
Nanomaterials for Integrated Crop Disease
Management 15
Muhammad Ashar Ayub, Asad Jamil, Muhammad Shabaan,
Wajid Umar, Muhammad Jafir, Hamaad Raza Ahmad,
and Muhammad Zia ur Rehman

Abstract

Because of the rising food demand, climate change, and environmental pollution,
the global agricultural system is under increasing stress. In the current era,
nanotechnology has demonstrated several applications in a variety of areas,
including agriculture, medicine, and drugs. Due to their nano size, the increased
surface to volume ratio, and unique morphology, nanoparticles have different
characteristics than bulk materials. Nanoparticulated systems are being developed
for use as fertilizers, insecticides, herbicides, sensors, and quality enhancers in
agriculture. The present chapter discusses the use of nanoparticles (NPs) to
improve sustainable agriculture and the environment by managing plant diseases
directly as well as indirectly. The use of nanoparticles in plant disease control is a
potential method for dealing with global concerns and ensuring sustainable crop
production. This chapter will cover the basics of nanoparticles (NPs) and their
uses in plant disease control. Plant disease management via the use of
non-conventional nano-pesticides and fertilizer can play a pivotal role in
mitigating the global food challenges and agricultural pollution concerns.
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15.1 Introduction

Agricultural pests and pathogens are responsible for 20–40% of crop losses each
year globally (Worrall et al. 2018; Mesterházy et al. 2020). Despite many
advantages, such as high availability, quick action, and effectiveness, pesticides
exert negative impacts on non-target species, resulting in insecticide resistance.
Furthermore, during or after the application, about 90% of applied pesticides are
lost (Ghormade et al. 2011; Willkommen et al. 2021; Spinozzi et al. 2021). So, there
is a greater need to produce efficient, high-performance, and low-persisting
pesticides that are also environmentally friendly (Hatami et al. 2021). Nanotechnol-
ogy has helped to make new agricultural ideas and products that have a lot of
potential to help solve the problems (Worrall et al. 2018).

Nanoparticles (NPs) possess characteristics that differ from bulk and macroscopic
materials, and these differences influence their destiny and impact on the biotic and
abiotic components (Klaine et al. 2008; Gonçalves et al. 2021). The nanoparticles
(NPs) are nanometer-sized particles that have shown some beneficial properties for
sensing and detecting biological activities and structures in living bodies (Singh et al.
2008; Nie et al. 2021). Their size, large surface area, reactivity, absorbance, and
aggregation govern their adherence to the soil as well as their subsequent mobility
and movement (Borm et al. 2006; Xu et al. 2022). Although the NPs are used as
antimicrobial agents against disease-causing bacteria, their overuse is hampering soil
biodiversity, which executes important natural functions such as plant development,
element cycling, and pollutant breakdown (Molina et al. 2006). As such,
nanomaterials (NMs) are an important component of both biotic and abiotic remedi-
ation efforts because they interact with soil contaminants, affecting their toxicity,
fate, and mobility (Usman et al. 2020). Rapid advances in nanotechnology have
prompted concerns about the incidence, distribution, destiny, and mobility of NPs in
the environment (Kurwadkar et al. 2015). Nanotechnology can help to ensure food
security by improving crop productivity because NPs have the potential to improve
plant development and production (Sadak 2019). They act as “magic bullets,”
holding fertilizers, genes, herbicides, or nano-pesticides, and concentrating their
contents on certain cellular organelles in the plant (Siddiqui et al. 2015). NPs may
be naturally or synthetically originated (Khan 2020). They can serve as a source of
nutrients by ensuring their slow and controlled release, particularly micronutrients,
and thus, limiting their access to the surrounding environmental barriers, as plants
only require a small amount of these minerals (Tripathi et al. 2015; Dimkpa and
Bindraban 2017). The NPs synthesis plays an important role in their properties.
That’s why several synthesis techniques are being researched to improve their
qualities while decreasing the manufacturing costs (Kim et al. 2013; Jamkhande



