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Preface

In integrable systems in quantum field theory in (1 4 1)-dimensional space time and
statistical mechanical models on two-dimensional lattices, a central role is played by
the Yang—Baxter equation. Its algebraic aspects are now well understood in terms of
quantum groups.

An obvious challenge is to explore the higher dimensions. The first attempt in such
a direction was made by A. B. Zamolodchikov in 1980 who launched the tetrahedron
equation as a generalization of the Yang—Baxter equation in three dimensions. In
his seminal work in 1983, Baxter referred to it as “immensely more complicated”
and to Zamolodchikov’s conjectural solution which he proved as “what appears
to be an extraordinary feat of intuition”. Over nearly forty years since the initial
breakthrough, much effort has been made and many results continue to emerge
despite the complexity.

This book is the first monograph devoted to the subject. It is a selective but
expository introduction to a quantum group theoretical approach to the tetrahedron
equations and their relatives which have been shaped during such developments. It
explains the natural origin of these equations, prototypical solutions and their notable
aspects. The latter half of the book also encompasses feedbacks to the two- or even
lower one-dimensional systems from the viewpoint of mathematical physics.

The contents are elementary and presented in a casual style for the sake of read-
ability. As a result, a substantial part of the text has become a collection of algebraic
manipulations, which are straightforward in principle but sometimes too tedious
without the help of a computer. Hopefully, such calculations are not just laborious
but would be rewarding and fun for those who enjoy the programming.

The title of the book may sound somewhat odd or too strong, since admittedly it
actually achieves only a glimpse into the quantum integrability in three dimensions.
It is my hope, however, that it stimulates the subject, now in its adolescence, to make
a transition into the next phase.

There are many people to whom I am indebted for the delightful as well as chal-
lenging opportunity to write this book. I am grateful to Masato Okado for advice on
the plan of the book and collaboration on many related projects; Vladimir Mangazeeyv,
Vincent Pasquier, Sergey Sergeev and Yasuhiko Yamada for sharing their insights



vi Preface

and Toshiyuki Tanisaki for useful communications. Special thanks go to Rodney J.
Baxter, Vladimir V. Bazhanov, Etsuro Date, Michio Jimbo, Tetsuji Miwa and the late
Miki Wadati for inspiring me in the wonders of integrable systems for many years.
I have had kind support on text handling from Masayuki Nakamura from Springer
Japan. Last but not least, I thank my family for letting me work comfortably from
home through the turbulent COVID-19 years of writing.

The first manuscript of this book, which was almost in the final form, was sent to
the publisher on October 5 2021.

Komaba, Tokyo, Japan Atsuo Kuniba
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Chapter 1 ®)
Introduction Check for

Abstract This short chapter is a brief guide to the background and the topics treated
in the book. We begin by recalling the key equations for integrability in two dimen-
sions, motivate a generalization to three dimensions, digest how a class of quantum
groups known as quantized coordinate rings play an important role, and mention
some fruitful applications.

1.1 Quantum Integrability in Two Dimensions

In integrable systems in quantum field theories in (1 4 1)-dimensional space time
[155] and in statistical mechanical models on two-dimensional lattices [10], a central
role is played by the following equations' [30]:

Yang—Baxter eq.:

Riz(@)Ri3(xy)Ra3(y) = Roz (M) Ri3(xy) Rz (),
Reflection eq.:

Ri2() K2 (x3) Rt () K1 (3) = K1 (0 R12 (%) Ko (x3) Ry (x), (1.1)
G, reflection eq.:

Ri2 () X132 (x3) Rz (x73*) Xa13 (xy*) Ra1 (xy) X321 (v)
= X031 (M R13(xy>) X123 (xy*) Rap (23 ) X312 (xy) Roy (x).

Here R(z), K(z) and X(z) are matrices of amplitude for two-particle elastic scatter-
ing, one-particle boundary reflection and a three-particle special event, respectively.
The indices label the particles or their world lines. The commutative variables x and
y are called spectral parameters, which describe the rapidity, i.e. (exponentiated)
relative angles of the world lines of the particles participating in the events. In the
context of statistical mechanical models, the scattering diagrams are regarded as

! The G reflection equation, which is less known, will be explained in some detail in Chap. 17. Its
application is yet to be explored. It was written down in [85] guided by Fig. 1.2 which originates in
the description in [30, p. 982].

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 1
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>{)}< 2%
2
1 3 1 3 1
2 2

Fig. 1.1 Left: Diagram for Yang—Baxter equation. Arrows are trajectories (world lines) of particles
1,2 and 3. R(z) is attached to an intersection of two arrows. Right: Diagram for reflection equation.
XK (z) is attached to a reflection by the boundary which is denoted by a vertical line.

2

Fig. 1.2 Diagram for G, reflection equation. Vertical lines denote the boundary. As indicated by
dotted lines, boundary reflection of a particle happens simultaneously with the collision of the other
two particles, which is characteristic to the G, theory. Elementary geometrical consistency of such
line configurations is guaranteed by the classical Desargues—Pappus theorem. See Chap. 17.

local spin configurations, and R(z), K(z) and X(z) are regarded as specifying their
Boltzmann weights (Fig. 1.1).

When the spectral parameters tend to infinity, these equations formally reduce to
the constant versions:

constant Yang—Baxter eq.: LiyLi3Ly3 = LysLi3L12,
constant reflection eq.: L12,G2L21G; = G1L12G, Ly,

constant G, reflection eq.: Li2J132L23J213L31J321 = Jo31L13J123L32J312L21,
(1.2)
where the letters R, K, X have been replaced by L, G, J for distinction.
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Each arrow carries a vector space, say V, representing a one-particle state. Thus

12
for example L, is a linear operator on V ® V, where the superscripts are just labels
of the arrows in a diagram.

1.2 Quantization: Introducing the Third Dimension

Equations in the previous section are expressed in planar diagrams. Introducing
further particles (arrows) would give rise to more scattering events (composition of
operators), but their diagrams remain always planar. This feature is referred to as
two-dimensional (2D).

Then how can we generalize things to three dimensions (3D)? A naive but natural
way is to introduce an extra arrow penetrating each scattering event perpendicularly
to the planar diagram and assign to it a new vector space say . It implies that

L € End(V ® V) G, e End(V) J123 € End(V ® V ® V) areupgradedtolea

End(V ® V ® 7") G, € End(V ® 7:) J1234 € End(V ® V ® V ® 7—') where a is
a label of the auxiliary space.? In other words, elements of L, G, J become End (%)
valued or get quantized.

What about the corresponding generalization of the equations (1.2)? A point
here is not just to demand the strict equality but to embark on the more general
situation of conjugacy equivalence. For instance, we postulate L, L35 L23c Rape =

Rupe L2z L3y Lo, in place of the Yang—Baxter equation by introducing an invertible
a b c 1 2
operator R = Ry, on F ® F @ F . It then becomes an equality in End(V ® V ®
a

3 b c
VRF F ® F). A similar “quantization” recipe leads to

quantized Yang-Baxter eq.: (L12L13L23)R = R(Ly3L13L12),

quantized reflection eq.: (L12G2L21G1)K = K(G1L12G2L»2y),

quantized Gy reflection eq.: (L12J132L23J213L31J321)F = F(J231L13J123L32J312L21),
(1.3)

where the new objects R, K, F act on the tensor products of 3, 4, 6 auxiliary spaces

whose labels have been suppressed.? For their full forms, see (2.15), (4.9) and (8.50).

2 In later sections, ¥ is taken slightly differently for L, G, J.

3 The quantized Yang—Baxter equation is well known as a version of the tetrahedron equation. See
Sect. 2.7 for a historical note. The quantized reflection equation and the quantized G, reflection
equation were introduced in [85, 105].
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1.3 Quantized Coordinate Ring

It has been well recognized that the group of equations (1.2) have the analogy in
the Weyl group of rank-two classical simple Lie algebra g [30], where the simple
reflections sy, s, obey the Coxeter relations 552 = 1and

Ay 515281 = §25152,
By, Cy: 51828182 = 528518251, (1.4)
Gz: 5185285185285182 = $25152515291.

One can also observe the relevance of these algebras already in (1.1), where the
spectral parameters appearing on each side are in one-to-one correspondence with
their positive roots. In view of such facts, if the equations (1.3) made up intuitively
are to be meaningful, one should have a decent quantization of the Coxeter relations.

It turns out that such a structure is provided by the quantized coordinate ring
A, (g) for the rank-two g, whereby R, K, I’ are captured as the intertwiner of a
certain class of representations. Let us explain the basic idea, quickly deferring the
detail to the subsequent chapters.

The algebra A, (g) (cf. [29, 43, 66, 76, 127, 139]) is the Hopf algebra [1] dual
to the quantized universal enveloping algebra U, (g) [43, 63]. One can either realize
it concretely by generators and relations for some g (Chaps. 3, 5 and 8), or give a
universal definition independently of such presentations for any g (Chap. 10). For
q generic, it has the irreducible representations 7; attached to each vertex i of the
Dynkin diagram of g. The representation space of m; is the Fock space of the g-
oscillator algebra (3.13). According to the general theory [138, 139, 146] (Theorem
3.3), one has the non-trivial equivalence of the irreducible A, (g) modules:

Ay T QM @My =7 ® My ® 72,
B,, Cs: TOMAOM Qmy =X m QM QM ® 7y,
Gy: mMAMAMAOMAOMROM MmN QM QT ® 1 ® 1.

(1.5)
It turns out that they can be matched precisely with the 3D equations (1.3) by choosing
L, G, J to be appropriate g-oscillator-valued scattering amplitudes (Theorems 3.21,
5.18 and 8.6).* The conjugation operators R, K, F in (1.3) are thereby characterized
naturally as the intertwiner responsible for the equivalence (1.5). Their matrix ele-
ments are polynomials in g with integer coefficients. They are further identified with
the transition coefficients of the PBW bases of the positive part of U, (g) (Chap. 10).

4 An intrinsic reason why (1.5) admits such a “physical” presentation in terms of scattering diagrams
(Figs. 2.18, 4.6 and 8.1) is yet to be revealed.
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1.4 Compatibility: Tetrahedron, 3D Reflection and Fy
Equations

In our argument so far, the most characteristic objects in 3D are the operators R, K, F.
The quantized equations (1.3) may be regarded as the auxiliary linear problem for
them. It is then natural to investigate their “associativity”, which is a non-linear
consistency condition among the “structure constants”.> Such calculations in (2.22)—
(2.23) and (4.19)—(4.20) and the like for the first two equations in (1.3) lead to®

tetrahedron eq.:

R124 R135 Ro3e Rase = RuseRoze R134 R123, (1.6)
3D reflection eqs.:

Re89 K3579 Roa9 Ross K 1478 K 1236 Rase = Rase K1236 K1478 R2ss Ro49 K3s79 Rego,  (1.7)
S689K 975352495258 K8741 K321 5456 = Sa56 K321 K8741 52585249 K 9753 S689,5 (1.8)

where § = R|,_, ;2. The tetrahedron equation (1.6) is best known as a 3D generaliza-
tion of the Yang—Baxter equation [153, 154]. The quantized Yang—Baxter equation
in the foregoing argument may be regarded as a variant of it.

In the language of A, (g), these equations are corollaries of the generalization of
(1.5)to A3, B3, C3, where one can embed the rank-two results’ (Theorems 3.20, 5.16
and 6.7). Note that G, deviates from the other at this point since there is no “G3” to
play such a game.

In general the compatibility condition originating from A, (g) with higher rank
g should be reducible to the tetrahedron and the 3D reflection equations.® A most
curious situation of this kind is A, (Fy), where, the Fy analogue of the tetrahedron
equation takes the form

R14.15,16Ro,11,16K7,8,10,16 K17,15,13,9 R4,5,1657,12,17 R1,2,16 56,10,17 Ro, 14,18
x K753, 1R11,15,18K6,8,12,18 R1,4,18 R1,8,1557,13,19 K 19,11,6,1 K 19,15,12,4 53, 10,19
X R4811K20,14,7,1R2,5,1856,13,2093,12,20 R1,9,21 K20,15,10,2 R4, 14,21 K3 8,13 21
X Rp1121R2.8,1486,7,20K22.4.3,2R5,1521 K22,14,13,11510,12,22K23,9,6,2.83,7,23
X 819,20,22K22,18,17,16510,13,23 K23,14,12,5 93,6,24 K23,21,19,16 K24,9,7,4517,20,23
X K24,11,10,5512,13,24.517,19,24 K24,21,20,18 R5,8,0.522,23,24
= product in reverse order. (1.9)

3 Ttis parallel with 2D, where the quantum group symmetry of the form RLL = LLR automatically
implies the Yang—Baxter equation RRR = RRR [43, 63].

6 See the last sections in Chaps. 2—5 for historical notes on these equations. The two versions of the
3D reflection equations correspond to types B and C. They will appear in (6.31) and (4.3).

7 Such an approach to the tetrahedron equation was first undertaken in [77].
8 See the argument around (3.101) and the one in Sect. 9.2.
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Each side is a composition of 50 operators R, S, K which act on 24-fold tensor
product of the g-oscillator Fock space. Reflecting the subalgebras A, (B3), A,(C3) C
A, (Fy),itisreduced to the composition of the two kinds of the 3D reflection equations
(1.7) and (1.8) twelve times for each (Theorem 7.2).

Since the advent of quantum groups in the 1980s [43, 63, 136], algebraic studies
of the Yang—Baxter equation have been done mainly along the quantized universal
enveloping algebras U,. It is also the case for the reflection equation although it
requires more details on their coideal subalgebras. In contrast to this, the argument
so far indicates that the dual quantum group A,(g), although g is hitherto limited
to the classical finite types, is a clue to their 3D versions in (1.3)—(1.9). One of the
main themes of this book is to highlight such utility of the quantized coordinate ring
A, (g) in the theory of integrable systems.

1.5 Feedback to 2D

When going from 2D to 3D, we have dropped the spectral parameters. In general it
is highly non-trivial to keep them in an essential manner in 3D (cf. [11, 154]). On
the other hand, one can take advantage of the 3D structure of the quantized equations
(1.3) to produce rich families of solutions to the original 2D equations (1.1) includ-
ing the spectral parameters.” In fact, all the equations (1.3) by construction admit
the composition in the “third direction”, i.e. auxiliary space, for arbitrary n times.
Moreover, one can bring the two spectral parameters x, y back thanks to the weight
conservation under the equivalence (1.5). And the last step is to evaluate R, K, F
away appropriately to return to the original equations (1.1). Such a reduction is done
by taking the trace or the expectation value (n|(- - - )|n’) between the eigenvectors of
R, K, F called the boundary vectors. As the result one obtains the solutions of the
2D equations (1.1) expressed by matrix product formulas as

R(z) =Tr(Z"L-- L), K@) =Tr"G---G), X()=Tr"J---J)
by the trace reduction, and
R(@) = ("L~ Lin), K@) = (@l"G -~ Gli'), X(2) = ("] -~ J|)
by the boundary vector reduction. The symbol h denotes the g-oscillator number
operator (3.14). We have n-fold matrix products of the quantized amplitudes L, G, J

to evaluate the trace or (n|(---)|n’) over the auxiliary g-oscillator Fock space. A
similar method can be applied also to the tetrahedron equation of RRRR = RRRR

9 For the Yang—Baxter equation, one may say that almost any trigonometric solution should be just
the image of the universal R in principle (top down). True. However, to describe or construct one
in a tractable manner is another problem of individual interest (bottom up). A typical recipe of the
latter is the fusion construction. The 3D approach briefed in this section is another having its own
intriguing scope.
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type (1.6). Up to an overall scalar, these solutions are trigonometric, i.e. rational in
q and z. They are characterized in a standard manner by the symmetry with respect
to quantum affine algebras or their Onsager coideal subalgebras.!”

Typically, R(z) are identified with the quantum R matrices of the symmetric and
the anti-symmetric tensor representations of U p(Afll_)l) (Chaps. 11 and 13), the spin
representations of U,(B"), U,(D{"), U, (Dfﬁzl) (Chap. 12), and the g-oscillator
representations of U, (C"), U,(A), U, (D,(ﬁzl) (Chap. 14) with appropriate adjust-
ment of p and ¢g. The matrix product formulas suit computer programming and pro-
vide us with a good practical access to those R and K matrices associated with the
higher “spin” representations of the higher rank algebras.

Another beneficial insight from the matrix product structure is the interpretation
of 2D systems as 3D ones. In fact, commuting row transfer matrices in the former
are naturally regarded as layer transfer matrices in the latter, where rank n plays the
role of size. An intriguing offshoot in such a direction is a matrix product formula
for stationary probabilities of the 1D Markov process called the multispecies totally
asymmetric simple exclusion process (TASEP) (Chap. 18). It reveals a hidden 3D
structure in the 1D system, where the system size in the 3D picture is given by the
number of species of the particles.

1.6 Layout of the Book

This book is intended for readers who have some familiarity or basic knowledge
about quantum groups and the Yang—Baxter equation or their application to integrable
systems. Rudiments of the subject can be found for example in [10, 29, 51, 65].

In Chaps. 2-38, the tetrahedron equations and their relatives are studied from the
viewpoint of the quantized coordinate ring A, (g) individually for g = A, B, C, Fy,
G». They are based on concrete presentation by generators and relations (except for
Fy). The basic flow of the argument is parallel and all the essences are contained
already in the type A case (Chaps. 2 and 3). Chapter 9 is a discussion on a possible
generalization to non-crystallographic Coxeter groups.

Chapter 10 is unique in that a universal definition of A,(g) free from concrete
presentations is given together with the basic aspects like U, (g) bimodule structure
and the RTT relation, etc. The main result is Theorem 10.6, which identifies the
intertwiner of A, (g) modules with the transition coefficients of the PBW basis of the
positive part U q+ (g) of U, (g). It is readable without heavily consulting other parts of
the book.

Chapters 11-17 describe the 3D approach to the Yang—Baxter, reflection and G,
reflection equations. Families of solutions in matrix product forms are constructed
by the trace and the boundary vector reductions. They are characterized in terms of
quantum affine algebras and their representations with precise details depending on
the reductions.

10 Ty characterize X(z) for G5 in such a quantum group theoretical framework is an open problem.
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Finally, Chap. 18 presents a further application of the 3D approach to the multi-
species TASEP, which may be viewed as a feedback to 1D. It is readable based on
relevant parts in Chaps. 2 and 3 only.

These features of the chapters are roughly summarized in the following diagram:

18 14 13 11 12----16 15 17

As mentioned before, for those who wish to concentrate on the tetrahedron equa-
tion or type A case for a start, Chaps. 2 and 3 will suffice. Their applications to the
Yang—-Baxter equation are presented in Chaps. 11, 12, 13 and 14 with the increasing
complexity in this order. Chap. 18 also provides yet another application encompass-
ing a seemingly quite different topic.

Readers who are interested in the type BC case and the 3D reflection equations
can find the basics in Chaps. 4 and 5 and slightly supplementary Chap. 6. Their
applications to the 2D reflection equation are treated in Chaps. 16 and 15 which are
parallel in spirit with Chaps. 11-14.

The other part consists of more or less independently readable Chaps. 8 and 17
concerning the G, case, Chap. 7 on Fy4, Chap. 9 on non-crystallographic Coxeter
groups, and Chap. 10 on the connection with the PBW basis.



Chapter 2 ®)
Tetrahedron Equation e

Abstract In this chapter we introduce a few versions of tetrahedron equations with
graphical representations and explain their basic features. The main players are the
linear operators which we call 3D R and 3D L. They play a key role in this book.

21 3DR

Let F = @ C|m) be a vector space with basis {|m)}. It can either be finite- or
infinite-dimensional, although our main example in later chapters of this book will
be an infinite-dimensional Fock space of a single g-oscillator. Let R be a linear
operator on the tensor cube of 7 :

R:FRFQF > FRF QF. 2.1)

Its action is described as

RN ® 1)@ k) =) Rila) @ |b) ® |c) 22)

a,b,c

in terms of matrix elements R}’ “”C . In our main example introduced in Chap. 3, Rl"ﬁf €

Z[q] holds. Assigning a blue arrow to each ¥, we depict it as

abc _
ijk

J (2.3)

The operator R itself will be depicted by the same diagram without indices a, b,
¢, i, j, k. It is natural to regard R as the basic constituent of the 3D cubic lattice
whose edges are assigned with the degrees of freedom of ¥ . In this sense R will be
called 3D R! provided that it satisfies the tetrahedron equations explained in Sect. 2.2.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 9
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One may describe an operator R € End (7 ®3) in other ways. For instance, (2.2)
can also be presented as

R(i) ® 1)) ® lk)) = Z la) ® |b) ® R{P|k) 24
ab

interms of an operator R{ € End() suchthat R [k) = }__ R{/|c). Itis equivalent
to the decomposition

R= )" Eu®E;®RY 2.5)
a,b,i,j

with respect to the matrix unit E;;|k) = 8«|i) in End(¥). The formula (2.5) may be
interpreted as defining a statistical model on the 2D square lattice in which the con-
figuration a, b, i, j around a vertex is assigned with the End(¥)-valued Boltzmann
weight Rf‘jb. Similar formulations are possible in which Rl-“f’ is put in the first or the
second component in (2.5).

2.2 Tetrahedron Equation of Type RRRR = RRRR

By tetrahedron equation of type RRRR = RRRR, we mean the following:
R124R135 Ro36 Ras¢ = Ruse R36 Ri3s Rioa. (2.6)

See Fig.2.1.
It is an equality in

1 2 3 4 5 6
End(7®%) =End(f @ F QF @ F @ F @ F), (2.7)

where the superscripts are just labels of the components. The indices in (2.6) specify
the components on which a 3D R acts non-trivially. For instance, one has

Ri24(|i) ® 1)) ® k) ® [I) @ |m) Q |n))

=" RYNa) ® b) @ 1K) ® [c) ® Im) @ [n). (2:8)
a,b,c
The indices a, b, ..., k of R“L}f referring to the bases should not be confused with

those in (2.6) spe01fy1ng the tensor components. In terms of matrix elements, the

! 'We prefer this nomenclature than “3D R matrix” since it is shorter and moreover it will be put in
a parallelism with some other (typically, set-theoretical) version of R, which is no longer a matrix.
See (3.158). A similar feature holds for 3D K in Chap. 4 and so on.
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6 6

Fig. 2.1 A graphical representation of the tetrahedron equation (2.6). Each arrow is assigned with
the space 7. Following the arrows leads to the designated compositions of R. The six arrows form
the tetrahedron which are “reversed” in the two sides

tetrahedron equation (2.6) is expressed as
abd ajce pbicif dl"—’lfl def bcfl acie; paibid;
Z Ralbld Razlclel szcz h T der fr — Z Rdlel fittbiei fa Ralclzéz Ra2b2d2 (2.9)

for arbitrary a,b,c,d,e, f and a, by, ¢z, d>, €3, f>. The sums are taken over
ai, by, c1,dy, er, fi on both sides. So if ¥ were 2-dimensional for instance, there
are 2!2 equations on 2° unknowns containing 2° summands on each side in general.

One way to remember the arrangement of many indices in (2.6) is to compare it
with the Yang—Baxter equation

RipR13R2; = Rz Ri3R10. (2.10)

Formally replace Rj», R;3, Ry3 here by the 3D R’s R4, R135, R3¢ Which also act
on the extra auxiliary spaces 4, 5, 6, and relax the equality (2.10) to the similarity by
the conjugation by Rys¢. The result becomes the tetrahedron equation (2.6). See also
Fig.2.4. This viewpoint of the tetrahedron equation may be regarded as a quantization
of the Yang—Baxter equation along the direction of the auxiliary spaces. It will be a
key to the applications in Chaps. 11-14. Putin the other way, the tetrahedron equation
(2.6) should be reduced to the Yang—Baxter equation (2.10) as soon as the auxiliary
spaces 4, 5, 6 are suppressed appropriately.

Figure2.2 is a 5-frame cartoon producing each side of (2.6) as successive trans-
formations induced by parallel shifts of arrows. In such a presentation, each 3D R
corresponds to a reversal of a triangle.

A physical interpretation of the tetrahedron equation is provided in terms of scat-
tering of infinitely long straight strings moving in R? forming world sheets. An
intersection of two and three world sheets is endowed with ¥ and 3D R respectively,
where the latter is regarded as the three string scattering amplitude. Then (2.6) rep-
resents that the four string scattering amplitude is independent of the order of the
constituent 3D R’s. It is a 3D analogue of the property known as “factorization con-
dition” in completely integrable quantum field theory in 1+1 dimensions represented
by the Yang—Baxter equation.
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1|2 3
4
R456/ S R4
6 N
1 2 3 N
- 13
6 2
5 5
\ / 6
Y Y
R236 ﬂ ﬂ R135
6 4
1 3
7 5
S 2
31
\ / 6 \
Y Y
Riss U M R3¢
6 4
> 5
30U 2
4 5 6
\ / 3 1\
Y Y
6 /
Rm\‘ 5 Rise
4
3 2|\t

Fig. 2.2 Successive shifts of arrows leading to the composition of 3D R’s in (2.6). Each intersection
of arrows is assigned with a space 7. A reversal of an oriented triangle i — j — k corresponds to
Rijk. The black arrows here are different in nature from the blue ones in Fig. 2.1 carrying #. They
will be assigned with another vector space V in the next section. The figure essentially depicts the
manipulations in (2.22) and (2.23)

The tetrahedron equation also serves as a sufficient condition for the commuta-
tivity of layer transfer matrices in 3D lattice models. This aspect will be argued in
Sects. 11.6, 12.3, 13.8 and 18.4.
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23 3DL

Let V = P, Cv; be another vector space with basis {v;}, which is different from 7
in Sect. 2.1 in general. Again it can either be finite or infinite dimensional although
our main example in this book corresponds to the finite dimensional choice V = C2.
We introduce a linear operator L:

L:VRVRF >VRVRF. @2.11)

It is described either in the following two ways:

Lwi®v;® k) =Y v, ®v,® LK) (2.12)
a,b

= Z L% v, ® vy ® |c) (2.13)
a,b,c

?jb € End(¥) or the matrix element Lf]’}{‘ € C which are

connected by L;ljb ky=>". L?jbkc|c). The sums over a, b here range over a different
set from (2.2) in general although the same letters a, b have been used. We write
symbolicallyas L = (Lf;’,f) andalsoas L = (L?_;’) with the operator-valued elements.
Assigning a blue arrow to each # as before and a black arrow to V, we depict the

elements as

in terms of the operator L

b b
be _ i k b_ .
Lo = ) Leh = ,AF» a
J j (2.14)

L;’;’ is also depicted as the left diagram of (2.26). It should be understood as an
element of End (%) living at the vertex formed by the black arrows. The operator L
can be considered as a unit of the 3D cubic lattice in which the two edges are assigned
with V and the other one with 7. In this sense L will be called 3D L provided that
it satisfies the tetrahedron equation of type RLLL = LLLR explained in the next
section.

2.4 Tetrahedron Equation of Type RLLL = LLLR

Let R be a linear operator on F®* as in (2.1). By the tetrahedron equation of type
RLLL = LLLR, we mean the following variant of (2.6):

Li24L135L236 Rass = RaseL23sL135L124. (2.15)
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It is an equality in

1 2 3 4 5 6
End(VQVVIFRF QF), (2.16)

where, as in (2.7), superscripts specify the components on which the operators in
(2.15) act non-trivially. For instance, one has
L124(Ui ® Uj ® Uk ® |l> ® |m) ® |I’l>)
= L0 ® v ® v ® [¢) ® m) @ n). 2.17)

a,b,c

A pictorial representation of (2.15) is obtained by replacing the blue arrows 1, 2,
3 in Fig.2.1 with black ones as in Fig.2.3.
In terms of the operator Lf].b in (2.12), the Eq. (2.15) is equivalent to

D ULGOLE®LR=RY (L7OLISLS) 218
o, B,y a. By

for arbitrary a, b, c, i, j, k. See Fig.2.4.

21 )
4 3 1
3 =
4
5
5
6 6

Fig. 2.3 A pictorial representation of the tetrahedron equation of type RLLL = LLLR (2.15).
The black arrows 1, 2, 3 and the blue ones 4,5,6 are assigned with V and F, respectively

Yapy Y . u °oR = ZXapy Ro j > 4

k k

. . . . b . . .
Fig. 2.4 A pictorial representation of (2.18). The operator L?j is depicted as in (2.14)
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2.5 Quantized Yang-Baxter Equation

We call RLLL = LLLR also the quantized Yang—Baxter equation, which implies
a Yang—Baxter equation up to conjugation. As remarked after (2.10), the Eq. (2.18)
possesses such a structure where the 3D R plays the role of conjugation:

ik kg
(L12 L13 Ly3)Riji = Riji(Laz L1z Li2). (2.19)

i X y i
Here L, denotes the matrix on V ® V whose elements are End (%) valued.?

We will also frequently encounter another equivalent form in terms of S;j; =
i k

Py Ri; ,i P;, where P;; denotes the exchange of the components  and 7 :

ko j i ik
Sijx(L12 L13 La3) = (L23 Ly3 L12)Sij. (2.20)

The use of R or S is a matter of convention. In our main example in later chapters,
we have R = R~! = Py3R P;3 from Proposition 3.7, hence S = R.

As we shall show below, it implies the tetrahedron equation of type RRRR =
RRRR provided that #%° is irreducible as a module over an algebra generated by
3D L.

6 5 4 3 2 1

Consider the composition S124513s S236S456Lab1;m. LyeLagLpgLcq, which is rep-
resented by the top diagram in Fig.2.2, i.e.

2.21)

where each vertex corresponds to Lj’f’ according to the right-hand diagram in (2.14).
Applying (2.20) successively following the LHS of Fig.2.2, we get

i
2 xy has also been denoted by Ly; in (2.15). We allow the coexistence of the two notations to
save space in a maneuver like (2.22)—(2.23).
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6 5 4 3 2 1
812481358236 5456 Lab Lac Lbc Lad Lbd Lea

45 6 3 2 1

= 812451358236 Lboc Lac Lab Lad Lbd L cd S456
4 5 2 3 6 1

= $1248135Lpc Lac Lpa Lad LabLed S236 5456

4 2 5 3 1 6

= 81248135Lpc Lba LacLad Led Lab $2365456 (2.22)
4 2 1 3 5 6

= S124LpcLpdLedLadLacLabS13552365456

1 2 4 3 5 6
= LeqLpdLpcLadLacLabS124513552365456,

1 2 3 4 5 6
= LeqLpaLadLpcLacLapS12451355236 5456

where the underlines indicate the components to be rewritten by (2.20) or by the
obvious commutativity. Similarly, the RHS of Fig.2.2 leads to

6 5 4 3 2 1
S456523651358124 Lap Lac Lpc Lag Lya Lca

6 5 3 4 2 1
= 84565236 51358124 Lap Lac Laa Lpc Lpa Led

6 5 3 1 2 4
= 845652365135 Lap Lac Laa Lea Lpa LpcS124

6 1 3 5 2 4
= Su568236 Lap Lea LaaLacLyaLpeS1355124 (2.23)

1 6 3 2 5 4

= 84565236 Lcd Lab Lad Lpa Lac LeS135S124
1 2 3 6 5 4

= Sus6Lca LpaLaaLapLacLpcS2365135S124

1 2 3 4 5 6
= LegLpaLaaLpcLacLapS4565236 51355124

From (2.22) and (2.23) we see that (S124SI35S236S456)71S456S236S135$124 com-
6 5 4 3 2 1
mutes with LupLaeLpeLagLpaLeq. Therefore if F®° is irreducible under the
6 5 4 3 2 1
action of LabLacLbcLadLdecd, Schur’s lemma compels S]24S13552365456=

const S45692365135S124. We will make the irreducibility argument precise in Sect. 3.5.2
along the main example of the book.

2.6 Tetrahedron Equation of Type MMLL = LLMM

We will also be concerned with another version of the tetrahedron equation which
we call MMLL = LLMM type. Consider the 3D L and its variant M both living
inEnd(V®®V®F) as
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L= ) Ei®Ey;®Lj. (2.24)
a,b,i,j

M=) Ei®E;®M]. (2.25)
ab,i,j

where L??’ , M ﬁb € End(¥), and E;; is a matrix unit on V. The decomposition (2.24)
is just (2.12). According to the left-hand diagram of (2.14) without the indices c, k,

: b b g
we depict the operators L, M

b b
1) a 13 a
j j (2.26)

Here, the black arrows carry V while the blue and green ones carry the space . As
usual we will write Lyys =Y 1 Q E;; @ 1 Q Ej ® Lf‘jb ® 1, etc.
By tetrahedron equation of type MM LL = LLM M we mean the following:

Mi26M346L135L24s = LoasL135M346 M. (2.27)

1 2 3 4 5 6
This is an equality in End(V® VQ V® V ® F ® F) (Fig. 2.5).
Let us operate (2.27)toavectorv; Qv; @y QU [ X) @ [Y)inVR VIV ®
V®F ® F. The LHS gives

ViRV U Y X IX)®[Y)
By ueueuene LX) el
Y v ®@us @0, ®u e LY LY 1X) ® 1Y) (2.28)
S v @ vy © v @ vy ® LY LI 1X) © ML)

M’)
P23 e ® Uy ® e ® ws © LY LEIX) © MUMLAY).

3 /\4
3

Fig. 2.5 A graphical representation of the tetrahedron equation of type MM LL = LLM M (2.27)
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A similar calculation for the RHS reads as
ViRV ®U U ®IX)®[Y)
S v 0ueueuelX) oMY y)
B3 v @00, ®u e |X) @ M M) (2.29)
Y 0 @ up @ v ® vy ® LX) @ MM |Y)

Loss

P 0, ® vy @ ve ® vg ® LEILL |1X) @ MY MP|Y).

The sums extend over an appropriate subset of variables {a, b, ¢, d, «, B, y, §}. Com-
1 2 3 4
paring the transitions v; ® V; @ Vi QU > V, QV V. QU IN VRV RV RV

for the two sides, we see that the tetrahedron equation (2.27) is equivalent to the
totality of relations

YooLyL oMM = Y LiL @ Ml MY (2.30)
a.B.y.8 a,B,7,8

in End(¥ ® ) for all the base labels a, b, ¢, d, i, j, k,I of V. We will see the
applications of MM LL = LLM M type tetrahedron equation in Chaps. 6 and 18.

2.7 Bibliographical Notes and Comments

The tetrahedron equation was first proposed in [153] as a three-dimensional analogue
of the Yang—Baxter equation. It was followed by early pioneering works [11, 12,
154], where the first non-trivial solution was established and the partition function
of the associated 3D lattice model was computed exactly.

There are basically three versions of tetrahedron equations depending on whether
“spins” are assigned to 3D regions, 2D faces or 1D edges as in Fig. 2.1.> The original
one [153, 154] regarded as a face version was reformulated as an IRC (Interaction
Round Cube) model which corresponds to a region version [11, Eq. (2.4)]. The Eqgs.
(2.6) and (2.15) that will be considered in this book are the edge version, which is a
natural 3D analogue of the vertex models in 2D in the sense of [10]. For the relation
and transformations between various formulations, see [58] and [77, Chap. 1], where
the latter reference explores a hieroglyphical description by 2-categories.

After the initial breakthrough, a new development in the 1990s was the unexpected
connection [14, 72, 73, 133] of the original model [11, 153, 154] to the Chiral Potts
model [5, 13] and its generalizations [15, 33]. They are associated with quantum

31In yet another context, there are also set-theoretical versions. Typical of them are birational
(also called functional) and combinatorial (also called tropical) ones, which will be explained
in Sect. 3.6.2.
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groups with g atroots of unity, where the spectral parameters are effectively upgraded
to the points on a higher genus algebraic curve.

The tetrahedron equation of type RLLL = LLLR has appeared in numerous
guises and is referred to also as a local Yang—Baxter equation, tetrahedral Zamolod-
chikov algebra (when one R is suppressed), quantum Korepanov equation, etc. It
has been studied in various contexts in [16, 18, 42, 69-71, 74, 80, 107, 114, 115,
135]. Our naming “quantized Yang—Baxter equation” is meant to indicate the con-
jugacy equivalence RRR >~ RRR or LLL ~ LLL. It is sometimes confused with
the “quantum Yang—Baxter equation” which is often used to mean the usual Yang—
Baxter equation RRR = RRR for distinction from the classical Yang—Baxter equa-
tion [r, r] + [r, r] 4 [r, r] = 0[20]. The reason we nevertheless adopt the nomencla-
ture is that we are to encounter the quantized reflection equation and the quantized
G, reflection equation in exactly the same vein in later chapters of the book.

The tetrahedron equation of type MM LL = LLM M has appeared in [18, Eq.
(34)] and [90, Theorem 3.4]. We will present its application to the proof of RTT
relation of A, (B,) in Chap. 6 and also to a multispecies totally asymmetric simple
exclusion process in Chap. 18.

Generalizations of the tetrahedron equation to higher dimensions are called sim-
plex equations. See for example [19, 28, 40, 48, 115, 118] and the references therein.
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of Type A

Abstract Letgbeaclassical simple Lie algebraand U, (g) be the quantized universal
enveloping algebra of g. There is a Hopf algebra dual to U, (g) which corresponds to
a g deformation of the algebra of functions on the Lie group of g. It will be called the
quantized coordinate ring and denoted by A, (g) in this book. We assume that g is
generic throughout. In this chapter, A, (g) for g of type A is treated based on a concrete
realization by generators and relations, deferring a more universal formulation to
Sect. 10.2. It turns out that an intertwiner of certain A, (g) modules leadstoa3D R, a
solution of the tetrahedron equation. It has set-theoretical and birational counterparts
which satisfy the tetrahedron equation in the respective setting. The birational case
admits bilinearization in terms of tau functions.

3.1 Quantized Coordinate Ring A, (A,_1)

Let n > 2 be an integer. This chapter is devoted to the type A case g = A,_;.!
The quantized coordinate ring A,(A,_;) is a Hopf algebra [1] with n? generators
(tij)1<i, j<n- In terms of the n by n matrix T = (;;), their relations are presented in
the so-called RTT = TT R form and the unit quantum determinant condition:

D Ribptmktor = ) tiptin Ry} (3.1
m,p m,p

Z (_q)l(a)tlal T tmr,, = 1. (32)
eSS,

The former is called the RT T relation. The symbol &, denotes the symmetric group
of degree n and (o) is the length of the permutation o. The structure constant R,
is specified by

! Although, Theorem 3.3 is valid for general classical simple Lie algebra g.
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Z R/ijllEik ®Ej; = quii ® Ej; +2Eii ®Ej+(q —CI_I)ZEU ® Eji,

ijkd i ij i>j
(3.3)
where the indices are summed over {1, 2, ..., n}, and E;; is a matrix unit. The matrix
(3.3) is extracted as
> Ry Ein ® Ej=q lim x™' R(x)|j—g (3.4)
X—> 00

i,j,m,l

from the quantum R matrix R(x) for the vector representation of Uq(Aflll 1) given
in [64, Eq. (3.5)].2 Explicitly, the relation (3.1) reads as

0 (i<j,k=>0D,
[tix, tji] = i T
(g —qg Dty (G < j k<), (3.5)

tiktix = qtjetix (0 < J), ity = qigit @ < J).

The coproduct or co-multiplication is given by

Atj) = Zt,‘k ® tj. (3.6)
k

We will use the same symbol A flexibly to also mean the multiple coproducts like
(A®1)oA=(1® A)oA,etc. The antipode S and the counit € are given by

St =(q) 7 Y (=)t it i (3.7)

UEGn,l

E(lij) = (S,‘j. (3.8)

The sum in (3.7) is the quantum minor which extends over permutations of

(..., n}\ {i}.

Example 3.1 The simplest case n = 2 is A,(A}). It is generated by #,y, t12, t21, 122
with the relations

hihi = qiati,  tiohn = qinty, titiy = qtphy, hiln = qinhi,

3.9)
[t2. t11=0, [ti, o] =(q —q Dtutn, titn — gtk = 1.

The quantum determinant ¢1t; — qt12t>; appearing in (3.9) is central. The rule (3.6)
implies that the coproduct A is obtained by formally replacing the product in matrix
multiplication by ® as

2 In Chaps. 3, 5, 6 and 8, the quantum R matrices and their elements Rir{l appear only as the structure
constant in the RT T relation. They should not be confused with those of the 3D R.
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(ln l12) A (ln QU +112Qh 1@ +112Q® tzz) (3.10)

11 1o 1@ +in®h H Ol +1nln

The multiple coproduct is similar. It is easy to check that A is an algebra homo-
morphism, for example, A(t;) A(t1) = g A(t21)A(t1) by using (3.9) and (3.10). A
defining axiom m o (1 ® S) o A =1 o € for example,? is checked as

01 @ty + 10 ® (—qta) 11 ® (—q '112) + 1o ® 1

_ g
Ry Il — gzl 61_]l11!12 + tiaty _ 10 ' G.11)
hihy — qipnh) —q~ bt + it 01

(3.10) 1gs (fll Q1+t Q (—qhy) 111 @ (—q ') + 12 ® 111>

A sketch of “derivation” of the relations (3.9) from the dual U, (sl) is available in
Example 10.2.

Remark 3.2 Themapt; — & ;1§kz ik with non-zero parameters &y, . . ., §, isaHopf
algebra automorphism. ‘

3.2 Representation Theory

Let Osc, = (a*,a™, k, k') be the g-oscillator algebra, i.e. an associative algebra
with the relations

kat =ga'k, ka =g 'a’k, aat=1-¢%%% afa =1-k> (3.12)

and those following from the obvious ones k k! = k~'k = 1. It has an irreducible
representation on the Fock space 7, = P, C(q)|m):

kim) = g"|m), a*lm)=|m+1), a"|jm)=(1—-g"")|m—1). (3.13)
In particular a=|0) = 0. The generators a* and k*! will be identified with the ele-
ments of End(¥,) defined by (3.13) unless otherwise stated. We will also use the

diagonal operators h and D, such that

h|m) = m|m), (3.14)
Dylm) = (gH)nm). (3.15)

Thus we may identify k as k = ¢". An eigenvalue of h will be referred to as a mode
of the g-oscillator. For the notation (g2),, = (¢%; ¢*)m, see (3.65).

3 { and m are the unit and the multiplication of the Hopf algebra A4 (A1) under consideration.
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We will also be concerned with the dual Fock space 7 = P,,..c C(¢) {m| whose
pairing with ¥ is specified by

(mlm') = (@) (3.16)
The g-oscillators act on ¥/ as
(mlk = (mlg", (mla® = (m—1](1—¢*"), (mla” = (m+1]| (3.17)

and (m|h = (m|m. In particular (O]a™ = 0. They satisfy ((m|X)|m’) = (m|(X|m’))
and

(m|Xy - Xjlm'y = (m'|X; - Xi|m), (3.18)

where (- - -) is defined by a* = a¥, k =k and h = h.
The algebra A,(A;) in Example 3.1 has the irreducible representation 7 on %,
depending on a non-zero parameter u as follows:

Hi tin a-  puk
: — _ . 3.19
d <121 fzz) <—61M 'k a+> ( )

For A, (A,—_1), there are similar representations
it Ag(Apm1) = End(F,) (1 <i<n-1). (3.20)

It contains a non-zero parameter p; and factors through (3.19) via the surjective
map A, (A,—1) — A,(sly;). Here, sl,; denotes the A; = slp-subalgebra of A,_;
associated with i. It is given by

11 tin 1

ti—1,i—1 1
tii i+l a~ 1 ik (3.21)
fit1,i tiglitl —qu; k at '

tit2,i+2 1

In1 Inn 1

where all the blanks on the RHS are to be understood as 0. It is easy to see that
i, ..., T,— are all inequivalent and irreducible. Starting from them, one can con-
struct tensor product representations 7; ® --- ® 7w, : Ag(A,—1) — End(?—'f’) via
[ (i, ®- - ®m;,)(A(f)) using the multiple coproduct A obtained by iterating
(3.6)1 — 1 times. A natural question at this stage is, what is the totality of irreducible
representations up to equivalence and how they can be realized. The answer has been
known for A, (g) associated with any classical simple Lie algebra g.
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Theorem 3.3 (i) For each vertex i of the Dynkin diagram of g, A,(@) has an

irreducible representation w; factoring through (3.19) via A, (g) — Ay, (sla;).

(ii) Irreducible representations of A,(g) up to equivalence are in one-to-one cor-
respondence with the elements of the Weyl group W of g.

(iii) Let w =s;, ---5;, € W be a reduced expression in terms of the simple reflec-
tions. Then the irreducible representation corresponding to w is isomorphic to
T[il ®®T[11

In(i),q; = q“*)/2, where ; is a simple root.* The assertions (ii) and (iii) actually
hold up to the degrees of freedom of the parameters as p; in (3.19). See [138, 139,
146] for the detail. We call w; (i = 1, ..., rank g) the fundamental representations.
We will often denote 7;, ® - - - ® m;, by 7, ;, for short.

Returning tothe g = A, _ case, the representations ry, . . ., m,_; definedin (3.21)
are the fundamental representations of A, (A,_;) in the above sense. The Weyl group
W(A,-1) = (s1,...,8,—1) is generated by the simple reflections sy, .. ., s,—1 obey-
ing the Coxeter relations

s2=1, sisp=sj8 (i —jl=2), sisjsi =s;85; (i —jl=1). (3.22)
From the second relation here and Theorem 3.3 (iii) it follows that m; @ m; ~ 7; ®
m; for |i — j| > 2. This isomorphism is simply provided as the transposition of
components:

Px®y)=yQ®x. (3.23)
In order to show this, one should check that

P @ mj)(A(f) = (; @ m)(A(fNP  (li —j|=2) (3.24)

holds for any f € A;(A,—1). Since A is an algebra homomorphism, it suffices to
consider the f = 1, case:

P(X i) @ 7)) = (Y7 @ miln) )P for Ji = jl =2, (3.25)
1 l

which is equivalent to

> wim) @ mitn) = Y 7 (t) @ mit)  for i —jl =2 (3.26)
! !

This indeed holds thanks to the simple and sparse structure of (3.21).

Remark 3.4 Not only for A,_; but for general g, the equivalence of 7; ® 7; ~
7; ® m; for i, j such that s;5; = s;5; is always assured by the transposition P in
(3.23).

4 We normalize the simple root so that ¢; = g when g is simply-laced or ; is short.
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By virtue of Remark 3.2, all the parameters wur, ..., i, in the fundamental
representations 7y, . .., 7,—; are removed by the choice &; = ]_[,J{;; . Henceforth
weset 4] = --- = u,—1 = | in the rest of the chapter without loss of generality.

3.3 Intertwiner for Cubic Coxeter Relation

The isomorphism of the two irreducible representations will be called the intertwiner.
By Schur’s lemma, it is unique up to the overall normalization. The transposition P
in (3.23) is the intertwiner corresponding to the quadratic Coxeter relation.

Let us proceed to the cubic one. In view of the structure (3.21), it suffices to
consider A, (A,) and the equivalence 1y 2 7,1, reflecting the Coxeter relation
$15281 = $25152. Let

O F,@F QT — Fu®@F, ®F, (3.27)
be the associated intertwiner. It is characterized by the relations:

P o1 (A(f)) = mn2(A(f)) o @ (Vf € Ay(Ar)), (3.28)
(10) ® 10) ® [0)) = [0) ® |0) ® |0). (3.29)

The latter just fixes the normalization. The absence of terms other than |0) ® |0) & |0)
in its RHS is assured by the weight conservation. See (3.48), (3.47) and (3.30).
It is convenient to work with R defined by

R=®P;3: FF;0F; — F, F, ®F,. (3.30)

Here P;3 is the interchanger of the first and the third components defined before
(2.20). We also call R the intertwiner. It will be shown to satisfy the tetrahedron
equations of type RRRR = RRRR in Theorem 3.20 (and also RLLL = LLLR in
Theorem 3.21), therefore R is a 3D R in the sense of Sect. 2.1. From (3.28) and
(3.29), R is characterized by

Romin(A(f)) =mnn(A(f) o R (Vf € A (Ar)), (3.31)
R(10) ® [0) ® |0)) = [0) ® |0) ® |0), (3.32)

where A(f) = Pi3(A(f)) Pi3. From (3.6) we have

A(tj) = Z ti, ® th, ® 1, At) = Z i ®t, ®tiy,.  (3.33)

1<l,hb<3 1<l,,L<3

According to (3.21), the image of the 9 generators T = (%;;)1<;, j<3 by the fundamen-
tal representations reads as
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a= kO 10 0
(T = | —gkat 0|, m@=|02a k|. (3.34)
0 01 0 —gk at

From (3.33), w121 (A(T)) is expressed as

a ®l®a —¢gk®a ®k k®a ®a'+a ®1®k kQk®l
—g(a"®a k+k®1®a) at®a ®a" —gk®1®k atk® 1
’1k®k —gl®k®a" Iat®1

(3.35)

121 (A(T)) is given by reversing the order of the tensor product as
2 ®I®a —¢gk®a ®k a"®a ®k+k®1®a 1Qk®k
—gk®a ®at+a ®1Qk at®a ®at-¢gk®1®k 19k®a’
’kk®1 —gatk®1 Ipat®1
(3.36)

1712 (A(T)) takes the form

I®a~ ®1 I®k®a~ I9k®k
—ga ®k®l a ®ata —¢k®1®k a atk+k®l®at |.
’kek®1 —gk®at®a +at®1®k) at®l®at —gk®at @k
(3.37)
Thus the intertwining relation (3.31) reads as
1 R@ ®1l®a —gk®a k)=(1®a Q1)R, (3.38)
t: R@a™"®@a ®@k+k®1®a)=(19k®a )R, (3.39)
f3: RO®k®K) = (1 @k ®K)R, (3.40)
mn: Rk®a ®a"+a 1@k =@ ®k® DR, (3.41)
tn: R@A"®a ®at —¢k®1®k =@ ®at®a —¢gk®1®K)R,
(3.42)
tn: RORk®a) =@ @at®k+k®1Q®a")R, (3.43)
f1: REQk®1) =k®k® DR, (3.44)
tn: R@T®k®1)=k®a"®a +a" ® 1 ®Kk)R, (3.45)
f: RO®a™T @) =@"Q@1®a" —gk®a" ®Kk)R, (3.46)

where the left column specifies the choice of f in (3.31).
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The intertwiner R is regarded as a matrix R = (R{j) acting on F,®* as

RN ® /) ® k) = > R¥la) ® 1b) ® [c). (3.47)

a,b,c

The normalization condition (3.29) becomes R3SS = 838585. The simplest equations
(3.40) and (3.44) imply

RYE =0 unless (@a+b.b+c)=(i+j.j+k. (3.48)

This property will be referred to as the weight conservation. It may also be rephrased
as

R,"®"®1]1=[R,197"®" =0, (3.49)

where h is the number operator (3.14) and z is a non-zero parameter. The other
equations lead to recursion relations of the matrix elements as follows:

t1: g T A=PDRE L+ =g PRI = A=g?) (1= RNy (3.50)

i,j.k

21 ¢ (1= RN+ A=aPOREE = ¢" A= PRI (3.51)
D10 q (A= R oy + ¢ A=PDREN = " (1=g* )R] T, (3.52)
t: q(qa+c_qi+k)RZ}gfkc + (l—qzj)Riairbf,cj—l,kH _ (1_q20+2)(1_q25+2)R2;}6,b—1,c+1’

(3.53)
3! ROVE, = q RO — g (A =g* PRI =0, (3.54)
2t g R — g RENG  +q (1= g PHRED T =0, (3.55)
t33: qa+c+1Ricf,jl?k—l.c _ Rﬁ;llc.b,c—l + R;z]b_;lk —0. (356)

The relations (3.54), (3.55) and (3.56) can be used to reduce k, i and j, respectively.

Consequently, an arbitrary Ry satisfying (3.48) is attributed to R0 = 1. Thus R is
determined only by these relations. Since the intertwiner exists, compatibility of the
reduction procedure and validity of the other relations is guaranteed. The resulting
explicit formula will be presented in (3.67).

Lemma 3.5 Set X;; = (—q)"—f'(S(t4_j,4_,~)|qﬂq_1)’ € Ag(A2) (1 <i, j <3), where S
is the antipode (3.7) and the prime reverses the order of product of generators. Explicitly we
have

X11 =t —q it X12 = ¢ (131112 — qt30t11),
X13 = q (=312 + q13121), X21 = n1113 — g3,
X =t33t11 —q” 131113, X23 = q 2131123 — q133121),
X31 = q(—m2113 +q13112), X3 = 132113 — q133112,

-1
X33 = 13310 —q~ 132023.
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Then the following relations are valid:
12 (AXij) = w121 (A7), m212(AXi))) = w121 (A;)))- 3.57)

Proof The two relations are equivalent by the conjugation by Py3. Let us illus-
trate a direct check of 7,12 (A(X23) = 7121 (A(t23)). The LHS is q_27T212(A(l31t23 —
qt33t21)). Substituting (3.36) and (3.37), we find that the relation to be shown is given
by

kk® D@ ®atk+k®l®a")
+@RIRa—gk®a"kl(a k® ) =19k®a™ .
To check this by (3.12) is straightforward. The other cases are similar. (]

By definition, the transpose 'Y of an operator ¥ € End(¥,) is specified by
Yim)y =Y, c"|m') for Yim) =3, " |m’). Similar notations will be used also
for operators on the tensor product of Fock spaces.

Set

Dy =D, ®D, ® Dy, (3.58)

where D, is defined by (3.15).
Lemma 3.6 The transposed representations are related to the original ones as
"(12(A 1)) = Damtin (Altji) Dy
"1 (A))) = Damaa(Atji)) D!
fori, j €{l,2,3}, wherei’ =4 —1i.
Proof The two relations are equivalent. See (3.33). From (3.13) and (3.15), we see
'(a*) = D,a* D, ' and 'k = D,kD; . They lead to
"71(1;j) = Dyma(tyi) D', "o (tiz) = Dy (1) Dy
for the fundamental representations (3.34). The assertion is a corollary of this prop-

erty. (I

Proposition 3.7 The intertwiner R has the following properties concerning the con-
jugation by P3, the inverse R™" and the transpose 'R:

R = P;3RPi3, (3.59)

R~ ' =R, (3.60)
R = DsRD;". (3.61)
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Proof These properties are proved by invoking the uniqueness of the intertwiner
satisfying (3.31) and (3.32). To show (3.59), it suffices to recognize that the set of
relations (3.38)—(3.46) are invariant under the conjugation by P3.

Next we show (3.60). Comparison of the two choices f =1¢; and f = X;; in
(3.31) using Lemma 3.5 shows that R and R~' satisfy the same set of intertwining
relations. The normalization condition (3.32) is also invariant under the exchange
R <> R7!, hence (3.60) follows.

Finally, we show (3.61). Take the transpose of (3.31). From Lemma 3.6 we find
that DZI’RZ)A again satisfies (3.31). The normalization condition (3.32) is also
invariant under the exchange R < Z);“RZ)A, hence (3.61) follows. ([l

In terms of the matrix elements, the properties (3.59) and (3.61) are rephrased as

Rg]_f;{c — Rliiyla’ (362)
Rabe _ (@i (g RiK

ave _ -~ 727 I T 7 . 3.63
i D@ (@) (5.63)

Remark 3.8 One may introduce another parameter v by replacing the latter two
formulas in (3.13) by a*|m) = v|m + 1), a~|m) = v~ (1 — ¢*")|m — 1) keeping
(3.12) invariant. It corresponds to changing the normalization of |m) depending on
m. The resulting 3D Ris (1 @ V" @ DRI @ v " ® 1).

Remark 3.9 If one switches fromk to k := ¢'/?k including the zero point energy of
the g-oscillator (see (3.13)), all the “non-autonomous” g’s in (3.38)—(3.46) disappear.

It opens an avenue toward another class of 3D R associated with the so-called modular
double of g and g-oscillators. This topic is not covered in this book. See [97]. The
same feature will be observed for the 3D K in Remark 5.5.

Remark 3.10 From (3.16), (3.47) and (3.63), the 3D R acts on the dual Fock space
as

(i1 ® (1 ® kDR = R (al ® (bl ® (cl. (3.64)

a,b,c

3.4 Explicit Formula for 3D R

In this section we present explicit formulas of the matrix elements Rf’j’}f (3.47) of the
intertwiner R characterized by (3.31) and (3.32).
We assume that g is generic and use the notation
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@GO =[]0=2¢". @ =G Dn,

j=1

[Tiei (@),
{rl,--wrm} _ m Vri, si € Lo, (3.65)
S1sev58n )y 0 otherwise,

(), =("0) = L,

Unless stated otherwise, the abbreviation (¢),, = (¢; )., will be used also for (¢),,
with k € Z. Thus (g?),, for instance means (¢%; ¢2),,. The two-storied symbol
in the second line will be used without assuming a “well-poisedness” constraint
Yo ri =Y si. The non-vanishing condition Vr;, s; € Z=¢ is quite important
and will impose non-trivial constraints on the summation variables in what follows.
Jin
JlseeesJn q
particular the n = 2 case in the third line is called the ¢g-binomial.

The Kronecker delta will be written either as 8,5 or §;. We will also use the
notation

The special case { } is a g-multinomial coefficient belonging to Zxo[g]. In

(x)+ = max(x,0) = x —min(x,0) (x € R). (3.66)
Theorem 3.11
2 . .
Rebe — satbghre ™ (L pyrgitempyiter it e (’ ) (J > . (3.67)
jk i+j Y j+k Aéb q (qz)c m " A -

where the sum is over A, (L € Zxq such that A + . = b. (Thus (3.67) is actually a
single sum over (b — i)+ < A <min(b, j) or (b — j)+ < u <min(b,i).)

Proof The prefactor Sﬁ;’SﬁZ represents the weight conservation (3.48). The recur-
sion relations (3.55) and (3.56) can be iterated m times to reduce i and j indices as

m 2
Rabe 3a+b5b+]€ Zq(mfr)(cfj)er(a*j*err) (G)c+r <m> R b=t
e
r=0 q

ijk = Oitj @). \r) i—m,j.k )

m
m .
abc __ qa+b ob+c _ 1\, (a+c—=2m+2r+1) a—m+r,b—r,c—m+r
Riji =858k § :( Dq R; i omk .
r 2
r=0 q

By combining them, general elements are reduced to Rgg,’j. The relation (3.54) shows

that Rgg,f = R)% = 1. The result of these reductions is given by (3.67). (]
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abc

Example 3.12 The following is the list of all the non-zero R;.

R = =1 —gH(1 — %1 — g%,

Ry =0-¢"10-¢0—-q*—q°—q"—q'"",
R3 =q*(1 + )1 +¢H (1 = ¢®)(1 —¢° — ¢,
R;lli — q6(1 +q2 +6]4 _q8 _qlo _ q12 _ q14)’

R405

_ 12
314 =94 -

Remark 3.13 From (3.67) we have

b bc
(=D’ Ri lg—g-
_ sutbghte Z i == DP4220 )2 (qz)cw(i) (J) (3.68)
i+j 2 j+ 2 :
Nyt (@He \W/ 2 \1/ 2

From (qz)chH/(qz)c = (q>*%; qz)u, it follows that (—l)bRi“j’}f > 0 in the regime
qg > 1.

Remark 3.14 Set R(x,y) = (1 ®x"® DR(1 ® y " ® 1), where x, y are non-
zero parameters and h is defined by (3.14). Thanks to the weight conservation
(3.49), R(x, y) also satisfies the tetrahedron equation R4 (x, ¥) Ri35(x, ¥) Raze(x, ¥)
Rius6(x, y) = Ruse(x, y) Raze(x, ¥) Ri35(x, y) Ri24(x, y). In particular, R(—1, 1) has
the elements (—1)le‘.’j}}f. Thus Remark 3.13 shows that R(—1, 1) is a 3D R whose
elements are all non-negative for g > 1.

Example 3.15
Rqoc — ikéfl 5C flbc — qac (qz)i(qz)k {H‘h b+c
ijk i+j%j+k> i0k (qz)a (qz)b(qz)c i k>

i 2
. J bob . icewn @k b
R = (—1)b61b(k+1)<b) 8PN, RUE = (—1)qu(c+1)( 5 80, 80t
q* q-)c
Riji =1-(+4)q™.
It is an easy exercise to deduce a formula for the operator Rl.“].” € End(¥,) in the

general scheme (2.4) by comparing it with (2.2) and using Theorem 3.11. The result
reads as’

leljb :(Si“j;’ Z (_I)Aqk-ﬁ-/ﬂ_ib(;) (]) (a")"(at) kit (3.69)
q* q*

A
ru=b

5 This Rl‘.‘j[7 is not the structure constants in (3.1)—(3.4).
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where the sum extends over A, i € Zs such that A + . = b. As a consequence of
the weight conservation (3.49), Rl?’jb is homogeneous in the sense that

PRI = R (3.70)
Example 3.16
R3O0 RYY RYG RYY 10 0 0
Roo Roi Rig Ry | [0 —gk a= 0 a7
RY RY RIY R 0 at k 0 ’ ’
Ry RY RI R/ N0 00 aat ok

Except for the bottom right element, this coincides with the corresponding matrix
from of the 3D L in (11.14)|,—;. Its consequence will be mentioned in Example 13.1.

R R R 9’k —a'k (@)’
R} R RY [ =] —-q(+¢Ha'k aa® -k ¢7'(I+4¢Pak]|. (372)
R R R3) (at)? atk 'S

Reversing the order of the columns of this matrix coincides with the central three-
by-three block in (8.8) up to coefficients.

Example 3.17 The following formulas will be used in Example 13.1:

m+ 1
q

m,1

m
Rm+1,0 — a+km’ RZII — q1m<< ) afaJr _ k2>km71-
’ 1 q’)
Let us present another formula in terms of the g-hypergeometric function [50]:

a, B (@; @)n(B; @n
i q, = — I I wn, 3.73
24)1( 14 1 w) nzzo(y;q)n(q;q)nw (0.73)

Theorem 3.18
be _ qatbshre 497D 2% 2 2k
R =018 ((]pr(‘l g g™, (3.74)

—2b 2-2b
_ q 7,94 yz
Py(x,y,2) = (@* "2 ¢)p a2t ( R q’, q2x> : (3.75)
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du  (—q* 2 xyzu; %) oo(— 15 ¢%)oo
2riub !t (—xu; %) oo(—2U; ¢2)oo

Py(x.y.2) = q"’“’—”(q%bf . (3.76)

where the integral encircles u = 0 anti-clockwise picking up the residue.

Proof From (3.39)and R=R 'wehave RI®k®a ) =(k®1l®a +at ®
a~ ® k)R. In terms of matrix elements it reads as

q/(l _qZk)RZf}Ccfl — qa(l _q26+2)RiH’,ﬁ;{C+1 + qC(l _q2b+2)Rz;’}c,b+l,C- (377)

Substituting (3.74) into (3.77) and (3.50), we get the recursion relations

(1= 2)Py(x, 3, 22) = q Px(1 — g 22 y2) Pp(x, v, 2) + Poy1(x, ¥, 2), (3.78)

G P xz(1 =) Py(x, g2y, ) + Py (x, v, 2) = (1 —x)(1 — 2) Pp(g ~2x, y, ¢ 22).

(3.79)
The initial condition should be set as Py(x, y, z) = 1 since Ri“j(}f = 5?+ jS; +kq"k from
(3.67). Obviously, both formulas (3.75) and (3.76) satisfy the initial condition. The
remaining task is to show that they satisfy either one of the above recursion relations.
It is straightforward to check that (3.75) satisfies (3.78) by comparing coefficients of
the powers of x. To show (3.76), substitute it into (3.79) and replace u by gu in the
RHS. Then the relation to be shown becomes

X =0,

?{ du(—q~*xyzu; g% oo(—q*u; %o
U2 (—=xu; g)oo (—21; 4o
X =xz(1—u(l+u)— (1 —x)A —2u~+ (1 —¢g**">)(1 +u).

By setting f (1) = (—q¢ 222 xyzu; Yoo (—t; ¢%)oo/ ((—x1; §*) oo (—2t; %) oo, this
is identified with the identity ¢ 4% (f(¢%u) — ¢***? f (u)) = 0. O

Note that (3.75) is a terminating series due to the entry q‘z” .Infact, Py(x, y, ) is
a polynomial belonging to ¢ ~?*®~VZ[4?, x, v, z] with the symmetry P,(x, y, z) =
Py(z, v, x) reflecting (3.59).

Example 3.19

Py(x,y,2) =1, Pi(x,y,2)=1—-x—z+xyz,
q*Py(x,y,2) =x*y’2" — (1 + ¢P)xyz(—=1 +x +2)
+¢%(@* —x — g’ x +x* —z—q* 2+ xz+ ¢ xz + 77,
R = Rt g, R = TN ORGS0,
1-gq? (I —=¢>1 —g%

This agrees with Example 3.12.
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The formula (3.76) is also presented in terms of the generating series:

bb—1),.b
q""Vu _
@ Py(x,q* %y, 2) =
bmo d7)b

(—xyzut; %) oo(—t; ¥ oo
(—=xu; ¢®)oo(—2U; ¢¥) oo

(3.80)

Due to (3.76), matrix elements of the 3D R are expressed as

Rabe _ gatbgbc jik+h du  (—q" " u; g)oo(—q 7 u: g oo (3.81)
ijk — Yi+j j+kq 27-[iub+l (_qa—cu;qZ)oo(_qc—au;qZ)OO . :

Note that the ratio of the four infinite products equals (—g~ %u;q?);/
(—q“~“u; g*)441 because of a — ¢ = i — k. By means of the identity

(zX; Ploo C
(2 Poo g o

(3.82)

it is expanded as

A+ a) . MH)>
E (—u)'q
(Azo < A q*

Collecting the coefficients of u?, one gets

> (’) gtk | (3.83)
qZ

o<p<i W

X . . , A ]
R =gty 3 gt (H0) (1)
Atu=b a g\ g2

summed over A, u € Zso under the constraint A + p = b. Thus it is actually the
single sum over (b — i) <X <bor0 < u < min(b, i).

Both formulas (3.67) and (3.84) show that Rf]i” is a Laurent polynomial of g with
integer coefficients. On the other hand, Example 3.12 suggests that it is actually a
polynomial in q. In Lemma 3.29, a stronger claim identifying the constant term of
the polynomial will be presented which will lead to further aspects.

One can express (3.84) in terms of the terminating ¢-hypergeometric as

) ) » a+b q—2b’ q—2i 3
Ry = 8717875 (=D ’*”( . )22¢1( g A
q

(3.85)
which is a different formula from (3.74)—(3.75). It manifests the symmetry
abe L @i@D; e @
Rijl; =(-q)" LR = (—q)" 2 Ok gha (3.86)

(@2)a(qDs @». '’
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where the second equality is due to (3.63). In Chap. 13 we will use

2
R = 81l g e O
c

2o +b—p J
— Mgt n—=2c Hé ,
X Z (=D"q ( b )

0<p<min(a, j)

(3.87)

which is derived from (3.84) by applying the latter transformation in (3.86).

3.5 Solution to the Tetrahedron Equations

Recall that we have characterized R as the intertwiner of A, (A;) modules in (3.31)
and (3.32). Various explicit formulas for it are presented in the previous section. Now
we proceed to the proof of the tetrahedron equations.

351 RRRR = RRRR Type

Theorem 3.20 The intertwiner R satisfies the tetrahedron equation of RRRR =
RRRR type in (2.6).

Proof Consider A;(A3) and let 7y, 72, 73 be the fundamental representations given
in (3.21). The Weyl group W (Aj3) is generated by simple reflections sy, 57, s3 with
the relations

si2 =1, 5153 = 5351, S15251 = 525152, 525350 = $35253. (3.88)
According to Theorem 3.3, the equivalence of the tensor product representations
T3 2 W3y, W21 22 w212 and mwo3p 2 mwap3 are valid. (., is a shorthand for m;, ®
-+ ® m;, as mentioned after Theorem 3.3.) By Remark 3.4, the intertwiner for w3
731 is just the transposition of the components. Let @ and ®® be the intertwiners
for the latter two, i.e.

Y o a1 (A(S)) = maa(A(f)) 0 DD,

3.89
PP 0 13 (A(f)) = m33(A(f)) 0 PP B89

for any f € A,(A3). By inspection of (3.21), they are both given by the same & as
the A, (A») case characterized in (3.27)—(3.29). Therefore from (3.30) we get

oV = RP;;, % =RP;, (3.90)



3.5 Solution to the Tetrahedron Equations 37

which means that they are the copies of the same operator acting on the respective
spaces.
Let wy € W(Aj3) be the longest element. We pick two reduced expressions, say,

Wo = 5152515352851 = 535251535283, (391)

where the two sides are interchanged by replacing s; by s4_; and reversing the order.
According to Theorem 3.3, we have the equivalence of the two irreducible represen-
tations of A, (A3):

121321 2 321323 (3.92)
Let P;; and GDS,)C, QDZ(IZ,){ be the transposition P (3.23) and the intertwiners @,
that act on the tensor components specified by the indices. These components must
be adjacent (i.e. j —i = k — j = 1) to make the relations (3.25) and (3.89) work.
With this guideline, one can construct the intertwiners for (3.92) by following the
transformation of the reduced expressions by the Coxeter relations (3.88). There are
two ways to achieve this. In terms of the indices, they look as follows:

121321 @) 121321 Py

212321 @) 123121 @2

213231 Py Psg 123212 @),

231213 @Y, 132312 Py Pys

232123 @'Y 312132 @Y,

323123 Py 321232 @

321323 321323 (3.93)

The underlines indicate the components to which the intertwiners given on the right
are to be applied. (Note that they are completely parallel with those in (2.22)—(2.23).)
Thus the following intertwining relations are valid for any f € A,(A3):

2 1 2 1
Py @3, @45 Pys Psg @ s m11321 (A(f))

= m321323(A(f)) P34CD§22)3 CDSL)S P»3 Psg <I>§i)5 ‘13512)3 (3.94)
DD DN, Py Pis @, DL Payriniang (A(S))
= 7T321323(A(f))q)4(125)6(1)§13>4 P13 Pys CD%)A‘CD%L P34. (3.95)

Since the representation (3.92) is irreducible, the intertwiner is unique up to an overall
constant factor. The factor is one because both constructions send |0)®° to itself by
the normalization (3.29). Therefore we have

2) g @2 50D _ 5@ 5D 2) 5D
P3g @153 P35 Po3 Pso P3y5 P13 = Pyse Posy Pro Pus Pz Pyse Paa- (3.96)
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¢ and ©)

In the current setting, (3.90) implies that both ®@;;; ijk

leading to

are equal to R;jx Py,

P34 R 123 P13 R345 P35 Py3 Psg R3a5 P3s R123 P3
= Rus6 Pag R234 P24 P12 Pas Ry34 P24 Ryse Pag Paa.

Sending all the P;;’s to the right by using P34 R123 = Ry24 P34, €tc., we find
Ri124R135 Ry36 Rase0 = RuseRozeRi3s R1240”,

where o = P34P13P35P23P56P35P13 and o' = P46P24P12P45P24P46P34. One can
check that o = o/, which gives the reverse ordering of the components |m) ® - - - ®
|meg) > |me) @ - - - ® |m1). Thus they can be canceled, completing the proof of The-
orem 3.20. O

In terms of the 3D R, the intertwining relations (3.94) and (3.95) take the form:

R124R135 Rz Rase 121321 (A(f)) = 7321323 (A(f)) Riaa Rizs Rass Rase,  (3.97)
Russ Ra36 R135 R12am121321 (A(f)) = 7321323 (A(f)) Rass Razs R13s Rina,  (3.98)

where A(f) = o o A(f) o o. For a generator f = t;; it reads as

At = Dty ® ks ® iy ® tioky ® gk, @ i, - (3.99)
1<ky, . ks <4

‘We have started from the two particular reduced expressions of the longest element
in (3.91). One can play the same game for any pair of the “most distant” reduced
expressions which are related by s; — s4—; and the reverse ordering. The result can
always be brought to the form (2.6) by using (3.59) and (3.60).

In general for A;(A,—;) with n > 5, similar compatibility conditions on the
intertwiners can be derived from reduced expressions of the longest element of
W (A,_1) along the transformation s;, - - - 5;, = §,—;, - - - S4—;, by the Coxeter rela-
tions (3.22), where [ = n(n — 1)/2. Since any reduced expression is transformed to
any of the others by the Coxeter relations [119], the compatibility conditions for any
S$j,+++8j = Sp—j, - -+ Sp—j, are equivalent to each other by a conjugation.

As an illustration, consider the n = 5 case. The longest element of W (A4) has
length 10 and the compatibility for 71234123121 = 74342341234 leads to

R123 R145 R246R356R178 R279 R389R470R580R690 = pl‘OdUCt in reverse order. (3100)

This can be derived by using the original tetrahedron equation (2.6) five times in
addition to the trivial commutativity as
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R123 R145 Ro46 R356 R178 R279 R3go Ra70 R0 Reoo

= R356 Ro46 R145R123 R178 Ra79 R389 Ra70 R5g0 Reoo

= R356 Ro46 R145 R389 R279 R178 R123 R470 R3580 Reoo
= R356 R246 R389 R279 R145 R178 R470 R580 Reoo R123
= R356 Ro46 R389 R279 R580 R470 R178 R145 Reoo R123 (3.101)

= R356 R389 R530 Ro46 Ro79 Ra70 Reoo R178 R145 R123

= R3s6 R389 Rsg0 Reoo Ra70 R279 Ro46 R178 R145 R123

= Reoo Rs580 R389 R356 Ra470 R279 R246 R178 R145 R123
= Re90 Rs580 R470 R389 R279 R178 R356 R246 R145 R123,

where the underlines indicate the places to which the tetrahedron equation is applied.
The first and the last expressions in (3.101) fit the geometric interpretation as the
transformations between the 5-line diagrams in Fig. 3.1 in the same manner as in
Fig. 2.2.

For general n, the compatibility condition arising from m;,
allows a similar geometric interpretation in terms of generic positioned n-line dia-
grams withn(n — 1) /2 vertices. They are all reducible to the the tetrahedron equation.
This last claim follows from [126, Theorem 2.17], which states that any non-trivial
loop in a reduced expression (rex) graph (see Sect. 9.2) is generated from the loops
in the one for the longest element in the parabolic subgroups of rank 3, hence A; in
the present case.

