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Textile Industry: Pollution Health Risks 
and Toxicity 

Tasneem Sarwar and Sardar Khan 

1 Introduction 

Being the oldest industry, the roots of the textile industry trace back to scraps found 
in a cave of Egypt at about 5000 B.C. [110]. The textile industry is comprised of 
making yarns and threads from either natural or synthetic fibres through the process 
of weaving and knitting, resulting in fabrics. The final step is the dyeing and finishing 
of yarn or threads and sometimes the fabrics are dyed [40]. The textile sector includes 
different characteristics which determine the textile sectors’ sub-division into subsec-
tors due to traits, length of the manufacturing process, and variety of technical 
process, such sector can also be divided into several ways, which depends on the 
production process and final products achievement [122]. Hence, the textile industry 
is subdivided into many fragments depending on various traits of the subsectors. 

The textile industry is a key driver of the economy for every country, which not 
only fulfils the needs of individuals but also raises the quality and standard of living 
along with unemployment reduction [46]. Being the second-largest cloth exporter 
after China, Bangladesh not only makes 80% of total annual export, i.e., $24 billion, 
but also contributes to 45% of industrial employment and 5% to the total national 
income. Also, Indian textile sector studies revealed the contributing role of the textile 
sector by providing 14% of total industrial production, 3% of GDP, and a source 
of employment while providing jobs to more than 35 million individuals [37]. In 
Pakistan, textile accounts for 60% income of expert income, a source of employment 
for 38% of the total labour force, and fourth-largest exporter of cotton [154]. So, no
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Table 1 Top 10 
textile-producing countries 

No. Country 2020 outputs in global shares (%) 

1 China 52.2 

2 India 6.9 

3 United States 5.3 

4 Pakistan 3.6 

5 Brazil 2.4 

6 Indonesia 2.4 

7 Turkey 1.9 

8 South Korea 1.8 

9 Thailand 1.1 

10 Mexico 0.9 

Source [168] 

industry can compete with textile to bring foreign reserves and generate employment 
for individuals. 

China leads the world in exporting textiles to other countries globally. Therefore, 
China was considered in the top list of textile exporters in 2016 with a net value 
of 106 billion US dollars. The 28 countries of the European Union were ranked 
second after China with a net value of 65 billion USD, while other countries like 
Turkey, India, and USA were ensuing with net values of 11, 16, and 13 billion USD 
[150]. In 2016, China and 28 countries of the EU were considered among the top two 
exporters of cloth followed by other countries like Bangladesh, Vietnam, India, Hong 
Kong, and Turkey. In 2016, the values of textile exports and apparel exports were 
284 billion USD and 443 billion USD demonstrated by the World Trade Statistical 
Review (Table 1). 

2 Textile Industry Processes 

2.1 Yarn Manufacturing 

The manufacturing processes in the textile sector include yarn preparation, which is 
obtained from natural plants and animals. The mechanical processes are involved in 
yarn preparation like fibre blae opening, blending, mixing, clearing, drawing, roving, 
and finally spinning [66]. Further detailed processes of such production are described 
via material processing and technical control. The important and useful topics in the 
textile are staple-yarn technology, rolling-drafting, ring spinning, advancements in 
fibre production technologies, air open-end rotor spinning, and jet spinning [90]. The 
yarn-producing technology is considered as an important study in the preparation of 
yarn containing different processes [92].
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2.2 Fabric Manufacturing 

Three different techniques like weaving, non-weaving, and knitting are used to 
produce fabrics via fibre/yarn interlacing. The plain and simple weaves, such as 
tabby or plain, and satin and the fancy weaves, such as pile, jacquard, dobby, and 
gauze, are the most common forms of woven fabric manufactured [162]. The second 
most common form of cloth is knitted fabric, which is used after woven fabric. Knitted 
fabric has different properties like fitting the body shape and allowing for ease of 
movement, which remain an especially pleasant sports fabric structure, leisure wear, 
and undergarments. Woven textiles include warp and weft kinds, as well as raschel 
and tricot [162]. 

Interlaced fabric designs such as net, lace, and braid are also valuable. Non-
woven fabric usage is continuously increasing in the market. The interlaced-fabrics 
textiles are finding intriguing applications in industrial and residential settings. Non-
woven textiles include felting and bonding compounds. Laminating methods are also 
becoming more important, and new progress involves needle weaving and sewing-
knitting [162]. 

An ecological approach to make fabrics from raw bottles is also an environment-
friendly process [124]. Fabric producers are encouraged by the ease and low cost of 
producing recycled polyester yarn. Chopped and grounded plastic bottles into little 
bits that soften and melt as they pass through a series of tiny holes, resulting in thin 
strands. The thin strands produced are then currently used in the woven and knit 
industries to make fabric [124]. Strong recommendations should be made in order 
to use environment-friendly processes to mitigate the textile wastes. 

2.3 Product Planning 

Production planning is a difficult aspect of any industrial business. Textile planning 
is complex due to the variety of fibres, counts, yam, spinning systems, processes of 
preparation, and final products. All of these issues, when paired with the customer’s 
needs for accurately completed orders and quick delivery dates, hinder the produc-
tion planning process. Furthermore, since severe international rivalry has influenced 
the market, competent planning for production in the textile sector has become 
increasingly important [121]. 

The fibres are removed from other components such as capsule fragments, leaves, 
twigs, and soil and also from the seeds in the first phase of the methods outlined in a set 
of spinning drums and moving carding bars fitted with metal combing teeth comb the 
fibres in a carding machine. Consequently, the product formed is a soft homogenous 
fibre band. The silver has been holding between the parallel fibres as a result of 
friction among parallel fibres, which in turn provides rigidity in further manufacturing 
processes. Basically, the spinning process is responsible for transforming a loose fibre 
bundle into a real yarn. The twisting of the pack of similar fibres provides the yarn
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its toughness. The most widely used spun techniques in the industry are open-end 
spinning, ring spinning, and air jet spinning [105]. 

Knitting, the most popular way of interloping and producing textile goods, neces-
sitates a reasonably fine, smooth, and robust yarn with high elastic recovery charac-
teristics. The outdone system has been shown to be particularly appropriate for spin-
ning yarns used for knitted garments, socks, and outerwear, while the combed cotton 
system has proven to be highly appropriate for spinning yarns used for undergar-
ments, sports, and socks. The production of innovative fibres and texturing methods 
have been especially advantageous to the knitting business, resulting in a tight rela-
tionship between the two sectors [105]. Weft and warp techniques are used to synthe-
sise yarns in knitting processes. The distinction between weft and warp knitting stems 
from the movement of the needles during manufacturing and how the yarn is supplied. 
Weft knitting is a one-fibre method, which implies that the stitches are constructed 
using only one fibre. The needles are manipulated independently, whereas the warp 
knitting needles are moved concurrently. As a result, all needles require the fibre 
material simultaneously [149]. 

Braiding is a fabric-making technique that takes at least three yarns. The braid 
is produced by alternately interweaving the strands according to a certain algo-
rithm. Braids are “real or large bodies with a regular thread density and a closed 
product surface, whose braid bobbin yarns are intertwined slantwise towards the 
product edge”. A woven fabric, on the other hand, has threads that are interwoven 
perpendicular to the product edge and can have a biaxial or triaxial structure [42]. 

Lastly, finishing is a modification that is applied to a cloth to alter its look, 
handling—touch, or durability. The intention of finishing is that the fabric will be 
more appropriate for its intended use and involves any common treatment given to 
clean and iron fabrics. Finishing also creates exclusive variations of fabrics by using 
chemical treatments, dyeing, printing, and other techniques to make the fabric attrac-
tive and appealing. Finishing is divided into two processes: chemical and mechan-
ical. Chemical finishing refers to treatments that modify the performance of a textile 
fabric and in which the chemical is the primary component of the change. Mechanical 
finishing refers to mechanical devices that physically change the cloth. The finish 
processes assist to improve the appearance and look of the fabric; provide diversity 
in fabrics through dyeing and printing; improve the fabric texture; make the fabric 
more usable; increase the draping ability of lightweight fabrics; and make the fabric 
appropriate for an end purpose [105]. 

2.4 Processes Responsible for Environmental Pollution 
Especially for Dyes 

The pollution generated by textile effluents has become a major problem since it 
endangers both human health and the environment [132]. The dyeing process is 
connected with an environmental issue since washing coloured cloth and discharging
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dye wastewater may release 10–50% of different chemicals related to dyestuff into 
the environment. The inefficient dyeing and finishing process might result in the 
discharge of 200,000 tonnes of wasted dyestuff into the environment globally [28]. 

Textiles are offered varied functions through the finishing procedures. Formalde-
hyde is widely used as a glueing agent, softener, and cross-linking resin. Because of 
the release of formaldehyde, such textile goods can cause eye irritation, skin itching, 
and allergies [82]. Perfluoroalkyl chains with eight or more fluorinated carbons are 
utilised to provide resistance to oil stain and also water repellence in textile products 
[138]. Perfluorooctanoic acid and perfluoro octane sulphonate form a long chain, 
which degrades and produces harmful impacts for all living species [76]. Many 
finishing compounds used to provide flame retardancy, like polybrominated diphenyl 
ethers, have been proven to be extremely hazardous to people [134]. 

Water is used at each stage like wet finishing, transferring chemicals to textiles, and 
washing materials before going on to the next phase. Aside from these textile oper-
ations, water is consumed during boiler, cooling water, steam drying, and cleaning 
[165]. A medium-sized textile industry manufacturing roughly 8000 kg of cloth per 
day spends around 1.6 million litres on water. One-fifth of this amount is spent on 
dying, while the other half is spent on printing. Depending on the colour used in the 
dyeing, 30–50 l of water are consumed per kilogramme of cloth. Approximately 60 l 
of water are used per kilogramme of yarn during the dyeing process. The wastewater 
produced during the dyeing process accounts for approximately one-fifth of the total 
effluent. Water is also necessary to attain the requisite fastness values and to clean 
the equipment. The quantity of water used to make fabric for a couch cover is around 
500 gallons [73]. Approximately two hundred thousand kilos of water are polluted 
during traditional dyeing and finishing procedures of 1000 kg of cloth, and a large 
amount of steam and hot water is required for energy during these phases [153]. A 
cotton shirt requires around 2500–3000 l of water to manufacture [56]. 

3 Environmental Pollution and Textile Industries 

Many environmental issues are raised by textile waste [17]. Numerous studies were 
carried out to identify the environmental consequences of the business and mitigate 
its harmful effects. 

3.1 Water Pollution 

The textile business is global in scope, generating over $1 trillion in revenue, 
accounting for 7% of entire global exports, and employing approximately 35 million 
people worldwide [36]. Despite unquestionable significance, the industrial sector 
is one of the most polluting in the world, using large amounts of chemicals and 
fuels [14]. The massive consumption of drinking water is in different activities of
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its production chain, including washing, bleaching, and dyeing [65]. The ineffec-
tive dyeing and finishing processes might result in the discharge of 200,000 tonnes 
of wasted dyestuff into the environment globally [28]. 1.6 million litres of water 
are consumed to produce 8000 kg of clothes in a medium-sized textile mill. About 
30–50 l of water are in each kilogramme of cloth production [73]. 

The textile sector is responsible for a wide range of environmental effects [108]. 
Particulate matter and dust, oxides of nitrogen and sulphur, and volatile organic 
compounds are among the pollutants released into the atmosphere. The major solid 
waste consists of fragments of textile fabrics and yarns, as well as wasted packaging. 
The textile sludge, on the other hand, exposes issues linked to excess quantities 
and undesirable composition, frequently exhibiting large loads of organic matter, 
micronutrients, heavy metal cations, and pathogenic microorganisms [14]. 

3.2 Soil Pollution 

The effluent from the textile industry pollutes the land. The topsoil is the most 
significant medium for growing plants, shrubs, and crops, among other things. The 
quality of crops is determined by the condition of the soil. As a result, as the quality 
of the soil deteriorates due to contaminated industrial effluent, so do the quantity 
and quality of crops. It has also been observed that the lower areas are becoming 
more contaminated than the upper regions. Such contamination is attributed due to 
the position of the lower ground [72]. The solid wastes dispose into the underground 
water through porous soils and also contaminate land [155, 81]. 

3.3 Textile Aerial Pollution 

Carbon dioxide, aerosol fumes and gases, toxic gases, smoke, and dust are all exam-
ples of air pollutants. The majority of textile mill processes emit pollutants into 
the atmosphere. Gaseous emissions have been recognised as the textile industry’s 
second most serious pollution concern [72]. The primary source of air pollution in 
the textile sector is during the finishing phases when various procedures are used 
to coat the textiles. Lubricating oils, plasticisers, paints, and water repellent chem-
icals are examples of coating materials. Organic substances such as oils, waxes, or 
solvents, acid vapour, odours, and boiler exhausts are examples of coating materials 
[96]. Cleaning and production modifications produce sludge in the tanks containing 
process chemicals, which may contain hazardous compounds and metals [104].
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Table 2 Dye pollution data 
reported from different 
countries 

Dye conc. (mg/l) Countries References 

100 China [158] 

3.9 Kenya [173] 

100–2000 China [181] 

50 India [145] 

100 Bangladesh [77] 

200 Turkey [33] 

3.4 Dye Pollution 

Dyes are solvable organic chemicals, particularly those categorised as reactive, direct, 
basic, and acidic [95]. Dyes have a very high dissolution property in water, making 
it difficult to remove them using traditional techniques [59]. The capacity of dyes 
to transmit colour to a particular substrate is one of its characteristics due to the 
occurrence of chronographic groups in molecular structure [137]. Nevertheless, the 
ability to fix colour to the material is associated with auxotrophic groups, which are 
polar in nature and may bind to polar groups of textile fibres [174]. 

Textile dyes’ colour may not only contribute to aesthetic harm to the aquatic 
environment [135], but also hinders light permeation through water [59], resulting in 
a drop-in photosynthesis rate [71] and (DO) dissolved oxygen levels, impacting the 
whole aquatic biota [59]. Textile dyes are also toxic, mutagenic, and carcinogenic 
agents [84]. The dyes act as important environmental pollutants as shown in Table 
2 and transverse whole food chains, giving biomagnification [131], which in turn 
makes the prey more contaminated as compared to organisms at a higher level [111]. 
So, the azo-dyes due to their non-binding capacity to clothes contaminate water, 
which requires attention because such contaminated water is then used for irrigation 
and other purposes in poor countries [127]. Lastly, the microbes in the soil and 
germination and growth of plants are greatly influenced by the utilisation of azo 
chemicals [71, 127]. 

4 Health Risks 

4.1 Air Pollution and Health Risks 

The majority of operations in the wet processing industry emit air pollution shown 
in Table 3. Gaseous air has been recognised as the second most significant pollution 
concern for the dyeing and printing sectors. Air pollution is caused by the release 
of several gases such as Nitrogen dioxide (NO2), Carbon dioxide (CO2), Sulphur 
dioxide (SO2), and others [163]. SO2 is the causing agent of irritation in the respi-
ratory system and bronchitis, while CO2 inhibits oxygen into body cells causing
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Table 3 The gases emission into the atmosphere and their health risks 

Pollutant Amount Health risks References 

CO2 500–5000 ppm Psychomotor abnormalities, complications in the 
cardiovascular and respiratory system 

[99] 

SO2 75 ppb Effects on airway epithelial cell function, 
amplification of allergic irritation, and a possible 
increase in neurogenic inflammation due to chemical 
nuisance properties 

[128] 

NO2 4700 ug/m3 Bronchoconstriction [167] 

− Respiratory infection [123] 

− Increase mortality [7] 

Arsenic 0.5 ug/kg Leucomelanosis, melanosis, and keratosis [126] 

High blood pressure, obstetric problems, diabetes 
mellitus, neurological disorders, and respiratory 
system diseases 

[4] 

Cadmium 3 ug/kg Damage to kidney, liver, skeletal muscles, and 
cardiovascular system 

[87] 

Steroidogenesis, menstrual cycle disorders, delay in 
puberty and menarche, miscarriages, premature 
births, and reduced birth weight 

[157] 

Chromium 100 ppb Carcinogenic [152] 

Nausea, headache, or even oral cavity cancer as well 
as genetic damage 

[45] 

unconsciousness [102]. The production of artificial fibres is the result of greenhouse 
gases emissions because of the energy requirement [12]. 

The amount of greenhouse gases was 2.69–8.6 kg CO2 eq/kg fibre [164]. Higher 
results were stated, i.e., 35.7-kg CO2 eq/kg fibre. It is estimated that the cytotoxic 
capability of acrylic fibre production is linked to the emission of As, Cd, zinc (Zn), 
and Cr into both air and water [12]. One kilogramme of acrylic fibre produces approx-
imately 0.013-kg SO2 equivalent. For every kilogramme of acrylic fibre produced, 
0.007 kg of NO2 is discharged into the closest disposal canal via effluent discharge. 
The carcinogenic risk of acrylic fibre is owing to the emission of As, Cd, Zn, and Cr 
into both air and water during the production process [179]. 

4.2 Land Pollution and Health Risks 

The effluent from the textile industry contaminates the land. The soil is the most 
significant medium for growing plants, shrubs, and crops, among other things. The 
quality of crops is determined by the condition of the soil. As a result, as the quality 
of the soil deteriorates by contaminated industrial effluent, so do the quantity and 
quality of crops. It has also been observed that the lower areas are becoming more
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contaminated than the upper regions [72]. In landfills, the solid waste decomposes to 
create methane (CH4), a powerful greenhouse gas. This ameliorates climate change 
by causing the ozone layer to deplete. The ecosystem suffers as a result of inap-
propriate disposal of biodegradable garbage, often known as unlawful dumping. 
Leaching is the process by which solid waste enters the pores in the soil and pollutes 
groundwater, thereby contaminating the land [148, 155]. 

Textile industry sewage mostly comprises alkali, residual colours, starches, 
soluble salts, cellulose primarily calcium and sodium, silicate, oil, and other pollu-
tants. Due to a lack of economically feasible treatment methods, the industrial 
effluent created by these rapidly growing textile and dying plants is typically 
dumped untreated onto the ground surface. Consequently, such processes result in 
contamination of soil level along with groundwater and the possibility of pollu-
tion of other biophysical resources along the discharged region. It has been demon-
strated that textile industry wastewater has a direct influence on the physicochemical 
characteristics of soil [98]. 

4.3 Water Pollution and Health Risks 

Textiles consume and pollute water more and ranked 2nd after agriculture portrayed 
in Table 4 [112]. Direct effluents from textiles into water bodies are the main source 
of water pollution [14]. Such discharge of effluents is 80% of total wastes produced 
by the textile industries [172]. In making a single cotton shirt, it is estimated that 
2500–3000 l of water is used [151]. A case study was conducted to better understand 
how a conventional finishing factory operates and what may be accomplished via 
modernisation [156]. Without paying attention to the toxics in effluents, the waste 
from the textile is disposed into the water. Such wastewater contains high (BOD) 
Biological Oxygen Demand, (COD) Chemical Oxygen Demand, high (SS) total 
suspended solids, grease and oil, sulphides, sulphates, phosphates, Cr, copper (Co), 
and/or the salts of other heavy metals [160]. 

Improper or apparently processed wastewaters contain varying levels of heavy 
metals such as As, lead (Pb), nickel (Ni), Cd, Co, Mercury (Hg), Zn, and Cr, which 
have the potential to harm crops grown under such irrigation condition [139, 143]. 
The contamination of heavy metals is a growing issue in our seas, lakes, and rivers. 
Heavy metal deposition in fish, oysters, sediments, and other aquatic ecosystem 
components has been observed globally [144]. These hazardous heavy metals that 
enter the aquatic environment are adsorbed on top of particulate matter, despite the 
fact that they can form free metal ions and soluble complexes that are readily available 
[144].
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Table 4 Water pollution due to textile and health risks 

Pollutant Short-term effects Long-term effects References 

Zinc – Support cancer development [23, 75] 

Involved in the pathogenesis of 
Alzheimer’s disease 

[171] 

Age-related degenerative diseases [103] 

Influence Type I and Type II 
diabetes 

[130] 

Cramps in the stomach, vomiting, 
and nausea may occur. Ingesting 
high levels of Zn may cause 
anaemia, pancreas damage, and 
drop in levels of high-density 
lipoprotein cholesterol in the body 

– [11] 

Inhalation exposure to Zn for up 
to 3 days caused severe damage to 
liver and lung tissues 

– [169] 

Mercury – Increased cardiovascular health 
effects 

[129] 

Atherosclerosis disease and acute 
coronary insufficiency 

[166] 

Mercuric chloride (HgCl2) and  
methylmercury (CH3Hg) are 
cancerous to humans; these can 
damage the human nervous 
system; high levels of exposure 
can permanently damage the 
kidney, brain, and foetuses; and 
effects on the brain may result in 
irritability, shyness, tremors, 
changes in eye sight or hearing 
loss, and memory problems 

[101] 

Short-term exposure to high levels 
of metallic mercury vapours may 
cause lung damage, nausea, 
diarrhoea, vomiting, increased 
blood pressure or heart rate, skin 
diseases, and eyes diseases 

[101] 

Sulphates Insufficient evidence about the 
toxicity of Sulphates to humans 

– [175] 

Increase in stool volume, 
moisture, and reduced intestinal 
transit time if exposure exceeds 
more than 500 mg/l 

[41]

(continued)
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Table 4 (continued)

Pollutant Short-term effects Long-term effects References

Not found yet [29] 

Sulphides Severe mitochondrial swelling in 
support cells and olfactory 
neurons, thus resulting in 
olfactory epithelial necrosis and 
sloughing 

– [16] 

Hyperpnea, Unconsciousness, 
apnea, and death 

– [114] 

Neurological disorders such as 
headaches, dizziness, loss of 
balance, lack of concentration, 
recent and long-term memory 
loss, mood swings, irritability, 
excitement, and sleep 
disturbances. Behaviour changes 
such as anger, depression, tension, 
confusion, anxiety, fatigue, and 
vigour. The respiratory symptoms 
may include apnea, cough, 
noncardiogenic pulmonary 
edema, and cyanosis. Eye 
irritations like conjunctivitis, 
lacrimation, and photophobia and 
skin symptoms include itching, 
dryness, and redness 

– [170] 

Damage to the nervous system, 
status epilepticus, 
bronchospasms, and delayed 
respiratory failure 

[141] 

Neuronal olfactory damage, 
sense of smell is disturbed, and 
rhinitis 

[39] 

Phosphates Hypocalcaemia and related signs 
including tetany, hypotension, and 
tachycardia, deposition of calcium 
phosphate crystals in various 
tissues, including often fatal 
cardiovascular calcification 

– [125] 

Cancer, affects the metabolism of 
Vitamin D, effect the nervous 
systems, adverse reproductive 
outcomes, as well as adversative 
mental development in infants 

[64]

(continued)
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Table 4 (continued)

Pollutant Short-term effects Long-term effects References

Copper Short-term effects from ingestion 
of high levels of Co can cause 
gastrointestinal distress with 
symptoms such as nausea, 
vomiting, and pain in abdomen. 
Also, liver toxicity was seen in 
doses high enough that resulted in 
death. High levels of exposure to 
Co can cause damage to red blood 
cells, possibly resulting in 
anaemia 

– [97] 

Carcinogenic, damage to liver 
and kidney 

[97] 

Nickle – Decreased body weight, heart 
and liver diseases, and irritation 
of the skin 

[107] 

– Lung, nose, larynx and prostate 
cancer, Sickness and dizziness, 
Asthma and chronic bronchitis, 
Allergic reactions, and 
pneumonitis 

[97] 

4.4 Dye Pollution 

Dyes are present in varying concentrations in effluents when released containing 
numerous processes. The dye content in the discharged wastewater ranges from 20 to 
200 ppm [54]. The aquatic life is largely influenced by the release of toxics into water 
producing mutagenic and carcinogenic effects [30]. The 4-aminobiphenyl induces 
chromosomal instability and damage to DNA along with other serious complica-
tions [25, 93]. Similarly, gastrointestinal issues are caused by sunset yellow dye, 
while quinoline yellow dye, which is used in the pharmaceutical sector, can induce 
itching, sneezing, and hyperactivity in youngsters when consumed [31]. Headache, 
vomiting, ulcer, nausea, and other cardiac complications are attributed to exposure 
to methylene blue dyes [83]. Hence, dyes can alter the rate of photosynthetic activity 
in phytoplankton, which in turn is responsible for global warming [78]. 

Dye concentrations in textile effluent have been recorded in a variety of ranges. 
The ranges include the dye level in textile effluent is 10–50 mg/l [89]. The reactive 
dyes in cotton mills are allegedly discharged in concentrations of 60 mg/l [140] 
and 100–200 mg/l [55]. An extremely high concentration of reactive dyes has been 
reported, i.e., 7000 mg/l [86]. About 20–50 mg/l of dye concentration has been 
reported in samples collected from 14 Ramadhan Textiles in Iraq [2]. Moreover, the 
dye Acid orange-10 concentration was 45 mg/l [146], while 10–250 mg/l of dye 
concentration was found in disposals from houses [53].
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4.5 Dye Classification and Health Effects 

Dyes, metals, and other toxins are mixed with the effluents emitted by textile 
producers. Natural and synthetic dyes are the two types of colourants. Synthetic 
dyes are cheaply manufactured, come in a variety of colours, and are distinguished 
by their fastness, making them more commonly utilised as compared to natural dyes 
[85]. Synthetic dyes are categorised into various groups according to their chemical 
structure, i.e., azo, sulphur anthraquinone, phthalocyanine, and triarylmethane, and 
according to their mode of application, i.e., reactive, direct, disperse, basic, and vat 
dying [120]. The production of dyes is approximately 70 million tonnes, and 10 
thousand dyes are used in textile processes throughout the world [22]. 

Different toxics are present in the textile effluents containing a high load of salts, 
alkalis, binders, dispersants, volatile organic compounds, surfactants, chloroben-
zenes, reducing agents, dioxin, phthalates, phenols, pentachlorophenol, detergents, 
and heavy metals [63, 68, 180]. The yearly disposal of about 0.4–0.5 million tonnes 
containing dyes and compounds flow into water bodies, creating pollution, health 
issues shown in Table 5, and other environmental difficulties [15]. 

Natural dyes like Indigoid dyes, Anthraquinone dyes, Naphthoquinone dyes, 
Benzoquinone dyes, Flavonoid dyes, Carotenoid dyes, and Tannin-based dyes are the 
classified on the basis of chemical structures of dyes [133]. Natural dyes are extracted 
from plants, animals, minerals, and microorganisms [93]. Some of the examples 
include blue colour dye obtained from indigo plants, red colour dye from madder 
and morinda, and yellow from various plants like turmeric barberry and marigold. 
Dyes obtained from animals include red colour dye from insects and Tyrian purple 
obtained from sea molluscs [133]. The textile standard has suggested that synthetic 
dyes be used within acceptable limits and that natural resources not be depleted for 
dye extraction. So, because the extraction of natural dyes utilising natural resources 
is not a sustainable choice when the entire globe is suffering the detrimental effects 
of climate change, synthetic dyes are favoured over natural colours [26, 108]. 

4.6 Colouring Agents 

Textile colourants give colour to a textile item as a result of physical entrapment or 
chemical binding inside or around the textile substance, generally with a high degree 
of permanence. The textile material can take various forms, including fibre, yarn, 
fabric, garment, and so on. Textile colourants are available in liquid and solid forms, 
such as powders, granules, solutions, and dispersions. In some cases, precursors 
are applied to textile materials in order to create the colourant in situ within the 
cloth [159]. To colour textile items, both dyes and pigments are used [182]. Dyes 
are present in solution either at any stage during its application, while pigments 
are insoluble. The process by which dyes stay within a cloth is determined by the 
type of colourant used. Intermolecular forces work between dye and fibre following
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Table 5 Dyes and their harmful effects 

Dye classification Health effects References 

Congo red Carcinogenic [177] 

Triphenylmethane dyes Carcinogenic to microbial and mammalian cells, 
mutagenic to rodents, and cause abnormalities in the 
reproductive system of fish and rabbits 

[24] 

Brilliant Cresyl Blue Harmful impacts on humans and microorganisms [3] 

Rhodamine 6G Causes human health issues such as irritation to the 
skin, eyes, and respiratory tracks. Ingestion via drinking 
water may cause subcutaneous tissue-borne sarcoma, a 
highly carcinogenic disease 

[74] 

Rhodamine B Irritation to skin, eyes, and respiratory tract. It is a 
chronic neurotoxin and is carcinogenic to humans and 
animals 

[51, 136] 

Phenol red Carcinogenic and toxic that stops the growth of renal 
epithelial cells irritation in skin, eyes, and respiratory 
tract. It has been testified that phenol red is mutagenic 
and is lethal to muscle fibres 

[1] 

Methylene Blue Though it is a little toxic due to its effects like cyanosis, 
vomiting, heartbeat increase, quadriplegia, shock, 
jaundice, and tissue necrosis in humans 

[88] 

Crystal violet dye Mutagenic and poisoning agent. It acts as a potent 
mutagenic and carcinogen and is responsible for tumour 
growth in some fish 

[113] 

Malachite green It is a great threat to human health and the potential 
teratogenic, carcinogenic, and mutagenic 

[43] 

Azure B Intercalate with the helical structure of DNA [57] 

Disperse Red 1 Increase the frequency if micro nuclei [48] 

Formation of DNA adducts [27] 

Mutagenic effects [67] 

Disperse Orange 1 DNA damage and cytotoxic effects [49] 

Sudan-I dye Enzymatically altered into carcinogenic aromatic 
amines through the action of the intestinal flora 

[117] 

Basic Red 9 Breaks down into carcinogenic aromatic amines under 
anaerobic conditions and their disposal in water bodies 
has the potential for allergic dermatitis, skin irritation, 
mutations, and also cancer itself 

[147] 

Local sarcomas and tumours in the liver and bladder [118] 

Crystal violet dye Mitotic poisoning, which is associated with abnormal 
accumulation of metaphases 

[100] 

Damage to chromosome [111] 

Carcinogenic cause [13]

(continued)
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Table 5 (continued)

Dye classification Health effects References

Chemical cystitis in humans, irritation of the skin and 
digestive tract, and respiratory and failure of the renal 
system 

[100] 

adsorption onto and/or dissolution inside the polymer. The formation of covalent 
bonds between the dye and the fibre and entrapment of colourant particles within the 
textile by deposition of an insoluble form of the dye may all contribute to retention 
[182].

4.6.1 Types of Colouring Agents 

Natural Colourants 

All textile colourants were derived directly from natural sources, such as insects, 
plants, and shellfish before the production of picric acid as a yellow dye for silk 
[34, 182]. In the 1920s, natural colourants were gradually supplanted by synthetic 
dyes and pigments, which provided a broader and brighter colour range as well 
as better economy and convenience. While, a recent surge in interest in natural 
textile colourants due to notions of renewable supply and minimal environmental 
effect due to non-suitability for industrial usage, have a restricted colour range, and 
exhibit only modest degrees of fastness at best. Furthermore, natural dyes some-
times need the application of a fixative, known as a mordant, to achieve adequate 
permanence; conventional metallic mordants are harmful to the environment. Textile 
colours derived from natural sources, such as Indigo, may now be produced more 
effectively by chemical synthesis [69]. 

Synthetic Colourants 

A large proportion of textile colourants are chemically synthesised on an industrial 
scale [61]. Every year, about a million tonnes are generated globally. Since the first 
commercially effective synthetic textile dye, Mauveine, was produced in the late 
1850s, tens of thousands of colourants have been sold [8, 182]. A more methodical 
approach to textile colourant research, however, spearheaded mostly by the German 
dye industry, resulted in a greater knowledge of both colour and chemistry structure 
connections. At the turn of the century, Germany produced 85% of the world’s 
synthetic dyes, with the remaining 10% produced in the United Kingdom, France, 
and Switzerland. After some decades, manufacturing is centred in Asia, notably 
China and India, due to lower cost bases. Textile colourants have a multibillion-
dollar global market [9]. The clothing sector consumes the most dyes and organic 
pigments. Some of the most popular textile dyes are quite commodities, produced
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in large quantities of over 1000 tonnes per year for delivery at a few dollars per 
kilogramme or even less. 

5 Other Aspects of Textile Industries 

5.1 Microplastics 

Microplastic is the form of a plastic polymer having a particle size of less than 5 mm 
[6]. Microplastic can be derived from either primary or secondary sources. Also, the 
European Chemicals Agency (ECHA) is more specific in its proposed definition: 

“‘Microplastic’ means particles containing solid polymer, to which additives or 
other substances may have been added, and where ≥1% w/w of particles have: 

(i) all dimensions 0.1 µm ≤ x ≤ 5 mm, or 
(ii) for fibres, a length of 0.3 µm ≤ x ≤ 15 mm and length to diameter ratio of >3” 

[32]. 

Since their origin, primary microplastics have a micrometre size, such as 
microplastic fibre generated from fabric washing [109] and cosmetic goods (facial 
cleanser) labelled as “microbeads” or “microexfoliates” [47]. Secondary microplas-
tics are formed as a result of physiochemical and biochemical mechanisms in the 
environment that degrade bigger plastic trash [19]. 

