
Chapter 1
Introduction

Abstract This short chapter is a brief guide to the background and the topics treated
in the book. We begin by recalling the key equations for integrability in two dimen-
sions, motivate a generalization to three dimensions, digest how a class of quantum
groups known as quantized coordinate rings play an important role, and mention
some fruitful applications.

1.1 Quantum Integrability in Two Dimensions

In integrable systems in quantum field theories in (1 + 1)-dimensional space time
[155] and in statistical mechanical models on two-dimensional lattices [10], a central
role is played by the following equations1 [30]:

Yang–Baxter eq.:

R12(x)R13(xy)R23(y) = R23(y)R13(xy)R12(x),

Reflection eq.:

R12(x)K2(xy)R21(x
2y)K1(y) = K1(y)R12(x

2y)K2(xy)R21(x),

G2 reflection eq.:

R12(x)X132(xy)R23(x
2y3)X213(xy

2)R31(xy
3)X321(y)

= X231(y)R13(xy
3)X123(xy

2)R32(x
2y3)X312(xy)R21(x).

(1.1)

Here R(z),K(z) and X(z) are matrices of amplitude for two-particle elastic scatter-
ing, one-particle boundary reflection and a three-particle special event, respectively.
The indices label the particles or their world lines. The commutative variables x and
y are called spectral parameters, which describe the rapidity, i.e. (exponentiated)
relative angles of the world lines of the particles participating in the events. In the
context of statistical mechanical models, the scattering diagrams are regarded as

1 The G2 reflection equation, which is less known, will be explained in some detail in Chap. 17. Its
application is yet to be explored. It was written down in [85] guided by Fig. 1.2 which originates in
the description in [30, p. 982].
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Fig. 1.1 Left: Diagram for Yang–Baxter equation. Arrows are trajectories (world lines) of particles
1, 2 and 3.R(z) is attached to an intersection of two arrows. Right: Diagram for reflection equation.
K(z) is attached to a reflection by the boundary which is denoted by a vertical line.
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Fig. 1.2 Diagram for G2 reflection equation. Vertical lines denote the boundary. As indicated by
dotted lines, boundary reflection of a particle happens simultaneously with the collision of the other
two particles, which is characteristic to the G2 theory. Elementary geometrical consistency of such
line configurations is guaranteed by the classical Desargues–Pappus theorem. See Chap. 17.

local spin configurations, and R(z),K(z) and X(z) are regarded as specifying their
Boltzmann weights (Fig. 1.1).

When the spectral parameters tend to infinity, these equations formally reduce to
the constant versions:

constant Yang–Baxter eq.: L12L13L23 = L23L13L12,

constant reflection eq.: L12G2L21G1 = G1L12G2L21,

constant G2 reflection eq.: L12 J132L23 J213L31 J321 = J231L13 J123L32 J312L21,

(1.2)
where the letters R,K,X have been replaced by L ,G, J for distinction.
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Each arrow carries a vector space, say V , representing a one-particle state. Thus

for example L12 is a linear operator on
1
V ⊗ 2

V , where the superscripts are just labels
of the arrows in a diagram.

1.2 Quantization: Introducing the Third Dimension

Equations in the previous section are expressed in planar diagrams. Introducing
further particles (arrows) would give rise to more scattering events (composition of
operators), but their diagrams remain always planar. This feature is referred to as
two-dimensional (2D).

Then how can we generalize things to three dimensions (3D)? A naive but natural
way is to introduce an extra arrow penetrating each scattering event perpendicularly
to the planar diagram and assign to it a new vector space, say F . It implies that

L12 ∈ End(
1
V ⊗ 2

V ),G1 ∈ End(
1
V ), J123 ∈ End(

1
V ⊗ 2

V ⊗ 3
V ) are upgraded to L12a ∈

End(
1
V ⊗ 2

V ⊗ a
F ), G1a ∈ End(

1
V ⊗ a

F ), J123a ∈ End(
1
V ⊗ 2

V ⊗ 3
V ⊗ a

F ), where a is
a label of the auxiliary space.2 In other words, elements of L ,G, J become End(F )

valued or get quantized.
What about the corresponding generalization of the equations (1.2)? A point

here is not just to demand the strict equality but to embark on the more general
situation of conjugacy equivalence. For instance, we postulate L12a L13bL23c Rabc =
RabcL23cL13bL12a in place of the Yang–Baxter equation by introducing an invertible

operator R = Rabc on
a
F ⊗ b

F ⊗ c
F . It then becomes an equality in End(

1
V ⊗ 2

V ⊗
3
V ⊗ a

F ⊗ b
F ⊗ c

F ). A similar “quantization” recipe leads to

quantized Yang–Baxter eq.: (L12L13L23)R = R(L23L13L12),

quantized reflection eq.: (L12G2L21G1)K = K (G1L12G2L21),

quantized G2 reflection eq.: (L12 J132L23 J213L31 J321)F = F(J231L13 J123L32 J312L21),
(1.3)

where the new objects R, K , F act on the tensor products of 3, 4, 6 auxiliary spaces
whose labels have been suppressed.3 For their full forms, see (2.15), (4.9) and (8.50).