. ~ . .
i = Tn—ij,...n—i

352 RLLL = LLLR Type

Let us introduce the operator L along the scheme (2.12). In (2.11), we choose V =
Cvo® Cv; and F = F, = @,,-, C(g)|m) which is the Fock space introduced in
(3.13) as an irreducible module over the g-oscillator algebra (3.12). Then L = (L?jh )
is specified for a, b, i, j = 0, 1 as

Fig. 3.1 The 5-line diagrams connected by (3.101) in the same manner as Fig. 2.2
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b 0 1 0 1 0 1
i—T—»a 0—T—>0 1—T—>1 1—T—>1 0—T—>O O—T—»l 1—T—>0
J 0 1 0 1 1 0
L;’j” 1 1 k —gk a* a”

Fig. 3.2 3D L as an Osc,-valued six-vertex model. The last two relations in (3.12) corresponds to
a quantization of the so-called free Fermion condition [10, Fig. 10.1, Eq. (10.16.4)|;=ws=0]

L =0 if a+b#i+) (3.102)
Lig=Lii=1 Lig=k, Lj=-qgk Lyj=a", L)yj=a. (3.103)

The property
hi{} = L{(h+a—1i) (3.104)

is valid, where h is the number operator (3.14). From (3.13) and (2.13), non-trivial
matrix elements L{7¢ read as

c k+1

0,0,c _ yllc 1,0,¢ 0,1,c __
Lyok =Lyt =6, LlOk—‘Sk‘lv Loy =—84"",

1,0, 0,1 2k
L012_8k+1’ LIO;_Sk 1(1_ )

1
: (3.105)

The operator L may be regarded as an Osc,-valued six-vertex model [10, Sect. 8] as
in Fig. 3.2.

Theorem 3.21 The intertwiner R and the above L satisfy the tetrahedron equation
of RLLL = LLLR typein (2.15).

Proof The equations (2.18) coincide with the intertwining relations (3.38)—(3.46)
for R and R~! = R. (See (3.60).) This is shown more concretely in Lemma 3.22
below. ([l

Let us write the quantized Yang—Baxter equation (2.18) as

RLE = LUCR, (3.106)

L=l oLy L)), (3.107)
a,By

L= oL L), (3.108)
a,By

The objects Lfﬂf and Z?f,f are End(?—'q®3)-valued quantized three-body scattering
amplitudes. They are non-vanishing only whena + b + ¢ =i + j 4+ kdueto(3.102)
andnon-trivialonlywhena + b +c =i+ j + k = 1, 2dueto (3.103). For example,
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L =LYe LYo L +L)e Lo L)l=a @182 —gk®a 8k,
7001 00 01 00 _

Liog=Lpy®Ljp®Lyy=1®a" ®1.

Observe that these operators are exactly those appearing in the intertwining relation
(3.38). This happens generally. One can directly check:

Lemma 3.22 The quantized three-body scattering amplitudes Lfﬁf and Z?f’k” with
a+b+c=i+j+k=1,2 coincide with the representations (3.36)—(3.37) of
A, (Az) as follows:

T (A)) = I = (—q) Lo, (3.109)
T (Aty)) = Le = (—q) /L. (3.110)

Here e;, €; are arrays of 0, 1 with length three specified by

e¢=0,...,0,1,0,...,0, ¢=1,...,1,0,1,..., 1. (3.111)

From (3.109) and (3.110), the intertwining relation (3.31) and the tetrahedron
equation (2.15) are identified.

Remark 3.23 As an equation for R, the tetrahedron equation RLLL = LLLR
(3.1006) is invariant under the change Lf;’ — ) Lf;’ by a parameter « by virtue of

(3.102).

Remark 3.24 Let L, = (o / L?;’ ) be the 3D L in Remark 3.23 including a param-
eter «. It is invertible with the inverse

(Ly) ' = Ly, (3.112)

This is easily verified by means of (3.12).

As an application of Theorem 3.21, let us present another proof of Theorem
3.20,i.e. RRRR = RRRR. We invoke the argument in Sect. 2.5 which establishes
RRRR = RRRR by using RLLL = LLLR up to the irreducibility. For the 3D L

under consideration, we can make the irreducibility argument precise. Recall the
6 5 4 3 2 1 1 2 4 3 5 6
initial and final elements L., L,cLpcLogLpgLeg and Loy LpgLpe LogLae Loy in (2.22)

and (2.23), which are linear operators on

a b c d 1 2 3 4 5 6
VRVRVAVRF,RF,0F,0F,0F, O F,.
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Let us call their matrix elements for the transition v;, ® v;, ® vg, @ v, > v, ®

v, ® v, ® vy, as Lﬁ?ﬁ%‘]‘ and Li?j‘]‘/g“lf respectively. Then (2.22) and (2.23) are the

totality of the relations

kel k
Ri24R35 R236R456£i‘:]]f;:[: = L;TﬁkjffR124R125R236R456y (3.113)
kel k
Rus6 Ro36 R135 R124£,Tﬁkjfl‘ = Lifﬁkfff Rus6 Ro36 R135 R124 (3.114)
for iy, ..., 14 =0, 1. Here we have substituted S = R for our 3D R according to

the comment after (2.20). The matrix elements L’T’Tllzj‘]‘ nd L;“‘j“llz‘f‘l‘ are End (7—"]@6)
valued and, from the diagrams (2.21) and (2.14), they are given by

l4j4k4l4 kals jz 3 1214 Jaks izky iaja
L =Y L@ L @ LY @ Ly ® L ® Ly, (3.115)
t4]4k4l4 k4l4 JAlz 1412 Jaks izks i2jo
L =) Ly Ly oL @ L @ L ® LY, (3.116)

where the sums are taken over i,, j., k,, [, = 0, 1 forr = 1, 2. These are depicted as
follows:

J . J1oo.
ki 1 ki |
I
I 2 -1 i
k2 J2
J3 13 ko
ja| \ks
l -
/ 1/ 15 I3 \ 4
i4 . ks s ' ky
Ja Ja

By substituting (3.102), (3.103) and using (3.99), (3.21), one can directly check

Ta1321 (A (L)) = (—Q)i_jfg;j, m31323(A())) = (—q)"‘-"ZS;ﬂ. (I<i,j<4),
(3.117)

where €; is length four array given by (3.111). Since the representations 3, and
31323 are irreducible by Theorem 3.3, and the relations (3.97)—(3.98) with gen-
erators f = f;j are reproduced, the equality R124R135R36 R4s6 = Rus6R236R135R 124
follows.
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353 MMLL = LLMM Type

Let us present a solution to the tetrahedron equation of type MM LL = LLMM in
Sect. 2.6. We take V = Cyy @ Cvy, ¥ = ¥, in the setting therein and consider a
slight generalization of (2.24)—(2.25) including a spectral parameter:

L) = Y Eu® Ey,® L@, (3.118)
a,b,i,j

M@) = Y Eu® Ey @ M), (3.119)
a,b,i,j

where the sums extend over {0, 1}* and both belong to End(V ® V ® ¥Fq)- The

operators L(z)fjb, M (z)j’;’ € End(¥,), which are nonzero only whena +b =i + j,
are specified by
b 0 1 0 1 0 1
ita oto 1t b oteo ot 1t
j 0 1 0 1 1 0
L)t 1 1 pk  —guT'k  za® z 'a”
M ()5 1 1 vk gv'k za® z 'a”

(3.120)
Here a*, k are g-oscillators in (3.13), and k is k with q replaced by —q, i.e.
kjm) = (=¢)"|m). (3.121)

See (3.13). In (3.120), u, v are fixed parameters and suppressed in the notation. On
the other hand, z will play a similar role to the spectral parameter below. We note a
simple relation M (z) = L(2)|g——g,ju—v-

Theorem 3.25 For any w,v, the operators L(z) and M(z) defined in (3.118)—
(3.121) satisfy the tetrahedron equation of type MMLL = LLMM in End(V®* ®
77q®2) as

M 126(212) M346(234) L135(213) L24s (224)

(3.122)
= L245(224) L135(213) M346(234) M 126(212)

where Zij = Zi/Zj-

See Fig. 2.5 for a graphical representation.
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5 6
Proof A direct calculation. As an illustration, let us compare X € End(¥, ® F,)
occurring in (LHSor RHS)(vg @ vy ®@ v @i @1 ® 1) =11 Q vo @ vp @ v1 ®
X + ---.The X is given by

L2130 L(224) 80 @ M (212)8 M (234) 0% 4 L(213)e L(22)9} ® M (212)19M (234))!
= —gp'z3(kkat @ ata” +gatk 9 k?)

for the LHS and
L(zaa)0 L(213)8) ® M (z34) 11 M(212)00 = —qu ' z13ka™ @ 1

for the RHS. Their difference is proportional toka™ ® ata™ + ga'k ® k? — kat ®
1, which is zero due to (3.12), (3.13) and (3.121). O
Theorem 3.25 will be utilized for A, (B,) in Chap. 6 and for multispecies TASEP
in Chap. 18.
The solution in Theorem 3.25 consists of the 3D L and its slight variant M. There
is a parallel solution consisting of the 3D R and its variant, which we write as S
below.® Set

R()i3 =2 ™Rin™ =M Risz™, S@1s =27 ™Rozz™ = M Roiaz ™,
(3.123)
where h is defined in (3.14), and the second equalities are due to the weight conser-

1 2 3
vation (3.49). The indices 1, 2, 3 specify the components in ¥, ® ¥, ® F,. In the
notation (3.47), they are described as

R@U) ®1j) ® k) = Y /"R la) @ ) & o), (3.124)
a,b,c

S @ 1)) ® k) =Y 2" Rila) ® [b) ® e). (3.125)
a,b,c

Theorem 3.26 R(z) and S(z) satisfy the tetrahedron equation of type MMLL =
LLMM in End(?—'q®6) as

S(z12)1265(234)346 R(213) 135 R (224) 245

(3.126)
= R(224)245 R(213)1355(234)346 S (212) 126,

where Zij = Zi/Zj.

Proof By substituting (3.123) into (3.126) and applying (3.49), one finds that the
similarity transformation z,3" 2,3 zh4(3.126) 2", 2% 232 removes the z-dependence,
completely reducing it t0 Ry16R436 R135 Ro4s = Ra4s R135 Ra36 R216. Exchanging the

6 This S will not be used elsewhere. It is different from the one in (2.20).
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indices as 1 < 5, 2«4 gives R456R23()R53] R421 = R42] R531 R236R45(). From (359)
this is equivalent to R456R236R135R124 = R124R135R236R45(,, which is indeed valid
due to Theorem 3.20. (]

3.6 Further Aspects of 3D R

Let us quote (3.38)—(3.46) in the form of the adjoint action of the 3D R:

R 'k,af R = ksaf + kjaja7, (3.127)

R7'aFR = afaf — gk ksaF, (3.128)

R™'k,af R = kjaf + kjafa7, (3.129)

R™'(afaTa; — gkks)R = aFaral — gkks, (3.130)
Rk R =kiky, R 'kk3R = koks. (3.131)

The fact that R = R~! (3.60) has been taken into account. We have written at ®
k ® 1 askoa] for example. Thus the g-oscillator operators with different indices are
commutative.

3.6.1 Boundary Vector

We define
|m) |2m)
= , = , 3.132
m) m%o: oo m{o: e (3.132)
(m| 2m|
— - = - 3.133
(m] 2 (m2] mEZO @ ( )

and call them boundary vectors. They will play an important role in the reduction
procedure in Chaps. 12-17. They actually belong to a completion of ¥, and ¥/
since infinite sums are involved. Nonetheless, we will refer to them as |7,) € ¥, and
(ns| € ¥, for simplicity.

Lemma 3.27 Up to normalization, the boundary vector |n,) is characterized by any
one of the following three equivalent conditions:

(@a* —1+Kk)n) =0, (3.134)
(@ —1—qk)|m) =0, (3.135)
(a +qat —1—q)|n) =0. (3.136)
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Similarly, the boundary vector |n,) is characterized, up to normalization, by
(@a”—a)n) =0. (3.137)

Proof Substituting |n,) = ), ¢,|m) into these conditions and using (3.13), one can
check that ¢,, /¢y is determined uniquely as in (3.132). (]

A linear combination of (3.134) and (3.135) leads to (3.136). However, the lemma
includes a less trivial reverse that (3.136) implies the preceding two.
From (3.17) the dual boundary vectors (3.133) have similar characterizations:

(ml@™ —1+k) =0, (3.138)
(ml@* —1-gk) =0, (3.139)
(ml@@*+qga~ —1-¢) =0, (3.140)
(m]@@~ —at) =0. (3.141)

Proposition 3.28 The 3D R and the boundary vectors satisfy the following relations:

((ns] & (051 @ (MsDR = (s ® (ms| @ (ms| (s =1,2), (3.142)
R(Ins) & Ing) @ In)) = Ins) @ Ins) @ Ing) (s =1,2). (3.143)

Proof From Remark 3.10, it suffices to prove (3.143). First we consider the case
s = 1. By Lemma 3.27, it suffices to check

(@, +qa; —1—q)R|n)® =0, (3.144)
(@] — 1 +k)DR[n)® = (af — 1 +ky)Rn)® =0. (3.145)

To show (3.144), we multiply R~ from the left and apply (3.128) to convert the LHS
into

(ara; — gkiksa, +g(afal — gkiksay) — 1 —q)|n)®>. (3.146)

From (3.134) and (3.135), one may set a;r =1-k; and a; =1+ gk; here. The
resulting polynomial in Kk, K,, k3 vanishes identically, proving (3.144). By Lemma
3.27, it follows that (a;r — 14 ky)R[7;)® = 0 has also been proved. Multiplying
R~ again by it and applying (3.128), (3.134), (3.135), we get

(ki — ks + (1 — @kiks + gk koks + k5)[n)®* = 0, (3.147)

where k), = R™'k, R. This enables us to show (3.145). In fact, by multiplying R ™'k
by the first relation, its LHS becomes (kgafL + kla;ag — k), + kiko)|m )®3 owing to
(3.127). Substitution of a;“ =1-—k;anda; = 1+ gk; leads to the same expression
as (3.147), hence zero. The second relation in (3.145) can be verified in the same
manner.



3.6 Further Aspects of 3D R 47

Next we consider the case s = 2. From Lemma 3.27, it suffices to check k, (afr —
a,-_)Rlnz)@’3 =0@G=1,3) and (a;r - az_)R|772)®3 = 0. The proof is similar to the
s = 1 case and actually simpler in that an intermediate identity like (3.147) need not
be prepared. So we demonstrate the last identity only. By multiplying R~! and using
(3.128), its LHS becomes

((ajaf — gkiksa)) — (aj a5 — gkiksay))|n)®.

From (3.137), we may set a;” = a; here. O

3.6.2 Combinatorial and Birational Counterparts

As remarked after (3.84), we know R?ib,f € Zlq, q']. Actually a stronger property
holds. ‘

Lemma 3.29 Rf‘jl}f is a polynomial in q with the constant term given by

bc ijk b .
Rz{ljkc g=0 = Ry |q=0 = 8?+(i7k)+8min(i,k)8;+(k7i)+' (3.148)

See (3.66) for the definition of the symbol (x).

Proof First we show Rfjljf € Z[q]. Let A be aring of rational functions of g regular

at ¢ = 0. In view of Z[q, g~ '] N A = Z[q], it suffices to show le‘ji" € A. From
(3.50) we have Rl’.‘j’;f IS ARf”jb:ll",f + AR;’;bl’_jlq’k‘; - By induction on b, this attributes

the claim to R;’j’,?’c € A for arbitrary a, c, i, j, k. But this is obviously true since

R3¢ = 8¢, ;8¢,,q'™ cither from (3.67) or (3.74).
Next we show (3.148). The first equality is due to (3.63). Setting ¢ = 0 in (3.50)
and (3.56), we get

a,b,c _ pab+lc a—1,b,c—1 _ pabc
Ri—l,j,kfl |q:0 - Ri.j,k |q=0 ’ Ri.j,k |q=0 = Ri,j+1,k |q=0 . (3.149)

From the symmetry (3.62), it suffices to verify the i < k case. Then the first relation
shows that R% |,—o = 0if b > i.Forb < i,wehave RY¢ |,—o = RS, |4=0 =

877087 5q = ® = | ,_o . This is non-vanishing only if b = i because otherwise b <
i < k. Thus we conclude RS |,—o = 87851780 = 898785, _,. O

Lemma 3.29 shows that 3D R at ¢ = 0 maps a monomial to another monomial
as R |4=0 (1) ® 1) ® k) = |j + (i —k)4) ® [min(i, k) ® |j + (k —i)+). Moti-
vated by this fact, we define the combinatorial 3D R to be a map on (Z=()> given
by

Rcombinatorial : (@, b, ¢) = (b + (a — ¢)4, min(a, ¢), b+ (c —a)4). (3.150)
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Corollary 3.30 The combinatorial 3D R (3.150) is an involution on (Zzo)3. It sat-
isfies the tetrahedron equation of type RRRR = RRRR on (Z=¢)®.

Proof The assertions follow from (3.60) and Theorem 3.20 by setting ¢ = 0 and
using Lemma 3.29. ]

Example 3.31 An example of the tetrahedron equation (2.6) for the combinatorial
3D R. The map R here denotes Rcombinatorial i (3.150). The first SW arrow Rjyq4 is
due to Reombinatorial : (3, 1,4) — (1, 3, 2), which can be seen in Example 3.12.

(315416)
Ry v/ N Ruase
(135216) (315143)
Rizs | J Ra36
(531256) (351147)
Ry | { Rizs
(513254) (153127)
Rase v Ri
(513527)

Letus proceed to the third 3D R. Regarding a, b, c as indeterminates, we introduce
the map

P ab bc
Ryirational : (@, b, ¢) = (a, b, ¢) = (—, a+ec, —) (3.151)
a+c a-+c

We called it the birational 3D R in the current context. The combinatorial 3D R
(3.150) is reproduced from it by the tropical variable change

ab — a+b, %—)cz—b, a + b — min(a, b), (3.152)

which keeps the distributive law since a(b + ¢) = ab + ac is replaced by a +
min(b, ¢) = min(a + b, a + ¢). One way to materialize (3.152) is a transformation
to logarithmic variables via

- limoslog(e’%e%) =azxb,
s o, (3.153)

— lililoslog(e’? + e ¢) = min(a, b),
£—

supposing a, b € R. In this context, (3.152) is also called the ultradiscretization
(UD).
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Set
Zi(x) =1+ xE;q1, (3.154)
where x is a parameter and E; ; is the n-by-n matrix unit whose only non-zero element
is 1 at the ith row and the jth column. Z; (x) is a generator of the unipotent subgroup
of SL(n). The birational 3D R (3.151) is characterized as the unique solution to the
matrix equation

Zi@Z;(h)Zi(c) = Z; O Zi(b)Z;j@) (i —jl=1). (3.155)

It essentially reduces to the n = 3, (i, j) = (1, 2) case:

1a0\ /100\ /1cO 100\ /150\ /100
o1o0llo1n|lo1o]l=|o1c]lo10|]o14a]. (3.156)
001/ \oo1/ \oo1 001/ \oo1/ \oo1

The Rpirational 18 birational due to RI;rlational = Rbpirational- It preserves ab and bc.

The intertwining relation (3.28) is a quantization of (3.155) (with (i, j) = (1, 2)).
Note that Z;(a)Z;(b) = Z;(b)Z;(a) for |i — j| > 1 also holds analogously to the
Coxeter relations.

Given a Weyl group element w € W(A,_;) (not necessarily longest), assign
a matrix M = Z; (x1)---Z; (x,) to a reduced expression w =s;, ---s;,. Then
to any reduced expression w = s, ---s; one can assign the expression M =
Z; (x1) -+ Zj (x,), where x; is determined independently of the intermediate steps
applying (3.155). This property is the source of the tetrahedron equation for Rpirational
and forms a birational counterpart of the previous calculation (3.93). In fact, the
uniqueness of the map (a, b, ¢, d, e, f) — (a, 15, c, c?, e, f) defined by

Z\(a)Z2(b) Z1 () Z3(d) Z2(e) Z1 (f) = Z3(f) Z2(8) Z1(d) Z3(8) Z2(b) Z3()
(3.157)
implies the tetrahedron equation of type RRRR = RRRR for Ryjirationa- TO summa-
rize, we have:

Proposition 3.32 The birational 3D R (3.151) is an involutive map on the ring of
rational functions of three variables. It satisfies the tetrahedron equation of type
RRRR = RRRR.

Let us denote the 3D R detailed in Sects. 3.3 and 3.4 by Rguanwum- Then we have
the triad of the 3D R’s whose relation is summarized as

q—0 UD
unantum — Rcombinatorial < Rbirational- (3158)

Reombinatorial a0d Rpirationa (and R* below) are typical set-theoretical solutions to the
tetrahedron equation.
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Remark 3.33 Define a map R” involving a parameter A by

b b
a a+ c+ labc, —c) (3.159)

R*:(a,b,¢c) > | ———MM—,
a—+c+ labc a—+c+ labe

The birational 3D R (3.151) corresponds to A = 0 or equivalently infinitesimal
a, b, c. Then the inversion relation R* = (R*)~! and the tetrahedron equation

Ri\24Ri\35 R%36R256 = R256R§36R%35Ri\24 (3160)

are valid.

3.6.3 Bilinearization and Geometric Interpretation

The map (3.159) is bilinearized in the following sense. Parameterize a, b, ¢ in terms
of “tau functions” as
712 7123 TT23

a=——, b= , = ——, (3.161)
1T T12723 7273

where indices signify the shifts of independent variables of the tau functions in
the respective directions., say, T = 7(X), 712 = T(X + €| + e;) etc. Suppose the tau
function satisfies the bilinear equation

T1T3 — ToT13 + T3T12 + ATT03 = 0. (3.162)

Then the image (a’, b, ¢’) = R*((a, b, ¢)) in the RHS of (3.159) is expressed in the
same format as (3.161) as follows:
, 737123 ;T3 / T17123

a = , b=—— (= . (3.163)
T13723 7173 T12713

The change (a, b, ¢) — (d’, b’, ") corresponds to the shift (+3, —2, +1) of the argu-
ment of the tau functions. It is interpreted as a transformation of the three back faces
of a cube to the front ones as in Fig. 3.3.

The tetrahedron equation (3.160) is bilinearized by using tau functions living
on a four-dimensional cube. We prepare 7; with I running over the power set of
{1, 2, 3, 4}. They are supposed to obey

TiTjk — TjTik + Tk Tij + )\T‘Eijk = O, (3164)
TuTin — TjiTikl + TaTiji + AT Tiu =0, (3.165)
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T12 T12

7123 7123 71

23

3 3

Fig. 3.3 Birational 3D R corresponds to a transformation generating a cube

where {i, j, k,1} = {1, 2, 3, 4} The latter is a translation of the former in the [
direction.

Now the LHS of the tetrahedron equation (3.160) is described as the successive
transformations

( TTi2 T2Ti23 72371234 TT23 T37234 T34 )

9 9 9 9 9
T1T2 T12T23 T123T234 T2T3 123734 T3T4
Riss ( TTi2 T2Ti23 12371234 T4T234 TTo4 T2T234 )

9 9 9 9 9

TIT2 Ti2723 T1237234 T24T34 T2T4 123724
g (e o f o

TIT2 T1247234 Ti12T24 T24T34 T2T4 T123T124
Riss [ TaTi24 T24T1234 TTi4 T4T234 T1T124 T12T1234
> 5 s T 3 )

T14T24 T124T234 Ti1T4 T24T34 T12T14 T123T124
Rin (T34‘51234 T4T134 TT14 T14T1234 T1T124 1'12?1234)

TTi2 T24T1234 ToTioa T4T3a TTo4 112T1234> (3.166)

b b 9 9 9
T134T234 T14T34 T1T4 Ti24Ti34 Ti12T14 T123T124

Similarly, the RHS of (3.160) is realized as

( TTi2 T2Ti23 12371234 TT23 137234 TT34 )

9 9 9 9 9
T1T2 T12T23 T123T234 T2T3 123734 T3T4
Ry ( T3T123 TT13 712371234 T1Ti123 T3T234 TT34 )
_ | —, — —_—

9 9 9 9 9
T13T23 T1T3 T123T234 T12T13 123734 1374

Ri%s T34T1234 TT13 T3Ti34 T1T123 T137T1234 T34
(2 (3.167)

T134T234 T1T3 T13T34 T12T13 T123T134 1374
R ( T34T1234 T4T134 TTi4 T1T123 T13T1234 T1T134 )

b b 9 9 9
T134T234 T14T34 T1T4 T12T13 T123T134 T137T14
Riss [ T34T1234 T4T134 TTi4 T14T1234 T1T124 T12T1234
[ — 5 s T 3 3 .
T134T234 T14T34 T1T4 T124T134 T12T14 T1237T124

7 1; is supposed to be independent of the ordering of the indices in 1.
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The initial and the final six components correspond to the faces 12, 13, 14, 23, 24, 34
of the 4D cube up to translation. Their tau functions are simply related by the inter-
change t; <> 7(1,2,34)\s. It means that the two sides of the tetrahedron equation
represent transformations of the “back” six faces of a 4D cube to the “front” ones as
compositions of elementary transformations associated with the 3D cube in Fig. 3.3.
This 4D picture is rather transparent. On the other hand, one can also describe it in 3D
space as a dissection of a rhombic dodecahedron into four quadrilatelal hexahedra.
After all, the 3D R in this chapter provides a quantization of the transformation of
the geometric data associated with such objects.

3.7 Bibliographical Notes and Comments

The RTT realization of the quantized coordinate rings has been presented in many
publications. See for example [43, 127] and [29, Chap. 7]. The fundamental Theorem
3.3 on the representations of A, (g) was obtained in [138, 139, 146]. Its application
to the tetrahedron equation was found in [77]. In fact, Sect. 3.3, Theorems 3.11 and
3.5 form an exposition of it along [93, Sect. 2]. In particular, the formula (3.67) is a
correction of that for S;‘jbkc on [77, p. 194] which contained an unfortunate misprint.
The solution of the tetrahedron equation of type RRRR = RRRR was derived later
also from a quantum geometry consideration [16, 18]. It was shown to coincide
with the 3D R in [77] (with the correction of the misprint) at [93, Eq. (2.29)].
The operator version Rl‘?j}’ (3.69) of the 3D R was introduced in [84, Eq. (8)]. A
similar operator with respect to the second component of the 3D R is given in [86,
Egs. (2.68) and (2.70)]. The integral formula (3.76) and Theorem 3.21 are due to
[18, 132], respectively. The solution to the tetrahedron equation of type MM LL =
LLMM (Theorem 3.25) is due to [90, Theorem 3.4] and [18, Eq. (34)] with some
conventional adjustment. Theorem 3.26 is taken from [92, Theorem 3.1]. They have
applications to the multispecies totally asymmetric simple exclusion process (Chap.
18) and multispecies totally asymmetric zero rage process. More comments on them
are available in Sect. 18.6. Proposition 3.28 for the boundary vector was obtained in
[107, Proposition 4.1].

As for the birational and combinatorial 3D R, there are many relevant publications.
The map (3.151) is a member of a wider list in [70, 71, 130]. It has also appeared in
[112, Proposition 2.5] and [21, Theorem 3.1] for example. It is characterized as the
transition map of parameterizations of the totally positive part of the special linear
group SL(3). Such transition maps have been described explicitly for any semisimple
Lie groups, and they all admit the combinatorial counterparts via the tropical variable
change [22, 113]. The deformation (3.159) involving a cubic term (see [69]) has been
linked to “electrical” Lie groups [110]. Sect. 3.6.3 is an exposition of the classical
geometry aspects with an additional perspective concerning tau functions. For related
topics, see [16, 24, 69, 78] and the references therein.



Chapter 4 ®
3D Reflection Equation and Quantized oo
Reflection Equation

Abstract This chapter is a brief introduction to the 3D reflection equation and the
quantized reflection equation. They are both fundamental and will work coherently in
later chapters of the book. In addition to the 3D R satisfying the tetrahedron equation,
a central role is played by a linear operator which we call 3D K.

4.1 Introduction

In the preceding chapters, we have been concerned with the tetrahedron equations of
type RRRR = RRRRand RLLL = LLLR.Roughly speaking, the latter, which we
also called the quantized Yang—Baxter equation, serves as the auxiliary linear problem
characterizing the 3D R whereby the former is captured as its compatibility condition.
Inasense, RLLL = LLLR provided a linearization scheme of RRRR = RRRR.
Both equations happened to possess the same quartic form.

In the presence of a boundary, things are parallel and yet apparently different. We
will need to cope with

3D reflection equation: RKRRKKR = RKKRRKR,
quantized reflection equation: (LGLG)K = K(GLGL)

as natural analogues of RRRR = RRRR and RLLL = LLLR, respectively. Here
K is the most characteristic operator which we call 3D K. Although the two equations
look quite different, the latter (together with RLLL = LL L R) serves as an auxiliary
linear problem of the 3D K and the former emerges from its compatibility as in the
previous story. Through several chapters of the book, we will demonstrate how the
two equations fit the quantized coordinate ring of type BC, and how they lead to a
3D approach to the usual reflection equation in 2D.
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42 3D K

Let 7' = @ C|m)’ be a vector space with basis {|m)’}." In our main example in
this book, F' >~ ¥ as vector spaces but they will be equipped with different module
structures with respect to some quantum algebra. Let K be a linear operator

K. FQF QF QF > F QF QF QF 4.1)
which is described as

Ky @)@k @)=Y Kila) @1b)@lc) ®|d)  (4.2)
a,b,c,d

in terms of matrix elements K {’j%d € C. In order to explain their graphical represen-

1 2 3 4
tation, we label the spaces appearingin (4.1)as F' @ F  F' Q F.

Consider a book 1 having only the front page 1* and the back page 1~. Similarly,
let 3 be another book with the front and the back pages 3% and 3~. Imagine that
they are put on a desk as in Fig. 4.1. These pages are world sheets of the strings 1
and 3 that are being reflected on the desk surface. They are actually infinitely large
hence intersecting although Fig. 4.1 displays finite portions to avoid complexity. The
books should be upright since the incident and the reflecting angles are the same,
but otherwise angles are arbitrary, including the one between the two broken arrows
in Fig. 4.1.

1 3
We attach the spaces ¥ and F~ to the spines of the books 1 and 3 as depicted by

1 2 3 4

broken arrows. The operator K € End(F' @ ¥ @ F' ® ¥) lives at P which is the
intersection of them. Beside the two spines, there are four half lines 1731, 1137,
1737, 173" emanating from P, where 1¢3¢" denotes the intersections of the book

Fig. 4.1 World sheets of the two strings 1 and 3 being reflected by a plane. They actually consist
of four half infinite planes 1%, 17, 3* and 3. The operator K lives at P

!'In later chapters, the actual coefficient field will be taken as C(g 3 ), etc.
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Kabed = 143+

Fig.4.2 Graphical representation of the matrix element K f’j%d in (4.2) projected onto the reflecting

1 3
plane. The central point is P. The two broken arrows which correspond to ¥’ and ¥’ can intersect

with any angle. On the other hand, the two solid arrows (projection of intersection of the book
2 4
pages) always intersect with the right angle by construction and correspond to ¥ and . They

bisect the angles so that ZcPd = ZiPd = ZaPl = ZkPl and ZcPb = ZaPb = ZiPj = ZkPj.The
intersections 1€3¢ of the book pages are also indicated

2

pages 1€ and 3¢. We assign ¥ to the concatenation of the arrows approaching P

along 173% and that departing from P along 1737, Similarly, the concatenation

of the arrows approaching P along 173~ and that departing from P along 1737 is
4

assigned to #. Such concatenations are natural since the two half lines 1¢3¢" and
17¢3~¢ match up to a single straight line when projected onto the desk surface. See
Fig. 4.2.

We call the operator (4.1) 3D K when it satisfies the 3D reflection equation
explained in the next section.

4.3 3D Reflection Equation

Suppose that R is a 3D R, i.e. it satisfies the tetrahedron equation of type RRRR =
RRRR in (2.6). By 3-dimensional (3D) reflection equation, we mean the following:

Reg9 K3579 Ro49 Ros8 K1478 K1236 Rase = Rase K 1236 K 1478 R258 Ro49 K3579 Rego.  (4.3)
It is an equality in
1 2 3 4 5 6 7 8 9
Ed(F @F @F @F QF QF F @ F F), (4.4)

where, as in (2.7) and (2.16), superscripts specify the components on which the
operators in (4.3) act non-trivially. One sees that the ordering of 3D R’s and 3D K’s
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in the two sides of (4.3) are reversed. A solution of the 3D reflection equation means
a pair of 3D R and 3D K. In terms of matrix elements, the 3D reflection equation
(4.3) is expressed as

fhi cegil bdiy pbieih; gradigihy y-aibaci fi pdaes fo
Z Rflhlll cre1giiz " bidyiz “tbaeshs Ka|d2g2h3 Kazb362f2 Rd3€3f3 (4.5)

= 2 Ra Kt Koo, Rese Ry, Koeoall R
foranya, b, c,d, e, f, g, h,i and ay, b3, 3, ds, 3, f3, g2, h3, i3. The sums are taken
over 15 indices ay, by, by, c1, dy, da, e1, €2, f1, f2, &1, h1, ha, i1, i on both sides. So
if all the spaces were 2-dimensional for instance, there are 2'3 equations on 28
unknowns containing 2! terms on each side in general even if Rl“jb,f’s are known.

Despite the horrible looking forms (4.3) and (4.5), the 3D reflection equation
admits an elegant geometric interpretation using three intersecting books. To draw
them artistically, however, is beyond the skill of the author. So let us present their
image projected onto the desk, i.e. the reflecting plane in Fig. 4.3.

Consider the three books whose spines are indicated by the dotted arrows 1, 3
and 7 in the LHS of Fig. 4.3. To their intersections P, Q and R, we attach a diagram
according to Fig. 4.2 (without indices like a, b, ...) . It amounts to introducing
the solid arrows which are labeled as 2, 4, 5, 6, 8 and 9. By the construction, the
arrows 2, 5, 8 are perpendicular to the arrows 6, 9, 4, and they bisect the angles
ZQRP, ZPQR, ZRPQ, respectively. Let the intersections of the arrows 4, 6 and 9 be
A, B and C. The essential fact which validates Fig. 4.3 is the elementary geometry
theorem:

orthocenter of AABC = inner center of APQR. (4.6)

Fig. 4.3 Pictorial representation of the 3D reflection equation (4.3) projected onto the reflecting
plane. In the LHS, the vertices and the corresponding operators are A: Kgg9, B: Ras6, C: R249, O:
Ross, P: K478, Q: K3579, R: K236
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It has been denoted by O. Now one can readily reconstruct the LHS of (4.3).
Proceed faithfully along the arrowsasB —- R — P — O — C — Q — A, and form
the composition of the corresponding 3D R’s and 3D K’s. The RHS is similar. Note
that the triangle PQR formed by the book spines gets reversed in the two sides like
the Yang—Baxter equation. In this sense one can simply say that the 3D reflection
equation is a decorated Yang—Baxter equation associated with the Yang—Baxter move
of the spines of the three upright books on a desk.

Rys6

K478

7 3 1 7 3 1

Fig. 4.4 The process that generates LHS of (4.3) is depicted by using slices of the three intersecting
books on a desk in successive instances. The bottom horizontal line is the edge view of the desk
surface. A trianglei — j — kandazigzagi — j — k — [ giverise to R;j; and K respectively
when they get reversed. The vertices 123456789 aligned in this order horizontally in the top left
diagram have been reversed in the bottom left diagram.
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One can also draw a 8-frame cartoon for each side of the 3D reflection equation

(4.3) in a manner analogous to Fig. 2.2 for the tetrahedron equation. For the LHS it
is given by Fig. 4.4.

Reso

Roy9

K478

Ruse

7 3 1

Fig. 4.5 The process that generates RHS of (4.3) similar to Fig. 4.4
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4.4 Quantized Reflection Equation

Let L € End(V ® V ® F') be a 3D L, where we have replaced ¥ by ' in (2.11)
for reasons of convention.” This in particular implies that the L obeys the quantized
Yang—Baxter equation (2.19) and (2.20) with R, S € End(F' @ F' Q F7).

We introduce a new linear operator

G:VRQF > VQF. 4.7

The vector spaces F and ¥’ are those appearingin K € End(F' @ F @ F' ® F) in
(4.1). By quantized reflection equation we mean a reflection equation up to conju-
gation:

(L12G2L21G1)K = K(G1L12GyLoy). 4.8)

To explain the precise meaning of this abbrev1ated notation, let us exhibit the spaces
on which the operators actby labels as Lx) € End(V ® V ® 9‘”) G € End(V ® T)
and Ky € End(?" ® T ® T’ ® T) Then (4.8) actually means

ik ko
(L12G2L21G))Kiju = Kiju(G1L12G2Lay). 4.9)

i j k !
This is an equality in End(\l/ ® \2/ QF' ® 71' ® ¥’ ® F). The operator L, is defined
tobe Ly = Pjp L, P12, where Py interchanges the first and the second tensor com-
ponent from the left in End(V ® V ® F).
One way to describe the operator G is to refer to the base of V = €, Cu; as

G; ®Im) =) v ® Gflm) (4.10)
k

for arbitrary |m) € ¥ . Here Gk is the End(¥)-valued matrix element of G with
respectto the base {v;} of V. It corresponds to the decompositionG = )", ; E,; ® GY
with respect to the matrix unit on V. We depict either (a) the element Gk or (b) the

fact that G € End(V ® 7—“) as

k i
(a) GA’; = } b)) Gy = }i
J X 4.11)

2 1t suits type B instead of type C.
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Fig. 4.6 Graphical
representation of the i
quantized reflection equation
4.9) J !

k o Ki: = Kii o k

2 ijkl = ijkl
l J
’ i
1 1

They can be distinguished safely from the context. These are formally identical with
the diagrams which are used conventionally for the boundary reflection amplitudes
or boundary Boltzmann weights in 2D integrable systems. The vertical line signifies

the boundary. The present ones, however, should be recognized as End (¥ )-valued
which acts in the direction perpendicular to the diagrams along an (invisible) arrow
going through the vertex i. In (b), the label x is attached to the arrow, whereas i is
assigned to the vertex (reflection point) on the boundary rather than the boundary
line.

Now with the convention (b) in (4.11), the quantized reflection equation (4.9) is
depicted as follows:

The indices 1, 2 here are assigned to the arrows like x in (4.11), whereas i, j, k, [
are attached to the vertices. One may regard K; j; in the left-hand (right-hand) side as
apoint in the back (front) of the diagram where the four arrows going toward (coming
from) the vertices i, j, k, [ intersect. The 3D L’s have been depicted according to the
right-hand diagram in (2.14).

In terms of L;’;’ in (2.12) and G’; in (4.11), the component of Fig. 4.6 for the

1 2
transition v, @ vy > v, @ v, € V ® V is expressed as

Y, W eGIeLiyeGhHK= Y KL ®GaL G).
L2, J1, 2 L2, J1, 2

(4.12)

i j k I
See (5.108). This is an equality in End(F' @ F @ ¥’ ® ¥) for each choice of
a, b, ¢, d which are labels of the base of V.
Set G5lm) =3, G';’;;’ |m’) in (4.10). Then by further taking the coefficients of

the transition |e;)’ ® | f1) ® |g1)’ ® |h1) > |e3) ® | f3) ® |g3) ® |h3) according to
(4.2) and (2.13), the Eq. (4.12) is regarded as a collection of

abes ~jof3 y J1i2 83 ~iths ezfzgzhz_E: e3 f383h3 7 jiirer ~jofr yi2b g ~ahy
ZLizjzf?szlszdilgz Gc‘hz Kelfl g T Kezfzgzhz LdChl GjlglLiljzﬁGizel

4.13)

with respect to a, b, ¢, d, e, fi1, &1, h1, €3, f3, g3, h3, where the sums in both sides
extend over i1, 1, jl, j2, e, fz, g2, h2.
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Fig. 4.7 The first diagrams in Figs. 4.4 and 4.5 with labeled arrows a, b, ¢
We will also work with another version of 3D K defined by

J1234 = P14P23K1};4P14P23 (S End(? ® 7:/ ® F ® 7:/) (414)
=Kus (GfK7'=K). (4.15)

Here P;; is the exchanger of the component i and j, hence P4 P»3 reverses the order
of the tensor product. Thus the second line means, when K = K —1 that the rule
corresponding to (4.2) is given by

Jnelky' elj)eliy)= Y Kild el @b ela). @16

a,b,c,d

The quantized reflection equation for J takes the form

Ik i ik
Jijii(L12G2L21G) = (G L12G2 L) Jiju- 4.17)

Let us look at the common first diagrams in Figs. 4.4 and 4.5. We label the three
arrows in it with a, b, ¢ as follows:
Naturally, Fig. 4.7 is attached with the operator

9 8 7 6 5 4 3 2 1
LbcLachLachcha GbLba Ga

RN CRE)

a b c 1 2 3 4 5 6 7
cEd(VRVRVIAFRF QF QF QF QF QF QF @ F).

Applying the quantized Yang—Baxter equations (2.19), (2.20) and the quantized
reflection equation (4.17) successively, we get
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9 8§ 76 5 4 3 2 |1
S689 /3579 R249 5258 J1478 J1236 Ras6 Lipc Lac G Lap Lep LeaGpLpa Ga

74 5 6 3 2 1
= 568913579R24952581147811236LbcLacG LeaLepLapyGpLpaGaRase
9 8 7 4 5 1 2 3
= 6893579 R2498258 J1478 Lo LacGeLeaLep Ga LabiLba112%6R456
4 5 2 3 6
L

9 8 7 1
= S689J3579 R2495258 J1478 Lipc Lac G e Lea G Ly Lap Gy Lpa J1236 Rase

9 1 4

= S689J3579R2498258 Ly G L
9 1 4 7

= 86893579 R249Lpc GuLuc G

78 5 2 3 6
acGeLeaL ey LapyGpLpaJ1478J1236 Rase

2 5 8 3 6
cLapLep LeaGpLipa Sa58J1478 J1236 Rase (4.19)

19 4 2 75 3 8
= S689J3579R249GaLbcLacLachchGchaLba5258 J1478 1236 Rase

1 2 4 9 75 38 6
= S689/3579G ¢ Lap Lac Lpc G Ly Gy Lea Lpa R249 8258 J1478 J1236 Rase

1 2 4 35 709 3
= S689GaLapLacGpLpcGe chLcaLbaJ3579R249S25811478]1236R456

2 4 35 76 8 9
aLabLacGpLpcGeLpaLeaLcnSes9J3579 R2495258 J1478 1236 Rase
1 2 34 5 6 78
aLabGpLacLpcLpa G, LcaL 568943579 R2498258 J1478 J1236 Ras6.-

The underlines show the changing components. These transformations follow Fig.
4.4. Similarly, we have

9 8 76 5 4 3 2 1
S456J1236J1478 R2585249 J3579 Rego Lpe Lac G Lap Lep Lea Gy Lpa G
5
L

8 6 7 34 2 1
= S456J123611478R258S249J3579R689LbcLacLach b GpLeaLlpa Gy
6 8 9 75 3 4 2 |
= S456J1236 J1478 R258 S249 J3579 Lap Lac Lpc G L ey G Lea Lpa Ga Rego
35 79 4 2 1
= S456J1236J1478R258S249LahLacGhLchchchaLbaGa J3579 Rego
8 35 7 2 9 1
= S456-]1236J1478R258LabLachLch LpaLca Loy GaSaa9J3579 Rego

4
L
6 38 5 2 74 19 420
= S456J1236 J1478 R258 Lapy Gy Lac Lpc Lpa G e Lea G o L S249 J3579 Rego (4.20)

32 5 8 74 19
= 5456J123611478L bGuLpaLpcLacGcLeaGaLcp RasgS249 3579 Rego

32 5 1 4 9
= S456J1236L pGpLpaLpcGaL L
32 15 4 78 9
= S456J1236LubiLbaGaLb LacGeLegLepJ1478 R258 5249 J3579 Rego

12 36 5 4 7 9
= S456Ga LabiLbaLbcLachLcachJ1236J1478R2585249J3579R689

7 8
acGeLeqgLep J1478 R2s588249 J3579 Rego

1 2 3 4 5 78 9
=G, LahGhLacLbLLbaGchaLchS456-’1236J1478R258S249J3579R689-



4.5 Bibliographical Notes and Comments 63

These transformations follow Fig. 4.5. We note that the underlines in (4.19) and
(4.20) exactly correspond to those in (5.106). From (4.19) and (4.20) we see that

(Su56J1236 J1478 Rass S249 J3579 Reso) ~' (Ses9J3570 Roa9 Sass Jiazs J1236 Rase)  (4.21)

commutes with the operator (4.18). Therefore, if the collection of (4.18) with respect

a b c
to the components of End(V ® V ® V) acts irreducibly on

4 5 6 8 9

1 2 3 7
FRQF QF QF QF QF QF QF QF, (4.22)

the operator (4.21) must be a scalar by Schur’s Lemma. Thus with suitable nor-
malization of S, R and J, we have a slight variant of the 3D reflection equation

S689 /3579 R249 5258 J1478 J1236 Rass = SaseJ1236 J1478 R258 5249 J3579 Rego- (4.23)

In Sect. 6.4 we will make the irreducibility argument precise for the type B case.

The quantized reflection equation is an analogue of the quantized Yang—Baxter
equation in Sect. 2.5 in the presence of a boundary, where the usual reflection equation
in 2D systems is relaxed to the conjugacy equivalence. In later chapters of this book,
we will construct solutions of these equations and present rich applications.

4.5 Bibliographical Notes and Comments

The reflection equation in the (1 4+ 1)D or 2D setting takes the form RKRK =
K RK R, where R is a solution to the Yang—Baxter equation. It has been popularized
by [30, 53, 82, 137] for example, and extensive results have been obtained by now.

The 3D reflection equation (4.23) with the indices replaced as
1,2,3,4,5,6,7,8,9) — (x,6,y,3,4,5,z,2,1) essentially coincides with
[62, Eq. (17)], where it was proposed as the tetrahedron reflection equation. Its
illustration in terms of “books” is due to a private communication with the first
author of [62]. The projected Fig. 4.3 appeared in [94]. The quantized reflection
equation (4.8) was first introduced in [105, Sect. 2.2].

One of the main topics in this book is a 3D approach to the reflection equation
initiated in [105]. It will be treated in Chaps. 15 and 16, where the 3D reflection
equation and the quantized reflection equation will function coherently.



Chapter 5 ®)
3D K From Quantized Coordinate Ring Guca i

of Type C

Abstract We introduce the quantized coordinate ring A, (g) for g of type C based on
generators and relations. Intertwiners of the quantized coordinate ring are constructed
explicitly. They lead to solutions of the 3D reflection equation and the quantized
reflection equation. The 3D K admits the set-theoretical and birational counterparts.
These features are parallel with Chap. 3 for type A.

5.1 Quantized Coordinate Ring A,(C,)

The quantized coordinate ring A,(C,) (n > 2) is a Hopf algebra generated by
(2n)* generators T = (#;j)1<i. j<2n With the relations of the form RTT = TTR and
TC'TC™' = C'TC™'T = I. Here ' M denotes the transpose of a matrix M. Con-
cretely, they read as

D R twitpr =Y tiptin R (5.1)
m,p m,p
Z CikCimtijtix = Z CijCrtijtin = —0im. (5.2)
jkl jki

The structure constants (R,Z)lf,-,j,k,lsz,l andC = —C~! = (Cij)1<i, j<2n are specified

by

Z R,ijl'Eik ® Ej ZqZEii L + Z Eii ® Ej; +CI71 ZEii ® Eyir
i,j.k,l i i#j,j i

+ (g _q_l)ZEij ®Eji—(q —q_l)zeiqug’_g/E,j Q Ejpj,
i>j i>j

(5.3)

3i.yq%,1 < j=<n, y .
c; =11 s=n =241, (5.4)
’ =38, y1q%,n < j <n,
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1y 0om)=mn—1,....1,—=1,...,—n+1, —n). (5.5)

The indices in (5.1), (5.2) and (5.3) are summed over {1, 2, ..., 2n}. The structure
constant Ry} is extracted as

> RIE.®E;= qxlilgox*R(xnk:w (5.6)

1<i,jm,0<2n

from the quantum R matrix R(x) for the vector representation of U, (C{) given in
[64, Eq. (3.6)]. For n = 2, the matrix C reads as

0 0 0 g2
0 0q¢' 0

c=1|, _qqo 0 (5.7)
>0 0 0

The RTT relation (5.1) is formally the same with (3.1). The coproduct and the
counit are again given by (3.6) and (3.8). The antipode takes the form

S(ry=c'rc! (5.8)

in terms of T = (#;;). The matrix C is related to the R matrix (5.3) as!
R=(CeD(R(C'eh=000C®RNHUCT, (59
where ¢ and t, denote the transpose in the left and the right components, respectively.

Let us consider a slightly more general situation of the anti-diagonal C such that
C? = ¢l with ¢ = %1. Thus we set

C=(Cy), Cij=4éjpi, pipr=ce. (5.10)
The current setting corresponds to ¢ = —1. The relation (5.9) is expressed as
(R = papi ' RY, = pipy 'Ry, (5.11)

The relation TC'TC~! = C!'TC~'T = I takes the form

ijtijtm’j/ = i0im, Zpktkitk/m’ = i0im. (5.12)
] %

! The symbol R is of temporary use, and it should not be confused with the 3D R.
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Remark 5.1 Denote by A, ({#;;}; R, C) the Hopf algebra with generators {z;;} obey-
ing the relations (5.1) and (5.12), where the structure constants R = (R,'le) satisfies

the Yang—Baxter equation and C = (Cj;) is of the form (5.10) and related to R by
(5.11). The coproduct, counit and antipode are defined by (3.6), (3.8) and (5.8). Then
A,({t;;}; R, C) ~ A, ({t;;}; R, C) holds under the simple rescaling of the generators
and associated data as follows:

tij = gigj_lfij, R;’f, = gigj(gkgz)flRZ, Cij = &Cyj. (5.13)
Here g is a non-zero parameter and ¢ is a sign factor satisfying

Ek = & = K8k = +1. (514)

In particular, one has éij = &, jpi wWith p; = &; ;.

5.2 Fundamental Representations

Let Osc, = (a*,a",k,k™!) be the g-oscillator algebra introduced in (3.12). Here
we also use Osc,2 = (AT, A, K, K! ), where the generators obey

KAt =¢?ATK, KA"=¢ A K, A At =1—-¢'K?*, ATA-=1-K°

(5.15)
and those following from the obvious ones KK~! = K~!K = 1.1t has anirreducible
representation on the Fock space 2 = @,,., C(q)|m):

Kim) = ¢*"m), A*|m) = [m + 1), A"lm) = (1 —¢*")lm — 1).  (5.16)

We will use the same symbol |m) to denote a base either for ¥, or ¥,2 as they can
be distinguished from the context.”

The general result on the representations stated in Theorem 3.3 applies to A, (C,,).
We have the fundamental representations

m; i Ag(Cy) — End(Fy,) (1 <i <n), (5.17)
Q== 1=q Gu=q" (5.18)

containing a non-zero parameter ;. For 7; with 1 <i <n — 1, the image of the
generators (i) 1< k<2, 1s specified as follows:

2n particular from (3.16), (m|m’) is (qz)mém,m/ or (q4),,18m,mr depending on ¥ or 7-',]2.
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tii i+l a-  wk Li+1y G+ Ta+1) .0 a~  —ui k
o )P itk et ) U o )T gtk at )
tit1,i lit1,i+1 qu; k a T Gi+1y tir v gu; k a
(5.19)
tij—> 1 #i,i+1,G+1 i), otherwiserj; — 0. (5.20)

See (5.4) for the definition of i’. For 7,, the image of the generators is specified as

follows:
In.n Ly ntl A~ Mn K
' ' = ) 5.21
<tn+1,n tn+l,n+l> (—qzu;' K A+ ) ( )
tjj=>1( #n,n+1), otherwisetj; — 0. (5.22)

Due to the presence of creation and annihilation operators, there is no non-trivial
invariant subspace within the Fock spaces, hence 7y, ..., m, are indeed irreducible.
The claim (i) in Theorem 3.3 is reflected in the fact that the 2-by-2 blocks of g-
oscillator operators in (5.19) and (5.21) are identical with (3.19) up to ; parameters
and the replacement ¢ — ¢? for m,,.

Example 5.2 The image of the 16 generators T = (f;;) 1<, j<4 of A,(C>) by the
fundamental representations reads as

a” urk 0 0 1 0 0 0
—1 +

| —gqu; k a 0 0 10 A~ K 0

(1) = 0 0 a —wmk| D=1y —g*u;'"K At 0

0 0 gu;'k at 0 0 0 1
(5.23)
Remark 5.3 All the parameters puy, ..., i, in the fundamental representations
can be absorbed into the rescaling of the generators by taking g, L= g = ,u,'/ :
Hk§j<n w;jforl < k < ninRemark 5.1. Therefore,onemay set 4y = --- = p, = 1

in the reminder of this chapter except for their use in the proof of Lemma 5.7 and
Proposition 5.8.

Example 5.4 The image of the 36 generators T = (f;;) 1< j<¢ of A,(C3) by the
fundamental representations reads as

a= K000 0 10 000 0
gk at 000 0 0a- k 0 0 0

o o100 0 O—gkat 0 0 0
=19 0010 o > M =15 0 0a kol
0 000a — 00 0gkato
ooooqka+ 00 00 0 1

(5.24)
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10 0 000
01 0 000
00 A~ K 00
M =[0 0 _42K A+ 0 0] (5.25)
00 0 010
00 0 001

where we have set u; = uy = 3 = 11in (5.19)—(5.22).

Let us turn to the tensor products of the fundamental representations. As in the
type A case, we often write 7;, ® - -- ® m;, as ;.. ; for short. The Weyl group
W(C,) = (s, ..., s,) is generated by the simple reflections sy, .. ., s, obeying the
Coxeter relations

st=1,  sisj=sp8 (i — j| > 2), (5.26)

SiSip18i = Sip188i41 (1 <7 =<n—2), S_15280—15n = SuSp—18nSp—1.  (5.27)

According to Theorem 3.3, these relations imply that the following isomorphism is
valid:

Rl I (i = jl =2), (5.28)
Tiitli = Tip1iiv1 (L <@ <n—=2), (5.29)
TTn—1,nn—1,n x~ TTnn—1,n,n—1- (530)

5.3 Interwtiners for Quadratic and Cubic Coxeter
Relations

By Remark 3.4, the intertwiner responsible for the isomorphism (5.28) is just the
exchange of components P defined in (3.23). See the explanation around (3.24).

Next we consider the intertwiner for (5.29). Namely, we seek ® € End(?—’q®3)
characterized by

@ o7 iy1,i(A(f) = Tigriit1(A(f) o ® (I =i <n, Vfe Al C)), (5.31)
(10) ® 10) ® [0)) = |0) ® [0) ® |0), (5.32)

where the latter just fixes the normalization. We set R = ® P;3 following (3.30).
Then a little manipulation using the representation (5.19) and (5.20) shows that the
Eq. (5.31) is independent of p; parameters and is identical, as a set, with (3.38)—
(3.46) for the 3D R. Thus we conclude that the intertwiner for (5.29) is provided by
the 3D R in Chap. 3 by ® = R P;3. As mentioned before, R will also be called the
intertwiner.
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5.4 Intertwiner for Quartic Coxeter Relation

Let us construct the intertwiner responsible for the isomorphism (5.30). From the
representations (5.19)—(5.22), it is not difficult to see that the problem is attributed
to the A, (C») case. Thus we consider the linear map

V:F@Fp ®@F;@F, — FpQ@F, @Fp @F, (5.33)
characterized by

m1(A() oW = Wompnp(A(f) (Vf € Ag(C)), (5.34)
¥ (10) ® 10) ® |0) ® |0)) = 10) ® |0) ® |0) ® |0), (5.35)

where the latter just specifies the normalization. The absence of terms other than
|0) ® |0) ® |0) ® |0) in its RHS is assured by the weight conservation. See (5.57)
and (5.65). We introduce K by

K = \I-’P14P23 EEl’ld( ‘7‘:12 ®7rq ®ﬂ2 ®7‘71), (536)
where PisPy3 i x @ yQ®zQ@ w > w ® z ® y ® x reverses the ordering of the 4-fold
tensor product. It will be shown to satisfy the 3D reflection equation in Theorem 5.16

and also in the latter half of Sect. 6.4, therefore K is a 3D K in the sense of Sect. 4.2.
The conditions (5.34) and (5.35) are translated into

1 (A(f) o K = K omun(A(f)) (Vf € Ag(Cr)), (5.37)
K(10) ®10) ® |0) ® [0)) = |0) ® [0) ® |0) ® |0), (5.38)

where A(f) = P14P23A(f)P23 P14. From (36) we have

Altij) = Z ti, @ 11, @ ty1, @ 1, (5.39)
1<li,b,l3<4

Aty = ) 1 @l @ty @l (5.40)
15[1,12,]354

Below, K will also be referred to as the intertwiner.

Thanks to Remark 5.3, the intertwining relation (5.37) is free from the parameters
W1, 1o in (5.24). By a direct calculation using (5.39), (5.40) and (5.24), it is given
explicitly as follows:

i [[®a~ ®1®a —glQk®A™®K, K] =0, (5.41)
tio: (Ia~ 10k + 1kQA~ ®a")K
= KA ®at®A ®k+ A ®k®l®a” — ¢°’K®a ®K®K), (5.42)
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t3: (I9k®K®a )K = K(AT®a Kok + KQat QA" @k + KQk®1®a ™),
(5.43)
f4: [1ok®K®k, K] =0, (5.44)
f1: (A" ®at®A " ®k + A~ Qk®1®a  — ¢’K®a @K@k K
=K(l®a @Ik + I9k®A~ ®a™), (5.45)
tn: [A"®at QA" ®aT — A" Qk® 19k — ¢’ K®a~ @K®a™, K]=0, (5.46)
13" A" ®a"®K®a™ + K®a ®AT®a™ — gK®k®1®K) K
=KAT®a @K®at + K®at®A ®a’ — gK®k®1®Kk), (5.47)
1y: (A" ®at @Kk + KRa~ ®AT®k + K®k®1®ah)K = K(19k®@K®a™),
(5.48)
I (A*®a  9K®k + K®a'®A~ 9k + K®k®1®a )K = K(19k@K®a"),
(5.49)
3 (ATRa  ®K®at + K®a"®A ®a’ — gK@k® 1K) K
=KA ®a"TeK®a +K®a ®AT®a~ — dK®k®1®k), (5.50)
133 [ATRa" ®AT®a” — gATQk®1Qk — ¢’K®at@K®a™, K]1=0, (5.51)
1 (A*®a ATk +AT@k®1®a" — ¢’K®aT @K®K) K
=K(1®at®I1®k+ 1I9k®AT®a"), (5.52)
t41: [1QkQK®k, K]=0 (same as t14), (5.53)
14 (19k@K®a")K = K(A” ®at®K®k + K®Ra” ®AT®k + KRk®1®a™),
(5.54)
143 (I®aT®10k + 1k®AT®a™ K
= KA"®a ®AT®k + AT®k®1®at — ¢’K®at ®@K®k), (5.55)
t4g [I®aT®1®at — gl @k®AT®K, K] =0. (5.56)

Here 1;; in the left column specifies the choice of f in (5.37).

Remark 5.5 If one switches from k and K to k = ¢!/?k and K = ¢K including the
zero point energy (see (3.13) and (5.16)), all the “non-autonomous” ¢’s in (5.41)—
(5.56) disappear, which is a parallel feature with 3D R in Remark 3.9.

The intertwiner K is regarded as a matrix K = (Ki“j';ﬁd) acting on F2 ® ¥, ®
For ® Fy as

Kliy® )@k o)=Y K&ia)®b) o) @ d). (557)
a,b,c,d

The normalization condition (5.38) becomes K&%g = 8388 8686’ .
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Example 5.6 For later use, we write down a few examples of recursion relations
among the matrix elements derived from (5.41)—(5.56):

bt1,c,d+1 b,c+1,d
s (1= g2+ (1 — q2d+2)K;1,j,l-:l edtl _ o lkbid () _ q4C+4)K[_(fj,kC~‘l+

j b.ed j \b,c.d
=== K = T A= K (5.58)
b+1e, > b,c+1,d—1
2t gt (1= g KO+ b (1= g KT

i Jb,e,d j i Jb,ed
=q'(1—g") A= g™ KN o +al =g = DK

_ PRk (] q2_i)Kz~jbfl-’iJ, (5.59)
m:qhuc(l —QMH)K,'H,}I,;/}C,}HI
= U= KRG+ = g K P = DK
(5.60)
s g2 (1 _q4a+4)K;f;Il(,j)71,c,d + g2t _q2b+2)Kf,ji,:Zch71,d +612“+be}}fo2517|
= gabed (5.61)
fas: Kia’,j?];ll,c,d—l _ q1+b+dKzfl,£l—1,d _ K[ay,jbﬂ,Lcl,’ollc’lle _ quHKZ}b,I’cT{.I" (5.62)

By a direct calculation we find?
m121(A(Y)) =1 (A(Y) =K@k @K ® 1 (5.63)

forY = ,141_2;42_2(q_1t23t14 — tuyt13) € Aq (C3). From (5.44) = (5.53) and (5.63), the
intertwiner K commutes with the diagonal operators as

K. KQK°QK®1]=[K,19k®K®Kk] =0. (5.64)
From the definitions of k in (3.13) and K in (5.16), it implies
K =0 unless (a+b+c,b+2c+d) =@+ j+k j+2k+1). (565)
This property will be referred to as weight conservation. It may also be rephrased as
K."®"@"®ll=[K19"®"®" =0, (5.66)
where his the number operator (3.14) and z is a non-zero parameter. The recursion
relations in Example 5.6 are closed among the elements satisfying (5.65).
Let us introduce the type C analogue of (3.58) as
Dec=Dp®D; ® Dy ® Dy, (5.67)

where D, is defined by (3.15).

3 The result for 72121 (A(Y)) also appears in (5.123).
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Lemma 5.7 The transposed representations are related to the original ones as

(2121 (A(#:)))) = Demtarat (At i) D |- s (5.68)
N(2121 (A (1)) = Demarnt (At i) D |y - -, (5.69)

fori,je€{l,2,3,4}, wherei’ =5 —i.

Proof By using '(A*) = D2 AT Dq}l, 'K = D,,zKDq}1 and similar formulas in the
proof of Lemma 3.6, we get

T () = Dqﬂl(tj'i/)D,;llu,e—#,, (5.70)
'm2(1ij) = Do (i) D, (5.71)

for the fundamental representations (5.24). The claim can be verified by applying
this to the definitions (5.39) and (5.40). O

Proposition 5.8

K'=K, (5.72)
'K = DcKD.'. (5.73)

Proof These properties are proved by invoking the uniqueness of the inter-
twiner satisfying (5.37) and (5.38). Set X;; = Kfllcjtj,-, where (k1, k2, k3, kg) =

(1, —q~'u3, g3 3 u3, —g~*uip3). Then it is easy to check

121 (AXi) = 121 (A)), - T2121(A(Xi))) = ma121 (A (L)) (5.74)

From this, comparison of the two choices f = #;; and f = X;; in (5.37) shows that K
and K ~! satisfy the same set of intertwining relations. The normalization condition
(5.38) is also invariant under the exchange K <> K~', hence (5.72) follows. To
show (5.73), take the transpose of (5.37) and replace wu; by —u;. From Lemma
5.7 and the fact that (5.37) is actually independent of 1, we find that Z)E“K Dc
again satisfies (5.37). The normalization condition (5.38) is also invariant under the
exchange K < Z)E”K Dc, hence (5.73) follows. O

In terms of the matrix elements, the property (5.73) is rephrased as

abed @hi@); @@ iju
T gMa(@Dn(ghe(@Da

(5.75)

where (¢%)n = (g% ¢*)m and (") = (g*; ¢*)m according to (3.65).
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5.5 Explicit Formula for 3D K

In this section we present explicit formulas of the matrix elements K i“ﬁjd (5.57) of
the intertwiner K characterized by (5.37) and (5.38). We use the notation (3.65).

Theorem 5.9
4y . _1\a+y
bed bte sht2et+d (47) (=1
Kfjk? = 57@# 5]1—21311 7 - § — q”
(q )a @,B,7>0 (6] )c—ﬁ

oo K IHa—foy Oktl—a—fy k,e—B,j+k—a—-Bk+l—a—p8
a,b+c—a—p—y,0,c+d—a—p—y @, ,8, v, b— a, d— a, k—o— ,3, c— ’3 —y p s

(5.76)
br=a@+2c—28-D+QB—)b+c+d) +y(y —1)—k(j +k+1),
(5.77)
where the special case K::g.' appearing in the sum is given by
Kot = sity shid Y (=P @ess go (l) ( / ) (5.78)
ol AR A>0 (q4)a A 7 b—A q27
dr=G+atDb+1—22)+b—1, (5.79)

where the sum is actually restricted to max(0, b — j) < A < min(l, b).

By the definition (3.65), all the sums appearing in the theorem and the proof below
are actually finite ones by the non-vanishing condition that all the suffixes of K and

the entries of the symbols { }q2 and ( )q2 are non-negative.
Proof First we reduce K l‘;},’(‘ld to k = 0 by means of (5.62):
bed _ —j—I—1 b—1,cd—1 bed b+d+1 grab.e—1.d
Ki(_ljk? =q’ (_ng.k—lc,l + Kigfj-&-cl,k—l,l-ﬁ-l +4q Kia,j,kc—l,l ) (5.80)

This can be fitted to a recursion relation of ¢2-trinomial coefficients. The solution
reads as

k
bed __ga+b+c ob+2c+d
K;.l]kcl _8i+j+k 6j+2k+l {a ‘B k— o — ﬁ} (_1)0[
ap>0 L7 'S (5.81)
% g @B @B+Hk— D)+ (b+d—2a-+DB—(j++ Dk gab—a.c—p.d—a
q i,j+k—a—pB,0,l+k—a—pB>

where the sum is actually finite. Second we reduce ¢ by means of (5.58)|;—:



5.5 Explicit Formula for 3D K 75

—b—d—1
q b+1,c—1,d+1
K%id — - <(1 _ q2h+2)(1 _ q2d+2)ng’0+’ll c—1.d+ 5

(=g = gKL).

. . . . 4 2 2 . . . .
By considering the combination %K i"j}fﬁd, this is fitted with a recursion
J

relation of ¢2-binomial coefficients. The solution reads as

gabed _ sa+btegh+2ctd g~ rathe { Jil } Z {C’ b+c—y,d+c—y }
q* q°

ijol = 9i4j J+ (q4)c b,d y>0 y,c—V,j— )/,l -y

x (— I)Vq(}/—c')(y-‘rc— h) Ka,b+c—y,0,d+c—y

i,j—y,0,l—y 4
(5.83)
where the sum is actually finite. Combining (5.81) and (5.83), we obtain
gabed _ satbeghidcrd (=DM abte—a—fy0dtc—a—fy
ijkl = Ot jk ©j+2k+ @e_p i, j+k—a—B—y,0,l+k—a—B—y

o.p,y=0
k,e—B,j+k—a—-p,l+k—a—-B,b+c—a—-pF—-y,d+c—a—-B—y
{a,ﬂ,y,b—oz,d—ot,k—ot—ﬁ,c—,B—y,j-l—k—a—,B—y,l—l—k—a—ﬂ—y}q_’
(5.84)

where ¢, is given in (5.77).
Next we reduce d and / in K fj%‘l)d to 0, keeping the already attained two zeros.
Such recursion relations are available from (5.60)|;—.—¢ and (5.61)|;—c—o:

1 o 4
bOd 2 —b 21 ,b0,0,d—1 1—b 2 ,b,0,d—1
Kijor' = 1 —qX (q A =g DK S e (g /)Kia+1’1*1~0”)’
(5.85)
—j ,b,0,d— —j ,b—1,0,d
Kot = @K a4 = g YK (5.86)

Note that either (5.85)|;—9 or (5.86)|4—0 leads to

100 i)
Kil]]'oo =(=1)g (+1)j

with the help of the conservation law (5.65) and Kgggg = 1. It is easy to solve (5.85)
and (5.86) with the above initial condition. The solution is given by (5.78). It fulfills
the symmetry

4 .
ab0d __ (g™ | J.1 ijol
Fio = g, {b,d}qz . -89

in accordance with (5.75). This is seen by replacing A with i —a + A in (5.78).
Finally, (5.76) is obtained by applying (5.87) in (5.84). Although this last step is
optional, it cancels four entries in the symbol { N }q2 in (5.84). (]
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Example 5.10 The following is the list of all the non-zero K§/¢¢.
Kyito = ¢°(1 = ¢®).
K30 = =41 =q* + 4",
K3ty = —¢°(1+ )1 —¢* +4* —¢° —¢'),
KMo =1-4°+4¢",
K% =—¢"(0 =g+ g1 +q+q7,
K% = g*

Remark 5.11 By counting the number of factors of the form (1 — ¢") mod 2 in
Theorem 5.9 for Kf;},’(‘ld l|g—g-1, it is easy to see (—l)bK;‘j%d > 0 forg > 1. This leads
to a positive solution to the 3D reflection equation. See also Remark 5.17.

Let us proceed to another formula analogous to Theorem 3.18. Define a family of
polynomials {Qj .(x, y, 2, w) | b, ¢ € Z>o} in four variables x, y, z, w including ¢
as aparameter by the initial condition Qg o(x, y, z, w) = 1 and the recursion relations
decreasing b and ¢ as

4b+8c—4 4

Op—1,c(x,y,9 "z, w)

e Oyt e (g 2y, 2 w)

+ =D — D00, c(x.q 2y, 2. g w)
+wl — Dy — Dg* 370, 1 (g x. g%y, 7!

+w— D = Dyg®7 00, 1 (g7, y.2,477
4b+8c—8 Qh .

Op.c(x,y,2,w) =wy(z — g
+ wx(y — Dyzq

Z, W)

w), (5.88)

10y, gz, w)
2(b+2c)

Opc(x,y, z,w) = —w?y(z — Dzg

+wx(y — Dzg* (g — ¢*wy2) Qp.e—1(x, ¢ 2y, 2, w)

— (w—Dw(y — Dzg®** 30y . 1(x. 7%y, 2.4 w)

+wlx — D — Dg* 0G0 — g2wyz) 0y e-1(q*x, 4%y, ¢z, w)

+(w = D(x = D102 — g2uy2) 0y e 1(g 7 x. v 2 g2 w).
(5.89)

2

From these equations we see Qy, .(x, y, z, w) € Z[qz, q ", x,y,z, wl.

Example 5.12 Here are a few examples of O, .(x, y, z, w)’s with small b, c:
Qro(x,y, z,w) = wxy’z —w —xy + 1,
Q0,1(x, v, z,w) = ¢*(wxyz —wz —x + 1) —wz (wxyzz —w—xy+ 1) ,
Qoolx,y,z,w) = qé(w —Dxy—1+ q4 (—wzxyzz +w?+ wxy —w + xy2 — xy)
2.2 2 2
—q xy“(wxyz —wz —x + 1) + wxy z(wxy szfxy+1)

— q4(w —w? +xy —xyw — xy2 + xyzzwz),
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01165,y z,w) =¢"(w—Dx — 1) — g w — Dwz(xy = 1)
+4° (—wzxyz +w?z — wx?y?z + 2wxyz — wz + x2y — xy)
+ q4wz (wzxyzz —w? + wx2y3z - wxyzz —wxy +w — x2y2 + xy)
+ qzwxyzz(wxyz —wz—x+1)— 11)2xy2z2 (wxyzz —w—xy+ 1).
As these examples indicate, Qj .(x, v, z, w) is actually a polynomial in ¢>. This is
indeed the case. See the remarks after Theorem 5.15.

Theorem 5.13 Matrix elements of the 3D K are expressed as follows:

DK —Pb.c
abc a c C q i j
K = sptieshisid PERTON Ovclq*. g7 . g%, ¢¥).  (5.90)
¢k = (@a—k)d—j)+®-Dc—i)—20b—jc—k, (591
@p.c = 3b(b — 1) +2c(3c — 2) + 8bc. (5.92)

Proof Substituting (5.90) into (5.58) and (5.59), we find that they are translated into

yg 2O o) Gy, zow) + g 2D (yp 2Ty 0y (L vz w)
+ =D = D0p e, g 2y 2.¢72w) + wyz — Dg=22Qp o (x, v, *z,w) = 0,
— g 26D o)y, 2o w) — wzg 2EFEHD gLy zw)

+wx(y — Dzg 20290, (g7 2y o w) + (w — D& — DOp (g *x v 2. ¢ 2w)
+wx — 1)z — g™ Qb,c-(q_4x, a*y.q 4z, w) = 0.

The recursion relations (5.88) and (5.89) can be derived by combining the two

equations. The normalization condition K5y = 1 also matches Qo o(x, y, z, w) =
L. (]

The power ¢k in (5.91) is invariant under the exchange (a, b, ¢, d) < (i, j, k, ).
Therefore (5.75) implies another general formula:
l i
abcd a+b+c ob+2c+d —@; 4a 2b  _4c 2d
K = 878 4™ “"*{b d} z{a C} Qikq™ a7 %47,
%y S g
(5.93)

The formulas (5.90) and (5.93) with the recursive definition of O, .(x, y, z, w) by
(5.88) and (5.89) are no less convenient for computer programming than the explicit
formulas in Theorem 5.9 and the forthcoming Theorem 5.15.
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Example 5.14 According to (5.90), Example 5.10 is expressed by various special
values of Qo(x, y,z, w) = wxyzz —w—xy+1las

K3102 _ Ql,O(q4’ 6]6, 1, 1) 3102 _ Ql,O(qga 612, q4, 1)

1300 — q4(1 _ q2) ’ 2110 — 1 _ qz ’

K31()2 — QI,O(QS, q47 19 q2) K3102 — q6Q1,0(51]29 17 CI4» 512)
2201 1— q2 ’ 3011 1— q2 ’
K3102 _ qéQl,O(qlzs qzv 17 q4) K3102 _ ql4Ql,0(q167 ]7 17 qﬁ)

3102 — 1 — q2 ’ 4003 — 1— q2 .

On the other hand, according to (5.93), they are also expressed in terms of
01..(q'%, g%, 1, g*) with various b, c. For instance, one has

3102 — q_IOQl,l(qlzﬂ qzﬂ 15 5]4) 3102 — q4Q0,1(5]12, qzﬂ 15 5]4)
MO (1 — 221 —ghH(1 — g1 M (1—g»)(1—g%

To present a closed formula for the polynomial Q,, .(x, y, z, w), we introduce

yb’cz{(r,s,t,u)eZéO|min(u—t,2r—s,b—s+21—u,c—r+s—t)20},
(5.94)

which is a finite subset of {(r, s, t, u) € Z‘éo |s/2<r<b-+c, t <u<b+2c}.

