
A Blockchain-Empowered Federated 
Learning System and the Promising Use 
in Drug Discovery 

Xueping Liang, Eranga Bandara, Juan Zhao, and Sachin Shetty 

Abstract Federated learning is a collaborative and distributed machine learning 
model that addresses the privacy issues in centralized machine learning models. 
It emerges as a promising technique that addresses the data sharing concerns for 
data-private multi-institutional collaborations. However, most existing federated 
learning systems deal with centralized coordinators and are vulnerable to attacks 
and privacy breaches. We propose a blockchain-empowered coordinator-less decen-
tralized, federated learning platform “Rahasak-ML” to solve issues in centralized 
coordinator-based federated learning systems by providing better transparency and 
trust. It uses an incremental learning approach to train the model by multiple peers 
in the blockchain network. Rahasak-ML is integrated into the Rahasak blockchain 
as its data analytics and machine learning platform. Each peer in the blockchain 
can establish supervised or unsupervised machine learning models with the existing 
data on its own off-chain storage. Once a peer generates a model, it can be incre-
mentally/continuously trained and aggregated by other peers through the blockchain 
using the federated learning approach without requiring a centralized coordinator. 
The model parameters sharing, local model generation, incremental model training, 
and model sharing functions are implemented in the Rahasak-ML platform. We 
discussed the promise of Rahasak-ML machine learning in medicine. 
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1 Introduction 

Federated learning is a new technique for training machine learning models across 
decentralized participants without accessing any party’s private data [1, 2, 3]. It 
emerges as a promising paradigm for data-private multi-institutional collaborations 
by distributing the model training to the data owners and aggregating their results, 
solving the concerns of sharing data [4]. In a federated learning system, the central 
server (centralized coordinator) coordinates the learning process and aggregates the 
parameters from local machine learning models trained on each participant’s data 
[5]. Although such a design minimizes the risk of privacy leakage, the centralized 
coordinator is vulnerable to attacks and privacy breaches, becoming the single point 
of failure and trust issues. 

While blockchain is a technology that offers assurances of reliability and usage 
transparency in decentralized settings, researchers started to investigate the combi-
nations of the two promising technologies [6, 7]. In this study, we took advantage of 
blockchain and federated learning and proposed a platform called Rahasak-ML [8]. 
Rather than using centralized coordinators to aggregate and learn the global model, 
the Rahasak-ML used an incremental learning technique [9, 10] to continuously train 
the models by multiple peers in the blockchain network. Each peer in the blockchain 
manages its local storage and establishes local models [11]. Once a peer generates 
a model, it can be incrementally trained and aggregated by other peers through the 
blockchain by using the federated learning approach. Rahasak-ML stores informa-
tion (e.g., participating clients who generate and aggregate local models, generation 
times, etc.) into the blockchain ledger that all participating parties can view. It provides 
a way to audit the system. All actions performed on the model are entirely trace-
able by each user giving a clear history of all operations and incremental versions 
that existed. This system adds more transparency to the federated learning system 
by providing a traceable record of the model development, potentially alerting to 
adversarial machine learning attempts or fraudulent actions. Rahasak-ML makes the 
following contributions: 

• Integrates federated learning with blockchain to enable model sharing and aggre-
gations without having centralized authority, increasing the transparency, trust, and 
provenance of the model generation; 

• Adds the ability to audit the federated learning system by storing task details (e.g., 
who generates local models and aggregates them, model generation times, etc.) in 
the blockchain; 

• Offers different functions in the platform that are implemented as independent 
services (microservices) that are easy to scale and deploy; and 

• Introduces a way to integrate the models in smart contracts to predict the output of 
real-time data. 

The chapter is organized as follows. In Sect. 2, we briefly introduce federated 
learning, blockchain, and the role of these two technologies in drug discovery. In
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Sect. 3, we introduce the architecture of federated learning in the Rahasak-ML plat-
form. In Sect. 4, we further explain the training process and the implementation in a 
medical use case and offer insights into related work. Finally, in Sect. 5, we discuss 
the future directions and open questions. 

2 Overview of Federated Learning and Blockchain 

2.1 Federated Learning 

Machine learning represents a set of methods that can automatically uncover patterns 
in data and then use detected patterns to predict future data. Machine learning 
models show promise in aiding decision-making in healthcare [12, 13] and finance 
[14]. However, a large, diverse labeled dataset is the key to making a supervised 
machine learning model broadly effective. Collaborative learning is an efficient way 
to increase the data size and diversity, via multi-institutional data sharing for the 
training of a single model [4]. The current approach to achieving collaborative 
learning requires sharing the data with a third party to train a global model, such 
as using data repositories for different purposes (Fiscal Service Data Registry, [15]). 
However, this centralized approach presents many issues, such as high costs for data 
transmission and storage, security and privacy at high risk, lack of auditing, data 
ownership, and restrictions of data sharing, e.g., the Health Insurance Portability and 
Accountability Act (HIPAA) regulations in healthcare [16]. 

