bebs = bsbeq . (10.91)
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Lemma 10.13 For E57"7 = bibbbsbdbeb/, we have
b,cde, f ey = Ea,b,c,d,E,erl

—3c—d+3f—1 ra,b+1,c,d+1l,e—1,f
)[elog 43/ E;

+

)
1> [e _ 1]2[6]2[3]7141_3e+3f'+3Ea’b’c’d+3’e_2~f
3>[d _ 1]1[d] q—% 2d+3e+3)‘+1Ea b+l c+1,d—2e, f
)

Ddlig —6c— d+'5(e+f)Eub+2Ld Le, f

f _ 1]1[f]1q73e+f72E;1,b,c,d+1,e,f 2

—{
(
—
—(
[
BN f11g> 2 Eobetid-les =1
[f11ged+2 =2 fobtledes-1

+
+
+
+q—3(b+c e— f)Ea-H Jb.ede, f
+

*[cl[3]} Ly 2‘+f+f+l)Ea b+3.c—lde, f

)?
3)[d —21i[d — 1[d1ig>~ d+e+f+2)Ea b,c+2,d=3e, f
1)[£]2[f] 36+2fE§,b,c,d+2,e 1,f-1

]

ehg T (@ B) — 2 Ey T

+[f —2hlf — 1]l[f]1E-;l,b,c,d,e+l,f73.

5 ' - Fa,b,c—1,d+2
e - E;,b,c,d,e,f - _ <1>[C]2q3a+h 3C+2E;1, ,c—=1,d+2.e, f

(
—
—{
-1
[

+ 3116 — ]]1[b]1q3a—b+2E;,b—2,c+l,d,e,f
+ BL[d] gt gphedmlerty
3a+b—d—3e ~a.,b,c.de, f+1
+q a-+ eEtzl c,d,e
+ 2] [b]1q3(a*C)Ea,b71,c,d+l,e,f
[a]zEa 1b+lcdef

~ab.cde f _ patlbede,f
ey - E2 = E2 .

Proof By induction, we have

bsb} = q”"bibs + [nlbi ' by,

bebs = [311g> " [n — 1ilnlibs b3 + q"b3be + (21 [n]1 b3~ b,
bab = q~"bbs,

bebs = bibs — (1)g* " [n]obs ™ baba,

beb} = [311¢* " [n11b} " bs + q " b} b,

bebs = q " blbs,
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and

beby = q"*[n — 111 [n]1b4b > + ¢*"b1 b,
+ > Vnlibob " 4 [n — 20i[n — 11 [n]1bsby .

biby = (1)2q 7"V n = 1anhl317 ' 6362 + g™ bib}
—q7(q" +q” — DInhbsby ™" — g7 (1) nlabybsbl ™,

Dby = baby — (1)g* ¥ [nlabababy ™",

biby = q"bybt,

biby = —(3)g° " [n — 21i[n — 11[n)ib3b; > — (1)g "[n]1b3b} "
— (3)g" " [n — 111[n)1bobs3b > + by b,

biby = [311¢* " [nlibsb} " + q " byb},

biby = g "bsbl,

biby = q "bib + (1)2q° " [ [3]; '3k

biby = g " bybh,

biby = g b\ b5,

The lemma is a direct consequence of these formulas. ([

Letv; (i = 1,...,7) be the basis of V (zw;) for which the representation matrix is
given by (8.79)—(8.81). Its highest and lowest weight vectors are v; and v7, respec-
tively. Let u; € V' () be the dual base of v;.