5.1.1 Production of Microplastics from Textile Industries 

Many research on the release of microplastics from textiles have concentrated on 
home washing as a source of fibres entering waterways. Shedding is affected by the 
qualities of the textile item, such as fibre material, yarn size, fabric structure, fabric 
weight, and fabric finishing [21]. Polyester fleece, for instance, has been shown in 
several tests to have greater fibre counts, i.e., >7000 fibres/m−2/l−1 as compared to 
other forms of polyester textiles [5]. Variability in washing equipment and settings, 
as well as detergents, can also affect the number of fibres released from a garment or 
item, with both dryers and washers causing textile fibre shedding. Several researchers 
have discovered that tumble drying increases fibre release by 3.5 times as compared 
to washing polyester fleece items [116]. Further possible sources of textile-derived 
microplastics in the environment include ropes and netting fragmentation and the 
breakdown of carelessly disposed non-woven hygiene items [21].
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5.1.2 Process of Microplastic Formation 

The rising global manufacturing of synthetic fibres poses a threat that microplas-
tics produced by synthetic textiles will continue to pollute our ecosystem in near 
future [60]. Fibres are frequently identified as the major ingredient of microplastics 
discovered in wastewater treatment facilities [80, 106], as well as in a wide range 
of environmental samples [35, 50]. According to a recent modelling research, fibres 
from textiles substantially contribute to microplastic emissions into freshwater [79]. 
As a result, these microplastics are released into the environment, which in turn are 
present in effluents or trapped by the sludge. 

Several inferences about the release processes, however, may still be drawn. 
Because the washing studies looked at different textiles using different experi-
mental setups and analytical methods, the amount of microplastics released per 
wash reported varied, ranging from 0.012 mg/g [116] to 3.3 mg/g [142] and from 
23 MPF/g [116] to 1273 MPF/g [44]. It is estimated that the release of microplas-
tics from textiles is heavily influenced by the types of textiles and their treatment 
procedures [20]. Hence, materials utilised in several research ranged from complete 
garments [18, 58] to textile pieces [44], to double folded and stitched edges [62], and 
to scissor-cut edges (Table 6). 

6 Conclusion 

This study focused on the wastes generated by textile industries and their negative 
influences on humans and the environment. Dyeing may be either natural or artificial, 
which has serious environmental health issues. About, 200,000 dyes are disposed into 
our environment every year. Also, colourants are either primary or secondary and have 
negative effects on the environment in the form of health complications to humans. 
Different types of microplastics can also have serious effects on the environment and 
humans.
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Table 6 Types of microplastics and their impacts on human health 

Types of microplastic Concentration Health effects References 

Polystyrene Short-term exposure 
(170 mg/m3) long-term 
exposure (85 mg/m3) 

Possibly penetrate into the 
outer cell membrane, 
intracellular oxygen species 
endocytosis internalisation, 
cytotoxicity, oxidative 
stress, genotoxicity, and 
even cause damage to DNA 

[119, 178] 

– Low toxicity on cell 
capability, oxidative stress 
and membrane reliability 
and fluidity, disrupt 
mitochondrial membrane 
potential and plasma 
membrane inhibition, 
Adenosine triphosphate 
binding cassette 

[176] 

Cytotoxic effects, oxidative 
stress, inflammatory 
reactions, and disruption of 
the epithelial layer 

[38] 

Polypropylene 10 mg/day [161] 

Asthma, pneumothorax, 
alveolitis, chronic 
bronchitis, and pneumonia 

[115] 

Cytotoxicity, 
hypersensitivity, disruptive 
immune responses, and 
acute responses such as 
haemolysis 

[70] 

Some degree of cytotoxicity 
at high dosages, low degree 
of induction of 
proinflammatory cytokines, 
and enhanced histamine 
release from various cells 

[70] 

Polyethylene – No obvious toxic effect, still 
some nanoparticles are 
internalised into 
endo-lysosomal 
compartments, which bears 
a high propensity to cross 
the intestinal barrier 

[94]

(continued)
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Table 6 (continued)

Types of microplastic Concentration Health effects References

Intestinal damage [91] 

Variations in plasma levels 
of various metabolic 
enzymes and immune 
markers, combined with 
Cadmium polyethylene can 
enhance the toxicity of 
Cadmium 

[10] 

Polycarbonate – Bisphenol-A, a by-product 
of polycarbonate, is a 
known endocrine disruptor 
that may cause colon cancer 

[52] 
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Applications of Chitosan-
and Chitin-Based Biomaterials 
in Cationic Dye Removal 

Asitha T. Cooray , Kavindya Weerasinghe , and Samantha Ranaweera 

1 Introduction 

Industrial development is one of the major drivers of prosperity and eradication 
of poverty through the creation of employment and a source of income [75]. It is 
also a major contributor to environmental pollution, and its unsustainable industrial 
growth has severe negative impacts on the environment and natural resources. Textile, 
apparel, and related industries, such as yarn, dye, and pigment industries, have grown 
into a multibillion-dollar industry, and it is considered as an important industrial 
segment in China, India, Bangladesh, Turkey, and Vietnam [26, 51, 78]. One of 
the major environmental impacts of the textile industries is the water pollution by 
dye-contaminated industrial wastewater. 

The pollution of natural waters by dye-contaminated industrial effluents is well 
documented and has been recognized as a severe environmental, ecological, and 
health hazard [31, 50, 63]. It has been estimated that up to 15% of the dye mass is 
lost during the dyeing process, and approximately 2 × 105 tons of dyes are annually 
discharged worldwide [58, 74]. It is not easy to investigate the long-term fate of dyes 
discharged into the environment due to many reasons. Most importantly, there are 
more than 3000 dyes alone used in the textile industry with a broad range of chemical 
structures and properties [58]. Most of the dyes are marketed with trade names and
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often, their chemical compositions are undisclosed. The type and quantities of dyes 
used by the textile industries may change in the short term (daily basis) or long 
term (monthly or annual) upon the request of the customers. In addition, dyes may 
be present at trace levels in the environment, and identification and quantification of 
dyes, and their degradation products is a challenging task. As a result, it is not easy to 
follow the dyes discarded to the environment to investigate their fate and degradation 
products even from a single textile manufacturer [31]. 

2 Cationic Dyes 

Dyes have been classified according to their chemical structure and methods of 
application. The dyes have been classified into three broad categories as azo, 
anthraquinone, and phthalocyanines dyes based on their structure. In addition, dyes 
also have been categorized as acid, metal-complex, direct, basic, reactive, vat, and 
sulfur dyes based on the methods of application [49]. 

Cationic dyes also known as basic dyes are characterized by the positive charge 
in the molecule and are often available as hydrochloride and ZnCl2 complexes [65]. 
The positive charge-bearing atom in the dye molecule is usually N, O, S, or P atoms 
and the charge-balancing counter ion is either a low molecular weight organic or 
inorganic acid. The positive charge can be localized on a particular atom or can be 
delocalized across the dye molecule. The cationic dyes with a delocalized charge are 
characterized by their high color strength and are classified with methine dyes [29]. 
The charge-bearing atom in a localized charge dye is isolated from the chromophore 
of the dye by a non-conjugate functional group and therefore, charge is not a compo-
nent of the chromophore [29]. Cationic dyes are widely used in the textile industry 
for the coloration of silk, nylon, wool, and nylon and acrylic-nylon blended fibers. 
In addition, they are also used in food, cosmetics, paper, leathers, ink, and plastic 
industries [29, 50]. 

2.1 Harmful Effects of Cationic Dyes 

Cationic dyes have a wide variety of chemical structures with various types of substi-
tuted aromatic groups as shown in Fig. 1. Because of their stable and complex struc-
tures, these dyes are difficult to break down and remove completely from chemical, 
physical, and biological treatment technologies [19, 65]. In addition, the wastewater 
treatment processes may also produce toxic and carcinogenic by-products at trace 
levels during the treatment process [19]. The use of dye-contaminated water even 
with low dye concentrations can lead to adverse health effects including eye and 
skin irritations, respiratory tract-related issues, and various types of cancer [13, 33]. 
Because of their resistance to photochemical and biological degradation, they can 
accumulate in the farmlands, natural environment, and soil and sediments [13, 35].
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Fig. 1 The structures of some cationic dyes used in industry 

Furthermore, dyes can alter the color of natural waters affecting light penetration 
through the water column. The reduced light penetration negatively affects photo-
synthesis and photosynthesis-driven oxygen cycle [33, 61]. The reduced dissolved 
oxygen concentrations are lethal to many aquatic life forms, and also affect the 
solubility of minerals, redox speciation of metals like Fe and Mn, and adsorption 
and release of metal ions, organic pollutants, and phosphate adsorbed onto iron- and 
manganese-(oxy)hydroxides and clay [16, 64, 69]. Apart from that, dyes affect chem-
ical oxygen demand (COD), and biological oxygen demand (BOD), total nitrogen 
(TN), total phosphorous (TP) concentrations, and total dissolved solid (TDS) content 
of natural waters [33, 5]. 

2.2 Current Removal Methods of Cationic Dyes 

Because of their extensive use, and well-known harmful effects of dye-contaminated 
water on humans and the natural environment, significant efforts have been made to 
develop lab- and industrial-scale technologies to remove cationic dyes from industrial 
effluents. Some of the most commonly used techniques are chemical oxidation, elec-
trochemical coagulation, membrane separation, chemical coagulation, adsorption,
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aerobic and anaerobic microbial degradation, ozonation, photocatalytic degradation, 
and enzyme-based and nanomaterial-based removal [9, 11, 13, 22, 25, 27, 30, 67, 
70, 81, 82, 85, 87]. Each of the dye removal methods has its own advantages and 
disadvantages; however, none of the methods is capable of eliminating or degrading 
the dyes completely from effluents. Some of the most desired characteristics of treat-
ment methods include low cost, ease of operation, higher efficiency, selectivity, and 
non-generation of toxic by-products and sludge [22, 33]. 

3 Chitin and Chitosan 

Chitin is the second most abundant natural polysaccharide and bio-waste material 
after cellulose in nature, and it is one of the major structural components of the 
exoskeleton of animals, particularly in crustacea, mollusks, insects, and also in cell 
walls of certain fungi [18, 46, 60]. Chitin is a polysaccharide with glucosamine units 
having hydroxyl and amide functional groups that is structurally similar to cellulose 
except that the hydroxyl group of cellulose at the C-2 position is replaced by an 
acetamide group. Similar to cellulose, chitin exists in three polymorphic forms as α, 
β, and γ [40]. On the other hand, chitosan is a linear polymer produced by the alka-
line deacetylation of chitin (although the degree of N-deacetylation is almost never 
complete), where the primary amine groups (–NH2) are produced by the hydrolysis 
of amide groups in chitin [41, 59, 68]. The structures of chitin and chitosan are shown 
in Fig. 2. 

Among a variety of methods used to produce chitin, chemical and biolog-
ical processes are primarily used for the processing of chitin. Chemical extrac-
tion involves the demineralization, deproteinization, and decolorization steps based 
on acidic and alkali treatments. Biological treatment is an alternative method 
involving enzymatic demineralization, deproteinization, and decolorization stages 
which eliminate several drawbacks of chemical methods [23, 59, 68]. 

Chitosan is prepared by chemical or biological deacetylation of chitin, where 
the acetamide groups are replaced by –NH2 groups and thereby changing the 
molecular weight of the polymer. The conventional thermo chemical production of 
chitosan involves alkaline deacetylation, and the degree of deacetylation depends

Fig. 2 Chemical structures of chitin and chitosan
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on NaOH/KOH concentration, temperature, and heating time in the deacetyla-
tion process. Recently, enzymatic, or microbiological fermentation processes have 
popularized as economic and environmentally friendly pathways utilizing enzy-
matic reactions (mainly chitin deacetylase) or fermentation with enzyme-producing 
microorganisms, respectively [59, 84, 68].

In general, both chitin and chitosan are copolymers of glucosamine and N-
acetylglucosamine units with variable molecular weights, whereas chitosan is mostly 
glucosamine with ≥60% amine groups. However, a sharp nomenclature border has 
not been defined between chitin and chitosan on the basis of the degree of N-
deacetylation. Chitin is insoluble in water, organic solvents, dilute alkalis, and acids. 
Chitosan dissolves in aqueous acids even though it is insoluble in water [23, 59, 68]. 

Moreover, both chitin and chitosan are highly amenable to chemical modifica-
tions through their reactive functional groups. Therefore, these polymers are usually 
chemically modified to obtain improved derivatives and overcome the limitations 
in their applications due to several reasons such as low solubility, acid instability, 
and limited selectivity. According to the literature, chitin is subjected to chemical 
reactions mainly etherification, grafting, and acylation reactions [23]. In chitosan, 
modifications have been done using metal templates, forming composites, functional 
group substitutions, and crosslinking to produce various chitosan derivatives. 

Early research studies have shown that chitin, chitosan, and their derivatives 
possess a unique set of valuable characteristics such as biodegradability, environ-
mentally friendliness, bio-renewability, biocompatibility, nontoxicity, and superior 
adsorption properties. Therefore, these versatile properties allow them to be easily 
processed into beads, membranes, hydrogel, films, nanofibers, and many other forms 
[2, 59, 68]. Thus, they can be suggested as functional materials widely used for a 
broad range of applications in agriculture, textile industry, bioplastics, nanocompos-
ites, fuel cells, pharmaceuticals, and industrial food processing. The lack of toxicity 
together with its rapid biodegradability has made these polymers suitable for several 
environmental applications primarily in wastewater treatment. 

3.1 Importance of Chitosan- and Chitin-Based Biomaterials 
for Dye Removal 

As previously mentioned, in addition to being natural and biodegradable, chitosan-
and chitin-based biomaterials offer several advantages as adsorbents for dye removal. 
Mainly, these polymers are low-cost materials obtained from natural resources. 
Moreover, they possess high adsorption capacities, higher selectivity, and high rate 
of adsorption toward dyes. In addition, their versatile nature reflects the ability 
to develop novel derivatives based on the type of dye to be adsorbed. Therefore, 
chitosan- and chitin-based biomaterials have been shown to be utilized widely in dye 
removal as proven by the growing number of research articles published in recent 
years.
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3.2 Different Types of Chitosan/Chitin-Based Biomaterials 
for Dye Removal 

The versatile chemical and biological properties of chitin and chitosan allow them to 
be easily processed into different forms like flakes, powder, gel, beads, membranes, 
films, micro- and nano-particles, etc. [2]. Generally, physical modification expands 
chitosan polymer chains, reduces the crystalline state of the polymer, and increases 
the access to more sorption sites allowing the diffusion of larger dye molecules [3]. 
On the other hand, chemical modifications result in new derivatives with improved 
properties controlling the hydrophobic, cationic, and anionic nature of the polymer, 
without changing the basic structure. An insight into the most common modifications 
and different forms that can be applied to chitin and chitosan polymers is given in 
this section. 

With regard to dye removal, the most common chemical modifications carried 
out with chitin and chitosan biopolymers can be categorized as etherification, acyla-
tion, sulfation, crosslinking, graft polymerization, etc. Hydroxyl functional groups 
in chitin and hydroxyl, and amino functional groups in chitosan can be modified 
through different reactions to obtain derivatives with specific adsorbent properties 
for the removal of dyes. 

In grafting reactions, different functional groups are grafted onto chitin/chitosan 
via the covalent bonding of a molecule onto the polymer backbone. The possibility 
of grafting synthetic polymers to chitin/chitosan (graft copolymerization) has also 
been explored in recent literature as a method of introducing side chains. Modifica-
tion of the polymer leads to the formation of new derivatives consisting of natural 
and synthetic polymers. According to the literature, different functional groups like 
amino, carboxyl, sulfur, and alkyl groups have been used for grafting reactions related 
to dye removal [76]. 

To overcome the dissolution tendency of chitin and chitosan, polymer chains can 
be crosslinked and thereby improve the chemical stability of polymer at different 
pH. The crosslinking introduces intermolecular bridges and links between macro-
molecules attributing enhanced resistance to structural changes under hydrated condi-
tions. The most common crosslinkers used for modifications in dye removal are 
glutaraldehyde, epichlorohydrin, ethylene glycol diglycidyl ether, etc. [76, 84]. 

The most common etherified derivatives used in dye adsorption are the deriva-
tives of carboxymethyl chitin and chitosan. The O- and N-carboxymethylation reac-
tion occurs with monochloroacetic acid in the presence of NaOH which introduces 
carboxyl groups into the polymer [86]. Introduction of carboxymethyl groups into the 
polymer results in the formation of anionic derivatives. While carboxymethylation in 
chitin mostly proceeds via a more reactive C-6 position, in chitosan, both hydroxyl 
and amino groups are preferred for the introduction of carboxymethyl groups [42]. 

Despite the fact that chitin and chitosan do not generally exist in gel form, but 
as fibrous forms in nature, synthesized gels of chitin and chitosan have shown 
great potential use in the field of dye removal. Chitosan based physical gels are 
easy to prepare by exploiting different types of physical interactions between
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polymer networks such as hydrogen bonds, electrostatic, and hydrophobic inter-
actions. Tripolyphosphates are considered as a common ionic crosslinker used in 
the gelation process. On the other hand, covalently crosslinked gels are synthesized 
with covalent bonds forming crosslinkers. In one type, the polymer is entangled with 
itself in covalent bonding forming a gel. In some cases, chitin or chitosan is cova-
lently crosslinked with a different polymeric chain and in another type, a nonreactive 
polymer is trapped in the crosslinked polymer network. Hydrogels are three dimen-
sional polymeric networks that have gained much importance in dye removal and are 
composed of the polymer backbone, water, and a crosslinking agent [57]. Aerogels 
which exhibit unique properties such as large surface area, high porosity, and low 
density are produced from wet gels using an appropriate drying technology [21, 83]. 

With the aim of developing dye adsorption properties of chitin and chitosan, 
composites have been synthesized that exhibit combinations of properties that could 
not be obtained by individual materials. Different substances including both natural 
and synthetic fillers have been used to form composites with chitin and chitosan such 
as montmorillonite, bentonite, activated clay, and polyurethane [55]. 

Surface impregnation is a way of improving the adsorption capacity of 
chitin/chitosan adsorbents using surfactants such as sodium dodecyl sulfate (SDS), 
cetyltrimethyl ammonium bromide (CTAB), and triton X-100 (TX-100). Surfac-
tants can increase the electrostatic interactions by forming a chemical bond with 
hydrophilic groups of surfactant and polymer. In addition, hydrophobic interactions 
can also occur between the polymer backbone and the hydrophobic part of the surfac-
tant [76]. Altogether, these interactions will facilitate dye adsorption by forming 
compatible bonding between the dye molecules and the adsorbent. 

Chitin and chitosan can be converted to various nanomaterials with special proper-
ties for use in dye removal. Commonly prepared chitin- and chitosan-based nanoma-
terials include nanofibers, nano-whiskers, and nanocomposites [23]. Nanofibers are 
crystalline in nature having high mechanical properties. Rod-like nanosized struc-
tures are termed as nano-whiskers, and they possess high surface area, high adsorp-
tion ability, biodegradability, and nontoxicity. Nanocomposites based on chitin and 
chitosan also have been widely employed in recent literature in the dye adsorption 
applications subjecting to different modifications using carboxylation, amination, 
incorporation of magnetic particles, hydroxyapatites, etc. [23, 56]. 

3.3 Recent Studies on Cationic Dye Removal Using Chitin-
and Chitosan-Based Biomaterials 

The modification of chitin and chitosan is important to improve the adsorption 
capacity and broaden the applications for the removal of dyes with greater efficiency. 
The physiochemical properties of the bio-sorbents are altered by the modifications 
and in turn, their adsorption capacity is achieved to meet the specific requirements 
depending on the nature of the dye. This section will highlight some of both modified
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and unmodified forms of chitin and chitosan that have been studied so far for cationic 
dye removal. 

Utilization of chitosan beads for the removal of cationic dye, Malachite Green by 
varying the temperature, was investigated [4]. The monolayer adsorption capacities 
were found to be 93.55 mg/g and 74.83 mg/g at 303 K and 313 K, respectively. More-
over, beyond pH 8, the dye adsorption remained constant. In another experiment, 
the removal of cationic dye, Crystal Violet, was studied using deacetylated chitin 
(chitosan) varying the degree of deacetylation. Different isotherm models were used 
to study the adsorption behavior [47]. The adsorption of Methyl Red was investigated 
using chitin and chitosan in both single-component systems and cationic dye-cation 
multicomponent systems with Cu(II). Considering multicomponent systems, the total 
adsorption efficiency of Cu(II)-methyl red on chitosan (46.4%) was higher than that 
of Cu(II)-methyl red on chitin (41.0%) [1]. In another study by the same authors, 
simultaneous adsorption of Cu(II) and Crystal Violet in a multicomponent system 
was carried out with chitin and chitosan. Binary system with chitosan demonstrated 
synergistic effects on adsorption behavior, while the system with chitin showed both 
antagonistic and synergistic interactions with respect to single component systems 
[24]. 

Crosslinked O-carboxymethyl chitosan was synthesized with different degrees 
of substitution, and the removal of Crystal Violet dye from aqueous solutions was 
examined. Crosslinking was done with glutaraldehyde and the results showed an 
increase in adsorption capacity from 28.49 to 239.54 mg/g by modified chitosan 
[66]. Adsorption performance of N,O-carboxymethyl chitosan for the removal of 
cationic dye, Methylene Blue from aqueous solutions, was studied and also the effect 
of degree of substitution and several other factors on adsorption were examined. The 
maximum monolayer adsorption capacity was found to be 351 mg/g and according 
to the results, the adsorption capacity of the chitosan derivative increased with the 
increase in the degree of substitution [80]. 

The adsorption using a chitosan-based absorbent for the removal of Basic Blue 
3 was studied. The adsorbent was prepared by chemical grafting of sulfonate 
groups onto chitosan by the reaction with 4-formyl-1,3-benzene sodium disulfonate. 
Depending on the presence of sulfonate groups, a maximum adsorption capacity of 
166.5 mg/g was obtained [12]. 

A xanthate-modified magnetic chitosan was synthesized to be used as an adsorbent 
for the removal of cationic azo dyes, Methylene Blue, and Safranin O. A significant 
improvement in adsorption was observed with a maximum adsorption capacity of 
197.8 mg/g and 169.8 mg/g for Methylene Blue and Safranin O, respectively [72]. 

Chitin grafted with poly (acrylic acid) has been synthesized for the adsorption 
of Malachite Green. A prominent adsorption capacity of 285.7 mg/g was observed 
for the cationic dye [28]. Chitosan modified by grafting ethyl acrylate was prepared 
and used for the removal of two cationic dyes, Basic Blue 41, and Basic Red 18 
from colored solutions. The authors suggest that the removal of dyes was found to 
be increased after the modification, and the maximum adsorption capacities were 
obtained as 217.39 mg/g and 158.73 mg/g for Basic Blue 41 and Basic Red 18,
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respectively [62]. Chitosan derivatives grafted with poly (acrylic acid) and poly (acry-
lamide) were synthesized and evaluated as bio-sorbents for the removal of Remacryl 
Red TGL dye. The adsorption performance was found to be significantly increased 
by grafting. Based on Langmuir analysis, maximum adsorption capacities of 0.479, 
0.727, and 1.068 mmol/L (204.22, 309.82, and 510.74 mg/g) were obtained for 
the three derivatives of chitosan [7, 44]. The efficacy of enzymatic grafting of four 
phenol derivatives [4-hydroxybenzoic acid (BA), 3,4-dihydroxybenzoic acid (DBA), 
3,4-dihydroxyphenyl-acetic acid (PA), and hydrocaffeic acid (CA)] on to the chitosan 
for the removal of cationic dyes, Crystal Violet and Bismarck Brown Y, has been 
examined [9]. For both dyes, maximum adsorption capacities were in the order of 
chitosan-CA > chitosan-PA > chitosan-DBA > chitosan > BA. 

A study reported the chitin hydrogel prepared by crosslinking with epichlorohy-
drin as a low-cost alternative adsorbent for Malachite Green removal from aqueous 
solutions. As the authors suggest, a high uptake capacity of dye was observed due 
to the microporous structure and large surface area of chitin hydrogel in addition 
to the affinity of the dye [71]. To investigate the adsorption of cationic dye, Methy-
lene Blue, chitosan hydrogel beads were prepared by anionic surfactant gelation. 
The maximum adsorption capacity (226.24 mg/g) obtained was higher compared to 
the chitosan hydrogel beads formed by conventional alkali gelation [10]. A novel 
bio-aerogel was prepared from bifunctional nanocellulose and carboxymethylated 
chitosan through a Schiff base reaction. The ability of the aerogel in adsorption 
of dyes was tested with cationic dye, Methylene Blue. The maximum adsorption 
capacity of the aerogel was 785 mg/g, which is significantly higher than reported 
reusable adsorbents synthesized from biopolymers [83]. In another experiment, a 
novel 3D graphene oxide-chitosan gel was prepared to investigate the efficiency of 
Methylene Blue and Methyl Violet adsorption. Porous biopolymer gel was found 
to be efficiently removing cationic dyes and displayed significantly high adsorption 
capacities as 1100 mg/g and 1350 mg/g for Methylene Blue and Methyl Violet, 
respectively [14]. 

A study was reported to investigate the adsorption of Methylene Blue onto a 
composite of chitosan and activated clay. The composite was prepared by physical 
modification of chitosan beads followed by embedding activated clay particles into 
them. The absorption of dye onto composite was compared with that of chitosan 
beads and activated clay [8]. A new magnetic chitosan/active charcoal (CTN/AC-
Fe3O4) composite has been prepared by in situ co-precipitation method and its 
adsorption efficiency was tested with Methylene Blue dye. The effect of several 
parameters on dye removal was investigated, and maximum adsorption capacity was 
found to be 500 mg/g with a removal percentage of more than 90% at 318 K [37]. In 
another work, the mesoporous crosslinked chitosan-activated charcoal composite was 
prepared to be used as a bio-sorbent for the removal of Thionine dye. The composite 
has been synthesized by coalescing chitosan with activated charcoal followed by 
crosslinking with epichlorohydrin. According to the experimental data, the maximum 
adsorption capacity for thionine dye was 60.9 mg/g at 303 K [32]. For the removal 
of Malachite Green from aqueous solutions, a composite of crosslinked chitosan-
coated bentonite beads has been examined, and the effect of several physiochemical
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parameters was also investigated. The maximum adsorption capacity was found to 
be 435.0 mg/g [79]. Chitosan-intercalated montmorillonite composite was synthe-
sized through modification of sodium montmorillonite by intercalation of chitosan 
[53]. The adsorption capacity of the composite was investigated in comparison with 
sodium montmorillonite and chitosan using three cationic dyes (Basic Blue 9, Basic 
Blue 66, and Basic Yellow 1). Accordingly, enhanced adsorption of all three dyes was 
observed for the composite compared to starting materials, indicating 92–99 wt% of 
dye removal. As the authors suggest, this increase resulted mainly from the syner-
gistic effect of broadened pores and electrostatic interaction between intercalated 
chitosan and the dyes. 

H2SO4 crosslinked magnetic chitosan nanocomposite beads have been prepared 
using nanosized Fe3O4 crystallite and H2SO4 [54]. The efficiency of adsorbate 
was tested with Methylene Blue. According to the results, modification of chitosan 
increased dye removal, reaching a maximum adsorption capacity of 20.408 mg/g. For 
the removal of Crystal Violet, chitin nano-whiskers were prepared by acid hydrolysis. 
A maximum adsorption capacity of 59.52 mg/g was obtained. As the authors suggest, 
improved adsorption was observed due to the increase in average pore size, rod-
like shape, and nanometric size of the adsorbent [17]. A nano-adsorbent, magnetic 
β-cyclodextrin-chitosan/graphene oxide, was synthesized for the Methylene Blue 
adsorption. Nanocomposite resulted in the combined features of both β-cyclodextrin-
chitosan and graphene oxide exhibiting fast adsorption rates for the dye because of the 
high surface area of graphene oxide, hydrophobicity of β-cyclodextrin, and the abun-
dant functional groups of chitosan. A maximum adsorption capacity of 84.32 mg/g 
was obtained for the synthesized nanocomposite [20]. 

The use of ultrasonic surface-modified chitin for the removal of Methylene Blue 
was investigated [15]. The adsorbent has presented properties such as higher surface 
area, higher porosity, lower crystallinity, and a more rugged surface. At pH 10, the 
dye removal percentage was about 85% while the maximum adsorption capacity was 
found to be 26.69 mg/g at 298 K. 

4 Major Limitations 

Chitin- and chitosan-based treatment methods are based on sorption which merely 
phase-separate the dye from industrial effluents onto a semi-solid or solid adsorbent. 
Unlike chemical and biological methods, sorption-based physical methods can effi-
ciently remove dyes from effluents; however, do not mineralize the adsorbed dyes [6, 
36, 39]. As a result, a separate waste disposal method is required to safely dispose of 
the dye-containing sludge. In that sense, all the physical treatment methods, including 
chitin- and chitosan-based methods, cannot be considered as effective treatment 
methods that guarantee total mineralization of the contaminants. Furthermore, effec-
tive desorption methods have to be developed to regenerate the adsorbent for further 
use [6, 36, 39]. In most of the reported literature, adsorption capacity and stability of 
the adsorbents over a broad pH range have been investigated; however, experimental
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data related to efficiency of desorption, operational cost, total number of effective 
sorption/desorption cycles, and selectivity toward specific dyes are harder to find. 
As a result, the industrial suitability of most of the developed adsorbents remains 
uncertain. 

There are some other limitations specific to chitin- and chitosan-based adsorbents. 
Chitin is a non-toxic, readily available biomaterial; however, it is not water-soluble 
due to its highly crystalline structure. As a result, structural modifications are always 
required to make it a versatile adsorbent [59, 68, 77]. Even though some of the chitin-
and chitosan-based adsorbents have higher adsorbent capacities, it is not uncommon 
to find relatively low adsorbent capacities (<100 mg/g) for the removal of cationic 
dyes making them un-attractive from industrial use [32, 34, 45, 73]. In addition, most 
of the reported literature have not tested the reusability of the adsorbents which is 
essential in real-world applications. Only a very few have tested the reusability of 
the material using more than 25 cycles [43]. Most of the chitin- and chitosan-based 
adsorbents are pH-sensitive. The operational pH of most of these adsorbents is often 
limited to near neutral to basic pH, and the dye removal efficiency dramatically 
reduces in the acidic pH range [38, 43, 48, 52, 65]. 

5 Future Prospective 

Chitosan and chitin available as flakes and powders have very low adsorption 
capacities and therefore, the development of nano-dispersions, nanocomposites, and 
hydrogel beads is essential to improve their capacity. In addition, the selectivity 
of the adsorbents plays an important role in industrial applications. Almost all the 
current studies have used pure dye solutions to evaluate the performance; however, 
real-world applications require the adsorbents to selectively remove the targeted dyes 
from industrial effluents. The selectivity of the adsorbents can be achieved by intro-
ducing specific functional groups onto the polymer backbone. In addition, studies 
related to real-world applications of chitin- and chitosan-based material to remove 
cationic dyes from industrial effluents are needed to show the real strength of these 
materials. Whenever it is possible, these methods should be coupled with aerobic 
and anaerobic biological methods to achieve the complete mineralization of the dye 
contaminants. 

6 Conclusions 

Chitin- and chitosan-based materials developed for the removal of cationic dyes have 
shown encouraging results which highlight them as one of the most cost-effective, 
environmentally benign, non-toxic, and effective materials available for industrial 
effluent treatment. These adsorbents are available in a wide variety of physical forms 
in the range of macro- and nanocomposite materials, nano-dispersions, hydrogel
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beads, and intercalations. They are very effective in the basic pH range, and the 
cationic dye removal efficiency gradually decreases with decreasing pH. Some of the 
chitin- and chitosan-based materials have adsorption capacities well over 200 mg/g 
with good reusability making them good candidates for industrial wastewater treat-
ment applications. One of the major disadvantages is that sorption-based treatment 
methods using chitin-chitosan-based materials can perform only a phase separation of 
the dye. Some of the chemical and biological treatment methods used in the industry 
can achieve complete mineralization of the dyes which is more advantageous than 
just physical separation of the dyes from effluents. 
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Chitosan-Based Composite Beads 
for Removal of Anionic Dyes 

Joydeep Dutta 

1 Introduction 

The contamination of water bodies is one of the astoundingly challenged agendas 
worldwide, as it causes undesirable consequences for living life forms [1]. Dyes and 
pigments are the challenging pollutants of the water system. Dyes are used in food, 
rubber, paper, cosmetic, pharmaceutical, automotive, and textile industries [2, 3], 
and the leftovers gain access to the water environment and act as pollutants. The 
approximate annual production of dyes for industrial use is about 1.6 million tons 
[4]. Industries involved in the dyeing process often throw out spent water treated 
or untreated, which takes up in the environment. According to a report, 10–25% of 
textile dyes are lost during the dyeing process (10–25%) and are directly discharged as 
aqueous effluents (2–20%) in different environmental components [5]. These dyes in 
lakes and rivers decrease dissolved oxygen concentration, causing anoxic conditions 
causing discomfort to aquatic organisms [6]. These dyes persist in the environment 
due to their high stability to light, temperature, water, detergents, chemicals, soap, 
and other parameters such as bleach and perspiration [7]. Dyes can be mutagenic, 
carcinogenic, teratogenic and genotoxic. It generates dysfunction of the kidneys, 
digestive system, brain, and skin and decreases food intake capacity, growth, and 
fertility rates in mammalian cells [8] (Fig. 1). This prompts a quick action to remove 
such harmful dye from the water matrices to improve the quality standards. 