et al. 2019). Some techniques are modified to improve the mechanical, optical,
chemical, and physical characteristics of individual nanoparticles (Cho et al.
2013). A significant advancement in instrumentation has resulted in the enhance-
ment of their characterization as well as their application.
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Plants, the most significant part of the terrestrial ecosystem, play an important
role in nanoparticle uptake and transport through absorption and bioaccumulation
(Monica and Cremonini 2009). The response of plants to nanoparticles is of great
interest (Dimkpa et al. 2013; Hernandez-Viezcas et al. 2013), as the use of NPs as
nano-pesticides has the ability to revolutionize agriculture (Adisa et al. 2019). Due to
their physicochemical properties, NPs have a lot of potential in agriculture. The
NPs–plant interactions cause a range of genotoxic, physiological, and morphological
changes that must be understood for nanotechnology to be employed effectively in
agriculture, especially in integrated disease management (Nair 2016; Elmer et al.
2018). The size of plant tissues and cells is the first requirement for NP penetration.
Plants allow NPs with a diameter of 40–50 nm to easily enter and translocate into
their bodies (Sabo-Attwood et al. 2011). For penetration, NPs adopt either apoplast
or symplast transportation to travel through tissues. Plant cell NPs travel across the
extracellular space of the plasma membrane to reach plant cell vessels in apoplast
transportation (Sattelmacher 2001). Apoplast transportation enables NPs to travel
radially across the plant’s vascular system and into the central cylinder of the roots.
NPs are transported by cell sieves and plasmodesmata during symplast movements
(Roberts and Oparka 2003). This chapter is a brief review of the potential role of
nanoparticles in plant disease management.

Owing to the immense potential use of nanotechnology and nanoparticles, their
potential in pest and disease management of plants is also being explored, in which
metal-based nanoparticles are very important. This chapter is a review of all the
potential applications of nanoparticles in plant disease management.

15.2 Nanoparticles: Types, Synthesis, and Classification

The nanoparticles are a diverse class of chemical compounds made in a special way
to get particle size on the nm scale. The nanoparticles can be organic (including
dendrimers, micelles, liposomes, and ferritin) or inorganic (metal, metal oxide,
mixed, metalloid, or beneficial nutrient NPs) in nature. The most widely employed
metals for nanoparticle synthesis are aluminum (Al), zinc (Zn), cobalt (Co), silver
(Ag), copper (Cu), gold (Au), and iron (Fe). Metal oxide nanoparticles are produced
largely for their improved efficiency and reactivity. Magnetite (Fe3O4), cerium oxide
(CeO2), iron oxide (Fe2O3), zinc oxide (ZnO), silicon dioxide (SiO2), aluminum
oxide (Al2O3), and titanium oxide are some of the most frequent metal/metalloid
oxide NPs (Tiwari et al. 2008; Salavati-Niasari et al. 2008).

Nanoparticles can be manufactured in several ways, including bottom-up or
top-down methods. Bottom-up or constructive material accumulation refers to the
accumulation of material from a single atom to clusters, which are subsequently
turned into nanoparticles. Sol-gel, biosynthesis, pyrolysis, chemical vapor



deposition, and spinning are the most frequently utilized bottom-up procedures for
nanoparticle production. A top-down or destructive technique is used to reduce a
bulk material to nanometric-sized particles. Top-down nanoparticle production
methods include mechanical milling, nanolithography, laser ablation, sputtering,
and thermal breakdown. In the classification of nanoparticles, shape (2D-3D) and
particle size (spherical, rods, crystals, etc.) are important, while the chemical nature
of nanoparticles is also used to classify them (organic, inorganic, metal/metalloid/
metal oxide-based, etc), as explained in the literature reviews (Sohail et al. 2019,
2021). Figure 15.1 is a pictorial summary of the NPs’ preparation methods and
classifications.
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Fig. 15.1 Synthesis, types, and classification of nanoparticles (NPs)