To address these security and privacy issues, a decentralized machine learning 
approach, i.e., federated learning [17, 18], has been proposed to build a shared 
machine learning model without storing or having access to any party’s private data. 
In federated learning, the central server coordinates the learning process and aggre-
gates the information from multiple participants (i.e., referred to here as “parties”) in 
a decentralized manner while keeping each participant’s raw data private. Each party 
downloads the global model parameters from the central server at each iteration, 
locally trains it with their private/local dataset, and sends each of their local model 
parameters to the central server for aggregation. Then, the central server gathers all the 
local model parameters, aggregates them, and updates the global model parameters 
for the next iteration. This learning process continues until pre-defined termination 
criteria are met. For example, if the maximum number of iterations is reached, or if 
the model accuracy is greater than a threshold, the learning process is finished and 
will exit automatically.
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2.2 Barriers and Challenges in Drug Discovery 

Drug discovery involves identifying potential new medicines, which involves and 
requires the knowledge of a wide range of scientific disciplines, such as biology, chem-
istry, and pharmacology. Developing a new drug is a complex, lengthy, and costly 
process, entrenched with a high risk of uncertainty that a drug will succeed. The drug 
development pipeline included multiple stages, from identifying targeted therapeutic 
agents to clinical trial designs, including Phases I, II, and III. Each stage is critical but 
faces challenges, such as insufficient knowledge about the underlying mechanisms 
of disease, the heterogeneity of patients who have diverse clinical phenotyping and 
endotyping, a lack of targets and biomarkers, small or biased samples in clinical trials, 
and regulatory challenges [19]. These hurdles create barriers to the development of 
the drugs, leading to increased costs and time, thus increasing the risk of failure. To 
minimize these challenges, researchers moved toward computational approaches to 
accelerate pipeline, such as using high-throughput virtual screening and molecular 
docking to reduce the number of compounds that need to be screened experimentally 
[20]. However, these approaches have inaccuracy and inefficiency problems. There-
fore, new methods and computing technologies to automate analytical model building 
for pharmaceuticals are needed and could transform drug discovery. 

Today, the advances in high-throughput approaches to biology and disease present 
opportunities to pharmaceutical research and industry [21]. For example, multi-
omics ranging from genome, proteome, transcriptome, metabolome, and epigenome 
are generated at unprecedented speed, improving the capabilities of systematically 
measuring and mining biological information. In addition, widely adopted electronic 
health records (EHR) and smart technologies capture detailed phenotypic patterns, 
allowing researchers to monitor patient outcomes and study medication treatments. 
The booming of such “big data,” including omics, images, clinical characteristics, 
social/environmental information, and literature, has driven much of researchers’ 
interest in harnessing machine learning to analyze and uncover novel findings and 
hidden patterns from the massive data [22, 23, 24]. 

Machine learning and deep learning are fundamental branches of artificial intelli-
gence (AI), which refer to computer systems’ ability to learn from input or past data. 
AI has achieved successful applications in many domains, such as imaging detec-
tion and natural language processing. Recently, AI algorithms have been increas-
ingly being applied in all stages of drug discovery, including screening chemical 
compounds, identifying novel targets [25], examining target–disease associations 
[26], improving the small-molecule compound design and optimization, studying 
disease mechanisms [27], evaluating drug toxicity and physicochemical properties 
[28], predicting and monitoring the drug response [29], and identifying new indi-
cations for an existing drug, known as drug repositioning. Moreover, researchers 
utilized machine learning models to optimize the clinical trials, such as estimating the 
risks of clinical trials more accurately [30] and improving the patient pre-screening 
process, as well as approaches to feasibility, site selection, and trial selection [31]. 

From a machine learning viewpoint, it is desirable to have large and diverse 
data to inform model training, but access to data remains a challenge in drug
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discovery. Several public databases contain millions of biological assay results, such 
as ChEMBL [32] and PubChem [33], which can provide input for machine learning 
models to retrieve training models and then predict biological activities or physical 
properties for drug-like molecules. However, the data only represents a small fraction 
of what has been measured, which might bias the machine learning models and affect 
the model reliability and reproducibility [34]. Furthermore, many larger datasets are 
proprietary to pharmaceutical companies or publishers and are not publicly and 
freely available. To overcome the barriers, researchers seek federated learning to 
solve data acquisition and data bias problems faced by AI drug discovery by keeping 
confidentiality and customizing models for users [35]. 