2 In later sections, F is taken slightly differently for L ,G, J .
3 The quantized Yang–Baxter equation is well known as a version of the tetrahedron equation. See
Sect. 2.7 for a historical note. The quantized reflection equation and the quantized G2 reflection
equation were introduced in [85, 105].
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1.3 Quantized Coordinate Ring

It has been well recognized that the group of equations (1.2) have the analogy in
the Weyl group of rank-two classical simple Lie algebra g [30], where the simple
reflections s1, s2 obey the Coxeter relations s2i = 1 and

A2 : s1s2s1 = s2s1s2,

B2,C2 : s1s2s1s2 = s2s1s2s1,

G2 : s1s2s1s2s1s2 = s2s1s2s1s2s1.

(1.4)

One can also observe the relevance of these algebras already in (1.1), where the
spectral parameters appearing on each side are in one-to-one correspondence with
their positive roots. In view of such facts, if the equations (1.3) made up intuitively
are to be meaningful, one should have a decent quantization of the Coxeter relations.

It turns out that such a structure is provided by the quantized coordinate ring
Aq(g) for the rank-two g, whereby R, K , F are captured as the intertwiner of a
certain class of representations. Let us explain the basic idea, quickly deferring the
detail to the subsequent chapters.

The algebra Aq(g) (cf. [29, 43, 66, 76, 127, 139]) is the Hopf algebra [1] dual
to the quantized universal enveloping algebra Uq(g) [43, 63]. One can either realize
it concretely by generators and relations for some g (Chaps. 3, 5 and 8), or give a
universal definition independently of such presentations for any g (Chap. 10). For
q generic, it has the irreducible representations πi attached to each vertex i of the
Dynkin diagram of g. The representation space of πi is the Fock space of the q-
oscillator algebra (3.13). According to the general theory [138, 139, 146] (Theorem
3.3), one has the non-trivial equivalence of the irreducible Aq(g) modules:

A2 : π1 ⊗ π2 ⊗ π1 � π2 ⊗ π1 ⊗ π2,

B2,C2 : π1 ⊗ π2 ⊗ π1 ⊗ π2 � π2 ⊗ π1 ⊗ π2 ⊗ π1,

G2 : π1 ⊗ π2 ⊗ π1 ⊗ π2 ⊗ π1 ⊗ π2 � π2 ⊗ π1 ⊗ π2 ⊗ π1 ⊗ π2 ⊗ π1.

(1.5)
It turns out that they can bematched preciselywith the 3Dequations (1.3) by choosing
L ,G, J to be appropriate q-oscillator-valued scattering amplitudes (Theorems 3.21,
5.18 and 8.6).4 The conjugation operators R, K , F in (1.3) are thereby characterized
naturally as the intertwiner responsible for the equivalence (1.5). Their matrix ele-
ments are polynomials in q with integer coefficients. They are further identified with
the transition coefficients of the PBW bases of the positive part ofUq(g) (Chap. 10).

4 An intrinsic reasonwhy (1.5) admits such a “physical” presentation in terms of scattering diagrams
(Figs. 2.18, 4.6 and 8.1) is yet to be revealed.
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1.4 Compatibility: Tetrahedron, 3D Reflection and F4
Equations

In our argument so far, themost characteristic objects in 3Dare the operators R, K , F .
The quantized equations (1.3) may be regarded as the auxiliary linear problem for
them. It is then natural to investigate their “associativity”, which is a non-linear
consistency condition among the “structure constants”.5 Such calculations in (2.22)–
(2.23) and (4.19)–(4.20) and the like for the first two equations in (1.3) lead to6

tetrahedron eq.:

R124R135R236R456 = R456R236R134R123, (1.6)

3D reflection eqs.:

R689K3579R249R258K1478K1236R456 = R456K1236K1478R258R249K3579R689, (1.7)

S689K9753S249S258K8741K6321S456 = S456K6321K8741S258S249K9753S689, (1.8)

where S = R|q→q2 . The tetrahedron equation (1.6) is best known as a 3D generaliza-
tion of the Yang–Baxter equation [153, 154]. The quantized Yang–Baxter equation
in the foregoing argument may be regarded as a variant of it.