Theorem 5.15 Let ¢, . be as in (5.92). The following formula is valid:

Opelx,y,z,w)=q% " (=1 HgPe vy, Xy, (5.95)

(r,s,t,u)€ p ¢

S qVr.s bu—t
(_1)3(1‘// ' { b4-2t—s—u,2r—s }qz

Clifu = (—P7g% g, (5.96)
@@=t @ ervs— <a,ﬁ,yz>ez;0 “

_ b—s+t—a,2r—s+p ct+s—r—B,c+vy

“‘“”:{a,ﬂ,y,u—r—a,r—ﬁ,b—s—a+ﬂ,s—ﬂ—y}qz{ c—r+y }qw
(5.97)

bo = (s =2t +u) +2r(r+2+1) — 2b — 1)(s +u) — 4c(r + 1), (5.98)

pc=a(a+14+200+B(B—1—-2a+2b—4r)+y(y —1—4r), (5.99)

Yrs =s@r —s+1). (5.100)

In view of the support property of the symbols in (5.97), (see (3.65)), the sum
(5.96) is limited to those «, B, y such that all the lower entries in (5.97) are non-
negative, which also ensures that all the upper entries are so. Thus it ranges over
a finite subset of {(«, 8, y) € Z3>0 | <u—t, B <t, y <s}. The dependence of

Eq.8,y On (b, ¢, 1, 5,1, u) has been suppressed in the notation for simplicity.
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The proof of Theorem 5.15 is lengthy, hence omitted here. The details can be
found in [88]. We quote a few additional results therein:

Ope(x, ¥y, 2, w)g=0 = (=D @y @w) >0 o(x, y. 2. w),
g Qpel, v, 2 w)lgmo = 1 =2y — w4 wy e

Ope(x, 1, 1, w) = (=D %" w2 (7 g W5 P2, (5.101)
O,y 1, D) = (=D Gy 7" 47 pse,

Opc(1, 1,2, w) = (=D zw)? (27" M

where (b, ¢) # (0, 0) in the first two relations. From them we see Q), .(x, ¥, z, w) €
Zlg?, x, y, z, w] and that ©p.c 1n (5.92) gives the exact degree of Oy, (x, y, z, w) as
a polynomial in g. It is an interesting open problem whether Q; .(x, ¥, z, w) admits
a formula in terms of appropriately truncated generalized g-hypergeometric type
series analogous to (3.75).

5.6 Solution to the 3D Reflection Equation

In Sects. 5.3 and 5.4, we have obtained three kinds of normalized intertwiners for
the A,(C,) modules corresponding to (5.28), (5.29) and (5.30). They are given by
P in (3.23), ® = RP;3 and ¥ = K Py4 P»3, respectively.

Theorem 5.16 The intertwiners R and K satisfy the 3D reflection equation (4.3) in
5 6

1 2 3 4 7 8 9
End(Fp ®@F @F p QF ;@F 1 QF 4 @F o @F 4 @ F ).

Proof Consider A,(C3) and let 7y, >, 73 be the fundamental representations given
in (5.19)—(5.22) which are also displayed in Example 5.4. The Weyl group W (C3)
is generated by simple reflections sy, s;, s3 with the relations

s7 =1, 8153 = 5351, 5815281 = 5285182, S2535253 = §3525352. (5.102)
According to Theorem 3.3, the equivalence of the tensor product representations
T3 X W31, o) = Wop and mo3p3 = m3p3; are valid. Their intertwining relations are
given by

P O T3 = T3] © P, (O] OTT12] = T212 0 CD, ¥ o JT9323 = 13232 © v, (5103)
See Remark 3.4, (5.31) and (5.34).

Let wy € W(C3) be the longest element. As a linear transformation on the root

lattice, we know wy = —1. Pick the two reduced expressions, say,

Wy = §152538515251535283 = §352535152851535281, (5.104)
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which are related by the reverse ordering. According to Theorem 3.3, we have the
equivalence of the two irreducible representations of A, (C3):

T123121323 = 70323121321~

(5.105)

Following the transformations of the reduced expressions by the Coxeter relations
(5.102), one can construct the intertwiner for (5.105) in two ways. In terms of the
indices, they look as follows:

123121323 ®ys 123121323 Py Ps
123212323 Werso 121323123 @3

123213232 Psq 212323123 Wiys6

123231232 Ways 213232123 g

132321232 &3, 213231213 P3P Pyo
132312132 Pia PysPrg 231213231 a5

312132312 doyy 232123231 Wsgr

321232312 Wyser 232132321 Pys

321323212 dog 232312321 Wy

321323121 Py Per 323212321 ® 4

323121321 323121321 (5.106)

The underlines* indicate the components to which the intertwiners given on the
right are to be applied as in (3.93). Since the intertwiner for (5.105) is unique up
to normalization and ¢ and W are normalized as (3.29) and (5.35), the following
equality is valid:

P34 Pg; 437_819 Wys67 D234 Pro Pys Prg CI>§617 W1345 P56 We789 Pase
= d>2516 W 1234 PasWs678 D345 Po3 Psg Pgo cbg718 W3456 D123 P34 Pe7.

Substitute \Ijijkl = Kijkl P,'IPJ']((S.36) and q),'jk = R,'jkP,'k(3.30) and use \Ijl;]i =
P Rl;,i = R;ji Pixdue to Proposition 3.7. The result reads as

P34 Ps7 R789 P19 K 4567 Pa7 P56 R234 Pag P12 Pys Prg
X Rs67 P57 K2345 Pas P34 Psg K789 Poo P78 Ras6 Pag
= Rys6 Pac K 1234 P14 P23 Pys K567 Psg Pe7 R345 P35
X Pp3 P56 Pgo Re78 Pos K3456 P36 Pas R123 P13 P34 Pe7-

4 Their pattern exactly corresponds to (4.19) and (4.20).
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Sending all the P;;’s to the right we find

i
Re89 K3579 R249 Rp58 K 1478 K 1236 R4s60 = Ras6K 1236 K 1478 R258 R249 K3579 Regoo”,

where 0 = Pi4 Ps7 P79 P47 Ps Py P12 Pas P1g P57 Pos P3y Psg Pso Pig Pss and o’ =
P46P14P23P45 P58P67P35 P23P56P89P68P36P45 P13P34P67. Since o and o’ are both
equal to the reverse ordering of the 9-fold tensor product (the longest element in the
context of the symmetric group Sy), the 3D reflection equation (4.3) follows. [

There are 42 reduced expressions for the longest element wy. Starting from any
one of them, one can derive similar equations to the 3D reflection equation (4.3).
They are shown to be equivalent by using R;j; = Rl_ﬂi = Py Rijx Py and K = K~!
reflecting the fact that any reduced expression is transformed to any other by the
Coxeter relation [119].

Let h be the number operator (3.14) either on ¥, and 2. As usual we let h;
denote the one acting only on the ith tensor component from the left.

Remark 5.17 The operators (— DM Ry55 and (— 1M K234 also satisfy the 3D reflec-
tion equation. In view of Remarks 3.13 and 5.11, they yield a positive solution of the
3D reflection equation in the regime g > 1.

Proof From Remark 3.14 we know that (—1)™ R|»3 also satisfies the tetrahedron
equation. As for the 3D reflection equation, we multiply the LHS of (4.3) by
(—DHhs+hs and use (3.49) to get

(— )M ¥R Reeo K3570 Roao Ross K 1478 K 1236 Rase

= (=)™ Rego(— )™ K3570 (— )™ (= 1)"2 ™4 Ry49 Rysg K 1478 K 1236 Rase

= (=)™ Rgo(— D™ K3570(— )™ Rago (— 1) (— 1)"1s (— 1)M Rosg K 1478 K 1236 Rase

= (=)™ Rego(— )™ K3570 (— )™ Roao (— )™ Rsg (— )™ K 1478(— 1™ K 1236 (— )™ Rase.

The RHS is similar. O

5.7 Solution to the Quantized Reflection Equation

Recall the quantized reflection equation introduced in (4.12):

Y athecieLiechk— Y K ecioLh o6,

i1j2
ini2, 1. J2 i1,i2,j1,J2

(5.107)
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Graphically it looks as follows:

(5.108)

In the setting of Sect. 4.4, choose V = Cuvp @ Cv, ¥ = F, and ¥’ = F 2. Thus we
have

L{} € End(Fp). G} € End(F,), K € End(Fp @ Fy @ Fp ® 7). (5.109)

Let us take L?jb to be the Osc,2-valued six-vertex model. They are obtained by
replacing ¢, a*, k by ¢, A*, K respectively in Fig. 3.2 as follows (Fig. 5.1).

As for G’;, we specify it along the diagram (a) in (4.11) as in Fig. 5.2.

In formulas these definitions of Lf}’ and G’J‘. are summarized as

L=Ep®@Ew®@I+ENQEn1®1—-E1®En®K
—GPEWQEN QK+ En® Ey @AT + Ey @ Ejg @A™, (5.110)
G:E00®a++E10®k—qE01®k+E11®a_. (5.111)

Theorem 5.18 The 3D K characterized in Sect. 5.4 satisfies the quantized reflection
equation (5.107) for L and G given in (5.110) and (5.111).

b 0 1 0 1 0 1
i%»a 04—»0 14—»1 14—»1 04—»0 04—»1 1%»0
j 0 1 0 1 1 0
Lgb 1 1 K -¢*’K A* A-

Fig. 5.1 3D L entering the quantized reflection equation (5.107) is taken to be the Osc,2-valued

six-vertex model. It corresponds to replacing g with ¢2 in Fig. 3.2. For the notations a*, k € Oscq
and A%, K € Oscg, see (3.13) and (5.16)
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k} 0} 1} O} l}
j 0 0 1 1
GJI‘: a* k -gk a”

Fig. 5.2 The operator G’; entering (5.107)

Proof We show that the quantized reflection equation (5.107) for K coincides with
the intertwining relation (5.37). Let us write the former equation as

MiGK = KM, (5.112)
M= > LY, ®GEeoL); ®Gl, (5.113)
iz, ji.j2
cd = Z L“” ® G’2 ® LZ?, ® Gy (5.114)
i1,i2, 15 J2

Then one can directly check

M = 7 e (A®W))), M = &7 im0 (A1), (5.115)
i = Yab, J = Yed» V11, Y01, V10, Yoo) = (1,2,3,4), (5.116)
(1, &2, &, &) = (I, 1, —q 212, ¢ 21312, (5.117)

where the concrete form (5.117) does not matter for the proof. The 16 choices of
the external lines a, b, ¢, d € {0, 1} are in one-to-one correspondence with the 16
generators f;; with i, j € {1, 2, 3, 4}. |

Remark 5.19 Asanequation on the 3D K, the quantized reflection equation (5.107)
is invariant under the simultaneous changes L{} — «“~/L{ and G% — p*~/G*
by parameters o and f§, endowing the two sides with a common overall factor

d=bgatb=c=d Thus the gauge of L and G in such a sense can be chosen arbitrarily.
A similar fact holds also in the quantized Yang—Baxter equation in Remark 3.23.

In Sect. 6.4, Theorem 5.18 will be applied to the proof of the 3D reflection equation
of type B. In Chaps. 15 and 16, it will also be applied to a matrix product construction
of reflection K matrices in 2D.
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5.8 Further Aspects of 3D K

5.8.1 Boundary Vector

Let us introduce boundary vectors

Iy =) S g, 5=1,2), (5.118)
o (@ m

|m=§:¥¥Leﬂz@=Lm, (5.119)
=0 (@™ m

which are actually elements of a completion of the Fock spaces. The former is the
same as (3.132) and the latter is obtained from it just by replacing ¢ with ¢?. Set

1Erk) = X)) @ Ii) ® 1) ® Iy ((r k) = (1,1),(1,2),(2,2)).  (5.120)

We also call them boundary vectors. B~elow we write 12121 (A(f)) and w121 (A( )
for f € A,(C>) simply as A(f) and A(f) to save space.

Lemma 5.20
19K QK> ® 1= Ay uy 1, — ¢ taati3), (5.121)
19k @K@k = A(—pui?py ' 1a) = Alg ™ iipatay), (5.122)
K@K @K®1 =AW 1,2 (g tatia — 1at13)), (5.123)
19k ®K®a" = A(—q i tatp), (5.124)
19k®@K®a™ = A(u; ' 1y '13), (5.125)
ATQK QK ® 1 = A(—q i patsstar — 7> ali3), (5.126)
A QK ®K® 1 = Alqu;*p; 't + g piatnts), (5.127)
1@ka* @ K® 1= Aguy' 1y ' taatis + ¢~ pinatasta), (5.128)
1oka” @K® 1 = A(uipa(—q  tiatiy + g *1a1112)), (5.129)
19K @KAT ® 1 = A(uipa(—q ' taatar — ¢ ta3tan)), (5.130)
19k>®KA™ ® | = A(—q  uipotutis +q 2> w5 ' tiatz). (5.131)
Proof A direct calculation using (5.24). O

From Lemma 3.27, we know that the vector |n;) (resp. |x1)) is characterized up
to normalization by any one of the following three conditions in the left (resp. right)
column:

(a* —1+Kk)n) =0, AT — 1+ K)[x1) =0, (5.132)
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(@~ —1—qgk)n) =0, A™ —1—¢’K)|x1) =0, (5.133)
(aJr —a + {0+ 9k)n) =0, (A+ —A"+ (1 +q2)K)|X1) =0. (5.134)

Up to normalization, the vectors |7,) and | x») are characterized by
@@t —a)m) =0, (AT —A7)|x) =0. (5.135)

Proposition 5.21 The 3D K and the boundary vectors satisfy the following rela-
tions:

K8 k) =18k ((nk)=(1,1),(1,2),(2,2)). (5.136)
Proof From (5.132)—(5.135), It suffices to show

(AT —A) K ®K® DK|E),
(I1ek@"—-a)K® DK|E3,
1k*@KAT —A")® DK|E1,
(1®k®K® @ —a)K|E,) =0, (5.140)

(A" —A"+(1+¢HK) @K’ @K ® DK|E,) =0, (5.141)

) =0, (5.137)
) =0
) =0
)y =0
)y =0
(1®k@ —a ) ®K® HK|E,) =0, (5.142)
) =0
) =0
) =0
)y =0
) =0
) =0

, (5.138)
, (5.139)

(1®K*®@KAT—A" +(1+¢)K)® DK|E2) =0, (5.143)
(1k®K® (at —a")K|E|, , (5.144)
(AT—A"+(1+¢HK) K> ®K® DK|E, , (5.145)
(1@k@ —a +(1+9k ®K® DKI|E|, , (5.146)
1k @KAT—A"+(1+¢HK)® DKI|E, , (5.147)
1kK® @ —a~ +(1+¢k)K|E, ) (5.148)

As an illustration, (5.137) is verified as

(AT —A) @K @K ® DK|Es) = A(Y)K|Ez2) = KA(Y)|E2p) =0,
(5.149)

where ¥ = —q 12 potsstar — w5 atis — quy iy ot — g W wat tao.
Here the first equality is due to (5.126) and (5.127), the second equality is due to
(5.37), and the last equality is checked directly. The other relations in (5.137)—(5.148)
can be shown similarly. Namely, one can always find a polynomial ¥ = Y ({#;;})
which is a linear combination of those appearing in Lemma 5.20 such that the rela-
tion in question is expressed and shown as

AMK|E,4) = KA(Y)|E,x) =0
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by applying (5.132)—(5.135) in the last step. The only exception is (5.146) involving
X =1®k>® K ® 1 which is not contained in Lemma 5.20. In fact, from (5.128)
and (5.129), LHS of (5.146) is expressed as

(AZ)+ A +q)X) K|E1 1), (5.150)

where Z = quy ' 1y Mtaatis + g A patastar + mipa(q 3t — g tartn). To treat
this, we rely on (5.147) which can be proved independently as explained previously.
It then shows that the third component of |&; ;) is proportional to |x;). Therefore
from (5.132) we know that it also satisfies

1K ®KA"—-1+K)® DHK|E ;) =0. (5.151)
This leads to

XK|E) =13k KA +K)® )K|E,)
= A(—p}pa(q ™ taatay + g Haztan) + Mf4ﬂz_2f124 — g tpt3) K| B y)

due to (5.121) and (5.130). Substituting this into (5.150) and applying (5.37) one can
check that it indeed vanishes. (Il

5.8.2 Combinatorial and Birational Counterparts

Lemma 5.22 Matrix elements K lf’jl}jd of the 3D K are polynomials in g with integer
coefficients. Their constant term is given by

Km0 = 87 0558
ad=x4+a+b—-d, b=c—x+d—min(a,c+x),
¢ =min(a,c+x), d =b+(c+x—a)y, x=(c—a+(d—-b)y),;,
(5.152)
where the symbol (x) is defined in (3.66).

The proof is similar to but more cumbersome than that for Lemma 3.29. The details
are available in [93, Appendix C].

Lemma 5.22 and K = K~! tell us that 3D K at ¢ =0 maps a monomial to
another monomial as |a) ® |h) ® |¢) ® |d) — |a’) ® |b') ® |¢’) ® |d’). Motivated
by this fact, we define the combinatorial 3D K to be a map on (Z=o)* given by

K combinatorial : (@, b, ¢, d) > (a/’ b/s C/’ d/) (5.153)
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Type C Type B
(211202341) (211202341)
Ruse N Rego R, 689
(211020341) (211205314) (211020341) (211205314)
K26 | | K3s79 K5 LKE
(301021341) (213205118) (401021341) (213205116)
K | 1 Raag KE. LRY,
(301021341) (223105119) (301021431) (223105117)
Ross | | Rosg RE, | | RE,
(321001361) (213115109) (321001451) (213115107)
Rog | | K478 R3, LK
(311101360) (313015119) (311101450) (413015117)
K3s79 | 1 K236 KZ, | VKB
(313101164) (313015119) (314101153) (314014117)
Rego ™\ v Ruse RES N /R
(313106119) (314105117)

Fig.5.3 Left: Type C. The maps R and K denote Rcombinatorial in (3.150) and K combinatorial 10 (5.153)
for type C. The second arrow by K 1236 in the LHS is due to Kcombinatorial : (2, 1, 1,0) — (3,0, 1, 1),
which can be seen in Example 5.10. Right: The Type B case which will be treated in Sect. 6.5 is
shown for comparison

interms of @', b, ¢/, d’ in (5.152). It has the conserved quantities a + b 4+ c and b +
2c¢ + d corresponding to the weight conservation (5.65). Setting ¢ = 0 in Theorem
5.16 we obtain:

Corollary 5.23 The combinatorial 3D K (5.153) is an involution on (Zso)*. It
satisfies the 3D reflection equation on (Z=)° together with the combinatorial 3D R
in (3.150).

Example 5.24 Examples of the 3D reflection equation in the combinatorial setting
(Fig. 5.3).

Letus proceed to the third 3D K. We introduce 2n-by-2n upper triangular matrices

Xi(x) =14+ xEiit1 — xEom—iom—iv1
Xn(x) =1+ ZXEn,nJrla

(1<i<n), (5.154)

(5.155)

where x is a parameter and E; ; is a matrix unit. The matrix X; (x) is a generator of the
unipotent subgroup of Sp(2n).” It satisfies X;(x)~! = X;(—x) and X;(a@)X;(b) =
X;(b)X;(a) for i — j| > 1. Given parameters a, b, c, d, one can easily check that
each of the matrix equations

SFor instance, the matrices (5.158) for n =2 satisfy 'X;(2)QXi(z) = Q with Q =
(Cin 5. 7)|g—1-
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Xi(@)X;(b)Xi(c) = X;@X:(D)X;@) (i — jl=1,i,j <n), (5.156)
Xn-1(@) Xy (D) X—1 () X, (d) = X (d) X1 () X (D) X1 (a) (5.157)

has the unique solution. For (5.156) it is given by (3.151). For (5.157) it essentially
reduces to the n = 2 case:

1z0 0 1000
_ 100 _ 12z0
o= ", _ | Xa(2) = Lo (5.158)
1 1
The solution is given by
cﬂ:g, /ZA_Z’ c’:E, d/=b02d,
A B A B (5.159)
A=ab+ad+cd, B=a’h+a’d+2acd+c*d.
Based on this fact we define a map
Khirational © (@, b, ¢, d) > (@', b, ¢, d) (5.160)

using (5.159) and call it the birational 3D K. It is easy to see that Kpiragiona 1S an
involution having the two conserved quantities

abce, bcid. (5.161)

Their ultradiscretization (3.152) reproduces the weight conservation (5.65).
By considering Sp(6) and comparing the two ways to achieve the birational maps
(Cll, ey ag) = (Elg, ey &1) defined by

X(a)X2(az) X3(a3) X1 (as) X2 (as) X1 (as) X3(a7) X2 (ag) X3(as)
= X3(a9)X»(ag) X3 (a7) X1 (as) X2(as) X1 (as) X3(a3) X2 (a2) X1 (ay),

we obtain:

Proposition 5.25 The birational 3D R (3.151) and the birational 3D K (5.160)
satisfy the 3D reflection equation on the ring of rational functions of nine variables.

Let us denote the 3D K detailed in Sects. 5.4 and 5.5 by Kgyanwum- Then the triad
of the 3D K’s and their relation is summarized in the same manner as (3.158) for the
3D R:

q—0 UD
K quantum > K combinatorial < K, birational + (5 1 62)

K combinatorial and Kpirational (and R’ below) are set-theoretical solutions to the 3D
reflection equation.
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Remark 5.26 Define a family of maps K’ depending on a parameter ¢ by

bc A?> B, bcd

K':(a,bed)y (L5, 50,20 2220 (5.163)
At Bt Al Bl

A, = A+tabcd, B, = B+ tabcd(a+ ¢) (5.164)

by using A and B given in (5.159). The birational 3D K in (5.160) corresponds to
t = 0. Then K' = (K")~! holds. Moreover, K’ satisfies the 3D reflection equation
with another one parameter family of birational 3D R’s in (3.159) as

s t N N t t N — N t t s S t N
Ris9 K3570 Roa9 Ross K 1478 K236 Rase = Ris6K 1236 K 1478 Rass Roao K3579 Reso»
(5.165)

where s and ¢ can be chosen independently.

5.9 Bibliographical Notes and Comments

This chapter is an extended exposition of [93, Chap. 3]. The RT T realization in
Sect. 5.1 is taken from [127]. The 3D K in Sect. 5.5 was the first non-trivial solution
to the 3D reflection equation.® The explicit formula in Theorem 5.13 is due to [88],
which is an analogue of Theorem 3.18 for 3D R. The solution of the quantized
reflection equation (Theorem 5.18) was obtained in [105, Sect. 2.2]. The property of
the boundary vector (Theorem 5.21) was conjectured in [105, Eq. (78)] and proved
in [106, Appendix B].

For the combinatorial and birational 3D K in Sect. 5.8.2, comments similar to
those for the 3D R (Sect. 3.7) apply. The z-deformed birational 3D K in Remark 5.26
has appeared in a different context in [110, Remark 5.1]. It originates in the folding
type embedding of the Coxeter group B, < A3, which corresponds to the m = 4
case of (9.2). Realizing the transformation corresponding to the quartic Coxeter
relation of B, in the image As as the product of four 7-deformed birational 3D R
(3.159), one can deduce K'[152]. See also the last paragraph in Sect. 9.3.

6 1t was reported in a talk in The XXIX International Colloguium on Group-Theoretical Methods in
Physics (20-26 August 2012, Tianjin, China), where both authors of [62] were in the audience.



Chapter 6 ®)
3D K From Quantized Coordinate Ring Guca i

of Type B

Abstract For the quantized coordinate ring A, (B, ), fundamental representations of
the generators associated with the spin representation of B, are presented. Reflecting
the equivalence of the spin representation of B, and the vector representation of C»,
the equivalence A, (B,) =~ A,(C,) holds for n = 2 but not for n > 3. In particular
A, (B3) leads to another solution to the 3D reflection equation different from Chap. 5.
The RTT relation for the fundamental representations are proved by making use of
the tetrahedron equation of type MM LL = LLM M (Theorem 3.25) and a matrix
product formula of the quantum R matrix for the spin representation (Chap. 12).

6.1 Quantized Coordinate Ring A, (B,)

Like A;(A,-1) and A,(C,) treated in the preceding chapters, the quantized coor-
dinate ring A,(B,) (n > 2) we consider in this chapter is the g = B, case of the
Hopf algebra A, (g) defined in Sect. 10.2 in a universal manner. On general grounds,
A, (B,) has generators t,;, associated with the spin representation V () of U, (B,).!
Here the indices a, b range over

0,1 ={a=(ar,...,a,) | ai,...,a, € {0, 1}}, (6.1)

which is a natural labeling set of the base of V(w,). A feature that distinguishes
it from the A,_; and C,, cases is that the complete set of defining relations among
the 2" x 2" generators T = (f,p) have not been identified explicitly in the literature.
They include the RT T relation and the pT' T relation at least:

! See the explanations around (10.22). V (w,) denotes the irreducible U, (B, ) module whose highest
weight is the nth fundamental weight @,. qu(Bn) here is different from (in a sense “finer’”” than)
Fun(SO, (2n + 1)) in[127] based on (2n + 1)~ generators associated with the vector representation.
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D R e tma = Y fom L R, (6.2)
I, m I, m
Z Ob tab tyy = Z Pe fea fer = Padal, (6.3)
b c
where a’ is defined by
a=0—ap,....1—a). (6.4)

The RT T relation is known to be valid from the general argument leading to (10.15).
The relation (6.3) originates in the fact that V (@) ® V (w,) D V(0), which is also
the case for A,(C,) as in (5.12). The structure constants Riajb and p, are related by
(5.12), and given as

RY = lim x_Z”R(x)lJ , (6.5)

— 1_[ (- 1)k 2k— l Ant1-k (6.6)

In (6.5), R(x)f‘}’ is an element of the quantum R matrix of the spin representation.
See (6.61) and the explanation around it for a precise description. In (6.5), one is
picking the coefficient of the highest order power of x from it as in (3.4) and (5.6).
From p,px = (—1)""*D/2_(6.6) corresponds to ¢ = (—1)""+D/2 in (5.10).

Remark 6.1 Under the equivalence U, (C>) >~ U, (B,), the vector representation of
the former corresponds to the spin representation of the latter. Reflecting this fact,
A, (By) here is isomorphic to A,(C,) in Chap. 5 via the rescaling of generators
explained in Remark 5.1. Concretely, the indices 1, 2, 3, 4 for A,(C;) correspond
to (0, 0), (0, 1), (1, 0), (1, 1) for A,(B>), and the generators are identified by (5.13)
with (g1, g2, 83, 84) = (i, 1, 1, i) satisfying (5.14).

6.2 Fundamental Representations

Let Osc, = (a™,a ",k k- ) be the g-oscillator algebra (3.12) and Osc, =
(AT, A, K, K1) be the g2-oscillator algebra (5.15). As before, they are identi-
fied with elements of End(¥,). The embedding in Theorem 3.3 enables one to write
down the fundamental representations

7 Ag(By) - End(F,) (1 <i<n), 6.7)
G = =GQ1=q" qr=¢ (6.8)

containing a non-zero parameter ;. Note the difference of (6.8) from (5.18).
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Forl <i < n — 1,lettheimage of the generators (Zap )a,be(0,1)» by 77; be as follows:

T6006,0006 1200&,0016 x00d,0106 Le00d.011a 1 0 0 0
1001&,0006 201,001 la01d,a106 fa01d,al1a 0 A" w: K0
= 2 -1 + , (6.9)
lo10&,000a lo10&,001a lo10&,010a lol0d,alla 0—g°n;, K AT 0
la11d,0006 Tol1a,a016 folla.al06 folla,ella 0 0 0 1
otherwise f, 1 — O, (6.10)
where « € {0, 1}~! and & € {0, 1}"~~! are arbitrary in (6.9). For m,, the image of
the generators is specified as
17 t, a k
0,00 ‘a0, — . /'err , (611)
tal,ot() tozl,otl —qu, k a
otherwise f, 1 — O, (6.12)

where « € {0, 1} ! is arbitrary in (6.11).

Example 6.2 For A,(B,), let T = (tap) be the array with row a and column b
ordered as (0, 0), (0, 1), (1, 0), (1, 1) from the top let. Then its image reads as

1 0 0 0 a- wk 0 0
0 A wKO —qu; 'k at 0 0
0 0 01 0 0 —gqu'k at

(6.13)

Remark 6.3 Denote the fundamental representations of A, (B) in Example 6.2 by
nlB > and rrzB *. Similarly, denote the fundamental representations of A,(C>) in (5.24)
by 7* and 75>, Then 7 coincides with 713C_2i via the adjustment explained in

Remark 6.1 with a suitable redefinition of u; parameters.

From Remark 5.1, the parameters uq, ..., 4, are removed b%/ switching to the
rescaled generators Zop, in (5.13) with ga = [, -, MZ'+"'+“k_k/ satisfying (5.14)
with g,g4 = 1. Thus we set u; = --- = u,, = 1 in the rest of the chapter without

loss of generality.

Example 6.4 Let T = (t,,) be the 8-by-8 matrix of generators of A, (Bs3), where
the row index a and the column index b are ordered from the top left corner as
000, 001, 010, 011, 100, 101, 110, 111. Then their image by the fundamental repre-
sentations 7y, 13, 3 according to (6.9)—(6.12) reads as follows:
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10 O 0 0 00O
01 O 0 0 00O
00 A 0 K 00O
00 O A= 0 KOO
T =100_gk 0 A*000]| 6.14)
00 0 —g’K 0 AT00
00 O 0 0 010
00 O 0 0 001
1 0 0O 00 O 0 0
0 A~ K 00 O 0 0
0 —¢°KAT 00 O 0 O
0O O 010 O 0 0
2M=10 o 001 0 o of 6.15)
0 o0 0 00 A- K O
0 o0 0 0 0—¢g’KAT 0
0O o0 0 00 O 0 1
a- k 0 0 O O O O
—gkat 0 0 0 O O O
0 0 a k 0 O O O
_ 0 0 —gka®™ 0 0 0 O
BI=19 0 0 0a kK 0 0 (6.16)
0 0 0 0 —gka® 0 0
0O 0 0 O O O a Kk
0 0 0 0 0 0 —gka"
Proposition 6.5 The image of the generators by the maps w1, . .., 7, in (6.9)—(6.12)

satisfies the RTT relation (6.2) and the pT T relation (6.3).

We will present an intriguing proof in Sect. 6.6 making use of the tetrahedron
equationoftype MM LL = LLMM (3.122), where the M M part yields the structure
constant and the L L part the generators.

Let us turn to the tensor products of the fundamental representations. We write
7w, Q-+ ®m;, as ;. ; for short. The Weyl group W (B,) is the same as W(C,)
explained in (5.26) and (5.27). Then Theorem 3.3 asserts the same equivalence as
(5.28)—(5.30):

Tij =i (i —jl =2), (6.17)
Tiirli = Tirriiv1 (1 <i<n-=2), (6.18)

Tn—1,nn—1,n = T n—1,n,n—1- (619)
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6.3 Intertwiners

By Remark 3.4, the intertwiner responsible for the isomorphism (6.17) is just the
exchange of components P defined in (3.23). See the explanation around (3.24).

Next we consider the intertwiner for (6.18), which corresponds to the cubic Cox-
eter relation. It is an element &% e End(ff?) characterized by

D% o7 i1, (AF)) = Tig1iie1(A(f) 0o @® (1 <i <n, Vf € Ay(By),
(6.20)

®%(10) ® |0) ® |0)) = 10) ® |0) ® |0). (6.21)

The latter just fixes the normalization. Set R® = &8 P3 as in (3.30). Then the Eq.
(6.20) is identical, as a set, with (3.38)—(3.46) for the 3D R with ¢ replaced by ¢>.
Therefore, the intertwiner for (6.18) is provided by ®% = RB P;; with R® = R lg—q2>
where R in the RHS is the 3D R in Chap. 3. As before, R® will also be called the
intertwiner. We know that R? satisfies the tetrahedron equation of type RRRR =
RRRR (2.6).

Finally, we consider the intertwiner for the equivalence (6.19), which corresponds
to the quartic Coxeter relation. Due to the nested structure of the representations
(6.9)—(6.12) with respect to rank n, the problem reduces to w212 2 72121 for A, (B>).
Thus we consider the linear map

UV Fro®@F, ®@Fp®F, > T ®Fp ®F, @ Fp (6.22)
characterized by

1 (A(f) o WE = WB o (A(S) (Vf € A (By),  (6.23)
w8 (10) ® 10) ® |0) ® |0)) = 0) ® [0) ® |0) ® |0), (6.24)

where the latter specifies the normalization. Set
K? =WPPuPy; e End(F, ® Fr @ Fy ® Fuo), (6.25)

where Py4 Py3 reverses the order of the 4-fold tensor product. Note a slight difference
from the 3D K of A,(C>) in (5.36).

Theorem 6.6 The intertwiner K2 is given by K® = P14 P)3;K P14 P, where K in
the RHS is the 3D K for A,(C,) in Chap. 5.

Proof From Remark 6.3, the Eq. (6.23) is equivalent to 75,,(A(f)) o W& =
W8 o n§, (A(f)). Comparing this with the type C case 75, (A(f) oW = Wo

75, (A(f)) in (5.34) and from the unique existence of W&, we have W8 = ¢~!

5.36
taking the normallzatlon into account. Thus we find K2 Py Pyy = W8 = ¢—1 2V

(K PuyP)~ °L Ppyk. O
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Let us summarize the relation of intertwiners that originate in the cubic and the
quartic Coxeter relations exhibiting the types B and C as superscripts.

Cubic Quartic
D8 = o€, 2, B = (w1 (6.26)
R® = RY|,_p, K2 = PiyPy K€ P14 Pss. (6.27)

The last result implies

KP(iy@ )@k )= Y Kila) ®b) @ lc) ® |d) (6.28)
a,b,c,d

inf, ® 2 ® ¥, ® F,2 in terms of the matrix elements Ki“j’,ﬁd of K = K€in(5.57).
We note that (5.72) also implies

KB = (K®". (6.29)

6.4 3D Reflection Equation

To be explicit, we set
S=RP=Rl,;np,  Kui = Kby = PlaPrKi234 Py Py (6.30)

according to (6.27).

Theorem 6.7 The intertwiners R® and KB satisfy the 3D reflection equation (4.3),
which is presented in terms of the above S and K as

S689 K 975352495258 Kg741 K321 5456 = Sa56 K321 K87415258 5249 K9753S689.  (6.31)

It is an equality of linear operators on

1 2 3 4 5 6 7 8 9
Fa®@F p®@F ¢ ®@Fp@F p®@F 2 ®@F 4 QF 2 @ F 2. (6.32)

Proof Since W (B3) >~ W (C3), the same proof as the one for Theorem 5.16 remains
valid. O

Note that the replacement g — g2 in (6.27) is done only for R. Therefore, the
solution (R®, K®) is not reducible to (R, K) for type C in Chap. 5.

In the reminder of this section we present another proof of Theorem 6.7 based on
the quantized reflection equation introduced in Sect. 4.4. Define L by (5.110), G by
(5.111)and K = K€ tobe the 3D K for type Cin Chap. 5. Then Theorem 5.18 shows
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that L, G and K satisfy the quantized reflection equation (4.12) with 7' = #,> and
F = F,. Weknow K = K~'by (5.72). Thus J in (4.14) and (4.15) coincides with
K% in (6.27). From Theorem 3.21, (3.59) and (3.60), we see that R in (6.27) and the
above L satisfy the quantized Yang—Baxter equations (2.19)|g_, gz and (2.20)|s_, g
In this way we have a concrete realization of all the operators appearing in (4.19)
and (4.20) in which R = S = R® and J = K 8. Thus the argument leading to (4.23)
proves Theorem 6.7 provided that the operators (4.18) act irreducibly on the space
(4.22), which is (6.32) in the present setting.

The last point of the irreducibility is established by identifying the quantized
three-body reflection amplitude with the representation of A, (B3) corresponding to
the longest element of W (B3). To state it precisely, we set

Imn _
Mi;.'}(" =
(6.33)
qlmn _
Mijk -
(6.34)
They stand for the quantized three-body reflection amplitudes
. - 1 2 3 4 5 6 7 8 9
ik MG €End(F, ®@F 2 ®@F ¢ ®F 2 ®@F 2 ®@F 2 @F 4 ®F 2 @ F 2.
(6.35)

They allow us to express the first and the last operators in (4.19) and (4.20) as

9 8 7 6 5 4 3 2 1 a b c Imn
LycLacGeLapLepLeaGyLpaGa =Y Eji ® Epj ® Ec @ M, (6.36)
1 2 3 4 5 6 7 8 9 a b c <
GaLabiLacLbcLhaGchach = Z Eli b Emj ® Enk ® Mi;'nknv (637)

where the sums extend over 7, j, k,I, m,n € {0, 1} and E;; is the matrix unit on V.
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Proposition 6.8 The quantized three-body reflection amplitudes are identified with
the representation of A,(B3) corresponding to the longest element of W(B3) as
follows:

Mf;nkn = (=) T 11301 (Afap)s (6.38)
Mﬁ;ﬂkn = (—q) T 121301 (A(fap)s (6.39)
a=(0—k1—j1—i), b=0—n1—m,1—1). (6.40)

This can be verified directly. From this proposition and Theorem 3.3, it follows
that Mf;"k” and Mf;’}c” act irreducibly on (6.32). Therefore the argument in (4.21)-
(4.23) proves that (R?, K?) satisfies the 3D reflection equation (4.3). We note that
the reduced word 323121321 has been encoded in (6.33) as the sequence of “heights”

of the points 1, 2, ..., 9, where the bottom level is set to be 3.
Example 6.9
MO = 22" Kok KRK® 1 9k® 11, (6.41)
Mll=¢'a 9192 KQK®1Qk®1®1
— 7’k A" QkKRK® 1k 1® 1, (6.42)

MM = —g’a* @A  ®a" AT QKR 1k®1® 1
—’a"K®Ra ®1QATRIQk®1I®I]
A" KRk®I®I®Iga ®1®l
+7kR 1 QkRATQKQ1Qk®1®1. (6.43)

On the other hand, for instance, we have

7323121321 (A (foo1,111))
= 1323121321 (001,001 ® 001,010 & f010,011 ® fo11,101 @ 101,110
® t110,110 ® f110,111 @ fin111 @ Hipinn + -0 )
=a" QK®k®K®K®1®k®1Q1, (6.44)

where all the other + - - - terms are vanishing upon evaluation by 7353121321 Thus we
see MOW = 7303121321 (A (too1,111))-

One can similarly define the n-body quantized reflection amplitudes generalizing
(6.33) and (6.34) by arranging the n reflecting arrows. They are linear operators on
9"q®" ® Tq &n(1=1 Thus the total number of the components is n2, which is equal to
the length of the longest element of W (B,). The formulas (6.38)-(6.40) suggest a
natural extension to general n. It is an interesting problem to establish a result like
Proposition 6.8 for general n hopefully more intrinsically.
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6.5 Combinatorial and Birational Counterparts

In view of (6.27) it is natural to set

K(f)mbinatorial = P14 P23 K combinatorial P14 P23, (6.45)
Klﬁrational = P14 P23 Kbirational P14 P23 (6.46)

in terms of (5.153) and (5.160) for type C. On the other hand, we simply set
Rimbinamﬁal = Rcombinatorial 1N terms of (3.150) and Rgraﬁonal = Rbpirational 1N terms of

(3.151). These definitions lead to another triad of the 3D R analogous to (5.162):

q—0
KB IS KB | — K& (6.47)

quantum combinatorial
The 3D reflection equation also remains valid both at combinatorial and birational
level. However, it should be stressed that the equation defines different transforma-
tions for type B and C. See Example 5.24 for comparison in the combinatorial case.
In the rest of the section, we mention a slight variant of the upper triangular
matrices relevant to K5 . adapted to the natural (rather than spin) representation

of B,. Define the 2n + 1 by 2n 4 1 upper triangular matrices

Yix) =14+xE; i1 — xEppqi—ipn—it+2 (1 <i <n), (6.48)
2
X

Yn(x) = 1 + xEn,n-H - XEn+l.n+2 - EEn,rH—L (649)

where x is a parameter and E; ; is a matrix unit. The matrix Y; (x) is a generator of the
unipotent subgroup of SO(2n + 1). It satisfies ¥; (x)~! = ¥;(—x) and ¥; (@Y;b) =
Y;(b)Yi(a)for|i — j| > 1. Given parameters a, b, c, d, each of the matrix equations

Y(@)Y;(b)Yi(c) = Y;(@Yi(h)Y;(@) (li —jl=1,i,j <n), (6.50)
Yo 1( @)Y, (B)Y,—1(0)Yu(d) = Y, (d") Y1 (<)Y, (B") V-1 (a”) (6.51)

has the unique solution. For (6.50) it is given by (3.151). The second equation (6.51)
determines KB t(a,b,c,d)— (@, b",c",d"). Tt essentially reduces to the

birational
n =2 case:
1z00 0 100 0 O
100 0 1z -2%2/20
Yi(z) = 10 0 |, Y2(2) = 1 —z O
1 —z 1 0

1 1
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In accordance with (6.46), the solution is given in terms of a’, b’, ¢/, d’ in (5.159) as

(a”a b”a C”v d”) = (dl, C’a b’a a/)|(a,b,c,d)—>(d,c.h,a)
2 2
_abc B A bed (6.52)
B A B A
A=ab+ad+cd, B=ab*+2abd + ad* + cd>.

6.6 Proof of Proposition 6.5
6.6.1 Matrix Product Formula of the Structure Function

Let us collect the necessary definitions and facts for the proof of Proposition 6.5.
Following (2.24) and (2.25) we set

L= ) E.®Ey®Lj, M=) E;®Ey,®M],

(6.53)

a,b,i,j a,b,i,j

where the sums are taken over a, b, i, j € {0, 1} and E;; is a matrix unit on V =

Cug @ Cv. The operators L¢} and M/} are defined by

Ly =MP =0 if a+b#i+ ], (6.54)
LY=Ll =1, L%=—¢K, LY =K, LY=A" LYU=A", (655
MP =Ml =1, M} =qK, M} =qK, M))=A", M) =A". (6.56)

Pictorially, the non-zero cases look like

b
iﬂ‘»a 0
J

—_ —_ o{—»o
e}
—_
H{» -
—_
—_
o{—»o
—_
(o)
9
R ~ »—«&—» —_
()
S

(6.57)
The operators A*, K are g2-oscillators in (5.15) and (5.16), and K is given by

K|m) = (—g»)"|m). (6.58)

Thus wehave L, M € End(V ® V ® ¥F,2). These definitions are related to the earlier
ones as
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LY = LA g grus—gr MY = MDY ggrivmg (6.59)
where the RHSs are those in (3.120) and (3.121).
We will further need the boundary vectors

. (2m| . |m)
(m2] = —— [m) = —_— (6.60)
mzz;) @% q®m mzz;) (—9% —q*)m

whose pairing is specified by (m|m’) = (g*; g*),u8n.m . These are obtained from the
earlier ones in (3.132)—(3.133) by replacing ¢ with —g?.
Now the function Ri*‘jb (x) appearing in (6.5) is given by the matrix product formula

R(x)iP = (scalar) x (ip|[x" M- M [ijy), (6.61)
where h is the number operator (3.14) and a = (ay, .. ., a,), etc. according to (6.1).

The scalar can be chosen so that R(x)?}’ becomes a polynomial in x?> with maximal
degree exactly n in the following sense’:

max{deg,.(R(x){}) [ a,b.i.j € {0, 1}"} = n. (6.62)

Otherwise the normalization is not essential, being required only to validate (5.11)
which does not influence (6.2) and (6.3).
Up to normalization and gauge, R(x)?}’ is an element of the quantum R matrix of

the spin representation of B! with spectral parameter x.* This fact and the related
results will be explained in detail in Chapter 12.
What we need here is the tetrahedron equation of type MMLL = LLMM::

M 26 M3a6L135L24s = Logs L35 M3a6M126. (6.63)
12
This is a corollary of Theorem 3.25 and (6.59). It is an identity in End(V ® V ®
3 4 5 6
VRVRFpFp).
Another necessary fact is a property of the boundary vector
AT —1+K)i) =0, (A" —1+4¢°K)[ii)) =0. (6.64)

This is a corollary of (3.134) and (3.135) and the origin of |77;) mentioned after
(6.60).

21t is guaranteed from the fact that the spectral decomposition of the R matrix consists of (n + 1)
eigenvalues. One can also check the claim in the example of §21(z) forn = 2 in Sect. 12.4.

3 Equation (6.61)isrelated to (12.9) as R(x)?}’ = (scalar) 5§21 (x)f}’ |q9,qzyaﬁq, where « originates
in (12.1). Therefore from Theorem 12.2, it is an element of the quantum R matrix of the spin
representation of U, 42 (B,(,]) ).
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6.6.2 RTT Relation

This subsection is devoted to the proof of the RT T relation (6.2). According the
remark after Remark 6.3, we take the parameter w; in 7; to be 1.

Lemma 6.10 The image of the generator tay, € Ay(B,) by m; in (6.9)—(6.12) with
wi; = 1 (also denoted by tap for simplicity) satisfies the RT T relation including the
spectral parameter:

D R e tma = Y tom La RGOS (6.65)
ILm ILm

In view of (6.5), the defining RT T relation of A,(B,) in (6.2) follows from this
lemma by picking the highest order terms in x since m;’s are independent of it.

Proof First we treat r; with 1 <i <n — 1. Then it is easy to see
tan = O(ay = by fork #1i,i + l)L”’”‘]*b‘, (6.66)

where 0 (true) = 1 and 6 (false) = 0. Compare (6.9)|,,,=1 — (6.10) with (6.55). Thus
1 and m in the LHS (resp. RHS) of (6.65) are restricted to those (I, my) = (ck, di)
(resp. (Ix, my) = (a, b)) for k ;é i,i + 1.

Let us write down the End (7" ® ‘F 42) component of the tetrahedron equation
(6.63) corresponding to the transition

Ve @ Vdry ® Ve, & Vo, —> Vo; @ Vp; @ Vg @ Vb, -
The result reads as

Z Mla;nl al+|bl+] Ll ligy g mimisy _ Lb bit1 Lllelwl Ml m'M Lip1imiy , (6.67)

Lipimiyr e Zdigad; mipim; iyl Cis1diy1

where the sums are taken over /;, m;, l;+1, m;1+1 € {0, 1} on both sides. The operators
5 6
L3; and M} acton a different components ¥ 2 and ¥ 2, respectively. One can check

that (6.67) agrees with (2.30).

6
Putting (6.67) in a sandwich in the space ¥ 2 as

(o X" MG - MG G OMEG - MO ) (6.68)
and applying (6.66) and (6.61), we obtain (6.65).

The essence of this derivation is that the matrix product structure (6.61) makes
things local withrespect to i, and the local structure is exactly the tetrahedron equation
of type MMLL = LLM M. Up to this point, the boundary vectors (7j;|x" and |7;)
have not played any role.
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Next we consider m,,. From (6.11) and (6.12) we only have to concern the last
factor M; “” " in the matrix product formula (6.61) and the effect of the boundary
vector |r/1) Moreover the common indices « in (6.11) can be suppressed. Therefore
it suffices to check

nn ln n
D e, tud, ® M) = Y to,m,ta,s, ® M i) (6.69)

Ip 1y Ly,

for the temporarily defined symbols

too to1 140,00 la0,al a- Kk
= ’ ' = , 6.70
<t10 t11) <la1,ao lal,al) <—qk a+) (6.70)
which is independent of o € {0, 1}"~'. We have set u, = 1 in (6.11). The rela-
tion (6.69) represents 16 identities in End(#,) ® ¥, corresponding to the choices
(ay, by, ¢y, d,) € {0, 1}4. It is elementary to verify them case by case. Here we shall
only illustrate the two instructive examples. The other cases are similar.
Case (ay, b,, ¢y, d,) = (0, 1,0, 0). The difference LHS — RHS is
tootio ® Moy 17i1) + tiotoo ® My 171) — tiotoo ® Mg i)
=a (—qk) ® gK|ii1) + (—gk)a~ ® A7|7j1) — (—gka™) ® |i1)
=gka” ® (—¢’K — A~ + i) =0,
where the last equality is due to (6.64).
Case (a,, b,, ¢,, d,) = (0, 1,0, 1). The difference LHS — RHS is
toot11 ® My 171} + tiotor ® My i) — tirtoo ® M) 171) — tiotor ® Mgy i)
= (@ a" —a*a") @ ¢K|7)) — gk* ® (A” — AN)|iin)
= (1 - ¢k’ ® ¢K|i1) — gk’ @ (1 — ¢*)Kli) =0,

where the second equality is due to (3.12) and (6.64). U

6.6.3 pTT Relations

The remaining task for the proof of Proposition 6.5 is to show:

Lemma 6.11 The image of the generator tay, € Ay(B,) by m; in (6.9)—(6.12) with
wi = 1 satisfies (6.3).
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Proof We show

Z b tab tyy = Pa Spl- (6.71)
b

Another relation in (6.3) can be verified similarly. See (6.4) for the notation a’.

First we treat r; with 1 <i <n — 1. From (6.9)—(6.10), the relation (6.71) is
trivially valid as O = O unless a; = [; for k # i, i 4+ 1. So we focus on this situation
which can be classified into the four cases (a;, a;11) € {0, 1}2. The case a; = a4
is trivially valid as O = 0 or p, fag faa = Pa- A similar fact holds also for (/;, [;11).
Thus the only non-trivial case is

E rh]hzta]az,hlhztl;lé,b’]b’z = rala28a1116azlz (6'72)
b1.bs

for (a1, a2), (11, L) € {(0, 1), (1, 0)}, where b = 1 — by, etc. The sum extends over
(b1, br) = (0, 1), (1, 0) only. Here we have written a;, a; 1+ as aj, a, etc. for sim-
plicity and introduced the temporary notations

to1,01 to1,10 A~ K
’ ’ = , 6.73
<t10,01 t10,10) (—qu A+> (6.73)
ro1 = 1, ro = —qz. (674)
The former is taken from (6.9) and the latter reflects p_19.../0..01.. = —q2 according

to (6.6). Now (6.72) reads as

2 2
to1,01t10,10 — ¢ to1,10t10,00 = 1, to1,01t01,10 — ¢ to1,10t01,01 = O,
(6.75)

2 2
t10,01t10,10 — ¢ t10,10t10,00 = 0,  ti0,01t01,10 — ¢ t10,10t01,00 = —¢q".

These relations can be checked directly by means of (5.15). For instance, the first
one reduces to ATAT + ¢g*K? = 1.

Next we consider 7,,. From (6.11)—(6.12), the relation (6.71) is trivially valid as
0 =0Ounless a; =I; for j # n. So we focus on this situation which consists of the
four cases (ay, I,) € {0, 1}2. In terms of the symbols in (6.70), they read as

tootin — gtortio = 1,  tootor — gtoitoo = 0,

(6.76)
tioti — gtittio =0,  tiotor — gtiitep = —¢,

where the coefficient —q reflects p_1/p..0 = —q from (6.6). Comparison of (6.73)
and (6.70) shows that (6.76) is exactly reduced to (6.75) by replacing g with g>. O
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This completes a proof of Proposition 6.5. We did not use the property of the
boundary vector (7,| directly. However, its effect is working implicitly via the fact
that the normalization (6.62) is possible. We note that the representation 7; satisfies
further relations obtained by taking the coefficients of the non-highest powers of x
in (6.65).

6.7 Bibliographical Notes and Comments

This chapter is an extended exposition of [93, Sect. 4] and [94]. As mentioned
in the beginning of Sect. 6.1, the algebra A, (B,) in this chapter is different from
Fun(SO,(2n + 1)) in[127, Definition 11] which is defined with (2n + 1)? generators
based on the vector representation. For n = 2, an explicit embedding A, (B»)(x~
A4(C2)) = Fun(SO,2(5)) is shown in [94, Theorem 2.1]. The concrete forms of
the fundamental representations (6.9)—(6.12), Proposition 6.5 and its proof based
on the tetrahedron equation MM LL = LLM M are presented for the first time in
Sect. 6.6.



Chapter 7 ®)
Intertwiners for Quantized Coordinate Gouck ko
Ring A, (F4)

Abstract We study the intertwiners of A, (Fy) based on the subalgebras A, (A,),
A, (B;) and A, (C,) without going into explicit forms of the defining relations among
generators and the fundamental representations. A natural F4 analogue of the tetra-
hedron/3D reflection equation is presented which contains fifty operators on each
side. As suggested by the relevant Dynkin diagrams, it consists of a mixture of Bj
and Cj3 structures, and is attributed to a composition of the 3D reflection equations
SKSSKKS =SKKSSKSoftypeBand RKRRKKR = RKKRRKR of type C
twelve times for each.

7.1 Fundamental Representations

Let A,(F4) be the quantized coordinate ring of Fy. We list the relevant Dynkin
diagrams in Fig. 7.1.

Let r; be the fundamental representation attached to the vertex i of the F4 Dynkin
diagram in Fig. 7.1 in the sense of Theorem 3.3. It is realized in terms of Osc,,' as

mi: A,(Fy) — End(F,) with (g1, 92,3, 94) = (4. q.9°, ¢°).

The Weyl group W (Fy) is generated by simple reflections s; obeying the Coxeter
relations

s;=1, 153 =5351, 8154 = 5451, 52854 = 5452,
i (7.1)
818281 = 528182, 8$2538283 = 853528382, 535483 = §4.5354.
! For the definition, see (3.12)—(3.13) and (5.15)—(5.16).
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 107
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Fig. 7.1 Dynkin diagrams of C3 (left), B3 (center) and Fy (right). Enumeration of vertices for Fy4
agrees with [27] which is opposite to [67]

According to Theorem 3.3, the following equivalence between the tensor product
representations 7w, =7 ® -+ @ m;, is valid:

.....

T3 XT3, T4 X T41, T4 X T4, (7.2)

21 X 212,  T2323 X M3032, 70343 2 TT434. (7.3)

7.2 Intertwiners

Due to Remark 3.4, the intertwiners for (7.2) is given by the exchange of components
P in (3.23). As for (7.3), we introduce three kinds of intertwiners @, W, Y, which
are characterized by the intertwining relations (f € A, (Fy))

D o 21 (A(f)) = m212(A(f)) o D, 74
Wo m2303(A(f)) = m332(A(f)) o W, (7.5)
T o m343(A(f)) = m434(A(f)) o Y (7.6)

and by the same normalization condition as (3.29) for &, Y and (5.35) for V. As
before we set

R = CI)P13 € End(fq ® .7:(1 ® fq), (77)
K =WP,P3 € End(Fp®F, Q FpQF,), (7.8)
S=TP;; € End(Fp ® Fpp ® Fp2), (7.9)

where we use upright font to temporarily distinguish them from many definitions in
the preceding chapters for types A, B and C. P;; is the exchanger of the ith and the
Jjth components from the left as usual.

From Fig. 7.1, we see that A,(F4) has the subalgebras A,(B3) and A,(C3).
Accordingly, we consider the subgroups of W (Fy) realized as W (B3) = (s2, 53, S4)
and W(C3) = (s1, $2, s3). They have the longest elements

53852535185251535281 € W(C3) C W(Fy), (7.10)
525352545354525354 € W(B3) C W(Fy). (7.11)
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Then applying the same argument as Theorems 5.16 and 6.7, we obtain the 3D
reflection equations

Re89K3579R249R258K 1478 K1236R456 = Rus6K1236K1478R258R249K3579R g9,

1 2 3 4 5 6 7 8 9
€EENd(Fp®@F, @ Fp@F, ®F,Q@F, @ Fp @ Fy ®F,), (7.12)
S6390K 0975352495258 Kg741Ke321S456 = S456Ke6321Ks741525852490K09753S630  (7.13)

1 2 3 4 5 6 7 8 9
S End(fq X .7:q2 ®.7:q X .7:q2 ®.7:q2 ®fq2 ®]:q ®.7:qz ®fqz).

From the Dynkin diagram in Fig. 7.1, A, (F}) also has the subalgebras isomorphic to
A4 (Az) corresponding to the vertices 1, 2 and A2 (A2) corresponding to the vertices
3, 4. Therefore we know that R and S in (7.7) and (7.9) satisfy the tetrahedron
equations RRRR = RRRR and SSSS = SSSS, although they are not derived in
the same manner as the preceding chapters because of W(Asz) ¢ W(Fy).

7.3 F4 Analogue of the Tetrahedron/3D Reflection
Equations

Let us derive a consistency condition mixing R, K, S, which can be viewed as a
natural F4 analogue of the tetrahedron/3D reflection equations. The procedure is
parallel with Theorem 5.16. It is formulated for each reduced word of the longest
element in the Weyl group wy = —1 € W (Fy). The length of wy is 24 and there are
2144892 reduced expressions for it. Below we demonstrate the derivation along the
example

W0 = 8, -+ + Sip, = S4535452535452535251525354525351852538545152535251, (7.14)

where we use the bold font to distinguish it as a word rather than an element of W (Fy).
The reversed word Wg = s;,, - - - 5;, is another reduced expression of wy, I = wq which
is “most distant” from wy. From Theorem 3.3, the tensor product representations
corresponding to wy and Wy are equivalent, i.e,

TT434234232123423123412321 = TT123214321324321232432434 - (715)

The intertwiner for this is constructed by composing the basic ones (7.4)—(7.6) along
the transformation wy — Wy by means of the Coxeter relations (7.1). One way to
achieve this is shown below.
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Wo

Wo

© 434234232123423123412321

343232432123423121342321
342323432123423212342321
324324321243423212342321
324342321234323212324321
323432321234232132324321
323423213232432123234321
323243212323432123423214
232343212324321243423214
232432124342321234323214
232432123432321232432134
232431234123213232432134
232413234123212323432134

232143234123123124321434
232143234121323124321434
232143234212323124321434
232143232143232124321434
232142321343231243121434
232124321432434123212434
231214324312341323212434
213214342312134232132434
213213432321232432132434
213234123213232432132434
213234123212323432132434

213234123123124321432434
213234121323124321432434
213234212323124321432434

213232143232124321432434
212321343231243121432434
123121432434123212432434
123214232341323212432434
123214323421232132432434
123214321342312132432434

1 123214321324321232432434.

P6,7P18,19P19,20T[%,3

‘1’31{’5,64)164,17,18

Py 3P10,11P9,10P8,9Y6,7.8
P5,6P20‘21Tﬂ112,13
Tii,5P16¢17l11173{14,15,16
P8-9qj;é,7,8P12-13Lpf7{18,19,20
P4,5‘l/9f}0,11,12P19,20P23,24P22,23T20,21,22
‘1’[53,41’16,17P15,16P14,15T12,13,14
TﬁTlg,lgPl 1,12P8,9P7,8 P67 456
T97,110,11P18»19P22»23‘I’1791,20,21,22
P9,]0P8,9CD67,;’8P14.15ly]7]1,12$13,]4
PS’G\III_S%16.17,18
P4,5P15,16<I)1_3l,14.15P2L22P20,21Tl&19‘20
P12.13

Di0,11,12

P1o,11 P9, 10V12,13,14,15
P9,10‘1’6f;,g,9P18,19P17,18¢f5{16,17

Ps 6 P12,13710,11,12 P15,16 P16,17919,20,21
4)31,5 P10,11P9,10P15,16Tf3],14y15

Py 3P39P13,14P14,15 P19,20‘“I11_(,{17’1g,19
Tg%g‘bn,lz,lﬂ’ls.m
P6,7P5,6P1],12‘I’5;;|0,] |

‘l’f21,13.14,15
P12,13<D1_0{11’12P18,19Pl7,18T15,16,17

Py 10

D739

P7.8P6.7W9.10,11,12

Pe,7 ‘1137,3‘_5,61’15.16 Pi4,15 ¢f21,13, 14
P3,4<I>1_,§’3 Py, 1077,8,9P12,13P13,14P16,17.18
Ps,7P456 P12,13T170}11,12

P1o,11%7,8.9.10 P16, 17‘1’1_3{14,15,16

Py 10P10,11 P13,14<1>ﬂ{12,]3

Pi1,12®P14,15,16

7 Intertwiners for Quantized Coordinate Ring A, (F4)

(7.16)
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The underlines indicate the tensor components on which the operator written on the
right-hand side act non-trivially. Analogous procedures have appeared in (3.93) and
(5.100).

Let us write (7.16) schematically as

[ 0, On-1 Oy ~
W) —> W] —> -+ —> Wy_1 —> Wy = W, (7.17)

+1 +1 +1
where Oy € {Prrts @it ks Yekst k2,430 Tkt ks2443) and N = 126. For
instance, O = Y| 21 s and Ojo6 = Ppy,12. Considering the inverse procedure revers-
ing the length 24 arrays at every stage, one finds another route going from w to W
as
_ 0y oy oy o7t

Wo =Wy —> Wy_| —> -+ —> W| —> W, (7.18)
where W, denotes the reverse word of w,. The operators O,, is chosen according to
0,, as

. +1 +1 +1
Om . Pk,kJrlv q)k,k+l,k+2’ Tk,k+1,k+2’ \I}k,k+l,k+2,k+3’

Om . Pj+1,j+2’ q)i Til \IJ:F

1 : (7.19)
Joj+1,j+2° Joj+Lj+2° J=Ljj+1,j+2

with j 4+ k = 23. The reason for exceptionally inverting W is that the reverse ordering
of 2323 into 3232 interchanges the role of two sides in (7.5). From the uniqueness
of the intertwiner for the equivalence (7.15) with the normalization mentioned after
(7.6), we get a non-trivial identity

Oy 0,0, =0{'0;"...0y' eHom(F, ® - ® F,

Qing

F ® - ® Fy ),
(7.20)

where the i indices are those appearing in the reduced word (7.14). It is expressed
by R, K, S and P by substituting (7.7)—(7.9). Then one can send all the P;;’s to the
right separating each side into an R, K, S part and a P part. The P part yields the
permutation corresponding to the longest element in the symmetric group G,4 in
both sides. Thus it can be cancelled, leaving an identity in End(F,, ® - ® F,, )
containing the R, K, S part only. Explicitly it has the form
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R14,15,16Rf61,11,9K7,8,10,16K1771,15,13,9R4,5,1651771,12.7R1761,2,156,10,17R9,14,18
x Kf71,5,3,1R1781,15,11K6,8,12,18R1,4.18R1751,8,1S7,13,19K1791,11,6,1K1791,15,12,451791,10,3
X Ra.11K30 1471 R 1552520 13,653,12,20R1.9.21 K50, 15 10,2 Ro1 14,4 K3.8.13.21
X Ra1121R ' 2867.22K50 4 3 0R1 15 5K 113,155 12,10K5319,6.2573.7.3
X 819.20,22K2 18 17,16510,13.23K53 14125536, 24K5311 16, 16Koi'o 7.4 7320,17

-1 -1 -1 -1
X K24,11,10,5524,13,12517,19,24K24,21.20,18R5,8,9sz4,23,22 (7.21)

= 322,23,24R9_,513,5K2_41,21,20,1852_41,19.17512,13,24K2_41,11.10,5

X Sl7a20,23K;11,9,7.4K2731,2],19,16S2741,6,3K2731,14,12,582731,13,10K2721,18,l7.1682721,20,]9
X 83723K23l9 6251012.2K%) 14 13 1R5,15.21K50 4 52550 7 6R2.8.14R51 11

x K3,8,13-21R4,14,21K2_01,15,10,2R2_11,9,1Sz_ol,12,336,13,20R2,5,18K2_01,14,7,1R1_11,8.4
X S3,10,19K1791,15,12,4K1791,11,6,151791,13,7R1,8,15Rf8{4,1K6,8,12,18R11,15,18Kf7{5,3,1

-1 -1 —1 -1 -1
X Rig 14.9517,10,6R1,2,1657,12,17R 6 5 4K {71513, 9K7,8,10,16R0.11,16R g 15 14-

The indices specify the components in F,, @ --- ® Fy, counted from the left on
which the operators act non-trivially. We have set Ry ;; = P, iR; j« Pix, Sk, j,i =
PiiSijxPixand K ;i = P; 1 Pj«Ki jkiPiiPj as usual. This is an F4 analogue of
the tetrahedron/3D reflection equations. The two sides are related by reverse ordering
of the operators and the exchange R; ; ;. <> R,;},i, Sijk< Sk*il In both sides, each
of R,R™!, S, S~! appear 8 times, whereas the numbers of K and K= are 3 and 15,
leading to 50 operators in total. To summarize, we have shown:

Theorem 7.1 The intertwiners R, K, S of A,(Fy) in (7.7)—(7.9) satisfy the Fy ana-
logue of the tetrahedron/3D reflection equations. It is associated with each reduced
expression of the longest element wy € W (Fy) whose concrete form for the choice
(7.14) is given by (7.21).

Any reduced expression w of wy is transformed to wy in (7.14) by the Coxeter
relations (7.1) [119]. It follows that the consistency condition arising from the reverse
ordering w — W is equivalent to the one for wy — Wy by a conjugation. In this sense,
(7.21) can be regarded as a canonical form as well as one particular presentation
among other numerous guises. See Remark 7.4 for a related observation.

7.4 Reduction to 3D Reflection Equations

The intertwiners are reducible to the rank 2 cases. From the Dynkin diagrams in Fig.
7.1 one can identify them, with appropriate choice of basis, with those appearing in
earlier chapters as

R = R in (3.30)~(3.32), (7.22)
K = K in (5.36)~(5.38), (7.23)
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S=5:=(Rin(3.30) - (3.32)) [ym 2 - (7.24)

The last one, S, also appeared in (6.26).

Recall that R and K satisfy R; jx = R;;l,k = Ry j; and K = K1, See (3.59),
(3.60) and (5.72). Thus S in (7.24) also satisfies S; ;; = Slfjl’k = Sk, j.i- By substi-
tuting (7.22)—(7.24) into (7.21) and applying these properties, it is simplified into

R14.15,16 Ro,11,16K7,8,10,16 K17,15,13,9 R4,5,1657,12,17 R1,2,16 56,10,17 R, 14,18
x Ki1753,1R11,15,18K6,8,12,18 R1,4,18 R1,8,1557,13,19K19,11,6,1 K 19,15,12,453, 10,19
X R4811K20,14,7,1R2,5,1856,13,2093,12,20 R1,9,21 K20,15,10,2 R4, 14,21 K3 8, 13,21
X Ry 1121R2,8,1486,7,20K22.4.3,2R5,1521 K22,14,13,11510,12,22K23,9,6,2.83,7,23
X 819,20,22K22,18,17,16510,13,23 K23,14,12,5 93,6,24 K23.21,19,16 K24,9,7,4517,20,23
X K24,11,10,5512,13,24.517,19,24 K24,21,20,18 R5,8,0.522,23,24
= product in reverse order, (7.25)

where the reverse ordering does not change the internal indices of K; ; x ;into K; ¢ ; ;.
The 50 operators appearing here have distinct set of indices.

Let us call (7.25) the F4 compatibility equation or F, compatibility for short. In
this terminology, the 3D reflection equations (7.13) and (7.12) are the B3 compati-
bility and the C5 compatibility, respectively.2 From the fact that A, (B3), A,(C3) C
A, (Fy), it is natural to expect that the F4 compatibility equation is attributed to a
composition of the B; and C3 compatibility equations. This is indeed the case. The
following theorem and the proof contain finer information.

Theorem 7.2 The F4 compatibility equation (7.25) is reduced to a composition of
the B3 compatibility (7.13) and the C3 compatibility (7.12) twelve times for each.

Proof Let X denote the expression in the LHS of (7.25) which consists of 16 R’s,
16 S’s and 18 K’s. It can be transformed to the RHS along

Xo— Yo — X1 = Y| — -+ > Xp4 — Yp4 = reverse ordering of Xj.

Here, rewriting X; — Y; only uses trivial commutativity of operators having totally
distinct indices. On the other hand, the step ¥; — X, indicates an application of a
3D reflection equation, which reverses seven consecutive factors somewhere in the
length 50 array Y;. Let us label the 50 operators in Xy with 1, 2, ..., 50 by saying that
X() =1-2-.... 50. Thus forinstance, 1= R14,15’16,2 = R9’11'16, 3= K7.8,10,16 and
50 = S2.23.24. To save space, we specify a length 50 array in two rows. Thus X

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 The
26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50 ] *

intermediate forms Yy, Y), ..., Y»3 are listed below in such a notation.’

is expressed as (

2 The tetrahedron equation RRRR = RRRR is the A3 compatibility. R, S, K are identified with
R, S, K in the sequel.
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1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,25
26,27, 28,29, 30,31, 32, 33, 34, 35, 36, 39, 40, 41, 43, 45, 46, 37, 38, 42, 44, 47, 48, 50, 49)
1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
26,27, 28,29, 30,31, 32, 35, 36, 41, 43, 33, 34, 39, 40, 45, 46, 50, 48, 47, 44, 42, 38, 37, 49)
1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
26,27, 28,29, 32,30, 31, 35, 36, 41, 43, 50, 46, 45, 40, 49, 39, 34, 33, 48, 47, 44, 42, 38, 37
50,1,2,3,4,5,6,15,7,8,9,10, 11, 12, 13, 14, 16, 17, 19, 18, 20, 21, 22, 23, 24
25,26,217,28,29,43, 41, 36, 35, 31, 30, 46, 32, 45, 40, 49, 39, 34, 33, 48, 47, 44, 42, 38, 37
50,1,2,3,5,19,4,6,15,7,8,17, 10, 16, 14, 9, 13, 20, 24, 26, 43, 18, 12,22, 23
27,41,46,36, 11,21, 25,28, 32,45, 48, 29, 35, 40, 49, 47, 39, 44, 42, 31, 30, 34, 33, 38, 37
50,1,2,3,5,19,4,6,15,7,8,17, 10, 16, 14,9, 13, 20, 24, 26, 43, 18, 12, 22,23
27,41, 46,48, 36, 45,47, 32, 28, 25,21, 29, 35, 40, 49, 39, 44, 42, 31, 30, 34, 11, 33, 38, 37
50,1,2,3,5,19,4,6,15,7,8,17,10, 16, 14,9, 13, 20, 24, 26, 43, 48, 46, 18, 41
27,23,22,36,45,47,32,28,25,12, 21, 29, 35, 40, 49, 39, 44, 42, 31, 30, 34, 11, 33, 38, 37
50,48,1,2,3,5,19,4,6,15,17,43,46,7, 8, 10, 16, 14, 26, 24, 20, 13, 18, 41, 45
27,23,22,36,47,32,28,25,9,12,21, 29, 35, 40, 49, 39, 44, 42, 31, 30, 34, 11, 33, 38, 37
50,48,1,2,3,5,19,4,6, 15, 17,43,26,46,7, 8, 10, 16, 18, 41, 45,47, 14, 24, 27
32,49, 20, 23, 36, 40, 28, 22, 25, 35, 39, 29, 13, 21, 44, 42, 31, 12, 30, 34, 9, 11, 33, 38, 37
50,48,1,2,3,5,19,4,6,15,17,43,46,47,26,45, 41, 18,7, 16, 10, 14, 24,27, 32

( 49, 20, 23, 36, 40, 28, 8, 22, 25, 35, 39, 44, 29, 13, 21, 42, 31, 12, 30, 34, 9, 11, 33, 38, 37

49,20, 23, 36, 40, 28, 8, 22, 25, 35, 39, 44, 29, 13, 21, 42, 31, 12, 30, 34, 9, 11, 33, 38, 37
50,48,47,46,1,2,3,5,19,43,45,49,41, 17, 15, 6,26, 18,7, 16, 32, 27, 24, 14, 10
20, 23, 36, 40, 28, 4, 8, 22, 25, 35, 39, 44, 29, 13, 21, 42, 31, 12, 30, 34, 9, 11, 33, 38, 37
50,48,47,46,1,2,3,5,19,43,45,49,41, 17, 15, 26, 18,7, 16, 32,27, 24, 14, 6, 10
20, 23, 36, 40, 44, 39, 28, 35, 42, 25,22, 29, 13, 21, 31, 8, 12, 30, 34,4, 9, 11, 33, 38, 37
50,48,47,44,46,1,2,3,5,19,43,45,49,41, 17, 15, 26, 18,7, 16, 32, 27, 24, 14, 40
36, 23, 20, 10, 6, 39, 28, 35, 42, 25,22, 29, 13, 21, 31, 8, 12, 30, 34, 4, 9, 11, 33, 38, 37
50,49, 48,47,46,45,44,43,41,19, 1,5, 17, 3, 15, 26, 32, 18, 40, 27, 36, 39,2, 7, 16
24,28, 35,42, 14, 23, 20, 25, 22, 29, 10, 13, 21, 31, 6, 8, 12, 30, 34,4, 9, 11, 33, 38, 37
50,49, 48,47,46,45,44,43,41, 19, 1, 5, 17, 26, 32, 40, 3, 15, 18, 27, 36, 39, 42, 35, 28
24,16,7, 14,23, 20, 25, 22, 29, 10, 13, 21, 31, 6, 8, 12, 30, 34, 2,4, 9, 11, 33, 38, 37
50,49, 48,47,46,45,44,43,41,19, 1,5, 17, 26, 32, 40, 42, 39, 36, 27, 18, 15, 35, 28, 24
16, 3,7, 14, 23, 20, 25, 22, 29, 10, 13, 21, 31, 6, 8, 12, 30, 34, 2, 4, 9, 11, 33, 38, 37
50,49, 48,47, 46, 45, 44,42, 40, 39, 43, 41, 36, 19, 32, 26, 35, 27, 28, 24, 17, 18, 23, 15, 16
5,1,3,7,14, 20, 25, 29, 22, 10, 13, 21, 31, 6, 8, 12, 30, 34,2, 4,9, 11, 33, 38, 37
50, 49, 48, 47, 46, 45, 44, 42, 40, 39, 43, 41, 36, 19, 32, 26, 35, 27, 28, 24, 17, 18, 23, 15, 16
5,29,25,20,14,7,3,22,10, 13,21, 31, 6,8, 12,30,34, 1,2,4,9, 11, 33, 38, 37
50,49, 48,47, 46, 45, 44, 42, 40, 39,43, 41, 36, 19, 32, 26, 35,27, 28, 24, 17, 18, 23, 29, 25
15, 16, 20, 14,5, 7,22, 10, 13, 21, 31, 3, 6, 8, 12, 30, 34, 38, 33,37, 11,9,4, 2, 1

50,48,47,46,1,2,3,5,19,43,45,41,17, 15, 6, 26, 18,7, 16, 4, 10, 14, 24,27, 32 )

3 Thus the first one Y already differs from X slightly.
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50, 49, 48, 47, 46, 45, 44, 42, 40, 39, 43, 41, 36, 19, 32, 26, 35, 27, 28, 24, 17, 18, 23, 29, 25
15, 16, 20,22, 14, 5,7, 10, 13, 21, 31, 38, 34, 30,33, 37,12, 11,8,6,3,9,4,2, 1

50, 49, 48, 47, 46, 45, 44, 42, 38, 40, 39, 43, 41, 36, 19, 32, 26, 35, 27, 28, 17, 18, 23, 29, 25
( 31,34, 24, 15, 16, 20, 22, 30, 33, 37, 21, 14,13, 12, 11,9, 10, 8,7, 5,6, 3,4, 2, 1 )
50,49, 48,47, 46,45, 44,42, 38, 40, 39,43, 41, 36, 19, 32, 26, 35, 27, 28, 29, 17, 18, 23, 25
( 31, 34,37, 33,30, 22, 24, 20, 16, 15, 21, 14, 13,12, 11,9, 10, 8,7,5,6,3,4, 2, 1 )
<50, 49,48, 47,46, 45,43, 41, 44, 42, 40, 39, 38, 37, 34, 36, 35, 32, 19, 26, 27, 28, 29, 31, 33)

25,23, 18, 30, 22, 24, 20, 17, 16, 15, 21, 14,13, 12,11, 9, 10, 8,7,5,6,3,4,2, 1

The blue (resp. red) neighboring seven numbers specify the place and
operators to which the Bz (resp. C3) compatibility equation is applied. For
example, X, is obtained from Y, by replacing 37 -38-42-44.47-48-50 =
819,20,22K22,18,17,16 K23,21,19,16517,20,23 517,19,24 K24,21,20,18 $22,23,24 With the reverse

ordered form 87523 24K24.21,20,18517,19,24517,20,23 K23.21,19,16 K22,18,17,16 519,20,20 =
50-48 -47-44 -42 - 38 - 37 by (7.13). The numbers of red and blue sequences are
both twelve. O

Theorem 7.2 shows that (R, S, K) is a solution to the F; compatibility equation.
We remark that the tetrahedron equations RRRR = RRRR and SSSS = SSSS
have not been used. R and S act as catalysts for the main reactions which are 3D
reflection equations (7.12) and (7.13) involving K. Similar features are valid also for
the combinatorial and the birational versions.