Federated learning is a new machine learning paradigm where multiple sites 
collaboratively learn a shared machine learning model while keeping all the training 
data on a single site [2]. Developing federated health AI technologies are essen-
tial and highly demanding in medicine [13]. Examples include the European Union 
Innovative Medicines Initiative’s (https://www.imi.europa.eu/) projects for privacy-
preserving federated machine learning. Chang et al. explored data-private collabora-
tive learning methods for medical models for image classification [36]. Xiong et al. 
[37] proposed using a federated learning work in predicting drug-related properties. 
The architecture of federated learning is that each participating pharma company 
(peer) will locally train the model without sharing the training data. Each peer only 
encrypts and uploads the model updates, and a coordinator server aggregates all the 
updates from the local client and broadcasts the latest shared global model to them. 
Thus, individual pharma companies will be able to fine-tune the machine learning 
model and effectively tailor it to their specific field of inquiry, with the individual 
research data remaining confidential. 

2.3 Challenges in Federated Learning 

While the federated learning process has significant improvements to minimize the 
risk of privacy leakage by avoiding storing raw datasets to a third party, it still presents 
some major vulnerability issues in the model architecture and the training process. 

• First, the central server for coordinating a shared and trained global model presents 
the single point of failure and trust issues. A malicious behavior or malfunction 
from the central server could bring inaccurate global model parameters updates, 
which would misrepresent the local model parameters update sent by the parties. 
Therefore, decentralization of the entire federated learning process was necessary. 

• Second, during the learning process, malicious parties could send manipulated 
local model parameters to the central server, affecting the global model param-
eters. If such malicious local parameters are not detected or removed before 
aggregation, they will compromise the global model and lower the overall model 
accuracy [1, 38]. Some studies [39] have proposed approaches to verify model 
parameters, but they mainly rely on the data sample size and the computation 
time, which could be easily altered by malicious participants to avoid detection.

https://www.imi.europa.eu/
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• In addition, these studies do not address the quality of the data sample that would 
affect the accuracy and the convergence analysis of the federated learning process. 
A more difficult malicious behavior, colluding attack, has shown the vulnerabil-
ities of existing defenses based on Sybil [40]. Thus, it is essential to note that 
verifiable local model parameters update is important for the accuracy of the 
global model parameters. 

2.4 Blockchain Benefit for Federated Learning 

Blockchain provides a shared digital ledger that records data in a public or private 
peer-to-peer network. It guarantees a decentralized trust system without involving 
trusted third parties. Multiple partners (nodes) can exist in the blockchain network, 
and each partner (node) has a copy of the data being maintained [41]. The data on the 
blockchain are organized into blocks. A block contains a set of records (transactions). 
Each block is linked to its previous block by containing the previous block’s hash in 
its header. If someone was to tamper with the contents of one block, then all blocks 
in the blockchain following that block would be invalidated. 

Depending on the type of access and from where the nodes that support the 
blockchain are selected, there are two primary types of blockchains: permissionless 
and permissioned. Permissionless blockchains deal with entirely untrusted/byzantine 
parties; examples are Bitcoin, Ethereum, and Rapidchain. Permissioned blockchains 
deal with trusted/known parties; examples are BigchainDB, Hyperledger, and 
HbasechainDB. Many blockchains, such as Bitcoin, are used for cryptocurrencies. 
For example, Ethereum and Hyperledger support different transaction storage models 
related to other business or e-commerce activities. Recently, blockchain has quickly 
been applied to other areas, including the healthcare and drug industry [42, 43]. 
For example, studies have integrated blockchain with EHRs, to allow the different 
stakeholders to manage EHR transparently while guaranteeing fairness and usage 
(records access) consent [44]. 

To address the challenges of federated learning, we propose integrating blockchain 
with federate learning to replace the centralized coordinator. The blockchain network 
can be deployed among different peers, and the peers can train machine learning 
modes with the data on their own local storages (e.g., off-chain storage). Then the 
local models generated by different peers can be aggregated/averaged into a global 
model using the federated learning approach without using a centralized coordinator. 
In blockchain-enabled federated learning systems, the model parameter sharing, local 
model generation, incremental model training, and model sharing functions can be 
implemented with smart contracts. All federated learning tasks happening in the 
system (e.g., generate local models and aggregate them) and stored in the blockchain 
ledger are viewed by all participating parties. It provides a means to audit the system 
and adds more transparency to the federated learning process. Once local models 
are generated, these models can be integrated into blockchain smart contracts (e.g., 
a program that directs client requests to the blockchain) to predict real-time data.
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This system adds more transparency to the federated learning system by providing 
a traceable history of the model development, potentially alerting to adversarial 
machine learning attempts or fraudulent actions. 

