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Abstract The role of GNPs in magnesium matrix composites and their influence 
on the development of microstructure and mechanical properties are reviewed thor-
oughly. Magnesium (Mg) is a well-known light metal that is used in a variety of 
engineering applications, particularly as biodegradable implant materials and auto-
motive engine parts. However, the potential of Mg in a wide range of applications is 
limited by its low strength and high activity in most environments. More research is 
needed to improve its strength and ductility, either through the development of alloys 
or composite materials. Because of their low density and superior specific properties, 
Mg metal matrix composites (Mg-MMCs) are appealing materials. Two-dimensional 
GNPs with distinct electrical, mechanical, and thermal conductivity properties are 
being considered as intriguing reinforcement. The use of GNPs as reinforcement 
in Mg-MMCs effectively serves as a strengthening potential for the development 
of new lightweight, high-strength, and high-performance Mg matrix nanocompos-
ites. This paper discusses the effect of GNPs on the mechanical characteristics and 
microstructure of magnesium as a guide to the development of more promising Mg 
material. 
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1 Introduction 

Magnesium, with a solid-state density of 1.74 g/cm3, has piqued the interest of the 
aerospace and automotive industries as the lightest conventional structural metal state 
[1–4]. It facilitates weight reduction in the transportation industry, which improves 
fuel efficiency [5, 6]. When compared to other metals, magnesium is weak, ductile, 
and corrosion resistant. Many alloys and composite materials have been developed 
to help alleviate the problem [7–11]. 

Composite materials have the ability to integrate reinforcing phase qualities with 
matrix phase properties, resulting in composite materials that surpass their monolithic 
counterparts in terms of characteristics [12–14]. Their properties can be tailored to the 
end user by carefully choosing the reinforcement phase, matrix phase, and produc-
tion technique. Magnesium-matrix composites (MMCs) can be made by dispersing 
reinforcing particles in the metal magnesium using either solid- or liquid-phase 
processes. 

Carbon nanotubes (CNTs) have received a lot of attention in recent years as 
a reinforcement to boost the strength of magnesium and its alloys. However, the 
limitation of CNTs are its negative impact on ductility, and the application using 
CNTs as an industrial reinforcement for composites leads to poor dispersion in the 
matrix caused by agglomeration due to van der Waals forces between carbon atoms 
[7, 15–17]. Graphene has also been employed in various applications, such as metal-
graphene composites, electronics material and polymer reinforcement. In the realm 
of thermal interface materials, graphene (a thermally conductive nanomaterial) was 
exploited as an outstanding filler (TIMs). The strong graphene bonding (a single 
atomic layer of sp2 hybridised carbon) to the metal matrix particles increased the 
heat conductivity of the resultant composite by up to 2300%. Nonetheless, there have 
been few research on the application of graphene for metal reinforcement [18–23]. 
As a result of its unique features, graphene is gaining extensive interest for usage as 
a reinforcing material. 

The effect of graphene on the microstructure and mechanical properties of magne-
sium is reviewed in this article. The potential of graphene as a magnesium reinforce-
ment material can be significant in the exploration of magnesium’s wide range of 
applications. 

2 Microstructure Development of Graphene-Mg 
Composites 

GNPs have received a great deal of attention in recent years as a two-dimensional 
material. GNPs and their derivatives have been demonstrated in several studies to have 
the potential to be utilised as reinforcement to improve the performance of metals and 
composites. Various study reports have identified better mechanical, microstructural 
and interface properties of GNPs/Mg composites [19, 24–27], GNPs/Al [28–31]
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and GNPs/Ti [32–36]. However, an excessive number of carbon layers may degrade 
graphene’s good characteristics [37]. 

Reference [38] investigated the microstructure of AZ80 magnesium alloy with 
incorporation of GNPs produced by rheo casting and hot extrusion process. The 
microstructure characterization was performed by field emission scanning electron 
microscopy (FESEM). The FESEM micrograph of GNPs is shown in Fig. 1. The  
GNPs is characterized by 4–12 μm in internal length, and thickness of 2–18 nm. 
The microstructure having significant carbon accumulation (Fig. 2), and the element 
map indicated the carbon element that can be found in the matrix of both composites. 
They concluded that the accumulation of carbon increases with the increase in GNPs. 
The Van der Waals interaction between carbon layers and the huge GNP surface area 
was implicated for the accumulation of carbon [37]. 