Example 7.3 The two sides of the F, compatibility equation (7.25) applied to a
monomial [101101001011200101010102)* produce

1530000010101000303110233)
+qT1.) 4+ q>16]..) + g3 (61]...)) + ¢*(109]...)) + ¢°(390|...)) mod ¢°Z[q],

where the first line gives the image of the combinatorial version (¢ = 0) and the
second line shows the number of monomials appearing in each order of g.

By closely inspecting the definitions (7.4)—(7.9), the identification (7.22)—(7.24)
and using the properties mentioned after it, one can show:

Remark 7.4 Given a reduced expression of the longest element wo = s;, - - - 5;,, €
W (Fy), set wy, = s5_;, - - - S5_i,,, Which defines another reduced expression. Suppose
the F4 compatibility equation for wg is Z; --- Zsg = Zsp - - - Z; where Z, is one
of Rij, Sijx and K;j for some i, j, k,1 € {1, ...,24}. Then the F; compatibility
equation for wy takes the form Z| --- Z5, = Z, - - - Z|, where R;jk = Sijk S{jk =
R,’jk and Ki/jkl = K]kj,'.

4|my ...mp4) is a shorthand for |[m) ® - - - ® |moag).
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7.5 Bibliographical Notes and Comments

This chapter is an extended exposition of [93, Sect. 4], where many statements were
given on a conjectural basis. An F,; compatibility equation first appeared in [93,
Eq. (48)]. It is related to (7.25) via the transformation mentioned in Remark 7.4.
According to [126, Theorem 2.17], for any element of a Coxeter group, the loops in
its reduced expression (rex) graph are (in a suitable sense) generated by the loops in
the reduced expression graph of the longest element in any finite parabolic subgroup
of rank 3. Theorem 7.2 is consistent with it, giving finer information distinguishing
B3 and Cj5 structures within Fj.



Chapter 8 ®)
Intertwiner for Quantized Coordinate Gouck ko

Ring A,(G>»)

Abstract The quantized coordinate ring A, (G») is formulated in terms of generators
and relations. Fundamental representations are presented explicitly. Basic properties
of the intertwiner associated with the order six Coxeter relation are derived. Since
there is no “G3”, we do not have a compatibility condition analogous to the tetrahe-
dron or 3D reflection equations. Nevertheless, the intertwining relation still admits
a reformulation as what we call the quantized G, reflection equation. This fact will
be utilized to construct matrix product solutions to the G, reflection equation in
Chap. 17.

8.1 Introduction

By G, reflection equation we mean

Ri2(x) X 132(xy) Ra3 (x2y*) X213 (xy?) R31 (xy*) X321 ()

8.1)
= X231 Ri3(xy>) X123 (xy?) R32 (x%y*) X312 (xy) Ra1 (),

which contains the spectral parameters x and y. As we will explain in Chap.
17, it is a natural G, analogue of the Yang—Baxter and the reflection equations
which are associated with A, and B,, C,, respectively. If the spectral parame-
ters are suppressed, it reduces to the constant version Rj» X130 R23X213R31 X301 =
X231R13X123R3 X312 Ry

In this chapter we consider the quantized G, reflection equation

(Li2J132L23 2130313200 F = F(Ja31 Li3J123L32J312L21), (8.2)

which is a generalization of the constant G reflection equation to a conjugacy equiv-
alence by F. We present a solution of (8.2) connected to the quantized coordinate
ring A,(G,), where F arises as the characteristic intertwiner. In Chap. 17, it will be
utilized to generate infinitely many solutions to (8.1) in matrix product forms. These
features are quite parallel with types A and B, C.
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8.2 Quantized Coordinate Ring A, (G2)

The quantized coordinate ring A, (G») is a Hopf algebra generated by 49 generators
T = (t;j)1<i,j<7 satisfying (i) and (ii) given below.

(i) The RTT relation

Z Rﬁ,{ptmktpl = thptimR]:n]pa (8.3)

m,p m,p

where there are 112 non-zero R,’f, listed in (8.91).
(i1) Additional relations

gl = th][ikgkl’ Z Pt = Ztﬂtikfki’ (8.4)
kfl k k,l

where g/ and f ’i are specified in (8.85)—(8.86).

The coproduct and the counit are defined by the same formula as (3.6) and (3.8),
respectively. The antipode is given by

S) =Y ¢" gxjtu, (8.5)
kl

where g;; is determined from (8.87) and explicitly given by (8.88).

Remark 8.1 Similarly to Remark 5.1, the Hopf algebra A,(G») is equivalently
presented in terms of generators and structure constants rescaled by parameters
g1, ..., g7 Explicitly, fi_j and R,’fl are taken as (5.13), and the other structure constants

are rescaled as g = gig;g”, &y = (2:¢;) 'gij and fi’ = gig;gi [

8.3 Fundamental Representations

We set (g1, ¢2) = (g, g°)." Let Osc, = (a*, a™, k, k~!) be the g-oscillator as in
(3.12) and (3.13). In this chapter we also use g3-oscillator Osc,s and denote it by
(AT, A=, K, K7!). Thus (5.15) is replaced by

KAT=¢>ATK, KA =¢7 A K, A At=1-¢°K? AtA =1- K%
(8.6)

1
C(g2)|m)*:

which has an irreducible representation on the Fock space 73 = €D,

! This is opposite to the labeling of vertices of the Dynkin diagram in [129, Eq. (27)].
2 We include q% in the coefficient field in view of (8.13).
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K|m) =¢™"|m), A*lm)=|m+1), A" m)=(1—¢"")m—1). @87

Let T = (t;;)1<i,j<7 be the 7 x 7 table of the generators of A,(G>). The funda-
mental representations 7; : A,(G2) — End(F,,) (i =1, 2) are given by

a- ik 0 0 0 0 0
—qu;'k at 0 0 0 0 0
0 0 (a™)? purka”  (u k)? 0 0
m(T) = 0 0 —gu;'a"k aat— kK> uykat 0 0
0 0 (gui'K?* —puy'kat (ah)> 0 0
0 0 0 0 0 a-  wk
0 0 0 0 0 —qu;'k at
(8.8)
1 0 0 0 0 0 0
0 A mwKoO 0 0 0
0—g*u;' K-TAT 0 0 0 0
T =10 0 0 1 0 0 o]. (8.9)
0 0 0 0 A wKO
0 0 0 0—¢’u;'KTATO
0 0 0 0 0 0 1
Here and in the rest of this chapter we use the notation
p=q+q " (8.10)

Remark 8.2 Nonzero parameters (i1, i, in the fundamental representations (8.8),
(8.9) can be removed by the rescaling in Remark 8.1 with gfl =g7;= M%,uz, g =

86=M1Mz,g§1 =gs=pjand g4 = 1.

From Remark 8.2, in the rest of this chapter we take ;| = q% and ur =g¢q 3. The
choice does not influence the forthcoming intertwining relations (8.15), (8.18) and
the intertwiners. Moreover, it has the advantage of simplifying 7;(T) into?

3 The (5, 4) element —r k a* in7; of [85, Eq. (40)] needs to be replaced by —r a* k in the notation
therein.
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a k 0 0 0 0 0
—kat o0 0 0 0 0
0 0 (a)? pka- k 0 0
mT=]10 0-ak s kat 0 0], (8.11)
0 0 kK —patk(ah2 0 0
0 0 0 0 0 a Kk
0 0 0 0 0 —kat
10 000 00
0A- KO O 00
0-KAT0 0 00
»nT =00 010 00 (8.12)
00 00A KO
00 00-KA"O0
00 000 01

Here k and K are Osc,, operators including the zero point energy

A~

k=qk, K=¢2K, (8.13)

where k, K are specified in (3.13) and (8.7). The operator s at the center of (8.11)
is defined by

s—aat—K=1-—pk. (8.14)

8.4 Intertwiner

The Weyl group W(G,) = (s, s2) is the Coxeter system with the relations

S12 = S% = 1, 528518528518281 = 851528515281952.

According to Theorem 3.3 we have the isomorphism 7312121 = i21212. Let E: Fy ®

Fr®F g ®Fp ®F; @Fp = Tp T, Q@ Fps @ Fy @ Fs @ F, be the correspond-
ing intertwiner. Thus it is characterized by

m2121(A(f)) 0 E = Eompnn(A(f) (Vf € Ay(G)), (8.15)
E(10)®10)®0) ®[0) ® [0) ®[0)) =10) ® |0) ® |0) ® |0) ® |0) ® |0), (8.16)

where the latter just fixes the normalization. We introduce the 3D F* by

4 No 2D counterpart is known despite the name.
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F=EPsPysPy cEnd(F @7, F; @F; ® Fyr @ Fy),s (8.17)

where Py Pys P34 reverses the order of the components in the six-fold tensor product.
Then the above relations are cast into

M1 (A(f)) o F = F o i1 (A(f))  (Vf € Ay(Ga)), (8.18)
F(10) ®10) ® 10) ® 10) ® 10) ® [0)) =10) ® |0) ® |0) ® |0) ® |0) ® |0), (8.19)

where A( f) = P16 P25 P3uA(f) Pig Pas Pa4. F will also be referred to as the inter-
twiner.

Example 8.3 The intertwining relation (8.18) is reduced to 49 equations for the
generators f = t;; (1 < i, j < 7). Although (8.11) and (8.12) are pretty sparse, some
equations become lengthy including typically 16 terms on one side or both. So we
do not display them all but present a few examples. To save space, the tensor product
symbol ® is denoted by -.

f=tr:
[F,1-a—-1-a-1-a —1-a-1-k- A" k—1-k A~ - at- A~ k
1.k A -kl a+1.k K (a2 K ki=0,
f=ts
e U TPy ) P T
(l-a -1k Kk +1-k A -am K k" +1- k K (a)? AT k

+pl-k K ka - 1-kat+1- k K- &k°

—F(A (a2 A= K- K k+pA—-kat 1. ka - K k

FA i AT (a2 Kok AR

+A K K kla -k a kKK,
f=te:

(- k- K- k- K- a?)F

=F(AT- a~ K k- K k+ K- (aH?Z A~ k™

F R At (a2 K k4 KKK at
f=ne:

(A at K K2 Koam 4 K (a2 AY. i
2

>
>

A_~(a+)2- K a+ K i(2~ K a - At.a~ - K k-
= F(AT a2~ K K K at + K- (ah)2 A K
+

FR At (a2 K at+ K KK a

D =Dyp @D, ® Dy ® Dy, ® Dyp @ D, (8.20)
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where D, is defined by (3.15).

Proposition 8.4

F."e """ "®1]=[F,19"®"9: 0" ® " =0,

(8.21)
F=F", (8.22)
'F = DeFD!, (8.23)

where 7 is a generic parameter.

Proof The proof is similar to Propositions 3.7 and 5.8. The weight conservation
(8.21) follows from

Ta12121 (A(117)) = 212121 (A(117)) = T212121 (A(t71)) = 212121 (A(t71))

— 19 ke Ko k © Ko k (8.24)
Ta12121 (Altartis — ' ta6t17)) = 12121 (A(tartis — g~ tasti7))
_kokokKeoko kel (8.25)

The involution property (8.22) follows from
2221 (A1) = &' § 11 (A1), (8.26)
where & = (—1)'(p/q)%*. The transpose (8.23) is derived from

tJT](Ii.,') = Ki_lKqujTl(tj/if)DJI, l]Tz(lij) = Ki_lKqu37T2(tj/i/)Dq_31, (8.27)

where i’ =8 — i and k; = (p/q)%*. .
The intertwiner F is regarded as a matrix with elements F; jifi;f as
F(li)®j) ®1k) @ |I) ® [m) ® [n))
= Y Frgepmeleldelel) 62

ab,cde,f

Then Proposition 8.4 implies

abcde. b 2 d ] i 2k l
FUdes — o unless (@TOTICTETE ) (L IHTHIE M) g 09)
b+3c42d+3e+ f i+ 3k42043mn
abeder @)@ ;@@ GV (@D ijimn (8.30)

K (09),(g2)p(q%)(q2)a(q®)e (g ;- Pl

From (3.16), (3.16)|,_43, (8.28) and (8.30), we also have
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(i1 ® (jI ® (k| ® (| ® (m| ® (n|)F
= > FRlal @ (b ® (] ® (d] @ (e] ® (f]. (831)

ab,cde, f

Example 8.5 The following is the list of all the non-zero F f:ocl“zfzf

Foo® = —q*(1 — g" (1 — ¢ (1 — ¢> — ¢%),
Figts = —q*(1 — gH*(1 — ¢ (1 +¢%),
Fidhy = (1 —gH(1 = ¢% 1 — g* +¢'%),

200004 11
Fiooi2 =9
Figr =1 = g1 —q* —¢° —2¢* — " — ¢,

Figgion =a*(1 =g (1 —¢°+4"),

Flogr =a*(0+4*—2¢°—¢* —q" + " +q" + 4",

Fioois = q°(1+4¢)(1 =" —¢"),

Fioois =41 +¢)(1 = ¢ = ¢ —¢* —¢°+ 4" +4" +¢").
Although a tedious algorithm can be formulated for calculating F;;Zfiif for any

given indices by combining the intertwining relation (8.18), an explicit general for-
mula is yet to be constructed.

8.5 Quantized G, Reflection Equation

The quantized G, reflection equation is given by (8.2). In this section we take L to
be the 3D L in the preceding chapters (based on Osc,:) and set up J elaborately. It
enables us to identify (8.2) with the intertwining relation (8.18). In other words we
obtain a solution to the quantized G, reflection equation in terms of 3D F' associated
with the representation theory of A,(G,). It will be an input to Chap. 17, where an
infinite family of solutions to the G, reflection equation with a spectral parameter
will be constructed by a matrix product method. We begin by recalling the 3D L and
then proceed to the J which we call the quantized G, scattering operator.

851 3DL

Set V = Cuvp @ Cv; =~ C2. Let L be the Osc,3-valued 3D L:
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Lwi®u®|m)= Y v,®v,®LYIm), (8.32)
a,be{0,1}
10 00
0K A0
ab
L=(Ly)= 0 A+ _ Ko € End(V ® V ® ). (8.33)
00 01

We attach a diagram to each component Li“jb € End(F,3) as follows:

b 0 1 0 0 1
i ﬂ‘—»a oﬂ‘»o ﬂ‘» ﬂ‘» 4» ole 14—»0
' 0 1 0 1 0
L]g,.b 1 1 K -K A* A~
(8.34)

This is the same as Fig. 5.1 by the gauge transformation L{} — ¢'~"L¢ followed
by the replacement g — q%. Explicitly, we have

L(vo®uo® |m)) =vo Qv ® |m), L(vi Qv ®|m))=v Qv Q|m),
Lwy® v ®m)) =1 ®@ v ® Klm) + v ® vy ® A*|m)

= ¢*"* 30 @ v ® |m) + v ® vy ® Im + 1),
Lwi®v®[m) =v®v® A7|m) — v ® v ® K|m)

= (1 =" @ v ® m —1) — ¢ v, @ vy ® Im).

The weight conservation

Lj‘]” =0, unless a+b=1i+j, (8.35)
h Lg]b = ijb(h +j—b), (8.36)

holds, where h is defined in (3.14).

8.5.2 Quantized G, Scattering Operator J

Now we introduce a new operator J € End(V ® V ® V ® F,) of the form
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Ji@u@uem) =Y v Quveuv 5, (8.37)
a,b,ce{0,1}

T4 € End(F). (8.38)

It encodes a special three-body event characteristic to the G, root system. A detailed
explanation of it including the geometric interpretation will be given in Chap. 17.
Here we just define each component J;}ZC algebraically with graphical representation.

The quantized amplitude Ji_”,.ic is depicted by a diagram in which the two-particle
collision and the boundary reflection happen simultaneously at the instance indicated
by the dotted line.

b a c¢
Jl(‘l]l])(C - >< 77777777 >
i j ok (8.39)

In terms of this graphical representation, Jl.’j.ic € End(,) is specified as follows:

a a ( a a 1 a a ( a a 1
a a ( a a ( a a 1 a a 1

A A

a’ k -k a (8.40)
1><O O 1><O 1 1><O 0 1><O 1
0O 1 O 0O 1 0 0o 1 1 0 1 1

uka* K2 o~ uuzs uska™  (8.41)
O><1 0 0><1 | O><1 0 0><1 |
1 0 0 1 0 0 1 0 1 1 0 1

—up a*k o upuys k? —usa’k (8.42)

3 For simplicity the vertical boundary line reflecting k to ¢ is omitted here. It will be depicted in
Figs. 17.1 and 17.2 as horizontal lines in the 90°-rotated diagrams.
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0><10 0><11 0><10 0><11
0 1 0 0 1 0 0 1 1 0 1 1

(a*)? uska* —uza‘k plusugs  (8.43)
1 ><0 0 | ><0 1 1 ><0 0 1 ><0 1
1 0 0 1 0 0 1 0 1 1 0 1
o~ uruns urka~ —uja’k (@a)?  (8.44)

In (8.40), a = 0, 1. The parameters u;, u,, us, u4 are arbitrary as long as
Uil + UzUy = 1Y (845)

is satisfied. See (8.10) and (8.14) for the definition of p and s € End(¥,). All the

Ji‘jfic’s not contained in the above list are zero. The weight conservation properties

Ji‘;b" =0 unless a+b =i+ j, (8.46)

hJS = I+ 1+ —k—b—c) (8.47)
are valid, which are analogous to (8.35) and (8.36). For instance, we have

J(v1 @ vo ® v @ |m))
100

=01 ® vy ® vy ® Jj50 Im) + v1 ® v ® v ® Jjgq Im)

+ 00 ® v1 ® vo ® T |m) + vo ® v1 ® v ® T [m)

= —qum+%v1 ® v ® v ® |m + 1) + p Luzus(l — pg* vy ® vy ® v1 ® |m)

+ 0 uiua (1 — g™ yvo @ v1 ® o ® |m) + u2g™ I (1 — gy ® v @ vy ® m — 1).

The operator J almost splits into a product of two-particle scattering and one-particle
boundary reflection as

fj’.ic = ot.[:?jb G + BBtk 10p1c,1id (8.48)
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for some constants «, 8. Here £ denotes (8.33)] 4+

—a¥*, ’

ko i and G is (15. 4)| %
which is a slight gauge change from Fig. 5.2. Due to the presence of the second term

it is not a direct product, which is indicated by the dotted line in the diagram.

8.5.3 Quantized G Reflection Equation

Theorem 8.6 Theintertwiner F € End(Fs @ F, @ Fp ® Fy, @ Fp ® F) defined
by (8.18) and (8.19), the 3D L L € End(V ® V ® F,3) in Sect. 8.5.1 and the quan-
tized G, scattering operator J € End(V ® V ® V ® F,) in Sect. 8.5.2 satisfy the
quantized G, reflection equation

(Li2J132L23J213L31J301) F = F(Ja31L13J123L32J312L01). (8.49)
Theorem 8.6 is a corollary of Proposition 8.8 below. In this solution, the
quantized G, reflection equation (8.49) becomes an equality of linear operators

1 2 3 4 5 6 7 8 9
omVRVRAVRIFsR@F,F 5 QF, ®F 4, ®F,, where the superscripts are

temporary labels for the explanation. If they are all exhibited, Eq. (8.49) reads as

L124J1325L236J2137L318 J3219 Fa56780 = Fus6789J2319 L1338 J1237 L 326 J3125 L214. (8.50)

To explain the notation in (8.50), let us write L (8.32) and J (8.37) symbolically as

L= E.®E;®Ly=> LVeor’eL, 8.51)
a,b,i,j 1
Y Ei®Ey®Eq®J4=> 9" 05" 05” ®J"P. (852
a,b,c,i,j.k 1
Then

Liy=y L'eL’e1eL’e1e1@101a1 (i j}={1.2}),
Lig=y 1oL e/ "e1eleL’®1elel (i j}l={23},
Lyx=) £'®10L"010191910L"®

Lys=) £7®10L"010191910 L7 ®

Jjs = " ® J(’)®J(k)®l®$(4)®l®l®l®l (i, j. k}y = {1,2,3)),
Jin=Y I3 05" e191010J®1®1 (i j.k) = {1,2.3),
Jw=Y I e eg" " e1010101010J" (i j.k=1{1.23}.
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o Fus56789

= Fis6789 ©

Fig. 8.1 A graphical representation of the quantized G, reflection equation (8.50), which admits
a natural 3D interpretation

Practically, one can realize these operators by putting L?j” and Jfﬁ" at appropriate
tensor components with a suitable permutations of the indices. The quantized G,
reflection equation (8.49) or equivalently (8.50) is depicted in Fig. 8.1 below.

Here the indices 1,2,3 label the lines (arrows) which are being reflected, whereas
4,5,6,7,8,9 are attached to the scattering/reflection events. The latter group of indices
are associated with the Fock spaces, and the g-oscillators are acting on them in the
direction perpendicular to this planar diagram. If one introduces such g-oscillator
arrows going from the back to the front of the diagram, the operator Fyse739 in the
LHS (resp. RHS) corresponds to a vertex where the six arrows going toward (resp.
coming from) 4, 5, 6, 7, 8, 9 intersect.

The component of (8.50) corresponding to the transition v; @ v; @ Vg > Vg ®
1 23
v, ®v.inV®V QV is given by

“CF = FMU (a.b,c,i, j k €{0,1}), (8.53)
=D L @ S O L @ LI @ LT @ I (859)
N qab , B3.B1.B V2. RN A1yAs b.c,
M?jkc = Z L‘}ffio‘l ® Jk.:)tl,llz '® Lﬁ;ﬂlz ® '],3113)’1%]/22 ® Lﬂll,lzz ® J)sz)h?:)bl’ (8.55)

Wlth the sums takgn over oy, o7, ﬁlv ﬁ2a ﬂ37 Y1, V2, )"la )‘-Zs )"3s Mn1, w2 € {Os 1} The
quantities M?ﬁf, M?ﬁf are to be called the quantized three-body G, amplitudes.
They are expressed as sums over diagrams with specified external edges as
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abc _
Mijk N

qabc _
Mijk -

Example 8.7 From the diagrams (8.34) and (8.40)—(8.44), those contributing to
ML MILL and the associated quantized amplitudes are given as follows:

1

-

Ko (@) oA 9k?oKek wnKeokat®eloka e Kok
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H H X /
umuwKekat®eloka e Kok Keok®’®A*® (a ) ?9Keok

Kek®eK®at®A ®k

Thus we get
~ N ~2 N
& ko Ke k @ K® a™, (8.56)
N A Y RN
W=ATea okok e Kek+ Ke(a")?eA ok o Kok
~ ~ N ~ ~ ~2 ~ ~
okateloka o Keak+ Ke k9 Ate(a)?® K® k
2 4 P RPN
K® ato A  9k+ Kok 9 Ko k®@l® a™, (8.57)

where (8.45) has been used to combine the fourth and the fifth diagrams into a single
term with coefficient p.

Notice that the quantized G, reflection equation (8.53) with (8.56) and (8.57)
coincides with the f = ¢ case of Example 8.3. This happens generally. In fact a
direct calculation shows:

Proposition 8.8 The quantized three-body G, amplitudes are identified with the
representations of A,(G») as
M= Mapevijep ™ 212121 (A(la ). (8.58)

M?ﬁf = habeVijep P 210121 (A(ta p)), (8.59)
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where a = Kupe, B = Kijk, and kjjk, Mijk, Vijk are defined by the following table:

ijk 111 011 101 001 110 010 100 000
Kijk 1 2 3 4 5 6 7 8
Aijk 1 1 1 uy [n 1 1 1
Vijk 1 1 1 U us 1 1 1

In particular, 2° quantized G, reflection equations (8.53) are equivalent to the
intertwining relations (8.18).

8.6 Further Aspects of F

8.6.1 Boundary Vector

Let us introduce the boundary vectors

=yl oy (8.60)
m=0 (@m m=0 (@m
(m Im)
_y_m -y 2 8.61
l mzzo(q»‘)m =2, (®.6D

which are actually elements of a completion of the Fock space. The vectors (n; | and
[n1) are the same as in (3.132) and (3.133). The vectors (£| and |£) are simply related
to them by the replacement ¢ — ¢°.

Conjecture 8.9 The intertwiner F has an eigenvector as follows:

F(IE) @1m) ®18) @ Im) @ 1) ® Im)) = 18) ® [m) @ 1) @ Im) ® [§) ® m).
(8.62)

It implies the dual relation

(E1@ Mm@ EIQ M| EI®MDF = (& (ml® (&I (ml (| (ml.
(8.63)

The conjecture will be utilized in Sect. 17.4.

8.6.2 Combinatorial and Birational Counterparts

Introduce the 7 x 7 upper triangular matrices
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10000 0 0 1x00 0 00

01x00 0 0 0100 0 00

00100 0 0 001x-%0 0
Wix)=]00010 0 0|, Wa)=0001 —x 0 0 (8.64)

00001 —x0 0000 1 00

00000 1 0 0000 0 1 —x

00000 0 1 0000 0 0 1

These are generators of a unipotent subgroup of the Lie group of G,. Given param-
etersa, b, c,d, e, f, consider the equation

Wa (@)W1 (D) Wa(c)Wi(d)Wa(e) W1 (f)

/ A A / / / (8'65)
= Wi(f)Wa(e)Wi(d)War ()W () W2 (a)
fora’,b',c',d', e, f'. It has the unique solution
2 3 3 32,3
- abe de, b = i ¢ = 3 d = i e = E f’z M’ (8‘66)
A D AB CD B C
A = abc*d + abf(c + €)*> + de* f(a + ), (8.67)
B = a?b*3d + a*b* f(c + ) + abde? f Bac + 2ae + 2¢% + 2ce) + d%e> f(a + ¢)?,
(8.68)
C =d’0?A3d +a*b? f(c +e)® + a’bde’ f Bac + 2ae + 3¢ + 3ce) +d*e> fa+ o),
(8.69)
D= a2b203d(abc3d + 2abf(c + 6)3 + dezf(3ac +2ae + 3¢ + 3ce))
+ f2(ab(c + €)% + de*(a + o)) . (8.70)
Define the birational 3D F by
Fbirational : (as bs Ce d7 e? f) = (alv b/s Clz d/7 e/9 f/)' (8'71)

It is easy to see that Fyirational 1S an involution having the two conserved quantities
abc’*de, bcld*e’ f. (8.72)
Leta”,b",c",d", e", f” be the piecewise linear functions obtained by applying
the tropical variable change (or UD) of (3.152) to the totally positive rational functions
a,b',c,d, e, f in (8.66). For instance, we have
a" =max(e,d+e— fic+d— f,2c+d—e—f,b+2c—e— f,a+b+c—e— f).

(8.73)
We define the combinatorial 3D F to be the piecewise linear map on (Z=()® by

Fcombinalorial : (av b’ c, d7 e, f) = (a//v b”» CU, dﬁ» e”, f”)- (874)
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. . . —1
By construction it satisfies Feombinatorial = Feompinatoria a0 Preserves a + b + 2¢ +

d+e and b+ 3c 4 2d + 3e + f corresponding to (8.72) in agreement with the
weight conservation (8.29).

Example 8.10 F.ompinatorial : (1,0,0,1,0,2) — (0,1,0,0,1,0). This captures
Example 8.5 atg = 0.

Let us denote the intertwiner F* defined in Sect. 8.4 by Fyuanwm- Then the triad of
the 3D F’s and their relation is summarized in the same manner as (3.158), (5.162)
and (6.47):

q—0 UD
F quantum — F combinatorial < F birational - (875)

8.7 Data on Relevant Quantum R Matrix

We list the structure constants in the defining relations of A,(G»). They originate in
the 7-dimensional representation of U, (G,) = (kl.il , €i, fi)i=12 and the quantum R
matrix acting on its tensor square. In our convention, « (resp. «») is the short (resp.
long) simple root and the Cartan matrix (a;;) iSa;; = axn = 2,a1 = =3, a = —1.
Defining relations of the generators are

kikj = kiki, kik7' =k 'k =1, (8.76)
-1 ajj -1 —aij ki — kfl
kiejkl. =q; ¢j, kifjki =q; fj, [Ei, fj] = 8,‘jﬁ (877)
and the g-Serre relations (10.1), where (g1, ¢2) = (g, ¢°) as in the previous sections.
Explicitly, they read as

eter— (@* +q+q7" +qelerer + (@' + 7 +2+ 972+ g el ered
— (@ +q+q " +q)eiere] +eref =0, (8.78)

eser — (q° + g )ezerer +ere3 =0,

which are quoted from (10.81).

Let @, @, be the fundamental weights, which are related to the simple roots as
@y =201 + ap, Wy = 3a; + 20 We are concerned with the irreducible U, (G,)
modules with highest weights 2@, @,, @ and 0 whose dimensions are 27, 14,7
and 1, respectively. In this section we refer to them by the dimensions. The represen-
tation 7 has bases vy, .. ., v7 having weights 2oy + a2, o + 02, @1, 0, —ay, — (a1 +
a2), —(2a1 + o). With respect to them the generators are represented as
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et =Epn+(q+q )Eyu+ Ess+ Eg;, ey = Ey + Esg, (8.79)

fi=En+En+(q+q YEss+ Ezw, fo=Exn+ Ees, (8.80)

ki =diag(q.q7 " ¢°. 1,472, q.q7"), ky=diag(1.¢>. 7>, 1,¢4°, ¢, 1).
(8.81)

The following tensor product decomposition is valid:

TRT=270 14076 1. (8.82)

Let v[(’\) (i =1,...,1)beaweightbase of therepresentation A = 1, 7, 14, 27 appear-
ing in the RHS. We employ the comultiplication A in (10.2). Then the weight bases
are given as follows (we write v[j, k] = v; ® v):

(27)

(27 (27)

=v[l, 1], vy 7 =qu[l,2]+v[2,1], v;"" =qv[l,3]+v[3, 1],

<27> =0[2.2], v§” =¢3[2,3] + i3, 2],

vé27) = q%ol1, 4]+ v[2. 3]+ qul3. 2] + v[4, 11, v§7 = (3. 3],

v = %2, 41+ 4, 21, v§7 = gPoll, 51+ ¢2ul2, 41 + ¢ vl4, 2] + vi5, 1],
u%” = qol2,51+ 15,21, v37 = g2u[3, 41+ v[4, 3],

(2D = g1, 6] + ¢ I3, 41 + ¢%v[4, 31 + vl6, 11,

v%” = ¢*v[2, 6] + quI3, 51+ ¢>v[5, 3] + vI6, 21,
w2 = g*I3, 51+ ¢Pul4, 41 + 0[5, 3],
(27)

=q v[l 7]+q v[2, 6]+q v[3, 5]+q v[4, 4]—|—q v[5, 3] + qv[6, 2] + v[7, 1],

27 27
( ) ”58 )z|v/k]—>v[8 k,8—j] (16 < i <27).

(8.83)

o' = u[1,2] —gu[2, 1], v$"Y = v[1,3] — qv[3, 1],
v = ¢2[1, 41 4 02, 3] — ¢*vI3, 21 — ¢>vl4, 1],
214) —qu[1,5] — v[2,4] + ¢*v[4, 2] + v[5. 1],
i = —qull, 6] — v[3, 4]+ ¢*v[4. 31 + v[6, 1], v{" = —v[2, 5] + qu[5, 21,
Wi = —¢2u[1, 7] — qu[2, 6] — v[3, 5] — ¢*v[3, 5] — qu[4, 4]
+ q’v[4, 4] + v[5, 3] + ¢*v[5, 31 + qu[6, 2] + v[7, 1],
v = ¢*u[2, 6] 4 v[3, 51 — ¢*vl5, 31 — ql6, 2],

14 14 .
( ) = U%g ),|v[j,k]ev[87k,87j] 9 <i<l14).

(8.84)
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o = g 731,41 = g3+ gHul2, 31+ (1 + ¢Pui3, 21 — ¢ vl4, 11,
o = =1+ gHol1, 51— g ol2, 41+ qul4, 21 — g (1 + g)l5, 11,
vy = g1+ ¢2)[1, 6] — g~ w[3, 41 + qul4. 3] — ¢(1 + ¢>)l6, 11,
D = (14 g7 (g %[, 71 + ¢ 3v[2. 6] — v[3, 51 + v[5, 31 — g v[6, 2] — ¢*v[7, 1])

—q (1= gPui4, 41,

7 7
()_vé(z)z|vjk—>v[8 k8—j1 G =<i=<T),

ol = g 75001, 71— g~ *012, 61 + g v, 51+ qui5, 31 — ¢*vl6, 21 + ¢>vl7, 1]
q>v[4, 4]

I +42
(8.85)

Using the above data for the Clebsh—Gordan coefficients, the structure constants
g", gij and f;’ are defined by

o = Zgijvj ® v, (7) Z v @, (8.86)
ij
> 8ten =28 (8.87)
k

In particular, the constant g;; necessary for the antipode (8.5) is given by

(8s-i)i=1,..7 =" —q* q,—(@+q "), q7 ", —q*, ¢7), otherwise gij =0.
(8.88)

We note that the normalization of vl.(k) influences g, g;;, fk"j , but the relation (8.4)
and the antipode (8.5) remain invariant.

Let P be the orthonormal projector from 7 ® 7 onto A in the decomposi-
tion (8.82). The quantum R matrix R(x) satisfying the Yang—Baxter equation
Ri2(x)R13(xy) Ro3(y) = Ro3(y)Ri3(xy) Ri2(x) is given by

R(z) = P(lgz "lg*z g%z "1P?7 + [qzllg*z " 1lg°z " 1P™Y

8.89
+ gz ' Mg*z11g%z " 1P + [gzllg*z 1Ig®21P D), (859

where [z] =z—2z"" and P(v; ® v;) = v; ® v;. The structure constants R,'cj are

extracted from it as

Z RIEx®E; = —qulirglo 2R
ijkl (8.90)
= P(g 2P — P _ (6p) | 121y
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The normalization of R(z) influences R,’fl , but the relation (8.3) is independent of it.
There are 112 non-zero R;) given by

Ri{ =R}, =Ry =Rj =R =R3 =Ry
=R3=Rg=Rj=Ry=Rg=R;=1
Ry = Rji = R = RS = Ry = Rjg = —1+q 7",
Rij = R} = R = R3S = Reg = Ry = ¢,
Ri} = Rjj = R} = R = R}] = R = R
=Ry =RG=RG=RE=Rg=¢q",
R = RIS = K2 = RY = K3 = R = )
_ RE = RS = RS = K} = RT =g,
Rl = B = R = RS = RS = R}l ="
Réé‘ = R51 = Réf = RS6 = R% = R% =1-4°
RY = RYf = R = RY = R = R
=Ry =Ry =RL =Ry, =q"—¢"
Ri=grat—g-g, RD=RE=RE=g o
RE=RE=q7—q", RS=RS=R;=Ry=-1+4q",
R§T=R§?=R§§=R§‘?=—q +4q*,
R§§=—1+q —-¢*+4" Rgg—Rsz—q -4,
RI=R{=—q+q¢, Ry=Ri=-¢+¢,
Ri =Ry =Ry =Rj=—-14+q"+4¢"—¢"
Ri‘f=R§‘Z=—1+q’2+q4—q6,
R;Z—Rgg—Rﬂ— —q* +4°, Ri?——l—q +q* +¢°,
Riu=q7 —q+3 —q, RE=R3=q¢"—¢q
Rii=q-2¢"+2¢°—q", Ri=R}=~-1+¢" —6164‘6]8,
RE=—1+4¢72—¢*+4", Rgg_Rﬂ: q e
Ril==1+4"+¢"~¢"=q°+¢"' = ¢ +¢"

(8.91)

8.8 Bibliographical Notes and Comments

The definition of A, (G>) in terms of generators and relations in this chapter is quoted
from [129], although the labeling of indices of the Cartan matrix (see [129, Eq. (27)])
is the opposite there. The data Rkl, i and fY "/ here are the same as [129, Eq. (33)],

and [129, Egs. (30) and (31)]. The relations [129 Egs. (20) and (22)] are equivalent
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to (8.4) if the RT T relations are imposed. See the explanation after [129, Definition
7].

The fundamental representations (8.8) and (8.9) were given and the basic property
of the intertwiner F in Proposition 8.4 were stated without a proof in [102, Sect. 4.4].
Sect. 8.5 is based on [85], where the quantized G, reflection equation was introduced
and Theorem 8.6 was obtained. Conjecture 8.6.1 on the boundary vector is taken from
[85, Eq. (77)].

As for the combinatorial and birational F in Sect. 8.6.2, comments similar to
those for the 3D R in Sect. 3.7 are applicable. The birational map Fpjrationar (8-71)
has effectively appeared in [21, Theorem 3.1] in terms of variables #;, p;, 7;. They
are related to those in (8.66)—(8.71) as

(p6a '~'ap1) = Fbirational(tla '-'7t6)a (8'92)
(w1, 2, 3, w4) = (A, B, C, D)|(abc.de, f)—(t1,...rt6) (8.93)



Chapter 9 )
Comments on Tetrahedron-Type Guca i
Equation for Non-crystallographic

Coxeter Groups

Abstract This short chapter is a supplement recalling some basic facts on non-
crystallographic finite Coxeter groups and raising questions concerning a possible
tetrahedron-type equation.

9.1 Finite Coxeter Groups

The list of finite Coxeter groups' is given by [59]:

Ay(n=1), By(n=2), D,(n=4), Es, E7, Eg, Fy, G2,

9.1)
H,, H3, Hy, Ly(m)(m > 3).

The indices are called ranks. The alphabetically last one I;(m) is the dihedral group
which is the order 2m group of symmetry of a regular m-gon consisting of orthogonal
transformations. It has overlap with the other rank 2 members for m = 3, 4, 6. See
Fig. 9.2. Rank n Coxeter groups have a presentation in terms of generators sy, . .., S,
obeying the relations (s;s;)™/ =1 withm;; = landm;; =mj; € {2,3,...} U {oo}
for i # j, where m;; = 0o is to be understood as no relation. The data {m;;} is
customarily encoded in the Coxeter graph. Its vertex setis {1, 2, ..., n}, and the two
vertices i and j are connected by an unlabeled edge if m;; = 3 and by an edge labeled
withm;; if4 < m;; < oo. The case Vm;; € {2, 3, 4, 6} is called crystallographic, and
has a realization as the Weyl group of the corresponding Lie algebras. Thus those
on the second line in (9.1), except m = 3, 4, 6, are the non-crystallographic finite
Coxeter groups (Fig. 9.1).

! In this chapter, symbols like A, are used to mean Coxeter groups instead of Lie algebras, unlike
elsewhere in the book.
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A, e oo E
n 1 2 6
B, e—e Oi. Ey
1 2
n—1
D, e—e. . I—c E.
n 1 2 8
H2 .iﬂ H3
1 2

9 Comments on Tetrahedron-Type Equation for Non-crystallographic Coxeter Groups

F, o —eo "o o
1 2 3 4
G oio
1 2
L(m PLLLIN
2(m) -
Hy oio—o—o
1 2 3 4

Fig. 9.1 Coxeter graphs of (9.1). Unlike the Dynkin diagrams, there is no arrow and C, has been

merged into B,

The dihedral groups I,(m) and H,, H3, Hy admit various embeddings as shown

in Fig. 9.2.

Fig. 9.2 Various
embeddings concerning

non-crystallographic Coxeter

groups

12.(7)

« D,
s
A L(6) = G
5 < L(6) 2 Ds
/S

A4 «— 12(5) = Hz — H3 — H4
A3 «— 12(4) = Bz g B3 “—> B4

L3) = Ay — A3 — Ay

—

—

The embedding of type X, — X, just means that X,, is a parabolic subgroup
of X,,+1. Denoting the generators in the image by ¢;’s, the other cases are given as

follows [134]:

IZ(m) — Amfl

G2;>D4

I<j<m—1
Jjiodd

181 > H13l,
H; — Dg :
H4 —> Eg :

S| = tats,

S1 > Iulg,

18 > l_[ tj, S > 1_[ tj,

l<j<m—1
jreven

§) = 1y,
§2 > Ity, S3 > Iile,
S2 > B3t5, 83 > Dle,

Sq4 = 1117

9.2)

(9.3)
(9.4)
(9.5)
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The embedding B, < Aj is a folding by the order 2 diagram automorphism, and has
the generalization to B, — Ay,—1 (n > 2) ass; > titr,—; (1 <i <n)ands, — t,.

9.2 Tetrahedron-Type Equation for the Coxeter Group H3

For any element w of a Coxeter group, one can consider a reduced expression (rex)
graph. The vertices are reduced expressions of w and the two are connected by an
edge if and only if they are transformed by a single application of the Coxeter relation
(sis;)™i =1( # j). According to [126, Theorem 2.17], any non-trivial loop in a
rex graph is generated from the loops in the rex graph of the longest element in the
parabolic subgroups of rank 3. See also [44, Sect. 1.4.3]. In this sense, rank 3 cases
are essential. In fact, we have seen that the A3 and Bj cases led to the tetrahedron
and the 3D reflection equations in earlier chapters, respectively. The remaining case
is H3, which we shall consider in what follows.

The Coxeter group Hj is known as the symmetry of the icosahedron or equivalently

the dual dodecahedron [59]. The relations of the generators sy, §3, s3 read as §? =

2 _ 2
sy =53 = 1and

$183 = §351, 5283852 = $35283, S[52515251 = $251525(52. 9.6)

Unlike the case of crystallographic Coxeter groups, the approach by a quantized
coordinate ring is not available. However, one can formulate a compatibility equation
formally by an argument similar to those for the crystallographic cases. We attach
operators to the transformations in (9.6), denoted by only indices, as follows:

P=P"':13—> 31, 31 > 13, 9.7
o :232 — 323, cDijk = RijkPik, (98)
Q:21212 — 12121, Qijklm = YijklmPiijla (99)

where, as before, the lower indices i, j, k, . . . of the operators specify the components
that they act on non-trivially. The operators €2 and Y are the characteristic ones which
are expected to come from H,.

A reduced expression of the longest element of Hj is

518528518285153525152515352515253, (910)

which has the length 15. Now the process analogous to (3.93), (5.106) and (7.16)
reads as

2 We have actually encountered a fine difference between B3 and C3 versions originating in the
relevant quantized coordinate rings.
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121213212132123  Psg
121231212132123 ¢} 4410
121232121232123  ®u56Pi0.11.12
121323121323123 P34 Ps 7P 10P12,13
123121323121323  754®7 1y 5
123121232121232  Qo.10.11.12.13
123121231212132  PsoPi314
123121213212312 Q54
123212123212312  ®55.4Pg.0.10
132312132312312 Py 5P73 P11 9.11)
132132312132312 Pi®3 @7/, 13
312123212123212 Q730101
312123121213212  Pg7Piin
312121321231212 Q53456
321212321231212 g1
321213231231212  Ps¢Pgo
321231213231212 @5,
321231212321212 Q112131415
321231212312121.

It reverses the initial reduced word. There is another route achieving the reverse
ordering which is related to (9.11), similarly to (7.17) and (7.18). Equating the two
ways, substituting (9.7), (9.9) and assuming that P; ; just exchanges the indices as
Py7Y1349 = Y13.7.9Ps7 etc., we get the Hz analogue of the tetrahedron equation:

—1 —1 —1 —1
Yi112,13.14,15R 15 10,9 R5.7.15Y 156 4.3 2 Y2.5.8.10,14 R 14 7 3R 139 5 R16,14

—1 —1 —1 —1
X R3813Y13107.4.1Y1,35912R 155 4R11 2.1 R6,10,12R4511Y 11 9576

1 pel ~1 -1 9.12)
=Y678911R [ 54R 106R1.211R4812Y 5053 1Y1.471013R 353
-1 -1 —1 —1
X R14,6,1R2,9$13R3,7,14Y14,10,8.5,2Y2»3,4,6,15R15,7,5R9,10,15Y15,14,13,12,11-
There are 6 Y*!*s and 10 R*"’s on each side. If ¥, = Yijeim = Youuiji and R =
R;jx = Ryj; are valid, the above equation reduces to
Y11,12,13,14,15R9,10,15R5,7,15Y2,3,4,6,15Y2,5,8,10,14 R3,7,14R2,9, 13 R1 6,14
X R3813Y1,4,7,10,13Y1,3,5,9,12R4,8,12R1,2,11 R6,10,12R4,5,11 Y6,7,8,9,11 (9.13)

= product in reverse order.
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A diagrammatic representation of the reduced version (9.13) of the H3 compatibility
equation is available in [44, Eq. (4.9)].

9.3 Discussion on the Quintic Coxeter Relation

The operator Y has been introduced formally in (9.9) in association with the quintic
Coxeter relation. It is natural to seek it in the parabolic subgroup H, C Hj. In this
section, we study a composition of the birational 3D R (Sect. 3.6.2) corresponding to
the transformation of 5155515251 into 5551525152 in H, under the embedding H, < Ajy.

The embedding is the m = 5 case of (9.2), which reads as s; > t13, 52 > fly.
One way to realize s15,515251 = 251525152 in the image is the following transforma-
tion of the reduced expression of the longest element of Ay:

1324132413 P12Pys5Ps o
3121432143 P34
3212432143 Pys
3214232143 @567
3214323143 Prg
3214321343 Dg9,10
3214321434 Ps,7 P78
3214342134 D56
3213432134 P34
3231432134 D53
2321432134 Pgo (9.14)
2321432314 D75
2321423214 Ps 6
2321243214 @45
2312143214 Ps7Pss
2312431214 Py5sP739
2314232124 Ds5.6,7
2314323124 PrgPs 3
2134321324 D45
2143421324 Py 3 P56

2413241324.
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As before, we have assigned an operator to each step, where P;; is the transposition
and @;j; = R;ji Pix with R;j; = le\jk being the A-deformed biraitonal 3D R (3.159).2
The composition of the operators in (9.14) is rearranged as ¥ o, where o is a product
of P;;’s giving the reverse ordering permutation in &9, and Y has the form

Y = Ry46R258R279R389R357R1,69R1,47R1310R4,510R6.38,10- (9.15)
This is a totally positive involutive rational map of 10 variables (x, ..., x19). Set
(x],...,x19) = Y((x1, ..., x10)). Then examples of simplest components are
x/ _ X2X4X5X7
2 X2X4X5 + XpX4X9 + X2XgX9 + XeXgX9 + AXoX4X9(X5X7 + X5X8 + X6Xg) ’
(9.16)
xio = ‘xé|X1‘_>X9yx2<—>X]0,X3<—>X7.X4<—>)C3' 9.17)
One can directly check:
Proposition 9.1 The map Y preserves the following:
X2X4X5X7, X3X5X8X10, X1X3X4X5X6Xg, X4X5XeX7X8X9, (9.18)
{Cer, ..., x10) | X7 = X3, X3 = X4, X9 = X1, X109 = X2}. 9.19)

One can get totally positive involutive maps of 5 variables by restricting the 6-
dimensional space (9.19) by a conserved quantity. For instance, imposing
a = xpXx4xsx7 in the space (9.19) leads to the map (xi,x, X3, X4, Xg) >

4 4 " 14 1
(x\, x5, x5, x, x¢) defined by

a
" " " " " " " " "
(X715 X3, X35 X4y s Xe» X35 Xy, X5 X3)

2X3Xy
4 (9.20)

= Y((.XI, X2, X3, X4, ———, X6, X3, X4, X1, -x2))
X2X3X4

depending on the parameter a. However, there is no canonical way of doing such a
reduction, and construction of a solution to the H3 compatibility equation (9.12) or
(9.13) remains as a challenge.

These features, especially the discrepancy of (9.19) from the desired dimension 5,
stem from the fact that H, viewed as a subgroup A4 is not an invariant of the diagram
automorphism. In contrast, for the embedding B, < Aj respecting the diagram
automorphism, the composition of the birational 3D R’s corresponding to the length
6 longest element of A3 admits a natural restriction to the 4-dimensional subspace

3 @~ ! = & has been taken into account due to P~! = P, R~! = R, Rijk = Ryji.
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matching the 3D K [152] and reproduces [110, Remark 5.1]. Another example of
such an embedding is G, < Dy, which allows one to construct a A-deformation of
the birational 3D F (8.74).*

4 Private communication with the author of [152].



Chapter 10 ®)
Connection to PBW Bases of Nilpotent oo
Subalgebra of U,

Abstract For a finite-dimensional simple Lie algebra g, let U, ;f (g) be the positive
part of the quantized universal enveloping algebra U, (g) with respect to the triangu-
lar decomposition. It has the Poincaré—Birkhoff-Witt (PBW) base labeled with the
longest element of the Weyl group W of g. Let A,(g) be the quantized coordinate
ring of g. In this chapter, the intertwiner of the irreducible A, (g) modules labeled
with two different reduced expressions of W is identified with the transition matrix of
the corresponding PBW bases of U ;f (g). It leads to an alternative proof of the tetra-
hedron and 3D reflection equations within U, (;r (g). The boundary vectors in Sects.
3.6.1, 5.8.1 and 8.6.1 give rise to invariants of an anti-algebra involution in U, ; (9)
in an infinite product form.

10.1 Quantized Universal Enveloping Algebra U, (g)

10.1.1 Definition

In this chapter g stands for a finite-dimensional simple Lie algebra. Its simple roots,
simple coroots, fundamental weights are denoted by {«;}icr,{h;}icr, {Di}icr, Where
I is the index set of the Dynkin diagram of g. The weight lattice is P = ®;¢;Zw;
and the Cartan matrix (a;;); jes i given by a;; = (h;, oj) = 2(oy, ;) /(e @;).

The quantized universal enveloping algebra U, (g) is an associative algebra over
Q(q) generated by {e;, f;, kijEl | i € I} satisfying the relations:

kikj = kjki, kik7' =k 'k =1,

-1
—(hi,aj) ki_k,‘
" fis [€i,fj]=5ijm,

kiek ' =q"" e, kifik ' =

1—a;j 1—a;;

Z( Deejel M7 = Z( DO FETTT =0 G # ). (10.)
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Here we use the following notations: ¢; = ¢“*/2_ [m]; = (¢" —q;™)/(qi —q; ")s
(n)! = 10—, Imli, e = e Jn),), £ = f7/[n];!. We normalize the simple roots
so that ¢; = g when «; is a short root. The relation (10.1) is called g-Serre relation.
The algebra U, (g) is a Hopf algebra. For the comultiplication (or coproduct), we

adopt the following':

Ak) =k ®ki, Ae)=e;@1+k®e, Af)=/f k' +18 f.
(10.2)

10.1.2 PBW Basis

Let W be the Weyl group of g. It is generated by simple reflections {s; | i € I}
obeying the relations: 552 =1, (s;s))™ =1 (i # j), where m;; =2,3,4,6 for
(hi,aj)(hj, a;) =0,1,2,3, respectively. Let wy be the longest element of W and
fix a reduced expression wy = s;,5;, - - - §;,. Then every positive root occurs exactly
once in

Bi =i, Bo=si (@), ..., B =sisi, i, (@) (10.3)
Correspondingly, define elements eg, € U,(g) (r =1, ...,[) by
e, =T, Ti,--- T, (e;,). (10.4)

Here T; is the action of the braid group on U, (g). It is an algebra automorphism and
is given on the generators {e;} by

—ajj

Tie) = —kifi. Tiep) =Y (—1Vqlee;e ™™ (i #j). (105
r=0

Let U; (g) be a subalgebra of U, (g) generated by {e; | i € I}. The only relation
among them is the g-Serre relation (10.1) for ¢;’s. It is known that eg, € U;'(g) holds

foranyr. U ; (g) has the PBW basis. It depends on the reduced expression s;, s;, - - - 8,

of wy. Seti = (i, ip, ..., ;) and define for A = (a;, a», ..., q;) € (Zzo)l
E = Vel . el (10.6)

Then {E{* | A € (Z=)'} forms a basis of U, (g). We warn that the notations e;, with
i € I and eg, with a positive root B, should be distinguished properly from the

context. In particular egj’) = (eg)"/T1or_, ’;'"ti::" with p, = g#-#)/2,

! This convention will be kept throughout the book.
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10.2 Quantized Coordinate Ring A, (g)

10.2.1 Definition

Let us give the definition of the quantized coordinate ring A, (g).” The relation to the
concrete realization by generators and relations in earlier chapters will be explained
later.

Let Oin(g) be the category of integrable left U,(g) modules M such that, for
any v € M, there exists / > O satisfying ¢;, - - - ¢;,v = O for any iy, ..., i; € I. Then
Oin(g) is semisimple and any simple object is isomorphic to the irreducible module
V (1) with dominant integral highest weight A. Similarly, we can consider the category
Oin (g°P) of integrable right U, (g) modules M" such that, forany u € M", there exists
[ > 0 satisfying uf;, --- f;, = 0 for any iy, ..., i; € I. The superscript op signifies
“opposite”. Oiy (g°P) is also semisimple and any simple object is isomorphic to the
irreducible module V" (A) with dominant integral highest weight L. Let v, (resp. ;)
be a highest weight vector of V(1) (resp. V" (1)). Then there exists a unique bilinear
form (, )

Vi) @ V(a) — Q(q)

satisfying

(u,\, U)\) =1 and
(ug,v) = (u, gv) forue V'), ve V(h), g € Uy(g).

Let U, (g)* be Homg,) (U, (g), Q(q)) and (, ) be the canonical pairing between
Uy(9)* and U,(g). The comultiplication A of U,(g) induces a multiplication of

U, (g)* by
(p¢', 8) = (@@ ¢, A(g)) forg e U,(g), (10.7)

thereby giving U, (g)* the structure of Q(g)-algebra. It also has a U, (g) bimodule
structure by
(x@y. g) = (p.ygx) forx,y, g e Uyg). (10.8)

We define the subalgebra A, (g) of U, (g)* by
Aq(®) = {p € Ug()"; Uqg(9)9 belongs to Oin(g) and ¢Uy (g) belongs to Oin ()},

and call it the quantized coordinate ring.
The following theorem is the g-analogue of the Peter—Weyl theorem.

2 The definition and Theorem 10.1 are valid for any symmetrizable Kac—Moody algebra.
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Theorem 10.1 As a U,(g) bimodule, A,(g) is isomorphic to D, V' (M) V()
where A runs over all dominant integral weights, by the homomorphisms

U Vi) @ V(L) — Ay(g)

given by
(U (u®v), g) = (u, gv)

forue V'(A),ve V(A),and g € Uq(g).3

In our case of a finite-dimensional simple Lie algebra g, A,(g) turns out to be a
Hopf algebra. See for example [66, Chap. 9]. Its comultiplication is also denoted by
A.

Let R be the universal R matrix for U, (g). For its explicit formula see [29, p. 273]
for example. For our purpose it is enough to know that

Req™ " P WU ® U)-p, (10.9)
peQ*

where ¢™"") is an operator acting on the tenor product v; ® v, of weight vectors
Vs, v, of weight A, by g™ ¥ (v, @ v,) = ¢*M v, @ vy, O = P, Zsow;, and

) ;E)iﬁ is the subspace of U ;E (g) spanned by root vectors corresponding to £8.
Fix A, let {u;} and {v}'} be bases of V" (1) and V (1) such that (u}, v}) = §;;. Set

ol =W @ v}) € Ay(g). (10.10)

Let R be the so-called constant R matrix for V(1) ® V(). Denoting the homo-
morphism U, (g) — End(V (X)) by p,, itis given as

R o< (pr ® pp) (PR), (10.11)
where P stands for the exchange of the first and second components. The scalar
multiple is determined appropriately depending on g. The reason we apply P is to
fit the so-called RT T relation in (10.15). The dependence of R on X and p has been

suppressed in the notation. R satisfies

RA(g) = A(g)R  forany g € U,(g), (10.12)
where A°® = P o A o P. Define matrix elements R,?I by

R; @ v}) =Y Rgv} @ v, (10.13)

iJ

3 Of course this W;_ has nothing to do with the intertwiners in (5.33), (6.22) and (7.5).
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Define the right action of R on V" (1) ® V" (1) in such a way that ((u} ® u)R, v} ®
v = e u'f, R(v} ® v/")) holds. Then we have

W @uHR =Y Rju} ®ul". (10.14)

Now for any x € U,(g), we have

Z Rmp (pmk(ppl’ Z R (pmk ® (ppl’ A(x»

m,p m,p

=Y R (W (u}, ® v}) @ W, (uk @ v]"), Ax))
m,p

= Z R (u), @ uk, A (v ® v])) = ((u} @ )R, A(x)(v ® v]"))

= (ui ® uj, RA(X) (v @ vi') = (ul ® u’;, A®P(X)R(v} @ v)"))
=Y W @u, AP @ VIR =D W @ ul, AX)(Wh @ v)) R

m,p m,p
=D (), ® 0l AR =} (4], 01, VIR
m,p m,p
Thus we get
Z R oo =D oh ol R € Ay(g). (10.15)
m,p

We call such a relation an RT T relation. It forms a large family containing conven-
tional ones as the special case where A = = @, for some specific fundamental
weight @, .

Example 10.2 Consider the simplest case g = A; with A = u = @w;. We write

u”', v”" simply as u;, v; (i = 1, 2). The U, (sl,) module structure is

i Vi

fivi=v, fiv, =0, ejv; =0, ejvy = vy, kjv; = qui, kv, =g ‘v,
(10.16)

urfi =0, usfi = uy, urey = us, uze; =0, uky = quy, urky = q 'us.
(10.17)

The R matrix (3.3) acts as
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Rwi®uv)=qu®v;, RUI®u)=v®v+(@—g Hva®v;, (10.18)

R, ®v) =100, R Q) =quvQ v, (10.19)

i ®u)R=qui ®u;, WuNR=u@ui+(q—q Hui @us,
(10.20)

(U1 @ u2)R = u1 Q@ uy, (U @ ur)R = quy Q uy. (10.21)

Sett;; =W, (u; ® vj) € A;(Ar). Then we have

(tita, x) = (W, (U1 @ v1) @ Wy, (2 @ 12), A(X)) = (U1 @ uz, A(x)(v) ® v2))
= (1 @u2)R, A(x)(v1 ® v2)) = (U1 ® uz, AP(x)R(v1 ® v2))
= () @ uz, AP(X) (V1 ® 2+ (¢ — g~ Hv2 @ vy))
=W Qui, AW @ v+ (¢ —q v @ 1))
= (Vo2 @ 12) @ W, (U1 ® v1)
(G = ¢ )W, (2 ® v1) ® Wy, (1) ® 1), Ax))
= (@t + (g —q i @ 112, A(x))
= (ot + (g — g Diatia, x),

which reproduces the relation [, ©2] = (¢ — g Dtyt12in (3.9). Similarly, we have

(i1t — qtintar, x) = (t11 @ trn — qt12 @ ta1, A(x))
= (u1 @ uaz, A(x) (v ® v12)) — q(u1 Q uz, A(x)(v2 ® vy))
= (u1 Q@ uz, A(x)(v1 @ V2 — g2 @ v1)).

Suppose x = ek fI' € Uy(slh) (I, m, n € Zo) without loss of generality. Since
v? =1 @ vy — qvy @ vyisa U, (sly)-singlet annihilated either by A(ey) and A(f),
one has A(x)v? = 5108,,011‘1). Thus the RHS of the above calculation is equal to
8106011 ® us, v(l)) = 8106n0 = (1, x). This yields t11t0 — gti12t1 = 11in (3.9).

Let us mention the relation to the formulation of A, (g) in earlier chapters using
specific generators and relations. Suppose @ is a fundamental weight such that any
V()) is included in the tensor power V (z;)®" for some m.* Denoting the base of
V(@) and V (w;) by u; and v;, set

tij = W, (u; @ vj) € Ag(9). (10.22)

4 For example, in type B, it is the spin representation that qualifies this postulate rather than the
vector representation. For type D, the argument in the text needs a slight modification since the
two kinds of spin representations V (z,—1) and V (@) are necessary, but it does not influence the
results in the chapter.
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We know that f;; satisfies the RTT relation (10.15) whose structure con-
stant is the constant R matrix for A = pu = @w;. Any vectors u € V(1) and
..... Ui & -+ ® ujy, and
v=73 Dj vy ®: - ®uvj,. Theorem 10.1 shows that an arbitrary element of
A, (g) is constructed as W, (# ® v). A calculation similar to Example 10.2 leads
to V,(u®v)=> C; Dj .. i.tij -t ;.. which says that #;;’s are certainly
generators. They satisfy RT'T and additional relations reflecting a fine structure
of the Grothendieck ring of g like V (zw;)®" D V(0) and V (=))®" D V (w), etc.
Our individual treatment in the earlier chapters corresponds to the choice / = 1 for
A,_1,C,, Gyand ! = n for B,

..... im

10.2.2 Right Quotient Ring A4(9)s

Here we prepare the necessary ingredients for the proof of Theorem 10.6. The point
is to assure the well definedness of the division in (10.39).

Recall that wy € W is the longest element of the Weyl group. For any [ € I, let
Uyem, € V(1) be a lowest weight vector. Similarly, let u,, € V" (z;) be a highest
weight vector. The following element will play a key role:

01 = Vo, (U, ® Vi) € Ay(9). (10.23)

Example 10.3 For g = A, treated in Example 10.2, one has o1 = ¥, (1 ® v2) =
tp.

Proposition 10.4 The commutativity o,04 = 050, holds forany r,s € I.

Proof From (10.9) and (10.11) we have

(e, @ Up )R = ¢ty @ U1y, (10.24)

RWuym, ® Vuyw,) = 47 Vi, ® Vi, (10.25)

where (wy@,, wow,) = (@,, @y) has been used. Consider the RT T relation (10.15)
with A = @,, u = @y, and take the indices i, j, k, [ so as to specify the following
bases:

A mo_ A no_
Up =Ug,, U; =Up, Vi =Vum, U = Vum,- (10.26)

Then (10.24) and (10.25) indicate R}, = g™ ™8 80 and R = q ™8]
Thus the RT T relation (10.15) reduces to

PO =0 e (10.27)

5 As for Fy we did not present specific generators and relations.
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The proof is finished by noting ¢;;" = o, and gpﬁs = o, by comparing (10.10) and
(10.23). ]

Since A, (g) is aright U, (g) module, we have an element o;¢; € A, (g). Later in
Sect. 10.3.2, we will need the division (o;¢;)/0o; fori € I.The following localization
is known to be possible making sense of it.

Theorem 10.5 Let n be the rank of g. For the multiplicatively closed subset S =

m

{oy "' o) | my,...,m, € Zso} C Ay(g), the right quotient ring A,(g)s exists.

Elements of A,(g)s are expressed in the form /s with r € A,(g) and s € S. The-
orem 10.5 guarantees the well-defined ring structure, namely, the addition and the
multiplication of r; /s; and r»/s, in A4(g)s as

ri/si+ra/sy = (ru+ru)/(siw),  (ri/s)(r2/s2) = (riv')/(s2v),  (10.28)
where u, u’, v, v" are so chosen that sju = s,u’ (u € S, u’ € A,(g)), v =51V (v €

S, v € A,(9)).

10.3 Main Theorem

In this section we fix two reduced words i = (i1, ..., %), j= (ji, ..., ji) of the
longest element wy = s;, ---5;, =5, ---5; € W.

10.3.1 Definitions of yl_{? and <I>g

In the U, (g) side, we defined the PBW bases E{*, E® of U (g) in Sect. 10.1.2. We
define their transition coefficient y; by

EiA = ZV?EJB-
B

Inthe A, (g) side, we have the intertwiner @ : ¥, ® --- Q@ Fy, — Fy, ® - Q@ Fy,
satisfying
mi(g)o® =Dom(g) (Vg€ Ay g)). (10.29)

We take the parameters p; as in (3.21) and (5.19) to be 1. The intertwiner & is nor-

malized by ®(]0) ® --- ® [0)) = ]0) ® - - - ® |0). Under these conditions a matrix
element ®% of @ is uniquely specified by

®|B) =) ®}3lA),
A
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where A = (a1,...,a) € (Z=0)" and |A) =la)) ® - ®la) € Fy, @ -+ @ F,
and similarly for |B) € ¥y, ® --- ® ¥, . The main result of this chapter is
Theorem 10.6

Vs = 3.

For any pair (i, j), from i one can reach j by applying Coxeter relations (for indices
of the simple reflections). In view of the uniqueness of y and ® and the fact that the
braid group action 7; is an algebra homomorphism, the proof of this theorem reduces
to establishing the same equality for the rank 2 case g = A,, C, and G,.° This will
be done in the sequel.

10.3.2 Proof of Theorem 10.6 for Rank 2 Cases

In the rank 2 cases, there are two reduced expressions s;, - - - s;, for the longest element
of the Weyl group. Denote the associated sequences i = (i1, ..., ;) by 1,2 and set
1’ = 2,2’ = 1. Concretely, we take them as

Ay 1=(1,2,1), 2=(2,1,2), (a1, 92) = (4, 9),
(10.30)

Cr:1=(1,2,1,2), 2=(2,1,2,1), (q1,q2) = (¢, 9%,
(10.31)

Gy:1=(1,2,1,2,1,2), 2=12,1,2,1,2,1),  (q1.92) = (q.9"),
(10.32)

where ¢g; defined after (10.1) is also recalled. In order to simplify the formulas in
Sect. 10.4, we use the PBW bases and the Fock states in yet another normalization
as follows:

E} = (lan]y)! - [l DE! = €f) el (10.33)
|A) i=diy gy - - dip Ay dia =g TR, =1 —g)7, (1034)

where A = (ay, ..., a;). See after (10.1) for the symbol [a];!. The root vector eg_is
defined in (10.4). Accordingly, we introduce the matrix elements 7 and &Dg by

Ef =) "FiES. ®B) =) dhlA), (i=12) (10.35)
B A

It follows that y2 = 7 [Ti_, ([bx)i,!/[ax)i,) and @4 = A TTi_, (diy.a /diy.1,) for
B = (b1, ..., b).Onthe other hand, we know &4 = <D§ H2=1((Qi)bk/(‘1i)ak) from

6 The B, case reduces to C, by the interchange of indices 1 <> 2 € I.
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(3.63), (5.75) and (8.30). Due to the identity (qiz)mdi,m = [m];!, the assertion yg‘ =
@4 of Theorem 10.6 is equivalent to

7 = 0B, (10.36)

Let pj(x) = (pi(x)4p) be the matrix for the left multiplication of x € U q+ ():
x Bt =Y "EPpi(x)a. (10.37)
B

Let further 7;(g) = (7i(g) ap) be the representation matrix of g € A, (g):

mi()A) =Y |B)mi(g)pa- (10.38)
B

The following element in the right quotient ring A, (g)s (see Theorem 10.5) will
play a key role in our proof:

& = ri(oie))/o; (i =1,2). (10.39)

We recall that the general definition of o; is (10.23). Its concrete form in the rank 2
case will be given in Lemmas 10.10, 10.12 and 10.14. In Sect. 10.4 we will check
the following statement case by case. It says that the “conjugation” of ¢; by o; on
A, (g) modules (o;e;)/0; corresponds to (1 — qiz)ei in U; (9).

Proposition 10.7 For g of rank 2, wi(o;) is invertible and the following equality is
valid:

pile)ap =mi)ap (G =1,2), (10.40)
where the RHS means \;mi(o;e;)mi(0;) "

Proof of Theorem 10.6 for rank 2 case. We write both sides of (10.40) as M ﬁ, g and
the term for i’ instead of i as M} ;. From

D EiMigyy = ey Elvi =eEl =) ElMy, =) Efvi My,
B,C B B B,C

wehave Y, Mipyi = p vE ML ,. On the other hand, the actions of the two sides
of (10.29) with g = §&; and j = i’ are calculated as

Ty (E) 0 A = 1y (&) Y [B)DE = [CYM, b
B

B,C

and
Dom(E)A) =D Y |[BYMj, = Y [CHPGM},.
B B,C
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Hence Y, M, ®8 =5, ®GME,. Thus 77 and @5 satisfy the same relation.
Moreover, the maps m; and p; are both homomorphisms, i.e. mi(gh) = mi(g)mi(h)
and pi(xy) = pi(x)0i(y). We know that ® is the intertwiner of the irreducible A, (g)
modules and (10.36) obviously holds as 1 =1 at A= B = (0,...,0). Thus it is
valid for arbitrary A and B. (]

Remark 10.8 The equality (10.40) is valid for any g.

10.4 Proof of Proposition 10.7

Here we present the explicit formulas of (10.37) with x = ¢; and (10.38) with g =
o;, 0;e; that allow one to check Proposition 10.7. In each case, there are two i-
sequences, 1 and 2 = 1’ corresponding to the two reduced words. Define

x = the anti-algebra involution of UqJr (g) such that x (¢;) = e;. (10.41)
Then both E;* in (10.6) and E;* in (10.33) satisfy
X(EN=E},  x(EM=E", (10.42)

where AY = (ay, ..., a2, a;) denotes the reversal of A = (a1, as, ..., a;). Apply-
ing x to (10.37) with x = ¢; yields the right multiplication formula E{,‘v cep =
> Ei‘?v pi(e;)pa for the i’-sequence. In view of this fact, we shall present the left
and right multiplication formulas for i = 2 only.

As for (10.38) with g = &; in (10.39), explicit formulas for o;, o;¢; € A,(g) and
their image by both representations 71y and 7, will be given. We include an exposition
on how to use these data to check (10.40) along the simplest A, case. The C, and
G, cases are similar.

Following (10.34), we write |m})) := d; ,,|m) € ¥, for each component. From the
choice (10.30)—(10.32), the action of the g;-oscillator on F, (i = 1, 2) takes the form

atlm) =27 gl lm + 1), a~|m) = [mlilm — 1), kim) = g{"Im),

.\ 2 B (10.43)
AT m) =1, qy'lm+ 1), A7 |m) =[ml|m — 1), K|m) = gy'Im)).

See (10.34) and (3.13). We also use the shorthand

(m)y=¢q™ —q™". (10.44)
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10.4.1 Explicit Formulas for A;
Consider g = A,.

b by

b3

The g-Serre relations are

6%62 — [2]ie1e2e1 + 626‘% =0, e%el — [2]ie2e162 + eleg =0, (10.45)

where [m]; = (m)/(1). For simplicity we write the positive root vectors eg, in (10.4)
with (i1, i, i3) = 2 (10.30) as

b1 = ép, = €3, bz =ép, = €163 —(geyey, b3 =ép;, = €. (1046)

The corresponding positive roots are (81, 82, 83) = («2, &1 + a2, ). In particular,
by = T»(ey). Their commutation relations are

byby = q~'biby, bsby = by + qbibs, b3by = g 'bab;. (10.47)

Lemma 10.9 For Eg’b‘c = bi‘bé’bg, we have

b,c o) = Eg.b,c-‘rl

)

,b,c c—b a+1,b,c ~a,b+1,c—1
cer=q" ' E, + [ch E, ,

ra,b,c —b a,b,c+1 ~a—1,b+1,c
er- Ey7" =q“E, +[a] E; ,

a

2

Proof By induction, we have

b3b = q"bbs 4 [n]1b] by, b3k = g "bbs,
biby = q"bib} + [nlibaby~", biby = g "bib5.

The lemma is a direct consequence of these formulas. (]

Set E{PC = x(ESP) = x (0D x (00) x (bS) = b3bPbS, where bl := x(by) =
eye1 — geyep. By applying x to the first two relations in Lemma 10.9, we get

e - Eit,b,c — Eiﬂrl,b,c’ e - szll,b,c — qabeit,b,cH + [a]lE”vilfl.bJrl,c. (1048)



10.4 Proof of Proposition 10.7 159

Thus we find py (e;) = pj(es—;). This property is only valid for A, and not in C, and
G,.
Let u; (i = 1,2, 3) be the bases of the right U,(A>) module V" () such that
uj =uer---ej_ie;. Similarly, let v; (i =1, 2, 3) be the bases of the left U, (A>)

module V() such thatv; = f; fj_1--- fivi.

ky ko V' (w1) V(w1)
q 1 Ui V]
1 e fid
g q Uy v
e fal
1 q’1 us U3

The left two columns specify the weights for example as urk; = g~ 'u,, kjv; = quv;.

For the coproduct (10.2), the bases of V" (@) and V () are similarly given as

k1 ka V' (w2) V(w2)

1 q Uy @ uz — qus Q uy v ® v — qu2 @ vy
e 2

q g U Quz —quz u; VI ® V3 —qu3 @ Vg
e Nl

g 1 U @ uz — quz Q@ up vy ® VU3 —qu3 Q@ 1y

Here g = k;, ¢;, f; are to be understood as A(g) in (10.2).
Following (10.22) with [ = 1 we set

lij = Vo, (i @ ;) (10.49)

for 1 <i, j < 3. They satisfy the relations (3.5) and (3.2) of the earlier definition of
A, (A2). The formula (10.23) reads

o1 = Vg, (1) ® v3), (10.50)
1

= qzwm((ul ®Quy—qua ®u) ® (1 ®v3 —qus @), (10.51)

o2

where (1 + qz)’1 is the normalization factor.” Thus we see o = ;3. On the other
hand, from

7 The normalization of o; actually does not matter since only o;e; /o; will be used.
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1 ®ur —qua Qui, Ax)(v2 @ v3 — qu3 ® 12))

<027x>_ 1+q2
(1) ® 13 — 113 ® 1y — i @ 113 + G713 @ 12, A(X))
1 +¢q?
tiats — qtistn — qints + ¢ tst,
_ {tohs — qtistn — qintis + 4" st X) (Vx € Uy (Ar)),
1442

we find o, = (1 + C]Z)_l(l‘121‘23 — qtizty — qint;z + q21‘23t12).8 Using the relations
[ti2, 3] = (q — qil)tzgtlg, and [fy;, t;3] = 0 from (3.5), this is 51mphﬁed into o, =
tiatys — qtpti3, which is the (3, 1)-quantum minor of () 1<, j<3.

Let us turn to o;e;. First we note

(tijkr, x) = (ike, xv;) = @ 7%+ (g, xvj) = g% 7% (g, ), (10.52)
(tijer, x) = (uiey, xvj) = 8ir Uiy1, Xv;) = 8ip (tiy1,j, X). (10.53)

They imply
titky = @ 7 by = Sitign (10.54)

Using this and the coproduct A in (10.2), we see

(o1e1, x) = (tizer, x) = (t3, x),

(
(1 ® 13 — gt @ 113) Alez), A(x))
(
{

(o2e2, X)

tioky ® tzey — qtyper ® ti3, Ax))
= ({112 ® 133 — q132 ® 113, A(x)) = (t12l33 — qt32113, X).

