
Automated Detection of Hypertension 
Disease Using Machine Learning and 
Signal Processing-Based Methods 

Jaypal Singh Rajput and Manish Sharma 

Abstract Hypertension is a critical health issue and an important area of research 
because of its high pervasiveness and a remarkable risk factor for cardiovascular 
and cerebrovascular disease. However, it is a silent killer in all respects. Hardly any 
side effect can be found in its beginning period until an extreme Medical emergency 
like heart attack, stroke, or chronic kidney disease. Since individuals are unaware of 
hypertension, the identification is possible through measurement only. The detection 
of hypertension at the beginning stage can protect from serious health issues. Fur-
thermore, the hypertension diagnosis by measuring blood pressure may not reflect 
any severe complication caused due to high blood pressure. Alternatively, automated 
machine learning and signal processing-based methods require to detect hyperten-
sion and its complication (syncope, stroke, and myocardial infraction) from the direct 
ECG signal. However, the ECG signal is non-stationary, and experts may commit 
mistakes in observation. As a result, the delay in the treatment of hypertension can 
be life threatening. Therefore, we have developed the automated detection algorithm 
for HPT-influenced electrocardiogram (ECG) signal using an optimal filter bank and 
machine learning. A total of six sub-bands were produced from each ECG signal 
using a filter bank. In addition, we have extracted the various linear and nonlinear 
features for all six sub-bands. Subsequently, a ten-fold cross-validation technique 
was employed for the k-nearest neighbor (KNN) classifier to classify the ECG sig-
nals. As a result, the proposed model has achieved a classification accuracy of 98.4%. 
Hence, the proposed work classifies hypertension from ECG signals in myocardial 
infarction, stroke, syncope, and low-risk hypertension. Moreover, we can install the 
proposed algorithm on a personal computer and diagnose the HPT-associated disease 
from an ECG signal. 
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1 Introduction 

Hypertension (HPT) is a critical health issue. It can severely affect human health, 
and its pervasiveness increases on a global level, but the rate of HPT awareness, 
treatment, and control remains slow [11]. The World Health Organization (WHO) is 
more vigilant of HPT treatment, understanding, and diagnosis [11]. HPT is defined 
when the systolic and diastolic blood pressure is greater than 140/80 in more than 
three clinical trials. 

Hypertension is a remarkable state that can indicate many severe diseases like 
stroke (STR), syncope (SYN), myocardial infarction (MI), and heart disease [6]. 
Blood pressure (BP), smoking, overweight, lack of exercise, excessive salty eating, 
stress, age, family ancestry, kidney illness, and thyroid disease are the few reasons 
that cause hypertension [24]. 

The functionality of the heart is recorded by an ECG signal in the form of an 
electrical signal. Therefore, the ECG signal is more relevant in HPT detection and 
the disease associated with it [10]. Simjanoska et al. [22] specify the relationship 
between ECG and blood pressure and how ECG changes when the blood pressure is 
changed. 

The primary motivation of this research work is to detect hypertension-associated 
diseases from the ECG signal. However, early detection of hypertension can save 
many lives and enhance people’s life quality. 

Various devices, methods, and algorithms have been developed to detect hyperten-
sion. Similarly, the details of work done on HPT detection in literature are mentioned 
below: 

Rajput et al. [8] discriminate the severity of hypertension ECG signal using hyper-
tension diagnosis index (HDI). The developed HDI model classifies the low and 
high-risk hypertension ECG signals with 100% classification accuracy. 

In another study [10], the authors classify the low, high-risk hypertension, and 
normal ECG signals using signal processing and machine learning-based methods. 
In addition to this, they obtained 99.95% classification accuracy using the ensemble 
bagged tree classifier. 

Further, in the subsequent study [18], the classification accuracy of 98.05% was 
obtained without wavelet-based methods. The classification has been conducted on 
the severity of hypertension and normal ECG signals. 

Moreover, in another study [9], they have classified hypertension and normal Bal-
istocardiogram signals using empirical mode decomposition and wavelet transform 
methods. As a result, the authors obtained the highest classification accuracy of 87%. 