2.5 The Benefits of Blockchain-Empowered Federated 
Learning for Drug Discovery 

The blockchain-enabled federated learning enhanced such infrastructure by decen-
tralizing the architecture further and making the training process and model sharing 
more transparent and traceable. As a result, hospitals, institutions, and drug compa-
nies can achieve an accurate and generalizable model; more sites contribute their 
local insights while remaining in full control and possession of their data. This 
approach allows complete traceability of data access, limiting the risk of misuse by 
third parties. There is a consortium of pharmaceutical, technology, and academic part-
ners, the Machine Learning Ledger Orchestration for Drug Discovery (MELLODDY, 
https://www.melloddy.eu/), that uses deep learning methods on the chemical libraries 
of ten pharma companies to create a modeling platform that can more quickly 
and accurately predict promising compounds for development, all without sacri-
ficing the data privacy of the participating companies. Specifically, the benefits of a 
blockchain-empowered federated learning system are as follows: 

• Entails training algorithms across decentralized sites or devices holding data 
samples without exchanging those samples. 

• Small pharmaceutical companies and research institutions would achieve accurate, 
less biased models by gaining insights from other sites containing diverse data. 

• Provides a platform with more transparency, trust, and provenance for model 
training and sharing. 

• Provides the ability to audit the system and make sure local data and models are 
traceable. For example, the task information related to who generates models, 
aggregate parameters, and model generation time would be recorded in the 
blockchain. 

• Offers flexibility with connecting more participating sites and devices. 
• Provides the ability to process real-time data. 

3 The Rahasak-ML Platform 

3.1 Overview 

The Rahasak-ML platform integrates federated learning with blockchain to enable 
model sharing and model training without having a centralized coordinator, which 
keeps the data private [45, 46]. The proposed platform has been implemented on

https://www.melloddy.eu/
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Fig. 1 Rahasak-ML platform’s microservices-based architecture. Each blockchain node contains 
four services: Rahasak-ML service, Storage service, Aplos service, and Lokka service 

top of the Rahasak blockchain [5], a highly scalable blockchain system for big data. 
The architecture of the Rahasak-ML federated learning environment is discussed in 
Fig. 1. 

Its proposed platform has been designed with microservice-based distributed 
system architecture [47]. In Rahasak-ML, all the functionalities are implemented 
as independent microservices. These services are Dockerized [48] and available for 
deployment using Kubernetes [49]. The following are the main services/components 
of the Rahasak-ML platform: 

• Storage service: Apache Cassandra-based block, transaction, and asset storage 
service [50]. 

• Aplos service: smart contract service implemented using Scala functional 
programming language and Akka actors [51]. 

• Lokka service: block creating service implemented using Scala and Akka streams 
[52]. 

• Distributed message broker: Apache Kafka-based distributed publisher/subscriber 
service used as consensus and message broker platform in the blockchain, 
Rahasak-ML service federated machine learning service. 

• Distributed cache: Etcd-based distributed key-value pair storage (open-source 
distributed key-value storage system). 

• Certificate authority: certificate authority that issues certificates for peers and 
clients.
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Fig. 2 Rahasak-ML service architecture. Each blockchain peer has its own Rahasak-ML service. 
Machine learning models will be generated with the data on each peer’s off-chain storage 

Each peer in the network has its own off-chain storage for storing the raw data. The 
hash of these data is published to a blockchain ledger and shared with other peers. The 
blockchain storage on the Rahasak-ML platform keeps all its transactions, blocks, 
and asset information (hash of the data in off-chain storage) on Cassandra-based Elas-
sandra Storage (https://github.com/strapdata/elassandra). It exposes Elasticsearch 
application programming interfaces [53] for transactions, blocks, and assets on the 
blockchain. Each peer in the blockchain can establish supervised or unsupervised 
machine learning models with the existing data on its own off-chain storage. Once a 
peer generates a model, it can be incrementally trained and aggregated by other peers 
through the blockchain by using the federated learning approach. The model param-
eter sharing, local model generation, incremental model training, and model sharing 
functions are implemented in the Rahasak-ML platform. Once machine learning 
models are generated, these models can be integrated into blockchain smart contracts 
to predict real-time data. Figure 2 shows the architecture of the Rahasak-ML services 
in a single blockchain peer. 

Each peer in the network runs its own Rahasak-ML service. The Rahasak-ML 
service contains the following components. All these components are Dockerized 
and deployed via Kubernetes. 

• Storage Service. 
• Rahasak-ML Modeler Service. 
• Rahasak-ML Streamer Service. 
• Gateway Service. 
• Apache Kafka.

https://github.com/strapdata/elassandra


122 X. Liang et al.

3.2 Key Components 

3.2.1 Storage Service 

Each peer in the Rahasak-ML platform has two storage mechanisms: off-chain and 
on-chain storage. Both are built with Apache Cassandra-based Elassandra storage. 
Off-chain storage stores the data generated by the peers. The hash of these data is 
published to on-chain storage and shared with other peers. Blockchain keeps all its 
transactions, blocks, and asset information on this on-chain storage. The on-chain 
storage in each peer is connected in a ring cluster architecture. The data saved in 
one node will be replicated with other nodes via this ring cluster. After executing 
transactions with smart contracts, the state updates in a peer are saved in Cassandra 
storage and distributed with other peers, Fig. 3. 