According to Parizi et al. [38], GNPs were also found to be embedded within the 
Mg matrix and segregated at the eutectic particle distribution (Fig. 3). GNPs may 
be present in α-Mg grains as a result of α-Mg grains nucleating on GNP surfaces 
and engulfing GNPs within the solidification front. As depicted in Fig. 4, the grain 
structure of as-cast AZ80 alloy composed a typical semi-coarse dendrites structure. 
Addition of GNPs revealed a transition of much coarser and globular dendritic struc-
ture. The change in grain morphology is attributed to the increase molten slurry 
friction caused by the presence of GNPs during the stirring process. 

Earlier, by using a semi powder metallurgy method followed by hot extrusion, 
Rashad [39] produced a magnesium-10 wt% titanium alloy with the addition of 
0.18 wt% GNPs. The surface of pure magnesium is smooth and free of macrostruc-
tural defects, indicating good bonding between magnesium particles and reinforce-
ment. The grain boundaries are visible from the micrograph and also presence of 
small pores. However, the presence of Ti-GNPs nanoparticles in the Mg matrix is

Fig. 1 FESEM micrograph 
of as received GNPs [38]
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Fig. 2 FESEM images and element maps of AZ80 with 0.1 GNPs composite [38] 

Fig. 3 FESEM images indicated the distribution of GNPs a within the α-Mg matrix grain, b in 
close vicinity to the eutectic phase [38] 

Fig. 4 Optical micrograph of as cast a AZ80 alloy, b AZ80 with addition of 0.1GNPs and c AZ80 
with addition of 0.6GNPs composites [38]
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Fig. 5 Micrographs of a pure Mg, Mg matrix composites with b 0.10 wt% GNPs and c 0.25 wt % 
GNPs [40] 

rather difficult to detect, due to the very low content of Ti-GNPs nanoparticles in the 
composite.

Rashad et al. [18] produced GNPs reinforced AZ91D composites by thixomolding 
process. They investigated the homogeneous distribution of GNPs reinforcement 
act as obstacles in the magnesium matrix with high dislocation density, and thus, 
increases the strength of composites. 

Xiang et al. [40] investigated the addition of 0.25 wt% GNP to Mg using disinte-
grated melt deposition technique, and revealed the correlation of microstructure with 
inhomogeneous deformation pattern. The micrographs of the Mg and composites are 
shown in Fig.  5a–c. Uniform grain refinement of Mg matrix occurred followed by 
induced twin lamellae in the composites. 

A study was conducted by [41] to study the microstructure, mechanical, tribolog-
ical properties of GNPs assimilated AZ31 magnesium through friction stir processing 
(FSP). The composites exhibit a grain refined microstructure with presence of 
GNPs. The base modal has a typical bimodal microstructure with fine grains about 
∼10.2 μm. 

Chen et al. [42] studied the addition of GNPs to Mg composites reduces defects of 
thixomolded products. The composites have grain refinement, reduction in porosity, 
and improvement in fluidity. However, it is also observed that, with addition of GNPs 
more than 0.6 wt%, can resulted to poor grain refinement (Fig. 6). 

Kavimani et al. [5] revealed a uniform dispersion of carbonaceous particles in the 
Mg matrix located at the vicinity of micro-crack, which formed as a consequence of 
weaker bonding between the matrix and its reinforcement particles. The increase in 
r-GO addition emphasizes the enormous distribution of porosity, which jeopardized 
the mechanical strength of magnesium matrix. 