Efforts are in progress from earlier days for casting off those waste from the water 
environment, which can be analyzed from the understanding that people have started
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using various techniques to purify water bodies (Fig. 2). A more comprehensive 
range of physical, chemical, and biological methods have been employed to treat 
dyeing wastewater, but still, a vast gap exists. Techniques like reverse osmosis [9], 
membrane filtration [10], bacterial action [11, 12], integrated chemical–biological 
degradation [13], precipitation [14], sonochemical degradation [15], electrochemical 
destruction [16, 17], ozonation [18], coagulation [19], nano membrane filtration [20], 
ion exchange [21], and each of these mentioned technologies have their own technical 
and economic limitations for real-life application. 

2 Adsorption: The Future Technology 

From its inception date, adsorption is being used to remove solutes from water and 
gases from the atmosphere. Adsorption nowadays is contributing to a better and 
viable technology for water purification and is gaining prominence in the field of 
research and real-existence applications [22] (Fig. 3). It also shows a promising 
research activity in recent years. It has gained its importance in treating wastew-
aters, groundwater, and industrial effluents, including the production of drinking 
water [23]. Adsorption is a function of the concentration of materials, i.e. adsorbate 
(pollutants) on the surface of solid bodies (adsorbent). Surface forces are involved 
in the adsorption of the pollutant over adsorbents. The principle behind the adsorp-
tion is the binding of contaminants over highly porous adsorbate. Adsorption offers 
many advantages; however, it depends upon many factors and limits its usability to 
remove various pollutants (Table 1). The ongoing research is to focus on the develop-
ment of effective adsorbents. Studies have mainly used multiple materials with their 
modification and composition to frame advanced adsorbents, effectively separating 
complex pollutants in a wide range of physical and chemical environments. 

The quantity of adsorbate defines a promising adsorbent that can concentrate on its 
surface, usually calculated from the adsorption isotherms. An adsorbent with a high 
surface area is taken as a better choice, and the time taken for adsorption should be as 
small as possible so that it can be used to remove dye wastes in lesser time [22]. The 
adsorption isotherms are the relationship between the quantity of adsorbate per unit of 
adsorbent and its equilibrium solution concentration. Several equations or models like 
the Freundlich and Langmuir equations are available. The Langmuir model calculates 
the number of molecules adsorbed onto a solid surface in a monolayer fashion onto 
a homogeneous surface with little interaction between adjacent adsorbed molecules. 
At the same time, Freundlich assumes that the adsorption sites are heterogeneous 
surfaces, and there is multilayer adsorption on the adsorbate. Pseudo-first-order and 
second-order kinetic models are applied to determine the best fit kinetic model for 
evaluating the adsorbents and further development [24].
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2.1 Adsorbents 

Many wastewaters contain toxic contaminants, which are undesirable (Fig. 1). There-
fore, technologies are required and need to be developed to improve water quality. 
These challenges require better and cost-effective removal technologies. Adsorption 
is an upcoming and promising system in which there is an interaction between adsor-
bents and adsorbates. The adsorbent is a substance that will adsorb other molecules 
on its surface, thereby promoting separation. A promising adsorbent is highly porous 
and has a large surface area with more specific adsorption sites. The pore size of the 
adsorbent is classified as recommended by the International Unit of Pure and Applied 
Chemistry (IUPAC) (d is the pore diameter), micropores d < 2 nm, mesopores 2 < d < 
50 nm and macropores d > 50 nm [25]. Other essential attributes for an adsorbent are 
capacity for adsorption, selective adsorption, kinetics, renewability, compatibility for 
adsorption function, and low-cost of preparation based on which selection of suitable 
adsorbent could be achieved [26] (Fig. 4). 

Characteristics of a suitable adsorbent depend on its capacity to separate molecules 
from the medium because it is directly related to the amount of adsorbent required 
and the cost of the function. The capacity of the adsorbent also depends upon other 
parameters like temperature, pH, the number of adsorbates etc. Adsorbents can be 
developed, however; it is based on experimentation. Some of the most challenging 
separation and purification problems require new adsorbents or designed adsorbents 
[27]. Adsorbents could be natural, synthetic, biomass, industrial waste, and agricul-
tural waste. For the commercialization of adsorbents, kinetic studies are a must that 
give the idea of adsorption capacity and the speed of adsorption. Batch studies are 
conducted to optimize the conditions by varying the parameters like initial contami-
nant concentration, temperature, pH, the dosage of adsorbent, and particle for large 
scale applications. The two most widely used models are the pseudo-first-order and 
the pseudo-second-order model, which can study the dye adsorption kinetics and 
quantify the extent of uptake in adsorption kinetics. 

2.2 Types of Adsorbents 

The capacity of adsorption of adsorbates defines the characteristics of adsorbents. 
Dyes that are stable in the aquatic environment need to be removed by using the 
adsorbents. A promising adsorbent can remove the dyes from the water within less 
time or can achieve equilibrium in a short time. Many approaches have been made 
to frame an effective and low-cost adsorbent, and still, the studies are going on. 
Some of the adsorbents reported are non-conventional low-cost adsorbents, including 
natural materials, biosorbents, waste materials from industry and agriculture, marine 
materials, and mineral materials.
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2.2.1 Agricultural Waste as Adsorbent 

Agricultural waste substances are typically ample and proven to be eco-friendly and 
monetary sources of precursors or adsorbent substances (Table 2). It has been said 
that numerous agricultural wastes may be without problems transformed into value-
introduced products. Wastes had been recycled and utilized in the elimination of 
various forms of pollution from effluent. The primary additives of agricultural waste 
substances encompass hemicelluloses, lignin, lipids, simple sugars, proteins, hydro-
carbons, and starch, which are adsorbent substances for dye adsorption. Agricultural 
waste may be used directly or with minimal modifications to increase the capacity 
and reduce the production cost [28]. The direct use of agricultural waste as adsorbent 
is procurement, washing, and making it into the desired particle size. At the same 
time, the other format is to pretreat the waste before use to enhance the functional 
groups over the adsorbent, thus increasing the capacity of adsorption [24] (Fig. 5). 

2.2.2 Industrial By-products for Adsorption 

Industrial waste is produced during industrial activity. It includes material that is taken 
as useless during a manufacturing operation. Industrial by-products are considered 
unusable waste and cause central disposal and dumping problems. Types of industrial 
waste include dirt and gravel, masonry and concrete, scrap metal, oil, solvents, chem-
icals, scrap lumber, and semi-solid, or liquid form. Most nations have established 
enactment to manage modern waste; however, severity and consistency systems shift. 
Thus, it is essential to use such industrial waste to make it a meaningful resource. 
Due to the low-cost, industrial waste has been used to prepare adsorbents. Waste like 
fly ash contains a high percentage of silica and alumina [29]. Fly ash is used as a low-
cost adsorbent for the treatment of wastewater and removal of reactive and acid dyes 
removal (Reactive Red 23—2.102 mg g−1, Reactive Blue 171—1.860 mg g−1, Acid  
Black 1—10.331 mg g−1, and Acid Blue 193—10,937 mg g−1) [30]. In an exper-
iment, it was shown that Raw coal fly ash reached adsorption equilibrium within 
50 min of the batch reaction of all the dyes (Acid blue 193, Acid Black 1, Reactive 
blue 4, and Reactive blue 171) and followed Second-order kinetic models [31]. The 
treated and untreated raw coal fly ash showed better Acid Red 1 dye adsorption with 
a maximum value of 103.09 mg g−1 and followed pseudo-second-order kinetics [32]. 

Red mud is an industrial waste generated during bauxite processing into alumina 
and is composed of solid and metallic oxides like iron oxides (red colour). The mud 
is basic, with a pH ranging from 10 to 13 [33]. Red mud also contains components 
like silica, unleached residual aluminium compounds, and titanium oxide [34]. Red 
mud removed Congo Red from the water, and the equilibrium was attained at 90 min 
of the batch adsorption study [35]. The adsorption of Congo Red in a batch adsorption 
study shows removal efficiency of red mud is 4.05 mg g−1 [36]. Alkaline white mud 
has been investigated to remove the dye acid blue 80 from the water matrices and 
found that the dye removal efficiency reached up to 95% [14]. Blast furnace slag is 
the by-product of the steel industry and is also used as an adsorbent. Treated blast
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furnace slag efficiently removed acid red 138 and acid green 27 with a maximum 
capacity of 208.3 mg g−1 and 265.2 mg g−1, respectively [37]. 

2.2.3 Natural Clay Materials 

Natural materials are readily available, low-cost, biodegradable substitutes made 
from natural resources to remove organic contaminants and used as effective adsor-
bents. Clay is a significant component of the earth’s crust containing aluminosilicates 
[38]. Due to their lamellar structure, clays have a high adsorption capacity and the 
possibility to adsorb ions and polar organic molecules. Clays have a difference in 
mineralogy, size, and large surface area up to 800 m2g−1 [39]. Therefore, clay and 
clay minerals are regarded as adsorbents in modified or unmodified forms. Natural 
clays have negative charges on their surface and can adsorb positively charged dyes 
but induce low adsorption for anionic dyes. However, surface-modified clays have 
shown enhanced adsorption capacity of anionic dyes. There are different types of 
pure clays which provide an opportunity for investigation of adsorption behaviour. 
Other types of clays which are being tested for adsorption of dyes are bentonite, 
zeolite, montmorillonite, smectite, palygorskite, attapulgite, kaolinite, vermiculite, 
sepiolite, clinoptilolites, illite, etc. (Fig. 6). Natural clays are a mixture of different 
types of weathered minerals and exhibit efficient adsorption capacities. Natural clays 
have shown efficient adsorption of Reactive Red 120 [40], Congo Red [41], Remazol 
brilliant blue R [42], Alizarin red S [43], Reactive Orange 84 and Reactive Blue 160 
from wastewater [44]. Kaolinite plays a significant role in the adsorption of anionic 
dye, but its efficiency reduces when mixed with illite and smectite. Palygorskite 
shows the lowest efficiency in adsorption even though the clay is highly porous, 
having a high specific surface. Thus, these clays in combination do not enhance 
the adsorption of RR 120 dye because of the nature of the characters and the cover 
charges [45]. The adsorption process of alizarin S increased with the enhancement 
of initial dye concentration, adsorbent dosage, and contact time but decreased with 
the enhancement of solution pH [30, 43, 46]. However, some experiments suggested 
that adsorption is endothermic [47], or exothermic [40, 41, 48]. The experimental 
data is well fitted with both the Langmuir and the Freundlich models. The kinetics 
also followed the pseudo-second-order reaction model [30]. Natural or unmodified 
clays have high adsorption efficiency of dyes from water matrices in experimental 
conditions (Fig. 6). 

2.2.4 Biological Adsorbents 

Fungi and bacteria are used for the adsorption of dyes from water and are called bioad-
sorbents (Table 3). Bioadsorbents provide a wide range of effective characteristics 
for the adsorption of dyes, even in a complex environment (Fig. 7). Microorganisms 
can be used live or dead (especially fungi), and microbial treatment of coloured water 
involved aerobic, anaerobic, and combination methods [22, 49]. Microbial biomass
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is used for the decolourization of water [50]. Certain dyes have a particular affinity 
for binding with microbial species, thus, microbes could be used as an effective tool 
for dye adsorption. The use of NaCl is to enhance the bath dye exhaustion, but this 
does not hamper the adsorption of dye onto S. cerevisiae as Cl ions do not compete 
with the sulfonate group of AR14 [51]. The advantage of using microbial biomass 
is reducing toxic dyes in water matrices at a low level involving low-cost with live 
or dead organisms. However, sometimes adsorption is slow, dependent on the pH of 
the medium, and the presence of functional groups, salt or other ions may occur in 
competition for adsorption or clog the column [49]. 

The use of peat as an adsorbent has gained attention over the past thirty years to 
treat wastewater. Peat is widely available and studied as an adsorbent for dyes. Peat is 
complex soil material with organic matter in various stages of decomposition, usually 
of a dark brown colour, and is classified into four groups: moss peat, herbaceous peat, 
woody peat, and sedimentary peat [49]. The major constituents of peat are lignin, 
cellulose, fulvic, and humic acid, which provide a polar character. Peat is comparable 
to silica and alumina, both in cost and adsorption capacity. Peat is polar, and it is 
known to adsorb dyes like Basic blue 3, Basic Yellow 21, Basic Red 22, Basic 
Magenta and Basic Brilliant Green, Basic Blue 69 and Acid Blue 25, and other acid 
dyes & basic dyes [49, 52]. 

2.2.5 Chitin and Chitosan: As a Modern Choice of Adsorbent 

Chitin is a white hard inelastic, semitransparent, nitrogenous polysaccharide 
compound with low reactivity and insoluble to many organic solvents. It is a by-
product of the fishery industry (Fig. 7). It is the naturally occurring mucopolysac-
charide and is the main component in the shell of insects, crustacean shrimps, crabs, 
and lobsters. It is also found in the shell wall of fungi and the exoskeleton of fungi 
molluscs and fish [53, 54]. Chitin is commercially available as a by-product of food 
processing from crustaceans (Crab, Crayfish) [49]. The annual worldwide production 
is estimated at approximately 1010–1012 tons [55]. Chitin contains 2-acetamido-2-
deoxy-β-D-glucose through α β  (1–4) linkage. Chitin is a white, rigid, inelastic, 
nitrogenous polysaccharide. It is a waste product second only to cellulose in terms 
of abundance in nature and the primary source of surface pollution in coastal areas 
[56]. The applications of chitin are in wastewater treatment, food industry, agricul-
ture, pulp and paper industry, cosmetics and toiletries and biomedical applications 
[57]. One of the essential uses of chitin is dye separation from water matrices because 
of hydroxyl and amino groups favouring adsorption and desorption [58]. Acid Blue 
25 and Acid Blue 158 show a strong affinity towards chitin, and dyes can even pene-
trate the internal pore structure [59]. It has been used successfully for the removal 
of reactive dyes [58, 60, 61], Acid Blue 25, Acid Blue 158, Mordant Yellow 5, and 
Direct  Red 84 [59], indigo carmine [62], malachite green [63] and acid dye [64]. This 
adsorption is because of electrostatic attraction between the dye molecule and the 
anion group of the chitin. However, the degree of crosslinking may reduce the positive 
charges over the adsorbent, thus, the higher the cross-linking the lesser would be the
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adsorption [58]. Due to its low surface area, porosity, and high crystallinity, chitin 
is generally modified by different chemical modification techniques to introduce 
various functional groups to improve its adsorption capacity [65]. Ultrasonic modifi-
cation of chitin gives a 25 times higher surface than raw chitin, resulting in increased 
adsorption of methylene blue upto 26.69 mg g−1 [66]. Such modification of chitin 
was achieved for the separation of dyes and wastewater minimization (Table 7). In an 
experiment, it was observed that modification of chitin through ultrasonication gives 
methylene blue (positively charged) more chance for interaction with N−acetyl and 
hydroxyl groups of modified chitins [67]. Cyclodextrin-linked chitosan was used for 
decontamination of waters containing textile dyes [65]. Research reported that mixed 
modification of the surface of chitin yielded better sorption of methylene blue. The 
texture of chitin was changed with acid treatment followed by ultrasonication [68]. 
Adsorption of malachite green, methyl violet, and paraquat from water is enhanced 
by Chitin grafted with poly (acrylic acid) which shows its multifunctional uses of 
modified chitin [69]. The introduction of monochloroacetic acid in isopropanol adds 
the carboxyl group into chitin’s structure prompting the arrangement of anionic 
derivatives that can be useful in the adsorption of pollutants from the environmental 
system [70]. Even though chitin is used for the adsorption of different dye molecules, 
its low surface area, porosity, and high crystallinity lose its adsorptive efficiency. The 
use of various chemical surface modification techniques increases the efficiency of 
chitin for the adsorption of dye from the water environment. Surface modification 
improves the adsorption efficiency by enhancing the charged interaction between the 
adsorbent and the dye molecules. 

Chitosan is the derivative of chitin, similar in solubility limitations as chitin despite 
being soluble in diluted acid solutions [70]. Chitosan is a deacetylated product of 
chitin (Fig. 7) and consists of β-(1→4)-2-amino-2-deoxy-D-glucose units and a 
lower percentage of β-(1→4)-2-acetamido-D-glucose by treatment with alkali [71, 
72]. During deacetylation (influenced by temperature, time, and the concentration of 
NaOH used), the acetyl groups of chitins are hydrolyzed to give free amine groups. 
It states that the more the amino groups more is the adsorption capacity of chitosan 
[73]. Because of hydrogen bonds, chitosan is insoluble in water, alkaline solutions, 
and organic solvents but is soluble in acidic solutions due to the protonation of 
its amine groups; thus, chitosan has a high affinity to adsorb heavy metals and dyes 
[73]. −NH2 and −OH contribute primarily to adsorption interfaces between chitosan 
and adsorbate molecules [72, 74]. Chitosan contains carbon, hydrogen, oxygen, and 
additional nitrogen (6.89%) [75], therefore making it one of the most important 
organic compounds used for adsorption of heavy metals, dyes, and pharmaceuticals 
[76], phenol & pesticides [75] (Table 5). Chitosan is hydrophobic, biocompatible, 
biodegradable, and non-toxic [77], thus, making it an effective adsorbent material for 
the removal of wastewater pollutants. However, drawbacks like solubility in acid, low 
mechanical strength, and low surface area hinder adsorption efficiency, prompting 
the modification of chitosan [73].
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3 Use of Chitosan Beads as Adsorbents 

Chitosan is a versatile carbohydrate polymer, and presence of –NH2 and –OH 
contributes primarily to adsorption interfaces between adsorbent and adsorbate. It has 
good adsorption capacity and flocculating ability; therefore, it finds a place to treat 
organically polluted wastewaters. Cross-linked chitosan was used for the adsorp-
tion of dyes and oil. Adsorption of residue oil from palm oil mill effluent (POME) 
using chitosan powder and flake has been investigated. The powder form of chitosan 
exhibited a greater adsorption rate than the flake type and could adsorb 99% residual 
oil from POME. The equilibria data fitted very well with the Freundlich isotherm 
and second-order kinetic model signifying chemisorption between residue oil and 
chitosan [78]. Powder and flake forms of chitosan are extensively used for removal 
of residual oil [79], heavy metals [80–82], biodiesel [83] and petroleum sills [84]. 
However, the technical disadvantage of using chitosan in powder and flakes is because 
of low adsorption capacity due to crystallized structure [85], it also poses difficulty 
as it reduces water transparency and reduces water chances of recovery from the 
water environment. Secondly, chitosan-flakes have low adsorption capacity, surface 
area, hydrophilicity, non-porosity, and mass transfer resistance [86]. Therefore, the 
chitosan is designed in beads that can be immobilized, have higher loading capacity, 
increased porosity & surface area, expanded polymer chains, decreased crystallinity, 
and more sorption in internal sites [85] and can be recovered for recycling. And 
the use of beads had gained its importance for separation technology which can be 
viewed in the form of published works based on Pubmed database screening (using 
the terms “chitosan” in combination with “beads” or “adsorption”): (i) 1992–2000-
11 papers; (ii) 2001–2010-71 papers; (iii) 2011–2020-195 papers, and (iv) 2021-to 
date-21 papers (Fig. 8). 

Chitosan beads are three-dimensional that swell in water but maintain their struc-
tural integrity (Fig. 9). Recent development has shown that the use of beads has 
increased because of their excellent biocompatibility and easy preparation. In recent 
years, it has also gained its importance as a bioadsorbent because of rich amino and 
hydroxyl groups and, therefore, in separation technology and wastewater treatment. 
Considering the importance and usability, chitosan beads are synthesized. However, 
the amino groups of chitosan hydrogel beads generally get protonated at lower pH and 
thus get less stable and more soluble in a highly acidic environment [75]. Because 
of its limited capacity crosslinking, blending, and grafting have been developed 
to improve the physicochemical properties, such as mechanical strength, colloidal 
stability, and efficiency of chitosan beads at lower pH for better adsorption. Most of 
the crosslinkers used to modify chitosan beads are- epichlorohydrin, ethylene glycol 
diglycidyl ether, glyoxal, formaldehyde, isocyanates, and glutaraldehyde [87]. The 
target of crosslinkers is –NH2 and –OH on the chitosan beads, epichlorohydrin target 
–OH and ethylene glycol diglycidyl ether, and glutaraldehyde target –NH2 [85]. 

Crosslinker acts as a bridge improving the mechanical strength and chemical 
stability. On the other hand, free amino groups are attacked by cross-linkers, which 
may reduce the ligand density or induce denaturation and aggregation, ultimately
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reducing the adsorption capacity of chitosan beads for wastewater treatment applica-
tions [85]. To minimise this effect an effort for maintaining the degree of crosslinking 
other alternative chemical modification like composite bead formation is practised 
to improve the adsorption capacity. 

4 Chitosan Composite Beads for Adsorption of Anionic 
Dyes 

Recently chitosan has gained its importance in the field of wastewater decontam-
ination technology through adsorption. Therefore, numerous researches have been 
carried out regarding chitosan as an adsorbent for wastewater treatment, either inor-
ganic (metals, ions, etc.) or organic (dyes, phenolic and pharmaceutical compounds, 
herbicides, pesticides, drugs, etc.) [88]. However, the drawback with chitosan is its 
sensitivity to pH, which can either form gel or dissolve depending upon the system’s 
pH value [89]. On the other hand, cross-linking reagents stabilize chitosan in acidic 
solutions and enhance its mechanical properties [89]. Nevertheless, cross-linking 
also reduces adsorption capacity as these molecules attack free amino groups on 
chitosan. 

Nowadays, chitosan composites have been developed and are extensively investi-
gated for the adsorption of dyes from wastewater. Different kinds of substances have 
been used to form a composite with chitosan (Table 6), and the composites have 
shown a better adsorption capacity and resistance to acidic environment [90], high 
rigidity, low specific gravity, and higher resistance to corrosion and oxidation [91]. 
Figure 10 shows the general process of composite bead preparation. The Pubmed 
database shows the importance of the development of chitosan beads for adsorp-
tion studies (using the terms “chitosan” in combination with “beads” “composite” 
or “adsorption”): (i) 2003–2010-13 papers; (iii) 2011–2020-105 articles, and (iv) 
2021-to date-10 reports. Furthermore, free amino groups on chitosan greatly enhance 
the adsorption capacity of anionic dyes even at low pH due to electrostatic attraction 
between anionic dyes and protonated sites on the chitosan. Thus, chitosan composites 
have gained attention as an alternative method to conventional wastewater treatment 
technology for the adsorption of dyes. 

4.1 Chitosan/Montmorillonite Composites 

Clay minerals have been used to form chitosan composites, and among them is 
montmorillonite which is abundant and low-cost. Montmorillonite has a high cation 
exchange capacity and a large specific area accommodating bulky molecules such 
as chitosan. Montmorillonite has a low affinity for anionic dyes; therefore, modi-
fication with polymers changes its chemical property and improves its affinity for
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anionic dyes [91]. Montmorillonite has a tetrahedral and octahedral layer, and the 
substitution of Al3+ for Si4+ for the tetrahedral layer and Mg2+ for  Al3+ for the octa-
hedral layer results in the negatively charged surface of montmorillonite, making it 
a good choice for adsorption [90]. In a hybrid system, an increase in the molar 
ratio of chitosan to montmorillonite causes increased adsorption due to balancing 
the initial negative charges of montmorillonite with chitosan. Two different adsorp-
tion mechanisms are stated in the study- electrostatic attraction and chemisorption 
depending upon the pH of the medium. Adsorption of anionic dyes at lower pH 
favours electrostatic attraction between the amine group in chitosan and the anionic 
dyes. Still, competitive interest occurs between the dye and the –OH groups for the 
active groups at higher pH [92]. Apart from electrostatic attraction, hydrogen bonding 
also plays a vital role in adsorption. Removal of anionic dye from water results from 
hydrogen bonding between –Cl, –N, and –O containing functional groups. Diamond 
Fast Brown KE and H atoms from =NH, and –OH groups prepared two different 
weight ratios of chitosan-montmorillonite composites [93]. The adsorption kinetics 
of anionic dyes on chitosan-montmorillonite composite better follows the pseudo-
second-order model suggesting that adsorption was influenced by the structure of the 
composite. The Langmuir isotherm indicated monolayer adsorption of dye Congo 
red (54.52 mg g−1) [92], and Diamond Fast Brown KE (403.23 mg g−1) [93]. The 
other anionic dyes adsorbed by chitosan-montmorillonite composite are Bezactive 
Orange V-3R [94], Congo Red [95], Methyl orange [96, 97], which follows pseudo-
second-order kinetic model and Langmuir isotherm confirming structural benefit 
towards adsorption and monolayer formation around the adsorbent. 

4.2 Chitosan/Bentonite Composites 

Clay, such as bentonite available naturally and bears unique physiochemical proper-
ties and thus acts as low-cost adsorbents because of its ability to exchange cations. It 
consists of two tetrahedral silica sheets and one octahedral alumina sheet sandwiched 
in silica sheets. It is mainly composed of montmorillonite with SiO2, Al2O3, CaO,  
MgO, Fe2O3, Na2O, and K2O [90]. Bentonite has net negative charges on its layer 
due to aluminium or ferric cations in the tetrahedral sheets, and aluminium ions by 
magnesium or ferrous cations in the octahedral sheets, sodium or calcium ions are 
commonly present in the interlayer region [98]. 

Chitosan/ bentonite composite was prepared, which shows a heterogenous struc-
ture with better mechanical strength confirmed by tensile strength and elongation 
values and is better than pure chitosan film, ensuring the insertion of bentonite. The 
X-ray studies show that the composite surface has N (from chitosan) & Al (from 
bentonite) and Si being concentrated in some regions proving its heterogeneity. The 
EDS data shows that the composite surface has the combination of C, N, and O (of 
chitosan) and Si, Al, Mg and Na (of bentonite). The possible adsorption of anionic 
dyes because of the functional groups from chitosan and bentonite is confirmed by 
FTIR data [99]. The adsorption of Amaranth red was favoured at pH 2 because of



Chitosan-Based Composite Beads for Removal of Anionic Dyes 57

the protonation of chitosan amino groups and Si–O groups from bentonite facili-
tating adsorption. The pseudo-second-order model best described the adsorption of 
amaranth red. This showed that the rate-limiting step was due to chemical adsorp-
tion. As much as 362.1 mg g−1 of amaranth red could be adsorbed as determined 
by the Langmuir model [99]. The pH plays a vital role in the adsorption process. 
As the pH of the medium is lowered, the surface of the adsorbent becomes posi-
tive, which promotes the adsorption of anionic dyes like tartrazine [90]. However, 
the ratio of chitosan/bentonite also derives the adsorption efficiency (224.8 mg g−1) 
of the anionic dyes onto the composites. In an experiment, it was found that the 
maximum removal efficiency of methyl orange was observed at the ratio of 2/2 of 
composite chitosan/ bentonite. This high removal may be due to interlayer spacing 
because of the intercalation of chitosan in bentonite [100]. 

A cross-linking agent can stabilize the chitosan in an acidic solution so that 
the chitosan can become insoluble. After crosslinking with glutaraldehyde, [101], 
epichlorohydrin [102, 103] chitosan and bentonite composite enhance the removal 
of Amido Black 10B, because of intercalation of cross-linked chitosan in bentonite 
increasing the basal spacing of bentonite. Secondly, the stability of the beads was 
improved due to the treatment of chitosan with a cross-linker, and the adsorption was 
optimal at pH 2 with a best fit pseudo-second-order kinetic model. The Langmuir 
model well described the adsorption isotherm, and the maximum adsorption capacity 
was 323.6 mg g−1 [101] and 990.1 mg g−1 [102, 103]. The high adsorption capacity 
was attributed to the strong electrostatic interaction and the valence forces through 
the sharing or exchange of electrons between dye molecules and this composite. 
The desorption studies proved that the cross-linked chitosan/bentonite composite 
beads were efficient (98%—removal efficiency of Amido Black 10B) even after 5th 
regeneration, thus highlighting the importance of reusability [102, 103]. 

Cross-linked chitosan/bentonite composite beads, when further treated with HCl, 
result in bentonite activation and the protonation of crosslinking chitosan. The resul-
tant enhanced cross-linked chitosan/bentonite composite exhibited a higher adsorp-
tion capacity of methyl orange. During treatment, an increase in HCl concentration 
showed the maximum removal of methyl orange. The following mechanism was 
attributed to enhanced removal capacity (i) activation of bentonite and the proto-
nation of crosslinking chitosan bringing more electropositivity facilitating anionic 
dye removal, (ii) acid treatment increases the basal spacing of bentonite and dredges 
the inner passage. The kinetic data followed the pseudo-second-order equation and 
was determined by the Langmuir model with a maximum adsorption capacity of 
36.8 mg g−1 [102, 103]. 

4.3 Chitosan/Polyurethane Composites 

Polyurethanes (PU) are multipurpose materials due to their comfort, cost benefits, 
energy savings and potential environmental reliability. PU is used in upholstered 
furniture, as insulators, roofs and appliances, medical devices and footwear, coatings,
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adhesives, sealants and elastomers used on floors and automotive interiors [104]. 
PU have a high surface area, and open porous structures thus have high usage in 
immobilization of adsorbent and turn in treatment of waste water. In addition, this 
porous structure of polyurethane foams gives exceptional water-purifying abilities. 
The composite of PU/Chitosan is formed due to hydrogen bond interaction. The 
addition of chitosan to PU causes additional –OH and –NH2 adsorption sites and 
caused higher porosity [105] and showed a semi-crystalline structure with several 
functional groups [106]. 

PU/Chitosan composite has smooth surfaces with well-developed open cell struc-
tures, which provide the accessibility of Acid Violet 48 in aqueous solutions to the 
chitosan adsorbent [107]. On the other hand, the PU/humic acid-chitosan composite 
shows that the structure is much rougher and more porous, favouring the higher 
adsorption capacity of the Methyl orange dye [108]. The dye adsorption followed 
pseudo-second-order kinetics and at lower pH, favouring chemisorption between the 
amine group of chitosan and the sulfonic group of Acid Violet 48. The adsorp-
tion onto PU/Chitosan composite followed Langmuir isotherm equilibrium with 
maximum adsorption of Acid Violet 48 (30 mg g−1) [107] and Reactive blue dye 198 
(86.43 mg g−1) [109]. The monolayer sorption over the solid surface with homoge-
nous sites confirms no further adsorption on the composites. The interesting fact of the 
composite is that the PU matrices provide a skeleton framework in which the chitosan 
as adsorbent is well dispersed and immobilized. The efficiency of the composite is 
pronounced by the fact that the composites can be reused without desorption or other 
coatings of chitosan for the removal of the Reactive blue 198 dye [109]. 

4.4 Chitosan/Kaolinite Composites 

Kaolinites contain tetrahedral silica sheets bound to the octahedral aluminium 
oxide/hydroxide layer sheets by hydrogen bonds. It is known to adsorb ions by (i) 
ion exchange at the permanent negatively charged sites or (ii) through the formation 
of surface complexes [110]. Kaolinite has a long history of dye binding capabilities 
independently or when combined with other adsorbents. Kaolin has little affinity for 
anionic dyes, therefore, kaolin/chitosan composite is used to incorporate positively 
charged sites to enhance the adsorption characteristics of negatively charged dyes. 
Kaolinite/Chitosan composites have been used to frame the adsorbents in the form 
of beads. SEM studies show that the beads are smooth but discrete spherical parti-
cles confirming the combination of the organic modifying agent into the inorganic 
clay materials [111]. Kaolin/Chitosan composite beads have many pores and pleats 
on the surface, providing a good option for dyes to be adsorbed. The adsorption of 
methyl orange onto Kaolin/Chitosan composite beads shows better results at pH 2.9 
because of increased electrostatic attraction between the beads and the dye [112]. 
Adsorption at lower pH (3.0 is again attributed to protonation of the amine group 
of chitosan molecule, however, the maximum adsorption occurred at pH 2.5 when 
the chitosan forms composite with kaolinite resists dissolution of chitosan at lower



Chitosan-Based Composite Beads for Removal of Anionic Dyes 59

pH [113]. The formation of Kaolin/Chitosan composite reduces the crystallinity 
of chitosan molecules and thus enhances the penetration of dye molecules. Adding 
kaolin to chitosan increases surface area and specific gravity, thus providing an ample 
opportunity for dye molecules to penetrate deep into the beads. An increase in % of 
kaolin in composite increases the Remazol Red dye removal efficiency of the beads 
[113]. The presence of free amine groups (in %) defines the adsorptive capacity 
of the composite. In an experiment, chitosan-glyoxal/kaolin composite beads were 
prepared. The characteristics state that 27.4% free amine groups were present, with 
39.8 (m2 g–1) of surface and 6.2 nm as mean pore diameter. The higher surface area 
is attributed to kaolin particles scattered on the chitosan-glyoxal matrix. This higher 
surface area with suitable pore diameter and free amine groups makes the composite 
a better choice material for the adsorption of Remazol Brilliant Blue R [114]. 