The representation V (w») is the adjoint representation with dimension 14. Its
lowest weight vector is vfr) in (8.84), which is vg ® v; — qv7 ® vg in the notation
here. The highest weight vector of V" (@) is u; ® up — quy ® u;. From these facts

we have
o1 = Vg, (u1 ® v7), (10.92)

1
02 = m\ywz((lh ®uy —quz @uy) Q (V6 ® v7 — qu7 ® vﬁ))' (10.93)

We define #;; by the formula (10.22) with [ =1 for 1 < i, j < 7. They satisfy the
relations (8.3) and (8.4) of the earlier definition of A,(G,). By a calculation similar
to A, (Az) using the commutation relations

[ti6, 7] = (¢ — ¢ Mgz, [t17, 1] = O, (10.94)

we get’

9 &y and ope; in [102, Eq. (42)] are (—¢q) times those in Lemma 10.14.
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Lemma 10.14 For A,(G»), the following relations are valid:
o1 = t17, 02 = tigly; — qlatis, O1€1 = ty7, O2ey = tigts7 — qtaetr7.  (10.95)

Images of the generators #;; by the representations 7y and 773 in (10.31) are avail-
able from (8.11) and (8.12). For convenience, we present explicit formulas for those
appearing in Lemma 10.14:

m(tie) = a; ksKakZKg + k1A, af Kuk2Ks + k1 Koa3 2 A k2K
+ [211ki Koa; ksad ksKe + ki Kok3A; al ’Ko + ki Kok3Kasas Af,
mi(t7) = kiKok3Kyks,
m1(t27) = af TKok3Kyks,
m1(t36) = a; AT a;y *A KK + [2]131_2A+a3 kialksKq +a; 2 ATk3A; ai*Ks
+a’ATK3Ksa; Al — ¢’a; " Koa] KukZK + [2]1a; kiad ksKs
— [2hia; kia; ksAT k2K + [2]1a; kiag ksA; ad°Ke + [2]1a; kia] ksKaag A
—g[213ar kik3adksKe + kIAS af AL al Ko + kIAS af *Kaas AS
— ¢*[211k]A; aT ksal ksKe + ¢°k]A; kIATKkZIKe + kiKoa; Afas AS
— ¢’k{Kra; Kyad ?Ko — gk{KoksksA [,
m(t37) = a; *AS K3Kaks + [2]1a; kia] ksKaks + kiA; a] *Kuaks
+kiK>a; Afks + kiKoksad,
ma(tie) = k2K3k42;K536_,
m2(t17) = ko KskiKske,
m(t27) = AT a KskiKske + Kia; AT kI Ksks + [2]1K a5 koa) kiKsks
+ Klsz’aj{zK;;kﬁ + K k3Ksa; ATk + Kik3Ksksa,
m(t36) = A a; ATk Ksag + [2]1A] a; koa] kuKsag + AT K3A; af “Ksag
+At k2K3a4 Atag — gATKIKskiks — ¢°Kiaf Ksk}Ksag
m(t37) = A a2 ATk Ksks + [211A] a5 koa) keKsks + ATkIA7 a2 Kske
+ATkIKsa; ATke + ATkIKskial — ¢°Kja) KskiKsks.

From this and Lemma 10.14 we get
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m1(01) = ki K k3K ks,
(o) = KKK kK,
mi(orer) = af KokIKyks,
m(me) = KKIKGKAL + [21k1A; K AT Kk K + 2, AT KK kK
+ [311a; ’k1a KK kK, + [3]1a; kKIKo Kk K,al k2K
— qBLK A K KATK KK + [3]1 ki KZa; kZal ksKs
+ KK3kIA; al K + [311a; kA a7 k; Kk K
+ [3Lia; ki Kaas ks AT KikiKs + kA *al K kIK
+ [311ik}A; Koal ks Kyal k2K + kiK3a; " A kK
+ [311k;K2a; *k; A al k2K,
MlmE) =afky
M'mE) =alATK ! + 2LKASKATK ! — g3k A K TATK!
+ [3]1a; 2k K;'alk;' +[3]ia; k2 —2A+K—
+ [3]1a;k%k;‘K;1a5+k;1 + kazK;kaAgKgl
+ Bha KA K 'a?ks 2 + [3]1kiAS afk; °K; fal ks !
+ KA K 'l ks + 311k Kqas ks 'K, 2ad ks
+ K KA K %l ks ? + kiKoa; 'k "A K2
+ [311kiKoa; °k; *AT K 2al ks |,

m2(01) = ko KskiKske,
7T2(02) = K]k%K%kiKs,
7T2(01€1) = Klk K3k436+ +A733K3k2K5k6 + K k Kga;A k6
+ K132 2A+k2K5k6 + [2]1K132 kzajk4K5k6 + K]sz a4 K5k6,
m(omer) = A k3K?k3K5,
A &) = Al—a;k;‘ +[211Ka,K; 'a k '+ Kia;’k; 'ATKS
+ Kikoa, k; ATKS! + K| k2k K latk;! + K kAT K; a7k, 2,
A 'ma&) = ATK