Quachtran et al. [7] extract intracranial pressure (ICP) from ECG signal and 
developed a deep learning model for the detection of intracranial hypertension. The 
deep learning model gives 92.0 ± 2.25% accuracy. 

Sau et al. [12] worked on seafarer people’s depression and anxiety using machine 
learning. The precision and accuracy of their developed model are 82.6% and 84%, 
respectively.
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In another study, Melillo et al. [5] designed an automated detection of high-risk 
hypertension algorithm from heart rate variability (HRV) signals using machine 
learning methods. The sensitivity and specificity of HRV-based models are 71.4 % 
and 87.8 %, respectively. 

Ni et al. [6] employ a HRV signal-based multi-scale fine-grained model to detect 
the severity of hypertension. The HRV signal-based model gives 95% accuracy using 
a machine learning algorithm. 

Simjanoska et al. [22] identified the SBP and DBP from ECG signal using machine 
learning methods. The SBP and DBP achieved 9.45 and 8.13 mmHg mean absolute 
error. 

Song et al. [23] distinguish hypertension and heart disease from the HRV sig-
nal. In addition, the Naive Bayes classifier, a machine learning-based model, gives 
classification accuracy of 92.3%. 

Hence, it is apparent from the literature, and disease (STR, SYN, MI, and LHT) 
associated with hypertension has not been studied yet. Therefore, in the current 
scenario, hypertension is attracting researchers globally. To diagnose and predict 
hypertension and its associated disease, a large amount of recorded data is available 
in hospitals and online databases. Accordingly, we have developed the hypertension 
diseases detection system by signal processing and machine learning-based methods. 
In the proposed work, we have used an orthogonal wavelet filter bank (OGWFB) to 
perfectly discriminate STR, SYN, MI, and LHT ECG signals. The OGWFB produces 
six sub-bands (SBs) for each ECG signal considering five-level wavelet decompo-
sition. In addition, the LOGE and SLFD features were calculated for all SBs. As a 
result, the KNN classifier presents the highest classification accuracy of 98.4%. 

Section 2 provides the details of the dataset. Then, the methodology is explained in 
Sect. 3. Subsequently, the performance (result) of the developed model is discussed 
in Sect. 4. At last, the outcome and concluding remarks of the proposed algorithm 
are given in Sect. 5. 

2 Dataset 

The dataset for this research work was obtained from Physionet’s online database 
(SHAREE database). The Ethics Committee approved the current study of Federico 
II University Hospital Trust. A total of 139 hypertensive recordings were used, out of 
which 49 are female, and 90 are male patients; the average age is 55 years. In addition 
to this, the length of each ECG signal is 2 h:10 min:12-s. Furthermore, each ECG 
signal has III, V3, V5 leads and approximately one million samples (samples/signal). 
The lead III, V3, and V5 are assigned as CH1 (channel1), CH2 (channel2), and 
CH3 (channel3). The ECG signal sampling frequency, bit resolution, and sampling 
intervals are 128 Hz, 8-bit, and 0.0078125 sec, respectively. Out of 139 subjects, three 
are SYN, three are STR, and 11 are MI, while 122 patients are low-risk hypertension 
LHT subjects. Further, we have segmented each ECG signal into a 5-minute duration 
signal. After segmentation of ECG signal, 3172 ECG signals are of LHT, 78 of stroke,
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Fig. 1 Low-risk hypertension ECG signal 

Fig. 2 Myocardial infarction ECG signal 

78 of syncope, and 286 of myocardial infarction. Figures 1, 2, 3, and 4 show all four 
classes of hypertension-associated ECG signals of 5-min duration. 

3 Methodology 

The optimally designed OGWFB discriminates LHT, MI, STR, and SYN classes of 
ECG signal. Each ECG signal has been decomposed into various sub-bands using 
a filter bank. The LOGE and SLFD features were computed for each ECG signal 
SBs. As a result, a total of 12 (six LOGE and six SLFD) features were obtained from 
each ECG signal. Subsequently, we applied various machine learning algorithms
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Fig. 3 Stroke ECG signal 

Fig. 4 Syncope ECG signal 

on features calculated ECG signals. The KNN machine learning classifier gives the 
highest accuracy. The outline of the developed algorithm is presented in Fig. 5. 