In these calculations, one should distinctively recognize that #;3e; for instance is
an action of e; € U,;(A3) on t3 € A, (A;) viewed as an element of a right U, (A>)
module, whereas #1133 is just a multiplication within A, (A;). To summarize, we
have shown:

Lemma 10.10 For A,(A), the following relations are valid:
o1 =13, 02 =Iphs —qinhs, o1l =hs, 0 = otz —qtnhs. (10.55)
From (3.35) and Lemma 10.10, we find
mi(o1) =kiky, mi(oje)) =aky, mi(0n) =koks, m(o2er) = aj ajks +kjaf,

where a notation like kjaj =k ® 1 ® a™ has been used. Since k € End(¥F,) is
invertible, so is mj(o;) and we may write

8 The calculation is displayed to illustrate how this could be concluded directly from (10.51) and
the definition (10.23).
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mE) = malky!, m&) =@rak ' +kik; alky ),
where Ay = A, = (1 — qz)’l. Thus (10.43) leads to

ﬂ1($1)|a,b, C» = |a+1,b,c)), (1056)
mE)la, b, c) =[alila—1,b+1,¢) +q°la, b, c+1). (10.57)

These formulas agree with (10.48) proving (10.40) fori = 1. The other casei = 2 also
holds due to the symmetry 7 (&;) = m1(&3—;). Thus Proposition 10.7 is established
for A,.

In terms of the 3DR in Chap. 3, Theorem 10.6 implies

E{" = 3" Rib EpO (10.58)

1 T
i,jk

This is valid either for (i,i’) = (1, 2) or (2, 1) thanks to (3.62). The weight conser-
vation (3.48) assures the equality of weights of the two sides.

10.4.2 Explicit Formulas for C;

Consider g = C».
by by b3

by

The g-Serre relations are

e?ez — [3]lefeze1 + [3]161626f - 626? =0, (10.59)
el — [2hererer + ere; =0, |

where [m]; = (m)/(1) and [m], = (2m)/(2). For simplicity we write the positive
root vectors eg, in (10.4) with (i1, ..., i) = 2 (10.31) as

2
by =ep =ey, by=ep =ejer—q-ere,

1 (10.60)
b3=6‘/33 Zﬁ(ele_bZKI)’ b4=€ﬂ4 =e].

Their commutation relations are



162

byby = q7*by by,

bsby = by + q2b1b4,
byby = [211b3 + babs, bsbs = g 2b3by.

Lemma 10.11 For E{"“¢ = bib5bsbe, we have

ra,b,c.d
E2 el =

Ea,b,c,d .

2 € =

r~a.b,c,d+1
EZ

’

[d]lqd—ZC—IEg,bJrl,c,d—l +q2(d—b)£~;z+l,b,c,d

10  Connection to PBW Bases of Nilpotent Subalgebra of U,

bsby = —q~(1)[2];'b3 + by b3, (10.61)

b3by = q~*bybs,

(10.62)
(10.63)

_ (1)q2d—2c+1 [0]2[2]171531,b+2,6—1,d + [d _ l]l[d]lég,h,(ﬂ-l,d—z’

Proof By induction, we have

by} = bibsg™ + [n]2b}~", by,

bub"
byb.
blb,

bib,

The lemma is a direct consequence of these formulas.

= [21i[n]1b5 " b3g ™" + biby,

= q*2”b§'b4,

= [n]ibab} ' "+ bybig™" + [n — 114 [n]ibsb} 2,
biby = —q' () [nh[2]] 6305 + byibh,

biby = g~ "byb},

=q *"bib}.

,b,c,d — [2]1[b]quaberlEvg,b—l,c-H,d + q2a72cE-z21,b,c,d+l + [a]zE"vg—l.b+l,c,d’

_ pa+lb.cd
= E¢ .

O

Set E f’h’c’d =y (Eg ¢:0:4) The left multiplication formula for this basis is deduced
from the above lemma by applying x.
Let u; and v; i =1,2,3,4) be bases of V" (w;) and V(w) such that u; =

uey---ej_1ejand v; = f; fi_1--- fivi, where e3 = ey, f3 = fi just temporarily.
ky ko V(1) V(@)
q 1 U U1
| e fil
g q uz V2
e 2l
q q! us v3
le fid
g 1 g V4
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The left two columns specify the weights as in the A, case. For the coproduct (10.2),
the bases of V() and V' (@) are similarly given as

ki ko V(@) V(@)

1 q U @ uy — qua ® uj V1 QU2 — qU2 ® v
le 2y

q2 q’l U @ us — qusz Q@ u V1 @ U3 —qu3 Qg
1 e Sid

| | Uy @ Uz +quy Uy vy ® U3+ qU Q@ vy

—qus @ uy — q°u3z @ us —qus ® V1 — %3 ® vy

e Sid

g7’ q Uy Q@ uqg — qus Q Uy V2 @ Vs —qus @ vy
le 2l

1 g U3 @ us — qus ® u3 V3 ® Vs — qUs @ V3

Arrows here indicate the images only up to overall normalization.

We adopt the definition of #;; in (10.22) with [ =1 for 1 < i, j < 4. Then #;;’s
satisfy the relations (5.1), (5.2) of the earlier definition of A,(C,). The formula
(10.23) reads as

01 = \ijl (ul ® U4)3 (10.64)

1
=173 = W, (1 @ uz — quz @ u1) @ (V3 @ v4 — qua ® v3)).  (10.65)

By a calculation similar to A, (A») using the commutation relations
(124, 113] = (¢ — g Distia, [t 23] =0, (10.66)

we get:

Lemma 10.12 For A,(C»), the following relations are valid:
01 =hy4, 02 =1li3ty —qhatis, O1€] =ltu, 02e) =13t —qtz3tis. (10.67)

Images of the generators #;; by the representations 7y and 775 in (10.31) are avail-
ablein Sect. 5.4 asmy (t;;) = P1aPr3m2121(A(ti;)) Pia Py3 and 2 (1)) = w2121 (A (%)),
where the conjugation by Pj4 P»3 reverses the order of the four-fold tensor product.
See (5.39) and (5.40). From (5.37), the relations (5.41)—(5.56) are displaying the con-
crete form of m(1;;) K = K (P14 P23y (t;j) P14 P23). For convenience, we pick those
generators appearing in Lemma 10.12:
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m(13) = a] k3K, + kjAS af Ky + ki Kpag A,
71(f14) = —k1Kzks,

m(t23) = af A; af Ky + a Kpay AL — gk k3Ky,
m1(f24) = —a?Lsz3,

m1(33) = a; AT ay A} — ¢%a; Koad Ky — gkiksA],
m1(t34) = —a] AT k3 —kjaf,

m(113) = koKsa,,

m2(t14) = —kaK3ky,

ma(t23) = AT aj Kzay +Kjay ATa; — gKikoky,
ma(t2s) = —A] ay Ksks — Kja; AT ks — Kikoay
ma(133) = A a; ATa), — gATkoky — ¢°Kjaf Ksay
ma(t34) = —ATa;A}'k;; - Afrkgaj + q2K1a3K3k4.

From this and Lemma 10.12 we get

m1(o1) = —kiKsks,
mi(o1e1) = —a; Koks,
m1(02) = —Koky?Ky,

(10.68)
(10.69)
(10.70)
(10.71)
(10.72)
(10.73)
(10.74)
(10.75)
(10.76)
(10.77)
(10.78)
(10.79)

_2 _ _ 2
m1(02e2) = —a; "ATks’Ky — [2]1a7 kjaf ks Ky — ki?As al Ky — ATk ’Ky,

A& =afk

— _2 _ _ _ 2y — _ _ _
A 'mE) =a ATK T + K PASK 'al KT+ [2]ha ki Ky tadks !

+ki’ks PATK,
m(01) = —koKsky,
m(o1ey) = —1(11(234+ — Klaz’A;k4 - Afa;K3k4,
(o) = —K|K3Ks,
ma(02e2) = —AT k2K,
-1  A—atp—l =1 A+10-1 1 4y
AL mE) =ATa k, +Kia ki ATKS + KK agk)
M (&) = ATK,

Note that ;(0;) is invertible. Comparing these formulas with Lemma 10.11 by using
(10.43), the equality (10.40) is directly checked. Thus Proposition 10.7 is established

for Cs.
In terms of the 3D K in Chap. 5, Theorem 10.6 implies

a,b,c,d __ abed k. ji
E, = § : Ko Ev7 .
i,j.k,l

(10.80)

The weight conservation (5.65) assures the equality of weights of the two sides.
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10.4.3 Explicit Formulas for G,

Consider g = G».

by by by bs

be

The g-Serre relations are

eler — [4liejerer + [411[311/12]; 'eteret — [4]1e1eze] + eref = 0,

2

2 (10.81)
eye; — [2]rexe1ep +e1e5 =0,

where [m]; = (m)/(1) and [m], = (3m)/(3). For simplicity we write the positive
root vectors eg, in (10.4) with (i1, ..., ig) =2 (10.32) as

3
by =ep = e, by =ep =erer—q ere,

1 1 |
b4 == ﬁ(ele N qbzel)’ bS =eép, = ﬁ(elbél —q b4el)v (1082)
1
by = ep, = ——(bsby — q " 'byby), b = ep, = ey.
(31
Their commutation relations are
byby = bibag ™, biby = (1’3 Bl +bibsg™,  (10.83)
bibi = biba —b3(1)g ™", (10.84)
bsbi = bibsq® — babs(1)g ™" — (¢* +q* — Dbsg ™, (10.85)
bgby = b]b6q3 + by, biby = b2b3q_3, (10.86)
baby =babsq ™' +b[31i, bsby = babs — bi(l)g ", (10.87)
beba = qbabs + bal2]1, babs = bsbsq ™, (10.88)
bsbs = (1)°b3q 1317 + babsq ™. (10.89)
bebs = b3bg — bi(])q_l’ bsby = b4b5q_3, (1090)

bebs = [311bs + babeq ™", bebs = bsbeq . (10.91)
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Lemma 10.13 For E57"7 = bibbbsbdbeb/, we have
b,cde, f ey = Ea,b,c,d,E,erl

—3c—d+3f—1 ra,b+1,c,d+1l,e—1,f
)[elog 43/ E;

+

)
1> [e _ 1]2[6]2[3]7141_3e+3f'+3Ea’b’c’d+3’e_2~f
3>[d _ 1]1[d] q—% 2d+3e+3)‘+1Ea b+l c+1,d—2e, f
)

Ddlig —6c— d+'5(e+f)Eub+2Ld Le, f

f _ 1]1[f]1q73e+f72E;1,b,c,d+1,e,f 2

—{
(
—
—(
[
BN f11g> 2 Eobetid-les =1
[f11ged+2 =2 fobtledes-1

+
+
+
+q—3(b+c e— f)Ea-H Jb.ede, f
+

*[cl[3]} Ly 2‘+f+f+l)Ea b+3.c—lde, f

)?
3)[d —21i[d — 1[d1ig>~ d+e+f+2)Ea b,c+2,d=3e, f
1)[£]2[f] 36+2fE§,b,c,d+2,e 1,f-1

]

ehg T (@ B) — 2 Ey T

+[f —2hlf — 1]l[f]1E-;l,b,c,d,e+l,f73.

5 ' - Fa,b,c—1,d+2
e - E;,b,c,d,e,f - _ <1>[C]2q3a+h 3C+2E;1, ,c—=1,d+2.e, f

(
—
—{
-1
[

+ 3116 — ]]1[b]1q3a—b+2E;,b—2,c+l,d,e,f
+ BL[d] gt gphedmlerty
3a+b—d—3e ~a.,b,c.de, f+1
+q a-+ eEtzl c,d,e
+ 2] [b]1q3(a*C)Ea,b71,c,d+l,e,f
[a]zEa 1b+lcdef

~ab.cde f _ patlbede,f
ey - E2 = E2 .

Proof By induction, we have

bsb} = q”"bibs + [nlbi ' by,

bebs = [311g> " [n — 1ilnlibs b3 + q"b3be + (21 [n]1 b3~ b,
bab = q~"bbs,

bebs = bibs — (1)g* " [n]obs ™ baba,

beb} = [311¢* " [n11b} " bs + q " b} b,

bebs = q " blbs,
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and

beby = q"*[n — 111 [n]1b4b > + ¢*"b1 b,
+ > Vnlibob " 4 [n — 20i[n — 11 [n]1bsby .

biby = (1)2q 7"V n = 1anhl317 ' 6362 + g™ bib}
—q7(q" +q” — DInhbsby ™" — g7 (1) nlabybsbl ™,

Dby = baby — (1)g* ¥ [nlabababy ™",

biby = q"bybt,

biby = —(3)g° " [n — 21i[n — 11[n)ib3b; > — (1)g "[n]1b3b} "
— (3)g" " [n — 111[n)1bobs3b > + by b,

biby = [311¢* " [nlibsb} " + q " byb},

biby = g "bsbl,

biby = q "bib + (1)2q° " [ [3]; '3k

biby = g " bybh,

biby = g b\ b5,

The lemma is a direct consequence of these formulas. ([

Letv; (i = 1,...,7) be the basis of V (zw;) for which the representation matrix is
given by (8.79)—(8.81). Its highest and lowest weight vectors are v; and v7, respec-
tively. Let u; € V' () be the dual base of v;.

The representation V (w») is the adjoint representation with dimension 14. Its
lowest weight vector is vfr) in (8.84), which is vg ® v; — qv7 ® vg in the notation
here. The highest weight vector of V" (@) is u; ® up — quy ® u;. From these facts

we have
o1 = Vg, (u1 ® v7), (10.92)

1
02 = m\ywz((lh ®uy —quz @uy) Q (V6 ® v7 — qu7 ® vﬁ))' (10.93)

We define #;; by the formula (10.22) with [ =1 for 1 < i, j < 7. They satisfy the
relations (8.3) and (8.4) of the earlier definition of A,(G,). By a calculation similar
to A, (Az) using the commutation relations

[ti6, 7] = (¢ — ¢ Mgz, [t17, 1] = O, (10.94)

we get’

9 &y and ope; in [102, Eq. (42)] are (—¢q) times those in Lemma 10.14.
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Lemma 10.14 For A,(G»), the following relations are valid:
o1 = t17, 02 = tigly; — qlatis, O1€1 = ty7, O2ey = tigts7 — qtaetr7.  (10.95)

Images of the generators #;; by the representations 7y and 773 in (10.31) are avail-
able from (8.11) and (8.12). For convenience, we present explicit formulas for those
appearing in Lemma 10.14:

m(tie) = a; ksKakZKg + k1A, af Kuk2Ks + k1 Koa3 2 A k2K
+ [211ki Koa; ksad ksKe + ki Kok3A; al ’Ko + ki Kok3Kasas Af,
mi(t7) = kiKok3Kyks,
m1(t27) = af TKok3Kyks,
m1(t36) = a; AT a;y *A KK + [2]131_2A+a3 kialksKq +a; 2 ATk3A; ai*Ks
+a’ATK3Ksa; Al — ¢’a; " Koa] KukZK + [2]1a; kiad ksKs
— [2hia; kia; ksAT k2K + [2]1a; kiag ksA; ad°Ke + [2]1a; kia] ksKaag A
—g[213ar kik3adksKe + kIAS af AL al Ko + kIAS af *Kaas AS
— ¢*[211k]A; aT ksal ksKe + ¢°k]A; kIATKkZIKe + kiKoa; Afas AS
— ¢’k{Kra; Kyad ?Ko — gk{KoksksA [,
m(t37) = a; *AS K3Kaks + [2]1a; kia] ksKaks + kiA; a] *Kuaks
+kiK>a; Afks + kiKoksad,
ma(tie) = k2K3k42;K536_,
m2(t17) = ko KskiKske,
m(t27) = AT a KskiKske + Kia; AT kI Ksks + [2]1K a5 koa) kiKsks
+ Klsz’aj{zK;;kﬁ + K k3Ksa; ATk + Kik3Ksksa,
m(t36) = A a; ATk Ksag + [2]1A] a; koa] kuKsag + AT K3A; af “Ksag
+At k2K3a4 Atag — gATKIKskiks — ¢°Kiaf Ksk}Ksag
m(t37) = A a2 ATk Ksks + [211A] a5 koa) keKsks + ATkIA7 a2 Kske
+ATkIKsa; ATke + ATkIKskial — ¢°Kja) KskiKsks.

From this and Lemma 10.14 we get
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m1(01) = ki K k3K ks,
(o) = KKK kK,
mi(orer) = af KokIKyks,
m(me) = KKIKGKAL + [21k1A; K AT Kk K + 2, AT KK kK
+ [311a; ’k1a KK kK, + [3]1a; kKIKo Kk K,al k2K
— qBLK A K KATK KK + [3]1 ki KZa; kZal ksKs
+ KK3kIA; al K + [311a; kA a7 k; Kk K
+ [3Lia; ki Kaas ks AT KikiKs + kA *al K kIK
+ [311ik}A; Koal ks Kyal k2K + kiK3a; " A kK
+ [311k;K2a; *k; A al k2K,
MlmE) =afky
M'mE) =alATK ! + 2LKASKATK ! — g3k A K TATK!
+ [3]1a; 2k K;'alk;' +[3]ia; k2 —2A+K—
+ [3]1a;k%k;‘K;1a5+k;1 + kazK;kaAgKgl
+ Bha KA K 'a?ks 2 + [3]1kiAS afk; °K; fal ks !
+ KA K 'l ks + 311k Kqas ks 'K, 2ad ks
+ K KA K %l ks ? + kiKoa; 'k "A K2
+ [311kiKoa; °k; *AT K 2al ks |,

m2(01) = ko KskiKske,
7T2(02) = K]k%K%kiKs,
7T2(01€1) = Klk K3k436+ +A733K3k2K5k6 + K k Kga;A k6
+ K132 2A+k2K5k6 + [2]1K132 kzajk4K5k6 + K]sz a4 K5k6,
m(omer) = A k3K?k3K5,
A &) = Al—a;k;‘ +[211Ka,K; 'a k '+ Kia;’k; 'ATKS
+ Kikoa, k; ATKS! + K| k2k K latk;! + K kAT K; a7k, 2,
A 'ma&) = ATK

Note that ; (0;) is invertible. Comparing these formulas with Lemma 10.13 by using
(10.43), the equality (10.40) is directly checked. Thus Proposition 10.7 is established
for G»,.

In terms of the intertwiner F' in Chap. 8, Theorem 10.6 implies

b,c,d bed, 1,k
a c, ef Z Fljk;milf En m, jl (1096)

i,j,k,l,m,n

The weight conservation (8.29) assures the equality of weights of the two sides.
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10.5 Tetrahedron and 3D Reflection Equations from PBW
Bases

The relation (10.58) serves as an auxiliary linear system by which the tetrahedron

equation (2.6) is established as the non-linear consistency condition. To see this,
consider a PBW basis (10.6) of U_"(A3) having the form EPY5ts | In addition to

E-{3 = E:§i, we may apply (10.58) as
...abc... __ abc r--kji... ..abc... __ abc go--kji...
Ep = E ijk £ 2120 L2120 = § ik £ (10.97)
reflecting the U, q+ (A7) subalgebra structure. Then we have
abcde f _ pabdcef _ abd dy.,by.a,c.e, f
Ebshni = ELisn = E Ribia E2123,1
_ § : abd ajce pdibyrerci,a f
- I?albldlI?u2clell;2,l,3,2,3J

_ § : abd ajce pdiser,by.cr, fia

- I?ulbldl1?uzclell;2,3,l,2.1,3

_ § : abd ajce pbicif pdien fi.c,br,a
- Rulbldl Ru201€1 szt‘zfl E2,3,2,1,2,3

_ abd ajce pbicif pdielfi o f.e2.dx,c2,b2,a2
- Z R R R Rdzezfz E3,2,3,1,2,3 :

arbidy tazxeier “thyer fi

. . a,b,c,d,e, f fa,e2,dr,¢2,b2,a2
There is another route going from E, 315’ t0 E35737175 3 as

E{55iat =D Ra  EN25355

= Z Rddletfl fi RZICZJ f Elll:3]?2’,c3|:f,12’gl “

=D Rl s Ro p BG83

= D Rith s R p R LS55

= DR Rl Restss RO LS55

_ def befi acie; parbidy 1 f2.e2,d2,¢2,by,a0
=Y R4 R R RO ELS T

ajcaen

Comparison of them leads to

bd bici f pdieifi def bef bid

YR RO Ry f Ry = YRGS Ryl RACLRGG (10.98)
for arbitrary a,b,c,d,e, f and ay, by, cy,d>, ez, fo. The sums are over
ay, by, c1,dy, e, fi € Zxo on both sides. They are finite sums due to the weight
conservation (3.48). The identity (10.98) reproduces the tetrahedron equation (2.9).
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A similar proof of the 3D reflection equation (4.3) is possible based on (10 80).

e, f,g.h,i

We now start from a PBW basis (10.6) of U+(C3) having the form E3 2!36’1 21321

...abcd... __ abcd Lkji. .
and apply (10.97) and E-§555" = > K7 E” 533" . The two routes are as follows:
a,b,cde, f.g.hi __ pabdc.eg, fhi _ Sfh a,b,d,c.e.g,i1,hi, fi
E3 2,3,1,2,1,3,2,1 — E3,2, 1,3,2,3,1,2,1 — Z Rf1h111E3 2,1,3,2,3,2,1,2
_ Z thl Cegil a,b,d,iz,g1,e1,c1,h1, f1
fihiiq clelgliz 3,2,1,2,3,2,3,1,2
_ fhi cegiy bdiy  a,i3,d1,bi,g1.e1,c1,h1, fi
Sihviy P erergiia bidyiz 73,1,2,1,3,2,3,1,2
fhi Legi] bdiy p-i3.a.dy,g1,by,e1,hy ¢y, fi
- Z Rflhlll creigiia Rbldlis E1,3,2.3,1,2,1,3,2
Z thz cegi1 bdis blelhlEis,tl.dl,gl,hz.ez,bz,fl,fl
- Sihiiy Clelg]iz bidyiz " tbareahy —1,3,2,3,2,1,2,3,2
thz cegi1 bdin b]elthﬂdlgth Ei3,h3,g2,d2,tll,ez,bz,fl,fl
- Sihiiy Clelgliz bidyiz brexhy “ardrgahy 71,2,3,2,3,1,2,3,2
fhi'  pecegin bdiy pbiethy gradigihy riz,h3.g2.d2.e2,a1,b2.¢1, fi
- Z Rflhltl creigiiz Rh1d1i3 haezhz Kaldzgzh3E1,2,3,2,1,3,2,3,2
Zthl Keesi bdiy Rblelthadlglhz Kalsz‘lfl i3,h3,82.d2,e2, f2,¢2,b3,a2
- Sihiin ereigiia bidyiz Tbhoexhy “rardagahs T azbzer f2 71,2,3,2,1,2,3,2,3
Z thl Keesi bdiy pbieihy gadigihy g-aibaer fi pdaer fo iz h3 g0, f3,€3,d3,02,b3,a2
- Sihiiy Clelgliz bidyiz “thaeahy Taydrgahy Traxbzer fo Ttdzes f371,2,3,1,2,1,3,2,3
and
Ea b,cd, ,f, g.h t Rdef E¢ Jboe, fierdig hii
2,3 3.2, Z diey fi 32,3,2,1‘24,3,2,1
Z Rd@f Kebeh fascr.by,arer,di g hi
- die fi UlblleZ 2,3,2,3,1,2,3,2,1
Z Rdef abcf] fa.c1,b1,e1,a1,dy,8,h,i
- diei fi alblclfz 2,3,2,1,3,2,3,2,1
Z Rdef abc_fl Kaldlgh Efz,cl,bl,el,hl,gl,dz,az,i
- diey fi alblvlfz aydrgihi ~2,3,2,1,2,3,2,3,1
Z Rdff dbCfl aidigh  pbieih EfzJ«'lsh2~€24h2481-d2-42-"
- diey fi alblvlfz aydrgihy “baexhy 72,3,1,2,1,3,2,3,1
— Z R/ gabch ardigh  pbiethy pf2,ha,c1,e2,81,02,d2,i a2
diey fi alblclfz axdygihy “baerhy 72,1,3,2,3,1,2,1,3
_ Z Rdff dbCfl ardigh  pbieih R Efz»h2,C]»92,81»i],d3,b3,“2
diei fi alblclfz aydagihy “brexhy “bydzin 72,1,3,2,3,2,1,2,3
_ Rdef abcfi aidigh  pbiethy pbadyi y-crexgiii Efz,hz,tz ,82,€3,¢2,d3,b3,a2
- diey fi Marbicr fo ™ azdagihy Thaerhs “bydziy ™ erezgain ©2,1,2,3,2,3,1,2,3
_ def ah(‘f] aydigh  pbiethy pbadai y-cre2g1il p f2haia 12i3,h3, f3,82.€3,¢2,d3,b3,a2
Z Rdlel SiTarbic fo Ktlzdzglhl szezhz Rb3d3i1 Kczezgvh Rf%hztz El .2,1,3,2,3,1,2,3
_ Z Rdﬁ’f athl aid\gh RPre1h phadai prereagiiy szhztz En,hz,gz,fs,e3,d3,02,h3,az
die fi tllblclfz axdrgihy “baexhy Ttbadzin T eresgain T f3h3iz 71,2,3,1,2,1,3,2,3 :

Thus we get

fhi
ZRflhm

cegi1 thiz Rhlﬂlthadlglhz Kalbzclfl Rdzezfz

cre1giiz " bidiiz Tt haeshy Trardagahs T axbicr o Tdses f3
) , . (10.99)
§ Rdt’f abcfi ardigh Rhlelhl bydyi K C1e81h fahaia
- diey fi alblclfz aydrgihy " baeshy Tbidsiy T caesgaia T f3hsis

foranya, b, c,d,e, f, g, h,i and ay, b3, ¢z, d3, e3, f3, 2, h3, i3. The sums are over
a, b] s bz, Ci, d] s dz, e, en, f] s fz, 81, h] s ]’lz, i], iz (S Zzo on both sides. They are
finite sums due to the weight conservation (3.48) and (5.65). The identity (10.99)
reproduces the 3D reflection equation (4.5). By a parallel argument for U, ,;r (B3), the
3D reflection equation of type B (6.31) can also be derived.
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10.6 x-Invariants

Theorem 10.6 implies non-trivial identities in (a completion of) U ; (g). They are
stated as invariance of some infinite products under the anti-involution y introduced
in (10.42). Here we illustrate the derivation along g = A, and present the results for
C, and G,. The point is to translate the boundary vectors in Sects. 3.6.1, 5.8.1 and
8.6.1 in terms of the PBW basis.

Let us write the boundary vectors (3.132) as

) =D ngmlm) (s =1,2). (10.100)

m>0

By comparing the coefficient of |a) ® |b) ® |c) on the two sides of (3.143) using
(3.47), we get

Z ns,ins,jnx,kR:‘lj};(C = Ns,als,bNs,c- (10101)
i\ j.k

In view of (3.63), this is equivalent to

Z ﬁs,uﬁs,bﬁs,c‘jo};f = ﬁs,iﬁs,jﬁs.kv ﬁs,a = (qz)ans.u' (10102)

a,b,c

Multiply this by 5/ and sum over i, j, k € Z. From (10.46) and (10.6), the RHS
gives

Y By it ik = (Z""([Z)|>(Z”J%)<Z ([]3)') (10.103)

i,j.k

As for the LHS, we have

k,
Z(ZRZIZ‘E s )nvanvhnvc— ZEab nvanvhnvc

a,b,c i,jk a,b,c

=X (Z E;’b’aﬁs,aﬁs,bﬁs,c)~ (10104)

a,b,c

The first equality is due to (10.58) which is the A, case of the main theorem of this
chapter. The second equality is (10.42). The quantity within x in (10.104) is equal
to (10.103). Thus we find that (10.103) is x-invariant. To describe the result neatly
we introduce a quantum-dilogarithm-type infinite product:

qm(m—l)/ZZm

T (i )m 10.105
DO (—=z59) ( )

04(2) =

m
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Then a direct calculation using (3.132) yields

" O,((1 — g?)2) s=1,
s,m = 10.106
;’7‘* (]! {644(51(1 — )P s=2. (10100

Thus we get a corollary of Theorem 10.6 and Proposition 3.28.

Corollary 10.15 Sef ¢; = (1 — qz)b,-, ci=x(c) e U;(Az) (i=1,2,3) using b;
in (10.46) and the anti-algebra involution x in (10.41). Then the following equalities
are valid:

B,(c1)O,(c2)0,(c3) = O, (c)B,(c5)O,(c)), (10.107)
O,4(qcHB,4(gcHB 4 (gcd) = O (gcs) Oy (gch) O e (gc)). (10.108)

Remark 10.16 By the rescaling e; — xey, e — yep with parameters x, y, the
identity (10.107) is seemingly generalized to

Oy (xc1) B4 (xy2) By (ye3) = By (yc5) Oy (xych) Oy (xch)

containing x, y in the same manner as spectral parameters in the Yang—Baxter equa-
tion. The same holds for (10.108). Similar remarks apply to the C, and G, cases
in the sequel where the parameters arranged along the positive roots fit the spectral
parameters in the reflection and the G, reflection equations.

The product (10.107) is expanded as

Oy (c1)Oy(2)Oy(c3)

=1+ +g)er+e)+q(1+q)ef +e3) + (1+q)erer + eze)

@A —gH* e +e) q°A—gH(e] +¢3)
(11— —q% (1= —=g>U —q

*(1 — g*)2(e1e2e? + e2ere; + erere? + elejer)

+ (1 4+ q)*(e1e2e1 + ererer) +

+
(11— —g%
q(1 —g**(g(ete3 + e3ed) + (1 + q)?ereder — q(1 + gHerefer)
+ - +oe,
(I-g)(1—-qg%

(10.109)
where the g-Serre relation (10.45) has been used to make it manifestly invariant
under x. Similarly, (10.108) is expanded as

Oy (qch) O, (ge3)O 1 (gc3)
gl — gt +e3) | q°(1 — g>)*(e} + e3)
1—qg* (1—g%H(1—¢g® (10.110)
q*(1 — g*)*(efes + e3ef — (1 + g*)erefer)
+ 4
(1 —g*%?
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For C,, the relevant results are (10.80) and Proposition 5.21 concerning the bound-
ary vectors in (5.118)—(5.120). There are three identities corresponding to the choices
of (r, k) in (5.136).

Corollary 10.17 Set ¢; = (1 —qg"b; (i =1,3),¢c; = (1 —¢*)b; (i =2,4) and
¢ = x(c) € U;(Cz) (i=1,2,3,4) using b; in (10.60) and the anti-algebra
involution y in (10.41). Then the following equalities are valid:

0,2(c1)O4(€2)® 12 (c3)By (ca) = B (CA)G)qz (c5)04 (c/z)@)qz (), (10.111)
0,2(c1)O,4(qc3)0,2(c3)0 1 (gcd) = ©,4(4¢})B2 (5 14 (g5 O 2 (),
(10.112)
0,8 (@) 0,1 (gD 0,5 (¢* DO 1 (gc) = B1(gcy IO (g5 ) Ot (g O s (7).
(10.113)

For G, the relevant result is Conjecture 8.9 for the boundary vector (8.61) and
(10.96).

Corollary 10.18 Set ¢; = (1 —¢%b; i =1,3,5),¢ci = (1 —g*)b; (i =2,4,6)
and ¢ = x(c;) € U;(Gz) (i=1,...,6) using b; in (10.82) and the anti-algebra
involution y in (10.41). If Conjecture 8.9 holds, the following equality is valid:

Og3(€1)Oy(c2)Bg3(€3) Oy (€4) O g3(c5) Oy (o)

, , , , , , (10.114)
= 0,4(c5)O43(C5)BOy (c4) O3 (c5)BO, (c3) By (ch).

10.7 Bibliographical Notes and Comments

This chapter is an extended exposition of [102]. The braid group action (10.5) is
introduced in [111]. The formulation of quantized coordinate ring in this chapter
follows [76, 139]. See also [43] and [29, Chap. 7]. For quantum cluster algebra
structure of quantized coordinate rings, see [52].

The Peter—Weyl-type Theorem 10.1 is taken from [76, Proposition 7.2.2]. Propo-
sition 10.4 is a special case of [66, Corollary 9.1.4]. In [149, Theorem 7], U;(g)
has been identified with an explicit subalgebra of A,(g)s. A proof of Theorem 10.5
adapted to the present setting has been given in [102, Sect. 3.2]. The main result,
Theorem 10.6, is due to [102, Theorem 5]. The case g = A, was obtained earlier in
the pioneering work [131]. Remark 10.8 is due to [141], where a unified conceptual
proof of Theorem 10.6 has been attained. See also [128] for yet another proof using
the representation theory of g-boson algebra and the Drinfeld pairing of U, (g). The
multiplication rule on the PBW bases like Lemmas 10.9, 10.11 and 10.13 plays an
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important role also in the study of the positive principal series representations and
modular double [61]. For type C5, one can adjust the definition of EiA in (10.6) with
that in [148] by setting v = ¢~'. Some of the results like Lemma 10.13 have also
been obtained in [147]. An analogue of Sect. 10.5 for quantum superalgebras has
been argued in [151].



Chapter 11 ®)
Trace Reductions of RLILLL = LLLR G

Abstract From this chapter onwards, we turn to applications of the 3D structures.
The tetrahedron equation RLLL = LLLR can be composed n times in various
directions. By tracing out a part of the spaces appropriately, it reduces to the Yang—
Baxter equation among the remaining objects. The prescription, which we call the
trace reduction, generates infinitely many solutions to the Yang—Baxter equation
labeled with 7 in a matrix product form. In this chapter we demonstrate the method
using the 3D R and 3D L in Sect. 3.5.2. The resulting solutions to the Yang—Baxter
equation are trigonometric. They are identified with the quantum R matrices for
the symmetric and the anti-symmetric tensor representations of U.,-1 (A,(ql_)l). The
cyclicity of the trace is reflected in the Dynkin diagram of the affine Lie algebra
A" . The matrix product formula of the quantum R matrices naturally leads to an
interpretation of the commuting transfer matrix of m x n layer either as the one for
alUg, (A,(L)l) vertex model with size m or a U, (Aﬁill) vertex model with size n.

11.1 Introduction

This chapter consists of two main parts. The first part, Sects. 11.1-11.4, is devoted
to a construction of infinitely many solutions to the Yang—Baxter equation by the
method we call the trace reduction. The basic ingredients are the tetrahedron equation
RLLL = LLLR and its solution associated with A;(A,_1) in Chap. 3. The second
part, Sect. 11.5, provides the characterization of them as the quantum R matrices in
the standard framework of U, (Afllll) and its finite-dimensional representations.

There are two essential parameters, g from the quantized coordinate rings A, and
p from the quantum affine algebras U ,. They should be adjusted properly depending
on the direction along which the trace reduction is performed. All these features are
common in the rest of the book except the last chapter.

Let us prepare notations that will also be used in the subsequent chapters. For n
component arrays of 0 and 1, the following notations will be used:

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 177
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s=s"=(0,1)"={a=(a1,....a,) = are; + - + ae,}, (11.1)
5=50U51U~~-U5n, s=5,Us_, (11.2)
5 = 50" {a€5||a|_k} s, ={aes| (=D =+1}, (11.3)
|a|=a1+"'+aI17 :(ans'--val)s (114)
where the last one is the reverse ordering of a = (ay, ..., a,). For the n-fold tensor

product of V = Cvy & Cuvy, we set

V=vV"=Vv® =-Vvi®dV,®---®V,, V=V,.®V_, (11.5)

V=@PCu, V=V = @(Cva, Vi=PCu, (11.6)
acs @) acsy

Va =g @ -, for a=(ay,...,a,). 11.7)

For n-arrays of Z-( and n-fold tensor product of %, we still use (11.4) and similar
notations as follows:

B=B" = (Z=0)" ={a=(a,....a)}, (11.8)

B=|JB. B=B.UB. (11.9)
k>0

Bi=B" ={acB™ ||a|=k}, Br={acB| (- ==+1}, (11.10)

W=W"=F"=(PW,, W=W,oW_, (11.11)

k>0

W=@Cla), W,=W" =P Cla), W.=HCla), (11.12)
aeB aeB,f"’ acBy

|a) =|a1) ® --- ® |a,) for a=(ai,...,a,). (11.13)

Except for Sects. 11.6, 12.3 and 13.8, the integer n is fixed and the superscript “(n)”
will be suppressed.

InSect. 3.5.2, we have presented a solution to the quantized Yang—Baxter equation.
We recall it below for readers’ convenience. The 3D L is depicted as in Fig. 11.1.

—
W

Ly =
2

Fig. 11.1 Diagram for the 3D L, where 1, 2, 3 are labels of the arrows. Black arrows carry V and
the blue one carries 7
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1 2 3
It is a linear operator L = > E,; ® Ey, ® Lf].” € End(V ® V ® F,) with

Lgo Loy L9 LY 10 00

gt o | fo —ga~'kam 0 .
LY LY L9 L1 0 at akoO]’ '
WayLieyt) 00 o

where a®, k are g-oscillators in (3.12)—(3.13) . This is the same as Fig. 3.2 up to an
extra gauge parameter «c. We let the number operator h (3.14) on F, also act on V by
hv, =iv;(i=0,1)andsethi =h®1®1,hh, =1®h®landh; =1® 1 ® h.
The 3D L satisfies

MRyt 73] =0, (11.15)
L_]b = LY = L0 gor. (11.16)

The weight conservation (11.15) with arbitrary x, y is equivalent to (3.102) and

(3.104). L;‘}’ is defined by the rule mentioned after (3.18).
From Theorem 3.21 and Remark 3.23, we know that L satisfies the quantized
Yang-Baxter equation, i.e. the tetrahedron equation of type RLLL = LLLR

L124L135L236 Rass = RaseLozsL13sL124, (11.17)

)
where R denotes the 3D R detailed in Chapter 3. This is an identity in End(V ® V ®
3 4 5 6
VRF,F, ®F,).

11.2 Trace Reduction Over the Third Component of L

Consider n copies of (11.17) in which the spaces labeled with 1, 2, 3 are replaced by
1;,2;,3; withi =1,2,...,n:

(L1,2,:4L1,3,5L2,3,6) Rass = Rase (Lo;3,6L1,3,5L1,2,4)-
Sending Rys6 to the left by applying this relation repeatedly, we get

(L1,2,4L1,3,5L2,3,6) - - - (L1,2,4L1,3,5L2,3,6) Rase

(11.18)
= Rys6 (L2,3,6L1,3,5L1,2,4) - - - (L2,3,6L1,3,5L1,2,4)-
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One can rearrange this without changing the order of operators sharing common
labels, hence by using the trivial commutativity, as

(L1,24--L1,2,4)(L1,3,5-- L1,3,5)(L2,3,6 - - - L2,3,6) Rase

(11.19)
= Rys6(L2,3,6 - L2,3,6)(L1,3,5 - L1,3,5)(L1,2,4 - L1,2,4)-
The weight conservation (3.49) of the 3D R may be stated as
Rase x™ (xy)"sye = x™ (xy)" y™ Ryse (11.20)

for arbitrary parameters x and y. See (3.14) for the definition of h. Multiplying this
by (11.19) from the left and applying R? = 1 from (3.60), we get

Ryse X™ (L1,2,4 -+ L1,2,4) @)™ (L1,3,5 -+~ L1,3,5) Y™ (L2,3,6 - - - L2,3,6) Rase

=y (La3,6° L2,3,60) ()™ (L1,3,5 -+ L1,3,5)x™ (L1,2,4 - - L1,2,4).
(11.21)
This relation will also be utilized in the boundary vector reduction in Sect. 12.1
(Fig. 11.2).
4 5 6
Take the trace of (11.21) over ¥, ® ¥, ® ¥, using the cyclicity of the trace and

R? = 1. The result reads as

Tra(x™L12,4 - Li,2,4)Trs((ey)™ Lyj3,s -+ L1,3,5) Tre (Y La,36 - - - La,3,6)
= Tre(y™La,3,6 -~ L2,3,6) Trs ()™ L1355+ -+ L1,3,5) Tra(x™ Li,oa - -+ L1,2,4)-

(11.22)
A A A
— ... 6
...... \/ S
N TN Iy Ay
2] 31 22 32 2n 3n
A NI ~]
NN A N\
N e
1 2‘] 1, 2, 1, 2"1

Fig. 11.2 A graphical representation of (11.18) and (11.19). It is a concatenation of Fig. 2.3
which corresponds to the basic RLLL = LLLR relation. Black and blue arrows carry V and %,
respectively
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Let us denote the operators appearing here by

1 2

S15(2) = 0" @) Tra@ Liga -+~ Li,0,4) € End(V@V),
1 3

5152 = 0" (@ Trs(z™ Ly, -+ Li,3,5) € End(V® V), (1123
2 3

$33(2) = 0" (@) Tre(@™ La36 -+ La,3,6) € End(V @ V).

The superscript tr3 indicates that the trace is taken over the 3rd (rightmost) component
of L, whereas Tr; in the RHSs signifies the label j of a space. A similar convention
will be employed in subsequent sections.

Those appearing in (11.23) are the same operators acting on different copies of
1 L, 2 2 2, 33 3,
VRV specifiedas V=V Q- ---QV,V=VQ---Vand V=V®---Q V.
The normalization factor o™ (z) will be specified later in (11.33). Now the relation
(11.22) is stated as the Yang—Baxter equation:

SIS () S35 () = S53(0)Sy3(xy) Sy (). (11.24)

When arguing a single S, we will often suppress the labels 1, 2 etc. Set

SU@QWi @) = Y S va ® vp. (11.25)

a,bes

Then the construction (11.23) implies the matrix product formula

S @3 = o™ @Tr( LYY - L) (11.26)

in terms of the components of the 3D L in (11.14) (Fig. 11.3).

Fig. 11.3 Matrix product construction by the trace reduction (11.26) is depicted as a concatenation
of Fig. 11.1 along the blue arrow carrying 7. It is a BBQ stick with n-fold X-shaped sausages. It
is closed cyclically reflecting the trace
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By definition, the trace is given by Tr(X) =}, ., % =D >0 W. See

(3.12)—(3.17). Then (11.26) is evaluated by using the commutation relations of g-
oscillators and the following formula':

(24" (g% 45

Tr(thr (a+)s (a—)s’) — SS.S/ ) (1 127)
(29" q%)s+1

From (3.104), (11.15), (11.16) and (3.18), it is easy to see
§"(2)if =0 unlessa+b =1i+j and |a] = [i|, |b| = jl, (11.28)
ST ()P = § (@) (11.29)
ST = P s ()BT, (11.30)
where o(a) = (ay, ..., a,,ay) is a cyclic shift. The property (11.28) implies the

decomposition

@)= P 550, S%,(z) € End(V; ® V). (11.31)

0<Il,m=<n

1
The Yang—Baxter equation (11.24) is valid in each subspace V; ® V, ® V,, of V ®
2 3

V ® V. The scalar 0" (z) in (11.26) may be specified depending on the summands
in (11.31). We take them as

S @ =0 (@Te("L{ - L{)  (aies, bjes,),  (11.32)

015, (@) = (—=q)~ " Dra™ (1 — zg" 1, (11.33)
where (x)+ = max(x, 0) as in (3.66). In this normalization we have
SIH:n (2) (Ve, 4. te; @ Ve tte,) = Vertotey @ Ve tte, - (11.34)
General elements S, (z)?}’ become rational functions of g and z which are inde-
pendent of the parameter « in (11.14). The latter fact follows from the condition on
the number of operators #L]) — #L)! = — m in (11.26) which is necessary for the
trace to survive. By combining (3.18), (11.16) and 01, (2) = 0m,i1(2)|la——ga-1» WE
also have

S5 (I = S (N (11.35)

m,

! In the formula [106, Eq. (59)] which should correspond to (1 L2742, the factor (zqz")s is
missing.
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Example 11.1 Consider the simplest case n =2,/ =m = 1 of Sllrfn (z). We have

1 t 01,10 tr3 10,01
Slrj (2)(vo1 ® vip) = S1r,31 (1)01,10 vo1 ® Vo + Slrf] (Z)O],l() V1o ® Vo1,

and the coefficients are given by the matrix product formula

s : q(1—-2)
S @or 10 = 013 @Tr" LY L) = (1 — 2)Tr(—¢z"k?) = — %
try 110,01 3 hy 1070l P
$11@o10 = 011 (@Tr(z L L) = (1 —2)Tr(z'a™a™) = 1——612Z’

where (11.14), (11.27) and (11.33) are used. Similar calculations show that S,tr:n ()
is a map such that

Vi ®vij = v @y (1, j € {0, 1)),
qg(1 —2vg ®vig . (1 —g*)zvip ® v

v Vi > —
01 @ V1o 1= g% 1= 4%
(1 —g®vor ®vig g1 — 2)v1p ® voi
V1o ® vo1 > -
1—¢q%z 1—¢q?%z

which is known as a six-vertex model R matrix [10, Chaps. 8 and 9].

Example 11.2 We consider general n > 2. Elements of S:;fl (z) are given by

1 ] = b,aj = 1,
q(1—=¢"'2) i—b.a: =0
T T —gmtig J = ,CZJ— B
S (@i = g : 11.36
m,l(Z)l e; lzilq:il)zqmil"“71j+27“‘7”’ ] < b, ( )
1*‘12 qib+l+ih+2+“‘+ij ] > b,

l_qmﬂz

where a, i € 5, and a + ¢, = i + e; are assumed. Similarly, elements of Sir‘m (z) are
given by

1 i=a,j,=1,
_gd=¢""2) g i —
SLr3 (Z)e“b _ l_quJrlZ 1= a’ ]a - 07
Lm ej — z2(1—g~) S .
i ]_q"1+lzqm Ja—Ja+1 Ji—1 i>a,
1—q> Py 7 .
]_qn1+lzq]z+lx+l+ +Ja-1 i <a,

where b,j € s, and e, +b =e; +j are assumed. The case n =2 reduces to
Example 11.1.
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11.3 Trace Reduction Over the First Component of L

The previous section was concerned with the reduction over g-oscillator Fock spaces.
It is also possible to make reductions over V =~ C2, which is the subject of this and
the next sections. We restrict ourselves to the choice @ = 1 in (11.14).2

Consider n copies of the tetrahedron equation (11.17) in which the spaces 3, 5, 6
are replaced by 3;,5;,6;, withi =1, ..., n:

Rys,6,L23,6,L13;5 L124 = L124L 13,5, L23;6; Ras;6; -
Sending L o4 to the left by applying this repeatedly, we get

(Rss,6,L23,6,L13,5,) - - - (Ras,6,L23,6,L13,5,) L124

(11.37)
= L124(L13,5 L23,6,Ras,6,) - - - (L13,5,L23,6, Ras,6,)-
which can be rearranged as (Fig. 11.4)
(Rys,6, - - Ras,e,) (L23,6, - -~ L23,6,)(L13,5, - - - L13,5,) L124 (11.38)

= Li24(L13,5, -+ - L13,5,) (L236, - - - L23,6,) (Ras,6, - - Ras,6,)-

From Remark 3.24 we know that L1o4 is invertible. Multiply x™ (xy)h yh4Lf214
1 2 4
from the left by (11.38) and take the trace over V ® V ® #,. Using the weight

conservation (11.15) we get the Yang—Baxter equation.

3 5 6
Ry () S36(xy)S35(x) = S35(x)S36(xy)R5 ¢(y) € End(V@ W@ W), (11.39)

3 3 3, 5 51 Sn 6 6; 6,
where V=V Q@ - - QV,W=F,®---F,andW =%, ® - - - ® F,. The super-
script try signifies that the trace is taken over the Ist (leftmost) component of the 3D
R and 3D L as

5 6

RY(2) = Tra(2™ Rusy6, - - Ras,6,) € End(W @ W), (11.40)
3 5

Sy5(2) = Tri(Z™Lus;s, -+ Lis,5,) € End(V@ W), (11.41)
3 6

Sy6(@) = Tra(z™Lase, -+ Laz6,) € End(V @ W). (11.42)

The operator (11.40) reappears in (13.22) and will be studied in Sect. 13.3. At this
point we only mention that it satisfies the same selection rule as (11.45) since the
3D R obeys the same weight conservation (3.49) as the 3D L in (11.15). The other

2 Other choices of « invalidate Theorem 11.5.
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6 \ 6, 4+ 6p

51 31

Fig. 11.5 Matrix product construction by the trace reduction (11.40) (left) and (11.41) (right).
They are concatenations of the diagrams in (2.3) and (2.14) which are closed cyclically reflecting
the trace. The diagram for (11.42) is the same as the one for (11.41) up to the labels of arrows

operators (11.41) and (11.42) involve the trace over V which consists of only two
terms. We will often suppress the labels 3, 5 etc. (Fig. 11.5).
The operator S"!(z) acts on the basis as

SU@QWRlN= Y S"@Fv.® b), (11.43)
acs,beB
ST@F = D0 LI L (11.44)

7Qyeeestn—1=0,1

where the elements L:;‘;b are defined in (3.105). From the weight conservation of the

3D L (11.15), we have

st (z)?}’ =O0unlessa+b =1i+j and |a| = |i|, |b| = |j|. (11.45)
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It implies the decomposition

"= P SLE. S €End(V @ W,). (11.46)

0<i<n,m=>0

The sum (11.43) corresponding to the component Sltr,ln (z) isrestricted toa € 55, b €
B,,. The Yang—Baxter relation (11.39) holds on each subspace V; @ W; @ W,,,.

11.4 Trace Reduction Over the Second Component of L

Similarly to Sect. 11.3, we assume o = 1 in this section.?
Consider n copies of the tetrahedron equation (11.17) in which the spaces 1, 4, 5
are replaced by 1;,4;,5; withi = 1,...,n:

Ra;5,6L1,24;L1,35, L23¢ = Lo3eL1,35, L 1,24, R4;5,6.

Here we have relocated R by using R = R™! (3.60). Sending L3 to the left by
applying this repeatedly, we get

(R4,5,6L1,24,L1,35,) - - - (Ra,5,6L1,24,L1,35,) L236

(11.47)
= Ly36(L1,35 L1,24, R4;5,6) - - - (L1,35,L1,24, Ra,5,6),
which can be rearranged as
(R4y5,6 -+ R4,5,6)(L1,24, - - L1,24,)(L1,35, - - L1,35,) L236 (11.48)

= Lo3e(L1,35, - - L1,35,)(L1,24, - - - L1,24,) (R4;5,6 - - - Ra,5,6)-

From Remark 3.24 we know that L3 is invertible. Multiply x"2(xy)"s yhﬁLz_;6
2 3 6
from the left by (11.48) and take the trace over V ® V ® ¥,. Using the weight

conservation (11.15) we get the Yang—Baxter equation (Fig. 11.6).

1 4 5
RES () ST (0S5 (xy) = ST () ST ()RS () € End(V O W @ W), (11.49)

11 1, 4 4 4, 5
whereV=V®. .- V,W= Vll/ ® ---® W and W was defined after (11.39). The

superscript tr, signifies that the trace is taken over the second (middle) component
as

3 Other choice of « invalidates Theorem 11.6.
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1; s, 1, 5, 1, 5,
- L 2
...... 6
- N e 3
4 ' 4, 4,
1 1, 1,
3 ~ N N
NS NVEIRE ST
= el NS VNS T
Ve ZATIZAT AT
IR 7

Fig. 11.6 A graphical representation of (11.47) and (11.48)

o
I 4
1 4y
4,

2

"

Fig.11.7 A graphical representation of (11.50). The one for (11.51) just corresponds to a relabeling
of the arrows

1 4

$1%(@) = Tra@™ Ly,o4, -+ L1,24,) € End(V @ W), (11.50)
1 5

S1%(2) = Tr3(2™Ly3s, -~ L1,35,) € End(V @ W). (11.51)

This matrix product construction is depicted as Fig. 11.7.
The operator S"2(z) acts on the basis as

SRl =Y SN va®b), (11.52)
acs,beB
Se@ = Y geLprhent . L (11.53)

FQyeeny Fn—1 =0, 1
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where the elements Lf‘,’jb are defined in (3.105). From the weight conservation of the

3D L (11.15), we have
S‘“(Z)?}’ =O0unlessa—b=1i—j and |a| = |i|], |b|] = |j|. (11.54)
It implies the decomposition

()= @B $h@. 8% €End(V, @ W,y). (11.55)

0<i<n,m=>0

The sum (11.52) corresponding to the component Sl“fn (z) isrestricted toa € 55, b €
B,,. The Yang—Baxter relation (11.49) holds on each subspace V; @ W; @ W,,,.

11.5 Identification with Quantum R Matrices of Al(,lll

LetU, (A(l) |) be the quantized universal enveloping algebra of the affine Kac—Moody
algebra A(l)1 correspondlng to the Dynkin diagram in Fig. 11.8.
The algebra U, (An_l) has the generators ¢;, f;, kijEl (i € Z,) obeying the relations

kikj = kjki, ik =k =1,

ki — k!
kiejk ' = pe;, kifik'=pT i, lei, fil=8—,
! ! ! ! T p—p (11.56)
1—a;; 1—a;j
L el = S AT =0 6 # ),
r=0

where e =" /[m],!, f(m) £ /lml,! with [m],! = HT:IU]P and*

pt—p™"
(mly = ———. (11.57)
p—p
The indices should be understood as elements of Z,. Thus the element of the
Cartan matrix a;; = 28; j — 8;,i+1 — i j—1 1S ag,—1 = —1 for example. Note that
Agl) is exceptional in that agy = a1 = —ag1 = —ajo = 2. The algebra U,(A,_1)

defined in Sect. 10.1.1 is the subalgebra of U, (A( )]) with generators restricted to
ei, fi, k' (0 <i <n).

We adopt the coproduct A in (10.2) and its opposite A°P? mentioned after (10.12)
for e;, fi, k; foralli € Z,:

4 The symbol [m]; defined after (10.1) is [m]y; here.
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[€))]
An_1 O

1 2 n-2 n-1

Fig. 11.8 Dynkin diagram of A,(IL)I (n > 3) with enumeration of vertices. (For n = 2, See [67])

Ak) =k ®ki, Ae)=e@1+k®e, Af)=1®fi+fi @k,
(11.58)
AP(k) =k @ki, AP(e)=1®¢ +e®ki, AP(f)=fi®l+k'® f.
(11.59)

11.5.1 S'™3(z)

Let g, v : Up(A,(BI) — End(Vy) (0 < k < n)bea p analogue of the degree k anti-
symmetric tensor representation with spectral parameter x:

8; =& mi—m;
€iUm = X 'Ovm+e,-7e,-+| v fivtm=x 'Ovmfe,-+e,-+| » kivm = p" T vy, (11.60)

where m € s, and i € Z,,.> See Sect. 11.1 for the notations Vi, vm, 5¢ and e;. In
the RHSs, the vector vy, should be understood as O if m ¢ si. In the LHSs, ¢; for
example actually means 7, . (e;). A similar simplified notation will be employed in
what follows.

As a representation of the classical subalgebra U,(A,_1) C U p(Al(ll_)l) without
eo, fo, kgt, the space V; is isomorphic to the irreducible highest weight module
V () with highest weight @y in the notation of Sect. 10.1.1. The highest weight
VECHOT 1S Ve, 4...te,-

Let Ay y = (g x ® Te,,,y) © A and A?fy = (Mg, x ® Ty, y) © AP be the tensor
product representations. Let R, o, (z) € End(V; ® V,,,) be a quantum R matrix of
U, (A,(qul) which is characterized, up to normalization, by the commutativity

R, () Ay (8) = AL (8) Ry, (1) (Vg € Up(AL))). (11.61)

Here we have taken into account the obvious fact that R, ,,, depends only on the
ratio x /y. The relation (11.61) is a generalization of (10.12)|,_, , including the latter
as the classical part g € Up(A,—1).

31t is a Kirillov—Reshetikhin module Wl(k) up to specification of the spectral parameter.
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Theorem 11.3 Up to normalization, Sz (z) by the matrix product construction

(11.31)—(11.32) based on the 3D L (11.14) for arbitrary «a coincides with the quan-
tum R matrix as

52(2) = Reyn, (27 at p=—q~". (11.62)

Proof 1t suffices to check

SU((e @ 1+k ®e)=(1®e +e Qk)ST(2), (11.63)
SUPOAQ fi+ £, k) =01 +k"'® £)S7(2), (11.64)
S () (ky @ kr) = (ky @ k)S™(2) (11.65)

under the image of 7y, ® 74,y for r € Z,. The matrix product structure (11.26)
allows us to focus on the rth and the (» + 1)th components in the representation
(11.60). Thus we write vy simply as vy, .-

Let us look at the result of application of (11.63) on v; ® vj. The LHS/0" (%)
leads to

tr3 vy —1 atrs £y
") TSR (e @ 14k ® e)(viy iy, ® V) i)
i3 ¢y =1 Qs (3 ) (10 80 ir—is
=0"() S”(l)(x OVt iy =1 @ Vi oy YD @ V)4 1)
Z 8,0l 7 dri1,by 5
- Tr(- - t+l Jr ( )0 Lz,: l+]l+1 )X Yovar,ar+| ® Ub, by 1

§ 8.0h 7 ars1,br41 8,0 ir—ir
+ TI'( z ]-H( ) oL )y ﬂp Hvar,tlrﬂ ®Ubr~,br+l’

frstsjra1—1

where 8,0 = 1 atr = n € Z,. The RHS /0" () leads to

s
(1 wera® k”) ZTr( N a' ( )S’OhLla':']‘ .lr++ll e )Uu,.ar+1 ® Ub, b, 41
= DTG L L e

irg1s Jrtl

"V, a0y ® Uyt 1y -1+ X0 pI Ty, L ® Uy

The factors - - - in the traces are common, therefore the two sides are equal if the
coefficients of v, 4., ® Vs, p,,, agree. This yields

S.0hy art1, bri1 ,() Sroh g Gry1, bri1 Ip—lpy1
lr+1 Jr( ) Llr+1 1 ]r+1 + Ll S Jr +1( ) Llr+l Jre1— 1y p
ar,b,— S,Oh Ary1,b41+1 6,0 Lo~ 1,b, Broh ar1+1.0,41 8,0 b, b,+|
- Ll, Jr ( ) lr+l Jr+1 +L irsjr ( ) l:+1 X I

Thanks to (3.104), the dependence on x and y becomes a common overall factor
even for r = 0, leaving a quadratic relation

L?+b1]L[l/ hl’ ]/+Ll]+1L,/., lp —i’ _Lah lLa h+l+La lbL?,j,lhpb —p
(11.66)
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where a,, a,+1, b, byi1, iy, iy11, jr, jro1 are denoted by a,d’, b, b, i,i’, j, j for
simplicity. Let us consider the case (a,d’, b, b’,i,i’, j, j/) =(0,0,1,1,0,1,0, 1)
for example. Since L% = Ounless a, b, i, j € {0, 1}, the RHS is zero. From (11.14),

ij
the LHS is

LWL + LY LY p~ = a~(—ga~'k) + (—ga"'K)a p~!
=a (—qga 'K +q 7 'p7),

which certainly vanishes at p = —¢ . Similarly, one can check that all the 2% equa-
tions (11.66) are valid if and only if p = —g~'. The relation (11.64) can be verified
in the same manner. To check (11.65) is much simpler. O

Remark 11.4 The trace reduction is depicted by a circle in Fig. 11.3. It corresponds
to the Dynkin diagram of ALI_)] (n > 3) in Fig. 11.8. Further intriguing correspon-
dence of this kind will be observed in Remarks 12.3 and 14.3.

11.5.2 S'™i(z)

Here we consider S (z), therefore o = 1 is assumed in (11.14) as stated in the
beginning of Sect. 11.3.

Let i, x: U ,,(Afllzl) — End(Wy) (k > 0) be the p-analogue of the degree k
symmetric tensor representation with parameter x:

eilm) = x%0 pmi et Gy ], Im 4 e — i),
fl|m> — xf&opmi-*-lfmﬂrl[mi]p'm —e + ei+l>’ (1167)
kilm) = p™ =" m),

where m € B and i € Z,.° See Sect. 11.1 for the notations Wy, |m), By, e; and
(11.57) for [m],. In the RHSs, the vector |m) should be understood as 0 if m ¢
By. As a representation of the classical subalgebra U,(A,—;) C U, (Ail_) 1) without
eo, fo, k(j)[, the space W, is isomorphic to the irreducible highest weight module
V (ko)) with highest weight ko in the notation of Sect. 10.1.1. The highest weight
vector is |ke;).

Let Ay y = (Tmyx ® Tma,.y) © A and Ay = (T, x @ Tma,.y) © AP be the ten-
sor product representations, where A and A°P are specified in (11.58) and (11.59).

Let Ry, mer, () € End(V; @ W,,,) be a quantum R matrix of U 1,(Af11_)l) which is
characterized, up to normalization, by the commutativity

Ry, () Ay (8) = AP () Rey e, (1) (Vg € U, (ALL))). (11.68)

61t is a Kirillov—Reshetikhin module Wk(l) up to specification of the spectral parameter.
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Theorem 11.5 Up to normalization, S;f,‘n (z) by the matrix product construction
(11.41)—(11.46) based on the 3D L (11.14) with a« = 1 coincides with the quan-
tum R matrix as

§1(2) = Reyymer (2)  at p=q~". (11.69)

Proof 1t suffices to check

S" (e, @14k Qe)=(1®e + e Qk)S™(2), (11.70)
SOARf+ £k = (01 +k "' ® £)ST(2), (11.71)
STk @ kp) = (ky @ ky)S™ (1) (11.72)

under the image of 7, x ® Tyq,,y for r € Z,. The matrix product structure (11.44)
allows us to focus on the rth and the (» + 1)th components in the representations
(11.60) and (11.67). Thus we write v; ® |m) simply as v;, & |m,, m,41). Then
from (11.44), the action of §"'(z) is described as

V4

s @ (W), sy @ lmy,myy1))

= Y CoLppttgepy ety @ b))

iryjrsmy brp s Jr 1Myt
i.bes leB

See Sect. 11.1 for the definition of s and B. Let us compare the coefficients of the
transition v, ;,, ® |m,, my41) = vp, p., ® |l [41) by the two sides of (11.70).
Omitting the common factors denoted by - - - in (11.73), we are to show

x\i8r0 (.80 7 @sb,l ib\l 8.0 j—Jj m—m'+1p 7 a,b,l b\l
E :(§) Ly mLar YD U p Ly s Lar 1)
i=0,1

80 (1, 8r0 pl—I'—1 bl=1 i I+1 S0 A=l y ab—1,0 y i,b/+1,0
= (1) p (' + 1L Ly o X0 L POLG ),
i=0,1
(11.74)
Where l.r,I s irv ir+1 ) br’ errl? jrv err] ) lr’ lr+] , My, My are denOted by a, i7a/7b3 b/’
J, j, LU, m, m', respectively for simplicity. This splits into three equations for the
coefficients of x%, y%0 and (%)‘sf’(’. Explicitly they read as

a,b,l 0,6',1" J—jm—m' 1, 7 ab.l Ly
Lo ivimLa i+ P (' 1Ly s Ly o1

— plfl’fl[l/ +1] La,b,l—lLl,b’,l/+l + plfl’Lu,b—l,lLO,b’+1,l/ (1175)

pP™1,j,m a,j,m 0,j,m a,j'\m >

=i Am—m'+1r s a,b,l 0.0, _ I-I—1yy a,b,l—17 06 1'+1
p [m ]I,LO’LmHLa,’j,’m,_1 =p "+ 1]I7L0,j,m La,’j,’m, , (11.76)

La,b,l Ll’h/-’l/ — pl_l/La'h_]’lLl’biJr]’l/, (1 177)

Lj+1lm™a',j —1,m' 1,j,m a,j,m
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A non-trivial case is (a, b,i,a’,b’, j) = (1,1,0,1,0,1) and (I, m) = (I, m’) of
(11.77), which reads as ¢" = p'~"¢' by (3.105). This enforces p = ¢~'. Under
this identification, the other relations are confirmed straightforwardly. The relations
(11.71) and (11.72) can be checked similarly. O

11.5.3 Str2(z)

Here we consider §"(z), therefore o = 1 assumed in (11.14) as stated in the begin-
ning of Sect. 11.4.

Letw, .:U (A(l)l) — End(Vy) (0 < k < n) be a representation with spectral
parameter X:

€iUm = X 'OUmfe,-JreH_lv fivm =x 'Ovm+e,-7e,-+lv kivm = p"" " oy, (11.78)

where m € s; and i € Z,. In the RHSs, the vector vy, should be understood as 0
if m ¢ s;. Note the difference from 7,  in (11.60). As a representation of the
classical subalgebra U,(A,_;) C U (A(l)l) without eq, fo, ko , the representation

7, . is equivalent to 7, _, .. In fact, the relation

W, X
T (8) =10 Tm, () ot (g€ UAY ), (11.79)
{(Vm) = Vs m = d-—my, ..., 1 —m,), (1180)
holds form = (my, ..., m,).”

Let Ay y = (7, ® Tmay,.y) © A and AP = = (7, » ® Tmw,,y) 0 A be the ten-
sor product representations, where A and A°P are defined in (11.58) and (11.59).
Let R/ (z) € End(V; ® W,,) be a quantum R matrix of U, (A,(:_)l) which is

w;,mw
characterized, up to normalization, by the commutativity

Ry e, (D Ary(8) = AP (DR e (2) (Vg € Up(AL)). (11.81)

It is simply related to the quantum R matrix Ry, , uam, (z) defined as the intertwiner
of (T, ,.x ® Tine,,y) © A and (T, | x @ Tina,,y) © A% by the involution ¢ as

w, mw @D =0® I)an 1M ®1) (11.82)

up to normalization.

7 The notation m’ was also used earlier in (6.4).
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Theorem 11.6 Up to normalization, Sltrfn (z) by the matrix product construction
(11.50)—(11.55) based on the 3D L (11.14) with a = 1 coincides with the quan-
tum R matrix as

S (@) =R e @ at p=gq7h. (11.83)

W, mw|

We omit the proof since it is quite parallel with that for Theorem 11.5.

11.6 Commuting Layer Transfer Matrices and Duality

Let m, n > 2 and consider the composition of m x n 3D L’s as in Fig. 11.9.

At the intersection of 1; and 2;, we have the 3D L Ly, 2,3, as in Fig. 11.1,
where the label 3;; corresponds to the vertical blue arrows carrying F,. We take the
parameters 4; and v; as

wi=xu; i=1,...,m), vi=yw;(j=1,...,n). (11.84)

Tracing out the horizontal degrees of freedom leaves us with a linear operator acting
vertically along the blue arrows. We write the resulting layer transfer matrix as

T(x,y) =T(x, ylu,w) € End(F>""), (11.85)

u= Uy, ...,Uy), W= (wWi,..., wy,). (11.86)

Fig. 11.9 Graphical representation of the layer transfer matrix 7(x, y). There are m horizon-
tal arrows 11, ..., 1,, carrying V =~ C? and being traced out, which corresponds to the periodic
boundary condition. The mark e with u; signifies an operator ;4‘ attached to 1;. Similarly, there
are also n horizontal arrows 21, ..., 2,, which are to be traced out including the operator v;.‘. At the
intersection of 1; and 2, there is a g-oscillator Fock space ¥, depicted with a blue arrow
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We exhibit the n-dependence in the notations prepared in Sect. 11.1 as s, v, v,
etc. In what follows, u” for u € C™ should be understood as the linear diagonal

operator ul]" coeul e
u? vy uf o u, for a=(a,...,a,) €s™ (11.87)

and similarly for xu € C" and w, yw € C".8
Viewing Fig. 11.9 from the SW, or taking the traces over 14, ..., 1,, first, we find
that it represents the trace of the product of (yw)” and S"' (iy), ..., S (n):

T(x,y) = Tryw (W) 8" (xuy) - - - S™ (X))

n 11.88
= Y Ty (w5 ) - 5 ) € Bna (W),
k=0

2
where S" (xu;) € End(V®™ @ W®™) is a quantum R matrix of Uy (A;]_)l) due to

Theorem 11.5 and (11.46). The product is taken with respect to \27(”) = %} Q- ® %/
in Fig. 11.9, which corresponds to the first (left) component of S™!’s.

Alternatively, Fig. 11.9 viewed from the SE or first taking the traces over
21, ...,2, gives rise to the trace of the product of (xu)” and S™(vy), ..., S"(v,),
namely,

T(x,y) = Trym (cw)” S (ywy) - - - S (ywy))
m
o (11.89)
- Zkarvim) (w72 (ywy) - - S™ (yw,)) € End((W™)®"),
k=0

1
where $™ (yw;) € End(V™ ® W) is a quantum R matrix of U,-1(A{ ) due to
1 1 L,
Theorem 11.6 and (11.55). The product is taken with respect to V" = % ® -0V

in Fig. 11.9, which corresponds to the first (Ieft) component of S™2’s.

The identifications (11.88) and (11.89) correspond to the two complementary
pictures F 2" = (W®m — (Wimy@n Tn ejther case, S™ (z) and S (z) satisfy
the Yang—Baxter equations,’ which imply the two-parameter commutativity

[T(x,y), T, y)]=0 (11.90)
for fixed u and w.

Due to the weight conservations (11.45) and (11.54), the space 7—:?’"” decomposes
into many invariant subspaces under 7' (x, y) as

8 For H we do not exhibit the number of components n, n as H™ or H™ for simplicity.
9 They are not (11.39) or (11.49) but those valid in End(V ® V ® W), which we omit here.
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o i o i o i L0 Ll 10

L0 |2 Ll 1 L2 10 L]0 e

L2 L2 <103 L]l ]2 <10 [3
Y Y Y Y Y Y Y Y Y Y
Ji h Ji h Ji h Ji i

Fig. 11.10 Five base vectors of Tq®6 in the sector I = (3,2, 1) and J = (2, 4) are shown as the
configurations of {/;; | i =1,2,3, j =1, 2} of Fig. 11.9 viewed from the top

Femm = PF,,. (11.91)
1J
Fi=@PCh)® & ), (11.92)
1;;>0
where thesum (11.91)istakenover I = (I;,...,1,) € B™andJ = (J;,..., J,) €

B®™ with only one constraint
L+ 4L,=h+ -+, (11.93)

which is the total number of g-oscillator excitations. The sum (11.92) extends over
l;j € Z>o under the m + n constraints

lil+"'+lin:Ii (i:l,...,m), llj+"'+lmj:-lj (_]:l,,l’l)
(11.94)

Example 11.7 When (m,n) = (3,2), I =(3,2,1) and J = (2,4), we have
dimF; ; = 5 whose bases are given as follows:

According to (11.91), we have the decompositions (Fig. 11.10).

FEm= P Wre oW = P W'e --eW. (1195
Ii,....[,,>0 Jiyes =0

Correspondingly, each summand in (11.88) and (11.89) is further decomposed as

Tryo (WS Geuy) - ST (xat))

= Tryo (WIS (uy) -+ S (xum)) (11.96)
I,..., [,”ZO

Tryom (u” S (ywy) - -+ S (ywy))

- EB Tryo (S Gwy) -+ 8% wy)) . (11.97)

Jiyees Jn =0
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In the terminology of the quantum inverse scattering method, each summand in the
RHS of (11.96) is a row transfer matrix of the U, (Aflljl) vertex model of size m
whose auxiliary space is V,((”) and the quantum space is WX') R - ® W(,Z) having the
spectral parameter x with inhomogeneity uy, ..., u,, and the “horizontal” boundary
electric/magnetic field w.' It forms a commuting family with respect to x provided
that the other parameters are fixed. In the dual picture (11.97), the role of these data
is interchanged as m <> n, x <> y, u <> w. This is an example of duality between
rank and size, spectral inhomogeneity and field, which follows directly from the
3D picture and the matrix product constructions. It is highly non-trivial from the
viewpoint of the Bethe ansatz.

Remark 11.8 Consider the cube of size [ x m x n formed by concatenating Fig.
11.9 vertically for [/ times. One can formulate two further versions of the duality
corresponding to the interchanges [ <> m and [ <> n.

11.7 Bibliographical Notes and Comments

The idea of generating infinitely many solutions to the Yang—Baxter equation from
trace reductions of n-concatenation of the tetrahedron equations was implemented
in [18]. The present chapter presents the proofs, the precise U, module structures
(11.60), (11.67) and (11.78) and the relation p = £¢~" of the two essential param-
eters g from Osc, and p from U, such that the solutions are characterized as the
quantum R matrices in the standard framework of the quantum group theory [63].
See also [64, p. 540]. The matrix product formula (11.26) has an application to the
multispecies totally asymmetric simple exclusion process [89]. See Remark 18.6.
The matrix product construction of S"!(z) in (11.41) has appeared as Lyy, in [18,
Eq. (39)]. The literary and Australian nomenclature “BBQ stick” for the diagram
in Fig. 11.3 is due to the second author of [18]. In Fig. 12.1 in the next chapter,
we will encounter more ordinary BBQ sticks which are not cyclically closed but
have two ends. The duality in Sect. 11.6 was formulated in [18, Sect. 6]. It implies
the non-trivial equality of the Bethe ansatz eigenvalue formulas based on U P(Aill_)l)
and U, (AE; > 1)- The layer transfer matrices in this chapter correspond to the periodic
boundary condition. There are other boundary conditions leading to the layer transfer
matrices obeying a rich family of bilinear identities which contain the commutativity
as a special case. Such a topic will be treated in Sect. 18.4.

10 This terminology originates in the fact that the simplest case of n = 2, k = VI; = 1 known as
the six-vertex model is regarded as a ferroelectric model in a field [10, Sect. 8.12] and the relevant
XXZ spin chain is a model of magnetism.



Chapter 12 ®)
Boundary Vector Reductions e
of RLLL =LLLR

Abstract This chapter presents yet another reduction of an n-concatenation of the
tetrahedron equation RLLL = LLLR different from the previous chapter. We elim-
inate the 3D R not by taking the trace but by evaluation with respect to the boundary
vectors using Proposition 3.28. We call it the boundary vector reduction. In contrast
to the trace reduction that led to the quantum R matrices of U -1 (Afll_)l) (Chap.
11), it leads to the quantum R matrices for the spin representations of U_,-1 (B{),
U_,1(D{") and U_,-1(D?))). These algebras have Dynkin diagrams with double
outward arrows or double branches. It turns out that the two kinds of the boundary
vectors correspond to the two choices of the end shape of the relevant Dynkin dia-
grams. For simplicity, we treat the reduction with respect to the g-oscillator Fock
space only.