Note that ; (0;) is invertible. Comparing these formulas with Lemma 10.13 by using
(10.43), the equality (10.40) is directly checked. Thus Proposition 10.7 is established
for G»,.

In terms of the intertwiner F' in Chap. 8, Theorem 10.6 implies

b,c,d bed, 1,k
a c, ef Z Fljk;milf En m, jl (1096)

i,j,k,l,m,n

The weight conservation (8.29) assures the equality of weights of the two sides.
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10.5 Tetrahedron and 3D Reflection Equations from PBW
Bases

The relation (10.58) serves as an auxiliary linear system by which the tetrahedron

equation (2.6) is established as the non-linear consistency condition. To see this,
consider a PBW basis (10.6) of U_"(A3) having the form EPY5ts | In addition to

E-{3 = E:§i, we may apply (10.58) as
...abc... __ abc r--kji... ..abc... __ abc go--kji...
Ep = E ijk £ 2120 L2120 = § ik £ (10.97)
reflecting the U, q+ (A7) subalgebra structure. Then we have
abcde f _ pabdcef _ abd dy.,by.a,c.e, f
Ebshni = ELisn = E Ribia E2123,1
_ § : abd ajce pdibyrerci,a f
- I?albldlI?u2clell;2,l,3,2,3J

_ § : abd ajce pdiser,by.cr, fia

- I?ulbldl1?uzclell;2,3,l,2.1,3

_ § : abd ajce pbicif pdien fi.c,br,a
- Rulbldl Ru201€1 szt‘zfl E2,3,2,1,2,3

_ abd ajce pbicif pdielfi o f.e2.dx,c2,b2,a2
- Z R R R Rdzezfz E3,2,3,1,2,3 :

arbidy tazxeier “thyer fi

. . a,b,c,d,e, f fa,e2,dr,¢2,b2,a2
There is another route going from E, 315’ t0 E35737175 3 as

E{55iat =D Ra  EN25355

= Z Rddletfl fi RZICZJ f Elll:3]?2’,c3|:f,12’gl “

=D Rl s Ro p BG83

= D Rith s R p R LS55

= DR Rl Restss RO LS55

_ def befi acie; parbidy 1 f2.e2,d2,¢2,by,a0
=Y R4 R R RO ELS T

ajcaen

Comparison of them leads to

bd bici f pdieifi def bef bid

YR RO Ry f Ry = YRGS Ryl RACLRGG (10.98)
for arbitrary a,b,c,d,e, f and ay, by, cy,d>, ez, fo. The sums are over
ay, by, c1,dy, e, fi € Zxo on both sides. They are finite sums due to the weight
conservation (3.48). The identity (10.98) reproduces the tetrahedron equation (2.9).
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A similar proof of the 3D reflection equation (4.3) is possible based on (10 80).