Blockchain can keep any data structure as blockchain assets since it uses 
Cassandra as the underlying asset storage. As a use case of Rahasak-ML, the 
authors built a blockchain-based secure NetFlow network packet storage and network 
anomaly detection (e.g., network attack) service. It stored actual NetFlow packet data 
in the blockchain peers’ off-chain storage. The hash of the data was stored in the 
on-chain storage as a blockchain asset. The smart contracts in the blockchain parsed 
the NetFlow packets coming through the router and stored them in the blockchain 
storage. Rahasak-ML can build machine learning models with the data saved in the 
peers’ off-chain storage. In federated learning scenarios, the local models are stored 
in the off-chain storage. The hash of the model and storage Uniform Resource Iden-
tifier (URI) of the model are stored in on-chain storage and distributed with other 
peers. 

Fig. 3 Rahasak-ML storage service architecture. Each peer comes with two types of storage: on-
chain storage and off-chain storage. Off-chain storage stores the actual data generated by the peers. 
The hash of these data is published to on-chain storage and shared with other peers
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3.2.2 Rahasak-ML Modeler Service 

Rahasak-ML modeler service is responsible for building the machine learning model 
by analyzing the peers’ off-chain storage data. It supports building both supervised 
(e.g., Decision Tree, Random Forest, and Logistic Regression) and unsupervised 
(e.g., K-Means and Isolation Forest) machine learning models. To build a new 
machine learning model, the first step is training, which uses a dataset as an input 
and adjusts the model weights for the model accuracy. The second step is testing, 
which takes in an independent dataset for testing the accuracy. 

Figure 4 shows the overall flow of these steps, which is performed by the Rahasak-
ML Modeler service. Once the prediction model is built and trained by the Rahasak-
ML Modeler service, it can be used to perform tasks on new data. In a federated 
learning environment, each peer in the network will continuously train the generated 
model with the data on their off-chain storage using an incremental training approach. 
The continuous model training can be done with Spark Streams [54], such as real-
time training libraries. More information about the continuous model training is 
discussed in Sect. 4. 

Following the model generation, the training models can be used in smart contracts 
to predict/cluster real-time data. For example, Rahasak-ML Modeler can be used to 
build the Isolation Forest and K-Means-based models to detect outliers of network 
traffic data. This model will split network data into two clusters: normal network 
traffic and suspicious (attacks) network traffic. Once local models are built and 
aggregated, the models can be integrated into blockchain smart contracts to predict

Fig. 4 Rahasak-ML modeler service architecture. Seventy percent of the data is used to train the 
model, and 30% will be used for testing
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the real-time network data. When new network packets come to the blockchain, 
smart contracts can use the model and predict the category (normal or suspicious) of 
real-time network traffic.

3.2.3 Rahasak-ML Streamer Service 

Rahasak-ML streamer service clusters the real-time data with the machine learning 
models built by the Rahasak-ML Modeler service. It uses blockchain smart contracts 
[55, 56] to run the machine learning model with the newly generated data. Smart 
contract functions are written to use the model and predict the cluster output. This 
service consumes real-time data via Kafka (e.g., Kafka Streams and Spark Streams). 
For example, in the previously mentioned network traffic analysis scenario, the 
Rahasak-ML streamer will consume real-time network packets via Apache Kafka 
and run through the model built by the Rahasak-ML Modeler service. It will decide 
the clustering output (normal and suspicious) of the new packets, and if a suspicious 
packet is found, it will publish the entry to a notification service. Alerts will be gener-
ated, notifying experts via notification dashboards (e.g., Prometheus and Grafana), 
as shown in Fig. 5. 

3.2.4 Gateway Service 

When analyzing real-time data, the Gateway service is used as the entry point to 
the Rahasak-ML platform. It fetches (or pushes from other services) real-time data 
from various data sources, such as log fields, NetFlow, TCP, UDP, and database. For 
example, the gateway service can receive real-time network traffic data via NetFlow. 
Once data arrive, they are prepared (by removing noise, parsing the data, etc.) and 
published to the Rahasak-ML streamer service via Kafka as JSON encoded objects.

Fig. 5 Rahasak-ML streamer service architecture. Streamer service clusters the real-time data with 
the machine learning models built by the Rahasak-ML Modeler service
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Fig. 6 Gateway service architecture. Gateway service is used as the entry point to the Rahasak-ML 
platform. It fetches (or pushes from other services) real-time data from various data sources such 
as log fields, NetFlow, TCP, UDP, and database 

When the platform receives NetFlow packets, it extracts relevant fields, aggregates 
them, constructs a JSON object, and forwards it to the Rahasak-ML streamer service 
via Kafka, as shown in Fig. 6.