15.3 Cereal Disease and NPs Interaction

The NPs can be utilized to fight arthropod pests, as well as to develop new insect
repellants, insecticides, and insecticide formulas (Barik et al. 2008). The
nanoencapsulation technology is used to deliver chemicals such as pesticides to a
specific plant as a host, with the goal of controlling insect pests. The
nanoencapsulated insecticides benefit plants by absorbing poisons (Scrinis and
Lyons 2012). Nanoencapsulation is now seen as the most promising method of
shielding host plants against insects and pests. Plants have been observed to absorb a
nano-silica-silver silicon composite that helps them cope with stress and sickness
(Brecht et al. 2003). Pathogenic bacteria that cause powdery mildew or downy
mildew in plants are believed to be effectively suppressed by an aqueous silicate
solution. It also increases plant growth and physiological development, as well as
stress and disease tolerance (Kanto et al. 2004). Plant nanotechnology also has an
important application in gene transfer technology, assisting in the provision of plant
protection via chemicals as well as DNA delivery to receptor cells of plants (Wang
et al. 2016). In this regard, nanoencapsulation is an important tool for the potentially
slow and timely release of encapsulated chemicals for a prolonged time period. This
can have a higher efficiency compared to traditional pesticides prone to runoff and
leading to the human food chain (Agrawal and Rathore 2014; Khot et al. 2012).
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15.3.1 Nano-pesticide

A nano-pesticide is a pesticide formulation or product that contains engineered
nanoparticles with biocidal properties as active ingredients (A.I), either as a whole
or as part of the designed structure (Kah and Hofmann 2014). In the presence of
specific NMs, slow degradation and regulated release of active components may
provide long-term pest control (Chhipa 2016). Nano-pesticides are required for the
effective and long-term control of a wide range of pests, and they can assist in
minimizing the use of synthetic chemicals and the environmental dangers that come
with them. Due to their tiny size, nano-pesticides function differently than regular
pesticides, and plants may absorb them more quickly (Kah et al. 2019). Kumpiene
et al. (2008) suggest that nanoparticles may be transported in two ways: dissolved
and colloidal. This explains why they act differently from other forms of solutes.

Rice (Oryza sativa L.) is a widespread staple food that is grown on vast swaths of
fertile land all over the world (Zhu et al. 2017). Approximately 90% of the world’s
rice is grown in Asia, while China is one of the world’s largest rice producers (Zahra
et al. 2018; Li et al. 2015a, b). Plant diseases are the most important biotic
restrictions on crop output in agriculture, and they have the potential to cause
worldwide food devastation (Khoa et al. 2017). The most frequent bacterial patho-
gen in rice is Xanthomonas oryzae pv. oryzae, which causes bacterial leaf blight
(Ryan et al. 2011; Udayashankar et al. 2011). Biogenic silver nanoparticles (AgNPs)
have received a great deal of interest due to their exceptional biological, physico-
chemical, and antibacterial properties in decreasing plant illness (Adil et al. 2015).
Wheat, after rice, is regarded as a basic grain due to its great nutritional content and
numerous applications (Peng et al. 2011). In spite of other biotic stress-causing
agents, various fungi have severely damaged the wheat crop, resulting in a 12.4%
yearly yield loss worldwide (Galvano et al. 2001). A nano-pesticide is a pesticide
formulation or product that contains engineered nanoparticles with biocidal
properties as active ingredients, either as a whole or as part of the designed structure
(Kah and Hofmann 2014). In the presence of specific NMs, slow degradation and
regulated release of active components may provide long-term insect control
(Chhipa 2016). Nano-pesticides are needed for the effective and long-term control
of a wide range of pests, and they can assist in reducing the use of synthetic
chemicals and the environmental dangers that come with them. Due to their tiny
size, nano-pesticides function differently than regular pesticides, and plants may
absorb them more quickly (Kah et al. 2019). Because nanoparticles (NPs) may be
delivered in two states: dissolved and colloidal, they act differently than conven-
tional solutes (Kumpiene et al. 2008).