12.1 Boundary Vector Reductions

‘We retain the notations s, s+, V, V, Vi, v, etc. and 3D L in Sect. 11.1:

Lgo Loy LY LY 10 00
g it | |0 —ga ka0 o
LY LY L9 L1 0 at akoO]’ '
WpayLieyt) 000

In(11.21) we have obtained an n-concatenation of the tetrahedron equation RLLL =
LLLR as

Ryse x™ (xy)™y (Ly 2,4+ -~ Li,2,a)(L13,s - - L1,3,5)(La,3,6 - La,3,6) Rase

= x™y)SyP(Loy36 - Lays,6) (Liysys - Li,a,s)(Li2ga - - Liy,a)-
(12.2)
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Recall the boundary vectors (3.132) and (3.133) given as'

=y = o1 a2

rZ ? rZ
mZO (q )ITL sz (q )I?‘l
Sandwich (12.2) between them as
4 5 6 4 5 6 ,
(1@ (el @ DG Un) @ ) @ |mpr)) (" =1, 2). (12.4)

Thanks to Proposition 3.28, the two Rys¢’s disappear, leading to

4 45 5
(e |xX™ Lyoga -+ - Liyg,alne )0 /o)™ Lyj3,s -+ Lys,s1ne) x

6 6
X (0 1y™ La,3,6 - - La,a,6070)

6 6 s S (12.5)
= (e 1Y™Loysi6 -+ Lo,3,6000) (1 (x3)™ L35+ - Ly 3,5000) %
4 4
X (N X™ Ly 24+ Lio,alne).
Let us denote the operators appearing here by
ror’ r,r’ 4 hy 4 ! 2
S12@ =0"" (@ |z Liga -+ Li,n,4ln-) € End(V V),
rr rr 5 5 1 3
S15 @) = 0" ()12 L1y3,5 -+ Lu,3,500) € End(V® V), (12.6)

rr/ r}" 6 6 2 3
$55(2) = 0" () (1™ La36 -+ Lo3,6ln) € End(V @ V),

where r, ¥’ = 1, 2. The normalization factor 0" (z) will be specified in (12.15). They

12 3
are the same operators acting on different copies of V, V, Vof Vin (11.5) and (11.6).
Now the relation (12.5) is stated as the Yang—Baxter equation:

S13 (ST S5 () = SE ISR ST () (nr' =1, (12.7)
Suppressing the labels 1, 2 etc., we set

ST D@V = Y S () va ® v (12.8)

a,bes

! There is no decent meaning of r2 in this fitting formula which makes sense only for r = 1, 2.
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e\

Fig. 12.1 The boundary vector reduction. The matrix product formula (12.9) is depicted as a
concatenation of Fig. 11.1 along the blue arrow carrying F; sandwiched by the boundary vectors
(nr| and |n,+) in (12.3). It is a BBQ stick with X-shaped sausages and extra caps at the two ends.
The dual pairing is defined by (3.16)

Then the construction (12.6) implies the matrix product formula

ST @ = 0" @ L L ) (rr=1,2) (12.9)

in terms of the components of the 3D L in (12.1) (Fig. 12.1).
From the g-oscillator relations (3.12) and the dual pairing rule (3.16), calculation
of the quantities (1, |(---)|n,+) is reduced to the following:

(0,12 @5 K" w"|n,) = (WK™ @F) Py, L =1,2),
(=7 zw; ¢) oo
(g"zw; @)oo

mlZ"@") K" wh|n) = 2/ (—q; q);

3

2i4t2m+1,2,,2. 2
Li(i+1-2)) (@) (=q" " 2w %) oo

J
(ml"@) K" whln) =277 ) (=D)ig2 . ,
Z (@i (@) j—i(g* T 2w?; ¢?)

i=0
! 2i4+2m+1,2,,2. 2
(771|Zh(a+)fk’"wh|;72> =7/ qzl(1+1) A ’
; @i (@) j—i(g*mz2w?; ¢?) o
(C]2j+2m+2Z2w2; q4)oo

h,+\im,, h O j 2. 4y

(mlz" @) K" wn2) =0(j € 22)2/(q7:97) 2 P
(12.10)

See (3.65) for the notation. The symbol 6 is defined after (6.66). These formulas are

easily derived from the elementary identity (3.82). From (12.9) we see

Sr,r'(z)?‘]!’ = a|a\—\j\(Sr,,-/(z)?;)|a=1)’ (12.11)
S"" (2 =0 unless a+b=i+]j, (12.12)
S”(Z)?}’ =0 unless |a| =|i|] and |b| = |j| mod 2. (12.13)

The «-dependence (12.11) is a direct consequence of (12.1), the weight conservation
(12.12) follows from (11.15) and the parity constraint (12.13) is due to the fact that
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the boundary vectors (1,[, |72) in (12.3) contain “even modes” only. It leads to the
decomposition

@)= P 7@, 57 (:)€End(V, ® V). (12.14)

0,0'=+,—

When (r, ") = (2, 2), the Yang-Baxter equation (12.7) is valid in each subspace
Vo ® Vo @ Vor of VO V® V. The scalar 0>%(z) in (12.9) may be chosen as
QU’J, (z) depending on the summands in (12.14). We take them as

(Zmax(r,r ); qrr )oo

0" (2) = R — ((r,r) =(1,1),(1,2), (2, ),
(=2 g; g™ oo
(12.15)
2. 4 2. 2. 4
ot Q) = (2% 9" oEF () = (z2°975 4o
(226%: qMoo’ (22q* qMoo
Then S (z)?}’ becomes a rational function of ¢ and z” normalized as
S)(va®ua) = V2 ® v, (@acs, §S=80 §H2 g2 ghty (12.16)
ST (2)(Ve, ® Ve,) = Ve, @ Ve, (12.17)

ST (2)(v0 @ ve,) = —ga 0o ® Ve, ST (2)(Ve, ® Vo) = v, ® vg. (12.18)
From (3.18), (11.15) and (11.16), we also have
Sr,r/ (Z)i’l}) — Z|j|_|b‘Si”,r (Z);vv‘i:v — Sr,r/ (Z {)ia|a_)_qa71 ) (1219)

Example 12.1 We consider the simplest case n = 1. ™ (2) with (r, r') = (1, 1),
(1,2), (2, 1) are given as follows:

ViU vy ((i=0,1),
g1 =2Hv®vi  (1+¢)vi®u

Vg Q v > —
0 : a(l +gz°) 14+qgz*
A+ 'vo@v  all —z%)v @ vy
V1 (Y Vg
14gz* 14+qgz*

where s = max(r, ). $>2(z) with n = 1 reads as
ViU v®v (i=0,1), vyQuv > —qa71v0®v1, V] @ vg = av;  vg.

Examples of the case n = 2 are available in Sect. 12.4.
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12.2 Identification with Quantum R Matrices

1 1 2
of B,", D, D

12.2.1 Quantum Affine Algebra U,(g"" b

We will be concerned with the affine Kac-Moody algebras’

L1 _ n®
g - Dn+1’

gl = Bn(1)7 g = B21)7 g2 = D}gl)’ (12.20)
where the notation g”" will turn out to fit to $”"'(z) in the previous section.

LetU, = U,(DS)) (n > 2),U,(BM) (n = 3),U,(B"") (n > 3),U, (D) (n >
3) be the quantum affine algebras. They are Hopf algebras generated by {e;, fi, kijtl |
i €{0,1,...,n}} satisfying the relations (10.1) with g replaced by p (and the index
set I there understood as {0, 1, ..., n}). Beside the commutativity of kijEl and the
p-Serre relations, they include

- - a ki — k!
k,-ejki ! = pi ’ej, kifjki ! = pi Ifj, [6,’, fj] = 8i,jﬁ? (1221)
where the constants p; (0 < i < n) are taken as’
pi = p exceptfor po=p’% p,=p'> (12.22)

Thus the actual exceptions are py = p, = p'/2 for DY), p, = p'/? for B{D and

n+1°
po = p'/* for BV,

The affine Lie algebra BV is just B{") with different enumeration of the vertices
as shown in Fig. 12.2. We keep it for uniformity of the description. The Cartan
matrix (a;j)o<i, j<n 18 determined from the Dynkin diagrams of the relevant affine
Lie algebras according to the convention of [67]. Thus for instance in U ,,(D,(j:l),
one has ayg; = —2, ajo = —1 and koeg = peoko, koe; = p_'elko, kieg = p_leokl
and kje; = p2e k. Forgetting the Oth node in the Dynkin diagrams yields the clas-
sical subalgebras U,(B,) C U,,(D,(i)l), U,(B,) C U,(B"), U,(D,) C U,(B)
and U,(D,) C U,(D{V).

2 Some symbols including o here and Sect. 14.2.1 are apparently the same, but they should be
understood as redefined in each place.

3 This normalization agrees with (14.19). The normalization mentioned after (10.1) for U, (g) with
non-affine g has not been adopted here.
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ghl = D;ZI) 0@\ g2 = Bfll)
o=0—------ —C=0 O—------ —C==0
0 1 n—1 n IO/2 n-1 n

5(1 1

12_3’(1) 22 _ Sl)

Fig. 12.2 Dynkin diagrams of (12.20) with enumeration of vertices

12.2.2  Spin Representations of Up,(g™" )

Let 7y, » 1 Up (g""") — End(V) be the representations

_ 1_

€OVm = XUm—e;s  foUm =% 'Umie;s KoUm = P2 "'Um r=1),
(12.23)

€)Um = xzvm—el—ezv f()vm = x72Um+e1+e2, kovm = plimlimzvm (r =2),
(12.24)

€iVm = Umte—eir>  JiVm = Um—eiteyr  Kivm = P "oy (0 <i < n),
(12.25)

CaVm = Umie,,  foUm = Um-es  kiUm=p" ium (' =1), (1226)

1 =1 _
€1Um = Um+te, ;+e,» JnUm = Um—e, |—e,» KnUm = Pm‘+m" Tom (1 =2),
(12.27)

where m € s. See Sect. 11.1 for the definitions of V, vy, s and e;. In the LHSs, ¢; for
example actually means 75, . (e;). In the RHSs, the vector vy should be understood
as 0 if m ¢ 5. The choice of x*" rather than x*! in (12.23) and (12.24) is the option
leading to a uniform description of the results in Theorem 12.2.

The algebras U, (g"!) and U, (g*') have a common classical subalgebra U ,(B,)
without ey, fo, k(jf. As a U,(B,) module, V is already irreducible and is isomorphic
to the highest weight module V(@) in the notation of Sect. 10.1.1 with highest
weight vector ve, 1.1, . It is called the spin representation.*

The algebras U, (g"?) and U, (g*?) have a common classical subalgebra U, (D)
without ey, fo, koi. As a U,(D,) module, V decomposes into two irreducible

YAsalU p(gl’ YorU » (g>") module, it is a Kirillov—Reshetikhin module Wl(") up to specification
of the spectral parameter.
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components V, and V_ in (11.6). The space V(i) (resp. V(_jy-1) is isomor-
phic to the highest weight module V () (resp. V (w,—1)) in the notation of Sect.
10.1.1 whose highest weight vector is Ve, +...4¢, (X€SP. Ve,+-..te,_,)- Both V() and
V (w,-1) are called spin representations. As a U,(g"?) module, V is irreducible.
As a U,(g*?) module, each V, remains individually irreducible since the parity of
m| =m; + - - 4+ m, in vy is preserved.’ We will simply refer to T, .« as the spin
representation of U, @").

12.2.3 S""'(z) as Quantum R Matrices for Spin
Representations

Let Ayy = (T, x ® Ty, y) 0 A and APy = (T, x ® 7y, y) © AP be the tensor
product of the spin representations, where A and A°P are the coproduct (11.58) and
its opposite (11.59). For (r, ") # (2, 2), let R (z) € End(V ® V) be a quantum R
matrix of U, (g""") which is characterized, up to normalization, by the commutativity

R () Ary(9) = AP (R (1) (Vg € Up(@™)). (12.28)
For (r, r") = (2, 2), we set
R =R"T@QORT @) DR T (@) ®R(z) e End(VRV), (12.29)

where R%¢'(z) € End(V, ® Vo) (e, &' = %) is a quantum R matrix of U,(g>?)
which is characterized, up to normalization, by the commutativity

RO () Ay () = AP (R (2) (Vg € Up(g™?). (12.30)

‘We have taken the obvious fact that the R matrices depend only on the ratio x/y into
account. The relations (12.28) and (12.30) are generalizations of (10.12) including
the latter as the classical part. The main result in this chapter is the following.

Theorem 12.2 Up to normalization, S"" (z) by the matrix product construction
(12.8)—(12.9) based on the 3D L (12.1) with o = p_l/2 coincides with the quantum
R matrix of U, (g"”") as

Sr.r’(z) — :Rr,r/(zfl) at g = _pfl. (12.31)

3 They are Kirillov—Reshetikhin modules Wl(") and Wl("_l) up to specification of the spectral param-
eters.
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Proof 1t suffices to check

ST (e ®1+k ®e) = (1®es+e,@k)S™ (2), (12.32)
STOAR fi+ £ RN = (f®1+k7® £S5 (2), (12.33)
S () ks @ ky) = (ks @ ks)S™ (2) (12.34)

under the image by 774, « ® 74, , for0 < s <n.For0 < s < n, the formula (12.25)
coincides with (11.60) for i # 0. Therefore it is indeed valid if ¢ = —p~' thanks to
the proof of Theorem 11.3. Let us illustrate the proof of (12.32) for s = n using the
properties of the boundary vectors. The other relations can be treated similarly.

First we consider the case 7’ = 1. Then up to the normalization factor o"!(2), the
vector S”! (2)(en ® 1+ k, ® e,)(vi ® vj) is calculated by using (12.26) as

h i1
e 1(2) L2, -+ L1,2, Im) (Vige, ® vj 4+ P75 @ Vjse,)
= Y e IX L+ P LYY D0 va ® vp,

a,bes

(12.35)

where X = (g)hL;’l‘,’;’]‘ .. .L?"“:l"’jb"’:'. Similarly, (1 ®e, +e, ® k,)S"1(2)(v; ® vj)
yields

A @en+en @ka) D (XL 1) (va @ vp)

— - (1236)
= Y O XLE 7 Im) (Wa ® Vbse, + P 2 vate, © V).
a,bes
From the comparison of the coefficient of v, ® vy, it suffices to show
L+ P 2L = Ly = p L ) = (12.37)

where a,, b, i,, j, are denoted by a,b,i, j. As an example for (a,b,i, j) =
(1,1, 0, 1), it reads, from (11.14), as

0= (L =LY — p L) = (1 —a*™ — p> (—ga~"'K)) ). (12.38)

From g = —p~! this is indeed valid at « = p~'/? due to the property (3.134) of the
boundary vector |7, ). With the choice (g, o) = (—p~!, p~!/?), all the other relations
in (12.37) can be similarly checked by also using (3.135).

Next we consider the case r' = 2. The main difference from the ' = 1 case is
that (12.27) concerns the “two boundary sites” n — 1 and . Thus a similar argument
comparing the coefficients of v_ 4., 4, ® V.5, .5, leads to a quadratic relation
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Fig. 12.3 Correspondence 0 n

between the boundary (m| O:é é:@ [71)

vectors and the end shape of
the Dynkin diagrams. These
data are relevant to the LHS
and the RHS of (12.31) in

Theorem 12.2, respectively n-1

0
O
(n O> <@ Im2)
O
1 n

b a' b’ i+i'—1yab a' b
(L&D LOb g piti=tped  pat
i+1, i'+1,j' L j+1=i, ) +1
/ ! ! / (12.39)

ab—1yd b—1 btb' —1ya—1.bya—1b _
—LI.’J. Ll-,,j, —p Li,j Li,’j, )n2) = 0.

Consider the LHS for (a,d’,b,b',i,i’,j,j) =(1,1,1,1,0,0, 1, 1) for example:
(L1 LY — LVLe) — pLOLID ) = (1 — (@")? — p(—ga~'K)D) ).  (12.40)

1

From (g, o) = (—p~', p~/?), this is evaluated as

(3.137) (3.12)

(1 —@"? —Kk)n) (1—a*a™ —K)[np) "= 0. (12.41)
All the other relations in (12.39) can be checked similarly by using (3.137) and

(3.12). ]

Remark 12.3 Theorem 12.2 suggests the following correspondence between the
boundary vectors (n,|, |n,/) in (12.3) and the end shape of the Dynkin diagrams in
Fig. 12.2: (Fig. 12.3)

A similar correspondence is observed in Remark 11.4 and 14.3.

12.3 Commuting Layer Transfer Matrix

This section is a continuation from Sect. 11.6 from which we will borrow some
terminology. Given parameters u = (¢, ..., u,) and w = (wy, ..., w,), consider
the row transfer matrix of the vertex model associated with the spin representation
of Up(g’*”):

/ / 2 2
T(xlu, w) = Try (W S7% (xuy) - S}y (xup)) € End(V@---® V). (12.42)
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1, X:’)m [7:1)
12 ....... . 2mn ......... 32 |77r’>
I . 3 |7]r’>
2m2 ............ 22n
<7]r| Hm 2 [ Lt 21n Wy

el 1 2y

Fig. 12.4 A layer transfer matrix interpretation of the row transfer matrix of the U, (g" ') vertex
model associated with the spin representation. There are n black horizontal arrows 1q,...,1,
carrying V =~ C? which are being traced out corresponding to the periodic boundary condition.
There are also m blue horizontal arrows 31, ..., 3, carrying ¥, which are to be evaluated between
the boundary vectors. The mark e with z signifies an operator z". At the intersection of 1; and 3 js
there is a vertical black arrow 2;; carrying V, which corresponds toa3D L Ly, 2;;,3;. The parameter
Wi is taken as u; = xu; asin (11.84)

To each S (xu;), labels have been attached indicating the spaces it acts. The label
11 1,

1=(,4,...,1,) is the one for the auxiliary space V = VI ®---® V and 2; is the

2, 2 2jn 2 2,

one for the jth component V=V ® ---® V in the quantum space \17 Q- --®V.

For the symbol w*/, see (11.87). The parameters x, u and w are spectral parameters,

their inhomogeneity and the boundary field. From the Yang—Baxter equation (12.7)

and the weight conservation (12.12), it forms a commuting family:
[T (x|u, w), T (x'|u, w)] = 0. (12.43)

Theorem 12.2 endows T (x|u, w) with an interpretation as a layer transfer matrix
of a 3D lattice model with a special boundary condition explained below.

The formula (12.42) corresponds to looking at Fig. 12.4 from the SW, or evaluating
(nr1(- -+ )|n,) first. On the other hand, one can look at it from the SE or first take the
trace over 1y, ..., 1,,. From (11.41), it leads to an alternative interpretation:

T(xlu, w) = (%" ) S35 (wy) -+ $' 3(wy) |0, ) " € End(VE™). (12.44)

33 3,

Here3 = (34, ..., 3,;) is the label of the auxiliary space W = ?Lq ® - ® F4along

which the product of S is taken and (n,|®"(---)|n,)®™ is evaluated. The label
2, 2y 2,

2; = (24, ...,2yj) signifies the jth component V=V@®: -V of the quantum

2 2,
space\l7®---®V: y@mn,
The operator (12.44) arises from the dual pairing between W = F 2" =
@kzo W,(Cm) in (11.11) and its dual. From the weight conservation (11.45) and the
decomposition (11.46), it is expanded as
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T (x|u, w) = &P KT (u, w), (12.45)
k>0,1=(,....[,)€{0,1,...,m}"
Tea(u, w) = (% Ju S (wy) - S (w) In ) € End(V)" ® -~ @ V™),
(12.46)

where the vector |n;7 ;) is the projection of |n,)®™ onto W,((m) in (11.11). The vector
(n’r’fk| is the dual of |77,’,f‘k). From (12.3) they are explicitly given as finite sums:

m |r/d1)®...®|r/dm>
|nr’,k) = Z ( r’z) ( r’2) 5 (1247)

(dy,edp)EB™ q" )a, ",

(rd1| ®® (rdm|
= Z 2 2 . (12.48)

@ dm)EB]fm) (q )d] e (q )dm

See (11.10) for the notation B,Em)_ Now the commutativity (12.43) implies

[Tea, W), Tea@, W] =0 (kK € Zs). (12.49)

In 2D terminology, the 3D picture in Fig. 12.4 and Theorem 11.5, 12.2 show the
equivalence of the spectral problem for row transfer matrices of the vertex models
associated with the spin representations of U_;-1 (B,(ll)), U_j (Dr(ll)), U_j (D,(IZJ:])
on length m system with the periodic boundary condition and the U, (Afnl)A) vertex
model associated with the (anti-symmetric tensor rep.) ® (symmetric tensor rep.) on
a length n system with a special boundary condition.

12.4 Examples of S1(z), $*1(z), §*2(z) for n = 2

Let us present explicit formulas of §""'(z) for n = 2.
S1:1(z) is given as follows:

vij @ vij = v;; Qi (i, j €{0,1}),
q(z — D ® vor (g + 1)zvo1 ® voo

Voo @ Vg1 —>

algz+1) qgz+1
q(z— D ®vip (g + 1)zvio ® voo
Voo ® vio + )
algz+ 1) qz+1
(z—1(gz — Dq*voo ® vi1  g*(g + D(z — Dzvg @ vig
Voo & V11 > 3 2 2
@2(qz + 1) (z* + 1) algz+ 1) (zg* +1)

q(g+ D@ —Dzvp®va @+ 1) (g% + 1) 2%v11 @ voo
a(gz+1) (zq*> +1) (qgz+1) (zg>+ 1)

’
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(@ 4+ Do @vor  a(z — Dvor ® voo
Vo1 @ Vg > - )

qz+1 gz +1
q(g+1D(z—Dvp®vi1 gz —1)(gz — 1)vor @ vio
Vo1 Q@ V1o H> -
a(gz+1) (zq> 4+ 1) (qz+ 1) (zq> +1)
L @tz (20> —zg +g+ 1 vie®vor (g + Dz = Dzoi ® oo
(gz+1) (z¢*+1) (gz+1) (z¢*+1)
q(z— Dy ®vi1 (g + Dz ® vy
Vo1 Q@ V11 >
algz+1) qz+1
(@ + Do ®vio  alz— 1vio @ voo
V1o ® Voo > - )
qz+1 qz+1
> g+ Dz —Du®vii gz — gz — Dvig ® vy
V0 @ Vo1 H> -
a(qz+1) (zq> +1) (qz+1)(zq> +1)
_qlg+Daz—Dzvy ®ve | (g +1 (2¢* +2g — g + 1) v @ vy
(qz+1) (z¢*+1) (qgz+ 1) (z¢*+1) ’
gz —Dvig®vir (g + Dzvyg ® vig
vy ® V11 >
algz+1) qz+1
a’(z—D(gz— Doy ®veo  q(g + Da(z — Dvgr ® vig
V11 ® Voo > -
(qgz+ 1) (zq*> +1) (gz+ 1) (zq*>+1)
@+ Daz=Dv®vyr  (g+1) (g% + 1) voo ® v1y
(gz+ 1) (z¢*>+1) (qz+1(z¢>+1)
(g + Dvor ® v alz — Dy @ vor
v @ vop > — )
qz+1 qgz+1
(g+Dvo®vyr  alz—Dv Q@
V11 Q vip > - .
qz+1 qz+1

5%1(z) depends on z only via z2. It is given as follows:

vij @ uij = vij Qv (i, j €{0,1}),
(g + Dz%v01 ®voo | q(z2 — Do ® voi

Voo ® vo1
00 ® Vo1 | « (@2 +1)
(q+ DZ2vio®voo | q(z2 — Dvgo ® vio
Voo ® V10 > 3 3
gz +1 a gz +1)
o0 @ V11 s (g + D2 = D @i | ¢* (& = D(g*z> — Do ® vi
a(gz2+1) (227 +1) a?(qz2 +1) (z2¢° + 1)
@+ D2 = Do v (g + D (¢ + 22 —q + 1) vi1 ® voo
a (g2 +1) (¢ +1) (@2* +1) (Zq* +1)

(¢ + Do ® w1 (z* = Dvor ® voo
qz? +1 qz? +1

vo1 ® Voo >



12.4 Examples of $©1(z), $%1(z), §%2(z) forn =2 211

Vo1 ® vip >

@+ D2 (¢ =2 + > + Do ® v gq(g + Daz’(2 = Dvi & voo

(922 +1) (Z¢° +1) (a2* +1) (Za* +1)
q(q + (@ = D ® v _ q(z* — 1)(¢?z* — Do ® vio

vo1 @ Vi1 >

v10 ® voo >

v10 ® vo1 >

a(gz2 +1) (24 +1) (g2 +1) (2¢° + 1)

(g + Dvi ® vorz?

5

q(z% — Dvor ® vpy

qz? +1

)

alg+1)

(g+ Do ®vio a(z2 — Dvip ® voo

g2 +1

5

qz? +1

q%(q + D% — Dugo ® vy _ g%(g + Daz?(z2 — D1 ® voo

a(qz2+1) (4% + 1) (qz2+1) (243 +1)
(22 =)@ = Dup®vor . @+ 1) (24> + 2% — g + 1) vo1 ® vio

V1o ® V1] >

V11 ® voo >

(a2 +1) (Z2¢° + 1) (a2 +1) (22¢* + 1)

(g + DZ2v11 ® vig

)

4@ — Dvig @ vy

g2 +1

)

@l +1)

(@ = 1)(@*2 = Do ® vy ¢(g + Dz = Dvor ® vig

(922 +1) (¢ + 1) (a2 +1) (Zq* +1)
@+ e =Dugeva | @+ (¢’ —2¢* +¢* + v @

V11 @ vo1 >

V1] @ vip >

(q2% +1) (2¢* +1) (g2 +1) (2¢° + 1)

(g + Dvor ® v1y

5

a(z2 — Durr ® vor

g2 +1

5

g2 +1

(g+Dvio®@vir a(z2 — Do ® vio

g2 +1

g2 +1

§'2(z) can be obtained from the above S>!(z) by applying (12.19).

§22(z) depends on z and « only via z? and «

vij ® vij >

2 up to overall a*!. It is given as follows:

vij @i (1, j €{0,1}),

—1 —1
Voo ® Vo1 > —qa voo ® Vo1, Voo ® V1o > —ga Voo @ vio, Vo1 & voo > vl & Voo,

Voo ® V11 >
vo1 ® vig >
Vo1 @ Vi1 >
V10 ® Vo1 >

vio ® vy >

v11 ® vgo >

¥ =D ®vi1 (g% — Dz?v11 ® vo

(g7 = 1)

)

q2z2 -1

(¢> = DZvio®vo1 gz = Dugi ® vi

q2Z2 —1

-1
—qo Vo1 @ vy,

5

qzzz —1

V10 ® voo > av1p ® oo,

(¢> = Duor ®vio (2> = Do ® vo1

qZZZ —1

5

q2z2 —1

-1
—qo Vo @ vir, Vi @ vl > avil ® vor, Vi1 ® vip > avy) @ vio,

2@ — Do ®@vo | (g% — Do ® vy

q222 —1

q2z2 —1
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12.5 Bibliographical Notes and Comments

The content of this chapter, save for Sect. 12.3, is based on [107] where the reduction using the
boundary vectors was introduced with a proof of Proposition 3.28. As for the relevant quantum R
matrices for the spin representations, a description in terms of spectral decomposition was shown
earlier for UP(B,(ll)) and U,,(D,(ll)) in [121]. The eigenvalues in the spectral decomposition for the
U p(D,(lZJ:I) case is available in [107, Eq. (6.15)]. The matrix product form (12.9) provides a most
handy and programmable formula for these R matrices via (12.31). It indicates a recursive structure
of the R matrices with respect to rank n observed in earlier works including [121].



Chapter 13 ®)
Trace Reductions of RRRR = RRRR Geda

Abstract Like RLLL = LLLR,thetetrahedronequation RRRR = RRRR admits
various reductions to the Yang—Baxter equation leading to several families of solu-
tions in matrix product forms. In this chapter we focus on the trace reduction as
done for RLLL = LLLR in Chap. 11. We identify the solutions with quantum R
matrices of Uq(Afll_)l), present their explicit formulas, construct commuting layer
transfer matrices, and demonstrate that the birational versions reproduce the distin-
guished example of set-theoretical solutions to the Yang—Baxter equation known as
geometric R.

13.1 Preliminaries

Let n > 2 be an integer. We retain the notations for the sets B " = (Zso)", B,E"),
the vector spaces W™ = Tq@” and W,(:') having bases |a) labeled with n-arrays
a=(ay,...,a,) in (11.8)=(11.13). We will also use |a|=a; +---+a,, a¥ =
(au, ...,ap) in (11.4) and the elementary vector e; in (11.1). As for the g-oscillator
algebra Osc, and the Fock space ¥, see Sect. 3.2. Except in Sect. 13.8, n is fixed,
hence the superscript “(n)” will be suppressed.

1 2 3
In Chap. 3, we have introduced a linear operator Rj>3 € End(F, ® F, ® F,)
which we called a 3D R.
In Theorem 3.20 it was shown to satisfy the tetrahedron equation

R124R 135 R236 Rass = Rus6Ra36R135R124, (13.1)

1 6
which is an equality in End(F, ® - - - ® ).
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13.2 Trace Reduction Over the Third Component of R

The following procedure is quite parallel with that in Sect. 11.2. Consider n copies
of (13.1) in which the spaces labeled with 1, 2,3 are replaced by 1;, 2;, 3; with
i=1,2,...,n:

(Ry,2,4R1,3,5R2,3,6) Rase = Rase (R2;3,6R1,3,5R1,2,4)-
Sending Rys6 to the left by applying this relation repeatedly, we get

(R1,2,4R1,3,5R2,3,6) - - - (R1,2,4R1,3,5R2,3,6) Rase

(13.2)
= Rus6 (R2,3,6R1,3,5R1,2,4) - - - (R2,3,6R1,3,5R1,2,4)-

One can rearrange this without changing the order of operators sharing common
labels, hence by using the trivial commutativity, as

(R124+ - R1,2,4)(R1,3,5 - Ry1,3,5) (R2,3,6 - - - R2,3,6) Rase

(13.3)
= Rus6(R2,3,6 - R2,3,6)(R1,3,5 - - R1,3,5) (R1,2,4 - - Ry,2,4).
The weight conservation (3.49) of the 3D R may be stated as
Rase x™ (xy)™ y™ = 2™ (ry)™ y™ Rase (13.4)

for arbitrary parameters x and y. See (3.14) for the definition of h. Multiplying this
by (13.3) from the left and applying R?> = 1 from (3.60), we get

Rase x™ (Ry,2,4 - Ri,2,4) (X)) (Ry,3,5 - R1,3,5) Y™ (Ra,3,6 - - - Ro,3,6) Rase

= (Ry36 - Ro,3,6) (X)) (Ryj3,5 -+ Ria,s)x™ (Rija -+ Ryo,9).
(13.5)
This relation will also be utilized in the boundary vector reduction in Chap. 14

(Fig. 13.2).
4 5 6
Take the trace of (13.5) over ¥, ® ¥, ® ¥, using the cyclicity of trace and

R? = 1. The result reads as

Ry =
2

Fig. 13.1 A graphical representation of the 3D R, where 1, 2, 3 are labels of the blue arrows. Each
on them carries a g-oscillator Fock space 7
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Tra(x™ Ri24 -+ Ri,2,4) Trs((x)™ Ryy3,5 -+ Ri3,5) Tre (Y™ Ra3,6 - - - Ro,3,6)
= Tre(y™ Ray3,6 -~ Ro3,6) Trs ()™ Ryy35 -+ Riya,s) Tra(x™ Ryjoa -+ Rijo,4).

(13.6)
Let us denote the operators appearing here by
tr3 h ! 2
Ry%5(2) = Tra(z“Ri204 - - Ri,2,4) € End(W Q@ W),
1 3
RY3(2) = Trs (2™ Ri3,5 - - Ry 3,5) € End(W @ W), (13.7)

2 3
Ry3(2) = Tre(2" Roz 6+« Ry,3,6) € End(W @ W).

The superscript tr3 indicates that the trace is taken over the 3rd (rightmost) component
of R, whereas Tr; in RHSs signifies the label j of a space. A similar convention will
be employed in the subsequent sections.

Those appearing in (13.7) are the same operators acting on different copies of
1 1y 1, 2 2y 2, 3 34 3,
WspecifiedasW =%, ® -+ - @ F,, W=F,Q0 - F,andW=F, @ --- @ F,.
Now the relation (13.6) is stated as the Yang—Baxter equation:

RSO RTLRYE () = Ry RSy Ry (x). (13.8)

Suppressing the labels 1, 2 etc., we set

RU@(D) @) = Y R™(2)i}1a) ® b). (13.9)
a,beB
A
—— ... \/6
...... /\ 5
1 1 |
U 2 N 4
2] 31 22 32 2n 3n
4 N N
AN ~ LA ~
/ 31 3 3,
A N VA I VAR
1 1 1,
', > 9, 2,

Fig. 13.2 A graphical representation of (13.2) and (13.3). It is a concatenation of Fig. 2.1 which
corresponds to the basic RRRR = RRRR relation. Each blue arrow carries 7,
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Fig. 13.3 Matrix product
construction by the trace
reduction (13.10) is depicted
as a concatenation of Fig.
13.1 along the blue arrow
corresponding to the third
component of R. It is closed
cyclically reflecting the trace

Then the construction (13.7) implies the matrix product formula

R™ @) =Tr("RM - R (13.10)
in terms of the operator Rl?"j” € Osc, introduced in (2.4) and (2.5). In our case of the
3D R, it s explicitly given by (3.69).

By the definition, the trace is given by Tr(X) =", _, U?ijnl:;) = =0 <"(’(|])2‘)|;">.
See (3.12)—(3.17). Then (13.10) is evaluated by using the commutation relations of
g-oscillators (3.12) and the formula (11.27). The matrix product formula (13.10)

may also be presented as

R (Z)?Jh — Z 7€ Rabicr pabaca - panbacy (13.11)

itjica Nz jocs injnC
C1yeesCn >0

in terms of the elements Rf‘ﬁ" of the 3D R in the sense of (3.47). Explicit formulas
of Rf‘jl}f are available in Theorems 3.11, 3.18 and (3.84) (Fig. 13.3).
From the weight conservation (3.48), cg in (13.11) is reducible to ¢; as

cp=cr+ Y (ba— ja), (13.12)

1<a<p

therefore (13.11) is actually a single sum over c.
From (3.63), (3.48) and (3.70) it is easy to see

R™(2)} =Ounlessa+b=1i+j and |a| = [i|, b = |jl. (13.13)
Vi 11 @i (@)
R™(2)™® = R (2)L ), e (13.14)
] b ,E @)ac (@),
R™ () = /=0 R ()7 (13.15)
where o(a) = (ay, ..., a,, ay) is a cyclic shift. The property (13.13) implies the

decomposition
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R™(z)= @ R,  R() € End(W, @ W,,). (13.16)
I,m>0
The Yang-Baxter equation (13.8) is valid in each finite-dimensional subspace W; ®

1 2 3
W, W, of W® W ® W. In the current normalization we have
R () (ler) ® Imer)) = Az, q) ller) @ [mey) (13.17)

for any 1 < k < n, where the factor A, ,,(z, g) is given by

@7z q%)m
Az q) = 3 2RI = (—1yngmin 20 m (13.18)
! (G725 qP)ms1

c>0

The second equality is shown by means of the general identity like (13.82). General
elements RZ“:” (z)?}’ also become rational functions of g and z.

Example 13.1 Substituting the formulas in Example 3.17 into (13.10) and evaluat-
ing the trace we get

(qm—a/-z_qa/+l)/D ] Zb,

R ae, — 2@ 42y m—aj—aj ——ay .
m,l(Z)i e z(1—¢q )gq /D j<b,
(1-— q2ab+2)qab+1+ah+z+---+aj71/D j > b,

where D =(1—¢"'2)(1 —¢"*'z), and a,i€ B, and a+e, =i+ e; are
assumed.

From the remark after (3.71), this should coincide with (11.36) divided by
0" (2)|¢=1 in (11.33) provided that a,i € 5,,' and aj=1i; =0 when j = b. This
can be checked directly.

13.3 Trace Reduction Over the First Component of R

The following procedure is quite parallel with that in Sect. 11.3. Consider n copies of
the tetrahedron equation (13.1) in which the spaces 3, 5, 6 are replaced by 3;, 5;, 6;
withi =1,...,n:

Rys;6; Ro3,6, R13,5, R124 = R124R13;5, Ro3,6, Rase, -

Sending Rj»4 to the left by applying this repeatedly, we get

I'See (11.3) for the definition of s,,.
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61 6, 6,
- Y ... 1
______ N/,
NN N\,
31 51 32 52 3n Sn
) NN R
_ 4;\ | 61 © 60
S ZALRVAA S
7
3 3, 3,

Fig. 13.4 A graphical representation of (13.19) and (13.20)

(R45,6, R23,6, R13,5,) - - - (Ras,6, R23,6, R13,5,) R124

(13.19)
= Ri24(R13,5 R23,6, Ra5,6,) - - - (R13,5, R23,6, R45,6,)
which can be rearranged as (Fig. 13.4)
(Rys,6, - - - Ras,6,) (Ra3,6, - - - R23,6,) (R13,5, - - - R13,5,) Ri24 (13.20)

= Ri24(Ry35 - - Ri3,5,)(Ra36, - - - Ro3,6,) (Ras6, - - - Ras6,).

1
Multiply x™ (xy)"y™ R} from the left by (13.20) and take the trace over ¥, ®

2 4

F ¢ ® F 4. Using the weight conservation (13.4) we get the Yang—Baxter equation.

3 5 6
RSG(ODRS ¢(xy)Ry5(x) = Ry5(x) Ry (xy) R4 (y) € End(W @ W @ W),
(13.21)

3 3 3, 5 5 5n 6 61 6,
where W=F,®---®F, W=F,® - ®F, and W=F, ®---®F,. The
superscript tr; signifies that the trace is taken over the 1st (leftmost) component
of the 3D R as

5 6

Ri'6(z) = Tra(z™ Ras,, - - - Ras,6,) € End(W @ W), (13.22)
3 5

R35(x) = Tri(2™ Ris;s, -+~ Ri3,s5,) € End(W ®@ W), (13.23)

3 6
RY(2) = Tra(2" Rozye, - -~ Ras6,) € End(W ®@ W). (13.24)
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These are the same operators acting on different copies of W ® W. We will often
suppress the labels 3, 5 etc. The expression (13.22) has already appeared in (11.40)
and it is depicted as the left diagram in Fig. 11.5. The operator R" (z) acts on the
basis in (11.13) as

RU@H @) = )Y RG] la) ® [b), (13.25)
a,beB
T kia1by pkoaxb. kpanby
R 1(Z)?JP = Z Z szlilljlleiizzjzz - Rklinjn . (13.26)
kiyeosky >0

Comparing this with (13.11) and using (3.62), we find that R"!(z) is simply related
to R (z) as

R () = R™@)M ie. R (z) =PR™(@)P, (13.27)

where P(u ® v) = v ® u is the exchange of the components. Consequently, all the
properties in (13.14)—(13.17) are valid beside minor changes in (13.15) and (13.17):

R" ()} =Ounlessa+b=i-+j and |a| = i, [b| = |jl, (13.28)
R"()= P R, (@. R, () € End(W, @W,,), (13.29)
1,m>0
R (2)(llex) ® [mer)) = Awi(z, q) ller) ® |mey), (13.30)
i @@
R ()™ = RN () A T (13.31)
Y ab ,E (@)a, (@),
b bi—j o(a)o(b)
R = 2" "R (D7 4 eii) » (13.32)

where A, (z, ) in (13.30) is given by (13.18),.,,. The Yang—Baxter equation
(13.21) holds in each finite-dimensional subspace W, @ W; @ W,, of W @ W @ W.

13.4 Trace Reduction Over the Second Component of R

The following procedure is quite parallel with that in Sect. 11.4. Consider n copies of
the tetrahedron equation (13.1) in which the spaces 1, 4, 5 are replaced by 1;, 4;, 5;
withi =1,...,n:

Ry;5,6 R1,04;, R1;35, Roze = RoseRy;35, Ri,24; Rays;6-

Here we have relocated R by using R = R~' (3.60). Sending R»36 to the left by
applying this repeatedly, we get
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1 1, 1
5 5, "

A

4

Fig. 13.5 A graphical representation of (13.33) and (13.34)

(R4,5,6R1,24, R1,35,) - - - (Ra,5,6R1,24, R1,35,) Roze

(13.33)
= R236(Ry,35, R1,24) Ray5.6) - - - (Ry,35, R1,24, Ra,5,6),
which can be rearranged as (Fig. 13.5)
(R4;5,6 - Ra,5,6) (R1,24, - - - R1,24,) (Ry,35, - - - Ry,35,) Raze (13.34)

= Ry36(R1,35, - - Ri,35,) (R1,24, - - - Ry,24,)(Ra;5,6 - - - R4,5,6)-

2
Multiply x™ (xy)" y" Ryt from the left by (13.34) and take the trace over 7, ®

3 6
¥4 ® ¥ 4. Using the weight conservation (13.4) we get the Yang—Baxter equation.

trs tro try try tro tr3 1 4 5
R4,5(y)R1,4(x)R1’5(xy) = Rl,s(xy)R1,4(x)R4;5(y) €End(W WQW),
(13.35)
1 1, 1, 4 4 4, 5 5 5,

where W=¢,®---®F, W=, --F, and W=F,Q - -QF,.

The superscript tr; signifies that the trace is taken over the second (middle) compo-
nent as (Fig. 13.6)

1 4

R;ri(z) = Try(z™Ry,24, - -~ R1,24,) € End(W @ W), (13.36)
1 5

Ry%(2) = Tr3(z™Ry35, -+~ Ry,35,) € End(W ®@ W). (13.37)

These are the same operators acting on different copies of W ® W. We will often
suppress the labels like 1, 4. The operator R"(y) has already appeared in (11.40).
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h
I 4
1> 4y
1n 4,

Fig. 13.6 A graphical representation of (13.36). The one for (13.37) just corresponds to a relabeling
of the arrows

The operator R (z) acts on the basis as

Re@(D) @) = ) R=(2)i} 1a)®1b), (13.38)
a,beB
RO = 3 SRR RAE. 1339)
ki,....k,=0

Comparing (13.39) and (13.11) using (3.86) and (3.62), we find

n 2y, .
Rtrz (Z);if — (_q)71+22:1 k(jx—br) (l—[ (q2)1k) Rtr3((_q)nz).{:; (1340)
k=1 (q )bk

fora,i € B;andb, j € B,,. One can derive properties similar to R"!(z) as follows:

R‘rz(z)?}’ =O0Qunlessa—b =1i-—j and |a| = [i, |b|] = |jI, (13.41)
R"™(7) = EB R,(2), R(2) € End(W, ® W,), (13.42)
I,m>0
r _ ler) ® |mey)
Ry @) (ler) ® |mes)) = 5 g (13.43)
R () = R (5 (13.44)
R™ () = P R ()7 @70 (13.45)

oo e 2y, (g?):
R @ = R, [ LD

. (13.46)
@)@,
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13.5 Explicit Formulas of R™1(z), R"2(z), R™3(2)

The main result of this section is the explicit formulas in Theorem 13.3 which are
derived from the matrix product construction by a direct calculation. The detail of
the proof will not be used elsewhere and can be skipped. It is included in the light
of the fact that the relevant quantum R matrices (Theorems 13.10, 13.11 and 13.12)
are very fundamental examples associated with higher rank type A quantum groups
with higher “spin” representations.

13.5.1 Function A(2)}}

For integer arrays « = (a1, ..., o), B = (B1, ..., Bx) € z* of any length k, we use
the notation

el = > a &= (o1, ), (13.47)
1<i<k
(@, B)= )Y ap @B =) wp, (13.48)
I<i<j<k I<i<k

where |a| appeared also in (11.4) for @ € {0, 1}".
For parameters A,  and arrays 8 = (B1, ..., Bk), ¥ = V1, --., Y&x) € Z’;O of any
length &, define

vl —
@, (7182 ) = g ()7 B, v1B: ), (1349)
. L. k )
B,y 18; 1 ) = DG Dialy (’3) (13.50)
(s 98y 1 \Yi/g

From the definition of the g-binomial in (3.65), 5‘, I1B; X, n) =0 unless y; < B;
for all 1 <i < k. We will write this condition as y < .

Given n component arrays a,i € By and b, j € B,, (see (11.10) for the definition
of By), we introduce a quadratic combination of (13.49) as

A(Z)?}) — q(i,j%(b,a)

x Y Pp@—Kk@+b-K¢"'z.g7 ") Pp &g "z g,
K
(13.51)
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where the sum ranges over ke Z” 1.2 Due to the remark after (13.50), it is actually
confined into the finite set 0 < k < mm(B, j) meaning that 0 < k, < min(b,, j,.) for
1 <r <n— 1. A characteristic feature of the formula (13.51) is that ®,> depends
ona=(aj,...,a,) € Bjviaa=(ay,...,a,—1) and ! by which the last component
is taken into account as @, = [ — |a|. Dependence on b and j is similar. Substituting
(13.49) and (13.50) into (13.51) we get

n—1 .
—i (6]) b—k.k K| aa+ba_ka Jo
A f:l!) = (=1 b, ],, M 2(j—b—k.K)+(+m)|k|
@3 = (=1) Z ]:[l b))

m—l

w@" 'z g )\a—ﬂ(‘] "z a)jw@ " P
w 7l ’
(@772 4% aib-x)

= (i, j) + (b,a) +may, + Lj, + (by — ju)(in + jo + 1) — 2ml. (13.53)

(13.52)

The factor (qz) i/ (qz)bn here originates in (g ’zm)lg‘ /(q ’2’”)“:' contained in (13.51).

Remark 13.2 By an induction on k, it can be shown that

Yo o@Bm=1 (VB @) (13.54)

ye@Zso)k, y<B

This property has an application to stochastic models, where it plays the role of the
total probability conservation. It can also be derived from Proposition 13.13 and
(13.132).

13.5.2 A(z)?}’ as Elements of R"'(z), R"2(z) and RY3(z)

Theorem 13.3 Fora,ic€ B;, b, j € B,, the following formulas are valid:

Arm(z T RB@F = P A@, (13.55)
Az 'RT@F = P AN, (13.56)

n 25 .
Ami(=)"z. )T R () = (—g) 7/ 2a=t @Ua=be) (]‘[ ZZ;Z) st A= I3,
a=1 o

(13.57)

where A} 1, (2, q) is defined by (13.18).

2K is just an array of summation variables. We have not introduced an n component array k which
is related to it as in (13.47).
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13.5.3 Proof of Theorem 13.3

The formulas (13.56) and (13.57) follow from (13.55) by virtue of (13.27) and
(13.40). Therefore we concentrate on (13.55) in the sequel. The following lemma is
nothing but a quantum group symmetry (13.105) with R"(z) replaced by the matrix
having the elements A(z)?}’.

Lemma 13.4 Suppose n > 3. For 1 <r <n — 2, the function A(z)?}’ satisfies the
relation

bri1 + e A + ¢ a1 + 1A

. ab i —i . a,b (13.58)
—lir1]2 A — 4" lirrlg2 AR) Y =0

fora+b=i+j+7. Here 7 =e, — e, with e, being an elementary vector in
(11.1). The symbol [m],: is defined in (11.57).

Proof Letk = (ki, ..., k,_1)in(13.52). It turns out that (13.58) holds for the partial
sum of (13.52) in which ky(a % r,r + 1) and |K| are fixed. Under this constraint
A(z);} is proportional to

(i.j)—(b.a) 2(jr —byr—k Yy 1 da + b — ko Ja 13.59
q Z‘I H( by 2 \ka/ 2 (1359)

a=r,r+1

up to a common overall factor. The sum here is taken over k., k.1 > 0 under the
condition k, + k.1 = k for any fixed k. There is no dependence on the spectral
parameter z owing to the assumption r 7~ 0, n — 1. Substituting this into (13.58) and
using (7, j) = j,+1 and (b, 7) = —b,, we find that (13.58) follows from

q—az—bz—l(l _ q2b2+2) Zqz(_/l_bl_kl+l)k2

X<a1+b1—k1—1) <a2+b2—k2+1> (jl) <j2>
b1—1 q? b2+1 q? kl q2 k2 q?

+ qul—bg—az—l(l _ q21t2+2) Zqz(j|—b]—k|)k2

X<a1+b1—k1—1> <a2+b2—k2+1) (]1) (]2>
by 7 b, @ ky o ko P

_ qufiz(l _ q2i2) Zqz(]’l*b]*kl)kZ

y <al + by — kl) (az +by — kz) (jl) (jz)
b )\ b)) ),

_ q—iz—jz(l _ q2j2) Zqz(jl_h]_kl+l)k2

X<al+b1—kl> <a2+b2—k2) (j1+1> (j2—1> —0
oo )\ b ) Uk ) Uk )T

(13.60)
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where we have denoted a,, a, 41 by ai, a, for simplicity and similarly for the other let-
ters. Thus in particular, a; + by =iy + j1 + l and a, + by, = i» + j» — 1, reflecting
the assumptiona +b =i+ j+ 7.

The sums in (13.60) are taken over ki, k, > O with the constraint k; + k, = k
for any fixed k. Apart from this constraint, the summation variables k; and k, are
coupling via the factor g ~2%>, Fortunately this can be decoupled by rewriting the
¢*-binomials as

(aa + ba - kot) (ja)
be AV

(= 1)leg R+ Qi—2but Dk @54 a, (a7 4P, (@ P,
(g% q*)a, (q 72025 q2);, (g% g%k,

(13.61)

In fact, this converts the quadratic power of k; and k; into an overall constant
g Ki—k-2k — ;=¥ which can be removed. Consequently, each sum in (13.60)
is rewritten in the form Zkl+k2=k (Zkl >0 X&) (Zkzzo Y},) for any fixed k. Thus intro-
ducing the generating series Y ,.,¢*(---) decouples it into the product
k20 £ Xa) (X, =0 £ Vi) Each factor here becomes g>-hypergeometric defined
in (3.73). After some calculation one finds that the explicit formis given, up to an over-
all factor, by the LHS of (13.62) with the variables replaced as ¢ — ¢, uy — q~>%,
Vg — q 2% by, — g~ for a = 1, 2. This also means ¢ %' = g*v,/w; and
g% = q~%v,/w,. Therefore the proof is reduced to Lemma 13.5. (]

Lemma 13.5 The g-hypergeometric ¢ (”éb; ;) =10 (”éb; q, g) in (3.73) satis-
fies the quadratic relation involving the six parameters uy, vy, We (@ = 1, 2) in addi-
tionto q and ¢:

_ up, w Uz, w - -
ul(l—ullvl)(q—v2)¢< : ]§q§)¢( 2,1 2;142]U2w2]§>
qui q V2

-1
F (1 —u(g — v)d (q”ql;l“" : ;) ¢ (q 12 w2, M21v2w21§>

g~ ',
_ up, w Uz, Wy  _ _
—(1—1)1)(6]—0211)21)(15( 1;§>¢< ;M21U2w21§>
V1 Uy
_ u, g 'w Uy, qwy  _ _
—vzwzl(l—vl)(l—mw( ‘ qv ‘;q;>¢< 25 2;u21v2w2‘c) =0.
1 2

(13.62)

Proof First, we apply

a,b _ (c—abz) a, b z(a—c)(b—c) a, b
"’( ¢ ’C)_ c(l—z)¢’( c ’qz)+c(1—c>(1—z>¢<qc’q§>

(13.63)
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to the left ¢’s in the second and the third terms to change their argument from ¢ to g¢
to adjust to the first and the fourth terms. The resulting sum is a linear combination
of

_ (MI,U)]. ) . (qul,wl. )
X=9¢ ;q¢ ), Y=2¢ 1q8 ), (13.64)
qui qui

—1
¢>(qu12’wl;q§>, ¢<u1’wl;q§)» ¢><ul’q wl;qi)- (13.65)
q3v vy U1

Second, we express (13.65) in terms of X and Y by means of the contiguous relations:

¢<qu]2’w]: >=_ v =gv) o (=gqu) —mwid) (13.66)
q-v] uy(quy —w)¢ uy(quy —wy)¢
" (ulvwl;q{> _ (wr—wp) X+ (1 —upvy Y. (13.67)
v] ur(l—vp) ur(l—vy)

& <u1,611w1;q§> _ G — v (vi(g —wy) —g(l — v1)w1§)X

V1 qui(l —vp(gvy —w¢
(1 —ugwi) (g —vi)g —wp) — g —vi)(quy — wi)¢)
+ Y.
qui(l —vp)(qvy — wi)¢

(13.68)

As the result, the LHS of (13.62) is cast into the form AX + BY where A and B
are linear combinations of the four right ¢’s all having the argument u, lvng_ Iz
The coefficients of the linear combinations are Laurent polynomials of ¢. Then it
is straightforward to check A = B = 0 by picking the coefficient of each power
of ¢. (I

In the remainder of this section, (¢),, always means (¢; ¢2),, for any ¢ .}

Lemma 13.6 The formula (13.55) is valid provided that a = (ay, . . ., a,) has van-
ishing components as a, = --- = a,_1 = 0.

Proof Throughout the proof a should be understood as the special one a =
(a1, 0,...,0,a,). We also keep assuming a,i € B;,b,j€ B, and a+b=i+]
following Theorem 13.3. Then we have the relations like

l:al +an=ln+|i|s m=bn+|5| :]n+|j|’ (1369)
Ay + by = iq +j0( (=1, n, by = iq +jo¢ (a 7& L, n). (1370)

3 This is cautioned since the convention (3.65) may wrongly indicate (q_z"‘)kl = (¢~ %, q‘Zk)k]
for example.
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Substitute (3.87) into the sum (13.11) for R (z)?}’ withay, =--- =a,_1 =0. The
result reads as

i b —ka\ (J
R ()2 — (—1)yn @b — kit e g0 Ao o o a
@ =(=D"q Y (=nhthage T b )

1,k skn a=1,n
(13.71)
=@+J,0+ ) kalky —2¢, — 1), (13.72)
a=1,n
cp=cit Y (ba— ja). (13.73)

I<a<p

where the sum (13.71) extends over ¢ € Zs¢ and ky, k, € Z>o. See (13.48) for
the definition of (a, j) and (a + j, ¢). The relation (13.73) is quoted from (13.12).
It leads to (a+j,¢)=(b—j,a+j)+( +m)c; and ¢, =c; + |b| — [jl =c1 +
Jn — b, due to (13.69). Thus the sum over c; yields

1 o b .Ot
R™ (@)} = (=1)"g* Z (qu-‘v)-m w2 4" [1 <a " ) z(ljc ) )
q° N\ q

k>0 k1>0 a=1,n
(13.74)
@2 = ki + (k= ki) =k +2(by — )k — k1), (13.75)
g3=m—(a,j)+(b—ja+j) (13.76)

Here and in what follows, k, is to be understood as k, = k — k;. Both sums are

actually finite due to the non-vanishing condition of the ¢2-binomials.* For example,

from k, < min(ay, jy), k is bounded as k = k; + k, < min(l, m) < m at most.
Rewrite the ¢*-binomial factor with @ = n as

N bn _ kn .n AW 2a, —2k,+2
<a + ) <]> _ (q2 )jn(q2 ' )b,,’ (13.77)
by 2 \kn) 2 (@), (@), () j,—k,
1 —2k
= (_1)k1qk1(2k7k1+1) (g 2 )k, ’ (13.78)
Gk, Gk
1 —2m 2 jn—2k,+2 e
. — (= 1)kgh@m=k+D (¢""(q m—ju—ky (13.79)
(q )j,,— ky (q )m
Then (13.74) is expressed as
—_1)"g® 2y, m 1 —2m
le(Z)?}) _ (=D"q%(q )j,, Z (q ) fP(qZk), (13.80)

@)n, (@Pm = 1= 29" (@)

4 Conditions like k > k| can formally be dispensed with since the negative k,, kills (lj{: )q2'
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min(by, j1)
P(w) — " b Z (_1)k1qk12+(2jn—2b,,+l)k1(w—l)k
1
k1:0
x (w2 g2ty a +by =k i
m—jn—Ki b] R kl q2
(13.81)

The upper bound k; < min(by, j;) in (13.81) is necessary and sufficient for the

—b1n0m1als and (w™ 1 2/"”k‘“)m_ jn—k, to survive individually since m — j, > ji
because of j € B,,. Obviously, P(w) is a polynomial of w with degP(w) < m + b, —
Jn- In Lemma 13.7 we will show degP(w) < m even if b, > j, due to a non-trivial
cancellation. Thanks to this fact, the sum in (13.80) is taken either for b, < j, or
b, > j, as

P(zg't™),  (13.82)

i 1 (¢~ P(g%) = (=D"g """V (@),
Sl —zq" 2 (g (4" m+1
which is just a partial fraction expansion. Consequently (13.80) gives

(_ 1)mq<p37m(l+m+2) (q
@), (zg77)m

2y,
Az @) ' RT Q) = Vi P(zg"*™), (13.83)

where we have used Ay ,,(z, g¢) in (13.18). On the other hand, the formula (13.53)
of A™3 (z)f‘}’ for the special case a, = - - - = a,—; = 0 is simplified considerably. In

fact the multidim_ensional sum over k = (ki, ..., ky,—1) is reduced to the single sum
over k; entering k = (ky, 0, ..., 0). The result reads as

. 4°(); by —k '
A — (—1yon—in 97 3 (g (dl + by 1) (]1)
@i =h (@), S b, 2\ /,

k120 1 ¢
z (13.84)
( "= ZZ)I a, —k; (6] Z)mfj,,fkl (q_l_mZ_])k,
X

(@772 1 m—ay =y~

’

where ¢ is defined in (13.53). By using (13.81) and relations like

@.j)=Im—(—ay)j,— (m— j)a, —@j), (Lj)=@+b—jj), (13.85)
(b—j,a+j) = (= bu)an + ju) + (b = j.j), (13.86)
the two expressions (13.83) and (13.84) can be identified directly. O

Apart from ¢, the polynomial P(w) (13.81) depends on m and ay, by, j, with
o = 1,n. From (13.69) and (13.70), we have a; +a, =1 > i, +i, =a; +a, +
by +0by— j1 — jnandm = ji + ju.
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Lemma 13.7 The polynomial P(w) (13.81) satisfies degP(w) < m.

Proof From the preceding remark we assume
bl +bn < jl + jn <m, bn > jn» (1387)

where the last condition selects the non-trivial case of the claim. Up to an overall
factor independent of w, P(w) is equal to

_ _ _ o ot (]
> (=R g D g ) (xwg ), (wg TP,k (Yg T, (k‘>
k>0 1 qz
1=
(13.88)

atx = ¢~ >»~? and y = ¢+, This is further expanded into the powers of x and
y as

LN b\ (b
Sy e (M) (M) w, (13.89)
r=0 s 4 7’ s 7

=0 s=0

Ji .
S,r'd(w) — Z(_l)qukl (ki —1-2d) (wq72k1+2)kl (wqizm)m—j,x—kl (1‘2) . (1390)
k=0 q’

The variable d has the range 0 <d =r + s < by + b, < ji + j, due to (13.87).
Thus it suffices to show degF,(w) < m — d. The reason we consider this slightly
stronger inequality rather than degF,;(w) < m — r is of course that F;(w) depends
on d instead of r. It is a non-trivial claim when j, < d(< ji + Ju).

The w-dependent factors in (13.90) are expanded as

Q7 B TR €V i WS

m— j,l 7
_ Z WMt Z C, q2(1u+ﬂ+l)k1 <k'> (m I _k'> , (13.91)
4 p @

a+p=t
k « — e —k !
( 1) — Z fquLtkl’ (m J 1) — ngq—%)kl’ (1392)
S o B FER—
where Za +pt denotes the finite sum over («, 8) € {0, 1, ..., ¢}? under the condition

a + B = t. In the following argument, precise forms of the coefficients C, g, fu, gv
do not matter and only the fact that they are independent of k; is used. Substituting
(13.91) and (13.92) into (13.90) we get

m—ju

Fa(w) = Z w It Z ZZ D 2(jn—d+1+ﬂ+u—v); 512)_/'1 (13.93)

a+p=t u=0 v=0
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for some coefficient Dﬁjf . Thus it is sufficient to show that all the qz-factorials
appearing here are zero fort =0, 1,...,d — j, — 1. It amounts to checking

D jo—d+1+B+u—-v<0, (i)j+ja—d+B+u—v=>=0 (13.94)

for all the terms fort =0, 1,...,d — j, — 1. For (i), the most critical case is v = 0
and 8 +u =t =d — j, — 1 for which the LHS is exactly 0. Therefore it is satisfied.
For (ii), the most critical case is B — v = 0 and u = 0 for which the LHS is j; +
Jn — d. This is indeed non-negative according to the remark after (13.90). (]

Proof of Theorem 13.3. Consider the relation (13.58) with a replaced by a + 7. The
result is a recursion formula which reduces a = (ay, ..., a;, dy+1, - .., a,) in A(2)22
toa+r=(ay,...,a,+1,a,.1—1,...,a,) forr =n—2,...,2,1. Thus a can
ultimately be reduced to the form (ay, 0, ..., 0, a,). As remarked before Lemma
13.4, the quantum group symmetry (13.105) in Theorem 13.10 shows that R (z)fjb
also satisfies the same relation as (13.58). Therefore Lemma 13.4 reduces the proof of
Theorem 13.3 to the situationa = (ay, 0, ..., 0, a,). Since this has been established
in Lemma 13.6, the proof is completed. ]

13.6 Identification with Quantum R Matrices of A"

LetU, (A;lzl) be the quantum affine algebra. We keep the convention specified in the
beginning of Sect. 11.5. We take p = g throughout this section, hence the relevant
algebra is always U, (Aill_)] ).

Consider the n-fold tensor product Osc;@" of g-oscillators and let al.+, a ki, ki !
be the copy of the generators a*, a~, k, k~! (3.12) corresponding to its ith compo-
nent. By the definition, generators with different indices are trivially commutative.

Proposition 13.8 The following maps for i € Z, define algebra homomorphisms

U, (A,(ll_) D= Oscf?” depending on a spectral parameter x:

80yt~ 1 80 a—at -1
x%0ga; ai+1k x"%0ga; aini

PP e T ESNET NN e ki — kik,, (13.95)
50 0= at k! —Sogatar k!
X a. a k X a'a._ k
oM e > ql’_—’;zl’ fi> %, ki >k kg

(13.96)

Proof The relations (11.56) with p = ¢ are directly checked by using (3.12). [J

The maps p'D and p¥ are interchanged via the algebra automorphisme; <> f;, ki <>
k- ! up to the spectral parameter.

By (3.13) one can further let Oscf’” acton W = 7—'q®” =@, Cla) in (11.11).
Since (13.95) and (13.96) preserve |a| in (11.4), the representation space can be
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restricted to Wy (11.12) for any k € Zs(. Let us denote the resulting representations
by

Tkt U, (A(l)l) SAS 0sc®"[x x~'] = End(Wy), (13.97)
Tk, yx Uq(A(l)l) LI 0sc®"[x x~' = End(W,), (13.98)

where the second arrow is given by (3.13) for each component. Explicitly they are
given by

ejlm) = x ‘0[m1+1]q|m+ez €ir1)

ﬁkwl.x: fl|m o |m_el +e1+1) (1399)
ki|lm ’“Im)
ejlm) = x ‘°[m lglm —e; +eiy1),

)
)=
)=
)
Tk, x: Jilm) = [miy1]yIm + € — e;4q), (13.100)
) = 7

form € By and i € Z,.> As a representation of the classical part U, (A,—1) without
eo, fo, koﬂ, ke, x (T€SP. Mie, ,.x) is the irreducible highest weight representation
with the highest weight vector |ke;) (resp. |ke,)) with highest weight ko (resp.
kw,_1). They are g-analogues of the k-fold symmetric tensor of the vector and the
anti-vector representations.

Remark 13.9 The representations 7Ty, » in (13.99), (13.95) and the earlier one
ke, x 10 (11.67) with p = g are equivalent. In fact, by an automorphism

_ 1 -
a;rr—>a;rkj, a; —> k;a;, kji>k; (13.101)

hj(hj—1)/2,%  —h;(h;—1)/2

of Osc, induced by the conjugation af —q ajq , we get another

algebra homomorphism U, (A" ) — Oscg" as

5 2 —50,20% 2~ k—2k.
@Y xg’ala; ik x0q7an 8 K K
1—q?

ki kik
(13.102)

oy e > 1= 4 , fir—

Employing this o in (13.97) instead of p® yields (11.67)| =,

5 The definition of [m], is in (11.57).
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13.6.1 R™3(7)

Let pm, . : Uy(A”)) — End(Wy) be the representation (13.99). Let A, , =
Tz x @ Tmayy) © A and ALy = (T, x ® Tma,,y) © A% be the tensor product
representations, where the coproducts A and A°P are specified in (11.58) and (11.59).

Let Rio, mw, (z) € End(W; ® W,,) be the quantum R matrix of U, (Azljl) which

is characterized, up to normalization, by the commutativity

Ricryman () Axy(8) = AP (&) Riyy e, (2) (Vg € Ug(ALY ), (13.103)

where we have taken into account the obvious fact that R4, me, depends only on
the ratio x /y. The relation (13.103) is a generalization of (10.12),_, , including the
latter as the classical part g € U, (A,_1).

Theorem 13.10 Up to normalization, R;rin (z) by the matrix product construction

(13.9)—(13.11) based on the 3D R coincides with the quantum R matrix of U, (Aill_)l)
as

R".(2) = Rigyy e (2. (13.104)

Proof 1t suffices to check
R™()(e, @1 +k ®e)=(1Qe +e @k)IRT(2), (13.105)
REMA®fr+ £ @k =, @1+k'® fIR™(2), (13.106)
Rtr}(%)(kr ®k) = (kr ® kr)RtrS(f) (13107)

under the image by 7Tz, x ® Time,,y. Actually, they can be shown by using (13.95)
instead of (13.99), which means that the commutativity holds already in Oscgz’” ®
Oscff’” without taking the image in End(W; ® W,,,). Due to the Z, symmetry of
(13.95) and (13.7) up to the spectral parameter, it suffices to check this for r = 0.°
The relevant part of (13.11) is R,“jbfl z“ R;’l‘_;’l‘c?, which we regard as an element of
the product R123zh3 Ry23 of 3D R. The indices here are labels of the corresponding
spaces as in Fig. 13.7.
In terms of the labels, the image by (13.95) reads as

eo® 1 = xdafa k;', 1 ®ep = ydafay k',
fo®1l=x"'dafaky', 1® fo =y 'daja;k;", (13.108)
ko® 1 =kkp', 1 ® ko = koky, ',

6 The case r # 0 corresponds to the special case x = y = 1.
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Fig. 13.7 The part of the matrix product construction (13.11) relevant to the commutation relations
with e, fo, ko

where d = g(1 — ¢*)~!. Then (13.105)—(13.107) are attributed to

RZ™ R (xafa k' + ykik;'alas k")

= (yafayky' + xafa;k;'koky ) RZ™ R/, (13.109)
RM™R (y'afark, ' +x'aja ki 'k 'ky)

= (x"'aja k' + y 7'k 'kpaja kY RZMR, (13.110)
R Rk k. 'kky' =k k;'koky ' RZ™ R/, (13.111)

where 7z = y)f1 and we have set R = Rj>3 and R’ = Ry»3 for short. To show these
relations we invoke the intertwining relations (3.127)-(3.131),” i.e.

Rkra| = (k;a] +kjajaj)R, Rkoa] = (ksa; +kjayaj)R,  (13.112)

Raj = (ajaj — gkksa))R, Ra;, = (aja; —gkiksa;)R, (13.113)
Rkoal = (kjaj +ksajal)R,  Rkoa; = (kja; +ksajay)R, (13.114)
Rk, = kKR, Rkoks = koks R (13.115)

and their copy where R and the indices 1,2 are replaced with R" and 1’,2". The
relation (13.111) follows from (13.115) immediately. By multiplying kK, from the
right by (13.109) and k;k, from the left to (13.110) and using the commutativity
with R and R’ by (13.115), they are slightly simplified into

Rz™R'(xafa ky + ykjafay) = (yajayky + xaa; ko) RZ™ R, (13.116)

RZ™R'(y'ajay k, +x'afa;ky) = (x'aja;k, + y 'kyaja; ) RZM R
(13.117)

To get (13.117) we have used k af =g7! afkj. All the terms appearing here can be
brought to the form Rz (- - - )R’ by means of z™a* = a* M+ R = R~ (13.112)-
(13.115) and the corresponding relations for R’. Explicitly, we have the following
for (13.116):

7 The relation (3.130) can be dispensed with.
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RZ™R'xafa;ky = xRz™a] (ksa| + kyayad)R/,
RZ™R'ykiafay = yRZ™kjaj (aja; — gkiksay)R,
yaya, ki RZ™R = yR(aja — gk ksa))z™as ki R’

= yRZh3 (zflaf’a; — qk1k3a;)a§k]/R/,
xafa ko RZ™R = xR(ksa| + kjafa;)z™a, R’

= xRz™ (ksa] + zkjafaj)a; R’

As shown by the underlines, (13.116) is indeed valid at z = yx~!. A similar calcu-
lation casts the four terms in (13.117) into

RZ™R'y 'afa k) = y ' R™as ki (a)af — gkiksa))R/,

RZ™R'x'aja;ky = x'RzZ™a; (ka)) + kyaja;)R/,
x'afa ko RZ™R = x7'RZ™ (ksa; + z7'kjaya))a) R,

vy 'kyaja; RZ™R =y 'Rz™(zay a; — gkiksa; kyaj R,

which are again valid at z = yx~'. O

13.6.2 R%™i ()

Let g, | : Uy(A"” ) — End(W;) be the representation (13.100). Let A, , =
(w1 x ® Tmes,_,,y) © Aand Aif)y = (MWiw,_.x ® Tma,_,,y) © A be the tensor prod-
uct representations, where the coproducts A and A°P are specified in (11.58) and
(11.59).

Let Riw, | mw, ,(z) € End(W; ® W,,,) be the quantum R matrix of Uq(Aflljl)
which is characterized, up to normalization, by the commutativity

Rier, s () By (8) = AL (&) Ris, mam,, (2) (Vg € Uy(AY))), (13.118)

where we have taken into account the fact that R;s;, |, mw, , depends only on the ratio
x/y.

Theorem 13.11 Up to normalization, R;r,‘n (z) by the matrix product construction
(13.25)—(13.26) and (13.29) based on the 3D R coincides with the quantum R matrix
of Uy(A" ) as

R"(2) = Ry, mem, 271). (13.119)
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I 3

2

Fig. 13.8 The part of the matrix product construction (13.39) relevant to the commutation relations
with e, fo, ko

Proof This follows from the relation (13.27), Theorem 13.10, the commutativity
(13.105)—(13.107) and the fact that T4, » (13.99) and 7y, , -1 (13.100) are inter-

changed via the algebra automorphism ¢; <> f;, k; < k; L O

13.6.3 R'™(z)

Let ke, « and 74, | « be the representations U, (Aill_)l) — End(W;) in (13.99) and
(13.100). Let Ay y = (T, x ® e, 1,y) © Aand ALy = (Fiy x ® e, 1,y) © AP
be the tensor product representations, where the coproducts A and A°P are specified
in (11.58) and (11.59).

Let Rz, mw,_, (z) € End(W; ® W,,) be the quantum R matrix of U, (Aill_)l) which
is characterized, up to normalization, by the commutativity

:lel,mw,l,l('f)Ax,y(g) = A)Oc?y(g)jzlwl,mwn,l(f-) (Vg € Uq (Afllzl))’ (13120)

where we have taken into account the fact that R4, s, , depends only on the ratio
x/y.

Theorem 13.12 Up to normalization, Rl"fn (z) by the matrix product construction
(13.38)—(13.39) and (13.42) based on the 3D R coincides with the quantum R matrix
of Uy(A" ) as

R%,(2) = Ry, mm,, (2). (13.121)

Proof The proof is similar to the one for Theorem 13.10. So we shall list the corre-
sponding formulas along the labeling in Fig. 13.8 without a detailed explanation.
We are to investigate the commutation relation of RZ™ R’ = Ri»37™ Ry and

eo® 1 = xdafa k;', 1 ® ey = ydada;k;',

fo® 1l =x"'dajajk;", 1® fo =y 'dajajk;’, (13.122)
ko®1=kk;', 1 ® ko = k3 'Ky,
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where d = g(1 — ¢?)~". The relation (13.118) with g = ¢, becomes, after multiply-
ing k' kyk3 from the right,

Rz™ R (xkoksa) a), + ykikoafa)) = (vada;koky + xafa;koks ) RzZ™ R
(13.123)

The four terms here are rewritten by means of (13.112)-(13.115) as
RZ™R'xk.ksafa;, = xRZ™ksa/ (kya, +kyayai)R,
RZ™R'yk kyaja; = yRz™k a5 (kyaj + kya;a;)R/
ya;,a;kzkerzth’ = szhz(kla3_ + zksajay)atky R

xaa; koky RZ™ R = xRz™ (ksa] + 7z 'k;aT a;)a;kyR

Thus (13.123) is valid at z = xy~'. The relation (13.118) with ¢ = f becomes, after
multiplying k; Kk, ks from the left,

RZ™R'(y'kikoaday +x7'aja  koks) = (x'koafay ky + y 'kokpatay ) RZM R

(13.124)
The four terms here are rewritten by means of (13.112)—(13.115) as
RZ™R'y 'kikrafa; = y*IthzklaJ”(klra; + kyafr,az_)R/
Rz™R'x"'ala; kok; = x ' Rz™a ks (kya) + kiajay)R’,
x'kafa ky RZ™R = x7'RZ™(ksa; + zkja; a])a ky R
y'kokpalay RZ™ R = y ' RZ™(kjaf + 7 'ksa;a) )kpay R
Thus (13.124) is valid at 7 = xy~'. U

We note that (13.113) has not been used in the above proof.

13.7 Stochastic R Matrix

This section is a small digression on a special gauge of the R matrix. Forl, m € Zx,
we introduce S(z) € End(W; ® W,,,) by

S @liN= > S&ila) e b), (13.125)
aeB;,beB,,
S@F =P AR, (13.126)

where ﬂ(z)f‘}’ is a slight modification of A(z)?}’ (13.51):



13.8 Commuting Layer Transfer Matrices and Duality 237

A = ¢ AR5

=Y Pp@-Ka+b-kq¢" 'z, " DPpkl g g,
k
(13.127)

From (13.17), (13.55) and Theorem 13.10, S(z) satisfies

Yang-Baxter relation: S12(x)S13(xy)S23(y) = S»3(¥)S13(xy)S12(x), (13.128)
Inversion relation: S(z) PS(z" )P = id, (13.129)
Normalization: S(z)(|/ex) ® |mey)) = |lex) ® |mey), (13.130)

where P(u ® v) = v ® u and k € Z, is arbitrary. In fact, it is easy to check that the
extra factor ¢®®~J) in (13.127) does not spoil these properties.®
A notable feature of this gauge is the sum fo unity property:

Proposition 13.13

Y S@F =1 (¥G.j) € B x By). (13.131)

aeB;,beB,,

S(z) has an application to stochastic models where Proposition 13.13 plays the
role of the total probability conservation. In such a context, it is called a stochastic
R matrix.’

From (13.49) and (13.50), one sees ®,2(y|B, A = 1, u) = 8, o. Therefore S(z)
has a factorized special value:

S@=q""F =8P op@iq . g7, (13.132)

The specialization of (13.131) to (13.132) agrees with (13.54).