4.5 Chitosan/Plant Materials Composites 

Plant waste is lignocellulosic materials that contain lignin, cellulose and hemi-
cellulose. Lignocellulosic materials have excellent structural properties with small 
molecular sizes. The different plant-based adsorbent has been prepared and reported 
for the removal of anionic dyes from wastewater. As adsorbents, plant wastes are 
available in large amounts and are less expensive as compared to other materials. 
Chitosan, because of its adsorption properties, has gained importance; however, its 
low hydrophilicity, surface area, high crystallinity, specific gravity, non-porosity, 
dissolution at low pH (Fig. 10) and mass transfer resistance. But when chitosan is 
crosslinked and/or mixed with other plant wastes or minerals improves its character-
istics that help in significant adsorption of dyes from the water environment. Various 
plant materials were used in combination with chitosan for framing composite beads. 
These beads were then used for the removal of anionic dyes from wastewaters. The 
resultant beads showed heterogenous surface morphologies, which enables them 
to adsorb dye molecules. In combination with different ratios with plant materials, 
Chitosan behaved differently in the adsorption of dye molecules. It was observed 
that the plant materials due to lignin, hemicellulose and cellulose content provide 
mechanical support to the chitosan and thus prevent it from dissolution at low pH, 
which improves the adsorption efficiency of anionic dyes. Studies have shown that 
beads with chitosan in combination with raw or modified plant forms have proved 
to be an efficient system for adsorption of both anionic and cation molecules from 
the water environment. However, few studies have been quoted below to understand 
the composite beads and their efficiency in removing anionic dyes. 

Chitosan combined with bamboo charcoal in a different ratio shows that the 
composite beads had improved porosity and surface area due to the presence of 
bamboo charcoal. It results in increased adsorption of Reactive Red 152; however, 
the increase in adsorption is due to the increased bamboo charcoal concentration in 
the composite beads. The micrographs study showed that the dye’s adsorption onto
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beads was homogenous due to electrostatic forces on chitosan molecules. The adsorp-
tion followed the Langmuir isotherm model with maximum adsorption of 87.5% at 
pH 4 [115]. The SEM study shows that composite beads’ surface before adsorption 
was smooth, and after adsorption, the surface becomes irregular due to the pres-
ence of adsorbates [116] and [115]. Chitosan/Waste tea activated carbon composite 
beads were prepared and used for removal of Acid Blue 29. The adsorption of Acid 
Blue 29 by chitosan/waste tea activated carbon was spontaneous, endothermic, best 
described by the pseudo-second-order reaction model, and fit according to Langmuir 
and Freundlich isotherm at pH 2–4 [116]. As opposed to the smooth surface of the 
composite beads, the chitosan/coffee residue mixed beads have a scraggy character 
with a variety of cavities. After adsorption of Reactive Red 152, a substantial reduc-
tion of cavities on the surface of the beads could confirm the adsorption of the dye 
molecule. Maximum adsorption (99.14%) was recorded at pH 4 clearly states the 
electrostatic interaction between the dye molecule and the active sites. 

Interestingly, the chitosan to coffee residue ratio of 60/40 was the best combina-
tion for the composite beads that could follow Langmuir isotherm with maximum 
adsorption of 4.27 mg g−1 states the efficiency of the adsorbent [117]. Chitosan/Oil 
palm ash zeolite was combined to form composite beads. The characteristics of the 
beads were non-uniform pores (mesoporous) with a surface area of 82.96 m2/g. It 
was observed that as the percentage of chitosan was increased, Acid Blue 29 dye 
adsorption was also increased and is also dependent upon the temperature of the reac-
tion. The adsorption followed the pseudo-second-order reaction and the Freundlich 
isotherm model [118]. The adsorption of dye on the composite bead shows that the 
accumulation of dye is in the form of layers. It was confirmed by the change in the 
colour of the beads after adsorption of the Acid Black 194 dye on chitosan/zeolite 
composite beads with maximum adsorption of 2140 mg g−1. The surface morphology 
of beads had a more uniform particle size with the smooth entity. The adsorption of 
dye depends upon pH, initial dye concentration, competitive ions, and temperature 
[119]. 

5 Conclusion 

Adsorption technology has expanded its status in the treatment of wastewater. 
Chitosan, because of its accessibility and its excellent adsorption properties, is used 
to treat sewage along with other naturally available molecules. However, if chitosan 
is used in powder and flakes, it further degrades the quality of water and is also not 
available for further reuse. And is also not capable of adsorption at low pH due to 
dissolution. Therefore, chitosan is framed in the form of beads and natural molecules 
to be recovered and reused. Chitosan is composited in beads with montmorillonite, 
bentonite, kaolinite, polyurethane and plant materials. Experiments have shown that 
the beads were subjected to adsorption of anionic dyes. These combinations have 
proved a better adsorbent for the removal of dyes from the water environment.
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Application of Lignin-Based Biomaterials 
in Textile Wastewater 

Md. Din Islam, M. K. Mohammad Ziaul Hyder, Md. Masudur Rhaman, 
and Sajjad Husain Mir 

1 Introduction 

Lignin is the second most naturally abundant biopolymer after cellulose. It is treated 
as a non-commercialized waste product in paper, sugar, ethanol, and other bio-based 
industries. Globally, more than a hundred millions tons of lignin are produced in a 
year as a byproduct [13] where pulping process generates nearly fifty million tons 
[40]. Lignin contains higher amount of softwoods than hardwoods and grasses. The 
maximum quantity of lignin is found in leaning stems of conifers and compression 
wood on the lower side of leaning softwood stems. The largest concentration of lignin 
exists between middle lamella (adjacent cell walls) and the cell corners. Though the 
secondary wall contains only a lower amount of lignin concentration, the highest 
amount of lignin is found from the secondary wall due to the existence of the larger 
quantity of secondary wall in wood. Lignin is distributed in the cell wall along with 
cellulose and hemicelluloses [88]. In the cell walls, lignin occupies the area between 
hemicellulose and cellulose holding the lignocellulose matrix together (Fig. 1). 

Lignin is a highly branched macromolecule yield with molecular masses between 
1000 and 20,000 gmol−1. Lignin is composed of three monolignol subunits known as 
coniferyl alcohol, para-coumaryl alcohol and sinapyl alcohol. The monolignols give 
three phenolic sub-structures known as syringyl (S), guaiacyl (G), and hydroxyphenyl 
(H) that bears hydroxyl, carboxyls, carbonyls and methoxy groups that acts as active 
sites for heavy metal ions adsorption [3, 73] (Fig. 2). Lignin is derived mainly from 
lignocellulosic biomass whose structure directly depends on the source and method
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Fig. 1 Lignin distribution in 
cell wall. Reproduce with 
permission from [112]. 
Copyright@2010, American 
Chemical Society 

Fig. 2 Different lignin units
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Fig. 3 Linkage in lignin structure. Reproduce with permission from [33]. Copyright@2018, 
American Chemical Society 

of extraction. Lignin primarily consisted of guaiacyl units in softwoods which are 
connected with each other by ether bonds or carbon-carbon linkage. On the other 
hand, almost equal amounts of guaiacyl and syringyl units present in hardwoods. 
However, the grass lignin is composed of all three units.

There are common bondage among these units in a lignin structure, namely 5–5 
biphenyl α–O–4' ether, β–5 phenyl coumaran, β–1' diphenyl, 4–O–5'diphenyl ether, 
and β–β' resinol. Figure 3 represents linkages between the lignin structures. The 
β–O–4 linkage represents almost half of the entire linkage in lignin structures. On 
the other hand, β–β' resinol, β–5 phenyl coumaran, β–1' diphenyl methane, α–O–4' 
ether, 4–O–5'diphenyl ether and 5–5 biphenyl account smaller portion of linkages in 
lignin [16, 90]. 

Pure lignin with three-dimensional polymer structures comprises different active 
groups such as aldehyde, phenol, methoxyl, carboxyl, hydroxyl groups. Many effec-
tive researches were carried out for efficient removal of dyes and heavy metals from 
wastewater with materials containing these functional groups [4]. The existence of 
these reactive functional groups in lignin influence the physico-chemical characteris-
tics of lignin like functionality, reactivity and hydrophilicity. Lignin is an inexpensive 
and nontoxic as well as a biodegradable and biocompatible biomaterial and thus it 
can be applied for the decontamination of heavy metal and dyes from wastewater 
due to its origin and presence of various functional groups. 

On the other hand, The effluents coming from various industries have to be treated 
to control environmental pollution which helps to build up a healthy environment
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around us [15]. With the growth of human population, a significant number of indus-
tries are rising gradually such as textile industries, tanneries, fertilizers, paper, paint, 
electroplating, petroleum refining. These industries release their effluents into water 
or land that consist of high concentration of contaminants like heavy metals, toxic 
dyes, organic or inorganic ions, micropollutants, etc. [27, 50, 74]. This pollutant has 
high toxicity, carcinogenicity and non-degradability properties that are responsible 
for severe environmental concerns [27, 75]. 

The effluent coming from the textile industry contains contaminants like organic 
and inorganic dyes, heavy metals like chromium (Cr), lead (Pb), cadmium (Cd), 
mercury (Hg), copper (Cu). These pollutants in textile effluents have a negative 
effect on the environment and create serious health threats to aquatic life, animal and 
human beings [51]. It is reported that 60% of the consumption of the world’s dye was 
used by the textile industries of which 10–15% of dye is released to the effluent. The 
growth of the textile industry is accompanied by the increase of wastewater containing 
synthetic dyes. The discharge of a huge amount of dye into water bodies causes severe 
environmental concerns [1, 100]. To save the environment from pollution, it is very 
significant to remove this toxic dye from the textile wastewater as much as possible 
before being released to the water bodies or landfills. Moreover, the heavy metals 
exist in textile effluent are toxic, carcinogenic and nonbiodegradable that causes a 
variety of diseases and disorders in living organism [5, 30, 44] and can create serious 
disorder in ecosystem including aquatic and terrestrial life [48, 89]. 

Techniques employed to treat the industrial effluent include biological processes, 
adsorption, coagulation, chemical oxidation processes and photocatalytic degrada-
tion, etc. [41, 54, 58]. The merits and demerits of these techniques are presented in 
Table 1. 

Among these methods, adsorption technique has been shown to be a useful method 
due to its inexpensiveness, simple design and high adsorption capacity [47]. Nowa-
days, biomaterials generated from natural materials have gained much attention due 
to their low cost, simple preparation and high effectiveness for the removal of dyes 
and heavy metals [46, 66, 69, 84]. Especially lignin is an important constituent of 
renewable biomass which is the most abundant natural biopolymer after cellulose

Table 1 Techniques for wastewater treatment 

Methods Advantages Disadvantages 

Ion exchange Wide applicability Required regeneration or disposal 

Oxidation Rapid process Cost effective and byproduct formation 

Ozonation Applicable in gaseous state Short half-life 

Coagulation Economically feasible High sludge production and large 
particle formation 

Photochemical No sludge production Byproduct formation 

Electrochemical process Rapid process Cost effective and byproduct formation 

Biological process Economically feasible Technology should be established and 
commercialized
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[19, 79, 99]. Moreover, lignin and lignin-based biomaterials contain several active 
functional groups which enable them to act as good bioadsorbent for the remedia-
tion of heavy metal ions, dyes, etc. A lot of research has been carried out for the 
decontamination of dyes and heavy metals from industrial wastewater using lignin 
and its derivatives as efficient bioadsorbents. Therefore, lignin-based biomaterials 
have occupied a significant area in the field of wastewater treatments [110].

2 Pure and Processed Lignin in Textile Wastewater 

2.1 Pure Lignin in Wastewater Treatment 

The use of pure lignin to adsorb dye from wastewater is still insufficient [33, 105]. 
Instead, the adsorption of dyes on lignin was largely investigated with processed 
lignin (Fig. 4), hybrid and composite lignin [21, 41, 73, 95, 102]. Guo et al. studied 
the adsorption of heavy metals on pure lignin. The affinity of metal ions to adsorbent 
was found in the order as Pb(II) > Cu(II) > Cd(II) > Zn(II) > Ni(II) [41]. Mohan et al. 
used sole lignin in a study to remove Cu(II) from wastewater. In equilibrium, the 
amount of Cu(II) adsorbed by the biomaterials was estimated as 87.05 mg/g [72]. 
Quintana et al. applied pure lignin obtained from various lignin sources like cane 
bagasse, eucalyptus lignin for the remediation of Cd(II). The lignin thus obtained 
was oxidized with aqueous H2O2 and applied for the Cd(II) removal from aqueous 
media [82]. 

The investigation of the remediation of malachite green dye on pure lignin was 
carried out by Lee et al. The remediation efficiency of malachite green on lignin was 
estimated as 31.2 mg/g and the adsorption of malachite green by lignin was closely 
related to the O–H and S–O bonds [55]. Pure lignin, as well as its industrial lignin 
was utilized for the remediation of methylene blue dye from wastewater [92]. The 
investigation reported with the remediation capacity of lignin adsorbent to methylene 
blue was 28 mg/g at pH 6. Similarly, the isolated bamboo lignin was applied for the 
adsorption of crystal violet dye from aqueous solution [9]. Similarly, lignin was 
applied for the adsorption of brilliant red HE-3B reactive dye from wastewater. 
Lignin was observed to be a promising bioadsorbent for the remediation of brilliant 
red HE-3B [93]. 

2.2 Kraft Lignin in Wastewater Treatment 

Kraft lignin obtained by the sulfate process is estimated to be eighty-five percent of 
total world lignin production. In this process, about ninety to ninety-five percent of 
wood with lignin goes to aqueous solution of sodium hydroxide and sodium sulfide 
by dissolution. Firstly, lignin is dissolved at pH values 13–14 and temperatures
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Fig. 4 Different types of processed lignin

around 170 °C to cleavage ether linkages raise the hydroxyl groups of phenol that 
ionizes within above pH ranges. Subsequently, lignin is isolated from the alkali 
solution by lowering pH in the ranges between 5 and 7.5. The mean molecular 
mass of the obtained kraft lignin is in between 1000 and 3000 Da. However, it 
can increase up to 15,000 Da [32, 62, 76, 97, 112]. In an adsorption study, kraft 
lignin has been applied for the remediation of Pb(II). In equilibrium, the adsorption 
amount of Pb(II) on kraft lignin was calculated 49.8 mg/g and the mechanism of 
the sorption process was expressed by “1-n cooperative” theory [18]. In another 
study, the remediation of Cu(II) from wastewater was studied using kraft lignin [42].
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The adsorption of Cu(II) by the lignin biomaterials was reported to be observed in 
the following order: softwood kraft lignin > hardwood kraft lignin. The mechanism 
of the adsorption process was interpreted with ion-exchange interactions between 
metal ions and phenolic and carboxylic groups of lignin. Another investigation was 
carried out using kraft lignin collected from the pulp industry for the removal of 
Cr(VI), Cd(II), Cu(II) and Zn(II) from wastewater. The sorption capacity of kraft 
lignin toward different heavy metals was observed as Cr(VI) = Cd(II) > Cu(II) > 
Zn(II) [90].

Silica and kraft lignin were blended to prepare a biaodsorbent to remediate Cd(II) 
from aqueous media. They showed good adsorption efficiency of 84.66 mg/g to 
Cd(II) [52]. Mohan et al. studied the adsorption criteria of kraft lignin collected from 
the paper industry toward Cd(II) and Cu(II). In equilibrium, the adsorption amount 
of Cu(II) and Cd(II) onto adsorbent was reported to be 137.14 mg/g and 87.05 mg/g 
[72]. Fang et al. reported the high adsorption capacity toward Congo red dyes on 
magnetic kraft lignin adsorbent with a good reuse performance [28]. Budnyaket al. 
prepared a hybrid adsorbent from kraft lignin and silica and used for the removal 
of methylene blue dye from aqueous solution. It was reported that prepared lignin 
biomaterials showed higher adsorption capacity to methylene blue than pure lignin 
[15]. 

2.3 Alkaline Lignin in Wastewater Treatment 

Alkaline lignin is attained by soda pulping process of grass, hardwoods, straw, 
bagasse, and flax. The lignin thus acquired is comparatively less modified than the 
other types of lignins. The biomass is digested with aqueous solution of sodium 
hydroxide at the temperature ranges between 140 to 170 °C, For the lower degrada-
tion of carbohydrates and proper dissolving of lignin in sodium hydroxide aqueous 
solution, anthraquinone catalyst is used in this process. The obtained lignin contains 
high amount of carboxylic acid so it is tough to isolate by filtration or centrifuga-
tion. Depending on carbon contents, the molecular masses of the soda lignin exist 
between 1000 and 3000 Da. The main advantages of this lignin are it is totally free 
of sulfur and can be a good potential to prepare high-end products [10, 112]. Alkali 
lignin contains high amount of carboxylic groups. Hence, it is expected to be effi-
cient and effective adsorbent for toxic metals and dyes for the decontamination of 
textile effluent. In an experiment, biomaterials prepared from alkaline lignin with 
methylamine and formaldehyde were synthesized by Mannich-based reaction [35]. 
The batch adsorption experiment was done for the adsorption Pb(II). The adsorption 
efficiency observed by the bioadsorbent to Pb(II) was calculated as 79.9 mg/g. In 
a similar way, mercapto-functionalized alkali lignin was prepared to decontaminate 
Hg(II) from aqueous media [118]. The sorption efficiency of functional alkali lignin 
toward Hg(II) was calculated to be 101.2 mg/g. A bioadsorbent comprised of dithio-
carbamate on alkaline lignin matrix was prepared by [36]. The bioadsorbent was 
efficiently applied for the removal of metallic ions from aqueous solution.
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There are some dyes such as cationic turquoise GB, cationic red GTL, Safranin-O 
and cationic yellow X-5GL that are often used in textile purposes and are required 
to remediate in a proper technique. Azimvand et al. prepared lignin nanoadsorbents 
using alkali lignin for the effective removal of Safranin-O [11]. Similarly, alkaline 
hydrolysis of elephant grass was used to remove crystal violet dyes from wastewater. 
The bioadsorbent was found to be more than 90% in 30 min. Albadarin et al. investi-
gated the remediation of Cr(VI) in wastewater using alkali lignin. In equilibrium, the 
sorption capacity of lignin was reported at 31.6 mg/g toward Cr(IV) [7]. Demirbas 
et al. studied the remediation of Cd(II) and Pb(II) utilizing alkaline lignins isolated 
from poplar and beech woods [22]. Todorciuc et al. used alkaline lignin obtained 
from wheat straw for the adsorption of Cu(II) and found the adsorption capacity of 
lignin toward Cu(II) 26 mg/g in aqueous solution [98]. Wu et al. [105] investigated 
the sorption of Cr(III) using alkali lignin collected from black liquor and 17.97 mg/g 
of Cr(III) was reported to be adsorbed [105]. 

2.4 Sulfonate Lignin in Wastewater Treatment 

Lignosulfonates are produced by breaking the infinite lignin network during the 
sulfite process of wood pulping. In the sulfite pulping processes, sulfurous acid or 
a metal sulfite containing calcium, sodium, and magnesium is used with pulp to 
produce Lignosulfonates. The process is executed at temperatures 120–180 °C, with 
1–5 h duration at a pH range 2–12. The process breaks α-ether (α–O–4') and β-ether 
(β–O–4') bondage of lignin. The lignosulfonates produced by using the sulfite treat-
ment have a higher MW 1000 and 50,000 Da. [10, 32]. Lignosulfonates thus obtained 
have higher sulfur contents in the form of HSO3− and SO3 

2− groups [74]. Lignosul-
fonate materials were applied as surfactants for pesticides, emulsifiers, drilling muds, 
binders for foundry and wood adhesives, oil recovery and concrete cure retarders and 
plasticizers. However, lignosulfonate may be used for heavy metals and dye removal 
from the effluent of textile wastewater due to the existence of active functional groups 
[12]. The hydrophilic nature of lignosulfonate makes it capable of use for dye and 
heavy metals removal in aqueous phase. Instead, hydrophobic property of lignosul-
fonates gives it an extra advantage to remove dye which is not soluble in aqueous 
media [87]. 

In a study, removal of methylene blue has been investigated with the help of 
sodium lignosulfonate [83]. The adsorption results displayed that nearly 100% of 
dye removal could be acquired at the dosage of sodium lignosulfonate 1.1 g and 
the investigation here manifests the potential application of inexpensive sodium 
lignosulfonate for textile wastewater treatment. Similarly, sodium lignosulfonates 
with three individual molecular masses were obtained by ultrafiltration method. The 
impact of prepared lignosulfonates on the dye’s properties was studied. The purity, 
chroma, and guaiacyl contents in lignosulfonate and carboxyl, and sulfonic group and 
phenolic hydroxyls in lignosulfonate decrease with the increases of the molecular 
weight of lignosulfonates. The weakest reduction effect on dyestuffs was observed
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with the molecular mass above 2.5 kDa [109]. Li et al. [59] synthesized porous 
lignin-based spheres by crosslinking lignosulfonate with epichlorohydrin and sodium 
alginate. The fabricated lignin-based microspheres displayed excellent adsorption 
efficiency of 95.6% toward Pb(II). In a separate study, 1-carboxypropyled lignosul-
fonates and 5-carboxypentyled lignosulfonates were prepared for the remediation of 
ethyl violet dye from a simulated solution. 1-carboxypropyled lignosulfonates and 5-
carboxypentyled lignosulfonates displayed improved performance in removing dye 
than carboxyethylated lignosulfonate [12]. 

2.5 Organosolv Lignin in Wastewater Treatment 

Organosolv lignin is a high-grade lignin containing many aliphatic and phenolic 
hydroxyl groups, which enable it as an excellent bioadsorbent for dye and heavy 
metals removal from wastewater. Organosolv lignin is obtained from biomass using 
organic solvents and delignifying agents. Generally, the solvents such as methanol, 
ethanol, formic acid, acetic acid are used with water at temperatures ranging from 
170 to 190 °C. The efficacy of this process is improved by adding basic or acidic 
catalysts. The part of lignin and hemicellulose dissolve in the addition of mixtures of 
water and organic solvent. In this process, the lignin components are liberated from 
the lignocellulose through the breaking of α–O–4' and lignin-carbohydrate linkages. 
The dissolved lignin and hemicelluloses are recovered and separated by evaporation 
of the organic solvent or precipitation. The molecular weight of the obtained lignin 
exists in the range of 500–5000 Da [32, 68]. 

A bioadsorbent was prepared from organosolv lignin 2-hydrazinyl-2-oxoethyl]-
trimethylazanium chloride and was used for the efficient decontamination of Cr(VI). 
The capacity of biadsorbent to remove Cr (VI) was observed as 93.40%, 96.70%, 
98.78% and 97.84% when the initial concentration was 10, 20, 50, 80 and 100 mg/L, 
respectively [101]. Similarly, using a microwave-assisted method a bioadsorbent 
was prepared from organosolv lignin and dithiocarbamate and was applied for the 
decontamination of Hg(II) from waste effluents [34]. In equilibrium, the adsorption 
amount of Hg(II) on bioadsorbent was estimated to be 210 mg/g which is observed to 
be almost three times more than that of pure lignin. In another investigation, organo-
solv and kraft lignin blended adsorbent were applied for the decontamination of of 
Cu(II) from wastewater [42]. The order of the adsorption capacities by the used bioad-
sorbents was observed as softwood kraft lignin > hardwood kraft lignin > hardwood 
organosolv lignin > softwood organosolv lignin. Similarly, organosolv lignin was 
reported to use for the remediation of methylene blue in batch modes. The adsorp-
tion capability of methylene blue on bioadsorbent was estimated as 40.02 mg/g. In 
another study, organosolv lignin was used to study the adsorption performance of 
methylene blue from wastewater. The experimental result displayed that the amount 
of adsorption methylene blue on organosolv lignin was 40.02 mg/g in equilibrium 
and the adsorption process was pH-dependent [115].
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3 Chemically Modified Lignin in Textile Wastewater 

Pure lignins are less capable of removing heavy metals and dyes from contamination 
due to its heterogeneous macromolecular structure and low hydroxyl content [25, 
68]. Therefore, the sorption capacity of pure lignins can be enhanced by the modi-
fication of pure lignin. Many reactive sites on lignin for heavy metals and dyes are 
created through modification. This modification is done by various chemical methods 
known as demethylation, methylation, hydrothermal depolymerization/liquefaction, 
and phenolation, etc. [8]. 

3.1 Lignin Modified with Oxygen-Containing Functional 
Groups 

Lignin biopolymers generally have oxygen-containing hydroxyl and carboxyl func-
tional groups in its structure. The number of oxygen-containing functional groups 
in lignin can be enhanced by oxidation reaction using some oxidants and co-
oxidants. The increased numbers of functional groups improve the polyelectrolyte 
and hydrophilicity behavior of lignin and enhance the adsorption capacity toward 
heavy metals and dye from wastewater. Dizhbite et al. oxidized the organosolv lignin 
using polyoxometalate oxidant and O2 or H2O2 cooxidants and increased the number 
of hydroxyl and carboxyl functional groups significantly into organosolv lignin 
without altering the lignin structure. The sorption capacity of modified lignin was 
improved threefold toward Cd(II) and twofold toward Pb(II) [23]. Tian studied the 
sorption capacity of synthesized dimethyl-acetoxy-(2-carboxymethyl ether)-lignin 
ammonium chloride toward Cu(II). The estimated amount of Cu(II) that was adsorbed 
on synthesized biomaterials was found as 399.0 mg/g and Freundlich model was 
reported as best fit for this adsorption process. Lignosulfonate resin was prepared 
by step-growth polymerization with glucose and lignosulfonate [60]. The Lignosul-
fonate resin adsorbed 194.5, 59.9, 48.8, 42.5 and 41.8 mg/g of Pb(II), Cu(II), Cd(II), 
Ni(II), and Cr(III), respectively. The highest adsorption capacity gained for Pb(II) as 
compared to other metals indicates the stronger bonding tendency toward Pb(II) due 
to the existence of carboxyl and phenol hydroxyl groups. 

In a study, carboxymethylated formic lignin was reported to show adsorption 
efficiency of 67.7 and 107.7 mg/g for Cd(II) and Pb(II), respectively. Monolayer 
sorption mechanism was depicted as Langmuir isotherm model found to be best fit 
for this investigation [80]. Parajuli et al. studied the adsorption capacity of a lignin-
based biomaterials prepared from lignin and catechol toward Cd (II), Pb (II) and 
Co(II). The incorporation of higher amounts of phenol hydroxyl groups onto modified 
lignin enhances the capacity of this bioadsorbent to adsorb high amounts of Pb(II), 
Cd (II) and Co(II). The sorption mechanism was explained to be a cation exchange 
interaction between heavy metals and the phenol hydroxyl functional groups [78]. 
Similarly, acetic acid lignin impregnated with various acidic hydroxylgroups was
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reported to adsorb methylene blue from aqueous solution with a maximum sorption 
capacity of 63.3 mg/g. The sorption capacity of acetic acid lignin increased with 
the increment of pH [29]. In another study, sulfuric acid lignin was improved by 
increasing the amount of phenol hydroxyl functional group from 2.99 to 9.49 mmol/g 
just after phenolisation. The sorption capacity of sulfuric acid lignin after phenolation 
was carried out toward methylene blue. The remediation efficiency of methylene blue 
with the phenolated sulfuric acid lignin was enhanced to 99.6% [94]. 

3.2 Lignin Modified with Nitrogen-Containing Functional 
Groups in Wastewater Treatment 

Modification of lignin with reactive components like the amino group gives the lignin 
improved properties for different applications. Amino groups can be introduced to 
lignin structure by many chemical methods. Chemically, many applicable methods 
can introduce amine groups into lignin. However, most of the amination of lignin is 
carried out by the simplest method of the Mannich reaction. In this method, primary, 
secondary and tertiary amino groups are incorporated into lignin structures where 
tertiary amino groups are dominating groups. 

A Mannich base lignin adsorbent was prepared from lignin and methylamine [35]. 
The obtained lignin biomaterials showed approximately four folds higher sorption 
capacity toward Pb(II) than unmodified lignin. The monolayer sorption mechanism 
was suggested as the adsorption isotherm best fit the Langmuir isotherm model. 
Liu et al. prepared lignin biomaterials from alkali lignin and amine compound. The 
adsorbent showed adsorption capacity of 55.35 mg/g toward Cu(II) and 72.48 mg/g 
toward Pb(II) [64]. In another study, a bioadsorbent of enzyme hydrolyzed lignin 
was modified by the nitrogen and sulfur functional groups. The sorption capacity of 
modified lignin was estimated to be180 mg/g toward Hg(II) [58]. 

3.3 Lignin Modified with Sulfur-Containing Functional 
Groups in Wastewater Treatment 

Sulfur is a soft base and has an attraction to soft metal ions like Hg(II), Cd(II), 
Pb(II) and Cu(II). Generally, thiol, dithiocarbamate, xanthate and sulfonate func-
tional groups exist in the lignin as sulfur-containing groups. Moreover, sulfomethy-
lation and sulfonation reactions are used to incorporate sulfonate (–SO3−) and methy-
lene sulfonate (–CH2SO3−) in the lignin structure as shown in Fig. 5. The incorpo-
ration of more sulfur-containing function groups into lignin structure makes it more 
capable for advanced use in the design and adsorbing materials for dye and heavy 
metals from wastewater [36].
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Fig. 5 Sulfonation of lignin structure. Reproduce with permission from [33]. Copyright@2018, 
American Chemical Society 

Li et al. prepared a bioadsorbent by modification of lignin with dithiocarba-
mate moieties. The adsorbent has eleven times higher surface area (22.3 m2/g) and 
exhibits twelve times adsorption efficiency toward Pb(II) (188 mg/g) as compared 
to original lignin. The best-fitted Langmuir isotherm model of the adsorption study 
suggested the monolayer sorption of metal on the homogeneous surface of the adsor-
bent [58]. In another study, mesoporous lignin-based adsorbent was synthesized for 
the decontamination of Pb(II). The excellent sorption efficacy was marked toward 
Pb(II) (188 mg/g) by the prepared bioadsorbent [106]. 

4 Lignin-Based Hybrid Biomaterials in Textile Wastewater 

Lignin-based hybrid biomaterials are now being used as viable bioadsorbents for 
the remediation of dyes and heavy metals from textile effluents. Lignin is a natural 
polymer and is available as an inexpensive byproduct of the pulp industry. Hence, 
the use of lignin to develop a material will minimise the cost and will help to synthe-
size environmentally friendly hybrid adsorbent. In a study, lignin-based sulfonated 
porous carbon bioadsorbent was found to show magnificent efficiency for the rapid 
removal of methylene blue. The adsorption capacity toward methylene blue increases 
rapidly from 234.19 to 621.52 mg/g with the change of pH from 2 to 11 [119]. 
Meng et al. studied the effective remediation of azo dye direct blue 1 by synthesized 
animated cosolvent-enhanced lignocellulosic fractionation with a sorption capacity
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of 502.7 mg/g [69]. Budnyak et al. made electrostatic deposition of the oxidized kraft 
lignin onto the surface of aminosilicas to prepare hybrid materials for the remediation 
of crystal violet from textile wastewater (Fig. 6). The prepared hybrid biomaterials 
were found to absorb a high amount of textile dye (108–110 mg/g. Hence, the adsor-
bent showed high capacity toward the selected dye, which manifested it as a potential 
candidate for the decontamination of textile effluents [15]. 