3.2.5 Kafka Message Broker 

Apache Kafka is the consensus and message broker service in the Rahasak-ML 
blockchain environment. The authors use a Reactive Programming and Reactive 
Streaming model [57] where the services published events/messages with Kafka. 
The events will be subscribed by relevant services and take corresponding actions. 
The real-time data that come through the gateway service are published into Kafka 
first. Then Rahasak-ML streamer service consumes them and runs with the model, 
which is built by the Rahasak-ML Modeler service, as shown in Fig. 7. 

4 Rahasak-ML Federated Learning Process 

4.1 Overview 

Rahasak-ML proposed a blockchain-based federated learning approach to build and 
share the models. With this approach, model generation, incremental model training, 
model aggregation, and sharing can be done without having centralized authority. 
Federated learning approaches increase privacy but still rely on centralized control

Fig. 7 Rahasak-ML message broker architecture. Apache Kafka is the message broker of the 
Rahasak-ML platform. Each microservice communicates with other services via Kafka
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to manage the process. Centralized control can be compromised, causing a potential 
weak link in the system and a lack of trust in the authority that owns the centralized 
server [2]. A blockchain-based decentralized system provides a logical ruleset that 
all participants are aware of and agree on, allowing participants to audit operations to 
ensure that all parties follow the rules. It improves the ability to audit and adds more 
transparency to the federated learning process. Each peer in the blockchain network 
incrementally trains the machine learning models with the data on its own local off-
chain storage. Once all peers (or a majority of peers) are trained, the finalized model 
details will be integrated into a block and published to the other peers in the network 
by the block-generating service of Rahasak-ML (Lokka service).

4.2 Incremental Training Flow 

Assume a scenario where blockchain nodes are deployed in three companies, Compa-
nies A, B, and C. The blockchain is configured to store the data related to network 
traffic. Each company has its own off-chain storage, which stores the actual network 
traffic data. The hash of the network traffic data is published into the blockchain 
ledger. First, the Lokka service (that generates blocks) creates a genesis block with 
the incremental learning flow and the model parameters, as shown in Algorithm 1. 
Each peer in the network has its own Lokka service. The Block Creator is determined 
in a round-robin distributed scheduler. Consider the scenario in Fig. 8, which has 
three Lokka services, and assume that the first block is created by Lokka A, the 
second block will be created by Lokka B, and Lokka C creates the third block. This 
process is repeatedly performed to generate future blocks. 

Fig. 8 The block creator is determined in a round-robin distributed scheduler. The block approval 
process is performed via the federated consensus implemented between Lokka services
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Algorithm 1 Training pipeline initialization 

1 INITIALIZE TRAINING PIPELINE: 
2 Choose Lokka node li by the round-robin scheduler to initialize the training pipeline 
3 Find available blockchain peers p(1, ..., n) from the distributed cache 
4 Define incremental learning flow based on each peer join time (ttl) to the network 
5 Define ML model training parameters and algorithm information 
6 GENERATE GENESIS BLOCK: 
7 Create genesis block bi with model parameters and incremental training flow 
8 Save bi in ledger and broadcast it to other peers in the network 

Incremental learning flow defines the order of the model training process. When 
defining a learning flow, the Lokka service finds the existing nodes in the network 
via distributed cache service in the Rahasak-ML. Rahasak-ML uses Etcd distributed 
key/value pair storage as the distributed cache and service registry. Etcd stores the 
health information of the blockchain nodes in the network. When a blockchain node 
is added to the network, it registers a node name (with meta-information) in the 
Etcd with the time to live (TTL) key. The node will periodically update this TTL 
key (before TTL reach) to prove it is alive. If a node is dead/exits, the TTL key will 
automatically be removed from Etcd. By using the TTL keys in Etcd, other nodes can 
know the available nodes in the network. The order of the incremental learning flow 
is decided by the TTL key created timestamp in the Etcd. This timestamp defines 
the blockchain nodes’ added time to the network. Assume the Lokka service has the 
incremental learning flow as A→B→C based on the TTL keys in the Etcd registry. 
This flow represents that peer A will produce a model, and then this model will be 
incrementally trained by peer B and then peer C. Once a miner node publishes the 
genesis block with model parameters and incremental flow to the blockchain ledger, 
other peers take the block and process it according to the defined flow, as shown in 
Fig. 9. 

Fig. 9 Rahasak-ML training pipeline. Once a miner node publishes the genesis block with machine 
learning model parameters and incremental flow to the blockchain ledger, other peers take the block 
and process it according to the defined flow
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According to the incremental learning flow, first, peer A generates the anomaly 
detection model with the data on the off-chain storage based on the model parameters 
in the genesis block. Then it saves the model built on its off-chain storage. The actual 
model is not published onto the blockchain ledger or any central storage. The hash and 
URI of the built model saved in the off-chain storage are published to the blockchain 
ledger as a transaction. Then peer B starts to incrementally train the model built by 
Peer A. To achieve this, peer B fetches the model built by peer A from peer A’s 
off-chain storage using the given URI. Then it trains that model with the data on 
peer B’s off-chain storage. This training model will be saved on peer B’s off-chain 
storage, and peer B will publish the model hash and off-chain storage URI of the 
model to the blockchain ledger as a transaction. Next, peer C will incrementally train 
the model trained by peer B and publish the details to the blockchain ledger as a 
transaction, as shown in Algorithm 2. 