13.8 Commuting Layer Transfer Matrices and Duality

This section is parallel with Sect. 11.6. Let m, n > 2 and consider the composition
of m x n 3D R’s as follows:

At the intersection of 1; and 2, we have the 3D R Ly, 5, 3, as in Fig. 13.1, where
the arrow 3;; corresponds to the vertical arrows carrying F,. We take the parameters
wi and v; as

wi=xu; i=1,...,m), vi=yw;(j=1,...,n). (13.133)

8 See [87, Proposition 4].
9 For reasons of convention, the R matrix R;rfn (D) = Rigy ma, (z™1Y in (13.104) of this book is
proportional to R(z) in [87, Eq. (6)].
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22 12

2y

Fig. 13.9 Graphical representation of the layer transfer matrix 7 (x, y). There are m + n horizontal
arrows 1y, ..., 1, and 24, ...,2, carrying ¥, and being traced out, which corresponds to the
periodic boundary condition. The mark e with y; and v; signifies an operator /«L? and v! attached
to 1; and 2, respectively. At the intersection of 1; and 2, there is a g-oscillator Fock space ¥
depicted with a vertical arrow

Tracing out the horizontal degrees of freedom leaves us with a linear operator acting

along vertical arrows. We write the resulting layer transfer matrix in the third direction
10

as

T(x,y) =T (x, ylu,w) € End(F>""), (13.134)
u= Uy, ...,Uy), W= (wWi,..., w,). (13.135)

We exhibit the n-dependence in the notations in Sect. 11.1 as B®, W™, W,
etc. In what follows, u? for u € C” should be understood as the linear diagonal

operator ull” oyl et
u? i a) > uf' - ut|a) for a=(ay,...,a,) € B™. (13.136)
Viewing Fig. 13.9 from the SW, or taking the traces over 11, ..., 1,, first, we find
that it represents the trace of the product of (yw)™ and R™ (i), ..., R™ (i,):

T(x,y) = Trwo (W) R™ (xuy) - - - R™ (xu,))

=> ykTer,) (W R™ (xuy) - - - R (xu,,)) € End((W™)®™),
k>0
(13.137)

2
where the matrix product constructed R™ (xu;) € End(W®™ ® W®™) is a quantum
R matrix of U, (A,(L)l) due to Theorem 13.11 and (13.29). The product is taken with

2 2 2,
respect to W = ?l'q ® -+ ® F4, which corresponds to the first (left) component
of R""’s.

10 7x, y) here is different from the one in (11.85).
' For H we do not exhibit the number of components m, n as H m) or HM
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Alternatively, Fig. 13.9 viewed from the SE or first taking the traces over
21,...,2, gives rise to the trace of the product of (xu) and R (v;), ..., R™(v,):

T(x,y) = Trwon (kW) R™ (ywy) - - - R™ (ywy))

= Zkaerw (u” R™ (ywy) - - - R™(yw,)) € End((W™)®"),
k>0
(13.138)

1
where the matrix product constructed R™ (yw;) € End(W™ @ W) is a quantum
R matrix of U, (Afnl)_l) due to Theorem 13.12 and (13.42). The product is taken with

1 L
respect to VIV(’”) =F,® - ®F,in Fig. 13.9, which corresponds to the first (left)
component of R"’s,
The identifications (13.137) and (13.138) correspond to the two complementary
pictures 7—‘q®’"” = (WM)®m — (Wim)@" [p either case, R™ (z) and R"™(z) satisfy
the Yang—Baxter equations, which implies the two-parameter commutativity

[T(x,y), T, y)=0 (13.139)

for fixed u and w.
Due to the weight conservations (13.28) and (13.41), the layer transfer matrix
T (x, y) has many invariant subspaces. The resulting decomposition is again described
as (11.91)—(11.95) for another layer transfer matrix 7' (x, y) considered in Sect. 11.6.
Consequently, each summand in (13.137) and (13.138) is further decomposed as

Tryw (W R™ (xuy) - R (xut)

= P Tryw WRY, Gu - R, () (13.140)
I,..., 1,>0

Tryyom ("’ R™ (ywy) - -« R™ (ywy))

= P Tryen (W7 R, Gwn) -+ R, (ywa)) - (13.141)
Jlyeees Jn=0

In the terminology of the quantum inverse scattering method, each summand in the
RHS of (13.140) is a row transfer matrix of the U, (A,(L)l) vertex model of size m
whose auxiliary space is W\"’ and the quantum space is W(,'l') ® - ® Wg:) having the
spectral parameter x with inhomogeneity uy, ..., u,, and the “horizontal” boundary
electric/magnetic field w. It forms a commuting family with respect to x provided that
the other parameters are fixed. In the dual picture (13.141), the role of these data is
interchanged as m <> n, x <> y,u <> w. This is another example of duality between
rank and size, spectral inhomogeneity and field in addition to the one demonstrated
in Sect. 11.6.
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Consider the cube of size / x m x n formed by concatenating Fig. 13.9 vertically
for [ times. As in Remark 11.8, one can formulate further two versions of the duality
on the layer transfer matrices in the first and the second directions, which correspond
to the interchanges [ <> m and [ < n.

13.9 Geometric R From Trace Reductions of Birational 3D
R

We have constructed solutions to the Yang—Baxter equation by the trace reduction
of the compositions of the 3D R. They were identified with the quantum R matrices
for specific representations of U, (Afllll). Here we present a parallel story for the
birational 3D R in Sect. 3.6.2 without going into the detailed proof.

Let us write the birational 3D R Ryiragonal in (3.151) simply as

ab bc
R:(a,b,c)—~>|——, a+c, . (13.142)
a—+c a—+c

Given arrays of n variables x = (xq, ..., x,),y = ()1, ..., y») and an extra single
variable z,+;, we construct X = (X1, ...,%X,), ¥y = (J1,...,y,) and z1, ..., z, by
postulating the following relations successively in the orderi = n,n — 1, ..., I:

R (xi, yi, zig1) = (X, Yis 20)- (13.143)

See Fig. 13.10.
By the construction, z; is expressed as

n
n+1 Hj:l yj

— (13.144)
l_[jzl Xj + zZp+1Qo(x, y)

i1 =

in terms of Qo (x, y) which will be given in (13.146). Reflecting the “trace”, we
impose the periodic boundary condition z; = z,4+1. This determines z,,+; hence every

Fig. 13.10 Trace reduction
of the birational 3D R along
the third component. Each
vertex is defined by (13.143)
and (13.142). The periodic
boundary condition

Z1 = Zp+1 1s imposed

Zn+1
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z; in terms of x and y. Explicitly, we get z; = ([Ty_; vk — [Tiz; Xx)/ Qi—1(x, ¥).
Substituting it back to X and y, we obtain a map of 2n variables

Qixy) o Qi)

R . (x, V. X), X=X,
) On ). G =sn T Y Qi(x,y)

where the superscript (3) signifies that the third component is used for the trace
reduction. The function Q;(x, y) is defined by

n n

k—1
Qitx. ) = > ([ [xi+))( [T »i+i)- (13.146)
k=1 j=1 j=k+1

The indices of Q;, x;, y;, X;, y; are to be understood as belonging to 7Z,,.

Example 13.14 For n = 2, 3, we have

n=2: Qox,y)=x2+y, Qilx,y)=x1+y, (13.147)
n=3: Qox,y) =x1x2+Xx1y3 + y2)3, (13.148)
01(x, y) = x2x3 + X2y1 + Y135 (13.149)
O2(x,y) = x1x3 + X3y2 + y1)2. (13.150)

One can construct similar maps R‘" and R® by replacing the elementary step
(13.143) by

R:(Zi+1a-xi1 yl)|_) (Ziviivj;i)y (13151)
R (xi, ziv1, yi) = (K, zis 9i)s (13.152)
respectively, and applying them still in the order i =n,n — 1, ..., 1. For (13.151),

zy is given by (13.144) with the interchange x <> y reflecting the symmetry (3.59)
of the birational 3D R (13.142). Thus we have

R L T TN(ENES
Qi(yvx) Ql’*l(yy x)
For (13.152), z; becomes much simpler as z; = x; + y;, leading to
RY:(x,y) > (5,%); & =x X Vit yiH, Vi =i Fir ¥ Vit Yirl (13.154)
X+ Vi X + i
We also introduce
RYC): (r,y) o (G, & =m 2 =y T 13155

Xi + yi Xi + yi
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It is obtained by the reverse procedure for R> where R : (x;, z;, yi) — (Xi, Zis1, Vi)
is applied in the order i = 1,2, ..., n followed by z,4; = z;. It is related to R as

RY:(xV, y) > (u,v) & RP:(x,y) > w’,vY), (13.156)

where V denotes the reverse ordering of the n component arrays as in (11.4).

The maps RV, R?, RV® and R® are examples of geometric R of type A.'?
They satisfy the inversion relations and the Yang—Baxter equations. To describe
them uniformly, we introduce a temporary notation

R© =R, R =R R =R® R =RD (13.157)
Then the inversion relations read as
RyPRE — id (13.158)

for «, B € {1, 3}. Thus these geometric R’s are birational maps. They form set-
theoretical solutions to the eight types of the Yang—Baxter equations

(1@ RP) (R @ 1)(1@RM) = (R @ 1) (1@ R*")(R*F ®1) (13.159)

labeled with «, B8, ¥ € {1, 3}. Here for instance (1 ® R“*ﬂ)(u, x,y) = (u,y,x)and
(R""ﬁ ® 1)(x, y,u) = (¥, X, u) in terms of the X and y corresponding to Re-B given
by (13.145), (13.153), (13.154) or (13.155). One can bilinearize R*# in terms of tau
functions by incorporating the result in Sect. 3.6.3 into the trace reduction here.

Remark 13.15 The trace reduction considered here admits a two-parameter
deformation leading to R*# (A, ). The parameter A is introduced by replacing
the birational 3D R (13.142) with the A-deformed one in (3.159). The parame-
ter w is introduced by replacing the periodicity z; = z,+; of the auxiliary vari-
able by the quasi-periodicity condition z; = wz,+;. Then the inversion relation
RYP (A, w)RP* (A, w) = id persists for any A and . The Yang-Baxter equations
remain valid for R*# (i, 1) and R*#(0, w).

13.10 Bibliographical Notes and Comments

The trace reduction of the 3D R with respect to the first component was considered
in [18, Eq. (36)], and the identification with the type A quantum R matrices for
symmetric tensor representations was announced in [18, Eq. (54)]. See also [75].
A proof of a similar identification concerning the third component was given in

12 Some early publications refer to them as “tropical R”.
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[96, Proposition 17]. This chapter provides a unified treatment of the trace reductions
along the three possible directions. They are symbolically expressed, for n = 3, as

Tr. <Zh. R.co Rooo Rcoo) ) Tro (Zh. Rooo Rc.c Rooo) . Tr. (Zh. Rooo Roc. Rooo) .

Other variations mixing the components like Tr, (zh' R.OOROO.R.OQ) also yield

solutions to the Yang—Baxter equation. Their quantum group symmetry has been
described in [86] using the appropriate automorphisms of g-oscillator algebra inter-
changing the creation and the annihilation operators.

Evenif the auxiliary Fock space e to take the trace is limited to the third component,
there are more significant generalizations mixing the 3D R and 3D L as

Tr("R€ ... R@), RO =R, RV =1L) (13.160)

for €;,...,¢, =0, 1. These 2" objects are easily seen to satisfy the Yang—Baxter
equation by a mixed usage of the tetrahedron equations of type RRRR = RRRR
and RLLL = LLLR [95, Theorem 12]. Chapter 11 and the present one corre-
spond to the two special cases without the coexistence of the 3D L and 3D R.
In order to characterize them as the intertwiner, one is naturally led to an algebra
Ux(€y, ..., €,) interpolating U, (0, ...,0) = U_q—l(A’(ll_)l) in Theorem 11.3 and
Us(1, ..., D) =0, (Ailll) in Theorem 13.10 via some quantum superalgebras in
between [98]. The algebra U, (€, . . ., €,) has been identified as an example of gen-
eralized quantum groups. This notion emerged in [56] through the classification of
pointed Hopf algebras [2, 55] and it has been studied further in [3, 6, 9, 57]. For
recent developments related to the content of this book, see [108, 109].

The algebra homomorphism from U, to g-oscillators as in Proposition 13.8 goes
back to [54] for example. The proof of Theorem 13.10 utilizing such a homomor-
phism is simpler and is due to [97].

The explicit formula A (z)?}’ in Theorem 13.3 was presented in [26]. Unfortunately
the derivation therein has a gap when [i| > |i’| in [26, Eq. (3.15)]. Section 13.5.3
provides the first complete proof of (13.55). It fills the gap effectively by Lemma 13.7,
and provides a new insight that the quantum group symmetry is translated into a
bilinear identity of g-hypergeometric as in Lemma 13.5.

Section 13.7 is based on [87], where the building block @, (13.49) of the R matri-
ces was extracted which plays the role of local hopping rate of an integrable Markov
process of multispecies particles subject to a particular zero-range-type interaction.
The casen = 2 of @, firstappeared in [123]. See also [25, 81, 100] for the subsequent
developments.

The 3D lattice model in Sect. 13.8 has been considered in [17]. The layer transfer
matrix corresponds to a quantization of the earlier work [68], where the 3D R is
replaced by the birational 3D R and the description in terms of geometric R was
adopted in accordance with Sect. 13.9. In such a setting, the duality shows up as the
W(Ag;)_l X Afll_)l) symmetry.
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One of the earliest appearances of the birational map R" is [150]. The maps
R, RO RV and RY in (13.145)—(13.155) are the geometric lifts of R, RV,
VR and RV in [101, Egs. (2.1)~(2.4)], respectively. R®, R® and R are also
contained in the first example of set-theoretical solutions to the reflection equation
[101, Appendix A]. Associated with the type A Kirillov—Reshetikhin (KR) module
W@ with1 <r <n —1,s > 1,one has the geometric crystal B". The most general
geometric R R"" : B x B — B x B has been constructed in [49]. See
also [99]. The four examples in Sect. 13.9 are the special cases of it as R*? =
RV R31 = RLn=1 QL3 — gn=L1 RLL — pn-Ln—1l Qet theoretical solutions to the
Yang—Baxter equation are also called Yang—Baxter maps [145]. Geometric R’s form
an important class in it having the quantum and combinatorial counterparts which
are connected to the KR modules and integrable soliton cellular automata known as
(generalized) box—ball systems [60].



Chapter 14 )
Boundary Vector Reductions e
of RRRR = RRRR

Abstract This chapter presents the boundary vector reduction of an n-concatenation
of the tetrahedron equation RRRR = RRRR of the 3D R. It generates infinite
families of solutions to the Yang—Baxter equation in matrix product forms. In contrast
with the boundary vector reduction starting from RLLL = LLLR (Chap. 12), they
turn out to be the quantum R matrices of the g-oscillator representations of U, (A(zi)),
U,(C") and U, (D),). These algebras have Dynkin diagrams with double arrows.
It turns out that the two kinds of boundary vectors correspond to the two directions
of the double arrows. For simplicity, we treat the reduction with respect to the third
component only.

14.1 Boundary Vector Reductions

We fix a positive integer n and keep the notations for the sets B = (Z>)", the
vector spaces W = .7-'59”, W with bases |a) = |a]) ® - - - ® |a,) labeled by n-arrays
a=(a,...,a,) € Bin (11.8)—(11.13). We will also use |a| =a; + --- + a, and
a¥ = (a,,...,ay) in (11.4) and the elementary vector e; in (11.1). As for the g-
oscillator algebra Osc, and the Fock space F,, see Sect. 3.2.

14.1.1 n-Concatenation of the Tetrahedron Equation

In Sect. 13.2, we started from the tetrahedron equation RRRR = RRRR of the 3D
R and derived its n-concatenation with respect to the third component (13.5):

Ruse X™ (Ri,2,4 -+ R1,0,4) (x)™ (Ry,3,5 -+ R1,3,5) Y™ (Ra3,6 - - R, 3,6) Rase
= Y™ (Ra3,6 - Ra,3,6) (X)) (Riy3,5 -+ Ri,3,5)X™ (Rijoa -+ Riyoe). (14.1)

The indices 1;,2;,3;(i =1,...,n) and 4,5, 6 are labels of the g-oscillator Fock
space F, on which a 3D R acts non-trivially. The operator h is defined in (3.14) and
x, y are free parameters.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 245
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14.1.2 Boundary Vector Reductions

Recall the boundary vectors introduced in Sect. 3.6.1:

il =Y “’"L, |nr>=2(';,’?)>m r=12. (142

m=>0

Evaluate (14.1) between (1], & (i],| ® (1], and [1,,) & |1,/) ® |1,.). Thanks to Propo-
sition 3.28, the two Rys¢ disappear, leading to
4 45 5
(™ R0+ Rio,alne) (0| 0ey)™ Ry - - Ruya,s000) X
6 6
x (1, 1y™ Ray3,6 -+ Roy3,6l100)
6\ he 6.5 s 5
= (1Y Ra3,6* Ro,3,6107 ) (0 [ (XY) P Ryy3,5 - - Ry,3,5(m0) X

4 4
X (1, |X™ R4+ Ry0,alm0). (14.3)

Let us denote the operators appearing here by

rr’ rr’ 4 4 1 2
R (2) = 0" (2)(n/12™Ry24 -+ Ry,0,40) € End(W @ W),
r,r’ r,r 5 5 1 3
Ry3(z) = 0" () (012" Ry3,5 - Ry,3,500) € End(W @ W),
rr’ rr 6 6 2 3
Ry3(2) =0" @)1, 12" Ray3,6 - - Roy3,611) € End(W @ W), (14.4)

where r, ¥’ = 1, 2. The normalization factor o""" (z) will be specified in (14.13). They
1 2 3

are the same operators acting on different copies of W, W, W of W in (11.11) and
(11.12). Now the relation (14.3) is stated as the Yang—Baxter equation:

Ry (R y)RS S () = Ry IR GRS () (7' =1,2).  (14.5)

We will often suppress the labels 1, 2 etc. Then R™'(z) € End(W ® W) is defined
by
R @) &) = Y R ()ifla) @ |b), (14.6)

a,beB

where the elements are given by the matrix product formula

R (@)W =0 @R - R ) (rr' =1,2) (14.7)

in terms of the components of the 3D R in (3.69) (Fig. 14.1).
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Fig.14.1 The boundary vector reduction. All the arrows carry the g-oscillator Fock space 7. The
matrix product formula (14.7) is depicted as a concatenation of Fig. 13.1 along the arrow sandwiched
by the boundary vectors (1, | and |7,/) in (14.2). It is a BBQ stick with X-shaped sausages and extra
caps at the two ends

The dual pairing is defined by (3.16) and concretely evaluated by (12.10). From the
equivalence of (2.4) to (2.2), the formula (14.7) is also expressed as

reo (42
' _\ab - Z2"(q")re
Rrr (Z):IJ — er (Z) Z rZ—r/ZO
i 0@ e (@),
ay,by,rcy paz,bs,c An15,bn-1,Cn2 130 b Cnt
x Ri]7jl,cl Riz,jz,cz e Rin—lajn—quu—l Rina.jlxar/cn (14.8)

in terms of R;‘ﬁ" detailed in Sect. 3.4. The numerator (qz),c(J originates in (3.16).
From the constraint (3.48), the apparent (n + 1)-fold sum (14.8) is actually a single
sum which in particular imposes |b| 4+ rco = |j| + r’c,. By using this fact and (3.63),
it is easy to derive an exchange rule under r < r':

n

/ : i (4%)i(q%); N
R"" (Z)fb/gr,r (Z) — Zl‘ll [b]| < ’_”) R’ ,r(Z)av.l \//Qr N (Z), (149)
i E @)a @, b

where a" is the reverse array defined in (11.4).
From (14.7) and (14.8) we also have
R™ () =0 unless a+b=i+], (14.10)
R”(z)?}’ =0 unless |a| =|i|] and |b| = |j| mod 2. (14.11)
The weight conservation (14.10) follows either from (3.48) or (3.69), and the parity

constraint (14.11) is due to the fact that the boundary vectors (1], |n2) in (14.2)
contain “even modes” only. It leads to the decomposition

R?@) = @ R°@. R (z)eEndW, ®W,). (14.12)

0,0'=+,—



248 14 Boundary Vector Reductions of RRRR = RRRR

When (r, ") = (2, 2), the Yang—Baxter equation (14.5) is valid in each subspace
W, @ Wy ® W, of W® W ® W. The scalar 0>?(z) in (14.7) may be chosen as
QU’G,(Z) depending on the summands in (14.12). We take them as

(Zmax(r,r/); qrr’)oo
(_Zmax(r,r’)q; qrr/)oo
k() = (2% 4" oo Lt = (%4% ¢Moc

(224% 4" (224* 4"

0" (2) = ((r,r) = (1,1, (1,2), (2, 1)),

0 (14.13)

This is the same choice as (12.15). It makes all the matrix elements rational in ¢ and
Z". For example,

R"'(2)(10) ® [0)) = R"*(2)(|0) ® |0)) = R""(2)(|0) ® 0)) = [0) ® |0),
(14.14)
+,— 0. —q —+/.n€1,0 1 ——/.ne1.e Z2 - q2
B0 =17 K00 =1 B @aa =15
(14.15)
where 0 = (0, ..., 0). For instance, to derive the last result in (14.15), one looks at
the corresponding sum (14.8):
260 2
Z27°(q ") 2c, 1,1,2¢9 10,0,c 0,0,¢52 150,0, ¢,
> ORI RY 0 Ry Ry oo (14.16)
4 4 1,1,¢; 0,0,c; 0,0,¢,1 710,0,2¢,
o os0 @@, : !
Due to (3.48) this is a single sum over k = ¢y = ¢, = c1p = -+ - = ¢,—1/2. More-

over, from Example 3.15, the product of R’s is equal to R“% =1-—(1+q¢>Hq*.
Thus it is calculated as

2k (2 2k (2. 4
ZZ (q )Zk(l _(] +q2)q4k) ZZZ (C] 0 q )k(] _(1 +q2)q4k)

= = (@ q'n
(Z2q*; q™) (22q°% q™) L 2=q
= Ut =0T () T
(2% 4% oo (z29% 4% 1 —2z%¢q

Although R""(z) acts on the infinite-dimensional space W ® W, the property
(14.10) shows that it is locally finite, i.e. the RHS of (14.6) always contains finitely
many terms. Therefore the composition of R""'(z) is convergent and the Yang—Baxter
equation makes sense as an equality of rational functions of ¢ and z.



14.2 Identification with Quantum R Matrices of A;zn), b, Dfﬁl 249

14.2 Identification with Quantum R Matrices

@ o~ @
of AY, Ci, D?|

14.2.1 Quantum Affine Algebra U, (g"" .

We will be concerned with the affine Kac-Moody algebras'

gt = p@

1.2 _ 4@ 2,1 _ @) 22 _ ~()
n+1 g _A2n7 g _A2n’ g =C

PR (14.17)
where the notation g”" will turn out to fit to R (z) in the previous subsection.
Let U, = U, (D)) (n = 2), Ug(BSY) (n = 3), Uy (BY) (n = 3), Uy (DY) (n >
3) be the quantum affine algebras. They are Hopf algebras generated by {e;, fi, kijtl |
i €{0,1,...,n}} satisfying the relations (10.1). Beside the commutativity of kijEl

and the g-Serre relations, they read as

- aij — —a; k,’ — k;l
kl‘ejki 1 =gq; /ej7 klfjkl 1 =gq; ]fj’ [ei5fj]:8i,jﬁ7 (1418)
i i
where the constants ¢g; (0 < i < n) are taken as>
g =q exceptfor qo=q""% g, =q" "% (14.19)

The affine Lie algebra AS} is just A(zi) with different enumeration of the vertices
as shown in Fig. 14.2. We keep it for uniformity of the description. The Cartan
matrix (a;;)o<i, j<n 18 determined from the Dynkin diagrams of the relevant affine
Lie algebras according to the convention of [67]. Thus for instance in U, (A;i)), one
has ag; = —2, a0 = —1 and kopey = geoko, koer = q_lelko, kieg = q‘leokl and
k1€1 = qzelkl.

We retain the coproduct A and its opposite A° in (11.58) and (11.59):

Ak) =k ®ki, Ae)=e@1+k®e, Af)=1® fi+fi @k,
(14.20)

APh) =k @ ki, A®(e)=1Q¢+e¢®k, AP(fi)=fi@1+k'® fi.
(14.21)

! Some symbols including o here and Sect. 12.2.1 are apparently the same, but they should be
understood as independently redefined.

2 For Uy (gl = U, (Dﬁl), which is appearing also in Sect. 12.2.1, this normalization and (12.22)
coincide.
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2 ~(2
g"' =D, o> = A7)

1 1 1
q: q q q9 q? 9> q9 q q 42
o=0—=0—------ —O0=0 o=0—"0—------ —O=0
0o 1 2 n-1 n o 1 2 n-1 n

gl? = Agi) g2 = Cr(ll)

1
9 q q a q° @ 9 q a ¢
O==0—0—------ —O0==0 O==0—0—------ —O==0
0o 1 2 n-1 n 0o 1 2 n—-1 n

Fig. 14.2 Dynkin diagrams of (14.17) with enumeration of vertices. The data g; is given above the
corresponding vertex i

14.2.2 q-Oscillator Representations

Let Osc, be the g-oscillator algebra (3.12). Instead of k we use the generator including
the zero point energy>

=

k = q7k. (14.22)

Then Osc, is an algebra over (C(q%) generated by at,a™, k and k™! obeying the
relations

kk™'=k'k=1, kat=g%aTk, ataT=1-¢7k%. (14.23)
The property of the boundary vectors in (3.134)—(3.141) are rephrased as

1A 1 A
at|n) = A F¢F2K)|m), (mla* = (im|( £4%2k), (14.24)
atlm) =a |n), (pla’t = (npla. (14.25)

In what follows, an element at ® I @ k®a~ € Oscf’4 for example will be

denoted by aflAqa; etc. Thus the g-oscillator generators with different indices are
commutative. The intertwining relations for the 3D R in (13.112)—(13.115) become
“autonomous” in that there is no apparent g as follows:

Rkya = (ksaf +kjafa;)R, Rka; = (ksaj +kjayal)R,  (14.26)

Raj = (afaj —kksa;)R, Ra, = (aja; —kksa))R, (1427
Rkyal = (kjaf +k;ajal)R, Rka; = (kja; +ksafa;))R,  (14.28)
Rkk, = kKR, Rkok; = kok3R. (14.29)

31t is also used in (8.13).
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Set

q
=——— di=d|;uqr, d=d|,_g. (14.30)
(q—q7"? i i
Proposition 14.1 The following map with a parameter x defines an algebra homo-
morphism py : U, (") — Oscf?” [x", x7"]. (On the LHS p,(g) is denoted by g for
simplicity.)

e =x"i" @)k, fo=x""d. ), ko = (—ik;'y,
=aa; k|, fi=da;a] k', ki =kk,,  (1431)
= (a))", fo=i"do @)k, k= (k)"

where 0 < i <nandi= +/—1.

The proposition can be shown by directly checking (14.18) and the g-Serre rela-
tions. If the images of e;, f;, k; for 0 <i < n are extended to i € Z,, it becomes
equivalent to pgl 1 U, (Aill_)l) — Osc;@" in (13.95).

By (3.13) and (14.22) one can further let Oscf’” actonW = FL;@” =@, Cla)in
(11.11). For g>2, the representation space can be restricted to W, or W_ since (14.31)
does not change the parity of |a| of |a). Let us denote the resulting representations
by

me Uy(@™) 25 Osc®"[x", x™"] — End(W), (14.32)
Tawt Ug(@?) > 0sc®'[x", x "] — End(Wa), (14.33)

where the second arrow is given by (3.13) for each component. By the definition
T = T4 ® 7__, for g>2. We call (14.33) for g>2 and (14.32) for the other g""" the g-
oscillator representations. They are infinite-dimensional irreducible representations
which are singular at ¢ = 1 because of the factors d, d;, d, in (14.30).

14.2.3 Quantum Group Symmetry

Let D € End(W) be the diagonal operator such that D|a) = (iq%)‘a||a). It can be
1
realized as D = (ig2 yhit++h where h; denotes h (3.14) acting on the ith component

of W=F q®". Introduce a slight gauge transformation of R"" (z) as
R (2)=(D® R (2)(1® D). (14.34)

By using [R" "), D ® D] = O which is implied by the weight conservation (14.10),
it is easy to see that R™ (z) also satisfies the Yang—Baxter equation.
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Fig. 14.3 The part of the matrix product formula (14.7) relevant to (14.36) with 0 <i < n. Itis
formally the same with Fig. 13.7 except the absence of the operator z"3

Let A,y = (m, ® ) o A and Aif’y = (mx ® my) o AP be the tensor product
representations, where the coproducts A and AP are specified in (14.20) and (14.21).
Forg>2, weset A¢, vy = (Teyx @ Ty y) 0 Aand AL 4 ¢,y = (e, x @ Tey ) 0 AP
for €1, € = %. In [96, Prop.12], it has been proved that A, , for g"'!, g2, g>! and
Ag x,e,y TOr 92’2 are irreducible for generic x, y. Therefore R""(z) is characterized,
up to normalization, by the following theorem.

Theorem 14.2 R""'(z) given by the matrix product construction (14.6)—(14.8)
enjoys the following quantum group symmetry:

AP (R () =R (DA, (8) (Vg € Uy(g™")). (14.35)

Forr = r' = 2, the same relation holds for AL , ¢, y and A, x., y With €1, €, = .

Proof 1t suffices to show (14.35) for g = k;, e¢; and f; forO <i < n.Thecase g = k;
is easy. Below we present a proof for g = f;. The case g = ¢; can be shown similarly.
In terms of R"" (z) without hat, the relation (14.35) takes the form

@1+, R () =R (AR fi + fi @k =0, (14.36)

where f, =D 'fiDandm, ® 7y is omitted. There are five cases (i)—(v) to be con-
firmed. Below we treat them separately.

(i) Case 0 < i < n.From (14.31) one has f, = f;.In view of (14.31), the relevant
part in R"" (z) is the ith and the (i + 1)th factors in the matrix product formula
(14.7). We regard it as an element of the product Rj>3R;»3 of the 3D R, where the
indices 1, 2, 1/, 2, 3 signify the arrows as in Fig. 14.3.

In this label, (14.31) is expressed as

fi ®1=daralk;", 1® f; = dajajk; ", (14.37)
ki ®1=kk;', 1@k = koky'. (14.38)

Substituting them into (14.36), we find that it follows from (13.110) with x = y =
z = 1. Thus it reduces to a special case of Theorem 13.10.

(ii) Case i = 0 and r = 1. From (14.31) one has fO = —iq_%fo. The generators
fo and kg interact non-trivially only with the leftmost 3D R in (14.4). Denote it by
R = Rj»3. In terms of the labels 1, 2, 3, one has
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fo®1l=x"'daj, 1® fo=y 'dia;, (14.39)
ko ® 1= —iky", 1® ko = —ik; . (14.40)

Then (14.36) follows from

0= (2" (—ig~2x"aj +iy k@R — (m|R(—ig~2y™"ay +ixa ko)
(14.41)
with z = y/x. Up to an overall factor, the RHS is calculated by means of (14.26) and
(14.27) as

(1™ (qf%zafLR —kjalR— ¢ *Ra} + leEzaT)
= (m|™ (q_%zaf —kia) — 61_%(afragr —kik;al) + z(ksa, + 1213;35)) R.
(14.42)

Due to (n; |zh3a§[ =zt qi%ﬁ3) by (14.24), this vanishes.
(iii) Case i = 0 and r = 2. From (14.31) one has fy = —gq~! fo. The situation is
the same as the previous case (i). Using the same labels 1, 2, 3, one has

fo®1=x"2dy(af)?, 1® fo =y dx(a])?, (14.43)
ko® 1 =—k;?, 1®ky = —k; 2. (14.44)

Here and in what follows, ﬁf2 for instance is a shorthand for (ﬁfl)z. Then (14.36)
follows from

0= (mle™ (47122 @D R + K @HR — g7 R@)? — 2R i)
= (I (¢7' @) + K @)?
—q Yafat - lAqlA(3a2+)2 — zz(lA(3al+ + ﬁla;ag)z)R.
Due to (n2|zh-‘a; = zz(n2|zh~‘a3— by (14.25), this vanis~hes.
(iv) Casei = n and ' = 1. From (14.31) one has f, = iq%fn. The generators f,

and k, interact non-trivially only with the rightmost 3D R in (14.4). Denote it by
R = Rj»3. In terms of the labels 1, 2, 3, one has

fr®1 =idia;k;’, 1® f, =idiayk, ", (14.45)
k, ® 1 =ik, 1 ® ky, = iko. (14.46)
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Then (14.36) follows from
0= (q%a;fql - ﬁ;lagf(g‘> Rlni) — R (q%a;f(gl - a;fqlf(gl) In1)
= (q%ﬁga; - a;) RK{'K;'|m) — R (q%agﬁgl - a;li;lligl) )
= R((q%(f(gal_ +kiay af) — (aya; — kiksa;))k; 'k
—gra k! + a;ﬁ;ll}gl)ml),
where R=R™' (3.60) and (14.26)-(14.27) are used. Due to a3i|m) =
1= cﬁ%fq)m]) by (14.24), this vanishes.

(v) Casei = n and ' = 2. From (14.31) one has fn = —qfy,. The situation is the
same as the previous case (i). Using the same labels 1, 2, 3, one has

fr®1=dy(@a))’k;?, 1® fu = dy(a;)’ky”, (14.47)

kn ®1=—Kk2, 1®k, = —k2. (14.48)
Then (14.36) follows from

0= (q@n)ki? + k(@)% 2) Rina) - R (a@3)%k:? + @)k 2k ) In2)
= R((q(figal_ +kiayaf)? + (aya; — kiksa;)?)k; k2
— q(@;)%k;? — @7’k 7k ? ) Ina).

This can be shown by utilizing the relations like (a; V) = a; as ) =(1—
q’lﬁg)mz) originating from a;’|n2) = a; 1) in (14.25). O

Remark 14.3 Theorem 14.2 suggests the following correspondence between the
boundary vectors (1,|, [n,7) in (14.2) and the end shape of the Dynkin diagrams in
Fig. 14.2: (Fig. 14.4)

A similar correspondence is observed in Remarks 11.4 and 12.3.

0 n

(ml o= =0 Im)
0 n

(2] o= =0 1172)

Fig. 14.4 Correspondence between the boundary vectors and the end shape of the Dynkin diagrams
in Fig. 14.2 implied by Theorem 14.2
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14.3 Bibliographical Notes and Comments

This chapter is mainly based on [96, 97]. The boundary vector reduction was first
applied to 3D R in [95], where the sum (14.8) was explicitly evaluated for n = 1.
For general n, the quantum group symmetry of R"" (z) in Theorem 14.2 is due to
[96, Theorem 13] and [97, Theorem 4.1]. The former reference contains a proof of
the irreducibility of the tensor product of the g-oscillator representations and the
spectral decomposition of R"" (z).

Similarly to (13.160), the boundary vector reduction also works for the mixed
product of 3D R and 3D L, producing the solutions to the Yang—Baxter equation of
the form

(RO RO ) (RO =R, RV = 1) (14.49)
for €(,...,€, =0, 1. For r =+’ =1, they have been characterized as the inter-
twiner of a generalized quantum group denoted by Up(ey, ..., €,) interpolating
Up(l,...,1) = U_,1(D?)) in Theorem 12.2 and U(0, ...,0) = U, (D)) in

Theorem 14.2 [98, Theorem 4.1].%

Remark 14.3 is taken from [96, Remark 14]. It lacks double branches in the end
shape of Dynkin diagrams, whereas the similar Remark 12.3 does not cover inward
double arrows. It remains a challenge to supplement these missing cases by further
devising the boundary vector reductions and to explore the relevant generalized
quantum groups.

4 The irreducibility of the tensor product representations has been established only when (¢y, . . . , €n)
isof type (1,...,1,0,...,0).



Chapter 15 ®)
Trace Reduction gesey
of (LGLG)K = K(GLGL)

Abstract In this chapter we demonstrate a 3D approach to the reflection equation by
the trace reduction. Starting from the quantized reflection equation in Sect. 4.4 and
its solution in Theorem 5.18, an infinite family of trigonometric solutions to the usual
reflection equation including spectral parameters are constructed. The procedure is
parallel with the one applied to the tetrahedron equation in Chap. 11. The resulting K
matrices are expressed by the matrix product formula. They are characterized in the

. . (D)
quantum group theoretical framework based on the Onsager coideal of U, (A,”,).

15.1 Introduction

This chapter and the next present a 3D approach to the reflection equations in 2D
and (1+1)D integrable systems:

Ri2(xy NI () Ro1 (0 K1 (7)) = Ki (M Ri2 e FKa ()R (xy~ 1), (15.1)

where x, y are spectral parameters and R(z) is supposed to satisfy the Yang—Baxter
equation by itself. If the spectral parameters are suppressed, it reduces to the constant
version fR]szszz]le = :KI:RIZIKZIRZI-

In Sect. 5.7, we have obtained a solution to the quantized reflection equation

(L12G2L21G1)K = K(G1L12GyLay), (15.2)

which is a generalization (or relaxation) of the constant reflection equation to a
conjugacy equivalence by the 3D K. It admits a composition along the auxiliary
Fock space for arbitrary n times. The resulting equation allows the trace reduction
and the boundary vector reduction which eliminate K and generate infinitely many
trigonometric solutions to (15.1) labeled with n. They are dense in that all the elements
satisfying the obvious weight constraint are non-vanishing, allow a matrix product
formula, and are characterized as the intertwiner of the Onsager coideal of appropriate
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quantum affine algebras. These aspects are quite parallel with Chaps. 11-14 for the
Yang—Baxter equation except that special coideal subalgebras are necessary to be
selected here. In this chapter and the next we deal with the trace reduction and the
boundary reduction, respectively.

Let us summarize the result from Sect. 5.7 for convenience. Set V = Cvy & Cuvy
anddefine L = )" Eq ® Ep; @ L{? € End(V ® V ® Fp)andG = Y E}; ® G €
End(V ® F,) by

Lo Loy LY LY 1 0 00
Ly Loy LY LY _ 0 —¢’«' KA~ 0 (153
L LY L1 Lo 0 A" aKO| '
Loy Loy Lig Lij o0 01

(Gg G?) - (a+ _qﬂlk). (15.4)
Gy G| Bk a-

Here a*, k are g-oscillators in (3.12)—(3.13) and A*, K are g2-oscillators in (5.15)—
(5.16). These L and G are taken from Figs. 5.1 and 5.2, where we have attached the
extra gauge parameters «, 8 in view of Remark 5.19. We remark that

(Lin (15.3)) = (L in (11.14)) |42 = (L in (12.1)) |4 ¢2- (15.5)

‘We also note that
MGh =G, (15.6)
GZ = L}l,jla_z q—q'2,a—B> (157)

where h is defined in (3.14).
From Theorem 5.18 and Remark 5.19, L and G satisfy the quantized reflection
equation (4.9)

L123G24L215G16K3456 = K3456G16L125G24L213 (15.8)

1 2 3 4 5 6 i
nEnd(VQV®F,:QF,®F,®F,), where we have written G, as G,;, and

Lyis = PioLas Py etc. as usual.
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15.2 Concatenation of Quantized Reflection Equation

Consider n copies of (15.8) in which the spaces labeled with 1, 2 are replaced by the
copies 1;,2; withi =1,2,...,n:

L1,5,3G2,4L2,1,5G1,6K3456 = K3456G1,6L1,2,5G2,4L2,1,3- (15.9)

Using (15.9) successively, one can send K34s6 to the left through L1,2,3G2,4L2,1,5G 1,6
converting it into G1i6L1,.2,.5G2i4L2,.1,.3 (i=1,2,...,n)as

(L1,2,3G2,4L2,1,5G1,6) - - - (L1,2,3G2,4L2,1,5G1,6) K3456
= K3456(G1,6L1,2,5G2,4L2,1,3) - - - (G1,6L1,2,5G2,4L2,1,3)-

One can rearrange this without changing the order of operators sharing common
labels as

(L123- - L1,2,3)(G2a - Go,4)(Loy1,5 - - L2,1,5)(Gry6 - - - G1,6) K3ase
= K3456(G1,6- - G1,6)(L1,2,5 - - L1,2,5)(G2,4 - - - G2,4)(L2,1,3 - - L2,1,3)-
(15.10)

This relation will serve as the base of the reduction procedure in this and the next
chapters.

15.3 Trace Reduction

The weight conservation (5.66) of the 3D K is stated as
Kase(xy DIl (ey)bsyhs = (xy=1yhe xhe (pyybs yhs g o (15.11)

for arbitrary parameters x and y. See (3.14) for the definition of h. Multiply this by
3 4 5 6
(15.10) from the left and take the trace over F 2 ® F, ® F,2 ® F,. Using K2 =1

from (5.72) we obtain

Trs((xyfl)h3L1.2.3 ‘. L1,,2,,3)Tf4(xh4Gz,4 -+ Ga4) X
x Trs((xy)™ La,1,5 -+ - Lo, 1,5) Tre (" Gi6 - - - Gi,6)
= Tre(y"G1y6- - G1,6)Trs((xy)™ Li,2y5 -+ Li,2,5) X
X Trg(x™Gaa -+ Go,a) Trs((xy ™™ Loz -+ Loy 3). (15.12)
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Here Tr3(---) and Trs(---) in the LHS are the R matrices S;f;(xy“)lq_)qz and
S;“l (xy)]g—¢42 in (11.23) up to a scalar multiple. The change ¢ — g is necessary
because of (15.5). Similar identifications hold for the RHS. Since they appear fre-
quently, in this chapter we use the notation

$U(2) == ($"(2) in (11.26)) |4 4. (15.13)

The tiny abbreviation of trs to tr is the sign of the replacement ¢ — ¢? in S(z) from
Chap. 11. It also balances with the notation K'(z) introduced below.

Returning to (15.12), the other factors emerging from G constitute the linear
operators

1
K{'(2) = €"(2)Tre(2" G165 - - - G1,6) € End(V), (15.14)
2
K3 (2) = k" (2)Tr4(2™ Gy - - - Go,4) € End(V), (15.15)
4 6

where the traces are taken over F, and F,, and the scalar «"(z) will be specified

in (15.22). They are the same linear operators acting on the different copies of V"
1 1 1, 2 2 2,
givenas V = ‘}®-~-®VandV: ‘}®-~-®V.

The relation (15.12) is the reflection equation in 2D:
ST2 ey ™ HKS (0) Sy () K (») = KY () ST, (xy) K5 () Sy (xy™).  (15.16)

The construction (15.14)—(15.15) provides the matrix product formula for each
element as

K"(Dva= Y K"y (acs),

bes

K"} = k" (@) Tr("Ghr -+ Gh), (15.17)

An

where the base vector v, € V, the labeling set s and the relevant notations are defined
in (11.1)—(11.7). From (15.4), we see that it depends on the parameter 8 via GZ as
the conjugation:

K"(z) = BM (K (2) gy ) BT (15.18)
Comparison of (15.17) and (11.26) using (15.7) also shows that

K"(2)? = (scalar)$™ ()& 2, (15.19)
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where a’ = (1 —ay,..., 1 —a,) as in (6.4). In (15.19), the changes ¢ — ¢'/? in
(15.7) and g — q2 in (15.13) are canceled, therefore the RHS is just the one in
(11.26) up to a scalar, hence S™(z) instead of S (z).

Letus derive the “selection rule” or the weight conservation law of K" (z). Suppose
the number of pairs (0, 0), (0, 1), (1, 0), (1, 1) in the multiset {(ay, by), . .., (a@n, by)}
is r, s, t, u, respectively in (15.17). Then from (11.4) we have |a| =t 4+ u, |b| =
s+u and n =r + s 4+t + u. Moreover, in order to have a non-vanishing matrix
element (15.17), there must be as many creation operators as annihilation operators.
From (15.4), this imposes the constraint r = u. These relations enforce |a| + |b| = n.
Namely we have the selection rule:

K™(2)? =0 unless |a| + [b] = n. (15.20)
It implies the direct sum decomposition:

K" = P k'@,  K'Q@:Vi—> V.. (15.21)

0<i<n

1)

n—

The space V; is the /th fundamental representation of U, (A
tion rule (15.21) is not V; — V.

The reflection equation (15.16) holds in a finer manner, i.e. as the identity of linear
operators V; ® V,, = V,_; ® V,_,, foreachpair (I, m) € {0, 1, ..., n}?. The scalar
in (15.17) can be specified depending on / as ;" (z). We take it as

1)- Note that the selec-

k'(2) = (=D'g72(1 — z¢"). (15.22)
This choice leads to the normalization
e
K (2)Ve,tte, = (@ 2B)" e, 1ote, +--- (0<1<n). (15.23)

Example 15.1 We present K" (z) (15.17) with 8 = q% for n = 2, 3. The general §
case can be deduced from them by using (15.18). We temporarily write vy ® v; as
|01) etc.

When n = 2, K'(z) |,3 acts on the basis as

1
=q2

g~ (=1+¢%)z|01)
11 1 - 1
100) = [11),  [01) > 112 + [10),
q~'(=1+¢%)]10)

(-1+72)

[11) — |00), [10) — |01) —

Whenn =3, K "(z)lﬂ acts on the basis as

1
=q2
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|000) > [111),  [111) > |000),

L, _(l+ghzol) (=1 +4¢%2]101)
q(=1+4qz) —1+gqz

. (=1 +¢*)z[011) _ (=1+47)I110)

1001) + 1110,

010 + 101
|010) Ttz [101) pra
—1 4 ¢%)z|001 —1+4¢%z|010
011) 1 — (CLHD2I00D _ (Z14¢220010) o0
q(—14¢q2) —1+gz
1100) 1> [011) — (ZLEAINOD (=1 +47)I110)
q(=14¢q2) —1+gqz
101y s — LT a2I000) g (F1H¢7)[100)
—l+qz q(=1+gq2)
1110) > [001) — (LT DI010) (1 447)]100)
q(—=1+qz) —14+qgz

These formulas are consistent with the selection rule (15.21).

15.4 Characterization as the Intertwiner of the Onsager
Coideal

Let us establish the characterization of the matrix product constructed K matrix

K" (z) (15.17) as the intertwiner of the Onsager coideal of U, = U,(A'" ) at p =

—g~%. We retain the definitions concerning U » (A;l_)l) in Sect. 11.5. In particular

we use the irreducible representations 7, » : U, — End(Vy) in (11.60) and 7, :
U, — End(Vy) in (11.78)—(11.80). We further assume
p=-q9, n>3 (15.24)

in the rest of the chapter and allow the coexistence of the letters p and q.

15.4.1 Generalized p-Onsager Algebra O, (Afllll)

The algebra O ,,(A,(Bl) is generated by by, ..., b, with the relations

b,‘bj — bjbi =0 (aij =0),
b7b; — (p+ p bbb, +b;67 =b; (a;; = —1), (15.25)
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where (a;;);, jez, is the Cartan matrix given after (11.57). There is an embedding
0,(A" ) = U,(A")) given by

1
bi — gi =e + pki fi + —lk,- @i € Zy). (15.26)
q+tq-

In this context, (15.25) can be viewed as a modified p-Serre relation. Define
B" = the subalgebra of U,,(A,(L)I) generated by g1, ..., gx- (15.27)

Observe in general that the elements of the form g/ =e; + ¢;k; f; +dik; €

U p(Afll_)l) with arbitrary coefficients c¢;, d; behave under the coproduct A (speci-
fied in (11.58)—(11.59)) as

Agl=e®@1+k®e+ciki k)1 fi+ fi @k +diki @ k;
=(ei+cikif)@1+k®gelU,®14+U,®g;. (15.28)

It follows that AB" C U, ® B", which implies that the subalgebra B" is a left
coideal. The specific choice of the coefficients in (15.26) makes gy, .. ., g, further
close among themselves as in (15.25). Having these features in mind we call the
coideal subalgebra B" an Onsager coideal of type A,(L)l.

Remark 15.2 Let 0,(A,_;) be the subalgebra of 0,(A'"”)) generated by
by, ..., b,—; without b,. Let T, , denote the Temperley-Lieb algebra [142] gen-
erated by 71, ..., t,_ obeying the relations

titp—t;5; =0 (li —j| =2),
7 =(q+q ",
Lititi = 1; (i —jl=1. (15.29)

Under the relation p = —g*?, the map

b, = t; — (15.30)

yields an isomorphism O,(A,_1) = T, ,.

15.4.2 K'(2) as the Intertwiner of Onsager Coideal

/

Recall the two representations of U p(Aill_)l) given as 7y, , in (11.60) and 7, . in

(11.78), which are simply related by (11.79). We quote 7, , for convenience.
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8

1) — m;—m
€iUm = X lovm+ei—ei+1a fivm =X lovm—e,-+ei+17 kivm =p" o, (1531)

where the indices belong to Z,. We exhibit the spectral parameter dependence as

T T o0 Up(AY ) — End(V; ), (15.32)

Wy, X *

where V; >~ V; , as vector spaces, and x just indicates that the actions of e; and
fi involve the factors x%¢ and x %, respectively. Setting V, = DBo<r<n Vixs' we
interpret the K matrix in (15.17) and (15.21) as the linear map

K"(z):V,-1 = V_. (15.33)

Theorem 15.3 The K matrix K" (z) is characterized, up to normalization, as the
intertwiner of the Onsager coideal BY C U,,(qul_)l) at p = —q~*(15.24) as

K" (@) ,,-1(8) = w2 ()K" (2) (Vg € BY). (15.34)

Proof First we prove (15.34) for g = g, in (15.26) with r € Z,. We write y =
(g+g ) 'and? =e, — e, (r € Z,) for short. The action of the two sides on v,
reads as

K" ()T o1 (8002 = K(2) (@ " vays + 27 ™1 g 4y p = rtiuy)

— Z(Z—Sro Ktr(Z):L,; + ZS,Upa,—a,H—l I([l‘(z):l)7’5 + J/pa"_a"“ Ktr(Z):)Ub,
b
T2 (8) K @Va = Y K" ()57, 2 (8 Ve
C
=D K @5 vers + 270 pe T  ue gy p T ve).
C
Comparing the coefficients of vy, we are to show

Z7§r0 KU(Z):_,_; + Zﬁropllr*llwl*ll{tr(z)g_; + ypar*arﬂ KTI(Z):
— ZrS,U Ktr(z):—f- + Z—(Sropbr—br+1+1Klr(Z):+f + ypb,-—b,-+| Ktr(Z)::. (15.35)

In view of the matrix product formula (15.17), this follows from a relation involving
two adjacent operators G% in (15.4). Explicitly, it reads as

G, G+ p TG Gl +yp UGG,
b—1 b +1 b—b/+1 xb+1 b —1 b=b' b b
=G, G+ pP GG T 4 yp” TP GG

a

(15.36)

! The temporary notation V,, with spectral parameters z = x*!, y*1,

Vi with k € [0, n] in (11.6) by the letters used as the index.

... 1s to be distinguished from
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where we have set (a,d’, b, b') = (a,, a,11, br, by4+1). The factor z*%° has been
removed thanks to (15.6). The relation (15.36) can be checked directly. For instance,
when (a,a’,b,b") = (0,0, 0, 1), it reads as ya* Bk = fka* + yp~'a* Bk, which
isvalid dueto (15.24) and (3.12). As seen in this example, 8 in (15.4) always becomes
an overall factor for (15.36) reflecting (15.18) and the invariance of 774, .+ under the
conjugation by g+ +h

We have proved that K" (z) satisfies the intertwining relation (15.34). The remain-
ing task is to show that the solution is unique up to normalization. As for this
we refer to [104, Sect. 5.2], where the claim has been proved in a more general
setting. (]

15.4.3 Reflection Equation From Onsager Coideal

In Sect. 15.3 we have already proved the reflection equation (15.16) by using the
quantized reflection equation. Here we present an alternative and more conventional
proof based on the Onsager coideal B".

We temporarily introduce

K(z)=t0K"(z): V.1 — V_, (15.37)
R(z) = 8"(zh, (15.38)
R =180 H(1®0, (15.39)
R'(2)=(®)S" @ H®, (15.40)

where ((Um) = Um' = V(1—m,.....1-m,) as defined in (11.80) and (6.4). From (15.21),
K(z) is a direct sum of linear operators V; ,-1 — V. over 0 <k <n. Since
I

T (&) =0Ty, , 1(g) ot by (11.79), the intertwining relation (15.34) takes the
form

K@)y 1(8) = 7l (9K() (Vg € BY). (15.41)

In (15.38), the reason for S"(z~!) instead of S (z) is to take the inversion of the
spectral parameter in (11.62) into account. Matrix elements, in the same convention
as (15.17) and (11.25), are given by

K@h=K"@Y, R@P=5"c"HT., R@L=s"c"". 1542

wherea’ = (1 —ay, ..., 1 — a,) as defined in (6.4).



266 15 Trace Reduction of (LGLG)K = K(GLGL)

Following (11.61) we also prepare the tensor product representations’

Avy = (T x @ T, y) 0 A, (15.43)
A= ®7, JoA=(10A(1®), (15.44)
Ay =T T, ) 0O A=(Q DAL, ® 1), (15.45)
Al =, @7, JoA=(1Q0A,(®), (15.46)

where the coproduct A is specified in (11.58). Let P(u ® v) = v ® u be the trans-
position as usual. Then from (11.61), (11.62) and A’ = P o A o P, we know that
the commutativity

PR(2)Ay y(8) = Ay x(8) PR(2), (15.47)
PR'(2)A ,(8) = Ay () PR'(2), (15.48)
PR"(2)A] (g) = Al .(9)PR"(2) (15.49)

hold for g € B* C U,,(Aill_)l) provided z = x/y.
Consider the two maps going from the representation space V,-1 ® V -1 of
Ay-1y-1 10V, @ Vy of AY | constructed as follows:

Vi ® Vy—l
W \PR(f/X)
Vi ® Vy Vy—l ®V, -
PR’((xy)~") Ko (x)
Vy ®V, Vy—l ®V,
K> (x) PR'((xy)™)

Vi® Vy—l

V, 8V,
PR“(ymx V.oV Az(y)
x®Vy

Here K, (z) = 1 ® K(z). Note A(B™) C U, ® B"™ and that the K matrices act only
on the right component. Therefore for any g € B", the compositions X and Y corre-
sponding to the LHS and the RHS of (15.50) possess the same intertwining property

(15.50)

2 The indices / and m do not play a role in the following argument and can be chosen arbitrarily.
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XA y1(8) =AY (@)X, X = PR"(y/x)Ka(x) PR'((xy)"HKa(y), (15.51)
YA y1(9) =AY (9)Y, Y =Ko(y) PR ((xy) DKo (x) PR(y/x)  (15.52)
thanks to (15.41) and (15.47)—(15.49).3 Thus X = (const)Y must hold provided that
A1,y is irreducible as a representation of B". The constant here is 1 for any 7, m

in view of (11.34) and (15.23). The irreducibility has been proved in [104, Sect. 5.2].
Thus we obtain X = Y. Then the equality (t ® () PXP = (1 ® 1) PY P yields

(t ® OR"(y/x)Ka (x) PR ((xy) " HK2(y) P
= (1 ® ) PKa(») PR ((xy) ")Ka(x) PR(y/x)P. (15.53)

Upon substitution of (15.37)—(15.40), this becomes

STy @01 @)K () ® D PSY,(xy) Ky (y) P
=(® )P ®VKy ()P ®)S],(xy) Ky (x)PSy,(xy ) P. (15.54)

The underlined operators on the LHS and the RHS are equal to K g (x) and K{(y),
respectively. Thus the reflection equation (15.16) is reproduced.

15.5 Further Properties of K (z)

15.5.1 Commutativity

Proposition 15.4 The K matrix K"(z) forms a commuting family:
[K"(z), K"(w)] = 0. (15.55)

Proof In view of (15.18) we set 8 = 1 without loss of generality. For simplicity we
denote K" (z)|g=1 of (15.17) without the prefactor k" (z) just by K (z). In order to
describe the elements of K (z) K (w), we prepare two copies of g-oscillators and their
product:

G — aj‘ —qk; M((i) M(ll) — G| Gy = Ta; —qkiky —q(afrkz -l—klaE)
! ki a ) \Mmj M| kiay +aky aja; —gkiky /)’

' (15.56)
where i = 1, 2 and - signifies the usual product as 2-by-2 matrices. We will also use
the copies hy, h, of the number operator h (3.14). Operators with different indices
are commutative as they act on different g-oscillator Fock spaces.

3 The relation p = —g~' in Theorem 11.3 fits p = —g~2 in Theorem 15.3 because of (15.5).
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The matrix element of K (z) K (w) is expressed as

(K (2)K (w))5 o =Ty (Mw M) - M), (15.57)

..... a an

where the trace extends over the two g-oscillator Fock spaces 1 and 2.
Let r be the exchange operator of the two g-oscillators:

rP=1, ra=af,;r, rki=ksr, rhy=hs;r (i=172). (15.58)
One can easily check the following relations for any a, b = 0, 1:

rMb = (—q)* " M{r, (15.59)

MMMy = MgM}, M{_ My =qMoM{_,, M{_ M| =q 'M{M{_,. (15.60)
Note that the relation (15.60) is also satisfied by each G; (15.56) individually. The
product G| - G, preserves the relation because it coincides with the coproduct (3.6).

Insert 1 = r2 anywhere in the trace (15.57) and let one of the r’s encircle the

whole array once using (15.58) and (15.59). The result gives

Trip (Mwh M- M) = Tryp (w2 M- M) (=)™ (15.61)
where the symbol |a| is defined in (11.4). From (15.20) we know (K(z)
removed, leading to

(K (2)K (w))gyq = (KW)K (2));,775 (15.62)

Next consider the expression (15.57) again. Under the assumption |a| = |b|, the
number of Mé and M ? in the trace is equal, which we denote by m. Then by means
of (15.60) one can send Mé and M ? to the left to rewrite (15.57) uniquely in the form

(K@K )b = g® Trpy (M w™(MygM)" Ny -+ Nu—ow) (15.63)
where N; = Mg or M| are in the original order and ® is some integer. Starting from
(K (2)K (w)),7y", the same rewriting procedure leads to the identical expression