In the language of Aq(g), these equations are corollaries of the generalization of
(1.5) to A3, B3,C3, where one can embed the rank-two results7 (Theorems 3.20, 5.16
and 6.7). Note that G2 deviates from the other at this point since there is no “G3” to
play such a game.

In general the compatibility condition originating from Aq(g) with higher rank
g should be reducible to the tetrahedron and the 3D reflection equations.8 A most
curious situation of this kind is Aq(F4), where, the F4 analogue of the tetrahedron
equation takes the form

R14,15,16R9,11,16K7,8,10,16K17,15,13,9R4,5,16S7,12,17R1,2,16S6,10,17R9,14,18

× K17,5,3,1R11,15,18K6,8,12,18R1,4,18R1,8,15S7,13,19K19,11,6,1K19,15,12,4S3,10,19
× R4,8,11K20,14,7,1R2,5,18S6,13,20S3,12,20R1,9,21K20,15,10,2R4,14,21K3,8,13,21

× R2,11,21R2,8,14S6,7,22K22,4,3,2R5,15,21K22,14,13,11S10,12,22K23,9,6,2S3,7,23
× S19,20,22K22,18,17,16S10,13,23K23,14,12,5S3,6,24K23,21,19,16K24,9,7,4S17,20,23
× K24,11,10,5S12,13,24S17,19,24K24,21,20,18R5,8,9S22,23,24

= product in reverse order. (1.9)

5 It is parallel with 2D, where the quantum group symmetry of the formRLL = LLR automatically
implies the Yang–Baxter equation RRR = RRR [43, 63].
6 See the last sections in Chaps. 2–5 for historical notes on these equations. The two versions of the
3D reflection equations correspond to types B and C. They will appear in (6.31) and (4.3).
7 Such an approach to the tetrahedron equation was first undertaken in [77].
8 See the argument around (3.101) and the one in Sect. 9.2.
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Each side is a composition of 50 operators R, S, K which act on 24-fold tensor
product of the q-oscillator Fock space. Reflecting the subalgebras Aq(B3), Aq(C3) ⊂
Aq(F4), it is reduced to the composition of the twokinds of the 3D reflection equations
(1.7) and (1.8) twelve times for each (Theorem 7.2).

Since the advent of quantum groups in the 1980s [43, 63, 136], algebraic studies
of the Yang–Baxter equation have been done mainly along the quantized universal
enveloping algebras Uq . It is also the case for the reflection equation although it
requires more details on their coideal subalgebras. In contrast to this, the argument
so far indicates that the dual quantum group Aq(g), although g is hitherto limited
to the classical finite types, is a clue to their 3D versions in (1.3)–(1.9). One of the
main themes of this book is to highlight such utility of the quantized coordinate ring
Aq(g) in the theory of integrable systems.

1.5 Feedback to 2D

When going from 2D to 3D, we have dropped the spectral parameters. In general it
is highly non-trivial to keep them in an essential manner in 3D (cf. [11, 154]). On
the other hand, one can take advantage of the 3D structure of the quantized equations
(1.3) to produce rich families of solutions to the original 2D equations (1.1) includ-
ing the spectral parameters.9 In fact, all the equations (1.3) by construction admit
the composition in the “third direction”, i.e. auxiliary space, for arbitrary n times.
Moreover, one can bring the two spectral parameters x, y back thanks to the weight
conservation under the equivalence (1.5). And the last step is to evaluate R, K , F
away appropriately to return to the original equations (1.1). Such a reduction is done
by taking the trace or the expectation value 〈η|(· · · )|η′〉 between the eigenvectors of
R, K , F called the boundary vectors. As the result one obtains the solutions of the
2D equations (1.1) expressed by matrix product formulas as

R(z) = Tr(zhL · · · L), K(z) = Tr(zhG · · ·G), X(z) = Tr(zh J · · · J )

by the trace reduction, and

R(z) = 〈η|zhL · · · L|η′〉, K(z) = 〈η|zhG · · ·G|η′〉, X(z) = 〈η|zh J · · · J |η′〉

by the boundary vector reduction. The symbol h denotes the q-oscillator number
operator (3.14). We have n-fold matrix products of the quantized amplitudes L ,G, J
to evaluate the trace or 〈η|(· · · )|η′〉 over the auxiliary q-oscillator Fock space. A
similar method can be applied also to the tetrahedron equation of RRRR = RRRR