e, f,g.h,i

We now start from a PBW basis (10.6) of U+(C3) having the form E3 2!36’1 21321

...abcd... __ abcd Lkji. .
and apply (10.97) and E-§555" = > K7 E” 533" . The two routes are as follows:
a,b,cde, f.g.hi __ pabdc.eg, fhi _ Sfh a,b,d,c.e.g,i1,hi, fi
E3 2,3,1,2,1,3,2,1 — E3,2, 1,3,2,3,1,2,1 — Z Rf1h111E3 2,1,3,2,3,2,1,2
_ Z thl Cegil a,b,d,iz,g1,e1,c1,h1, f1
fihiiq clelgliz 3,2,1,2,3,2,3,1,2
_ fhi cegiy bdiy  a,i3,d1,bi,g1.e1,c1,h1, fi
Sihviy P erergiia bidyiz 73,1,2,1,3,2,3,1,2
fhi Legi] bdiy p-i3.a.dy,g1,by,e1,hy ¢y, fi
- Z Rflhlll creigiia Rbldlis E1,3,2.3,1,2,1,3,2
Z thz cegi1 bdis blelhlEis,tl.dl,gl,hz.ez,bz,fl,fl
- Sihiiy Clelg]iz bidyiz " tbareahy —1,3,2,3,2,1,2,3,2
thz cegi1 bdin b]elthﬂdlgth Ei3,h3,g2,d2,tll,ez,bz,fl,fl
- Sihiiy Clelgliz bidyiz brexhy “ardrgahy 71,2,3,2,3,1,2,3,2
fhi'  pecegin bdiy pbiethy gradigihy riz,h3.g2.d2.e2,a1,b2.¢1, fi
- Z Rflhltl creigiiz Rh1d1i3 haezhz Kaldzgzh3E1,2,3,2,1,3,2,3,2
Zthl Keesi bdiy Rblelthadlglhz Kalsz‘lfl i3,h3,82.d2,e2, f2,¢2,b3,a2
- Sihiin ereigiia bidyiz Tbhoexhy “rardagahs T azbzer f2 71,2,3,2,1,2,3,2,3
Z thl Keesi bdiy pbieihy gadigihy g-aibaer fi pdaer fo iz h3 g0, f3,€3,d3,02,b3,a2
- Sihiiy Clelgliz bidyiz “thaeahy Taydrgahy Traxbzer fo Ttdzes f371,2,3,1,2,1,3,2,3
and
Ea b,cd, ,f, g.h t Rdef E¢ Jboe, fierdig hii
2,3 3.2, Z diey fi 32,3,2,1‘24,3,2,1
Z Rd@f Kebeh fascr.by,arer,di g hi
- die fi UlblleZ 2,3,2,3,1,2,3,2,1
Z Rdef abcf] fa.c1,b1,e1,a1,dy,8,h,i
- diei fi alblclfz 2,3,2,1,3,2,3,2,1
Z Rdef abc_fl Kaldlgh Efz,cl,bl,el,hl,gl,dz,az,i
- diey fi alblvlfz aydrgihi ~2,3,2,1,2,3,2,3,1
Z Rdff dbCfl aidigh  pbieih EfzJ«'lsh2~€24h2481-d2-42-"
- diey fi alblvlfz aydrgihy “baexhy 72,3,1,2,1,3,2,3,1
— Z R/ gabch ardigh  pbiethy pf2,ha,c1,e2,81,02,d2,i a2
diey fi alblclfz axdygihy “baerhy 72,1,3,2,3,1,2,1,3
_ Z Rdff dbCfl ardigh  pbieih R Efz»h2,C]»92,81»i],d3,b3,“2
diei fi alblclfz aydagihy “brexhy “bydzin 72,1,3,2,3,2,1,2,3
_ Rdef abcfi aidigh  pbiethy pbadyi y-crexgiii Efz,hz,tz ,82,€3,¢2,d3,b3,a2
- diey fi Marbicr fo ™ azdagihy Thaerhs “bydziy ™ erezgain ©2,1,2,3,2,3,1,2,3
_ def ah(‘f] aydigh  pbiethy pbadai y-cre2g1il p f2haia 12i3,h3, f3,82.€3,¢2,d3,b3,a2
Z Rdlel SiTarbic fo Ktlzdzglhl szezhz Rb3d3i1 Kczezgvh Rf%hztz El .2,1,3,2,3,1,2,3
_ Z Rdﬁ’f athl aid\gh RPre1h phadai prereagiiy szhztz En,hz,gz,fs,e3,d3,02,h3,az
die fi tllblclfz axdrgihy “baexhy Ttbadzin T eresgain T f3h3iz 71,2,3,1,2,1,3,2,3 :