thanks to (15.60). Thus we find

(K (2)K (w))5 b = (K (2)K (w)); 5. (15.64)

~~~~~~~~~~~~

(KK @) = (K@K (W), (15.65)

..........

which completes the proof. O
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The K matrices K**' (z) (k, kK’ = 1, 2) which will be constructed in the next chapter
do not satisfy the commutativity (15.55).

15.5.2 KY(z) as a Symmetry of XXZ-Type Spin Chain

We have considered a representation of the generalized p-Onsager algebra obtained
by the composition

0,(A" ) = U,(A")) = End(V,)
by — g — hi(x) (i €Zy, (15.66)

where the left arrow is given by (15.26) and the right one is by the direct sum
representation 7, = @y, Tw,.» of (15.32) and (15.31).

In order to get familiarized with the operator 4; (x) = 7, (g;), we write a base vec-
tor vy € V, labeled with an array m = (m,, ..., m,) € s (11.1) as |my, ..., m,),*
and interpret it as a state of a spin | chain on length n periodic lattice. Let 07*, 07, o}
and oii = %(ol?‘ + icriy ) (1 <i < n) denote the Pauli matrices acting on the ith com-
ponent of V = V®" regarding m; = 1 as an up-spin and m; = 0 as a down-spin.
Namely,

ofl.. 1) =1...,0,..), oFL 0,y =],

ol 1) =i]...,0,...), o0, )y =il 1),
oy =1 1), 0.0, ) =—|...,0,...), (15.67)
ol 1, >:o, ot 0y =] 1),
o1y =]...,0,...), o7]...,0,...) =0.

Then the representation (15.31) is expressed as spin chain operators as

e = x8'°6+ol+1, pkifi = x~ 100 U:rl’ (15.68)
| 1 o 1y

ki = 1+4 005 + -1 (0] —0y) — w’ (15.69)
q+q7! 4 4 4q+q7h)

where p = —q’2 (15.24) has been taken into account in (15.69). Thus from (15.26),
the image #; (x) in (15.66) takes the form

4 This is a temporary notation only for (15.67). Elsewhere it is reserved for the base of W in
(11.12)—(11.13).



270 15 Trace Reduction of (LGLG)K = K(GLGL)

x4 x~0 xho —x oo :
hi(x) = T(Uixaixﬁ-l +0/0) ) — 4 (00}, — 0] a})
g+q7' . . L q—-q' . . (q—q")?
4 i i+l ( i l+]) 4(q +q_1) ( )

This is a typical local Hamiltonian of a spin | chain with magnetic field (second term
in the second line) and with a Dzyaloshinskii—-Moriya interaction term (second term
in the first line). The constructions so far shows that they yield a representation of
the p-Onsager algebra OP(ALIEI).

Now the intertwining relation (15.34) for g = g; reads as

K"(2)hi(z™") = hi(2)K"(2), (15.71)
or equivalently in terms of (15.37) as
K(@)hi(z™") = (Lo hi(z) o )K(2), (15.72)

where ¢ defined in (11.80) is a spin reversal operator in the spin chain context.

One can consider various “Hamiltonians™> commuting with K" (z) or K(z) thanks
to (15.71) and (15.72). For instance, h; = h;(x) is x-independent fori # 0, therefore
[D " <i<u_ Cihi, K™ (2)] = 0 for any coefficients cy, ..., ¢,—;. Another example is
H(z) = ZieZ” hi(z~") which eliminates the magnetic field term, leading to

—1 —1y2
s, _ S0 — q+q nig—q)
HE = 3 (oo, + ooty + oioi) - A
(15.73)
It satisfies H(z~') =t o H(z) o t, therefore (15.72) leads to
[K(z), H(z)] = 0. (15.74)

15.6 Bibliographical Notes and Comments

The reflection equation in 2D or (1 4 1)D has been recognized as a key ingredient in
quantum integrable systems in the presence of boundaries since the pioneering works
[30, 53, 83, 137]. A variety of solutions and aspects have been explored, for example
in [8, 36, 103, 116, 117, 120, 125]. Below we focus on trigonometric solutions.
The 3D approach to the reflection equation was launched in [105], where K" (z)
in (15.17) (and K*¥ () in the next chapter) were constructed from the quantized
reflection equation (15.8). Most K matrices known by then were associated with
the quantum affine algebra with lowest rank (typically U, (Agl))) with higher spins,

5> With a suitable choice of ¢ and z so that Hermiticity is fulfilled.
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or general rank non-exceptional type but with lowest “spin” (typically the vector
representation). The majority of the latter are sparse (or even diagonal) in the sense
that K (z)'; = 0 except for a relatively few choices of a, b. In contrast to them, K" (z)
in this chapter is associated with higher rank U p(Afll_)l) with general degree anti-
symmetric tensor representations. Moreover, it is dense in that all the elements are
non-trivial trigonometric functions within each sector (15.21). The most distinctive
feature is the matrix product structure (15.17) reflecting the 3D integrability behind
the scene. A similar solution associated with general degree symmetric tensor rep-
resentations of U p(Aill_)l) has been constructed in [103], where the matrix product
operators analogous to (15.4) are truncated g-hypergeometric series of g-oscillators.
The commutativity (Proposition 15.4) is due to [106, Appendix A]. Construction of
the associated double-row-type commuting transfer matrices in the spirit of [137]
and especially their spectral problem involving those “dense” K have been left as a
future problem.

The idea to characterize the spectral parameter dependent K matrices in terms
of coideal subalgebras of quantum affine algebras (Sect. 15.4) was proposed in the
context of affine Toda field theory with boundaries. See for example [37, 38], more
recently [79, 125] and references therein. It essentially achieves linearization of
the reflection equation, eliminating the task of proving the original quartic relation
RKRK = KRKR “manually”. It is a boundary analogue of the classic idea [43,
63] that the cubic Yang—Baxter equation RRR = RRR is attributed to the linear
equation [R, A(U »)] = O representing the U, symmetry. See [64, p. 540]. One may
interpret that the full U, symmetry in the bulk is lost at the boundary but still survives
partially as some subalgebra symmetry which should be a coideal to fit the quantum
group machinery.

The coideal must be small enough, otherwise the intertwining relation like (15.34)
may not allow a solution. Nonetheless it must be also large enough, otherwise the
relevant space like V, ® V,, in (15.50) may not become irreducible as a module over
the coideal. In this way one is led to a fundamental question: what is the right “size”
or choice of the coideal in order to make the linearization work legitimately for a
given representation? It is still an outstanding problem in general.

Section 15.4 demonstrates that the Onsager coideal is one such example. The
generalized p-Onsager algebra associated with general affine Lie algebra has been
formulated in [7]. The relation (15.25) with p = 1 goes back to [144, Egs. (11)
and (12)]. The early history of the Onsager algebra starting from [122] can be
found in [143, Remark 9.1]. A more recent account is available in [79, Sect. 1(1)].
Remark 15.2 on the relation with the Temperley—Lieb algebra [142] is taken from
[106, Remark 3.1]. The scheme (15.66) to realize the Onsager algebras in terms
of quantum spin chain Hamiltonians like (15.70) has been explored also for other
non-exceptional quantum affine algebras [106]. The characteristic aspect is, it accom-

modates a length n spin ! chains in a single irreducible representation of U p(ALI_)l)

instead of (spin ! representation)®" of U » (Aﬁl)). This is another manifestation of the
rank-size duality (Sects. 11.6, 13.8 and Remark 18.7) in the sense that the Dynkin dia-
gram of the “internal symmetry” U, (A fll_)] ) pops out as the periodic lattice (‘“external

space”’) on which the spin system is defined.
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The Onsager algebra O p(Af,ljl) has a natural classical part without the genera-
tor by. The commutativity in Theorem 15.3 implies the usual commutativity with
the classical part. The corresponding spectral decomposition of K" (z) has been
described in [106, Sect. 4]. A more detailed account will be given of the p-Onsager
algebras for other types in Sect. 16.3. This chapter is parallel with the next where
most of the results are extended to the B, DV, D), cases by boundary vector
reductions.



Chapter 16 ®)
Boundary Vector Reductions e
of (LGLG)K = K(GLGL)

Abstract This chapter is a continuation of the 3D approach to the reflection equation
from the previous one. We start from the n-concatenation of the quantized reflection
equation (LGLG)K = K(GLGL) and perform the boundary vector reduction. The
L part gives rise to the quantum R matrices for the spin representations of g =
BM, DO DD BMD_ which have been detailed in Chap. 12. The G part generates
the companion K matrices that satisfy the reflection equation. They are expressed
by a matrix product formula in terms of G and characterized as the intertwiners of
various Onsager coideals of the quantum affine algebras U, (g""). The final list of
the solutions is summarized in Table 16.1.

16.1 Preliminaries

We keep the setting in Sect. 15.1 and continue to work with the solution (L, G, K)
to the quantized reflection equation L23G24L215G 16K3456 = K3456G16L125G24L213
summarized there. Thus L and G are given by

Lo Loy LS5 LY 10 00
Loo Lot Ly LY | |0 —¢°¢7'KA™ 0 Go G1\  (a" —gp'k
Lorlororiol o AT «KO Gigl) \pk a )
Loo Lot Lig Lii o 0 0l
(16.1)
The 3D K has been detailed in Chap. 5. Note that
(Lin (16.1)) = (L in (11.14))], 42 = (L in (12.1))]4- 4. (16.2)
Our starting point is the n-concatenation of the quantized reflection equation
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(L123- - L1,2,3)(Goa - Go,4)(Lay1,5 - - L2,1,5)(G1y6 - - - G1,6) K3as6

= K3456(G1,6- - G1,6)(L1,2,5 - - L1,2,5)(G2,4 - - - G2,4)(L2j1,3 -+ - L2,1,3)
(16.3)

and the weight conservation of the 3D K
Kaase(ey DM ey yhe = eyt oy y" Kasse,  (16.4)

which are quoted from (15.10) and (15.11). The operator h; is the number operator
h (3.14) acting on the ith Fock space.

16.2 Boundary Vector Reduction

Recall the boundary vectors in (5.118) and (5.119):

=3y =5 ) (16.5)

=@’ =@

(rm| |rm)
= —a > r) = —a > 16.6
(xr mEEO @ | xr) mEZO @, (16.6)

where r = 1, 2. The second line is obtained by setting ¢ — g2 in the first line.
The vectors (16.5) (resp. (16.6)) are elements of a completion of ]-";‘ and F, (resp.

.7-";2 and ]—'qz).1 We invoke Proposition 5.21, which states that they yield particular
eigenvectors of the 3D K as

(1 @ (Ml @ (x| @ (DK = (x| @ (| @ (x| ® (Ml
K(x-) @ k) @ 1x) @ i) = 1x) @ 1) @ | xr) @ Imk)s (16.7)

where 1l <r <k <2.

Multiply (xy~!)mxP+(xy)Bs yPs from the left by (16.3) and sandwich the result by
the boundary vectors as

3 4 5 6 3 4 5 6
(1 ® (il @ (Xl @ (Ml - )N xr) B i) @ ) @ i)

Thanks to the commutativity (16.4) and the eigen-property (16.7), the 3D K disap-
pears and the result becomes

! From (3.16), dual pairing of ]—';2 and Fqp2 should be calculated by (m|m’) = (q4)m8m’mf.
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3 _ 3 4 4
Kl ey ™YLy 05 -+ L3l ) (il xX™ Gaya - - - G alie) x
5 5 6 6
X (x| ) Loytys -+ - Loyi,s1 %) (kY™ Gry6 - - - Gu6lmer)
6 6 5 5
= Mely™G1y6- -+ Gr6lne) (X 1 (x0)™ Lo - - - Liyo,sl ) x

4 4 3 _ 3
x (Ml x™Gaya -+ Goalne) 6 1 ey ™™ Loy13 -+ Lojial ). (16.8)

Up to scalar multiples, the factors (x.|(---)|x») involving L yield §"" (D]g—q
in (12.6). In the identification one uses (16.2) and (x| = (n,|lg—q> and |x,) =
[1,)|4—42 in (16.6). Since they appear frequently, we adopt the convention:

"' (z) in this chapter = (8" (2) in (12.8)~(12.9)), 2. (16.9)

By Theorem 12.2|,_,,2, we know that S™"(z) is the quantum R matrix for the spin
representation of U, (@ yatp=—q 2.
Returning to (16.8), the other factors emerging from G have the form

’ ’ 6 6 1
Ki*(2) = ¥ (@) (mlz2™G16 - - - Gr6lme) € End(V), (16.10)

, , 4 4 2
K5¥ (z) = K" @) (|2 Gy - - - Goalmi) € End(V), (16.11)

where k, k' = 1,2. The scalar ¥ (z) will be specified in (16.17). They are the
1

same linear operators (16.13) acting on the different copies of V®" given as V =
1 ln 2 2 271
Ve @VadV=V® oV

In terms of (16.10)—(16.11) and (12.6)|,-,,2, the relation (16.8) is stated as the
reflection equation

Sph ey K ()85 Gy KT (v) = KiH ) Sp5 e Ky () S5 ey ™)
(16.12)
forl <r<k<2andl=<r <k <2
The construction (16.10)—(16.11) yields the matrix product formula for each ele-
ment as

Kk’k/(z)va = Z Kk’k/(z): Up,

bes

Kk’k,(z): _ Kk,k’(z)(n”thz: .. Gla’: (). (16.13)

See (11.1)—(11.7) for the notations s, v,, V etc. From (16.1), we see that it depends
on the parameter § in (16.1) as the conjugation:

KAK (2) = gt (KEK (2) oy ) g7, (16.14)
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From (3.18) and the fact that «**' (z) = «¥**(2) in (16.17), it can be shown that

Kk,k/(z):‘) — ZI‘L*|3‘*“)|Kk/,k(z)z:i:zig:z::;i’ (1615)
where (ay, ..., a,)” = (ay, ..., ay) is the reverse ordered array as in (11.4). Noting

the factor 6(j € 27Z) in the last formula in (12.10), one can show
K**(z)> =0 unless |a|+|b|=n mod 2 (16.16)

by an argument similar to the one for deriving (15.20). Consequently, the direct sum
decomposition

K*2(2) = K2’ @ @ K2 (2),  K2*(2): Vo = Vo1

holds, where V.. was defined in (11.6). As for K** (z) with (k, k') # (2, 2), there is
no selection rule like (15.20) or (16.16). We choose the scalar ' (z) as

((2g"'; 4" ) oo

Car gy gty ° = mink k). 1= max k).

(16.17)
which is the inverse of ¢ 2 (1 |z"K" |y ) calculated from (12.10). In this normalization,

KK () =q7"

K ¥ (@) vey sty = (=1 (@ 7B 2 ey pe, (16.18)

for0 <l <n, 1 <k, k' <2 holds, and general elements are rational functions of
B, q% and z.

As seen from (16.13) and also in Example 16.1 below, the K matrix K kK (2) is
dense in the sense that all the elements are non-zero (for K >? non-zero within each
sector implied by (16.16)).

Example 16.1 We present K**' (z) with 8 = g2 forn = 1,2 and (k, k') = (1, 1),
(1,2), (2, 2). The general B case and (k, k') = (2, 1) can be deduced from them by
(16.14) and (16.15). We write vg ® v as |01) etc.

Forn =1, K"*k'(z)ll3 q% acts on the basis as

L g 731+ 9)z/0) g+l
K"(@):0) > e prm e L S D e U R st

120, . g (1 +¢)2(0) L g i+l
K" (2) 1 10) —~ T + 1), [1) — —]0) B —
K*2(2) 110) = [1), 1) = —0).

Forn = 2, K“(z)lﬂ acts on the basis as

1
=q2
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-1 1 + ¢*)z%|00 -3(1 01 2(1 10
100y 1> 4 (I+¢)A+4¢)z7100) g 2(1+¢)z[01) g2(1+4)z] >+|11>,
(=1+2)(—=1+¢q2) (—=1+4q2) —1+gz
ol 1 A+ D00 g7 (1 + )21+ — gz +4°2)I0)
—1+4+gz (=14+2)(-14+g¢g2)
1
—2(1 11
oy - Aol
—-1+g¢z
1
2(1 00 -1a 1— 210
|10)Hq2( +q)z| )_|01>+q dI+9)d —g+4gz+4972)|10)
—1+4+gz (=1+2)(=1+¢q2)
g2 +9l1)
—1+gz
1 1
—2(1 01 2(1 10 -1 1+ g?H|11
|11)|_)|00>+q 2(1+¢@)01)  g2(1+¢)[10) g (A +qg)(1+g7)|11)
—-1+gz —-1+gz (=1+2(-1+4q2)
K'2(z)| 1 acts on the basis as
B=q?
00) 1o I A+ DZA+G =2 +¢°2)I00) _ g2 +q)z[01)
(=1 4+ 22 (=1 4+ g%z?) -1+ g2z2
1
q2(1+ q)z|10)
- L,
_1+q222 +| >
01) 1> g (1 +@)z100)  ¢7'(+ )22 (1 +¢% — ¢*2% + ¢°2H)[01)
—1+q%2 (=142 (=144’
1
2(1 11
_|10)_q2( + ¢)z|11)
_1+C]2Z2
1
(1 00 1A 4+q9)(A —q+q%+¢32H10
|10)'_>q2( +9)z )_|01>+q (I +4)( 261 9z 2riz)l )
—1+4q%z? (=14 22)(=1+¢%z%)
g+l
—1+q222
1 3
q:(1+4¢)z|01) =~ gq2(1 +¢)z|10)
11 00
[11) = 00) + g g
+q’1(1+q)(1—q+qzz+f13z2)|11)
1+ -1+
K%*%(z)| 1 acts on the basis as
B=q?2
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1 27,2 -1 27,2
g~ (=1 +¢*)2%/00) g~ (=1 +¢)2?|01)
00 11), 01 — |10),
00) > TP ), (0 e T 110)
-1 2 -1 2
g~ (=1 +4*)|10) g~ (=1 +g)I11)
10 —101 , 11 00 .
10) > —j01) + =7 1) > 100) + F———

16.3 Characterization as the Intertwiner of the Onsager
Coideal

We keep the definitions of the quantum affine algebras U, o) (r,r’ = 1,2)in Sect.
12.2, where

gl = p@

w0 =B, g2 =B" ¢’ =D (16.19)

as in (12.20). We use the spin representation 77, , : Up (¢""") = End(V)in (12.23)-
(12.27), which we quote here for convenience:

—1 1_
€0Um = XUm—e, fOUm =X Um+e > kovm = p? " Um r=1,
(16.20)
2 -2 l—m;—
€OUm = X Um—e—e;» foUm = X “Umietes KoUm=p "' om  (r=2),
(16.21)
€iVm = Um+e;—e;y > fivm = Um—e;+e;4 > kivm = pmiimiﬂvm 0 <i<n),
(16.22)
_1
€,Vm = Um+e, > Savm = Um—e, knvm = Pm” 2Um (r, =1), (16.23)

— _ _ amuytmy_—1 ’r_
€nUm = Um+te,_ +e,> faUm = Um—e,_;—e,» kyvom = p" T T oy (7 = 2),

(16.24)

where m € s. As mentioned before, it is irreducible except for 92*2 = D,(ll), where
V =V, & V_ as defined in (11.6) corresponding to the two kinds of spin represen-
tations.
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According to the remark after (16.9), we will be concerned with U, (g"") with
p = —q 2. In the rest of the chapter we set

=

pr = —ieqg”!, e==l1 (16.25)

and allow the coexistence of the letters p, ¢ and €.

16.3.1 Generalized p-Onsager Algebra O ,(g"" b

For each g”" in (16.19) we consider the quantum affine algebra U, (g”") (12.20)
and the Onsager algebra O, @").

For comparison we write down the p-Serre relations in U, (g""") which were not
displayed together with (12.21):

eej —eje = 0 (Cl,'j = 0), (1626)

ele; —(p+p Heejei +ejel =0 (a; = —1), (16.27)

eej—(p+1+pHetejei+(p+1+pHeejel —ejel =0 (a;; = —2).
(16.28)

The same relations are imposed also for f;’s. The data (a;;)o<;, j<n is the Cartan
matrix of the affine Lie algebra g”"'. The Onsager algebra O p(g”’/) is generated by

bo, ..., b, obeying the modified p-Serre relations:
b,‘bj—bjb,‘ =0 (a[j :0), (1629)
b7b; — (p+ p bbb, +b;67 =b; (a;; = —1), (16.30)
bb; — (p+1+p bbb, + (p+ 1+ p H)b;b;b7 —b;b;
= (p? + p )2(bib; — b;b) (a;; = —2). (16.31)

Except for (16.31) which are void for the simply-laced case g>> = D'V, these rela-
tions are formally the same with (15.25) for O, (Afll_)]).

In terms of commutators [X, Y] = [X, Y], [X, Y], = XY — rY X, the relations
(16.29)—(16.31) are written more compactly as

[b;,b;1=0 (a;; =0), (16.32)
[bi, [b;, 61,1, =b; (a;; =—1), (16.33)
[b;, [b;, [b;, b;1,]1,-1]1 = (p? + p~)*b;, b1 (aij =—2). (16.34)

There is an embedding O, @) —=U ,,(g”’/), depending on integer indices k, k’
satisfying 1 <r <k <2and1 <r’ <k’ <2, given by
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bo — go :=eo + p""*ko fo + djko, (16.35)
1
bi > gi:==e + pkifi + ———ki (0<i<n), (16.36)
q+4q

bp > g = en + PPk fr + di ks, (16.37)
1 1
P4ge 1

al =T g o L (16.38)
q+q! q+q!

where € = =£1 has been introduced in (16.25). Define

B,Z;C = the subalgebra of U, (g"") generated by go, ..., g, in (16.35)~(16.37).
, (16.39)
By the remark on (15.28), it becomes a left coideal; AB, C U,(g"™") ® By

Henceforth B, will be referred to as an Onsager coideal.

16.3.2 K*¥ (z) as the Intertwiner of Onsager Coideal

Recall that 7o, « : U, (g""") — End(V) denotes the spin representation in (16.20)—
(16.24).

Theorem 16.2 The K matrix (16.13) with B = iq% is characterized, up to normal-

! ’ 1 .
ization, as the intertwiner of the Onsager coideal B,i’}, CcUy(g"")atp2 = —ieg™!
(16.25) as

K ()1, -1(8) = o, (KX () (Vg € By, (16.40)

where l <r <kand1 <r <k

Proof We focus on the existence referring to [104, Sect. 5.2] for the uniqueness.
There are seven cases in (16.40) to verify:

(i)g=g O<i<n,

(i) g = go, (r.k) = (1,2), V) g = gn (', k) = (1,2),
(i) g = go, (r. k) = (1, 1), (vi) g = gu, (', k) = (1, 1),
(iv) g = go, (r k) = (2,2), (Vi) g = guy (', k) = (2,2).

Thanks to (3.18), the cases (v), (vi) and (vii) are attributed to (ii), (iii), and (iv) at
z = 1, respectively. Thus we consider (i)—(iv) below. The case (i) reduces to the
already shown identity (15.36).

(i1) From (16.35) and (16.38), the Eq. (16.40) reads as

K (27T, 1 (e0 + P ko fo) = T, (0 + PP ho fo) KX (2). (16.41)
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From (16.20), this is translated to the relation of the coefficients for the transition
va = vp(a,besin(11.1))as

Z_IKZ’k’(Z):,el + Zp_“‘Kz‘k/(Z):Jrel _ ZKz,k’(Z):Jrel + Z—lpl—blKZ.k’(Z)g—el'
(16.42)
One can drop the factors p~® and p'~®' since the attached terms are non-vanishing
only for a4+ e;,b —e; € s compelling a; =0 and b; = 1. Then, in view of the
matrix product formula (16.13), the relation in question follows from

el GE_ +2Gh ) = (il G5 + 271G (16.43)
fora, b = 0, 1. From (15.6) this is further reduced to the z-independent relation
ml(Go_ + Go ) = (G5 + G5y, (16.44)
It contains two non-trivial cases

0= (nl(GS — G1) = (m](a™ —a"), (16.45)
0= (nl(Gy — GY) = (m2l(B + gB VK, (16.46)

where (16.1) is substituted. The first equality holds due to (3.141) and the second
. |
does from the assumption 8 = ig2 of the theorem.
(iii) By an argument parallel with (ii), the proof reduces to showing

_ ' —a / 1, ,
K@Y+ K @R +dipT K ()
— ZK],/('(Z)::-H?l + Z—lpl—blKl,k/(Z)L)—El + dllp%—blKl,k’(Z):l)‘ (1647)

The matrix product formula (16.13) and (15.6) attribute it to
MIGE_ + G +dlp Gy = (|(GET + G2 +dl pr "GPy (16.48)

fora,b =0, 1, where dll is specified in (16.38). This can be checked case by case
by using 8 = iq%, (16.25) and the property of (1| given in (3.138) and (3.139).

(iv) By a parallel argument with respect to the representation (16.21), the proof
reduces to showing

l—ul—az
P kb
WK' (Z)a. (1649)

22,k \b 2 —aj— 2,k _\b
7 °K (Z)afelfez t+z p “TeK (Z)a+e1+ez+

’ _ —by— 4 —e —
— Z2K2,k (Z)2+e1+e2 +Z 2p2 by b2K2,k (Z);) e —ey +
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One may trivialize the coefficients of the middle terms as p~@ =% = p?~»1=b2 = [ for
the non-zero contributions. The matrix product formula (16.13) and (15.6) attribute
the resulting relation to

l—a—ad’

b 4 b v p b ~b
021Gy Gy + GanGa + 57 GaG)
1-b—0b'
= (mI(GETGE T + G5 G + %Gﬁcg’,) (16.50)
q+q

for a,a’,b, b’ =0,1. We have set (a,a’,b,b’) = (a;, ay, by, by). This can be
checked similarly by using 8 = igz, (16.25) and the property of (1| in (3.141).
In particular it involves a maneuver like (n;|(a%)? = (n2la"a™ = (n2](1 — ¢°k?),
etc. O

One can give an alternative derivation of the reflection equation (16.12) based on
the Onsager coideal B,ZZ by an argument parallel with Sect. 15.4.3.

Let us summarize the solutions to the reflection equation obtained by the 3D
approach in Chaps. 15 and 16. There are nine cases in (16.12), where the conditions
l<r=<k=<2and1 <7 <k’ <2 originate in Proposition 5.21.

Table 16.1 The quantum affine algebra U, (g) with g = ALL) | and gr,r’ (16.19), the associated R

matrices S (z) and S™" ' (2), the associated K matrices K" (z) and K k. (z). There are a few choices
of K*¥ (z) that can be paired with §"" (z) to jointly constitute a solution to the reflection equation
depending on (r, 1)

g R matrix K matrix

A $"(2) K"(2)

D7, s @) K@), K'2(2), K> (@), K22(2)
B, $212) K*'(2), K*2(2)

B, $'2(2) K'2(2), K*2(2)

D;" $22(2) K*2(2)

16.4 Bibliographical Notes and Comments

The boundary vector reduction of the quantized reflection equation was introduced
in [105], where the property (16.7) of the boundary vector remained as a conjecture.
The first proof of the reflection equation (16.12) was done independently in the
quantum group framework based on the Onsager coideal B,Z’k/ and the argument like
Sect. 15.4.3 [104]. Later the property (16.7) was proved in [106, Appendix B], which
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completed the 3D approach. Its detail has been reproduced in Proposition 5.21 of
this book.

In the 3D approach to the reflection equation, either by the trace reduction
(Chap. 15) or the boundary vector reduction (this chapter), the 3D K disappears
at an early stage. In fact “reduction” more or less means eliminating it to return to
2D from 3D. However, the 3D K essentially controls the construction behind the
scene in the sense that it guides precisely how the local operators L and G should
be combined, how the spectral parameters should be arranged and what kind of
boundary vectors are acceptable.

Concerning the generalized Onsager algebras, the quartic relation of the form
(16.34) with p? = 1 is often referred to as the Dolan—Grady condition [41]. It is typ-
ical for the situation a;; = —2, which was utilized to reformulate the original Onsager

algebra for Ail) [122] by only a few generators. The Onsager algebra O, (D{") with
p = 1 wasintroduced in [34]. It is an interesting open question if there is an analogue
of Remark 15.2 forg # A ;131 related to a boundary extension of the Temperley—Lieb
algebra like [35].

Generalized Onsager algebras O, (¢"") have a natural classical part without the
generator by. The commutativity in Theorem 16.2 interchanging z and z~! implies
the usual commutativity with the classical part. The corresponding spectral decom-
position of K "’ (z) has been described in [106, Sec.10,11].



Chapter 17 ®)
Reductions of Quantized G, Reflection Gouck ko
Equation

Abstract Spectral parameters in the Yang—Baxter and the reflection equations cor-
respond to the positive roots of A, and B,/ C,, respectively. They appear as angles,
or relative rapidity, of the world lines of particles that undergo factorized scattering in
integrable (1 4 1)D quantum field theories in the bulk and at the boundary. There is
an analogous equation associated with G,, which we call the G, reflection equation
in this book. It describes the three-body scattering related to the geometry of the
Desargues—Pappus theorem. In addition to the usual two-body collision in the bulk,
it involves the special three-particle event in which a two-body collision takes place
at exactly the same instant as the boundary reflection of the third particle. In this
chapter we construct infinite families of trigonometric solutions to the G, reflection
equation by the 3D approach parallel with Chaps. 11-16. We start from the quantized
G, reflection equation and its solution in Theorem 8.6, and perform the trace and
the boundary vector reductions. The resulting solutions to the G, reflection equation
involve quantum R matrices of Aill_)l and ij: 1» and they are coupled with the scat-
tering amplitude of the special three-particle event expressed by a matrix product
formula.

17.1 Introduction

Thus far we have presented a 3D approach to the Yang—Baxter and the reflection
equations, which are presented in terms of additive spectral parameters as

Rip(a) Rz + az) Roz(az) = Roz(az) Riz(aq + o) Ria(ay), (17.1)
Ria(o) Ko (o + o) Ry (o + 200) Ky (e)
= Ki(2) Riz(ay + 202) Ko (a1 + a2) Rop (). (17.2)

They are spectral parameter dependent versions (sometimes referred to as Yang—
Baxterizations) of the cubic and the quartic Coxeter relations for the simple reflections
s1, 52 of the root systems of A, and B,/ C3:
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$18281 = $285152, Ay = {ag, a) +az, az},

51525182 = 52518281, Ay = {og, a1 + a2, o1 + 200, az}.

Here o, ay are the simple roots and A denotes the set of positive roots which

formally correspond to the spectral parameters. They are so ordered that the kth one

from the leftis s;, - - - s, , (o, ) with iy = 1 (k: odd) and iy = 2 (k: even). See (10.3).
In this chapter we consider a natural G, analogue of them as

Rip(o) X32(0tr + 02) Rp3 (2ory + 3002) Xo13 (g + 2002) Rz (g + 3002) X301 (02)

= Xo31(@2) Riz (o + 3o2) X123(@1 + 200) R3p 2y + 300) X312(aty + a2) Rpp (),
(17.3)

which we call the G, reflection equation. Based on the results on A, (G») in Chap. 8,
we construct infinite families of solutions by extending the 3D approach further. The
basic ingredient is the quantized G, reflection equation (8.2):

(L12J132L23a13L31J321) F = F(Ja31 L13J123L32J312L21). (17.4)
It is a generalization of the constant G, reflection equation Rj» X3, R23X213R31
X321 = X231R13 X123 R32X312R21 to a conjugacy equivalence by the intertwiner F'.

The contents are parallel with those for the Yang—Baxter and the reflection equations
in Chaps. 11-16.

17.2 The G, Reflection Equation

Let V be a vector space and consider the operators
R(z) € End(V®YV), X(z) €eEnd(VRV®Y) (17.5)

depending on the spectral parameter z. We assume that R (z) satisfies the Yang—Baxter
equation by itself:

Ri2(x)Ri3(xy)Ro3(y) = Rp3(y)Ri3(xy)R12(x) €e End(V®V®YV). (17.6)

We consider the G, reflection equationin End(V ® V ® V) with multiplicative spec-
tral parameters: '

R12() X 132(xy) Ros (x%y) X213 (xyH) R31 (xy®) X321 (1)
= X231 () Ri3(xy*) X123 (xy?) R32(x*y*) X312(xy) Ry (x). (17.7)

In the solutions that we will obtain later, V has the structure V = V®"_ hence bold font will be
used there for the indices.
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Fig. 17.1 Scattering diagram for the RHS of (17.7)

To clarify the notation, write temporarily as R(z) = Zrl(l) ® rl(z) and X(z) =
> x,(l) ® xl(z) ® xl(3) in terms of sums over [.> Then

Rix(2) = Zrl(l) ® r,(z) ®1, Ryz) = Zrl(z) ® rl(l) ® 1.
Ri3(z) = Zrl(l) ®1®r7, Ri() = Zrl(Z) 1",
Ry3(2) = Z 10" ®@r?, Ru(k) = Z 1@r®er®,
Xijk(Z) = le(i) ®xl(j) ® x,(k). (17.8)

Let us illustrate the special three-particle scattering diagram corresponding to the
G, reflection equation. Consider the three particles 1,2,3 coming from A;,A;,A;3
and being reflected by the boundary at O;, O,, O3, respectively. See Fig. 17.1. The
bottom horizontal line is the boundary which may also be viewed as the time axis.
The vertical direction corresponds to the 1D space. Each arrow carries V which
specifies internal degrees of the freedom of a particle. So a three-particle state at a
time is described by an elementinV® V® V.

One can arrange the three particle world lines so that the two-particle scattering
Py, P, P; happens exactly at the same instant as the boundary reflection Oy, O,,
O3 of the other particle, respectively. This is non-trivial. For instance, suppose there
were only particles 2 and 3. They already determine the reflecting points O,, O3 and
the intersection P; (and Q;) and its projection O; onto the boundary. Let P, P3 be
the points on the world lines of particles 3 and 2 whose projection are O, and O3,
respectively. In order to be able to draw the world line for the last particle 1, the three
points P, P3 and O; must be collinear. This is guaranteed by a special case of the
Pappus theorem from the fourth century.

2 Although these expansions do not specify rl(i) ,xl(i) uniquely, it suffices to make (17.8)

unambiguous.
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One can state it more symmetrically just by starting from Py, P, and their projection
O, O onto the boundary. Let P}, P} be the mirror image of Py, P, with respect to the
boundary. Then the three intersections PO, N O P, PP, N P{P, and O,P, N P{O,
are collinear; in fact they are P3, O3 and the mirror image of P3.

Let us call the so arranged scattering diagram a Pappus configuration. The reflec-
tion at O; with the simultaneous two-particle scattering at P; will be referred to as a
special three-particle event (i = 1, 2, 3). Up to translation in the horizontal direction
and the overall scale a Pappus configuration is parameterized by two real numbers,
for instance, by the reflection angles /P3;0,03; and ZP;0,05. Set

u = ZP30203, w = ZP20302, V= ZP30103,
01 = ZAQ3A1, Oy = ZA3P2 A, 03 = ZA3Q10;,
04 = LA P30y, 05 = ZA1Q,03, 6 = Z0,P0s. (17.9)
Then it is elementary to see
tanw = tanu + tan v, (17.10)
Oh=u—v, bhb=w—v, B3=u+t+w, OG4=u+v, 5=v+w, 6g=w—u.

(17.11)

We formally consider the infinitesimal angles, hence replace (17.10) by w = u + v.
By a further substitution u = o 4+ «; and v = a», (17.11) becomes

01 =a1, b =0a1+ar, 63 =201+30y, 04 =a)+2a, 05 =ay+302, 0= .
(17.12)

Regard the symbols «, o, formally as the simple roots of G,. They are transformed
by the simple reflections sy, s, of the Weyl group W(G>) as

si(ar) = —ay, si(a2) = o1 +aa, s2(01) =1 + 30, s2(x2) = —a2.
(17.13)
Thus we find
Ok = si, -+ i, (@), (i1, i2, i3, I4, 15, 0¢) = (1,2,1,2,1,2), (17.14)
and {6, ..., 66} yields the set of the positive roots of G,.

The RHS of the G, reflection equation (17.7) is obtained by attaching R(e%) to
the two particle scattering at Q; and G (e’) to the special three particle event at P; O;
if it is the kth event starting from the left in Fig. 17.1. Setting e*' = x and e** =y,
the assignment reads as
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Fig. 17.2 Scattering diagram for the LHS of (17.7)

Ry (x) : two-particle scattering at Qs,
X312(xy) : special three-particle event at P,O,,

Ry (x%y%): two-particle scattering at Qy,
Xio3(x y2) : special three-particle event at P;Os3,

Ri3(xy?): two-particle scattering at Q,,
X»31(y): special three-particle event at P;O;.

The indices for each operator correspond to the ordering of the relevant particles
before the process. For instance, just before the special three-particle event at P,O,,
the incoming particles are 3,1,2 from the top to the bottom, which is encoded in
X312(xy). The LHS of the G, reflection equation (17.7) represents the Pappus con-
figuration in which the time ordering of the processes are reversed. See Fig. 17.2.

Applications of the G, reflection equation to integrable systems are yet to be
explored.

17.3 Quantized G, Reflection Equation

Letusrecall the quantized G, reflection equation and its solution obtained in Sect. 8.5.
The quantized G, reflection equation (8.50) is

L124J1325L236 J2137L318 J3219 F456780 = Fas6789J2319L 138 J1237 L3026 J3125L214-
(17.15)
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12 3 4 5 6 7
It is an equality of linear operators on V@V VI F;3 F, @ Fp3 @ F; ®

8 9
Fp®F,.

Let us recall L, J and F appearing here. First, L € End(V ® V ® F,3) is the 3D
L in (8.32)—(8.33) depicted as

b 0 1 | 0 0 1
14»(1 04—»0 14»1 ojLo 14»1 04—»1 14—»0
0 1 1 0 1 0
LJE?" ! ! K K A AT (17.16)

A* and K are g>-oscillators (8.7) including the zero point energy as in (8.13). This
L is precisely equal to ((11.14)]|y—g12) |44

Second, J € End(V ® V ® V ® F,) is the quantized G, scattering operator. It
is a collection of the operators Ji‘J’.ZC € End(F,) expressed by g-oscillators with zero
point energy as (8.40)—(8.44). The quantized amplitude Jijf,;c is depicted by the dia-
gram which corresponds to the 90° rotation of the special three-particle events in
Figs. 17.1 and 17.2:

b a c
e 59
bk (17.17)

Finally, F € End(F; @ F, ® F» @ F, ® F;» ® F,) is the intertwiner of the
A,(G2) modules detailed in Sect. 8.4.
17.4 Reduction of the Quantized G, Reflection Equation

Starting from the quantized G, reflection equation (17.15), one can perform two
kinds of reductions to construct solutions to the G, reflection equation (17.7) in the
matrix product form.

17.4.1 Concatenation of Quantized G, Reflection Equation

Consider n copies of (17.15) in which the spaces labeled with 1, 2, 3 are replaced by
l,‘,2[,3,’ withi = 1,2, (B
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(L1,2,491,3:2:5L2;3,6 J2:1,3,7L.3, 1,8 J3,2:1,9) Fase780
= Fus6780(J2,3,1,0L1,3,8J1,2,3,7L3,2:6 I3, 1,25 L2,1,4) - (17.18)

Write this as Z; F45§7g2 = F4§67892,~. Then repeated use of it leads to Z;Z, - --
Z, Fyse780 = Fuse78021Z5 - - - Z,,, namely,

(L1,2,4J1,3,2,5L2,3,692,1,3,7L3,1,8J3,2,1,9) - - -
- (L1,2,4J1,3,2,5L2,3,642,1,3,7L3,1,8J3,2,1,9) Fa56789
= Fus6789(J2,3,1,9L1,3,871,2,3,7L3,2,6 /3, 1,2,5L2,1,4) - - -
< (So,3,1,9L1,3,871,2,3,7L3,2,643,1,2,5L2,1,4)- (17.19)

This can be rearranged without changing the order of operators sharing common
labels as

(L1214 L1,2,4) (J1,3,2,5 - J1,3,2,5) (L2316 -+ - L2,3,6)
X (J21,3,7 21,3, (L3148 -+ L3,1,8) (J3,2,1,9 -+ J3,2,1,9) Faserso
= Fuser80(J2,3,1,9 -+ 2,3,1,9) (L1,3,8 - - L1,3,8) (J1,2,3,7 - J1,2,3,7)
X (L3,2,6 L3,2,6)(J3,1,2,5 -+ J3,1,2,5) (Lo 1,4 - Lo, 1,4). (17.20)

Now we utilize the weight conservation (8.21) of F in the form

Fisazsox™ ()™ (x2y ) (ey?)" Gy eyt

= " )™ @y (2P (ey) Mo Fisgrg,. (17.21)
Multiply it by (17.20) side by side from the left. The result reads as

Fisgrso(X™L12a -+ L1,2,) ()™ J13,2,5 - J1,3,2,5)
x ((®y)Loz6 - Loyae) (YD) Doy1,3,7 -+ Jou1,3,7)
x ((ey )™ L3 Lai,s) (0™ 21,0 -+ J3,2,1,9) Faserso
= (Y™ 31,0 J2,3,1,0) (Y™ Ly Li3,s)
x (Y J12,3,7+ J1,2,3,7) (2 Lani6 -+ L3,o,6)
X (™ J3100,5 0+ J3,1,2,5) (K™ Loy1,a -+ Loy i,4). (17.22)
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17.4.2 Trace Reduction

4 5 6 7 8 9
Taking the trace of (17.22) over F s ® F, @ F s ® Fy ® F 3 ® F, we obtain
Tr4(xh4L11214 s L1"2"4)Tf5((x)’)h5 Jizizs e Jln3n2n5)
x Tre((2y ) La36 -+ La,3,6) Trr (03D D137 -+ Jou1,3,7)
x Trg((xy*)™ L3, 1,8 -+ L3,1,8) Tro (3™ J3,2,1,0 + - J3,2,1,9)
= Tro(y™ J2,3,1,0 - - J2,3,1,9) Trs ((xy )™ L1358 - - Ly, 3,8)
x Tr7 ()™ J1,203,7 - J1,2,3,7) Tre((2y )™ L3 06 -+ L3,2,6)
x Trs((x))™ J3,1,2,5 -+ S3,1,205) Tra(x™ Loy 1,4+ - Lo, 1,4)- (17.23)
Here Trg(-- ), Trg(- - - ), Trg(- - - ) involving the 3D L are identified with
§%(z) == (5™ (2) in (11.26))] ;43 (17.24)
up to a scalar multiple. The replacement ¢ — ¢° takes into account the comment
after (17.16). It satisfies the Yang—Baxter equation (11.24) and is identified with
the quantum R matrix of U_,-3 (Aflljl) for the anti-symmetric tensor representations

according to (Theorem 11.3)[,_ 4.
The other factors emerging from J have the form

1 2 3
Xia(2) = Tra™ 12,300+ J1,2,3,0) € End(VRV V), (17.25)

k k ky a
where V = \} ® - -QV >~ (C>»® fork = 1,2, 3. The trace is taken over F, and
evaluated by means of (3.12) and (11.27). Now the relation (17.23) is rephrased as

St (0) X155 (1) 853 (x% ) X513 ey ®) S5, (xy) X 55, ()

= X33 (NS0 X3 (xy) 85 (6 y) X1 (1) S35 (x). (17.26)
Thus the pair (S (z), X'"(z)) yields a solution to the G, reflection equation (17.7)
for any n > 1. Elements of X (z) are rational functions of ¢'/? and z.
17.4.3 Boundary Vector Reduction
Recall the boundary vectors in (8.60) and (8.61):
=3y =y (17.27)
=0 Dm =0 @
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€= =y (17.28)

P — -
m=0 (G )m m=0 (@ )m

4 6 8
Sandwich the relation (17.22) between (£] ® (7751| REl® (7771| R (¢l® (1791| and

4 5 6 7 8 9 . . .
1€) ® [71) ® &) ® |n1) ® |&) ® |n1). Assuming Conjecture 8.9 and using F = F~!
(8.22), we get

(EIxX™ Ly 200+ L1,o,al&) 1)) J13,205 - Ji3,0,5101)
x (E](x2y Y Los6 - -+ Lo,3,618) 11y Joy1,3,7 -+ - Joy1,3,71m)
8 § o 9
x (Ely )™ Ly is - La, 1,818 m1y™ 32,100 - - J3,o,1,0101)
9 o 8 8
=m0 sl ENY )Ly 38 Ly,s,81€)
7 7.6 6
< il ey 12,37+ J1,2,3,7 M) ENGY ) Lane - - La,o,61)
5 hs 5 4 hy 4
X (Nilxy) P 31,205 - J3, 12,5100 E1x ™ Loy 1,4 -+ - Lo, 1,418). (17.29)

The operators arising from (£|(---)|§) involving L are identified, up to a scalar
multiple, with

§(2) := (S"1(2) in (12.9) [ g2 (17.30)

where the superscript “bv” indicates the boundary vector reduction. The relation of
the boundary vectors (17.28) = (12.3)|,—1 443 has also been used for the identifica-
tion. The result (12.7)|,—,—; shows that S®(z) satisfies the Yang—Baxter equation.
It is identified with the quantum R matrix of U p(D;(12+)1) for the spin representation
at p = —g 3 according to Theorem 12.2.

The other factors emerging from J have the form

a a 1 2 3
XDa(2) = €™ @M1 Ti23,a - 1,235,401 € End(VRV®YV),  (17.31)
(Z; Q)oo

bv _
= (=92 Qoo

(17.32)

where the normalization factor «¥(z) is introduced to make elements of X®'(z)
rational functions of ¢'/? and z. Now the relation (17.29) is rephrased as

RY (X)X Py, (xy) R3y (x*y) Xy (xyH) RSy (xy*) X3y ()
= X551 ()R (xy?) X33 (xyP) RYy (2 y7) X3y, (xy) Ry (x). (17.33)
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Thus the pair (R (z), X®(z)) provides another solution to the G reflection equation
(17.7) for any n > 1 provided that Conjecture 8.9 holds.

17.5 Properties of X' (z) and X"V (z)

We use notations likes = {0, 1}*,a = (a1, ...,a,), e, |lal|=a;+---+a,,va €V
and V; C Vintroduced in (11.1)—(11.7). The construction (17.25) and (17.31) imply
the matrix product formula for the elements as

X@)i Qv Q) = Z X(z)?}’,ﬁ Va ®Up Que (X = X", XY), (17.34)

a,b,ces
XU =T T, (17.35)
b, s bn s Cn
X (@) = ™ @ | T ) (17.36)

in terms of J;;Z" specified in (8.39)—(8.44). They are rational functions of z and ¢!/ 2,

From (8.46) and (8.47), X'"(z) has the selection rule
X"(z)?}“ﬁ =0 unless a+b=i+jeZ" and n+ |j| — |k| = |b| + |¢|] (17.37)

or equivalently the direct sum decomposition:

X"@) = P X" @1

1,m,k
X" @mk :Vi® Vi ® Vi > D Viskswn @ Vik i @ Vie,  (17.38)
k!

where the sums extend over [, m, k, k' € [0, n] such that the indices | +k + k" —n
and m — k — k' 4+ n also belong to [0, n].
Similarly, (8.46) leads to the selection rule of X b (z) as

X" (@)% =0 unless a+b=i+jeZ" (17.39)

Example 17.1 We temporarily write v, as |a) to magnify the array a. We sete; ,,) =
e; + -+ e,. In particular, [0) = |0, ...,0) and 1) = |e;1 ) = |1, ..., 1).

X" () (lef1,) @ lefim) @ 10))

(q%)m—l-}—n
= 1_Z(]T,Jrnk?[l,l]) R lem) @ 1) +--- ( =m), (17.40)
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X"(2)(lepr.n) ® lefrmy) ® 1))
(_q%)l—m-i—n
- 1 — qufern

X™ (@) (lepn) ® lefr ) @ 0))

ler,n) ® lefm) ®10) +--- (I =m), (17.41)

mtin (Z: @m—14n

=q 7 — " ey ) ® lepm) @)+ (I <m), (17.42)
(_qz, q)m—H—n
X (@) () @ leprm) ® 1))
s\l—m+n 5 —
= (—q7)\"* Mwn,m@ lefm) @10) + - (I >m). (17.43)
(—CIZ, q)lfm+n

Example 17.2 Letus present examples of X" (z). We temporarily write v, ® vp ® v
as |a, b, ¢) for short. For n = 1, X" (z) acts on V&3 = V®3 a5

1 1
210, 0, 1 $10,0,0 0,1,1
10,00y 1 L1001 50y 210000 p gy 90 LD
I—qz l—gz 1—-q%
0.1 1) > Cwuz(g® = 2)10,1,0)  uzua(g® = 2)I1,0,1)
o p(1—2)(1—q%) o(1—2)(1 —q%2)
11.0,0) o —114200° — 210, 1.0) _ uatag? — 9|1, 0. 1)
o p(l—)(1—q%)  p(l—2)(1—q%)
1,0,0 I 31,1,0
|1,O,1)|—)M’ |17150>HM, |1,1,1)|—)—M
1 —g%z 1-gqz 1— gz

where p defined in (8.45) and u, u», u3, u4 are to obey (8.10). The two kinds of the
A a2
denominators 1 — gz and 1 — ¢°z originate in J3 = kand JO|J = k.

For n = 2, itis too lengthy to present all the data. So we give just a few examples:

al00,00,11) 10 060 o1y s —¢%)z/00,00,01) ¢[00, 00, 10)
(1-21—4q%) 1-q%z
@3 ugus(g — 100,10,00) g2 (1 — gHusz|10,00,01)
p(1—gq2)(1 — ¢32) (1—q2)(1 —¢32)
43 uzu4(q — 2)]10, 00, 10)
p(1—g2)(1 — ¢32)
wdupuz (gt +z — 2¢%z — 2q*z + ¢%2 + ¢%2%)100, 11, 00))
P21 —2)(1 = g22)(1 — g*2)
N u1u2u3u4(q4 +z— 2qzz — 2q4z + q(’z + q222)|01, 10, 01)
p*(1 = 2)(1 — g22)(1 — g*z)
g(1 — ¢Huou3|01,10,10)  g(1 — gHusuzz|10,01, 01)
U -¢20-4*%) (A -q)-q%)

00, 00, 00) —
| ) =42

00, 10, 11) >

110,01, 01) —
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N u1u2u3u4(q4 +z— 2q2z - 2q4z + qéz + q2z2)|10, 01, 10)
P21 =) (1 — g?2)(1 — g*2)
N upuzud(q* + 2 — 2¢%z — 2q*z + ¢%2 + ¢%2)|11, 00, 11)
p*(1 —2)(1 — g22)(1 — g*z) '

Example 17.3 S¥(z) with n = 1 is available in Example 12.1 with » = 7' = 1 and
the replacement ¢ — ¢>. Let us present examples of X" (z) with n = 1 using the
same notation as Example 17.2. It acts on V®* = V®3 ag

(14¢)z]0,0,0) g2(1 —2)[0,0, 1)

|O7 O’ 0) H
1+gz 1 +gqz

1

2(1=2)]0,0,0 1 0,0,1
|0’O71)'_)_612( 2)] )+( +q)| )

144z l+gqz
0.1 1) > (1 +q@u(1 = 2)210,1,0) g1 —2)(1 —q2)|0, 1, 1)
T (1 +q2)(1 +q%2) (1+q2)(1 +q%2)
N 1+ )1 +¢HZ21,0,0)  ¢>(1+qua(l —2)z|1,0,1)
(1+g2)(1 +q%2) (14 q2)(1 +q%2)

us(—q? + 2+ 292+ 2¢%z2 4+ ¢°z — gz 110, 1,0) + uy|1,0, 1))
p(1+g2)(1 +¢%2)
" q> (1 +@us(1 = 2)(10, 1, 1) — 21,0, 0))
(1+g2)(1+ ¢%2)
ur(—q* + 24292 +2¢°z2 + ¢’z — qz2) (110, 1,0) + u41,0, 1))
p(1+g2)(1 +g%2)
+ g> (1 +@ua(1 = 2)(10, 1, 1) — 21,0, 0))
(14 q2)(1+g%2)
(L +Qui(1—2)[0,1,0)  (1+¢)(1+¢>I0,1,1)
(4 g9a(+4%) (1+q2)(1 +¢%2)
q(1—2)(1—q2)|1,0,00  q>(1+qus(l —2)[1,0,1)
I+q(+q%)  (+q(+4¢%)
(14+q)zl1,1,0) g:(1—2)[1,1,1)
1+gqz 1 +gz
g:(1—-2)[1,1,0) (14+¢)1,1,1)
B 1+gqz 1+qz

0,1, 1) —

)

11,0, 0) —

)

11,0,1) —

|1’ 1?0) H

|1’ 17 1) H
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17.6 Bibliographical Notes and Comments

This chapter is based on [85]. The G, reflection equation (17.3) or (17.7) up to
spectral parameters was suggested on [30, p. 982], where the Desargues—Pappus
geometry of the G, scattering diagram was mentioned instead of the equation itself.
The equation of the form (17.3) for generic symbols R and X without assuming
a tensor product structure of their representation space (i.e. without indices) has
appeared as a defining relation of the root algebra of type G, in [31, Sect. 2].

The reduction procedures in Sect. 17.4 are parallel with earlier chapters. The
intertwiner F' of A,(G,) is eliminated in an early stage but it controls the matrix
product construction essentially.

It is an outstanding problem whether the solution X" (z) and the conjectural solu-
tion X®(z) admit a characterization analogous to Theorems 15.3 and 16.2 by some
sort of quantum group theoretical structure like coideals.



Chapter 18 ®)
Application to Multispecies TASEP e

Abstract This chapter is an exposition of a 3D approach to an integrable Markov
process called the n species totally asymmetric simple exclusion process (n-TASEP).
The main result is a matrix product formula of the stationary probability involving
layer transfer matrices of the ¢ = 0-oscillator-valued five-vertex model on an n X
n lattice. The stationary condition is translated into their quadratic relations, the
so-called Faddeev—Zamolodchikov algebra, which are highly non-local from the
viewpoint of the five-vertex model. They are shown to be a far-reaching consequence
of the single tetrahedron equation of type MMLL = LLMM in Sect. 2.6 and its
solution in Theorem 3.25.

18.1 Introduction

The totally asymmetric simple exclusion process (TASEP) is a continuous-time
Markov process of particles obeying a stochastic dynamics governed by a master
equation. We consider the n-TASEP on the 1D periodic lattice Z; , where each site
variable assumes {0, 1, ..., n} (Fig. 18.1).

The first basic problem is the determination of the stationary state, which is anal-
ogous to the ground state of quantum spin chains. The probability of finding a given
particle configuration in the stationary state is called the stationary probability. It
is an analogue of the amplitude of a configuration in the ground state for quan-
tum spin chains. In integrable situations, the amplitude should be obtained by the
Bethe ansatz, therefore it is transcendental in general since the Bethe roots are so.
On the other hand, the stationary state is the unique null eigenvector of the Markov
matrix, implying that it should be algebraic with respect the parameters of the model.
These arguments suggest that stationary probabilities of integrable Markov processes
should be something between transcendental and algebraic, and it is the place where
the matrix product structure emerges naturally.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 299
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g1 Oirl

oi-1 0Oi

Fig. 18.1 A configuration of particles in n-TASEP (n > 4)

The n-TASEP considered in this chapter is indeed integrable, being a special case
of a more general partially asymmetric simple exclusion process or the A" vertex
model with the standard nested Bethe ansatz solution, e.g. [4]. However, providing
a full combinatorial description with the stationary probabilities is another problem,
which we are going to address in this chapter by a 3D approach. As we will note in
Remark 18.7, it leads to an intriguing duality between A() and A" | exchanging the
role of internal and external spaces.

18.2 n-TASEP

18.2.1 Definition of n-TASEP

Consider the periodic 1D chain with L sites Z . Eachsite i € Z; is populated with a
local state 0; € {0, 1, ..., n}. It is interpreted as a species of the particle occupying
the site i.! We assume 1 < n < L. Consider a stochastic model on Z; such that
neighboring pairs of local states (o}, 0,11) = (o, B) are interchanged as o 8 — B«
if @ > B with the uniform transition rate. The space of states is given by

(Crthysl ~ b Clo1, ..., oL). (18.1)

(o1,...,01)€{0,...,n}L

Let P(oy, ..., 0r; t) be the probability of finding the configuration (o1, ..., 0r) at
time ¢, and set

|P(1)) = > P(o1,...,00;8)|00, ..., 0L). (18.2)

By n-TASEP we mean the stochastic system governed by the continuous-time master
equation

d
7| P0) = HIP@)), (18.3)

16; = 0 is may be regarded as an empty site. In such an interpretation, there are n species of

particles.
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where H is a Markov matrix defined by

_ N _ 1B a) =, B) (& > B),
H=) hiw,  hlep)= {0 @<p) (18.4)
iGZL
Here h; ;4 is the local Markov matrix that acts as & on the ith and the (i 4 1)th
components and as the identity elsewhere. The master equation (18.3) preserves the

total probability.

The Markov matrix H preserves the subspaces, called sectors, consisting of the
configurations with prescribed multiplicity m = (my, ..., m,) € (Zzo)”+l of parti-
cles:

Sm)={o=(01....00) €{0....n}*" | Y o, =m. Yk}  (185)

I<j=<L

The space of states (18.1) is decomposed as &, P, . sam Clo), where the outer
sum ranges over m; € Zxo such that mo + - -- +m, = L. A sector @oes(m) Clo)
such that m; > 1 for all 0 < i < n is called basic. Non-basic sectors are equivalent
to a basic sector for n’-TASEP with some n’ < n by a suitable relabeling of species.
Thus we shall exclusively deal with basic sectors, therefore n < L is assumed as
mentioned before. The spectrum of H is known to exhibit a remarkable duality
described by a Hasse diagram [4].

18.2.2 Stationary States

In each sector D, Sm) Clo) there is a unique vector | P (m)) up to normalization,
called the stationary state, satisfying H|P(m)) = 0. The stationary state for 1-
TASEP is trivial under the periodic boundary condition in the sense that all the
monomials have the same coefficient, i.e. all the configurations are realized with an
equal probability.

Example 18.1 Let us present (unnormalized) stationary states in small sectors of
2-TASEP and 3-TASEP in the form

|P(m)) = |£(m)) + C|Em)) + - + C*'|E(m)) (18.6)
respecting the translational symmetry HC = CH under the Zj; cyclic shift

Cloy,02,...,0L) = |or,01,...,00_1). The choice of the vector |£(m)) is not
unique.
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1§, 1, 1)
1§, 1, 1)
11,2, 1))
11, 1,2))
1£(1,2,2)) = 3[11220) 4 2[12120) + [12210)
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21012) + 102),
3]0012) + 2]0102) + [1002),
2|0112) + [1012) + [1102),

311220) + 2|2120) + [2210),

+2|21120) + [21210) + [22110),

1£(2,1,2)) = [00221) + 2]02021) + 3]02201)

+ 3]20021) + 5]20201) + 6]22001),

1£(2,2, 1)) = 3]00112) +2|01012) + 2|01102)

+ [10012) + 10102) + [11002),

151, 1, 1, 1)) = 9]0123) + 3]0213) -+ 3|1023)

+5]1203) + 3]2013) + [2103),

1£(2,1, 1, 1)) = 24]00123) + 6/00213) + 12]01023) + 17]01203)

+ 8]02013) + 3]02103) + 4]10023) + 7|10203)
+9]12003) + 6/20013) + 3]20103) + [21003),

1£(1,2, 1, 1)) = 12]01123) + 5|01213) + 3]02113) -+ 4]10123)

+3[10213) + 4]11023) + 7|11203) + 5[12013)
+2/12103) + 3]20113) + |21013) + |21103),

€1, 1,2, 1)) = 12]01223) + 502123) + 3|02213) + 3]10223)

+5[12023) + 7/12203) + 4]20123) + 3]20213)
+121023) + 2|21203) + 4]22013) + [22103),

1£(1, 1,1, 2)) = 24]12330) + 12]13230) + 4]13320) + 6]21330)

+823130) + 6]23310) + 17|31230) + 7|31320)
+ 3[32130) + 3]32310) + 9]33120) + |33210).

The red underlines are put for convenience for Example 18.3. As these coefficients
indicate, stationary states are non-trivial for n > 2. The theme of this chapter is to
elucidate a 3D integrability behind them, which will ultimately be related to the
tetrahedron equation.

18.2.3 Matrix Product Formula

Consider a stationary state

|P(m)) = ) P(o)lo)

o0€S(m)

(18.7)
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and postulate that the stationary probability P(o) is expressed in the matrix product
form

P(oy,...,00) = Tr(Xo, - - Xo,) (18.8)

in terms of some operators Xy, ..., X,. Introduce the notations for the matrix ele-
ments of the local Markov matrix (18.4) and the associated product of X;’s as

hlo, BY =Y hL3ly.8),  (hXX)ap =Y hS5X,Xs, (18.9)
7.0 v.8
where both sums range over y, § € {0, 1, ..., n}. Then we have

H|f_’(m))=2 Z P("'aai70i+lv"')hi,i+1|"'7Gi50i+17"'>

i€Z; 0 €S(m)

DT D T X Xy, T ol Ol

i€Z; 0€S(m) o]0/,

> Y T (hXX)oroy, ) e101, 0. ). (18.10)

oeS(m)ieZ,
Therefore if there is another set of operators Xo, ..., X, obeying the so-called hat
relation
(hXX)ap = XaXp — XuXp, (18.11)

the stationary condition H|P(m)) = 0 holds thanks to the cyclicity of the trace. Then
the trace (18.8), if convergent, must coincide with the actual stationary probability
up to overall normalization due to the uniqueness of the stationary state in every
sector. Note, on the other hand, that X; satisfying the hat relation with a given X; is
not unique. For instance, X: — X; + ¢X; leaves (18.11) unchanged.

From (18.4) and (18.9), the hat relation (18.11) is given concretely as

[Xi. X1 = [Xi, X1 O=<ij=n (18.12)

XiX;=XX;-X;X;, (0<j<i<n). (18.13)

Suppose we have the operators X¢(z), ..., X, (z) which depend on a spectral param-
eter z and satisfy

[Xi(0), X;WMI=[X:(»), X;0)]  0=<i,j=n), (18.14)

xXiXj(x) =yXi(0)X;(y) (0=j<i=n). (18.15)
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Then the hat relations (18.12) and (18.13) are realized by setting

- d
Xi=Xiz=1, Xi=-"7Xi@l= O=i=n. (18.16)
Z

The relations (18.14) and (18.15) are rearranged as

Xi(MX;(x) + 1= DX;MXi(x) i < j,
Xi0)X;(y) =3 Xi(mXi(x) i =], (18.17)
X (X (x) i>j.

This exchange rule satisfies the Yang—Baxter relation in the sense that the two ways
of rewriting X; (x) X ;(y)X(z) as linear combinations of Xy (z)X ;(y)X; (x) with
{i’, j',k'} = {i, j, k} lead to the identical result. Such a quadratic exchange rule,
which is sometimes referred to as Faddeev—Zamolodchikov algebra, is a signal of the
integrable structure of the n-TASEP. In this way, seeking the matrix product formula
(18.8) of the stationary probability is transformed to the problem of constructing the
operator X, (z) satisfying (18.17).

18.2.4 Matrix Product Operator X;(z)

We will show that the following operator X;(z) fulfills (18.17):

a @
7 N A §

L1
o

4._1 .'.
41/ (18.18)

It represents a configuration sum, i.e. the partition function of the Osc,—o-valued five-
vertex model on the size n triangular shape region with a prescribed condition along
the SE boundary. The Osc,—o-valued five-vertex model has the local “Boltzmann
weight” 1, b*, b™, t assigned to each vertex as

Xi(Z) =3 Za]+-»-+an

0 1 1 0 1
0+0 1+1 1+0 0+1 O+O
0 1 0 1 1

1 1 b* b~ t (18.19)
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Each edge of (18.18) takes 0 or 1 and the sum (except those fixed on the SE boundary)
extends over all the configurations such that every vertex is one of the above five
types. In (18.19), edges assuming 0 and 1 are colored in black and red respectively.
This convention will apply in the rest of the chapter.® Given such a configuration, the
summand is the tensor product of the local Boltzmann weights 1, b*, b™, t. They
are linear operators on the Fock space F = P,,., C|m)* defined by

b*|m) = |m+1), b~ |m) =|m —1), tim) =8, lm), (18.20)
which obey the relations
tb* =0, b t=0, b'b =1-t, b bt=1 (18.21)

The relations (18.20) and (18.21) are identified with the g-oscillator ones (3.13) and
(3.12) in the well defined limit

bt =lima*, t= 1111% Kk, (18.22)
q~>

q~>0

where an extra relation t> = t is acquired. The Osc,—( operators b*, t attached to
different vertices act on different copies of F. Thus X;(z) € End(F®"("=1/2),

The trace in (18.8) is taken over F®""*~D/2 where each component is calculated
by Trr(X) = ), o(m|X|m) with (m|m’) = §,, . See (3.16) and the explanation
after Fig. 11.3. Finally, the summands in (18.18) are attached with the overall factor
@t where o; = 0, 1 is the variable on the ith vertical edge from the left on the
top.

The matrix product operator X;(z) has the form of a corner transfer matrix [10,
Chap. 13] of the Osc,—(-valued five-vertex model, although it acts along the per-
pendicular direction to the layer as opposed to the usual 2D setting. Equivalently,
one may view it as a layer transfer matrix of the 3D lattice model where the edges
perpendicular to the plane (18.18) are assigned with . The stationary probability
(18.8) is then interpreted as a partition function of the 3D system of prism shape
which is periodic along the third direction.

Remark 18.2 The result (18.8) with X; defined by (18.16) and (18.18) corresponds
to the integer normalization

P(oy,...,01) =1 for oy > --->or.

In this normalization P(0') € Z>; holds for all the state 0 € S(m).

2 At the SE boundary in (18.18), we do not assign 1, b*, b~ t, and just let arrows make 90° left
turns without changing the edge variable. See Examples 18.3 and 18.4.

3 Although, in some formulas like (18.18), those black edges not on the SE boundary should be
understood as taking both O or 1.

4 The ket vector here should not be confused with the TASEP states in Sects. 18.2.1-18.2.3. We
take |—1) =0, 1|m) = |m) for granted.
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Example 18.3 For n = 2 the operators X((z), X1(z), X2(z) are given by

Xo(z) = j_h jJ = 1+42b*, X, (2) = j—* -,
X (2) = j—h j‘—* — b+ 22

From (18.16) we have )A(o =b", )A(l =t, )A(g = b~ + 2. For instance,

P(00221) = Tr(XoXoX2X>X1) = Tr((1 + b*)(1 +bH)(1 +b)(1 +b)t)= 1,
P(20201) = Tr(X,XoX>XoX1) = Tr((1 +b7)(1 +b)(1 + b ) (1 + bH)t)=5,

which reproduce the coefficients in the underlined terms in [£(2, 1, 2)) in Example
18.1. As this example indicates, for the convergence of the trace, it is sufficient to
have at least one t for every F component of Tr renw-12 (X4, - -+ Xo,).

Example 18.4 For n = 3, the operators X((z), ..., X3(z) are given by

Xo(2) :T_T++:I_T++:I_T++J_T+ +j:T_é
0(z) =

=1®1®1 + zb'®1®1 + zteb'®1 + zb ®@b'™®@b* + zZ1®b*®b*,

S S S

Xi(z) = :‘_[ +:‘_[ +j_[

=zt®t®l + zb ®t®bT + Z1xtxbt,

Xa(z) J_T+ +j+_T++j:TJ
»(2) =

= z1eb®t + zZ’b'™@b ot + Z*tlet,

X3(z)::‘+_T+ + :‘+_T+ + :I_T++:“F_T++:I_T+

=z19b®b~ + 22b*®@b ®b™ + Z2t®19b™ + b ®1®1 + 1®lxl.

Here and in what follows, the components of the tensor product will always be

ordered so that they correspond, from left to right, to the vertices from the top to the
bottom and from the left to the right.
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To summarize so far, we are to show:

Theorem 18.5 The operators Xo(2), ..., X,(z) defined by (18.18) satisfy the
Faddeev—Zamolodchikov algebra relations (18.14) and (18.15).

From the viewpoint of the five-vertex model, this is a highly non-local property.
Our goal in the rest of the chapter is to reveal that Theorem 18.5 is a far-reaching
consequence of the single local relation which is nothing but the tetrahedron equation.

Remark 18.6 The five vertices in (18.19) are identified with those for the 3D L
Lz = 1);‘f in (18.25) at ¢ = 0. See (18.22). Therefore each Fock space component

of the trace (18.8) takes the form Tr ]—'(L(l)?}l”jbl] e L(l)?LL”fLL). It coincides with the
matrix product formula (11.26) of a quantum R matrix S (z) atz = 1,4 = O up to
an overall factor and the conjugation by (0 ® o).’ The coincidence leads to a further
reformulation of the stationary probability in terms of a composition of the quantum
R matrices at ¢ = 0 [89]. An important consequence of it is the convergence of the
trace. In fact, it assures that at least one t is included in L(l);‘l"’;']‘ e, L(l)?f”ff for
every Fock space F provided that we are in a basic sector defined after (18.5).

Remark 18.7 Another notable feature of the observation in Remark 18.6 is that
the relevant quantum affine algebra becomes U ,,(A(Llil) rather than U, (Aﬁll)). Thus,
dealing with n-TASEP on the periodic lattice Z; eventually leads to the size n system
(18.18) with “symmetry algebra” of rank L — 1. It is another manifestation of the
duality mentioned in the second last paragraph of Sect. 15.6.

18.3 3D L, M Operators and the Tetrahedron Equation

We invoke the results in Sect. 3.5.3.Let V = Cvy @ Cvy and L(z), M(z) € End(V ®
V ® F,) be the 3D L and M operators defined in (3.118)—-(3.121). They contain the
parameters u and v, respectively. In this chapter, for reasons of convention, we will
work with

L@)=0®0NLE =0 ®o®1)= Y Eu®E; LR, (1823)
a,b,i,j

M@ =080 ®DMDh=(c®o @D = Y Eu® Ey @ M@,
a,b,i,j

(18.24)

where o (v;) = vi_; and the other notations are parallel with (3.118) and (3.119).
From (3.120), their non-zero matrix elements are given as follows:

5 o is defined after (18.24), which just interchanges the indices 0 and 1.
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b 0 1 1 0 1 0
i%»a o—T—>o 1—T—»1 1—T-»o 0—T—»1 o—T-»o 1-}»1
i 0 1 0 1 1 0
L(2)fP 1 1 zat 7 la” k —gk
M@ 1 1 at la Kk 7k (1825)

Here a*, k are g-oscillators (3.13) and k = k|, 4 as defined in (3.121). The oper-
ators £(z) and M(z) are simply related by M(z) = L(2)|4——4. From Theorem 3.25
they also satisfy the tetrahedron equation

Mi26(212) M3a6(234) L135(213) L1245 (224)
= L245(224) L135(213) M3a6(234) Mi26(z12), (18.26)

where z;; = z;/z;. In terms of the 3D diagram representation (cf. Sect. 2.6) as

b b
ab _ ¢ ab _ !
L) = } M) = .
J J (18.27)
the tetrahedron equation is expressed as
Let us introduce the dual of V by
V* =Cui & Cof, (v, v;) =34;. (18.28)
We let M(z) acton V¥ @ V* ® f; from the right as
W @V ® (ENME@) = Y v @ vjR(EIME). (18.29)
i,j=0,1
Set
" "
x@) =) ———Im), (x@l=) ———ml (18.30)
mZzO (—q, _q)m mg) (—6]; _q)m

Proposition 18.8 The vectors

v ® v®lE), v @ UIBIE), (v ® v+ vve ® VB[ (57)), (18.31)
v ® v ®(El, vy @ V(L (1] ® vy + vy ® v)®(X (L) (18.32)
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are right and left eigenvectors of M(z) with eigenvalue 1 for any |&) € F,, (§| € F7,
and ., v(# 0) € C.

Proof. The non-trivial cases are verified by directly checking

> I M@K (E)) = 1V x (), (18.33)
i+j=I1
D v (X (M@ = 1V (x (). (18.34)
i+j=1

One can utilize (3.134), (3.135), (3.138) and (3.139) with ¢ — —q. O

As acorollary of Proposition 18.8, we have the following equality for any k, [ = 0, 1:

ZM(Z)“IX(Z) IX@), (x@ DY MG =(xGENl.  (18.35)

i,j

18.4 Layer Transfer Matrices

18.4.1 Layer Transfer Matrices with Mixed Boundary

Condition
Fix positive integers m, n. Given the arrays a = (aj, ..., ap), 1= (1, ...,in) €
{0,1}" and b= (by, ..., b,), = (1,--., Ju) € {0, 1}", define a linear operator

T(Z)a * on FEmn graphlcally as follows:

by by ... by,
A 4 A A

b i2
T( Z)f’j = -

im > Ay

Jij2 o n

It represents the sums over {0, 1} for all the internal edges under the prescribed
boundary condition. Each arrow, either horizontal or vertical, carries V. Each vertex
represents L(z)?}’ in (18.25) including the spectral parameter z. Penetrating each
vertex from back to front, the Fock space F, runs along a blue arrow as in the left
diagram in (18.27). When this feature is to be emphasized, we depict T (z)::
for (m,n) = (3,4), as

lJ’
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bl b2 b3 b4
i
ab _ ) aj
T(2);; iz .

i3
az

j 1 j2 ]3 _]‘4
In our working below, the following object plays the central role:

by by ... by,

A A a

S = DT@N = D) -~ € End(F2™).
i,b i .

im > am

JuJ2 e n (18.36)

The sum Zi’b extends over i € {0, 1}"* and b € {0, 1}". The operators T(z);:ib and
S (z)}“ are the layer transfer matrices of size m x n with fixed and mixed (NW-free
and SE-fixed) boundary conditions, respectively.

Example 18.9 Consider the simplest case (m, n) = (1, 1), where T(z)i”jh = L(z)l‘.’;’ .
Therefore from (18.24) we have

Sy =1+za", S@i=1+z"a", S@)=k S@)=—qk

Example 18.10 Consider the case (m, n) = (2,2). S (z)gg consists of the following
8 terms:

A A A A A A A

Yy
+
Yy
+
Yy
+
YyYy
+
YY
+
Yy
+
Yy
+
Yy

Thus we have

5@ = 1910191 +z27®1e1®1 +k®at®1®1 + 72~ ®at®at ®1

+21@at®at®1 — gz1@kok®at — g2at 9k@k®at — gzk@1®at ®1.
(18.37)
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Example 18.11 Consider the case (m, n) = (2, 2). S(z)13 consists of the following

8 terms:
A

A A

Y Y
Y VY
Y VY
Y VY
Y Y
Y VY
Y VY
Y VY

Thus we have

S@IY=z""1®a" ®a ®at +at®a ®a ®at +kel®a ®at +a ®IeI®at

+z191®1®aT — 19k®k®1 — gk®a~ ®@1®at — gz la- 9keokel.  (18.38)

18.4.2 Commutativity

Proposition 18.12 The layer transfer matrices S (z);‘ with the common SE boundary
condition a, j form a commuting family, i.e.

[SO)F, SMj1=0. (18.39)
Proof. This is a consequence of the tetrahedron equation (18.26) and the trivial

eigenvectors of M(z) in Proposition 18.8. Consider the following two operators on
f;;@mn ® ]:qZ

X\, X \ai,a VY \CnsCn Y €15 xya,b x'\a,b’
Z(M(—)m - 'M(v)ai,al> (M(V)m.b; a 'M(?)b],b;)T(ﬂi,j TGy

b,b’
(18.40)
x/\a,c x\a, )\ Jns>Jn x Nk ki, x KLk
S TERS TR (ML ML) (M i,
k. k’
(18.41)

where i = (i1, ..., i), etc. The left blocks (V(-)22 - - - M(-)22) both in (18.40) and
(18.41) are actually the identities but it is better to keep them temporarily for the
explanation. The operators in (18.40) and (18.41) actually coincide. To see this we
depict them as follows.

Here T(z)?"jb acts on F f’”’" (blue arrows) and M(z)?;’ acts on the extra single Fock
space F, (green arrow). In the upper diagram, the front and the back layers correspond
to T(i):‘jb and T(’;—:)?:}” in (18.40), respectively. Similarly, in the lower diagram,

the front and the back layers represent T(%)ﬁ;j and T(%);; in (18.41), respectively.
Starting from the top right corner of the upper diagram, using the tetrahedron equation
(Figure 18.2) repeatedly, one can push the green arrow all the way down to the bottom
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o X/ ; ;

3 /\4
3

Fig. 18.2 A graphical representation of the tetrahedron equation (18.26). The parameter z;; has
been suppressed

left. It transforms the upper diagram into the lower, showing that they are equal as
operators on 2" ® F,.
Now we rephrase the equality of (18.40) and (18.41) as

Y \CnsCn Y\ C15€ xya,b x'\a,b’
SO e

b,b’

x'\a,c x\a, x Nk ok, x \Ki.kj
= Y TERSTON (M M) (842)
k. k'

removing the identity parts. Evaluate (18.42) between (x (%)| € ]—'; and |x(3)) €
F,, where these vectors are on the green arrows on which only the block of M(z)’s
act. Taking a further sum over i, i’, ¢, ¢’ on both sides eliminates M(z)’s by means
of (18.35), leading to

KGN D0 TERPTERT = (Gl Yo TERSGT GRS,
ii’bb/ ' KK ¢,
(18.43)

Since (x (L)% (£)) = g (@;i;;ﬂz (XY™ # 0by (3.16), it can be removed. From
the definition of S (z);f‘ in (18.36), the resulting equality is stated as S (;—f);‘S (;L);‘ =

SIS O

One can check the commutativity (18.39) for those S (z)jf‘ in Examples 18.9, 18.10
and 18.11. The latter two are already quite non-trivial.

18.4.3 Bilinear Identities of Layer Transfer Matrices

In the proof of Proposition 18.12, we have only used the trivial eigenvectors of M(z)
given in Proposition 18.8. A similar argument utilizing the non-trivial eigenvectors
(the rightmost ones including ¢ and v) leads to a family of bilinear identities of S (z);'
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mixing different boundary conditions a, j. They include the commutativity (18.39)
as the simplest case. To describe the general case we prepare some notation.

Recall that m and n are any positive integers representing the size of the layer
as in (18.36). For a subset I C {1, ..., m} with the complement 7 = {1, ..., m}\ I
and the sequences & € {0, 1}*/, B € {0, 1}*/, let o; B7 € {0, 1}™ be the sequence in
which the subsequence with indices from I is & and the rest is 8.° For instance, for
m=5Sand I = {1, 3, 4}, we set’

o B =ans34Bps = (a1, Bi, a2, a3, Ba). (18.44)
Likewise for J U J = {1,...,n}and y € {0, 1, 8 € {0, 1}#7, the array y ;07 €
{0, 1}" denotes a similar sequence. For any sequence & = (cty, . .., a;) € {0, 1}¥, we
setla| =1+ +arande = (1 —ay, ..., 1 —a).
Theorem 18.13 For any subsets I C {1,...,m}, J C{l,...,n} and sequences

o {0, 1Y and y € {0, 1}*/, the bilinear relation®

Zymwwxwﬁwm S(y)z'/;j: S(x)“”;f =(x <) (18.45)
X, V97

holds, where the sum runs over 8 € {0, 1Y and § € {0, 1}*7.

The commutativity (Proposition 18.12) is the simplest case of Theorem 18.13
corresponding to I = {1,...,m}, J = {1, ..., n}, where the sum reduces to a sin-
gle term. As another example, when (m,n) = (4,3),1 ={1,3},J ={2,3},a =
0, 1),y = (1, 0), the relation (18.45) reads as

F2S(ie SWie' +yx* (ot Stg’ + yx*S (g S
+ 322810 SW” + y2S ()T SCg + ¥* XSG S(gio”
+ ¥ x SIS + ST SN’ = (x < ¥). (18.46)
We will present a proof of Theorem 18.13 only for the special case considered in
Corollary 18.14 below since the general case is easily inferred from it. It corresponds

tothe choice I = {2,3,...,m},a =a,J ={2,3,...,n},y = j, which will suffice
for the proof of Theorem 18.5.

Corollary 18.14 For any sequences a € {0, 1Y"~! and j € {0, 1}"~!, we have

XS (of ST + yxSYFS ()]
+ xS ST + ¥ SMIFS()) = (x < y). (18.47)

6 #1 denotes the cardinality of the set /.
7 Note that it is not (a1, a3, as, B2, Bs).
8 (x © y) is shorthand for LHS, ., .
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Proof. The proofis aslight and natural modification of the one for Proposition 18.12.
Consider the following equality of operators on F/ 53’"”’ ® Fy:

Z M( )al/alﬁ M(L/)Z;;{; M( )c1 N T( )a b T(% )f/j/b/
¥ ]

a1+al ’=1

— Z T(fé—:)ﬁ::;:/,T(f;‘) L M( )/] i (M( )

¥ it

k}ll k

im,i),

" M(i,)’.‘".’ﬁ), (18.48)

X070,
k.k
+//// 1

where a, a’,a”, a” (resp. j,j,j’, j”’)9 differ from each other only in the first com-
ponents ay, ay, ay, af’ (resp. ji, ji, ji’» ji")- We take a; +aj =1 and j; + j; =1
and exhibit the constraints ai +a{’ = 1, j{' 4+ j{” =1 coming from M(z)“b =0
unless a + b =i + j. Unlike the previous (18.40) = (18.41), the identity operators
M(2)!} = 1 have been omitted already. The diagram for (18.48) is Fig. 18.3 except
that the (a1, a1) on the end of the top horizontal arrows are replaced by (a;, a) and
(j1, J1) at the bottom of the leftmost vertical arrows are changed into (j, Jj}).

Substitution of © = xy’, v = x’y into (18.33) and (18.34) lead to

D HVIMOEIX ) = w1V (S, (18.49)
i+j=1
Yo W COIME) = 1Y (DI (18.50)
i+j=1

Multiply (18.48) by pu“*+/v@+ii and take the sum over i, 1, ¢, ¢’ and ay, a}, ji, j|
with the constraints a; + a{ = 1, j; + j{ = 1. Sandwich the resulting operator iden-
tity by (X(%)K- -)Ix($7)). Thanks to the identities (18.35), (18.49) and (18.50),

all M(z)’s disappear. After canceling {x (%)| X (%)) # 0 from both sides we are left
with

2 WL
ii,b,ba] +a]'=1,ji+ji=1
.11 7 ’ Yy "
= Z i paiti ’T(§)§,1§,,,T(§)§1§,,. (18.51)

kK ,c.c;a1+aj=1,j+j"=1

9 The arrays a and j here have a slightly different meaning from those in (18.47) since the final form
we will reach is (18.52).
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1 cn
b’ b’
by ><4 : bn>( "

. aj
T Xa‘
Z A a a
b.b .
. Am
bn — Xam
O U am | “a,
. jl . jn
J1 Jn
] Cn
’ ’
., “ ... Cn
4 k 4 A
> “
i o ™ >
RS
=2
im > a
K, ; S
. J1 R In
J1 Jn
. jl . jn,
J1 Jn

Fig. 18.3 Diagrams representing (18.40) and (18.41)

After dividing by (yy’)?, this is identified with

Z (i)afﬂ'l (’y‘_/')“i””{S(%)?//S(;%);/,/
a{+ai'=1.ji+j{=1
= D GUHIEHAHSEN S (18.52)

a+ay=1,ji'+ji'=1
in terms of S (Z);-" in (18.36), which completes the proof. O

Remark 18.15 The bilinear relation (18.45) can further be generalized by introduc-
ing inhomogeneity of the parameters. In (18.36) we consider horizontal arrows as
carrying xi, .. ., X,, from the top to the bottom and vertical ones do yy, ..., y, from
the left to the right. Set x = (xy,...,x,) and y = (y1, ..., y»). Define S(x; y);‘l
by putting L£(x;/y;) on the intersection of the ith horizontal and the jth vertical
arrows. As in Theorem 18.13, let I, J be subsets of {1, ..., m}, {1, ..., n} and take
a € {0, 1}*,py € {0, 1}*/. Suppose that (x; y) and (x; y') satisfy

X = = XXy = U MY == Y = v (18.53)
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Then the following relation is valid:

Z(%)Iﬁ\ﬂfﬂ S(x; y)iljl;; S(x'; y/)illg;

B8

_ Z(%)IEIHS\ S(X'; y/);’f'J'ZS(X: y)‘;'g; (18.54)
B,é

where the sums are over 8 € {0, 1}*“‘7 and é € {0, 1}#7 as in (18.45). The derivation
is similar and outlined in [90, Remark 5.4].

18.5 Proof of Theorem 18.5

We are ready to prove Theorem 18.5 by using the special case m =n and ¢ =0
of the preceding results. Note that the layer transfer matrix S (z);‘ (18.36) remains
well defined at ¢ = 0. In fact, comparison of (18.25) and (18.19) shows that g = 0
is achieved just by excluding the rightmost vertex in the former and replacing a*, k
with b*, t, respectively. See (18.22). For distinction we prepare the notation of it as

S@@)j = ,}13% S(@)] lm=n- (18.55)

It is still a non-trivial operator on F @1’ on which b*, t in each component act as
(18.20).

Proposition 18.16 The matrix product operator X;(z) (18.18) is contained in the
layer transfer matrices at ¢ = 0 as follows:

L n—i

n —~— ——
SN =Y Xi(2®b' ® @b ®1® -l RI® -3, (18.56)
i=0 diagonal
" i n—i n—1
S@I0=2") Xi()®1® -®Ieb ® @b~ @b'® - ®b" I’ -l
i=0 diagonal
(18.57)

Here “diagonal” signifies the part of the tensor components corresponding to the
vertices on the NE-SW diagonal in (18.36)|m=n."°

Proof. We regard the triangular region in (18.18) as embedded into the n x n square
lattice in (18.36)|,,—, . Since the rightmost vertex of £(z) in (18.25) is absentatg = 0,

10 For the ordering of the components, see the explanation in Example 18.4.
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the red lines tend to be confined to the upper left region. Also, once an edge on the
diagonal boundary in (18.18) becomes black, then the subsequent ones continue to
be black in its further NE region. These properties imply the claimed expansion
formulas. See the following example from n = 3, where the dotted ones are to be
summed over 0 and 1.'"' The four diagrams correspond to i =0, ..., 3 terms in
(18.56) and (18.57) from the left to the right. The general case is similar.

LA AAA Ak A
8(2)888 = 2 N D Y: ) -t 2

A A 4 A A4 4 A A4 4 A A 4
S(Z)}88=Z--= -t 2 -t 2 -t 2 >

From (18.25), notice that the weight of z for S(z)}" is calculated by #(1 on the top
edges) — #(1 on the bottom edges), whereas the one for X;(z) is just #(1 on the top
edges). This explains the extra overall factor z° and z~! in (18.56) and (18.57). [

Example 18.17 Consider the case n = 2. Setting ¢ = 0 in Example 18.10, we have

S@Y = (14 bMHR1R1R1 + 2t@bT @181 + (zb™ + 21)@bT @b ®1
=Xo(2)®I®1®1 + X;(z)®bT®1®1 + X2(z)@bT®bT®1

by Example 18.3 in agreement with (18.56). Similarly, Example 18.11 leads to

2S(2)10 = (1 +zb")®b" @b ®bT + 2t1®b"®b" + (zb” + 2R 1R 1@b"T
= Xo(2)®b~ ®b™®b" + X1 (2)Q1®b" ®b" + X1, (2)®1®1®b"

in agreement with (18.57).
Proof of Theorem 18.5. Substituting (18.56) into the commutativity (18.39) and
collecting the coefficient of
J i—j

bH’® - b"N)’@bT® - -dbTRIR---®1 ((0<j<i<n), (18.58)

we get (18.14).

1 Some of them are actually fixed to O or 1, but they are left dotted for the sake of exposition.
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Next we show (18.15). Seta = (0, ...,0),j = (0, ..., 0) in Corollary 18.14 and

use the obvious property S (z)(1)8:::8 = 0 to derive

X2SISMI070 + ¥ S90S ()00
— Y2 SRS — x2S (1)1 9S ()59 = 0. (18.59)

Write the diagonal parts in (18.56) and (18.57) as Y; and W;, i.e. we set

S@N0=Y Xi@®Y,®1® -1, Y,=®"H®eI1® (18.60)
i=0

SORL=Y Xi@eWe®H™ 'gle-®l, W=1® )"
i=0
(18.61)

Substitution of them into (18.59) generates the terms all having the common off-
diagonal tail (b*)®"~! ® 1 ® - - - ® 1. It therefore reduces to the identity without the
tail. Explicitly it is given by

> (FXOX @ ® YW, + yXi(0)X;(x) @ WY,
0<i,j<n
— VX)X, (0) ® VW) = x X (0X;() @ WiY;) =0, (1862)

where Y;, Wy correspond to the diagonal part in Proposition 18.16. Now let us pick
the coefficients of the terms whose diagonal part is

J i—j n—i
b"® - -®bT t® - -t®b ®---®b~  (0<j <i <n). (18.63)

In view of (18.21), such a term does not arise from W;Y; but only comes from the
expansion of

i n—i J n—j
— | —t—  ———
YViWij=b"®---9b"®1®---® 1)(1®---®1®b" ®---®b")
J i—j n—i

——e

e e
=b"® - 3b"R(1-1)® - -1 -1)®b ® ---®b~ (18.64)

with a fixed coefficient (—1)~/. Thus (18.62) gives xX; (y)X;(x) = yX; (y) X (x)
for 0 < j <i < n, which is (18.15). This completes the proof of Theorem 18.5. [J
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18.6 Bibliographical Notes and Comments

Matrix product construction of the stationary probability was initiated in [39] for
the single species TASEP subject to non-trivial boundary reservoirs. For a general
introduction to the subject, see for example [23, 32, 140] and the references therein.
As mentioned in the main text, the stationary probabilities become non-trivial even
under the periodic boundary condition for the n-TASEP with n > 2. The first sys-
tematic result about it was obtained in [47], where the combinatorial construction,
called the Ferrari—-Martin (FM) algorithm, was put forward. Many works followed
it, seeking an operator formulation and/or generalization to multispecies partially
asymmetric simple exclusion processes, e.g. [45, 124].

This chapter, which is mainly based on [90], presents a unique approach from the
3D integrability. It identifies the tetrahedron equation of type MMLL = LLMM
(Sects. 2.6 and 3.5.3) as the ultimate structure validating the matrix product formula
based on X;(z) in (18.18). As noted in Remark 18.6, the quantum group theoretical
origin of the FM algorithm is a composition of the quantum R matrices (11.26) at
q = 0[89].

There is another class of stochastic models known as the totally asymmetric zero
range process (TAZRP). See for instance [46] for a general background. Among
them, there is a special example, n-TAZRP, which admits results quite parallel to
this chapter [91, 92]. A contrasting feature of the n-TAZRP is that it allows occu-
pancy of more than one particle at a site with some combinatorial constraint on
their hopping rule. The n-TASEP and the n-TAZRP are sister models. The quantum
R matrices relevant to the FM-like algorithms are those associated with the anti-
symmetric tensor representations (11.26) and the symmetric tensor representations
(13.10), respectively. The solutions to the tetrahedron equation relevant to the layer
transfer matrices (matrix product operators) are those consisting of the 3D L (The-
orem 3.25) and the 3D R (Theorem 3.26), respectively. The n-TAZRP [91, 92] is
a special limit of the integrable Markov process associated with the stochastic R
matrix [87] quoted in Sect. 13.7. The latter contains numerous models which have
been studied extensively. A bird’s eye view of their degeneration scheme is given in
[81, Figs. 1 and 2]. A survey from the 3D viewpoint is available in [100].
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