Algorithm 2 Incremental training flow 

1 Wait till publishing genesis block bi 

2 for each peer p= 1, ..., n do 
3 INCREMENTAL MODEL TRAINING: 
4 if p == 1 then 
5 Fetch genesis block bi from the ledger and get model training parameters 
6 Build initial model with the data in the off-chain storage 
7 else 
8 (assume p=x) 
9 Fetch ML model from the peer p=x−1 off-chain storage 
10 Incrementally train that model with the data on the peer 

p=xoff-chain storage 
11 end 
12 Save built ML model in off-chain storage 
13 PUBLISH MODEL UPDATES: 
14 Create transaction ti with ML model hash and off-chain storage URI of the model 
15 Publish ti to the ledger 
16 end 

The flow of the incremental learning process is described in Fig. 10. 

4.3 Finalizing Model 

Assume all three companies (or a majority of the companies) incrementally train 
the prediction model and publish the model hash and URI to the blockchain ledger 
as a transaction. Then Lokka service takes these transactions and creates a block 
with finalized model details with the final model stored in the peer C’s off-chain 
storage. Currently, the model trained by the last peer (peer C in this scenario) is 
identified as the finalized model. In future work, there are plans to determine the
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Fig. 10 Rahasak-ML incremental training flow. Each peer trains the model with the data on the 
off-chain storage. The state update in each training step will be published to the blockchain ledger

finalized model by evaluating the accuracy of each model trained by its peers. Lokka 
service includes the URI of peer C’s off-chain storage (which stores the final model) 
and model training transaction details into the block. Then Lokka service saves the 
generated block in the ledger and distributes it to other peers. Once the peers receive 
the new block, they validate the learning process with the transactions in the block. 
If the process is valid, peers fetch the final model stored in peer C’s off-chain storage
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Fig. 11 Rahasak-ML finalizes the machine learning model. The final model will be decided by the 
Lokka service when generating the final block 

via the given URI in the block. The incrementally trained model sharing process is 
described in Fig. 11. Once the finalized model is fetched, it can be used in smart 
contracts for prediction.

For the Lokka service to decide the final model, the majority of the nodes in the 
network need to complete the incremental learning process. If there are five nodes 
in the federated learning flow, three of these nodes need to finish the incremental 
learning flow to decide on the finalized model. Once the Lokka service has generated 
the block with the finalized model details, other Lokka services in the network need 
to approve that block. When approving, they first validate the transactions in the 
block. If all transactions in the block are valid, it gives a vote for the block (mark 
block as valid or invalid), as shown in Algorithm 3. To handle the voting process, 
the Lokka service digitally signs the block hash and adds the signature to the block 
header. When the majority of Lokka services submit the vote for a block, that block 
is considered as a valid/approved block.
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Algorithm 3 Choose final model 

1 Wait till the majority of the peers complete the incremental training process in the 
training pipeline 
2 DEFINE FINAL MODEL: 
3 Get transaction list t(1, ..., n) from ledger 
4 Find the transaction tn which submitted by the last peer pn (model trained by the last 
peer identified as the finalized model) 
5 Create block bi+1with final model URI, model hash and transactions 
6 Save blockbi+1in the ledger and broadcast it to other peers 
7 UPDATE FINAL MODEL: 
8 for each peer p= 1, ..., n do 
9 Fetch blockbi+1from ledger 
10 Verify transactions in the block 
11 If the block is valid, fetch final ML model from peer pn 
12 end 

4.4 The Use Case of Blockchain-Empowered Federated 
Learning in the Medical Field 

Blockchain-empowered federated learning provides a secure, transparent, and 
privacy-preserving computing solution for building accurate and robust predictive 
models using biomedical data from multiple parties (e.g., institutions, hospitals, and 
drug companies). It does not need a centralized server to collect data from various 
parties,whichisoftendifficult toshareduetoHIPAA.Asaproofofconcept, theauthors 
built blockchain-empowered federated learning for diagnosing acute inflammation of 
the bladder. We used inflammation of the bladder health dataset [58] and chose logistic 
regression as the prediction model. In this use case, a blockchain network is deployed 
at five peers (five hospitals). Each peer has its own dataset and trains and validates a 
local logistic regression model. Finally, these local models are averaged. The loss and 
accuracy of the models were computed, and block generation time was measured in the 
blockchain-enabled federated learning system. The preliminary study can be extended 
to more scenarios in medicine and drug discovery use cases. 