Planthoppers are a major threat to world rice production. In China alone, they
damage over 20 million hectares of rice-growing land each year (Hu et al. 2019).
Engineered nanomaterials (ENM) have the potential to be employed as nano-
insecticides in agriculture (Adisa et al. 2019; Sun et al. 2019). The ENMs have
also been demonstrated to penetrate rice cells, interact with DNA, and boost relative
Os06g32600 expression, resulting in enhanced disease tolerance (Li et al. 2018).
Insects have developed resistance to pesticides because of their widespread usage,



raising concerns about the environment (Zhang et al. 2017a, b; Wang et al. 2018).
While omethoate, imidacloprid, and acetamiprid have shown to be effective against
wheat aphids, their poor persistence makes them unsuitable for use during
epidemics. A 40% dilution of Omethoate EC demonstrated that it had no effect on
the wheat aphids in a field experiment (Yu et al. 2019). Incorporating nanotechnol-
ogy into pesticide formulations is a new strategy for prospective organic crop growth
that reduces the indiscriminate use of synthetic pesticides, while also offering
environmentally friendly applications (Kumar et al. 2019). The United States Food
and Drug Administration has given chitin and its derivatives a safe (GRAS) desig-
nation as a food additive since they are non-toxic and have been reported to be safe
for humans, cattle, and animals. Because of their biocompatibility, biodegradability,
and lack of cytotoxicity, nano-chitin components have been widely employed in
biomedical manufacturing (Yang et al. 2020). Nano-chitin whiskers are non-toxic at
quantities less than 50 g mL�1 and exhibit a greater cytocompatibility at 200 g mL�1

(Zhao et al. 2019). Chitosan was shown to be the most efficient in pest management,
with molecular weights ranging from 2.27105 to 5.97105 g mol�1 (Badawy and
El-Aswad 2012). As a result, nano-chitin has a demonstrated pro-insecticidal effect
on chemical pesticides while causing no harm to non-target populations.

300 M. A. Ayub et al.

In an investigation by Choudhary et al. (2019), the Zn-encapsulated chitosan
nanoparticles were reported to have antifungal activity on maize crops. The potential
foliar as well as seed treatment of Zn nanoparticles was also proved to be linked with
the control of Curvularia Leaf Spot (CLS) disease in maize. The findings of Wagner
et al. (2016) conclude that Zn nanoparticles can act as a non-persistent and economi-
cal antimicrobial agent against oomycete P. tabacina. Similarly, their toxicity
against Xanthomonas oryzae pv. Oryzae is also reported by Ogunyemi et al.
(2019) in addition to their well-established antifungal properties (Navale et al.
2015; Savi et al. 2015; Wagner et al. 2016). Another important element, silver
(Ag) nanoparticles, also has been tested and their antimicrobial activity has been
reported as they can interfere with the microbial enzymatic system (Kim et al. 2017).

It is reported that nanoparticles are helpful in controlling pathogens causing
diseases like belly rot (Rhizoctonia solani), Common Root Rot (Bipolaris
sorokiniana), rice blast fungus (Magnaporthe grisea), grey mould (Botrytis
cinerea), seedling blight, foot rot, ear blight (Fusarium culmorum), cottony soft
rot (Scalrotinia sclerotiorum), colletotrichum fungal plant pathogens
(Colletotrichum gloeosporioides), and black-leg of seedlings (Pythium ultimum)
(Park et al. 2006; Gopal et al. 2011; Rai et al. 2014; Yah and Simate 2015). The
Ag nanoparticles have been reported to eliminate the effects of the sun-hemp rosette
virus (Jain and Kothari 2014). That is the reason Ag NPs are being used in some
commercial fungicides like Kocide® to control Alternaria solani (causative agent of
early blight disease), as reported by studies (Nejad et al. 2016). The use of Ag NPs
against insects is also reported as Ag NPs prepared from green methods exhibited
larvicidal and toxicity against the house fly (Abdel-Gawad 2018) and the mosquito
(Culex pipiens pallens), respectively (Fouad et al. 2016). The study conducted by
Ismail et al. (2016) reported that Se and Cu NPs can be an effective way of
controlling the attack of Alternaria solani on tomato plants. The third important