Kriaa et al. fabricated Tunisian-activated lignin for adsorption of methylene blue 
dye. The maximum adsorption capacity were found 147 mg/g at pH 11 [53]. Similarly, 
lignin modified with 5-sulfosalicylic exhibited enhanced adsorption capacity toward 
methylene blue. This investigation revealed that the sorption capacities of methylene 
blue reached the maximum at 83.2 mg/g by the hybrid biomaterials [49]. In a study, 
chitosan-lifnosulfate hybrid adsorbent was prepared by crosslinking sulfonate group 
in lignosulfonate with the protonated amino group in chitosan [39]. The prepared 
bioadsorbent was applied for the effective remediation of Cr(VI), Congo red dye and 
Rhodamin B dye from wastewater. From adsorption isotherm and kinetic studies, 
the mechanism of adsorption was suggested for the electrostatic interaction between 
the anionic groups of Congo red and Cr(VI) with hydroxyl groups and protonated 
amino groups, respectively. Moreover, the electrostatic interaction between positively 
charged group of rhodamine B and sulfonate functional groups of the biomaterials 
exhibited a vital role in rhodamine B adsorption. Carboxy-methylating lignin with 
Al3+ and Mn2+ was reported in a study to remove procion blue MX-R textile dyes from

Fig. 6 Lignin-silica composites for synthetic dye adsorption. Further permissions related to 
the material excerpted should be directed to the ACS. Reproduce with permission from [15]. 
Copyright@2019, American Chemical Society
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aqueous solution. The maximum sorption capacities found for carboxy-methylating 
lignin with Al3+ was 73.52 mg/g and for carboxy-methylating lignin with Mn2+ 

55.16 mg/g. The sorption of procion blue MX-R on modified lignin best fit to the 
Langmuir model of adsorption [3]

In a study, lignin-derived hollow spheres were prepared and was used for the 
decontamination of Rhodamine B and methylene blue from effluents. The bioadsor-
bent were simply fabricated from maleic anhydride and organosolv lignin through 
self-assembly Fe3O4 nanoparticles (Fig. 7). The bioadsorbent exhibited adsorption 
capabilities of 31.23 mg/g toward methylene blue and 17.62 mg/g toward Rhodamine. 
The microspheres thus prepared manifested as a potential bioadsorbent with low cost 
and reusability for textile wastewater treatment [57]. Roy et al. used lignocellulosic-
biomass jute fiber for remediation of azo dye from aqueous media. The maximum 
adsorption of azo dye in equilibrium for the biomaterials was found as 28.940 mg/g 
at pH 3.91 [86]. Activated carbons developed from various eucalyptus kraf lignin 
have been successfully employed for Congo red dye removal in aqueous phase. The 
adsorption capacity of the adsorbent was totally influenced by total amount of pore 
volumes of the activated carbons. In equilibrium, the adsorption data was fitted to both 
BET isotherms and Langmuir isotherms very well. The thermodynamic analysis indi-
cated that the Congo red adsorption was endothermic in nature [20]. In another study,

Fig. 7 Synthesis of magnetic lignin-based hollow microspheres for methylene blue dye adsorption. 
Reproduce with permission from [57]. Copyright@2016, American Chemical Society
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lignin-chitosan biomaterials were prepared for effective remediation of methylene 
blue dye. The sorption of dye on adsorbent was occurred by the electrostatic attrac-
tions and chemical interactions between amino group of dye and hydroxyl groups of 
the adsorbent. The maximum adsorption capacity was estimated as 36.25 mg/g [6].

The chitin/lignin hybrid adsorbent was developed to adsorb anionic dye Direct 
Blue 71 from aqueous media. The sorption capacity was estimated to be 91% at 
pH range between 2.4 and 8.4. [103]. Budnnyak et al. developed a hybrid lignin 
for the remediation of methylene blue dye. The hybrid lignin based on clean flow 
black exhibited sorption efficiency of 60 mg/g which was 30% more than the hybrid 
lignin obtained from ligno boost. Lignin hybrid biomaterials adsorbs 80–99% of the 
methyl blue in the pH range between 3 and 10 [15]. In another study, chitosan-alkali 
lignin composites material was reported for the remediation of Remazol Brilliant 
Blue R, anthraquinonic dye and Cr(VI). The chitosan-alkali lignin (50/50) hybrid 
adsorbent showed the remediation of maximum percentage of Remazol Brilliant Blue 
R, anthraquinonic dye, and Cr(VI) as compared to other composites, sole chitosan and 
sole alkali lignin. The mechanism of adsorption suggested the electrostatic interaction 
of anionic sulfonate and hydrogen chromate groups of dye and Cr(VI) and hydroxyl 
groups and protonated amino of the composite with as well as chemical interaction 
between carbonyl moiety of the dye and amino and hydroxyl functional groups of the 
biocomposite [73]. Hu et al. synthesized magnetic lignosulfonate bioadsorbent and 
the surface of the adsorbent was coated with an organic carbon. The study showed 
the highest adsorption efficiency of 198.24 and 192.51 mg/g for Congo red and titan 
yellow dye, respectively. The adsorption isotherm follows the Langmuir adsorption 
model [45]. 

5 Lignin-Based Polymer Composite Materials 
for Wastewater Treatment 

Polymer composite research is now becoming a potential alternative to traditional 
adsorbent due to the requirements for materials with higher adsorption capacities of 
dyes, toxic metal and other toxic pollutants from industrial effluents. The polymers 
biocomposites are mainly categorized on the basis of sources and their structure [14, 
70]. A large number of polymer composites were fabricated significantly for the 
remediation of wastewater [17, 65, 77]. Among them, the polymeric lignin bioma-
terials are playing an important role in the decontamination of various types of 
contaminants, such as dyes, metal ions, and other toxic contaminants from wastew-
ater. Polymeric lignin biomaterials are explained as a unification of any polymers 
with lignin biopolymer to provide improved characteristics depending on the end 
use. A lignin biomaterial bears varieties of active functional groups and provides a 
bright prospect for diverse functionality for various applications [37]. Lignin could 
be straightly integrated onto another polymeric structure to work as a flame retardant 
[63], antioxidant [31], heavy metal adsorbent [67] and dye adsorbent [25, 111].
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In a study, Gonzalez-Lopez et al. developed highly porous polymeric lignin 
composite from hardwood kraft lignin and low-density polyethylene to estimate 
the adsorption capacity toward methylene blue dye. The polymeric lignin composite 
showed the dye removal efficiency of 80% in a batch adsorption [38]. Similarly, 
Lignin-based hydrogel adsorbent was prepared by crosslinking the lignosulfonate 
with acrylamide (AM) and acryloyloxyethyl trimethylammonium chloride monomer. 
The bioadsorbent was then applied for the remediation of AR 73 dye. In equilib-
rium, maximum sorption capacity of the adsorbent is 409.84 mg/g toward AR 73 
dye [104]. Similarly, the sorption study of methylene blue from wastewater was done 
on fabricated sulfonate lignin-based hydrogels [56]. The efficiency of adsorption was 
estimated to be 495 mg/g toward methylene blue for hydrogel bioadsorbent which 
is five folds more than the same for unmodified lignin. Tang et al. prepared lignin 
sulfonate-g-poly (acrylic acid-r-acrylamide) lignin and applied it to study the adsorp-
tion capacity, adsorption kinetics and isotherm for the removal of malachite green. 
The grafted biomaterials displayed a higher and higher percentage of adsorption 
toward malachite green than the un-grafted lignin [96]. 

In a study, dye dispersant was synthesized by 3-chloro-2-hydroxy propyl sodium 
sulfonic acid on alkali lignin. The dye dispersant containing the higher amount of 
sulfonic groups and lower amount of phenolic hydroxyl groups showed an ultra-weak 
reducing effect and well dispersion on azo dye [81]. Zhang et al. developed a high-
performance absorbent for cationic dye Safranine T from lignin and polyvinyl alcohol 
polymer by electrospinning process. The capacity of adsorption was reported to be 
increased with increasing the initial dye pH [116]. In another study, lignosulfonate-
g-acrylic acid hydrogels were prepared by grafting acrylic acid on the lignosulfonate 
structure. The introduction of a higher amount of carboxylic acid functional groups 
through the grafting process improved the adsorption efficiency of the hydrogel 
toward methylene blue (2013 mg/g) [111]. In a similar way, Domínguez-Robles 
prepared lignin-based hydrogels by crosslinking different technical lignins with poly 
(methyl vinyl ether co-maleic acid. The hydrogels were applied to remove methylene 
blue dye in aqueous media. The high sorption capacity of hydrogels was reported to 
be found from 440 to 840 mg/g toward methylene blue [26]. 

6 Lignin-Based Nanocomposite Materials for Wastewater 
Treatment 

Lignin-based nanomaterials have been intensively investigated in a number of fields, 
such as, decontamination of wastewater, antioxidant, reinforced materials, nanomi-
crocarriers, membrane, drug delivery, etc. [43, 114]. The investigation on lignin-
based nanocomposite has attained intense concentration for many applications. 
Moreover, for the unique properties of nanomaterials for their size distinctness,
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many researchers have commenced to study on lignin at the nanoscale for poten-
tial applications in wide variety of fields [57, 85, 107, 108]. The more biodegrad-
ability of lignin nanocomposite than synthetic inorganic nanoparticles and the possi-
bility to prepare aqueous nanoparticle dispersions of lignin nanoparticles enable it 
a prospective applicant in designing sustainable bionanocomposite [61]. Integration 
of nanoparticles in natural or synthetic polymers renders them as high valued mate-
rials since the novel materials with improved and new featured materials are thus 
obtained [71, 91]. Yu et al. prepared a high-performance modified lignin nanoad-
sorbent by the co-precipitation of ferric, ferrous, and permanganate with lignin. The 
adsorption efficiency of the nanocomposites for the methylene blue remediation from 
aqueous media was estimated (Fig. 8). The maximum adsorption of nanoadsorbent 
toward methylene blue estimated as 252.05 mg g−1 at 298 K indicated potential 
biomaterials for dye wastewater treatment [110] de Araújo Padilha et al. studied 
the removal of methylene blue by lignin/Fe3O4 nanoparticles adsorbent. Organosolv 
lignin obtained from pretreated green coconut fiber was coated with Fe3O4 nanoparti-
cles and subsequently β-glucosidase was immobilized on it to prepare the adsorbent. 
In adsorption experiments, high sorption capacity toward cibacron blue, methylene 
blue and remazol red was estimated as 112.36, 203.66 and 96.46 mg/g, respectively 
[24]. 

Azimvand et al. synthesized lignin nanoparticle-g-polyacrylic acid adsorbent for 
the remediation of Safranin-O from wastewater. They fabricated lignin nanoparticle-
g-polyacrylic acid adsorbent through copolymerization reactions in presence of 
initiator as potassium persulfate. The maximum adsorption capacity was obtained

Fig. 8 Synthesis of a lignin-Fe/Mn binary oxide blend nanocomposite for methylene blue dye 
adsorption. Reproduce with permission from [110]. Further permissions related to the material 
excerpted should be directed to the ACS. Copyright@2021, American Chemical Society
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at 99 mg/g and 138.88 mg/g toward safranin-O dye [11]. In another study, 
Chitosan/nano-lignin-based hollow spheres with the diameter of 138 ± 39 nm from 
the palm kernel. The highly efficient sorbent exhibited effective removal (~83%) of 
methylene blue dye under normal pH conditions. The adsorbent exhibited maximum 
adsorption capacity of 74.07 mg/g to methylene blue [91]. Similarly, Zhou prepared 
chitosan-decorated lignocellulose fiber by deposition–crosslinking to adsorb AR18 
solution. Subsequently, chitosan-decorated lignocellulose was magnetized by easily 
blending it with magnetic nanoparticles very easily in an aqueous solution. The sorp-
tion capacity of the magnetized chitosan-decorated lignocellulose fiber was estimated 
to be 1184 mg/g [117].

In an investigation, MnO2 nanodots modified lignin nanocomposite was reported 
for remediation of methylene blue dye sorption. The hierarchical spherical nanos-
tructures with evenly dispersed MnO2 nanodots were observed for this nanoadsor-
bent. In the case of adsorbent 80% of adsorption capacity was reached within 5 min 
at room temperature. [113]. In a similar way, the adsorption of brilliant black dye 
from contaminated wastewater was reported using chitosan-lignin-titania nanoad-
sorbent. The adsorbent was prepared from kraft lignin derived from paper and 
pulp black liquor, titania (TiO2) and chitosan. The adsorbent exhibited a maximum 
sorption capacity of 15.8 mg/g [67]. In another study, novel lignosulfonate/amino-
functionalized nanocomposite was prepared and applied for the remediation of 
methylene blue from wastewater. The adsorption study showed the incorporation 
of lignosulfonate to amino-functionalized nanocomposite improved the stability of 
the composite in water and enhanced its adsorption capacity of methylene blue. 
Hence, this novel nanoadsorbent can be effectively applied for the remediation of 
organic dyes from textile effluents [2]. 

7 Conclusion 

This chapter gives a brief review on the importance of lignin-based biomaterials 
for the treatment of effluent from textile industries. The textile industry uses large 
quantities of potable water and consequently generates large amounts of wastewater. 
Hence, textile wastewater is not desirable to be released to the environment untreated. 
Different types of methods such as physical, chemical and biological methods have 
been applied to treat the textile effluent. Adsorption techniques have been proven 
as one of the viable methods for the decontamination of textile effluents. However, 
more developments are required to adopt these techniques for acquiring a more cost-
effective and environmentally friendly process. Development of inexpensive and 
efficient bioadsorbents for removal of toxic dyes and heavy metals from contami-
nated water has been a topic of great interest. Lignin is a very influential bio-derived 
biomaterials. The existence of various functional groups in the backbone of lignin 
creates many chances to apply it for many applications and many researches have 
been carried out in this field. In this chapter, we highlighted the role of lignin and 
lignin-based biomaterials in the decontamination of textile effluents. The discussion
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was categorized into types of lignin-based biomaterials used in the remediation of 
wastewater. Finally, it is concluded that lignin-based biomaterials being biodegrad-
able, inexpensive and environmentally friendly have been proven to be the promising 
alternative for the remediation of textile effluents. 

References 

1. Abdelhamid HN, Zou X (2018) Template-free and room temperature synthesis of hierarchical 
porous zeolitic imidazolate framework nanoparticles and their dye and CO2 sorption. Green 
Chem 20(5):1074–1084 

2. Abboud M, Sahlabji T, Abu Haija M, El-Zahhar AA, Bondock S, Ismail I, Keshk S (2020) 
Synthesis and characterization of lignosulfonate/aminofunctionalized SBA-15 nanocom-
posite for the adsorption of methylene blue from wastewater New. J Chem 44:2291–2302. 
https://doi.org/10.1039/D0NJ00076K 

3. Adebayo MA, Prola LDT, Lima EC, Puchana-Rosero MJ, Cataluña R, Saucier C, Umpierres 
CS, Vaghetti JCP, da Silva LG, Ruggiero R (2014) Adsorption of Procion Blue MX-R dye 
from aqueous solutions by lignin chemically modified with aluminium and manganese. J 
Hazard Mater 268:43–50 

4. Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithan-age M, Lee SS, 
Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. 
Chemosphere 99:19–33 

5. Ahmed MJK, Ahmaruzzaman M (2016) A review on potential usage of industrial waste 
materials for binding heavy metal ions from aqueous solutions. J Water Process Eng. 10(April 
2016):39–47. https://doi.org/10.1016/j.jwpe.2016.01.014 (Internet) 

6. Albadarin AB, Collins MN, Naushad M, Shirazian S, Walker G, Mangwandi C (2017) Acti-
vated lignin-chitosan extruded blends for efficient adsorption of methylene blue. Chem Eng 
J [Internet] 307:264–272. https://doi.org/10.1016/j.cej.2016.08.089 

7. Albadarin AB, Al-Muhtaseb AH, Walker GM, Allen SJ, Ahmad MNM (2011) Retention of 
toxic chromium from aqueous phase by H3PO4-activated lignin: effect of salts and desorption 
studies. Desalination 274(1–3). https://doi.org/10.1016/j.desal.2011.01.079 

8. Alonso MV, Oliet M, Pérez JM, Rodríguez F, Echeverría J (2004) Determination of curing 
kinetic parameters of lignin-phenol-formaldehyde resol resins by several dynamic differential 
scanning calorimetry methods. Thermochim Acta 419(1–2):161–167 

9. Aniagor C, Menkiti M (2019) Synthesis, modification and use of lignified bamboo isolate for 
the renovation of crystal violet dye effluent. Appl Water Sci 9(4):77 

10. Azadi P, Inderwildi OR, Farnood R, King DA (2013) Liquid fuels, hydrogen and chemicals 
from lignin: a critical review. Renew Sustain Energy Rev [Internet] 21:506–523. https://doi. 
org/10.1016/j.rser.2012.12.022 

11. Azimvand J, Didehban K, Mirshokraie SA (2018) Safranin-O removal from aqueous solutions 
using lignin nanoparticle-g-polyacrylic acid adsorbent: synthesis, properties, and application. 
Adsorpt Sci Technol 36(7–8):1422–1440 

12. Bahrpaima K, Fatehi P (2019) Preparation and coagulation performance of carboxypropylated 
and carboxypentylated lignosulfonates for dye removal. Biomolecules 9:383. https://doi.org/ 
10.3390/biom9080383 

13. Bajwa DS, Pourhashem G, Ullah AH, Bajwa SG (2019) A concise review of current lignin 
production, applications, products and their environment impact. Ind Crops Prod 139:111526. 
https://doi.org/10.1016/j.indcrop.2019.111526 

14. Berber MR (2020) Current advances of polymer composites for water treatment and 
desalination. J Chem. Article ID 7608423. https://doi.org/10.1155/2020/7608423

https://doi.org/10.1039/D0NJ00076K
https://doi.org/10.1016/j.jwpe.2016.01.014
https://doi.org/10.1016/j.cej.2016.08.089
https://doi.org/10.1016/j.desal.2011.01.079
https://doi.org/10.1016/j.rser.2012.12.022
https://doi.org/10.1016/j.rser.2012.12.022
https://doi.org/10.3390/biom9080383
https://doi.org/10.3390/biom9080383
https://doi.org/10.1016/j.indcrop.2019.111526
https://doi.org/10.1155/2020/7608423


94 Md. D. Islam et al.

15. Budnyak TM, Aminzadeh S, Pylypchuk IV, Sternik D, Tertykh VA, Lindström ME, 
Sevastyanova O (2018) Methylene blue dye sorption by hybrid materials from technical 
lignins. J Environ Chem Eng [Internet] 6(4):4997–5007. https://doi.org/10.1016/j.jece.2018. 
07.041 

16. Cardoso NF, Lima EC, Royer B, Bach MV, Dotto GL, Pinto LAA, Calvete T (2012) Compar-
ison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the 
removal of Reactive Red 120 dye from aqueous effluents. J Hazard Mater 241–242:146–153. 
https://doi.org/10.1016/j.jhazmat.2012.09.026 

17. Chen D, Wang L, Ma M, Yang W (2016) Super-adsorbentmaterial based on functional polymer 
particles with a multilevel porous structure”. NPG Asia Mater 8(8):301 

18. Chen H, Qu X, Liu N, Wang S, Chen X, Liu S (2018) Study of the adsorption process of 
heavy metals cations on Kraft lignin. Chem Eng Res Des 139:248–258 

19. Chikri R, Elhadiri N, Benchanaa M, El maguana Y (2020) Efficiency of sawdust as low-cost 
adsorbent for dyes removal. J Chem. 2020:1–17 

20. Cotoruelo LM, Marqués MD, Díaz FJ (2010) Equilibrium and kinetic study of congo red 
adsorption onto lignin-based activated carbons. Transp Porous Med 83:573–590. https://doi. 
org/10.1007/s11242-009-9460-8 

21. da Silva LG, Ruggiero R, Gontijo PM, Pinto RB, Royer B, Lima EC, Fernandes THM, Calvete 
T (2011) Adsorption of Brilliant Red 2BE dye from water solutions by a chemically modifed 
sugarcane bagasse lignin. Chem Eng J 168:620–628 

22. Demirbas A (2004) Adsorption of lead and cadmium ions in aqueous solutions onto modified 
lignin from alkali glycerol delignication. J Hazard Mater 109(1–3). https://doi.org/10.1016/j. 
jhazmat.2004.04.002 

23. Dizhbite T, Jashina L, Dobele G, Andersone A, Evtuguin D, Bikovens O, Telysheva G 
(2013) Polyoxometalate (POM)-aided modification of lignin from wheat straw biorefinery. 
Holzforschung 67(5). https://doi.org/10.1515/hf-2012-0193 

24. de Araújo Padilha CE, da Costa Nogueira C, de Santana Souza DF, de Oliveira JA, dos Santos 
ES (2020) Organosolv lignin/Fe3O4 nanoparticles applied as a β-glucosidase immobilization 
support and adsorbent for textile dye removal. Ind Crops Prod. 146(December 2019):112167. 
https://doi.org/10.1016/j.indcrop.2020.112167 

25. Demirbas A (2008) Heavy metal adsorption onto agro-based waste materials: a review. J 
Hazard Mater 157(2–3):220–229 

26. Domínguez-Robles J, Peresin MS, Tamminen T, Rodríguez A, Larrañeta E, Jääskeläinen AS 
(2018) Lignin-based hydrogels with “super-swelling” capacities for dye removal. Int J Biol 
Macromol. 115:1249–1259.https://doi.org/10.1016/j.ijbiomac.2018.04.044 (Internet) 
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Application of Cellulose-Based 
Biomaterials in Textile Wastewater 

Fatma Abdelghaffar 

1 Introduction 

Over time, the rapid environmental contamination of limited water resources has 
become a high public health concern that must be addressed quickly as possible to 
conserve the earth and its residents for later generations [74]. Owing to the increased 
demand for industrial products, especially textiles products that make a massive 
amount of wastewater containing various effluents are released every year. The 
textiles industry faces significant waste management and environmental commitment 
challenges. Whereas, textile industries’ pollutions (dyes, heavy metals, organic and 
inorganic salts) [19, 25, 72] are a globally great concern. Especially, dyes effluents, 
described as the largest class of synthetic colorants, which estimated about 10,000 
different forms of synthetic dyes produced over 7× 105 tons worldwide annually, and 
a potential hazard to aquatic organisms because the released dyes harm living organ-
isms. The world faces the dangers of such effluent release resulting from industrial 
growth, posing significant environmental and ecological concerns [39, 61]. 

Habitually, traditional techniques, advanced oxidation processes, ion exchange, 
coagulation/flocculation, floatation, reverse osmosis, ultra-filtration, electro-
precipitation, adsorption, and membrane separation, are essentially resorted to 
as convenient technologies to treat industrial wastewater. However, conventional 
wastewater techniques and purifying cannot lead to the coveted degree of purifi-
cation to reach accurate or cost-effective elimination levels [13, 31, 82]. Generally, 
consideration should be given to developing green and eco-friendly wastewater treat-
ment techniques containing fewer chemical reagents, photocatalysts, templates, and 
precursors with fewer production steps [74].
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Therefore, the scientists’ awareness increased to use sustainable biomaterials, 
derived from the plentiful natural resources, to develop efficient and low-cost eco-
friendly sorbents for wastewater treatment [102]. Among the sustainable renewable 
materials, the cellulose-based biomaterial has been a high-priority resource, that 
cellulose holds high adsorptive properties toward both harmful dyestuffs and heavy 
metal ions in contaminated water, indicating cellulose’s potential as a bio-sorbent. 

Biopolymer cellulose is the most available, renewable, sustainable biomaterials, 
extracted from a broad range of natural materials such as plants, bacteria, fungi, and 
algae. It is environmentally safe, toxic-free, and biodegradable, making it appealing 
to apply within biomaterials-based sectors such as cosmetic, food, pharmaceutical, 
biomedical, and packaging [2, 22, 24, 99]. Furthermore, cellulose-based biomaterials 
and their derivatives have exhibited, in the wastewater treatment field, high-efficient 
in removing both organic and inorganic contaminations using sorption, degradation, 
or coagulation/flocculation processes. This chapter addresses recent advancements, 
discoveries, and challenges for cellulose-based biomaterials derived from sustain-
able resources for exploitation in treating wastewater discharged from the textiles 
industries. 

2 Hazards of Textiles Industrial Effluent 

Global growing industrialization enhanced the amount of organic and inorganic envi-
ronmental pollutants in soil and water. The textiles industry is one of the significant 
industries that consume over half of the world’s dyes and organic pigments, and their 
consumption is expected to increase annually [13, 72]. Synthetic dyes are broadly 
applied in the textile dyeing process. The azo type, comprising reactive, disperse, 
and acid dyes, is the most prevalent class of synthetic dyes. Azo dyes account for 
65% of all dye production globally [27]. 

During the textile-producing process, a large number of chemicals and dyestuffs 
are wasted, such as dyes and pigments, metals, oils, surfactants, detergents, chloride, 
and sulfate. These effluents are eliminated through discharge into the environment 
that contribute to water contamination and negatively affect the water quality. More-
over, the textile industries emit harmful gases, dust, volatile organic compounds, 
as well as other products. The dye in the water environment of rivers, channels, 
and drains prevents light penetration, reducing photosynthetic activity and oxygen 
concentration in water, creating an ecological imbalance and threaten aquatic lives 
and species [9, 14, 46, 68]. Moreover, dye-contamination wastewater can also reach 
deep soil layers, impacting groundwater safety and posing a critical health risk to 
humans and marine life [31] (Fig. 1). Textile effluent is also mutagenic, carcinogenic, 
and highly toxic to all life forms. 

A direct approach to limiting effluent waste in textiles industries is using alter-
native biodegradable, non-toxic dyes and chemicals. However, wastewater treat-
ment itself is numerous processing sectors. In recent decades, various techniques 
and innovations for effluent processing have been developed in accordance with the
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industry type. These innovations focused on finding a cost-effective and safe way to 
handle wastewater. Today, biochemical, physicochemical, incorporated processing, 
and other technologies are the most effective processing technology for textile dyeing 
effluents. 

3 Sustainable Biomaterial for Wastewater Treatment 

Biomaterials are natural or synthetic materials that possess a group of properties, 
including biological, chemical, physical, and mechanical properties that make them 
appropriate for safe, efficient, and credible use, i.e., polymers, metals, ceramics, and 
composites materials. Biomaterials can also be developed, designed, and functioned 
for use within medical and biological systems and engineering biomedical devices 
to interact directly with living organisms [8, 69, 93, 94]. Sustainable biomaterials 
are an interrelation between biomaterials and renewable natural resources that offers 
us a promising future to implement pioneering sustainable development strategies 
in the coming years. Sustainable bio-polymers are polymeric organic compounds 
derived from renewable sources (plants, animals, or microorganisms) that comprise 
covalently linked mono parts to form larger molecules. 

Affordable sustainable biopolymers like polysaccharides of varying structure, 
size, and molecular chains, including cellulose, starch, chitin/chitosan, pectin, 
gum, and alginate, possess prominent structural characteristics, biocompatibility, 
modification ease, nontoxicity, abundant availability, and promising potentials, 
making them a desirable competitor for industries wastewater treatment. Cellu-
lose biopolymer: micro-cellulose, nanocellulose, composite, is a promising sustain-
able biomaterial for sorption, membrane filtration, and photocatalytic in wastewater 
treatment applications. 

4 Cellulose-Based Biomaterial 

Cellulose is non-toxic, biodegradable, renewable polymer biomaterial, naturally 
occurs on the earth. Cellulose polymer distributes widely in the cell walls of plants, 
marine organisms, and even microorganisms (i.e., bacteria, algae, fungi), which 
depend on cellulose and use it in its life cycle [3, 51, 65]. These involve wood 
fibers (softwoods and hardwoods), seed fiber (cotton), bark fibers (jute, hemp, ramie, 
flax), grasses (bamboo, bagasse), bacteria (Acetobacter xylinum), and algae (Valonica 
ventricosa) [27, 81] (Fig. 2). 

Plant-derived cellulose also contains hemicellulose, lignin, pectin, and waxes, 
as well as cellulose, while bacteria-derived cellulose is free of these substances. 
However, the cost of bacteria-derived cellulose is comparatively high. Thus, for 
mass production, plant-derived cellulose is favored due to its lower cost. Cotton and
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wood pulp are the most fundamental sources of cellulose for industrial processes 
[64]. 

Cellulose is the principal component of cardboard, paper, flax, jute, cotton, or 
other plant textiles fibers’. It is also used to manufacture cellulose derivatives, films, 
and fiber. In reality, although cellulose was the base to produce the first commer-
cial polymers (cellophanes, celluloids), cellulose-based materials have not yet been 
wholly explored [26]. 

Cellulose has outstanding physicochemical and mechanical properties as a natural 
polymer, i.e., bio-degradation, high chemical resistance, good durability, high 
thermal stability, excellent strength, and good bio-compatibility, with a high degree 
of polymerization estimated at 10,000 for natural cellulose chains and 15,000 for 
original cotton cellulose. It also has natural drawbacks, i.e., weak antibacterial prop-
erties, poor dimensional stability, and lack of thermoplastics. Moreover, original 
cellulose is insoluble in water or soluble weakly in general organic solvents due to 
strong hydrogen links within molecules or among molecules, limits its application 
and processing [5, 42, 47]. 

4.1 Cellulose Structure 

Search a molecular structure of cellulose is critical to understand cellulose’s charac-
teristic properties compared to other polysaccharides linked through the α-glycosidic 
bond [62, 73]. Anselme Payen, a French chemist, was the pioneer to discover and 
describe cellulose in a study published in 1839. The cellulose molecular formula 
was also defined, C6H10O5, concomitantly using elemental analysis [10, 47, 49, 
54]. Cellulose is a linear polysaccharide composed of repeating β-D-glucopyranose 
units linked to three reactive hydroxyl groups for each anhydroglucose unit (AGU), 
making it a high level of functionality (Fig. 3). Moreover, via substituting other chem-
ical groups for these reactive OH groups, such as carboxymethyl, acetyl, methyl, and 
so on, different cellulose derivative compounds may be synthesized [28] (Fig. 2). 

4.2 Microorganism-Derived Cellulose 

Microbial-based cellulose denotes an extracellular polysaccharide created by several 
microorganisms including, fungi, algae (Valonica ventricosa), and various bacteria 
types involving Gram-negative bacteria (i.e., Agrobacterium, Acetobacter Azoto-
bacter, Alcaligenes, Pseudomonas, Rhizobium, Salmonella), along with Gram-
positive bacterial types (i.e., Sarcina ventriculi). Adrian J. Brown announced in 1886 
the first cellulose report derived from bacteria, precisely Acetobacter xylinum, subse-
quently called bacteria cellulose and revealed to have a similar chemical structure as 
plant cellulose. Bacterial cellulose (BC) manifests different chemical and physical 
properties, including shapes, morphology, and applications due to the diverse species
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Fig. 1 The impact of textile industries effluent discharged into the environment 

Fig. 2 Biomaterials sources 
for cellulose

of bacteria produced. It also varies from properties of plant cellulose in respect of 
purity, features, and macromolecular properties. BC has a high water sorption poten-
tial, high mechanical strength, high porosity, and a high aspect ratio in BC fibers 
[30, 52, 80, 88, 91]. 
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Fig. 3 Cellulose molecular structure 

Bacterial-derived cellulose can be utilized as a sustainable polymer biomaterial, 
because of its excellent properties, in a variety of industrial and medical applications 
including, water treatment, adsorbent, filter membrane, food packing, cosmetics, 
artificial blood vessels, pharmaceutical industries, scaffolds for tissue engineering, 
transparent coating, battery separator, electric conductors or magnetic materials, and 
ethanol production [87, 91]. 

Principal hurdles for BC production and applications are the high nutrients cost 
and low productivity on an industrial level. A feasible strategy to avoid these hurdles is 
to take advantage of alternative low-cost, availability, and renewable carbon sources, 
thus reducing costly commercial nutrients use and low productivity [35, 57]. Biotech-
nological techniques enable scientists and researchers to isolate bacteria cellulose 
polymeric materials from sustainable natural sources such as industrial waste. The 
use of industrial waste to produce BC would also help with waste management, 
environmental clean-up, as well as lower waste disposal costs for industries. Among 
those industrial wastes is textile waste, consisting of natural fibers waste, as affordable 
carbon sources for bacterial cellulose production due to its rich cellulose contents. 

Additionally, the BC can also be developed to remove metal ions and dyes from 
the textiles industry. Table 1 reviewed some publications that explored the application 
potential of BC as an adsorbent and membrane filtration for industrial wastewater 
filtration, as follows. 

4.3 Agricultural Waste-Derived Cellulose 

Every day, the world uses a wide range of agricultural materials to turn into various 
industrial products. After processing, agricultural materials generate a considerable 
volume of waste that often contains a high cellulose concentration [34]. Agricul-
tural waste materials are lignocellulosic materials, composed of natural polymers 
mixture including cellulose, lignin, and hemicellulose [7]. The lignocellulosic mate-
rial consists of organic components: oxygen (O), carbon (C), and hydrogen (H), 
in addition, a variety of inorganic elements, i.e., calcium (Ca), magnesium (Mg), 
potassium (K), sodium (Na), phosphorus (P), sulfur (S), chlorine (Cl), and nitrogen 
(N). Further, lignin comprises functional groups, containing alcohols, carboxylic 
acid, aldehydes, phenolic groups, ketones, and ether. Those organic and inorganic 
components collaborate to play a crucial roles in the sorption technique [60]. Besides,
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agricultural waste materials are plentiful, economical, eco-friendly, renewable, and 
compose an efficient alternative to acquiring high-value sorbents [89]. As a result, 
research and development are shifting toward using agricultural waste materials as 
bio-sorbents for various effluents. Table 2 exhibits cellulose-based agricultural waste 
application for wastewater treatment.