3.1 Preprocessing of ECG Signal 

Z-score normalization is performed on each epoch of the ECG signals to eliminate 
the amplitude scaling problem [1, 3, 4]. Five-minute ECG signals are generated by 
segmenting the long-length ECG signal. 

3.2 OGWFB Filter Bank 

The two-band filter bank has an analysis filter bank (decomposition) and synthesis 
filter (reconstruction) is shown in Fig. 6. Analysis filter bank has P0(z) low-pass
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Fig. 5 Layout of the 
proposed work  Hypertension ECG Signal 

ECG  Pre-processing 

Filter Bank

  Wavelet Decomposition 

Feature Selection and  Extraction 

Classification of ECG Signal 
Using  Machine Learning

 LHT Syncope  M I Stroke 

filter and P1(z) high-pass filter. The high- and low-pass analysis filter bank output 
is down-sampled by a factor of 2, while synthesis filter bank input is up-sampled by 
a factor of 2. In the synthesis filter bank, Q0(z) is low pass and Q1(z) is high-pass 
filter. In the proposed work, we used an orthogonal wavelet filter bank developed by 
[15]. The output of the synthesis filter bank is matched with the input to the analysis 
filter bank to get the same result. 

Perfect reconstruction is achieved using the two-channel filter bank. However, 
the condition of orthogonality is necessary for filters to get perfect reconstruction 
of signal [2, 16, 26, 28, 30, 31]. Therefore, the orthogonal filter bank can be con-
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Fig. 6 Orthogonal wavelet filter bank diagram 

verted into the finite impulse response analysis low-pass filter p0(n), and it must 
fulfill the condition of orthogonality which is equivalent to the condition of perfect 
reconstruction and zero moments [21, 29]. Additionally, the high-pass filter p1(n) 
can be produced by adjusting the sign of the coefficient of the flipped variant of 
the low-pass filter. Finally, the synthesis bank filters can be extracted from the time 
reversal of the analysis banks. 

3.3 Wavelet Decomposition 

The ECG signal is non-stationary; therefore, we cannot apply conventional (Fourier, 
Laplace, and short-time Fourier transform) methods [16, 19, 21]. Instead, we used 
an optimal wavelet filter bank (OGWFB) to decompose ECG signals in various sub-
bands. In addition, a five-level wavelet decomposition was used [14, 27]- [21, 34]. 
As a result, it produces accurate and precise information about the ECG signals. Total 
N + 1 sub-bands were made for N level wavelet decomposition [14, 17]. However, 
the SB1-SB5 are detailed, and SB6 is an approximate sub-band. 

3.4 Features Used in Proposed Work 

The important part of this work is to calculate and select the required features. 
Significantly, the performance of the classifier is based on the nature of the feature 
extracted. Moreover, it is not priory known which feature will best discriminate each 
class of ECG signal. In addition, the LOGE and SLFD features were computed for 
all six SBs of each ECG signal [33]. Finally, the feature extracted ECG signals were 
fed to the machine learning classifiers. As a result, we can classify the LHT, MI, 
SYN, and STR ECG signals using LOGE and SLFD features with machine learning 
classifiers.
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3.5 Classification and Performance Evaluation 

In the proposed work, we have used various supervised machine learning algorithms 
for the automated classification of hypertension ECG signals. However, we use ECG 
signals on a variety of classifiers, including support vector machines (SVM), k-
nearest neighbor (KNN), decision trees (DT), and ensemble bagged trees (EBT), 
to improve performance. As a result, we have obtained the highest classification 
performance using the KNN classifier. 