nanoparticle involved in the management of pests in plants is Cu, with its extraordi-
nary antimicrobial properties reported for the control of disease spread by
Xanthomonas sp. (Chhipa and Joshi 2016) and are widely being used because of
their broad-spectrum antimicrobial properties (Esteban-Tejeda et al. 2009). The Cu
nanoparticles have been reported to be effective against diseases like fusarium wilt
and early blight, which cause diseases in tomatoes (Saharan et al. 2015). Further-
more, the insecticidal aspects of Cu nanoparticles are also present, as reported by Le
Van et al. (2016), with Cu NPs in low concentration increasing the expression of Bt
toxin protein, thus improving the pest resistance of transgenic cotton. The fourth
important nanoparticle being used as nano-pesticide is silica (Si-NPs) and has been
reported by various studies as presented in Table 15.1. The Si-NPs are reported to
have lethal properties against Callosobruchus maculatus (Rouhani et al. 2012) and
are being used in commercial pesticides to control the early blight of tomatoes
(Derbalah et al. 2018) and spot diseases in dragon fruit (Tuan et al. 2018; Verma
2018). The role of Si-NPs in the control of various pests is also well reported for the
control of lesser grain borer (R. dominica), confused flour beetle (T. confusum)
(Ziaee and Ganji 2016), African cotton leafworm (Spodoptera littoralis) larvae
(El-Helaly et al. 2016), and cowpea weevil (Callosobruchus maculatus) (Rouhani
et al. 2012). Moreover, the application of Si-NPs has also been reported to control
pests strains and diseases like P. fluorescens causing pink eye potato, the bacterial
blast caused by P. syringae and P. carotovorum (Cadena et al. 2018), Staphylococ-
cus aureus, Proteus mirabilis, Pseudomonas aeruginosa (Mohammadi et al. 2016),
Listeria innocua (Ruiz-Rico et al. 2017), Escherichia coli (Mohammadi et al. 2016;
Shevchenko et al. 2017), Staphylococcus aureus, Aspergillus fumigatus (Song et al.
2018), B. subtilis, S aureus, and P. aeruginosa (Tahmasbi et al. 2018) is also well
known.
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15.3.2 Nano-fertilizers

Fortifying wheat with essential micronutrients like zinc and iron is one approach for
combating “secret hunger” in a major section of the world’s population and is also an
integral part of integrated pest management, as a healthy plant can fight diseases very
well. The availability of essential nutrients has imparted significant impacts on crop
nutrition, health, and output (Chhipa 2016). Nanoparticles improve crop yield and
ensure food safety either upon direct application to the soil or as foliar sprays to the
plants (Dimkpa and Bindraban 2017). Large amounts of micronutrients used during
fertilization can result in nutrient waste and environmental contamination. There-
fore, the application of nano-fertilizers to the crops is considered a more efficient
method due to the high penetration in the plant. “Nano fertilizers are synthesized or
modified forms of conventional fertilizers, which can enhance nutrient use efficiency
(NUE) via various mechanisms such as controlled release and target delivery.
Moreover, they can release their active ingredients in response to environmental
triggers as well as biological demands” (Solanki et al. 2015). The physical and
chemical properties of nanoscale materials vary from those of bulk materials (Nel
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et al. 2006). Nano-fertilizers penetrate the seeds and increase the nutritional status of
seedlings, resulting in healthier and longer shoot and root lengths. Nano-fertilizers
are classified as either micronutrient or macronutrient nano-fertilizers, depending on
their nutritional status (Chhipa 2016). Plant metabolism is stimulated by nanoscale
nutrient forms, which improve development, nutritional quality, and growth
(Dimkpa and Bindraban 2017). Nano-fertilizers increase nutrient use efficiency,
minimize important nutrient immobilization, and reduce nutrient leaching through
agricultural run-off (Liu and Lal 2015). As compared to conventional fertilizers,
nano-fertilizers enhance chlorophyll synthesis as well as the rate of photosynthesis,
and thereby increase the transfer of the photosynthates to different plant parts and
increase crop production (Ali and Al-Juthery 2017; Singh et al. 2017).
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In waterlogged conditions, zinc (Zn) is an essential nutrient for rice growth and
development (Naik and Das 2007). The foliar application of Zn to plants increases its
concentration (Saha et al. 2017). The use of Zn nano-fertilizer benefits rice develop-
ment by providing nutrients slowly during crucial periods (Yuva Raj and
Subramanian 2021). The use of Si and Zn nano-fertilizers boosted the concentrations
of essential plant nutrients silicon and zinc in rice plants by around 24% and 21%,
respectively (Ghasemi et al. 2014). Nano-silicon fertilizers have high availability
because of their small size and strong penetration power, whereas standard silicon
fertilizers have low availability. Nano-silicon fertilizers, when compared to tradi-
tional Si fertilizers, can minimize silicon (Si) accumulation (Wang et al. 2016). It’s a
reported fact that micronutrients and beneficial nutrients can be very effective agents
for plants to fight against diseases, and exogenous application of these nutrients can
help plants in various diverse ways in coping biotic stress (Datnoff et al. 2007; Fones
and Preston 2013).