5 Application of Cellulose-Based Biomaterial 
in Wastewater Treatment 

From an environmental standpoint, cellulose-based biomaterials are an excellent 
option for textile effluent treatment because it is a sustainable, biodegradable, and 
reusability materials with a diverse variety of resources. Furthermore, the presence 
of internal and external hydroxyl groups within cellulose promotes various cellulose 
modification methods for some different functionality by replacing some of these 
groups with various functional groups, such as –COOH, –NH2, –CHO, and –SO3H 
[55]. 

Currently, cellulose production and development face several challenges, 
including higher rigidity, solubility, viscosity, stiffness, and inclination to crystallize 
or form fibrous structures. Cellulose and its derivatives are broadly contributed in a 
lot of industrial applications (e.g., cosmetic, medicine, pharmaceutics, biomedicine, 
nanocomposites, barrier films, membranes, bioplastics, electronics, and supercapac-
itors). 

Cellulose can be modified to promote its adsorption capacity to various types of 
pollutants. Modified cellulose includes chemical or physical alterations that enhance 
its adsorption properties, such as particle size and structure, increased surface area 
and adsorption sites, and homogeneous mesopores (amount and volume) [16, 75]. 
Several chemical modifications of cellulose, i.e., oxidation, esterification, etheri-
fication, grafting, halogenations, etc., have been executed to accomplish an effi-
cient adsorption capability for organic and inorganic pollutants, as reported in 
the literature [90]. In addition, it can be chemically modified to form nanofibers, 
nanofibrils, nanocrystals, and crystallites. The cellulose combination with other 
materials has also been performed to create a composite or nanocomposite system 
[27]. The following explores the application of cellulose-based biomaterials and 
some of their fundamental modifications in textile wastewater treatment: cellulose-
based activated carbon, bio-nano cellulose, cellulose-based gels, cellulose-based 
composite/nanocomposite, and cellulose-based photocatalytic.
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5.1 Cellulose-Based Activated Carbon 

Activated carbons remain the most extensively prevalent sorbents in wastewater 
treatment worldwide, in the light of many properties that make it especially desir-
able for the purpose, including a high specific surface, an affinity for a wide range of 
compounds, and ease of regeneration. Despite its widespread use, the ultimate goal 
is to reduce activated carbon use due to its high expense [13, 15]. Fortunately, the 
commercially, costly, energy-consuming activated carbon can effectively be substi-
tuted with renewable alternatives and low-cost biosorbents from agriculture wastes 
[18]. 

An ideal biosorbent should meet the following criteria: availability, rapid sorp-
tion, high absorption potential, reusability, and low cost. Thus, preparing activated 
carbon based on sustainable biosources is one tool for producing low-cost and effec-
tive sorbents to remove various kinds of textile effluent from wastewater. As a 
result, scientists are looking at low-cost adsorbents as viable options for wastewater 
treatment. 

Numerous agriculture wastes have been researched to prepare activated carbon 
for dye sorption. The adsorption of methylene blue and iodine from aqueous medium 
through activated carbon, developed from two cellulosic wastes, namely old cladodes 
and prickly pear seeds, were reviewed by Ouhammou et al. [63]. Whereas the adsorp-
tion of phenol, Acid Red 27 dye, and Cu2+ ions by activated carbon, derived from 
original cellulose, particularly coconut fibers and jute, were considered by Phan et al. 
[67]. 

On the other hand, Khamkeaw et al. generated activated carbon from bacte-
rial cellulose via activating phosphoric acid through a carbonization temperature 
at 500 °C to remove methylene blue, resulting in a maximum sorption capability of 
505.8 mg/g [45]. 

5.2 Bio-Nano Cellulose 

Cellulose microfibers and their nanofibers have recently acquired awareness; as a 
novel type of cellulose for numerous applications, owing to the fact that they are 
very fine natural polymeric has unique properties that are not possible to achieve with 
synthetic polymers [33]. To separate and modify cellulose fibrils from cellulose-based 
biomaterials, two stages are required: 

1. Pretreatment, i.e., enzymatically or chemically, to make the following treatment 
reactions uniformity; 

2. Separation of pretreated cellulose fibrils into microfibers or crystals through 
enzyme hydrolysis, acid hydrolysis, or mechanical treatment [64]. 

Cellulose nanocrystallizations are generally sustainable nano-sized biomaterials 
that can be derived from the most abundant and renewable cellulose-rich sources,



112 F. Abdelghaffar

such as plants or bacteria, and is one of the most prevalent techniques, and may be 
classified into the following categories:

. Cellulose nanocrystals (CNC) (less than 10 nm width and 25,500 nm length, 
produced through strong acid hydrolysis).

. Cellulose nanofibrils (CNF) (greater aspect rate than that of CNC, produced 
through high-pressure homogenizers moreover oxidation of TEMPO).

. Hairy CNCs (HCNC) (hairy neutral cellulose nanocrystals with stable sterile 
structure, produced through periodate oxidation) [53, 95]. 

Cellulose nanocrystallizations deliver a novel type of innovative and renewable 
nanoparticles, which can be merged and mixed with other micro- or nanomate-
rials to generate sustainable bio-sorbent. Numerous researches have been published 
about the nanocrystal cellulose application toward the removal of dyes. Tan et al. 
inspected the ability of commercial nanocrystalline cellulose (NCC) flakes to adsorb 
methylene blue. They also compared their adsorption capacity to other nanomaterials 
and discovered that NCC flakes are promising absorbent nanomaterials with a high 
adsorption potential of approximately 188.7 mg/g, which fits well with Langmuir 
Isotherm [83]. Jin et al. extracted nanocrystalline cellulose (NCC) from hardwood 
kraft pulp. Following, they grafted it with ethylenediamine to obtain ANCC. ANCC 
adsorption efficiency has been applied to absorb anionic dyes from aqueous solutions. 
The authors realized that the maximum adsorption capability of about 555.6 mg/g in 
acidic conditions [37]. Shanmugarajah and his colleagues isolated nanocrystalline 
cellulose (NCC) from oil palm waste. They demonstrate its high potential as a bio-
sorbent for effective MB removal in aqueous solutions. The FTIR and ASTM results 
showed that the NCC was successfully isolated from EFB using a multistep method 
to effectively remove hemicellulose, lignin, dirt, and waxy substances. Following 
this, the remaining cellulose component was hydrolyzed to the cellulosic nanoma-
terial. The results from adsorption kinetic studies indicated that the sorption study 
follows pseudo-second-order kinetic model [78]. 

5.3 Cellulose-Based Gels 

Hydrogels are hydrophilic polymers with a 3D network structure, composed of 
polymer chains cross-linked either chemically, physically, or by polymerization, 
and contain a significant amount of solvent or dispersant. Aerogels, ordinarily, are 
acquired via drying the building blocks material or the hydrogel, wherein an aqueous 
status is supplanted by air [38, 40]. 

Cellulose-based gels (hydrogels or aerogels) development has lately drawn a 
great deal of attention. Cellulose and its derivatives (e.g., nanocellulose), derived 
from agriculture waste, can be developed either chemically or physically to design 
high-performing cellulose-based absorbents hydrogels. Further, they could be incor-
porated with natural or synthetic polymers to design cellulose-based composite 
absorbents hydrogels. For example, Moharramia et al. applied cellulose nanocrystals
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derived from agricultural waste to synthesize starch-based hydrogel nanocompos-
ites, particularly for cationic dye adsorption. They considered the effects of nano-
adsorbent dosage, pH, dye concentration, time, and temperature on the adsorption 
of crystal violet and methylene blue and found that the adsorption capacity was 
2500.0 mg/g for crystal violet and 1428.6 mg/g for methylene blue [58]. 

Concerning the Cu (II) Ions sorption, carboxymethyl cellulose-based hydrogels 
were prepared using cellulose extracted from sugarcane bagasse. The fabrication of 
hydrogel was conducted under microwave-assisted irradiation that helped to enhance 
the reaction efficiency and decrease reaction time compared with a conventional 
method. This study reveals the promising potential of carboxymethyl cellulose-based 
hydrogels to be applied and reused in Cu (II) ions removal from contaminated water 
[6]. Another study used cellulose derived from rice straw for nanocellulose aerogels 
preparation to absorb Reactive Black 5. They incorporated the iron oxide nanoparti-
cles in the composite matrix to prepare magnetic nanocomposite, which helps in the 
simple extraction of aerogel after adsorption of the dyes [17]. 

5.4 Cellulose-Based Catalyst or Photocatalyst 

Cellulose-based biomaterials are excellent competitors for use as polymer support to 
increase semiconductor photodegradation efficiency. Cellulose has the potential to 
increase the stability and growth control of metal nanoparticles besides preserving 
their unique morphology. Under visible light or UV irradiation, numerous studies 
have conducted photocatalytic degradation utilizing cellulose-based metal oxide 
nanostructures within the forms of a membrane, thin film, filament, or nanocomposite 
materials. Comparing to individual components, cellulose/metal nanoparticles (ZnO, 
TiO2, Fe2O3, graphene oxide, and AgNPs) nano-composites have been employed as 
photocatalysts to increase the degradation ratio of organic contaminants [21, 32, 77]. 

Rajagopal et al. extracted micro-cellulose (MC) from banana pseudostem to fabri-
cate a composite, as a photocatalyst, with titanium dioxide (TiO2) to degrade cationic 
and anionic dyes. The Langmuir–Hinshelwood kinetic model was used to examine 
the composite performance. The findings indicated that the composite is highly effec-
tive in degrading, removing 99% of Methylene blue (200 mg/L) dye in 150 min. Acid 
violet and Methyl violet dyes, on the other hand, took 6 and 7 h of reaction time to 
fully degrade [70]. 

Tavker et al. employed cellulose-based fruit waste to support molybdenum sulfide 
nanostructures. The cellulose-supported nanostructures photocatalytic performance 
was evaluated toward the Rhodamine B dye degradation, compared to bare MoS2 
nano-petals. The findings found that cellulose enhances the synthesized nanostruc-
ture photocatalytic efficiency for RB to 96% [85]. In another study, synthesized silver 
phosphate nanostructures supported by cellulose were isolated from different fruits. 
The photodegradation rate of Rhodamine B, using cellulose support nanostructures, 
was observed to be high compared to original materials [84]. Zhang et colleagues
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checked bi-layered bacterial cellulose composite (CuS/BC) photocatalytic perfor-
mance for wastewater purification, which exhibited degradation efficiency of 93.4% 
in 80 min for MB dye solution, indicating that the bi-layered BC bio foam can be 
used to purify dyeing wastewater. This work paves the stage for the future creation 
of multifunctional solar evaporators [98]. 

Furthermore, cellulose-based biomaterials can play a dual role in the produc-
tion of silver nanoparticle photocatalysts by green synthesized the catalyst as well 
as increasing its photocatalytic activity. Wen et al. handled nano-tea cellulose 
(TTC nanofibers) to immobilize AgNPs to prepare the photocatalysts Ag-TTC-
PVA composite film using a simple solvent casting process. The development of the 
photocatalytic film displayed a good potential of silver nanocomposite for Methyl 
orange dye photodegradation [92]. Another research assessed the green fabrication 
of AgNPs by Ruellia tuberosa leaf extract for photocatalytic degradation against 
crystal violet and Coomassie brilliant blue. According to the findings, the higher 
percentages of photocatalytic degradation of CV and CBB were determined to be 
87% and 74%, respectively [76]. Furthermore, green algae (Chlorella vulgaris) were  
reported for the biosynthesis of AgNPs photocatalytic. AgNPs synthesized revealed 
96.51% photocatalytic decolorization efficiency for methylene blue dye [71]. 

6 Future Outlook and Conclusions 

Here, this chapter provides a fundamental overview of cellulose-based biomate-
rials application in textile wastewater purification is of great importance. Cellu-
lose biomaterials, based on plants or microorganisms, are promising, low-cost, 
simple, available, and economic bioresources for wastewater treatment applications, 
including sorption, membrane filtration, and photocatalytic. Based on these find-
ings, we discovered that using unmodified cellulose sorbents for textile effluent 
removal from wastewater was ineffective. However, various kinds of modification 
strategies have been described in earlier researches and appeared to increase the 
adsorption performance of bio-sorbents-based cellulose toward textile wastewater. 
Furthermore, several experiments onto the sorption of dyestuffs and metal ions onto 
bio-sorbents-based cellulose were performed in aqueous solutions and are dependent 
on a laboratory scale, according to the literature. These studies’ abilities should not 
be overlooked. Thus, in order to be feasible and commercially viable, industrial waste 
adsorbents must be successfully implemented in actual industrial wastewater. As a 
final note, this chapter may inform researchers in future studies on textile wastewater 
treatment. The future features of this chapter are summarized as follows,

. It is expected that prospective studies will promote the development of low-cost, 
availability, and efficient bio-sorbents.

. A good design of bio-sorbents should be regarded for efficient textile effluent 
elimination in a large-scale wastewater treatment system.
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. Despite Activated carbons’ widespread use, it is a significant goal to substitute 
commercial activated carbon with an efficient sustainable renewable low-cost 
adsorbent.

. According to the literature, there have been some promising works on the creation 
and use of activated carbon derived from cellulose biomaterials to adsorb polluted. 
However, the effort is insufficient, and lack of systematic studies.

. It is predicted that research and development will result in industrially scalable 
techniques to fabricate sorbents from bacterial cellulose. 
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Cellulose Nanocrystal as a New 
Promising Candidate in Textile 
Wastewater Treatment 

Swarnalatha Venkatanarasimhan, D. Gangadharan, 
and Thilagavathy Palanisamy 

1 Introduction 

1.1 Textile Wastewater Treatment Processes 

In the past few years, there is a massive increment in the manufacturing and utiliza-
tion of textile products witnessed around the world because of the escalation in global 
population and quality of life [47]. Textile industry is the second largest industrial 
sector contributing to global water pollution. Around 72 toxic chemicals reach water 
bodies through the process of dyeing [32]. It is estimated that in the process of manu-
facturing 1 ton of textile products, approximately 200–300 tons of textile wastewater 
are generated [23]. Textile wastewater is rated as one of the most polluted waters 
on the earth, due to multiple adverse factors associated such as colour intensity, 
the presence of various toxic organic compounds, turbidity, excessive salinity, high 
biological oxygen demand, elevated chemical oxygen demand and drastic pH [7]. 
Various pollutants present in textile wastewater include but not restricted to dyestuffs, 
heavy metals, detergents, dissolved solids, oils and grease. 

Hitherto, numerous physical, chemical and biological methods have been estab-
lished and reported for the treatment of textile wastewater. Physical methods 
such as adsorption, and filtration, chemical methods like ozonation, ion-exchange,
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photo/electrochemical oxidation and coagulation and biological methods like acti-
vated sludge process, trickling filter and membrane bio reactor are the well-known 
processes currently adopted in textile wastewater treatment. 

Amidst of hundreds of various new materials developed towards water treatment, 
cellulose nanocrystal-based materials have gained immense interest from researchers 
in the last few couple of years. The unique features of cellulose nanocrystals such 
as high surface area, eco-friendliness, biodegradability, ease of functionalization 
and mechanical strength render them the reputation as promising water purification 
materials. The purpose of this book chapter is to summarize and describe the latest 
research efforts made on the potential applications of cellulose nanocrystal-based 
materials in treating textile wastewater. 

1.2 Introduction to Cellulose Nanocrystals 

It is a noteworthy fact that cellulose being the most abundant polymer has an estimated 
global production of 90 × 109 metric tons per annum [38]. Derived from diverse 
sources such as trees, plants, bacteria, algae and fungi, cellulose in its simplest form 
is made up of several hundreds to thousands of D-glucose units connected via β-(1 
→ 4) glycosidic linkages as shown in Fig. 1. 

Even though cellulose is biodegradable and renewable, as a result of extensive 
hydrogen bonding and high crystallinity, it is insoluble in most of the common 
solvents. Nevertheless, the presence of multiple −OH functional groups in cellulose 
helps in the formation of interactions and further functional modifications based on 
the requirements [49]. Owing to these attractive characteristics, cellulose and modi-
fied cellulose-based materials have occupied a huge space in the field of environ-
mental remediation especially in the remediation of pollutants from textile wastew-
ater. In most instances, modified cellulose-based materials are employed since natural 
cellulose has less adsorption capacity towards many pollutants. 

From the latest research activities related to water purification, it is apparent that 
nanocellulose is acknowledged as a promising member of the cellulose family to be 
applied in various water treatment processes. A detailed review on the applicability 
of nanocellulose based materials in water purification has been already presented 
by several groups [6, 45, 54]. The term nanocellulose collectively represents both 
cellulose nanocrystals and cellulose nanofibers. Nanocellulose is biodegradable and 
it possesses distinctive properties over bulk cellulose such as high surface area, 
enhanced mechanical strength and liquid crystallinity. Moreover, nanocellulose is

Fig. 1 Chemical structure of 
cellulose
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Fig. 2 Extraction of cellulose nanocrystals from cellulosic raw materials 

sustainable and non-toxic in nature [2]. Cellulose nanocrystals (CNCs) are short rod-
shaped whiskers possessing mainly crystalline regions whereas cellulose nanofibers 
are comparatively longer flexible fibers comprised of both amorphous and crys-
talline regions [50]. Cellulose nanocrystals can otherwise be known as cellulose 
nanowhiskers, cellulose nanorods or nanocrystalline cellulose. The targeted area for 
functional applications of CNCs majorly relies on their aspect ratios, which in turn 
are dependent on the sources chosen for preparing CNCs [35].

Cellulose is essentially semicrystalline, which is composed of both crystalline 
and amorphous regions of cellulose microfibril-reinforced matrices. In 1951, it was 
ascertained that a new class of nanomaterials called cellulose nanocrystals could 
be produced by selectively hydrolyzing less dense amorphous regions of cellulose 
using an acid as represented in Fig. 2 [42]. So far, acids such as sulphuric acid 
[21], hydrochloric acid [5], hydrobromic acid [44] and phosphoric acid [53] have  
been successfully demonstrated to produce CNCs on the acid hydrolysis of different 
cellulosic sources. Nonetheless, sulphuric acid is the widely used acid for this purpose 
as it produces CNCs with enhanced colloidal stability [52]. 

1.3 Cellulose Nanocrystals in Textile Water Treatment 

Cellulose nanocrystals have captured environmental researcher’s attention by reason 
of their salient features as listed earlier. CNC has been recently employed as a base 
material by environmental researchers in treating textile wastewater. The exhaustive 
usage of CNCs in removing common pollutants present in textile wastewater viz.
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dyestuffs and metals is emphasized in the upcoming sections. Based upon the treat-
ment mechanism while engaging CNC-based materials in treating textile wastewater, 
the next section is subdivided into four parts: 

1. Textile wastewater treatment by adsorption 
2. Textile wastewater treatment by photocatalysis 
3. Textile wastewater treatment by membrane filtration 
4. Textile wastewater treatment by coagulation–flocculation. 

2 Textile Water Treatment by Adsorption 

Adsorption is a surface phenomenon, where adsorbates are removed via the forma-
tion of some weak forces of interaction with the surface of adsorbents. Generally, 
adsorbents are selected based on factors like particle size, surface area, stability over 
a wide pH range, porosity, solubility, and surface charge. A wide range of adsor-
bents like carbon materials, biomaterials, inorganic materials, and polymers have 
been reported for textile water treatment. In this section, the discussion is mainly 
focused on the adsorption properties of cellulose nanocrystal-based adsorbents for 
textile wastewater treatment. By keeping the quantum of the literature reported on the 
adsorption-based textile water treatment in mind, only research articles and reviews 
published from the year 2015 have been integrated for the discussion. The removal 
of these pollutants from textile wastewater is mainly attributed to an enthalpy-driven 
binding approach accompanied by a favorable entropic contribution. The binding 
interactions are mainly due to the van der Waals forces of interaction, electrostatic 
interactions, hydrogen bonding and/or aromatic interactions [24]. These interactions 
bind the pollutants with cellulose thereby removing the pollutants from wastewater. 
The other aspect which makes cellulose as an excellent adsorbent is the ability to 
convert the −OH group in the cellulose backbone into any desired functional groups. 
Other properties such as surface area, porosity, biodegradability, and their capability 
to adsorb and desorb the contaminants make them a perfect candidate for adsorption. 

Nanocrystalline cellulose synthesized from microcrystalline cellulose by ammo-
nium persulfate treatment was examined for the adsorptive removal of methylene 
blue [13]. The synthesized nanocrystalline cellulose offered an adsorption capacity 
of 101 mg/g for methylene blue. The ensuing desorption trials carried out using 
acetonitrile and ethanol revealed 18% desorption and 90% desorption for acetoni-
trile and ethanol, respectively. Few of the research work reporting on the usage of 
native cellulose nanocrystals for the adsorptive removal of textile dyes have been 
listed in Table 1.
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Table 1 Various cellulose nanocrystals-based materials reported for dye removal 

S. No. Material Adsorption capacity Dye removed References 

1 Nanocrystalline 
cellulose flakes 

188.7 mg/g Methylene blue Tan et al. (2018) 

2 Nanocellulose 
powder 

0.17 mmol/g Hydroxynaphthol 
blue 

[40] 

0.1564 mmol/g Congo red 

4 Cellulose 
nanocrystal 

217.4 mg/g Methylene blue [58] 

5 Cellulose 
nanocrystal 

823 mg/g Methylene blue [30] 

2.1 Surface Functionalization of Cellulose Nanocrystals 

Functional modification of CNCs is often performed with the intention to accom-
plish a better dye adsorption capacity in comparison to that of the native cellulose 
nanocrystals. In some instances, CNCs flaunt low affinity for certain metal ions/dyes 
at their natural state, which necessitates the functionalization of CNCs prior to exer-
cising them in water treatment processes. Often, surface functionalization of CNCs 
offers the additional advantage of selectivity in removal of dyes. The number of 
active adsorption sites for binding of contaminants also are found to increase after 
an apt functionalization. 

2.1.1 Polydopamine Functionalized Cellulose Nanocrystals 

Mohammed et al. reported the surface functionalization of CNC with polydopamine 
and melamine–formaldehyde for the selective separation of dyes from water [28]. 
Polydopamine functionalized CNC showed 100% uptake efficiency for methylene 
blue. Interestingly, with methylene blue-rhodamine B mixture and methylene blue-
crystal violet mixture, the polydopamine functionalized CNC showed excellent selec-
tivity towards the removal of methylene blue. When a combination of methylene blue 
and methyl orange was used, polydopamine functionalized cellulose nanocrystal 
removed methylene blue, and conversely, melamine–formaldehyde functionalized 
cellulose nanocrystal removed methyl orange from the solution (Fig. 3). The selec-
tivity of dyes for the functional modification was ascribed to the binding interactions 
like electrostatic attraction, π-π stacking, and hydrogen bonding. 

Similarly, polydopamine functionalized CNC reported by Wang et al. displayed 
an exceptionally large adsorption capacity of 2066.72 mg/g, when methylene blue 
was used as the dye [56]. The adsorbed dye was later effectively regenerated by using 
0.1 M sulphuric acid whereas the adsorbent retained almost 90% of its adsorption 
capacity. In another work carried out by the same research team, the application of 
polydopamine functionalized CNCs in the adsorptive removal of chromium ions was
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Fig. 3 Methyl orange and methylene blue before and after adsorption using functionalized cellulose 
nanocrystals (Redrawn from [28]) 

explored [8]. From the adsorption studies, chromium (VI) removal capacity of the 
material was found to be 205 mg/g at a pH of 3. 

2.1.2 Carboxylated Cellulose Nanocrystals 

Fan et al. developed carboxylated CNC using microcrystalline cellulose via an inno-
vative one-step synthetic procedure [10]. Microcrystalline cellulose was treated with 
ferrous sulphate tetrahydrate and 30% hydrogen peroxide to produce carboxylated 
CNC and heated at 60 °C for variable durations. Then, the materials were subjected 
to freeze-drying to obtain carboxylated CNC. The carboxylated CNC sample heated 
for 6 h showed a maximum adsorption of 95.63% (110.21 mg/g) of methylene blue. 
Anionic carboxyl groups on the cellulose function as binding sites for the removal of 
the cationic dye blue via sharing or exchange of electrons, thus leading to an effective 
removal of methylene blue. Meanwhile, the heavy metal adsorption efficiency of the 
carboxylated CNC was analysed by conducting copper(II) ion removal studies. Anal-
ogous to the observation in the dye removal, the carboxylated CNC sample heated 
for 6 h was shown to exhibit the highest copper(II) adsorption capacity of 51.1 mg/g 
(82.3%). 

Carboxylated CNCs and sulphated CNCs were derived from softwood pulp and 
hardwood pulp, respectively and their adsorption capacity of a toxic dye namely 
auramine O was analysed and compared [39]. Carboxylated CNCs were prepared 
through ammonium persulphate oxidation followed by lyophilization procedure,
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whereas spray dried sulphated CNCs were synthesized via acid mediated hydrol-
ysis of hardwood pulp. Between sulphated CNCs and carboxylated CNCs, sulphated 
CNCs exhibited a faster and better dye adsorption as compared to carboxylated 
CNCs. The maximum adsorption capacity of auramine O using sulphated CNCs was 
found to be much greater than those achieved by other adsorbents reported earlier. 

2.1.3 Amino Functionalized Cellulose Nanocrystals 

Amine functionalization is a prevalent choice made among different types of func-
tionalization available for CNCs [18]. 250 mL of 0.4% nanocrystalline cellulose 
was treated with sodium periodate to produce dialdehyde nanocrystalline cellulose. 
200 mL of 0.5% dialdehyde nanocrystalline cellulose was treated with ethylenedi-
amine for 6 h at 30 °C. The resulting product was then reduced using sodium boro-
hydride at room temperature. The resulting amine functionalized nanocrystalline 
cellulose was utilized for the removal of acid red GR. At a pH of 4.7, the material 
showed 67.3% dye uptake capacity, which reduced to 52.2% with the increase in 
the solution pH to 6.7. On rising the solution pH further to 9, the dye removal rate 
abruptly dropped to 31.3%. The availability of surface positive charges on amine 
groups at lower pH favored the removal of the anionic dye to a greater extent thereby 
indicating a decline in dye uptake with increasing pH. 

In another work carried out, the nanocellulose was mixed with 50 mL of polyani-
line and stirred for 10 h [16]. The resulting mixture was stirred at 2500 rpm and 
washed with water until the wash solution became clear. Then, the washed mixture 
was dried at ambient temperature. The polyaniline modified nanocellulose showed 
47.06 and 48.92 mg/g adsorption for Cr(III) and Cr(VI) ions, respectively. Followed 
by the adsorption trials, the effective regeneration of the polyaniline modified cellu-
lose was performed as well by using sodium hydroxide for 6 cycles. However, it is 
not clear whether the nanocellulose used is CNC or cellulose nanofiber. 

2.1.4 Cetyltrimethylammonium Bromide Modified Cellulose 
Nanocrystals 

Cellulose nanocrystals have also been alternatively reported to be modified 
with quaternary ammonium surfactant such as cetyltrimethylammonium bromide. 
Ranjbar et al. had developed cetyltrimethylammonium bromide modified CNC by 
adding varying amounts of cetyltrimethylammonium bromide [43]. The modified 
CNCs obtained were studied for the removal of Congo red. Among the various ratios 
of cetyltrimethylammonium bromide to CNC used, the sample possessing 0.25/1 
w/w ratio showed the maximum adsorption capacity of 448 mg/g for Congo red. The 
adsorbed Congo red dye was afterwards desorbed with the help of ethanol where the 
adsorbent material was found to retain 85% of its actual adsorption capacity even 
after 5 cycles of regeneration.
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2.1.5 Succinylated Cellulose Nanocrystals 

Cellulose nanocrystals were mixed with different loadings of succinic anhydride 
in N, N-dimethylacetamide medium [9]. The resultant white precipitate of cellulose 
nanocrystal succinate obtained was neutralized with sodium bicarbonate and washed 
with water. The efficacy of the cellulose nanocrystal succinate in the removal of 
methylene blue was tested. Adsorption studies demonstrated a direct proportionality 
between the loading of succinic anhydride in the modified CNCs and the percentage 
of methylene blue removal from water. The adsorption capacity of methylene blue 
increased significantly with increased carboxylic acid content in CNC, which was 
in turn resulted in a better binding between carboxylic acid groups and sulphur of 
methylene blue. The material exhibited an adsorption capacity of 84.1 mg/g with 
93.2% removal for methylene blue. 

In another report, succinylated CNC was prepared from the acid hydrolysis of 
medical absorbent cotton followed by a reaction with succinic anhydride in pyridine 
medium. The sodic form of succinylated CNC was obtained by treating succinylated 
CNC with sodium bicarbonate. The maximum adsorption capacities of Pb2+ and 
Cd2+ ions using succinylated CNC were 367.6 mg/g and 259.7 mg/g, respectively, 
which was achieved by complexation process. The maximum adsorption capacities 
of Pb2+ and Cd2+ ions using the sodic form of succinylated CNC were calculated to 
be 465.1 mg/g and 344.8 mg/g, respectively, wherein the metal removal mechanism 
involved an ion exchange process. 

2.2 Metal Oxide Modified Cellulose Nanocrystals 

Apart from adopting functionalizing/modifying CNCs using organic moieties, inor-
ganic compounds have also been used in the attempts executed to reach enhanced 
dye adsorption capacity. 

For instance, nano zinc oxide can be incorporated into CNC to instigate better dye 
adsorption. CNCs were obtained by using bamboo powder as the cellulose source and 
the CNCs were mixed with zinc nitrate salt and sodium hydroxide [12]. After raising 
the solution pH to 8.5, the reaction mixture was kept under mechanical stirring for 
30 min. The product obtained was named as ZnO/CNC8.5. In two other synthetic 
trials, cellulose nanocrystals were mixed with zinc chloride and sodium chloride. The 
pH of the mixture was adjusted to 10.5 and 11 using sodium hydroxide solution. The 
reaction contents were then heated at 80 °C for 24 h in a Teflon-lined stainless steel 
autoclave. The reaction products were tagged as ZnO/CNC10.5 and ZnO/CNC11. 
The dye removal ability of the nanohybrids developed was evaluated using two 
cationic dyes viz. methylene blue and malachite green. The dye removal percentage 
of ZnO/CNC10.5 and ZnO/CNC11 were 85.8% and 84.3%, respectively, both of 
which were lower in comparison to that of raw CNCs (91.08%). The nanohybrid 
ZnO/CNC8.5 showed the maximum dye removal of 93.55% among the synthesized 
nanohybrids due to the minimal quantity of zinc oxide present. It was deduced that
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there was a lowering of dye adsorption with an increment in ZnO content. The 
observation also indicated the removal of cationic dyes was driven by the binding 
with surface carboxyl groups available in the CNCs. 

Likewise, another work discussing the preparation of zinc oxide/CNC was 
reported by Oyewo et al. [31]. In this work, CNC was isolated from saw dust and 
zinc oxide/CNC nanocomposite was prepared by adding zinc oxide suspension to 
CNC and stirring for 24 h. The resulting air-dried nanocomposite was used for the 
removal of methylene blue. A comparative study carried out suggested an improved 
dye removal for the nanocomposite over raw CNC and native zinc oxide. 150 mg 
of the nanocomposite showed 97.5% removal for methylene blue. Desorption data 
received revealed ~60% of desorption on the usage of 2.5 M sodium chloride. 

2.3 Cellulose Nanocrystals/Zeolitic Imidazolate 
Framework-8 Nanohybrids 

Instead of functionalizing CNCs, in a recent work, hybrid hollow microspheres 
comprised of CNCs and zeolitic imidazolate framework-8 were reported for the 
adsorption of malachite green [25]. By virtue of the porous structures available in 
the nanohybrid, it was endowed with a very high surface area of 1240 m2/g. The 
adsorption capacity of the nanohybrid was also as high as 1060.2 mg/g. The very 
huge adsorption capacity of the nanohybrid is aided by its high surface area and 
the hydrophilicity offered by CNC shell layers. The sample after carbonization was 
shown to function as an efficient photocatalyst towards the degradation of methylene 
blue in the presence of solar light. 