Table 1 Performance summary of filters was obtained using CH1, CH2, and CH3 

Filters CH1, ACC (%) CH2, ACC (%) CH3, ACC (%) 

F1 98 97.4 98.4 

F2 98.2 97.1 98.4 

F3 98.2 97.1 98.3 

Table 2 Comparison of AUC obtained by all filters for CH1, CH2 and CH3 

Filters CH1, AUC CH2, AUC CH3, AUC 

F1 0.95 0.96 0.98 

F2 0.96 0.97 0.99 

F3 0.96 0.95 0.98 

Table 3 Confusion matrix of CH1 for all classes obtained using KNN classifier 

True class Predicted class 

Normal, 0 STR, 1 SYN, 2 MI, 3 

Normal, 0 3143 6 4 19 

STR, 1 7 71 0 0 

SYN, 2 3 0 75 0 

MI, 3 24 2 1 259
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Table 4 Confusion matrix of CH2 for all classes obtained using KNN classifier 

True class Predicted class 

Normal, 0 STR, 1 SYN, 2 MI, 3 

Normal, 0 3131 9 14 18 

STR, 1 7 70 0 1 

SYN, 2 21 0 57 0 

MI, 3 24 0 0 262 

Table 5 Confusion matrix of CH3 for all classes obtained using KNN classifier 

True class Predicted class 

Normal, 0 STR, 1 SYN, 2 MI, 3 

Normal, 0 3149 1 5 17 

STR, 1 3 74 0 1 

SYN, 2 8 0 70 0 

MI, 3 23 1 0 262 

Table 6 Classification accuracy of various classifiers for CH1, CH2, and CH3 

Classifier CH1, ACC (%) CH2, ACC (%) CH3, ACC (%) 

KNN 98.2 97.4 98.4 

DT 91.0 90.1 92.4 

EBT 93.5 92.6 93.4 

SVM 97.3 96.0 96.7 

Usually, KNN is applied for dimensionality reduction and feature selection [13, 
20, 25]. In addition, the KNN is used for the k training samples, which are neighbors 
of the test sample, to classify it. Following this, the KNN classifier provided the 
lowest probability and overfitting [13, 20, 25]. 

4 Result and Discussion 

The experimental work has been performed on the MATLAB version (9.1.0), with 
Intel Xeon 3.5 GHz, and 16 GB RAM. The F1, F2, and F3 filters of OGWFB enhance 
the performance of the proposed work. In addition, filter F2 presents the highest clas-
sification accuracy compared to the other two filters. The performance of each filter 
in terms of classification accuracy is shown in Table 1. A filter F2 produced the high-
est area under the curve (AUC) of 0.99 for CH3 is mentioned in Table 2. Tables 3, 
4, and 5 represent the confusion matrix of LHT, MI, STR, and SYN of CH1, CH2, 
and CH3 for KNN classifiers. The classification performance of each classifiers is



50 J. S. Rajput and M. Sharma

Fig. 7 ROC curve obtained 
for CH1 using KNN 
classifier 

Fig. 8 ROC curve obtained 
for CH2 using KNN 
classifier 

presented in the Table 6. It is evident from Table 6 that the KNN classifier givesclas-
sification accuracy of 98.4% for all classes. For testing the model performance and 
avoiding overfitting, we used the ten-fold cross-validation method. Table 6 shows 
that our model can identify 98.4 % accurately of LHT, MI, STR, and SYN classes. 
The best receiver operating characteristics (ROC) curve and AUC of KNN classifier 
are shown in Figs. 7, 8, and 9 for CH1, CH2, and CH3. 

5 Conclusion 

This study used optimal OGWFB to separate LHT, MI, STR, and SYN ECG sig-
nals. The LOGE and SLFD features were calculated for all six sub-bands. OGWFB
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Fig. 9 ROC curve obtained 
for CH3 using KNN 
classifier 

can classify ECG signals accurately using LOGE and SLFD with a ten-fold cross-
validation method. To check the performance of filter banks, we have applied various 
classifiers. KNN classifier presents an accuracy of 98.4% and an AUC of 0.99. This 
study can be employed for the identification of heart, brain, and kidney disease. 
Therefore, an adaptable, robust, reliable, and accurate model has been proposed. 
Furthermore, the system performance can be enhanced by extracting other features 
like signal sample entropy, wavelet entropy, and higher-order spectra. These findings 
demonstrate that our methods outperform previous models and that they can be used 
in large databases. Sequentially, we can test performances of the suggested technique 
on a large dataset for automatic detection of the severity of hypertension. 
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