15.4 Bioavailability, Concentration, and Toxicity
of the Nanoparticles

Because many NPs contain biotic life, the incorporation of NPs into plant reproduc-
tive and eating tissues is of special importance (Rizwan et al. 2016). The absorption
and transportation of the NPs depend upon the plant species, cultivars, and develop-
mental stages (Anjum et al. 2015; Shi et al. 2014). Plant tissues’ natural micro-meter
or nanometer-scale pores allow NPs to attach to and pass through plant surfaces
(Schwabe et al. 2015). The uptake of the NP is characterized as an “active-transport
mechanism” because it involves a variety of cellular processes such as recycling,
signaling, and plasma membrane regulation (Wang et al. 2012). Before adopting the
apoplastic way to the epidermis and cortical cells, the NPs adhere to the root surface
(Anjum et al. 2015, 2016). When NPs enter plants, they penetrate through the cell
membrane and cell wall of root epidermal cells before being guided via the xylem
(vascular bundle) by a series of complicated processes before being transported to
the stele via the symplast route and are eventually translocated to the leaves. Cell
membrane holes tailored to the size of the nanomaterial allow NPs to penetrate
through the integral cell membrane (Tripathi et al. 2015). The NPs must be absorbed



by a passive channel via the endodermal apoplast before they can get near to the stele
(Judy et al. 2016). Xylem is a plant-based mechanism for allocating and transporting
nanoparticles (Aslani et al. 2014).
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15.5 Fate and Safety Aspects of Nanoparticles

The fast growth of nanotechnology has prompted concerns about the risks of a wide
range of hazardous NPs, and their uncontrolled usage as nano-pesticide and nano-
fungicide formulations should be monitored since they can contaminate the soil. In
order to establish safe nanomaterial-based technology release mechanisms, the
formation of these NPs in soil, and their absorption into the food chain, should be
monitored. The NPs have been shown to exert dose-dependent toxicity in agricul-
tural plants in several studies (Li et al. 2015a, b). Pure aluminum NPs, for example,
inhibited root development in maize, tomato, cucumber, carrot, cabbage, and soy-
bean plants (Hassan et al. 2013). Plant development is inhibited by alumina (Al2O3)
NPs, which are contaminants in the environment. Tobacco seedlings demonstrated a
continuous and significant reduction in average leaf count, biomass, and root length
when exposed to high levels of Al2O3-NP (Burklew et al. 2012). Copper NPs were
cytotoxic to mung beans, but Ag-NPs were cytotoxic to zucchini and onions. At
higher concentrations, multi-walled carbon nanotubes (MWCNTs) have been
proven to be cytotoxic in a variety of plants, including Arabidopsis and rice (Nair
et al. 2010). These findings emphasize the need to understand the ecosystem’s lowest
safe NP threshold. Nano-ZnO, for example, is taken from the soil by the roots and
accumulated in the edible parts of soybean plants, decreasing food quality. Similarly,
nano-CeO2 lowered soybean plants’ capacity to fix nitrogen and hence reduced the
yield.

15.6 Conclusion

Nanotechnology is a branch of science that has applications in a wide range of fields.
Nanotechnology is undergoing intensive research in an attempt to commercialize it
around the world. In agriculture, nanoparticles are used to reduce the use of plant
protection chemicals, reduce nutrient losses, and boost yields. Because food demand
is increasing every day and staple food crop yields are low, metal nanoparticles must
be commercialized for sustainable agriculture. NPs promote plant metabolic activity
and act as a plant nutritional fertilizer to boost crop yield. Every day, food demand
rises while primary food crop yields diminish. Today, however, increasing the food
supply is important in order to feed the world’s growing population. Commerciali-
zation of metal nanoparticles for sustainable agriculture is consequently required.
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