Thus we get

fhi
ZRflhm

cegi1 thiz Rhlﬂlthadlglhz Kalbzclfl Rdzezfz

cre1giiz " bidiiz Tt haeshy Trardagahs T axbicr o Tdses f3
) , . (10.99)
§ Rdt’f abcfi ardigh Rhlelhl bydyi K C1e81h fahaia
- diey fi alblclfz aydrgihy " baeshy Tbidsiy T caesgaia T f3hsis

foranya, b, c,d,e, f, g, h,i and ay, b3, ¢z, d3, e3, f3, 2, h3, i3. The sums are over
a, b] s bz, Ci, d] s dz, e, en, f] s fz, 81, h] s ]’lz, i], iz (S Zzo on both sides. They are
finite sums due to the weight conservation (3.48) and (5.65). The identity (10.99)
reproduces the 3D reflection equation (4.5). By a parallel argument for U, ,;r (B3), the
3D reflection equation of type B (6.31) can also be derived.
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10.6 x-Invariants

Theorem 10.6 implies non-trivial identities in (a completion of) U ; (g). They are
stated as invariance of some infinite products under the anti-involution y introduced
in (10.42). Here we illustrate the derivation along g = A, and present the results for
C, and G,. The point is to translate the boundary vectors in Sects. 3.6.1, 5.8.1 and
8.6.1 in terms of the PBW basis.

Let us write the boundary vectors (3.132) as

) =D ngmlm) (s =1,2). (10.100)

m>0

By comparing the coefficient of |a) ® |b) ® |c) on the two sides of (3.143) using
(3.47), we get

Z ns,ins,jnx,kR:‘lj};(C = Ns,als,bNs,c- (10101)
i\ j.k

In view of (3.63), this is equivalent to

Z ﬁs,uﬁs,bﬁs,c‘jo};f = ﬁs,iﬁs,jﬁs.kv ﬁs,a = (qz)ans.u' (10102)

a,b,c

Multiply this by 5/ and sum over i, j, k € Z. From (10.46) and (10.6), the RHS
gives

Y By it ik = (Z""([Z)|>(Z”J%)<Z ([]3)') (10.103)

i,j.k

As for the LHS, we have

k,
Z(ZRZIZ‘E s )nvanvhnvc— ZEab nvanvhnvc

a,b,c i,jk a,b,c

=X (Z E;’b’aﬁs,aﬁs,bﬁs,c)~ (10104)

a,b,c

The first equality is due to (10.58) which is the A, case of the main theorem of this
chapter. The second equality is (10.42). The quantity within x in (10.104) is equal
to (10.103). Thus we find that (10.103) is x-invariant. To describe the result neatly
we introduce a quantum-dilogarithm-type infinite product:

qm(m—l)/ZZm

T (i )m 10.105
DO (—=z59) ( )

04(2) =

m
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Then a direct calculation using (3.132) yields

" O,((1 — g?)2) s=1,
s,m = 10.106
;’7‘* (]! {644(51(1 — )P s=2. (10100

Thus we get a corollary of Theorem 10.6 and Proposition 3.28.

Corollary 10.15 Sef ¢; = (1 — qz)b,-, ci=x(c) e U;(Az) (i=1,2,3) using b;
in (10.46) and the anti-algebra involution x in (10.41). Then the following equalities
are valid:

B,(c1)O,(c2)0,(c3) = O, (c)B,(c5)O,(c)), (10.107)
O,4(qcHB,4(gcHB 4 (gcd) = O (gcs) Oy (gch) O e (gc)). (10.108)

Remark 10.16 By the rescaling e; — xey, e — yep with parameters x, y, the
identity (10.107) is seemingly generalized to

Oy (xc1) B4 (xy2) By (ye3) = By (yc5) Oy (xych) Oy (xch)

containing x, y in the same manner as spectral parameters in the Yang—Baxter equa-
tion. The same holds for (10.108). Similar remarks apply to the C, and G, cases
in the sequel where the parameters arranged along the positive roots fit the spectral
parameters in the reflection and the G, reflection equations.