3 Textile Water Treatment by Photocatalysis 

Photocatalysis is a very crucial water treatment process adopted globally, which 
involves degradation/conversion of harmful chemicals to safe chemicals in presence 
of a specific catalyst and light irradiation. Either UV light sourced from various lamps 
or visible light is normally utilized for the photocatalytic reaction to occur. A common 
light source used in many reports is the sun, which can help in the cost reduction of the 
process. Cellulose nanocrystals have been widely reported to be active photocatalysts 
in combination with well-known nano titania and nano zinc oxide. In this section, 
the applications of CNC-based materials towards the photocatalytic degradation of 
textile dyes.
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3.1 CNC/Titanium Dioxide Nanohybrids as Photocatalysts 

Nano titanium dioxide, undoubtedly is the most sought-after material by researchers 
working around the globe, when it comes to preparing photocatalysts. A variety 
of nanocomposite materials have been developed by combining titanium dioxide 
nanoparticles with CNCs to apply as photocatalysts in dye degradation. In an earlier 
research work, highly active titania nanocrystals were synthesized using CNC as 
morphology controlling agent [36]. CNCs were prepared by the acid hydrolysis of 
natural cotton fiber and mixed with titanium tetrachloride for different time intervals 
at various temperatures ranging from 40 to 80 °C. The TEM analysis clearly indicated 
that the crystalline phase of the materials was strongly influenced by temperature and 
experimental duration. Samples obtained were further applied in the photocatalytic 
degradation of methyl orange under high pressure mercury lamp irradiation. The 
authors concluded that the samples with cubic titania nanocrystals displayed rela-
tively enhanced photocatalytic performance (degradation rate of 100%) than the 
samples with flower-like titania nanocrystals (degradation rate of 40%). This work 
was further extended by the same research group with the introduction of polyethy-
lene terephthalate (PET) to CNC and titania [37]. At the initial step, CNCs prepared 
from cotton fibers were grafted on the PET fabric. In the following step, titania/PET 
nanohybrids were synthesizing by hydrolyzing titanium tetrachloride in presence of 
CNC-grafted PET fabric at 70 °C. The photocatalytic discoloration of methyl orange 
was tested even though there was no quantitative data provided on the percentage 
dye degradation. The experimental results showed that the methyl orange stain on 
the titania/PET vanished almost completely after exposing it to sunlight for 10 h, 
thus making it a good self-cleaning fabric. 

N-doped mesoporous titania was synthesized by using urea of variable loading 
as N-source with and without employing CNC as template [3]. In the presence of 
visible light and solar light irradiation, titania prepared with N-doping and CNC 
template showed better photocatalytic activity in the degradation of methyl orange 
and other pollutants like phenol and nitrobenzene than the sample prepared without 
CNC template. Using CNC as template, hierarchically nanostructured titania was 
synthesized via hydrothermal synthetic strategy using various acids [4]. The prepared 
titania was calcined and then gold nanoparticles were loaded into the calcined titania. 
The photoactivity exhibited by titania, calcined titania and Au loaded calcined titania 
was examined for the degradation of methyl orange in presence of white light. The 
calcination process was expected to increase the photocatalytic activity of titania in 
degrading methyl orange and the addition of gold nanoparticles also helped in getting 
a better photocatalytic performance with an optimal Au loading.
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3.2 CNC/Zinc Oxide Nanohybrids as Photocatalysts 

CNC/ZnO nanohybrids were fabricated using a single-pot synthetic strategy using 
commercial microcrystalline cellulose and zinc nitrate as precursors [60]. It is 
claimed that the proposed method following Fischer esterification and precipitation 
is relatively simpler to other preparations reported earlier. Also, through the method 
followed, strong electronic interactions were expected between CNC and zinc oxide, 
which could be further exploited in photocatalysis. The nanohybrid prepared was 
tested for its photocatalytic activity using methylene blue as a model dye. Under UV 
irradiation, in a span of 10 min, 93% of the dye underwent decomposition proving the 
photocatalytic efficiency of the nanohybrid developed. A possible mechanism for the 
photocatalytic degradation of dye in presence of the developed nanohybrids and UV 
light irradiation is depicted in Fig. 4. Similar to this work, CNC/ZnO nanohybrids 
were prepared by adopting a single step hydrothermal methodology using microcrys-
talline cellulose and zinc chloride as precursors [1]. The nanohybrids with different 
zinc loading exhibited sheet-like morphologies and were employed as photocatalysts 
in the degradation of methylene blue. Under mercury-lamp irradiation rendering 
500 W power, 95% degradation of methylene blue was shown by the sample denoted 
as CNC-ZnO5.0 (nanohybrid synthesized from 5 mmol of zinc chloride). By virtue 
of their structural stability, the nanohybrids displayed good recyclability where the 
turnover frequency values calculated were more or less the same for all the three 
cycles of dye degradation. 

Nanohybrids composed of spherical cellulose nanocrystals and flower-like zinc 
oxide rod nanoclusters were developed and their antibacterial and photocatalytic

Fig. 4 Mechanism for the photocatalytic degradation of dyes using CNC/ZnO nanohybrids in 
presence of UV light (Redrawn from Yu et al. [60])
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Fig. 5 Degradation ratio for cycled photocatalytic degradation (Redrawn from [59]) 

activity were explored [59]. Here, CNC was used as a substrate for the growth of 
zinc oxide nanorods. By altering reaction temperatures and pH, various nanohybrids 
were obtained. Among the prepared samples, the sample labelled as A-100/11 was 
found to exhibit a distinctive morphology possessing flower-like nanorod clusters, 
which also displayed stable photocatalytic activity. The ability to exhibit efficient 
adsorption (~97%) and subsequent decomposition of methylene blue was attributed 
to the high surface area achieved through the formation of flower-like morphology of 
A-100/11. From experiments, it was also revealed that the cycled degradation ratio 
did not vary significantly with the number of cycles (Fig. 5). The small variation in 
the degradation ratio was also surprisingly positive with the increase in number of 
cycles, which was justified as a result of the stable structure and the small size of the 
prepared nanohybrid.

A novel nanocomposite made up of zinc oxide and CNCs was proposed which 
had been prepared from garlic skin [27]. Initially, garlic skin extract was made use 
for the green synthesis of zinc oxide nanoparticles. In the next step, cellulose was 
isolated from the left-over garlic peel through step wise treatment processes. From 
the isolated cellulose, CNCs were prepared via acid hydrolysis. The nanocomposite 
prepared was shown to exhibit 88.62% degradation of methylene blue under sunlight 
as against 65.87% degradation obtained with bare zinc oxide nanoparticles, thus 
showing an improved photocatalytic performance by the incorporation of CNCs. 
The solution pH was observed to play a vital role in the photocatalysis and 9 was 
the solution pH at which the maximum dye degradation occurred. Very recently, 
Mg/CNC doped zinc oxide nanoparticles were synthesized in order to be utilized in 
photocatalytic applications [15]. Mg doping aids in widening the band gap of zinc 
oxide nanostructures, which is well-known in the literature. CNCs were prepared 
from the acid hydrolysis of microcrystalline cellulose and zinc oxide nanoparticles
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were prepared by co-precipitation method. The nanomaterial developed was further 
used in the degradation of methylene blue under visible light. Based on the solution 
pH maintained, methylene blue underwent degradation to different extents. The dye 
degradation rates were 65%, 83% and 98% in neutral, acidic and basic medium, 
respectively. 

Smart double stimuli responsive polypropylene non-woven fabric was prepared 
from CNC/ZnO nanohybrids and triblock copolymer brushes comprising of 
hydroxyethyl methacrylate, dimethylaminoethyl methacrylate and methacrylamide-
azobenzene monomers [55]. The developed multifunctional fabric exhibited photo-
catalytic activity in degrading methylene blue under UV light irradiation. A reduction 
of 91.20% in the initial concentration of methylene blue was noticed after 3 h of irra-
diation. Using the developed fabric, removal of Cu2+ ion was also investigated, where 
the highest Cu2+ ion removal rate attained was 74.10% at a pH of 10. 

In a latest work published, heterojunction-based photocatalytic system is reported 
using CNCs. Heterojunction is an interface created between two different semicon-
ductor materials. Nanocomposites made up of CNC derived from saw dust, zinc 
oxide and titania were developed and used for the photocatalytic degradation of 
methyl blue [34]. A maximum degradation of methyl blue (98.52%) was recorded 
at a pH of 6 using the CNC-metal oxide nanocomposite. 

Besides using titania and zinc oxide with CNC, iron oxide derived by employing 
CNC as a template also was used as a photocatalyst in dye degradation [22]. Meso-
porous α-ferric oxide materials were prepared with CNC as a template and without 
CNC, via hydrothermal route. The materials thus synthesized were analyzed for 
their photoactivity in degrading methylene blue under visible light irradiation. From 
the degradation studies, the mesoporous α-ferric oxide prepared using CNC was 
observed to possess high photocatalytic activity as the dye degradation rate reached 
58% in 180 min. On the other hand, the sample prepared without CNC showed a 
degradation rate of 23% under the same degradation conditions. The enhancement 
in the photoactivity of the former sample was due to the morphological properties 
introduced by using CNC as a template. 

4 Textile Water Treatment by Membrane Filtration 

Membrane filtration is one of the commercially adopted methods for the effective 
removal of pollutants from textile wastewater due to its ease of operability and 
efficiency. Membrane filtration assists in pressure-driven separation of undesirable 
contaminants from water, by employing a semi permeable thin layer of material 
known as a membrane. In the past few years, several research articles reporting the 
usage of filtration membranes constructed from CNCs have been published. Exhaus-
tive reviews on the usance of nanocellulose-based membranes in water purification 
are available elsewhere [26 , 46]. 

In 2020, Greshkewich et al. had reported the development of melamine formalde-
hyde functionalized CNCs incorporated hard wood pulp membranes with varied
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loading of CNCs [11]. The wet tensile index of the functionalized membranes raised 
up to the nanofiller loading of 14 wt%. Beyond this loading, the wet tensile index was 
found to drop. During the filtration experimentation, stacked modified membranes 
of 20 layers were used to get better removal efficiency. The MF functionalized CNC 
incorporated hard wood pulp membranes showed selectivity towards the removal of 
anionic dyes. From the filtration studies, it was found that modified hard wood pulp 
membrane with 14% nanofiller showed maximum removal of methyl orange (61% 
on using 20 membranes). 

Biocomposite membranes comprised of CNCs and chitosan were developed 
through freeze drying and compacting process [20]. Their dye removal perfor-
mance was tested with few cationic dyes in order to facilitate the electrostatic forces 
between negative charges of CNCs and positive charges of dyes. The ultrafiltra-
tion membranes exhibited removal efficiencies of 98%, 90% and 78% for the dyes 
Victoria blue, methyl violet and rhodamine 6G, respectively. The authors proposed 
that the dye adsorption mechanism was based upon electrostatic interactions and 
hydrogen bonding between the adsorbent and the adsorbate. It was also noted that 
the freeze-drying process rendered higher dye removal capacities, it had a negative 
impact on the mechanical strength of the membranes. From the same research group, 
multilayered membranes were synthesized by dip coating cellulose nanofibers with 
CNCs possessing sulphate or carboxylate groups to be utilized for metal ion removal 
[19]. Using the native cellulose nanofibers and sulphate and carboxyl functionalized 
CNC modified membranes, the removal efficiency of Ag+, Cu2+ and Fe3+/Fe2+ ions 
were experimentally determined by adopting both static flow and cross flow modes. 
In case of Ag+ ion, the metal removal efficiency remained higher using static mode 
(100%) over cross flow mode (77–94%). For the other metal ions, the cross flow mode 
(Cu2+—94–99%; Fe3+/Fe2+—95–100%) favoured higher metal removal in compar-
ison to the static mode of operation (Cu2+—13–19%; Fe3+/Fe2+—26–20%). Surface 
adsorption and the subsequent microprecipitation were suggested as the possible 
mechanism for ion removal. 

Rafieian et al. prepared membranes consisting of polyethersulphone as matrix 
and amine functionalized CNCs as nanofillers at various loadings [41]. The sepa-
ration efficiency of the developed membranes was verified by removing direct red-
16 and Cu2+ ions from water. The removal efficiency of direct red 16 dye deter-
mined by the dead end filtration method was 89% using pristine polyethersulphone 
membrane, which was raised to 99% on using the CNC embedded membrane (1 
wt% loading of modified CNC). There was a proportional rise in the dye removal 
efficacy corresponding to the loading of modified CNC, which has been graphically 
presented in Fig. 6. Metal removal studies done simultaneously using the membranes 
also demonstrated the same trend in increasing Cu2+ removal rates with increased 
CNC loading. The dispersal of nanocrystals at the surface of the polyethesulphone 
membrane and the presence of a large number of nitrogen-containing groups on the 
surface account for the improved efficiency of removal of copper ions and direct 
red-16 after modification. 

CNC incorporated thin film nanofiltration membranes made up of 
polyethyleneimine and trimesoyl chloride were tested for the removal of Cu2+
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Fig. 6 Direct red 16 removal 
efficiency as a function of 
modified CNC loading 

and Pb2+ ions from aqueous solutions [14]. The inclusion of CNCs as nanofillers 
was performed to enhance hydrophilicity and permeability of the pristine thin film 
membranes. The membranes showed a metal rejection efficiency of 98% from 
CuSO4 solution, 96.5% from CuCl2 solution and 90.8% for PbCl2 solution. 

4.1 Textile Water Treatment by Coagulation-Flocculation 

Coagulation-flocculation is a popular water treatment process which implements the 
addition of special compounds to water in order to induce the clumping of small and 
fine particles to form filterable larger flocs (Fig. 7). Even though agglomeration is an 
issue observed while cellulose nanocrystals, reports are available on the exploitation 
of CNCs in the coagulation-flocculation process because they are biodegradable and 
will not cause pollution in the environment. In addition, it is inferred from previous 
reports that CNCs used after functionalization with improved surface polarity and 
hydrophobicity lead to better flocculation efficiency, when used as flocculants. It 
is well established that functionalizing these nanocrystals hikes their flocculation 
ability and in turn better pollutant removal efficiency [45].

Fig. 7 Diagrammatic representation of coagulation-flocculation in water treatment (Redrawn from 
wcponline.com) [57]

http://www.wcponline.co
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Carboxylated CNCs were prepared from microcrystalline cellulose via a single 
step citric acid/hydrochloric acid hydrolysis with varying extraction time [61]. 
Among the samples extracted, CNCs obtained at 4 h of hydrolysis time (CNCs-
4H) had maximum carboxyl contents, higher crystallinity and increased suspension 
stability. As a result, CNCs-4H displayed superior coagulation-flocculation capa-
bility to kaolin suspension with a turbidity removal of 80.9%. CNCs-4H also func-
tioned as an excellent adsorbent of methylene blue where the highest dye removal 
percentage attained was 92.8. The abundance of carboxyl groups in the modified 
CNCs accounted for the improved flocculation/adsorption behaviour manifested by 
the CNCs.

As in the previous case, carboxyl groups enriched cellulose nanocrystals modified 
by ascorbic acid and citric acid with dendritic morphology were synthesized via 
two-step grafting protocols [48]. The potential of the synthesized carboxyl enriched 
CNCs were further investigated as both adsorbent and coagulant-flocculant. From the 
experimental results, the CNCs with multibranched structure exhibited remarkable 
coagulation-flocculation capacity to kaolin suspension, where a turbidity reduction of 
95.4% was attained. At the same time, the CNCs with multicarboxyl groups removed 
87.8% of methylene blue efficiently through adsorption. The high removal efficiency 
achieved was attributed to the crystalline nature of the CNCs and the availability of 
plenty of anionic carboxyl groups in the surface. 

Jiang et al. reported the use of poly(acryloyloxyethyltrimethyl ammonium chlo-
ride) grafted CNC as a flocculant for the removal of neutral reactive blue 19 [17]. 
The removal of dye was explained based on the charge neutralization mechanism. 
From the trials, it was deduced that the polymer grafted CNCs with higher cationicity 
required less amount for maximum colour removal. For a wide pH window, the color 
removal efficiency was above 80% with the highest value obtained at pH of 7. The 
crystallinity of the polymer grafted CNCs was found to accelerate the growth and 
precipitation of the flocs. With a settling period of 1 h, the colour removal efficiency 
achieved was 95% using the polymer grafted CNCs. 

CNC isolated from sawdust was modified with sodium nitrite and sodium bicar-
bonate in two steps to introduce carboxylate anions in the surface of the modified 
CNCs [33]. The modified CNC was used in the removal of Ni2+ and Cd2+ ions by 
coagulation in the next step. The simple modification done on CNC was expected 
to lead to a reduction in the solubility of CNC in water and facilitate complexation 
with metal ions by dative bonds. As anticipated, the modification performed resulted 
in improved metal binding capacity, which was evident from the enormous removal 
capacities achieved for Ni2+ ions (956.6 mg/g) and Cd2+ ions (2207 mg/g). The zeta 
potential measurements proved a negative charge density on the coagulant which 
promoted the efficient removal of metal ions. 

Hexadecyltrimethylammonium bromide functionalized sawdust-derived CNC 
was developed and used as a coagulant in water treatment [29]. The highly porous 
material displaying rod-like morphology was effective in reducing turbidity at lower 
initial turbidity levels and relatively lower pH. From the jar test results, it could be 
concluded that the turbidity reduction was directly proportional to reaction time and 
coagulant dose.
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5 Conclusion 

Treatment methodologies involving different mechanisms have been adopted so far to 
treat textile wastewater. The latest addition made to the list of materials employed in 
water purification is cellulose nanocrystals. Owing to their attractive characteristics 
and ease of functionalization, cellulose nanocrystals and their derivatives have been 
vastly utilized in removing various contaminants from textile wastewater obtained 
at the end of so many processing steps. The main focus of this book chapter was 
to compile the latest research inputs corresponding to the application of various 
cellulose nanocrystal-based materials in textile wastewater treatment. It is apparent 
that the renewable and biodegradable nature and ease of functionalization offered 
by cellulose nanocrystals are the major reasons for their predominant use in this 
field. However, in many instances, the biodegradability of the modified cellulose 
nanocrystals has not been clearly analyzed and disclosed. This approach therefore 
is in general questionable with respect to attaining biodegradability using cellulose 
nanocrystals. 
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Carbon Materials for Dye Removal 
from Wastewater 

Sarita Rai, Anindita De, Mridula Guin, and N. B. Singh 

1 Introduction 

Increasing population, urbanization, and industrial revolution are the main causes 
of pollution. The main sources of pollution include agricultural activities, municipal 
wastewater, wastewater discharge from industries, etc. [9, 111]. The main pollu-
tants such as dyes, heavy metal ions, and different microorganisms in the water are 
very harmful for human health, environment, and all aquatic systems. This threatens 
global water security. Dyes are used in food, textile, paper, tanning, pharmaceutical, 
and many other industries to color their products. Nearly there are 10,000 dyes with 
an annual production of more than 7 × 105 t. These dyes are toxic and injurious 
to human health, soil, environment, etc. Therefore, decontamination of dyes from 
water is a must. Different techniques have been used for the remediation of pollu-
tants from polluted water [16, 62]. Presently conventional methods are being used, 
which require large investments and produce huge amounts of sludge. Ion exchange, 
reverse osmosis, chemical precipitation, ultra-filtration, flocculation, photochemical, 
electrochemical, biological, advanced oxidation process, adsorption, and nanofiltra-
tion techniques are being used at the industrial scale, for the decontamination of dyes 
and heavy metal ions from wastewater [111, 132]. However, most of the techniques 
have limitations because of non-biodegradability and high energy requirements [19].
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Fig. 1 Applications of carbon materials [87] 

In some major techniques, there are low removal efficiency and high production of 
sewage sludge [68]. Therefore, low cost and efficient adsorbents are being searched. 
One of the most economical and convenient methods is adsorption. Different types 
of adsorbents such as agricultural waste, industrial waste, activated carbon, clay 
materials, zeolites, red mud, iron oxide, sugarcane bagasse, rice husk, fly ash, nano-
materials (NMs), and nanocomposites (NCs) have been used for remediation of dyes 
from aqueous medium [37]. The traditional and most abundant adsorbent is carbon. 
The most common carbon materials generally used as adsorbents to remove dye are 
activated carbon (AC). The use of activated carbon as an adsorbent has a number 
of benefits such as high removal efficiency for organic and inorganic pollutants in 
higher concentrations [4]. Presently carbon in other forms such as carbon nanotubes, 
grapheme, carbon quantum dots, functionalized carbons nanotubes and graphene, 
nanocomposites of carbon, etc. [42] are used for different applications (Fig. 1) [87] 
including as adsorbents for dye removal. In this chapter, different types of carbon 
materials and their dye removal efficiencies have been discussed in detail. 

2 Water Pollutants 

Water pollutants are synthetic and natural compounds/ ions which enter into the 
ecosystem through different activities and are responsible for harmful effects. Pollu-
tants can be broadly divided into: (1) inorganic and (2) organic pollutants. These 
pollutants are further divided into different types of pollutants (Fig. 2). 

These pollutants, when entering water bodies, even in small quantities, deteriorate 
the quality of water and may have hazardous effects on animals, plants, human health, 
and aquatic organisms. Further dyes give color, mostly nondegradable, and more
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Fig. 2 Types of pollutants 

hazardous. Thus, the removal of these dyes from wastewater/industrial effluent is 
important. First, a brief account of dyes and their toxic effects will be discussed. 

3 Dyes and Their Harmful Effects 

Dyes are colored substances that are used to give colors to different types of mate-
rials. Basically, there are two types of dyes—natural and synthetic. Natural dyes 
are obtained from plants, animals, and minerals. Aromatic compounds which attract 
electromagnetic energy in the wavelength range of 350–700 nm are colored. Colors 
are due to chromophores and auxochromes. Some representative chromophores are 
“quinoid rings and –C=O, –NO2, –C=N–, –C=C, –N=N–, while auxochromes are 
–COOH, –OH, –SO3H, and –NH3” [58]. Dyes are classified by their chromophore 
color, structure, origin, and applications in the color index suggested by “The Amer-
ican Association of Textile Chemists and the Global Society of Colorists,” as shown 
in Fig. 3 [74]. 

Chemical structures of dyes are given in a number of research papers [15]. 
Chemical structures of some dyes are given in Figs. 4, 5 and 6. 

Most of the dyes even in small amounts are toxic in nature [12] and the toxic effects 
are shown in Fig. 7 [134]. Dyes hinder sunlight penetration in water and destroy 
aesthetic quality. They are responsible for different types of diseases. Dyes in food
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Fig. 3 Classification of dyes [74] 

Fig. 4 Cationic dyes (chemical book, 18162-48-6, 872-50-4)
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Fig. 5 Anionic dyes (chemical book, 18162-48-6, 872-50-4) 

Fig. 6 Neutral dyes (chemical book, 18162-48-6, 872-50-4)
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Fig. 7 Toxic effects of dyes [134] 

affect the proper functioning of different organs of the human body. Many dyes are 
mutagenic and carcinogenic and damage different organs in human bodies. Therefore, 
dyes present in water is a serious threat, hence their removal from wastewater or 
domestic water is essential.

4 Methods of Removal of Dyes from Water 

There are basically three techniques such as: (i) chemical, (ii) physical, and (iii) 
biological for the treatment of wastewater (Fig. 8) [134]. The advantages and disad-
vantages of each technique are also given in Fig. 8. Among different remediation 
methods, adsorption is easy to operate, cost-effective, efficient and eco-friendly and 
can remove different pollutants without producing toxic by-products [134]. 

5 Carbon Materials 

Carbon is one of the most important elements on this planet and has a number 
of applications. Activated carbons and carbon-based nanomaterials have unique
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Fig. 8 Wastewater treatment methods––advantages and disadvantages [134] 

properties, which make them important. In recent years, a number of carbon mate-
rials such as carbon nanotubes, functionalized carbon nanotubes, graphene, reduced 
graphene, carbon nanofibers, carbon nanohorns, graphene oxides, carbon nanorib-
bons, graphite-carbon nitride (g-C3N4), etc. have been synthesized. Figure 9 gives a

Fig. 9 Carbon materials
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Fig. 10 Fabrication of carbon materials [44] 

large family of carbon nanostructures [112]. Because of their high surface area and 
porous character, carbon materials are good adsorbents and that is why used in water 
remediation.

Since the 1900s, a number of methods have been developed (Fig. 10) [44, 112] for  
the synthesis of carbon materials particularly carbon nanomaterials but still methods 
are required to synthesize cost-effective carbon materials. 

5.1 Toxicity of Carbon Materials 

The toxic nature of nanomaterials depends on the chemical and physical features 
such as surface charge, structure, shape, particle size, solubility, catalytic activity, 
active functionalities on the surface, surface coatings, and surface area [114]. Due to 
their small size, nanomaterials can easily enter through cell membranes into living 
organisms resulting in cell damage/death. Nanomaterials, particularly carbon, have a 
large surface area, which allows the adherence on the surface, increasing toxicity and 
reactivity. Studies have shown that graphene oxide has the highest average toxicity
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Table 1 Carbon nanomaterials and their toxic effects 

Carbon materials Results 

C60 ROS produced attack organisms 

Electrons are exchanged with nucleotides 

Inflammation is produced in rat lung tissue 

GRA Cytotoxicity due to the oxidative stress reaction 

Fish cells metabolic activity is affected 

Cell wall of the algae cell is damaged 

Destroying physiological characteristics of the lungs, 

Neurotoxicity to zebrafish embryo 

Affect fetal growth and development 

GO Damage to cells 

Fecundity of Spodoptera litura is reduced 

MWCNTs DNA repair mechanism 

Cytotoxicity against HL-60 cells 

Bacterial and fungi growth is affected 

Inhibit microorganisms activity in the soil 

SWCNTs Artemia salina development in seawater is affected 

CNT Can enter the body causing granuloma and inflammation in the lungs 

(52.24%) among carbon materials. However, surface functionalization decreases the 
toxic behavior. While using carbon materials, particularly carbon nanomaterials, in 
removing dyes from water, all precautions should be taken. The toxic effects of some 
carbon nanomaterials are given in Table 1 [87]. 

The mechanism of toxic effects of carbon on cells is mostly due to oxidative stress 
(Fig. 11) [87]. 

6 Removal of Dyes 

6.1 Removal of Dyes by Activated Carbon (AC) 

Dye is one of the major ingredients in various industries, which includes food, textile, 
leather, packaging, pharmaceutical, paper and pulp, etc. With the progress of indus-
trialization, the production of dyes is happening at a fast rate. Most of the dyes are 
nonbiodegradable, extremely stable, and toxic in nature. It is reported that every 
year tons and tons of dyes are discharged in the aquatic environment. Thus, dye 
removal from wastewater is a matter of serious concern. Several methods are avail-
able for the treatment of dyes from water bodies. The use of conventional methods
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Fig. 11 Toxic effects of carbon on cells 

is restricted because of the high demand for energy and associated high cost, gener-
ation of secondary pollution by hazardous spent catalysts, and membrane fouling. 
Although these methods have their own pros and cons, among them adsorption 
method is the most attractive method as it is economical, easy, simple to design, and 
reusability of reagents is possible. Activated carbon is being used as the most effec-
tive adsorbent for long. The comparison of the effectiveness of activated carbon as 
an adsorbent with other methods for dye removal is given in Table 2. Highly porous

Table 2 Performance comparison of activated carbon with other methods 

Method Removal of dye Cost/energy 
requirement 

Disinfection 
property 

Generation of 
by-product 

Activated carbon High Moderate No No 

Zeolite High/specific Varied cost No No 

Ozonation High Low to 
medium 

Yes Yes 

Oxidation Moderate Low to 
medium 

Yes Yes 

Nano filtration or 
RO filtration 

High High No No
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Fig. 12 Molecular structure of activated carbon 

nature and large surface area are responsible for high adsorption by AC. The molec-
ular structure of AC consists of highly disturbed graphite crystallite (Fig. 12). The 
presence of carbon atoms with varying degrees of saturation, oxidation state, and 
micropores with variable size play a key role in dye adsorption. AC with different 
pore sizes is shown in Fig. 13. In general, two types of ACs are present; one is gran-
ular activated carbon (GAC) and the other one is powdered activated carbon (PAC). 
The toxic dyes are more effectively removed by PAC than GAC. Conventionally 
activated carbon is prepared from high carbon content materials in different physical 
forms, for example, wood, coconut shell, coal, etc. [100, 106]. However, to make 
the process more cost-effective currently scientists are producing activated carbon 
using agricultural and industrial wastes. After synthesis, they are activated through 
various physical or chemical methods.

Fig. 13 Activated carbon 
with varying pores
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6.1.1 Factors Affecting the Adsorption Capacity of ACs 

ACs with good adsorbing capacity have high porous structure leading to a large 
specific surface area. The surface area and the concentration of pores can be modified 
using various activating agents. Larger pore size relates to larger pore volume, which 
is directly linked to higher adsorption capacity. The nature of the starting material 
and the nature of the produced activated carbon, nature of adsorbate, and adsorption 
reaction conditions play important role in removing the maximum amount of dye in 
a shorter time by the activated carbons. 

The primary functional groups that are found to be present in the activated carbon 
include hydroxyl, carbonyl, carboxyl, phenol, lactone, and quinone. The functional-
group-containing oxygen groups imparts acidic nature to the surface and improves 
adsorption capacity. The dye molecules adsorb over the surface of activated carbon 
through weak intermolecular interactions such as dispersion force or van der Waals 
force. The aromatic dyes bind via π–π stacking interactions whereas the ionic dyes 
via strong electrostatic interactions. 

6.1.2 Precursor Material 

A large number of carbonaceous materials with high carbon content are used for the 
manufacturing of activated carbons. The efficiency of the adsorption is dependent 
on several conditions, e.g., the nature of precursor material, the basic features of 
the adsorbents, identity of the adsorbate, chemistry of interaction between adsorbate 
and adsorbent. It is very difficult to assess the adsorption efficiency of the activated 
carbons prepared from different sources because of varied experimental environ-
ments. However in general it is observed that ACs produced from agricultural wastes 
and biomasses perform better for adsorption than the ACs generated from municipal 
and industrial sources [43]. 

6.1.3 Nature of AC 

The adsorption efficiency of ACs is controlled by its porous structure involving pore 
size, pore volume, and surface area. The pores present in ACs can vary from less 
than a nanometer to a few thousand nanometers. Three different pores are available 
in activated carbon for performing different functions according to their sizes. The 
smallest pores are the micropores with a size less than 2 nm. They display the highest 
adsorption capacity due to their high surface area. Various solvents and volatile 
compounds are retained on microporous AC. Mesopores have size between 2 and 
50 nm and are useful in retaining molecules, whose size falls between micropores 
and macropores. Macropores have a size of more than 50 nm which secures the quick 
adsorption of large size adsorbate and directs them further toward smaller pores of 
AC.
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The BET surface area, ash content, distribution of pores, pore-volume, size of the 
particle whether granular or powdered, surface charge, presence of functional groups, 
and associated polarity are important criteria for determining the adsorption capacity 
of ACs. The high ash content of activated carbon is not beneficial for adsorption over 
AC. 

6.1.4 Nature of Adsorbate 

The molecular size of adsorbate is a deciding factor for adsorption. The larger the size 
of the dye molecules, the better the adsorption efficiency. The polarity of the func-
tional groups present in the organic dye molecules also plays an important role. The 
lower the polarity or the hydrophilicity of the organic dyes higher is the adsorption 
on AC. 

6.1.5 Adsorption Condition 

Temperature, pH, ionic strength of the solution, contact time, initial dosage of 
adsorbate, concentration of adsorbent all have significant contribution toward the 
adsorption efficiency.

(a) Adsorbent dosage 

When the dosage of AC is increased, the adsorption of dyes becomes more 
up to a certain limit and then decreases or remains almost constant at a higher 
dosage. Because the adsorption capacity is directly proportional to the number 
of adsorption sites. Increasing the concentration of AC leads to faster adsorption 
of dyes with lower energy requirements. 

(b) Initial concentration of dye 

The efficiency of adsorption process is dependent on the initial concentration of 
dyes. Several research works indicate that the adsorption efficiency diminishes 
by increasing the dye concentration. This is justified by the saturation of the 
accessible binding sites of AC. The driving force of mass transfer in adsorption 
is the unoccupied sites of the adsorbent, which is controlled by the dynamic 
equilibrium. 

(c) Contact time 

Optimizing the contact time in the adsorption process is important from a tech-
nical and economical point of view. At the initial stage, the rate of adsorption 
is high because of the dynamic nature of the adsorption process. The amount 
of the dyes adsorbed increases with an increase in contact time but remains 
unaltered or decreases after attaining equilibrium. The saturation of the active 
sites after the equilibrium results in the decrease of the rate of adsorption. 

(d) pH
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Table 3 Important physical 
and chemical properties of 
AC 

BET surface area 500–3362 m2/g 

Specific mass 120–240 g/m2 

Density 0.5–2200 

Pore volume 0.08–1.5 cm3/g 

Average pore diameter 0.2–50 nm 

Porosity 0.4–0.92 

Adsorption capacity 5–5000 mg/g 

Ash content 0.2–37% 

Acidic and basic nature of the solution is a crucial factor in dye adsorption. Vari-
ation of pH of dye solution affects the efficiency of adsorption by modifying 
the surface properties of adsorbent (AC) by protonation. Further, the polarity 
of dye molecules can be altered by changing the pH of the dye solution. At 
acidic pH, the functional groups of ACs attain a positive charge resulting in 
strong adsorption of anionic dyes while weak adsorption of cationic dyes. The 
reverse phenomena are observed at basic pH conditions. The pH value at which 
surface charge is zero is defined as pHpzc and is an important parameter in 
understanding adsorption capacity. It has been observed that the pH > pHpzc 
will create a negative surface charge and be beneficial for cationic dye adsorp-
tion and pH < pHpzc is ideal for anionic dye adsorption due to the positive 
charge on the surface.

(e) Temperature 

Temperature is another critical factor in the adsorption process. It has been 
noticed that adsorption capacity improves with an increase in temperature. 
This may be due to the increased rate of diffusion of dyes towards the active 
sites of AC. With increasing temperature, more active sites are created over 
the adsorbent. 