Turan et al. [43] investigated the effects of GNPs contents (0.1, 0.25 and 0.5 wt%) 
on pure magnesium. Figure 7 shows a segregation of the GNPs along the grain bound-
aries. This occurrence was because of the properties of graphene with high surface 
area and Van der Waals bonding between the carbon atoms. Sun et al. [20] confirmed 
that GNPs can act as effective nucleation substrates for Mg heterogeneous nucle-
ation. The heterogeneous nucleation requires less energy and, the GNPs preferably 
nucleate at the Mg grains by heterogeneous nucleation and causing grain refinement.
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Fig. 6 SEM image of AZ91D with 0.6 wt% GNPs [42] 

Fig. 7 SEM micrographs of samples: a Pure Mg, b Mg with 0.1 wt% GNP, c Mg-0.25 wt% GNP, 
and d Mg-0.5 wt% GNP [43]
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3 Effect of Graphene on the Mechanical Properties of Mg 

Parizi et al. [44] produced AZ80 magnesium alloy by two stages process including 
semi-solid powder metallurgy and rheocasting method. Existence of GNPs was 
found segregated at the eutectic phase by solidification front, which is also at the 
vicinity of micro crack. They obtained an improvement in microhardness, tensile 
yield strength (TYS) and compressive yield strength (CYS) with increasing GNP 
content as observed in Fig. 8. The dispersion of GNPs decreases the slip distance of 
dislocations and suppress the dislocation activities. However, as cracks are located 
at the GNPs accumulation, it is also lead to decrease mechanical properties. The 
arrangement of GNPs also responsible for the performance of mechanical strength. 

Das and Harimkar [45] conducted an experiment to study the effect of GNPs 
reinforcement on the mechanical behaviour of magnesium matrix composites by 
using spark plasma sintering method. It was observed that the hardness was relatively 
increasing with increasing GNP content until 2-vol.% GNPs as tabulated in Table 1 
together with its compressive strength and as shown in Fig. 9. 

Rashad et al. [15] studied the synergetic effect on mechanical properties of pure 
magnesium of GNPs and multi-wall carbon nanotubes (MW-CNTs), with correlation 
to texture. The results, listed in Table 2, showed that the addition of GNPs improved 
elongation, ultimate tensile stress, and Vickers hardness when compared to pure

Fig. 8 Stress–strain graph for AZ80 alloy and its composites [38] 

Table 1 Hardness and 
compressive strength of Mg 
and Mg-GNP composites 

Materials GNP content 
(wt%) 

Hardness (HV) Compressive 
strength (MPa) 

Magnesium 0 46 220 

Mg-GNP 1 54 159 

Mg-GNP 2 63 201 

Mg-GNP 5 50 123
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Fig. 9 Tensile stress–strain curves for magnesium and its composites [46] 

Table 2 Mechanical properties of Mg and its composites with addition of GNP [15] 

Material (wt%) Vickers hardness 
(HV) 

0.2% YS (MPa) UTS (MPa) Failure strain (%) 

Mg 41 ± 3.5 5.98 186 ± 6 9.7 ± 3 
Mg-1Al-0.09GNP 48 ± 2.9 13.40 206 ± 4 10.5 ± 3.4 
Mg-1Al-0.18GNP 51 ± 3 12.18 223 ± 5 15.2 ± 2 
Mg-1Al-0.30GNP 55 ± 4 13.84 246 ± 3.5 16.9 ± 3 

magnesium. The mismatch in the coefficient of thermal expansion of magnesium-
GNPs leads to the strengthening of composites. The change in texture was also 
revealed with the presence of GNPs.

Grain refinement, load transfer, thermal mismatch, and Orowan loops are among 
the strengthening mechanism in composite material. According to Xiao et al. [47], 
shear stress generated at the AZ31B-GNPs interface can transmit load from the 
matrix to the reinforcement in GNPs-reinforced composites. It limited dislocation 
movement, leading in an increase in yield stress. 

Munir et al. [48] investigated the improvements in mechanical properties with 
addition of GNPs that caused by the strengthening efficiencies. A lower GNP content 
resulted in fewer defects in their graphitic structure and uniform dispersion within the 
Mg matrix, contributing to the grain refinement of the Mg composite. The strength-
ening factors including thermal mismatch and grain refinement in the Mg matrix with 
the reinforced GNPs are responsible to the improvement in mechanical strength.
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4 Conclusions 

This review expands on the potential of GNPs as a reinforcement in magne-
sium matrix composites. Their properties can be tailored to the end-user by care-
fully selecting the reinforcement phase, matrix phase, and processing technique. 
Overall, GNPs presence in magnesium, led to grain refinement and thus, increases 
strengthening and improve mechanical properties of magnesium-based composite. 
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