The product (10.107) is expanded as

Oy (c1)Oy(2)Oy(c3)

=1+ +g)er+e)+q(1+q)ef +e3) + (1+q)erer + eze)

@A —gH* e +e) q°A—gH(e] +¢3)
(11— —q% (1= —=g>U —q

*(1 — g*)2(e1e2e? + e2ere; + erere? + elejer)

+ (1 4+ q)*(e1e2e1 + ererer) +

+
(11— —g%
q(1 —g**(g(ete3 + e3ed) + (1 + q)?ereder — q(1 + gHerefer)
+ - +oe,
(I-g)(1—-qg%

(10.109)
where the g-Serre relation (10.45) has been used to make it manifestly invariant
under x. Similarly, (10.108) is expanded as

Oy (qch) O, (ge3)O 1 (gc3)
gl — gt +e3) | q°(1 — g>)*(e} + e3)
1—qg* (1—g%H(1—¢g® (10.110)
q*(1 — g*)*(efes + e3ef — (1 + g*)erefer)
+ 4
(1 —g*%?
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For C,, the relevant results are (10.80) and Proposition 5.21 concerning the bound-
ary vectors in (5.118)—(5.120). There are three identities corresponding to the choices
of (r, k) in (5.136).

Corollary 10.17 Set ¢; = (1 —qg"b; (i =1,3),¢c; = (1 —¢*)b; (i =2,4) and
¢ = x(c) € U;(Cz) (i=1,2,3,4) using b; in (10.60) and the anti-algebra
involution y in (10.41). Then the following equalities are valid:

0,2(c1)O4(€2)® 12 (c3)By (ca) = B (CA)G)qz (c5)04 (c/z)@)qz (), (10.111)
0,2(c1)O,4(qc3)0,2(c3)0 1 (gcd) = ©,4(4¢})B2 (5 14 (g5 O 2 (),
(10.112)
0,8 (@) 0,1 (gD 0,5 (¢* DO 1 (gc) = B1(gcy IO (g5 ) Ot (g O s (7).
(10.113)

For G, the relevant result is Conjecture 8.9 for the boundary vector (8.61) and
(10.96).

Corollary 10.18 Set ¢; = (1 —¢%b; i =1,3,5),¢ci = (1 —g*)b; (i =2,4,6)
and ¢ = x(c;) € U;(Gz) (i=1,...,6) using b; in (10.82) and the anti-algebra
involution y in (10.41). If Conjecture 8.9 holds, the following equality is valid:

Og3(€1)Oy(c2)Bg3(€3) Oy (€4) O g3(c5) Oy (o)

, , , , , , (10.114)
= 0,4(c5)O43(C5)BOy (c4) O3 (c5)BO, (c3) By (ch).

10.7 Bibliographical Notes and Comments

This chapter is an extended exposition of [102]. The braid group action (10.5) is
introduced in [111]. The formulation of quantized coordinate ring in this chapter
follows [76, 139]. See also [43] and [29, Chap. 7]. For quantum cluster algebra
structure of quantized coordinate rings, see [52].

The Peter—Weyl-type Theorem 10.1 is taken from [76, Proposition 7.2.2]. Propo-
sition 10.4 is a special case of [66, Corollary 9.1.4]. In [149, Theorem 7], U;(g)
has been identified with an explicit subalgebra of A,(g)s. A proof of Theorem 10.5
adapted to the present setting has been given in [102, Sect. 3.2]. The main result,
Theorem 10.6, is due to [102, Theorem 5]. The case g = A, was obtained earlier in
the pioneering work [131]. Remark 10.8 is due to [141], where a unified conceptual
proof of Theorem 10.6 has been attained. See also [128] for yet another proof using
the representation theory of g-boson algebra and the Drinfeld pairing of U, (g). The
multiplication rule on the PBW bases like Lemmas 10.9, 10.11 and 10.13 plays an



10.7 Bibliographical Notes and Comments 175

important role also in the study of the positive principal series representations and
modular double [61]. For type C5, one can adjust the definition of EiA in (10.6) with
that in [148] by setting v = ¢~'. Some of the results like Lemma 10.13 have also
been obtained in [147]. An analogue of Sect. 10.5 for quantum superalgebras has
been argued in [151].
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