9 For the Yang–Baxter equation, one may say that almost any trigonometric solution should be just
the image of the universal R in principle (top down). True. However, to describe or construct one
in a tractable manner is another problem of individual interest (bottom up). A typical recipe of the
latter is the fusion construction. The 3D approach briefed in this section is another having its own
intriguing scope.
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type (1.6). Up to an overall scalar, these solutions are trigonometric, i.e. rational in
q and z. They are characterized in a standard manner by the symmetry with respect
to quantum affine algebras or their Onsager coideal subalgebras.10

Typically, R(z) are identified with the quantum R matrices of the symmetric and
the anti-symmetric tensor representations of Up(A

(1)
n−1) (Chaps. 11 and 13), the spin

representations of Up(B(1)
n ),Up(D(1)

n ),Up(D
(2)
n+1) (Chap. 12), and the q-oscillator

representations ofUp(C (1)
n ),Up(A

(2)
2n ),Up(D

(2)
n+1) (Chap. 14)with appropriate adjust-

ment of p and q. The matrix product formulas suit computer programming and pro-
vide us with a good practical access to those R and K matrices associated with the
higher “spin” representations of the higher rank algebras.

Another beneficial insight from the matrix product structure is the interpretation
of 2D systems as 3D ones. In fact, commuting row transfer matrices in the former
are naturally regarded as layer transfer matrices in the latter, where rank n plays the
role of size. An intriguing offshoot in such a direction is a matrix product formula
for stationary probabilities of the 1D Markov process called the multispecies totally
asymmetric simple exclusion process (TASEP) (Chap. 18). It reveals a hidden 3D
structure in the 1D system, where the system size in the 3D picture is given by the
number of species of the particles.

1.6 Layout of the Book

This book is intended for readers who have some familiarity or basic knowledge
about quantumgroups and theYang–Baxter equation or their application to integrable
systems. Rudiments of the subject can be found for example in [10, 29, 51, 65].

In Chaps. 2–8, the tetrahedron equations and their relatives are studied from the
viewpoint of the quantized coordinate ring Aq(g) individually for g = A, B,C, F4,

G2. They are based on concrete presentation by generators and relations (except for
F4). The basic flow of the argument is parallel and all the essences are contained
already in the type A case (Chaps. 2 and 3). Chapter 9 is a discussion on a possible
generalization to non-crystallographic Coxeter groups.

Chapter 10 is unique in that a universal definition of Aq(g) free from concrete
presentations is given together with the basic aspects like Uq(g) bimodule structure
and the RT T relation, etc. The main result is Theorem 10.6, which identifies the
intertwiner of Aq(g)modules with the transition coefficients of the PBW basis of the
positive partU+

q (g) ofUq(g). It is readable without heavily consulting other parts of
the book.

Chapters 11–17 describe the 3D approach to the Yang–Baxter, reflection and G2

reflection equations. Families of solutions in matrix product forms are constructed
by the trace and the boundary vector reductions. They are characterized in terms of
quantum affine algebras and their representations with precise details depending on
the reductions.

10 To characterize X(z) for G2 in such a quantum group theoretical framework is an open problem.



8 1 Introduction

Finally, Chap. 18 presents a further application of the 3D approach to the multi-
species TASEP, which may be viewed as a feedback to 1D. It is readable based on
relevant parts in Chaps. 2 and 3 only.

These features of the chapters are roughly summarized in the following diagram:

As mentioned before, for those who wish to concentrate on the tetrahedron equa-
tion or type A case for a start, Chaps. 2 and 3 will suffice. Their applications to the
Yang–Baxter equation are presented in Chaps. 11, 12, 13 and 14 with the increasing
complexity in this order. Chap. 18 also provides yet another application encompass-
ing a seemingly quite different topic.

Readers who are interested in the type BC case and the 3D reflection equations
can find the basics in Chaps. 4 and 5 and slightly supplementary Chap. 6. Their
applications to the 2D reflection equation are treated in Chaps. 16 and 15 which are
parallel in spirit with Chaps. 11–14.

The other part consists of more or less independently readable Chaps. 8 and 17
concerning the G2 case, Chap. 7 on F4, Chap. 9 on non-crystallographic Coxeter
groups, and Chap. 10 on the connection with the PBW basis.
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