4.4.1 Federated Model Accuracy and Training Loss 

In the federated learning scenario, the model was trained with 1000 iterations. A 
copy of the shared model is sent to all peers participating in the iteration. Each peer 
trains its own model with its own dataset locally. Each local model is improved in 
its own direction. Then total loss and accuracy were computed as shown in Fig. 12. 
Figure 13 shows how the total training loss varies at different peers in each iteration.
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Fig. 12 Federated model accuracy in different peers 

Fig. 13 Federated model training loss in different peers 

4.4.2 Block Generation Time 

Block generation time was measured in the Bassa-ML federated learning system with 
a different number of blockchain peers (up to 7). Figure 14 shows the average block 
generation time when having a different number of blockchain peers in the network.
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Fig. 14 Average block generation time 

Each experiment was repeated 100 times in this evaluation—each with different 
peer sets—and average values were plotted. When adding peers to a cluster, each 
peer needs to validate transactions in the block and recalculate the block header. 
Accordingly, block generation time increases as peers are added. 

5 Future Directions 

The proposed platform took full advantage of blockchain and AI technologies to 
provide a more efficient and secure solution with a promise to accelerate the research 
in medicine. The following is a summary of future work and several open directions. 

The proposed system overcomes several key concerns faced in centralized 
systems. While individual nodes (peers) develop local models based on their local 
data, the resulting models and parameters are shared through the blockchain plat-
form. The model parameter sharing, local model generation, model averaging, and 
model sharing functions are implemented with smart contracts implemented on the 
platform. Most recently, the Rahasak-ML federated learning system was integrated 
into Rahasak blockchain version 3.0. The following are features of the Rahasak-ML 
platform that are planned to release in the future: 

• Decide the finalized model by evaluating the accuracy of each model trained by 
the peers. 

• Support more supervised/unsupervised machine learning algorithms with 
Rahasak-ML. 

• Automate the deployment of the Spark cluster in Rahasak-ML with Kubernetes. 
• Integrate TensorFlow-Federated libraries into Rahasak-ML.
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5.1 Data Heterogeneity 

Medical data are particularly diverse—in terms of the variety of modalities, dimen-
sionality, and characteristics—even for a specific protocol, there are acquisition 
differences, a brand of the drugs, or local demographics [59]. Although federated 
learning can address the data bias issue by collecting more data sources, inhomo-
geneous data distribution is still challenging, as many assume independently and 
identically distributed data across their peers. Another challenge is the different data 
standards and data heterogeneity among peers. For example, hospitals may adopt 
EHR systems from different vendors, and different countries use different diagnostic 
and procedure coding systems. For example, health systems in the United Kingdom 
use the International Classification of Diseases ICD-10 code, but the United States 
adopted ICD-10-CM. This heterogeneity may lead to a situation where the optimal 
global solution may not work well for an individual local participant. 

5.2 Efficiency and Effectiveness 

From the technical view, efficiency and effectiveness are the major concerns of feder-
ated learning. Federated learning needs peers to share and update the models, and 
thus, the communication cost between different peers is an issue. Especially when 
integrated with blockchain, how to minimize the communication time and improve 
the efficiency of the training process is important. Studies have focused on improving 
the framework to jointly improve the federated learning convergence time and the 
training loss [60], but the tradeoff between accuracy and communication expenditure 
should also be considered. 

5.3 Model Interpretation 

Integrating machine learning models is important, particularly for healthcare and 
medicine. The core question of interpretability is whether humans understand why 
the model makes such predictions on unseen instances. Many machine learning 
models, such as deep learning, are a “black-box” to humans, and thus, many studies 
have explored tools to interpret the models [61, 62, 63, 64]. In a federated learning 
context, as the model was kept updated through multiple parties, the interpretation 
would be a challenge. 

To summarize, federated learning for life sciences will benefit the process of data 
sharing among multiple organizations without a central authority. The data sharing 
process will monitor and track the data operations efficiently to ensure data integrity 
and provenance. Still, the data ownership problem is the key to adopting Rahasak-ML 
in FDA- or EMA-regulated research.
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6 Conclusions 

Federated learning emerges as a new technique that uses collaboration and distri-
bution to train machine learning models without sharing the local raw data. It 
promises to benefit the medical field and drug industry that require strict data 
protection. However, most of the existing federated learning systems deal with 
centralized coordinators that are vulnerable to attacks and privacy breaches. We 
proposed a blockchain-empowered coordinator-less decentralized federated learning 
platform, named Rahasak-ML, to solve issues in centralized coordinator-based feder-
ated learning systems by providing better transparency and trust. We introduced the 
architecture and learning process of Rahasak-ML. We introduced a use case of using 
Rahasak-ML to train a machine learning model for diagnosis, which could be applied 
to other biomedical data to facilitate decision-making. Still, data standardization, 
communication efficiency, and model interpretation need to be resolved. 
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