(f) Physical and chemical properties of AC 

The adsorption efficiency of AC is associated with various physical and chem-
ical properties. Extent of porosity, pore width, BET surface area, polarity, 
hydrophobicity, surface charge, acid/base nature, presence of functional 
groups, and hetero atoms are some of the important factors that control the 
extent of adsorption. Some selected physical and chemical parameters of AC 
are given in Table 3. 

6.1.6 Modified AC for Dye Removal 

The regeneration and reusability of AC is a serious issue for economic feasibility. The 
solution to the problem is given by the use of magnetic separation using magnetic 
nanoparticles blended AC. Numerous research has been performed on magnetic AC 
for effective removal of dyes [53, 54, 66, 76, 77, 102, 120, 124]. Integration of
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magnetic nanoparticles with AC leads to better recovery and separation of the adsor-
bent. Various iron-oxide-based nanoparticles such as Fe3O4/CoFe2O4, α-Fe2O3, 
NiFe2O3, CeO2, Au/Fe3O4, etc. are reported in this field. A number of NMs such as 
ZnO, CuO, PbO, TiO2, SnO2, MgO, Zn(OH)2, Ce-TiO2, CuI-CuO, etc. loaded ACs 
have been investigated for their synergistic feature of adsorption process [21, 34–36, 
78, 80, 84, 89, 90, 99, 107]. The physicochemical properties of AC get improved 
upon integration with nanometal oxides. 

6.2 Agricultural Based ACs 

As discussed in the previous sections, most of the commercially available ACs (CAC) 
are prepared from coal, petroleum, and lignocellulose-based materials. The major 
challenge faced by the CAC is the use of expensive precursor materials. Further, 
the coal- and petroleum-based starting materials are nonrenewable and create envi-
ronmental issues. The huge demand for AC for environment and water remediation 
needs to increase the supply of AC. To bridge the demand and supply gap, new 
carbon materials with desired adsorption capabilities are explored. In this regard, the 
abundant availability of agricultural wastes gained popularity in producing highly 
porous AC. Agricultural wastes in general contribute significantly to environmental 
pollution. The benefit of biomass synthesized AC are: (1) They are economical as 
the precursors and are of low cost (2) The waste is getting revalorized (3) They are 
from renewable resources and (4) Environment friendly as the combustion of AC 
does not increase the CO2 level. 

The agricultural waste used for the synthesis of ACs can be classified into two 
categories: woody materials and nonwoody materials. Among nonwoody materials, 
various soft materials such as avocado peel, orange peel, waste tomato, waste, grape, 
waste pineapple, rice husk, corn cob, sugarcane bagasse, coir pith, rambutan, etc. are 
used for the synthesis of high absorbent ACs. On the other hand, in the woody material 
category, palm shell, coconut shell, walnut shell, fox nut shell, apricot stone, olive 
stone, cashew nut shell, etc. are investigated for producing ACs. Table 4 lists some 
ACs prepared from woody and nonwoody agricultural wastes. The specific surface 
area of the synthesized ACs is significantly dependent on the type of materials and 
nature of activating agents. The specific surface area is the determining factor of 
the activity, adsorption efficiency, and catalytic abilities of the ACs. Thus, it cannot 
be inferred which agricultural waste will be the most effective for producing AC as 
an adsorbent for dye removal from wastewater. Each of them has its own specific 
adsorbing characteristic. However, the ACs generated from agricultural wastes have 
tremendous potential for efficiently removing hazardous dyes from the water body.
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Table 4 Nonwoody and woody agricultural waste materials of AC for dye removal 

Precursor of AC Activating agent Name of dye Specific surface 
area (m2/g) 

References 

Nonwoody waste materials 

Avocado peel H3PO4 Naphthol blue 
black, reactive 
black 5, basic blue 
41 

87.52 [82] 

Tomato waste ZnCl2 Methylene blue, 
metanil yellow 

1093 [105] 

Grape waste ZnCl2 Methylene blue, 
metanil yellow 

1455 [104] 

Pineapple waste ZnCl2 Methylene blue 914.67 [70] 

Orange peel H3PO4 Methylene blue 
and Rhodamine B 

1090 [29] 

Orange peel H2SO4 + NaHCO3 Methylene blue – [118] 

Rice husk H2SO4 Crystal violet, 
direct orange, and 
magenta 

98.27 [123] 

Jerusalem 
artichoke 
stalk-based 

ZnCl2 Methylene blue, 
methyl orange 

1632 [136] 

Corncob H3PO4 Methylene blue 1809 [140] 

Pomegranate peel ZnCl2, HNO3 Direct blue 106 [8] 

Apple pulp and 
peel 

H3PO4 Methylene blue 1103 
(pulp)/1552(peel) 

[48] 

Hazelnut bagasse ZnCl2 Acid blue 350 1489 [20] 

Thevetia 
peruviana 

H3PO4 Methylene blue, 
basic green 4, acid 
violet 49, reactive 
orange 4, direct 
blue 71 

862.39 [13] 

Cattail H3PO4 Neutral red, 
malachite green 

1279 [109] 

Rambutan NaOH Acid yellow 17 971.54 [81] 

Flamboyant pods NaOH Acid yellow 6, acid 
yellow 23, acid red 
18 

2854 [122] 

Pomelo Skin NaOH Methylene blue, 
acid blue 15 

1335 [31]

(continued)
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Table 4 (continued)

Precursor of AC Activating agent Name of dye Specific surface
area (m2/g)

References

Date palm leaflets KOH Methylene blue 823 [26] 

Sugarcane bagasse ZnCl2 Basic dye – [27] 

Sugarcane bagasse 
pith 

ZnCl2 and H3PO4 Reactive orange – [7] 

Prickly pear peels, 
broccoli stems, 
white sapote seeds  

H3PO4 Acid blue 74, direct 
blue 80, basic blue 
9, basic violet 3 

1025 (prickly pear 
peels), 1177 
(broccoli stems), 
1043 (white sapote 
seeds 

[86] 

Coir pith ZnCl2 Acid brilliant blue, 
ACID violet, 
methyene blue, 
rhodamine B, 
direct red 12B, 
Congo red, Procion 
red, Procion orange 

910 [79] 

Woody waste materials 

Fox nutshell ZnCl2 Methylene blue 2869 [60] 

Palm shell waste NaOH Methylene blue 731.50 [129] 

Macore fruit NaOH Methylene blue, 
Methyl orange 

229.51 [2] 

Spent coffee 
grounds 

KOH Methylene blue, 
acid orange 7 

704.23 [56] 

Holm oak acorn H3PO4 Orange 30 968 [121] 

Coconut Shell Red mud + lime + 
KOH + Al(NO3)3 
+ Na2SO4 

Reactive violet 5 – [98] 

Coconut shell H3PO4 Reactive blue 19 – [1] 

Cashew nut shell KOH + TiO2 Brilliant green and 
Methylene blue 

– [94] 

Apricot stones H3PO4 + HNO3 Methylene blue, 
methyl orange 

359.40 [22] 

Olive stone – Methylene blue – [45] 

Walnut and poplar 
woods 

H3PO4 Acid red 18 – [47]

(continued)
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Table 4 (continued)

Precursor of AC Activating agent Name of dye Specific surface
area (m2/g)

References

Peanut sticks 
wood 

HCl and HNO3 Methylene blue 218.89 [34] 

Peanut shell Pyrolysis/MW + 
Pyrolysis 

Direct black 38 and 
reactive red 141 

371.10 
(pyrolysis)/395.80 
(MW + pyrolysis) 

[33] 

Quinoa husk KOH Malachite green, 
rhodamine B, 
methylene blue, 
methyl violet, 
methyl orange 

1713 [110] 

Walnut and 
almond shell 

ZnCl2 Methylene blue 714 (almond) [117] 

Waste coffee 
grounds 

FeCl3 Rhodamine B, 
methylene blue, 
methyl orange 

1910 [128] 

6.2.1 Synthesis of AC from Agricultural Wastes 

The synthetic procedure of ACs from agricultural wastes involves an activation 
process by two different techniques: physical and chemical methods. In the phys-
ical method, carbonization of the precursor is performed at a high temperature and 
then CO2 gas is passed to make it porous and increase its surface area. This method 
is also called as pyrolysis process due to the use of high temperature. Alternatively, 
chemical activation involves simultaneous activation and carbonization process. Here 
the activating agents are mixed with the precursor and heated at high temperature as 
required. Thus, the chemical activation process modifies both the physical and chem-
ical properties of the precursor material to produce the AC. The chemical activation 
method produces a better porous structure due to the lower temperature requirement. 
Various reagents such as NaOH, KOH, HCl, H2SO4, H3PO4, ZnCl2, K2CO3, etc. are  
used as activating agents. Figure 14 describes different steps that are followed in the 
preparation of ACs from agricultural wastes. 

6.3 Carbon Naontubes (CNTs) 

In addition to AC from various sources, CNTs (carbon nanotubes) are emerging as 
advanced adsorbents for dye removal [61]. Over the past few years, nanotechnology 
has revolutionized the removal of pollutants from water. CNTs have conducive 
physicochemical properties that help in water remediation processes. The struc-
tural diversity, selectivity, chemical stability, and large surface area of CNTs are the 
guiding factors that stand out in comparison with conventional adsorbents for dye
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Fig. 14 Synthesis of AC from agricultural wastes 

removal. In addition to that, the nanodimension of the CNTs provides large surface 
area, numerous sorption sites, adjustable pore size, faster intra-particle diffusion, 
and low-temperature requirement for further modifications. The strong affinity of 
CNTs toward organic dyes makes them far better adsorbents than other commonly 
available adsorbents. Both single-walled carbon nanotubes (SWCNTs) and multi-
walled carbon nanotubes (MWCNTs) are investigated for dye removal applications. 
The surface area of SWCNTs is higher than MWCNTs and thus the efficiency of 
dye adsorption is higher in SWCNTs. However, MWCNTs are economically several 
times more affordable compared to SWCNTs. Consequently, scientists are directed 
towards making cost-effective adsorbents by surface functionalization of MWCNTs. 
Functionalization of MWCNTs or making composites with metal oxide nanoparticles 
improves adsorption capacity manifolds. 

There are four different possible sites of adsorption in CNTs: (1) internal sites 
inside the hollow tube, (2) interstitial spaces between the walls, (3) the groove space 
between the peripheral bundles, and (4) external active surface area. The pollutants 
get trapped on the surface through various driving forces including electrostatic 
interaction, π–π stacking interaction, charge transfer interaction, and hydrophobic 
interaction. 

Prola et al. [91] studied the adsorption of direct blue 53 dye on MWCNTs and 
powdered ACs (PAC). They have justified the higher adsorption capabilities of 
MWCNTs due to the textural similarities between the dye molecule and MWCNTs. 
The textural behavior of CNTs can be tailored according to the type of pollutants
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by various methods. The morphology also plays a significant role in adsorption 
efficiency. For example, dyes belonging to the polynuclear aromatic category with 
planar geometry such as rhodamine B, alizarine red, acridine orange, and anthracene 
are strongly adsorbed over the CNT surface. Contrarily, the nonplanar category of 
aromatic dyes such as Orange G, xylenol orange, 1-(2-pyridylazo)-2-naphthol can 
bind weakly to the surface of CNTs. Further, non-conjugated, nonplanar dyes such as 
diiodofluorescein, bromothymol blue have the least affinity toward adsorption over 
CNT. 

Thermodynamic aspects of four different azo dye adsorption over MWCNTs and 
AC are investigated by Ferreira et al. [30]. Their results indicate that the adsorption 
capacity of MWCNTs is 5.6 times higher than AC. A recent report by Abualnaja 
et al. has shown the promising features of MWCNTs for adsorbing Inmate violet 2R 
dye with a regeneration capacity of 91.71% after three cycles [3]. 

6.4 Modified/Functionalized CNTs 

The surface of CNTs can be modified by introducing various functional groups 
according to the nature of the pollutants and intended application. Functionalized 
CNTs are more efficient in removing organic dyes. Various modification methods 
are available such as oxidation, alkali activation, incorporation of magnetic particles, 
blending with zero-valent iron, modification with nanometal oxide, modification with 
polymer, immobilization of CNT, chemical functionalization, composite with other 
carbon-based adsorbents, etc. Among them, oxidized MWCNTs are found to be very 
effective against dye removal from water [71, 137, 139]. 

To enhance the adsorption characteristics of CNTs, tremendous efforts have been 
made to minimize the hydrophobic features of CNTs by making composites with 
nanometal oxides, polymers, and other materials. The sorption capacities of these 
composites are several times higher than the pristine CNTs. A magnetic nanocom-
posite of MWCNTs using Fe3O4 particles is reported for adsorption of cationic 
dyes [25]. The composite MWCNT-COOH-cysteamine prepared by surface modi-
fication with cysteamine is proved to be an excellent adsorbent for amido 10B dye 
[101]. Functionalizations of MWCNTs can be of two types: covalent and noncovalent 
(Fig. 15) [55]. 

The functionalization can be tailored to add selectivity to the adsorption process. 
The noncovalent surface modification through π–π stacking interactions or van der 
Waals interaction is preferable as it preserves the structure of CNT. Novel interfacial 
properties are generated through functionalization, which were missing in the pristine 
form. A large variety of functional groups can be introduced over the surface of CNTs 
[115] 

Numerous metal oxide doped CNTs are investigated for pollutant adsorption 
processes. Doping of alumina, titania, zinc oxide, iron oxide [11, 17, 24, 88], etc. 
has shown tremendous adsorption capacity compared to their non-doped counter-
parts. Duan et al. reported photocatalytic performance of titania-doped MWCNTs
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Fig. 15 Functionalization of CNT 

for degradation of methyl orange dye. Their results indicated better performance 
of MWCNTs/TiO2 composites over untreated MWCNTs due to the faster recom-
bination timescale. Magnetite-loaded MWCNTs displayed electrostatic and π–π 
stacking interaction while adsorbing methylene blue dye (Fig. 16) [6]. Another inde-
pendent work by Liu et al. used MWCNTs/TiO2 composites synthesized through

Fig. 16 Adsorption of dye over functionalized CNT [6]
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the hydrothermal method for methylene blue dye removal [67]. Another inter-
esting research on photodegradation of malachite green and methylene blue dye 
has been reported by Tarigh et al. [116]. Hu et al. have investigated a water-soluble 
hyperbranched polyamine functionalized MWCNTs for adsorption of three different 
organic dyes, e.g., methylene blue, methyl violet, and malachite green [49]. A number 
of CNT-based composites for dye removal have been reported [42]. Studies have indi-
cated that composites of CNT-chitosan, CNT-ACF (AC fiber), CNT-Fe3O4, CNT-
dolomite, CNT-cellulose, and CNT-graphene are excellent absorbents for various 
pollutants. A composite of polyaniline (PANI)-encapsulated MWCNTs is reported 
as an efficient adsorbent for alizarin yellow R dye [131]. Recently functionalized 
CNTs have been reported for water treatment processes [10, 50, 52, 95, 124]. Dye 
removal using various CNT-based adsorbents is given in Table 5 [103].

6.5 Magnetic Carbon Nanotubes 

Carbon-based materials can be mixed with magnetic nanoparticles to get porous and 
stable materials having unique magnetic properties. These materials have various 
multidisciplinary applications. Various methods for the preparation of magnetic 
carbon nanotubes are summarized in Table 6. 

MWCNTs are preferred over SWCNTs and magnetization is done using γ-Fe2O3 

or Fe2O3. The synthesized magnetic nanotubes can be dispersed in water and can be 
separated with the help of a magnetic field. Multi-walled carbon nanotube (MWCNT) 
filled with γ-Fe2O3 have been used for the adsorptive removal of methylene blue 
and neutral red with a maximum adsorption capacity of 42.3 g/g and 77.5 mg/g, 
respectively. High-resolution transmission electron microscopic (HR-TEM) images 
showed that maghemite particles of size ~10 nm are inserted into the nanotubes. 
Whereas, the XRD spectrum indicated the presence of γ-Fe2O3. The material is 
attracted strongly toward an external magnet and can again be redispersed by the 
removal of the magnetic field thus making the separation step easy [93]. 

In a similar manner, MWCNTs modified by Fe2O3 or Fe3O4 nanoparticles were 
prepared by a wet chemical method. XRD pattern showed the presence of maghemite, 
hematite, and magnetite, and the diameter of the carbon nanotube was found to be 
58 nm. This magnetic material was then used for adsorptive removal of thionine, 
crystal violet, and janus green B with about 98–99% efficiency [69]. Some other 
examples of these techniques are methylene blue removal [38] and methyl orange 
removal [14] by  γ-Fe2O3 modified MWCNT. 

6.6 Carbon-Nanotube-Based Buckypaper 

Buckypapers are an entangled web of CNTs that is self-supported and have a flex-
ible morphology apart from being chemically and physically stable. They also have
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Table 5 Dye removal using various CNT-based adsorbents [103] 

Types of CNT Modification Surface area 
(m2/g) 

Treated dye Capacity 
(mg/g) 

MWCNTs Without modification 270 Acid red 18 167 

MWCNTs Without modification 217 Acid red 183 
(AR183), 
reactive blue 4 
(RB4) 

AR183: 
45 
RB4: 59 

MWCNTs Without modification – Alizarin red S 
(ARS), Morin 

ARS:161 
Morin: 26 

MWCNTs Without modification – Maxilon blue 261 

MWCNTs Without modification 40 Congo red 352 

MWCNTs Without modification 181 Reactive red 
M-2BE 

336 

MWCNTs Without modification 270 Malachite 
green 

143 

MWCNTs Without modification 233 Acid blue 161 458 

MWCNTs Magnetic CNT-iron oxide 
composite 

62 Methylene blue 
(MB), neutral 
red (NR), 
Brilliant Cresyl 
blue (BSB) 

MB: 12 
NR: 10 
BSB: 6 

MWCNTs Oxidized – Methyl orange 306 

MWCNTs Composite with chitosan 
hydrogel beads 

238 Congo red 450 

MWCNTs Magnetic nanocomposites of 
MWCNT and Fe3C 

39 Direct red 23 86 

MWCNTs Graphene coated MWCNT 
hybrid with graphene oxide 

79 Methylene blue 88 

MWCNTs Composite with Fe2O3NPs 114 Methylene blue 
(MB), neutral 
red (NR) 

MB: 42 
NR: 78 

MWCNTs Starch coated magnetic iron 
oxide nanocomposites 

133 Methyl orange 
(MO), 
methylene blue 
(MB) 

MB: 94 
MO: 136 

MWCNTs Modified with cysteamine 
(MWCNT-COOH-Cysteamine) 

– Amido black 
10B 

131 

MWCNTs Guar gum and iron oxide NP 
grafted MWCNTs 

– Methylene blue 
(MB), neutral 
red (NR) 

MB: 62 
NR: 90 

SWCNTs Without modification 700 Reactive blue 
29 

496 

SWCNTs Pristine and oxidized 400 Basic Red 46 38

(continued)
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Table 5 (continued)

Types of CNT Modification Surface area
(m2/g)

Treated dye Capacity
(mg/g)

SWCNTs Without modification More than 
700 

Reactive Red 
120 

426 

Table 6 Various methods for the preparation of magnetic carbon nanotubes and their potential 
application 

Fabrication method Properties Applications 

Hydrothermal Optical and electrical properties Pollutant adsorbent 
Magnetic storage mediumSol–gel 

Self-assembly 

Pyrolysis Field emission properties Electrochemical sensor, gas 
sensor, supercapacitorElectrospinning 

Template method 

Chemical vapor deposition Chemical properties Microwave adsorbent, 
magnetic hyperthermiaArc discharge 

Capillary action 

interesting thermal, mechanical, and electrical properties, which make them useful 
in various fields such as sensors, actuators, radio-frequency filter, and environmental 
remediation. The buckypaper has a very disordered structure with CNTs which are 
held together by van der Waals and π–π interactions. The structure is highly porous 
and 60–70% of the total volume of the buckypaper is occupied by pores [96].

Buckypapers are typically produced by the dry method or wet method. In the dry 
method of preparation micro-sized hydrocarbons such as trichloro benzene are used 
as raw material and nickel and iron are used as catalysts under high-pressure environ-
ment. The membrane produced is comparatively large in size but has severe limita-
tions in terms of the high amount of residual catalyst formation. The wet approach to 
fabrication is thought to be better than the dry approach due to better control over the 
composition. The wet method involves synthesis and filtration. In the first step, CNTs 
and surfactants are mixed thoroughly and homogenized using ultrasonication. Then 
the suspension is washed and filtered until a mat form is obtained and the material 
is free from mixed solvent. Commonly used surfactants are sodium dodecyl-sulfate 
and triton X-100. The quality of bucky paper depends on the suspension and the 
filter mat. Moreover, the buckypaper can further be functionalized to enhance its 
reactivity. The size of the bucky paper produced by this method is smaller although 
the method is not cost-effective. 

Most of the research on CNT-based buckypaper is focused on the desalination of 
water and not too many reports on dye removal by buckypaper are known. In one of 
the works, Lau et al. fabricated a Jicama peroxidase stabilized buckypaper/polyvinyl 
alcohol membrane for removal of methyl blue [63]. The membrane can remove the
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dye with more than 99% efficiency within 183 min with a flow rate of 2 mL/min and 
an H2O2:dye ratio of 75:1. 

6.7 Metal-Doped Porous Carbon Materials 

Metal doping refers to the deposition of fine distribution of metal particles on the 
porous carbonaceous materials onto the pore channels. The overall integrity of the 
carbonaceous materials remains the same after the deposition; however, the surface 
properties are enhanced and as a consequence, the adsorption efficiency for dye 
also increases. Moreover, the selectivity of the materials is also increased due to the 
coordination of the doped metal with the carbon matrix. Metal doping can incorporate 
magnetic properties to the material and thus make the regeneration process easier. 
The doping could be by single as well as double metals and commonly used metals 
are iron, cobalt, nickel, aluminum, lanthanum, zinc, etc. As far as the mechanism 
is concerned, the metal ions coordinated with the acidic or basic functional groups 
present on the surface of the carbonaceous material, followed by in situ oxidation to 
form metal oxides (Fig. 17) [132]. 

6.7.1 Single-Metal-Doped Porous Carbon Materials 

Among single-metal-doped porous carbon material, transition metals having 
magnetic properties such as iron, cobalt, and nickel are particularly favored because 
of the ease of separation of the adsorbent. Moreover, magnetic-metal-doped materials

Fig. 17 Interaction between the carbonaceous material and metal on doping [132]



166 S. Rai et al.

develop super paramagnetism. Almost all these materials show excellent adsorption 
behavior. Kim et al. have prepared granular AC modified with ferrous chloride to 
enhance the efficacy of methylene blue removal from wastewater. It was observed that 
adsorption capacity was increased from 175.4 to 238.1 mg/g on modification [59]. 
More examples of dye removal by magnetically enhanced porous carbon material 
are listed in Table 7. Many of these studies have also been focused on the regener-
ation of the adsorbent materials. For example, shell-based powdered AC modified 
with ferric nitrate was prepared and used for methyl orange removal with enhanced 
regeneration ability. It was reported that although the efficiency of the material for 
dye removal decreases from 384.62 to 303.03 mg/g, the modified material is easier 
to separate due to its magnetic property (Do et al. 2011). Table 7 contains the list of 
magnetic-metal-doped porous carbon materials for dye removal [132].

6.7.2 Nonmagnetic Metal-Doped Porous Carbon Materials 

In addition to magnetic metal, porous carbon material can be doped with nonmag-
netic metals also. Rare-earth elements such as lanthanides have a high affinity for 
organic compounds through the interaction of f orbitals. Goscianska et al. modified 
the ordered mesoporous carbon (OMC) with lanthanum chloride by template method 
and used it for the removal of methyl orange from wastewater. It was reported that 
adsorption capacity increases with an increase in lanthanum concentration although 
surface area and pore volumes decreased. This indicated that there is a strong inter-
action between lanthanum and the dye other than physisorption [39]. Similar obser-
vations are also obtained in the adsorptive removal of sunset yellow by cerium modi-
fied OMC [40]. Similarly, neodymium embedded OMC was used to enhance the 
efficiency (~40%) of adsorbent for removal of sunset yellow [5]. 

Doping with non-rare earth metals has also been studied. Palladium, silver, and 
zinc doped AC were used for the removal of bromophenol red dye and the adsorption 
efficiencies were found to be 143 mg/g, 240 mg/g, and 200 mg/g, respectively. This is 
due to differences in interactions of different metals with the dye. The same authors 
also reported the preparation of zinc doped AC by ultrasonic method for removal of 
sunset yellow with 588.8 mg/g efficiency in 20 min [34]. A comprehensive list of 
nonmagnetic-metal-doped porous; carbon material used for dye removal is given in 
Table 8. 

The overall properties of the adsorbent materials, not only depend on the nature of 
the metal but also on the structure and properties of the porous carbon material used. 
The acid–base interaction between the dye molecule and the adsorbent is increased 
on metal doping and resulting in an increase in acidity. Moreover, the change in 
surface charge due to metal doping also influences electrostatic interaction between 
the dye molecule and the adsorbent. Both of these factors facilitate the adsorption 
process in addition to the π–π interaction between the aromatic moiety of the dye 
and the porous carbon material. Thus, both nonmagnetic and magnetic-metal-doped 
carbon materials are better compared to raw carbon material [132].
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Table 8 Adsorption capacity of various nonmagnetic-metal-doped porous carbon materials to dyes 
[132] 

Adsorbent material Doping method Dye Efficiency (mg/g) Regeneration 

ZnO-NRs-AC Ultrasonic 
method 

MB 588.8 – 

Cu2O-NP-AC Hydrothermal Sunset yellow 113 – 

CuS-NP-AC Heating MB 208.3 – 

Zn(OH)2-NP-AC Ultrasonic 
method 

Sunset yellow 83.3–114.9 – 

Al-CNTs-2.0 Hydrothermal MO 69.7 – 

Bi2O3@GO Sonochemical 
method 

Rhodamine B 320 8 cycles (stay  
above 78%) 

Cu-AC Ultrasound and 
microwave 

MO 377.358 5 cycles  
(decreased 
gradually) 

Zr/N-OMC Direct 
carbonization 

MB 
Erythrosine 

492 
286 

– 

MHPCM Impregnation MB 
Direct black 38 

1585.7 
438.6 

– 

Mg/NeC Pyrolysis MO 384.61 7 cycles (from 
384.61 to 
351.78 mg/g) 

6.7.3 Bimetal-Doped Porous Carbon Material 

Magnetic metals such as iron, nickel, etc. can magnetize the material thereby helping 
in regeneration; while metals such as copper, zinc, and cerium have a strong affinity 
toward N, O, S, etc. and can interact strongly with the dye molecule. Thus, doping with 
two metals instead of one can increase the efficiency and selectivity of the material 
further. Iron, cerium co-doped AC material was prepared by microwave heating and 
used for adsorptive removal of methylene blue dye from wastewater. It was reported 
that the surface area and pore volume are reduced significantly on codoping with two 
metals, however, the adsorption efficiency is enhanced by 27.31% compared to raw 
AC due to the synergistic action of both the metals. The regenerations also become 
easier [17]. NiO and ZnO codoped carbon fibers were used for adsorptive removal of 
Congo red dye from wastewater. The doped materials have an efficiency of 613 mg/g 
compared to 167 mg/g for untreated carbon fiber. The removal efficiency decreased 
by 1.4% even after 5 cycles [17]. Removal of malachite green by bimetallic Fe–Mg 
codoped AC was reported by Guo et al. The bimetallic carbon material has good 
adsorption efficiency and separability [41]. Similar studies have also been reported 
by other researchers [51, 72].
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6.8 Graphene- and Graphene-Oxide-Based Adsorbent 
Material for Dye Removal 

Graphene is an sp2 hybridized, covalently bonded single sheet aromatic hydro-
carbon in which hexagonal rings are arranged in a honeycomb crystal lattice struc-
ture (Fig. 18). Because of its remarkable properties such as high surface-to-volume 
ratio, excellent transparency, good conductivity and mechanical strength, graphene 
and its derivatives found applications in various fields of science and technology 
[119]. Conventional AC is a very good adsorbent material that has been used for the 
past many decades for the adsorptive removal of pollutants including organic dyes. 
However, they have severe limitations due to chemical rigidity and high cost for 
regeneration. Graphene and its derivatives, on the other hand, are a very good choice 
because of the large surface-to-volume ratio and the presence of strong π–π interac-
tion and hydrophobic effect, which will reinforce the adsorption process. Reduction 
of graphene oxide does not produce graphene back, instead reduced graphene oxide is 
formed which has a carbon to oxygen ratio of 246:1 in comparison to 2:1 in graphene 
oxide (GO) [138]. 

Due to its hydrophobic nature, graphene is not dispersed in water. Hence, to 
increase its hydrophilicity, graphene is converted to composite or oxidized to form 
graphene oxide (GO). Oxidation of graphene renders it with functional groups such 
as hydroxyl, carboxyl, epoxy, carbonyl, etc. which creates a negative charge on the 
surface and thus makes it hydrophilic. Graphene and graphene oxide can further be 
functionalized with specific organic reagents. 

Bismuth-oxide-embedded graphene oxide prepared by the sonochemical method 
has been used for the removal of rhodamine B with enhanced efficiency (320 mg/g) 
compared to unmodified graphene oxide. It is due to strong hydrogen bonding on the 
surface of graphene oxide on the incorporation of the metal oxide. The aggregation 
and oxidation of the surface can also be avoided in presence of bismuth oxide [85].

Fig. 18 Structure of a graphene and b graphene oxide
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Chang et al. synthesized CoFe2O4/GO composite, which showed selective adsorp-
tion behavior of cationic dye over anionic dyes. The composite material showed 
better efficiency for cationic dye adsorption than pure graphene but the efficiency of 
adsorption of anionic dye remained the same even after doping (Chang et al. 2020). 
Many natural polymers such as chitosan, xylan, insulin, and κ-carrageenan can form a 
stable composite with graphene or graphene oxide. For example, three biopolymer-
GO nanocomposites have been prepared and used for the removal of methylene 
blue, rhodamine 6G, orange II, and acid fuchsin (Fig. 19). The material showed 
the highest efficiency for methylene blue (769 mg/g) and followed the Langmuir 
adsorption isotherm model. The adsorption process was found to be spontaneous, 
exothermic, and highly dependent on the pH and other conditions [92].

The GO-chitosan hydrogel composite is reported to remove methylene blue and 
eosin Y dyes from an aqueous solution. The capacity for methylene blue removal 
is 390 mg/g, for pure GO it is 387 mg/g, and for chitosan beads the capacity is 
99 mg/g. The composite material was used as a column packing and the dyes could 
be removed by passing dye solution through it. The material was further improved 
by magnetization and the adsorption capacity became 95.16 mg/g. The process was 
exothermic and spontaneous and desorption was performed with 0.5 M NaOH and 
90% dye could be recycled [18, 28]. Graphene-oxide-wrapped magnetite nanoclus-
ters were used as a recyclable functional hybrid for fast and highly efficient removal 
of rhodamine B [32]. 

A comprehensive list of graphene- and graphene-oxide-based dye removal system 
are listed in Table 9. 

Fig. 19 Adsorption capacity GO and three GO-biopolymer composites for methylene blue (MB), 
rhodamine 6G(Rh6G), orange II(OII), and acid fuchsin (AF) [92]
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Table 9 List of graphene- and graphene-oxide-based dye removal systems [119] 

Composite Dye Adsorption 
capacity 

Regeneration 

GO Methylene blue 1.939 mg mg−1 37% with acetic acid, 
30% ammonia in 
ethanol 

Chitosan-GO Methylene blue, 
Methylene orange 

1.60, 
0.80 mmol g−1 

>90% after 5 cycles, 
acidic/alkaline eluent 

Graphene-Fe3O4 Methylene blue 43.82 5 cycles (decreases 
with each cycle) 

Amide-functionalized 
MOF/GO 

Methylene blue 97% in 15 min 4 cycles  

GO Acridine orange 2158 mg g−1, 95% – 

Layered GO Methylene blue, 
Methylene green 

350 and 
248 mg g−1 

– 

rGO Methylene green 77% – 

rGO-based hydrogels Methylene blue, 
Rhodamine-B 

~100%, ~97% ~ 100%, ~ 80% 

rGO−TiO2 hybrids (sheets, 
nanotubes) 

MB 83.26, 
75.36 mg g−1, 
90% 

– 

Polystyrene/Fe3O4/GO RhB 13.8 mg g−1 Magnetic separation 

GO−Fe3O4 hybrid MB and neutral red 
(NR) 

167.2 and 
171.3 mg g−1 

Magnetic separation 

GO–chitosan hydrogels 
(GO–CS)(GO–CS10–10:1 
w/w) 

MB and eosin Y 387,326 mg g−1 Filtration 

GO-sodium alginate Methylene blue 833.33 mg/gm – 

PDA/GO Methylene blue 2.18 g g − 1 – 

GO-magnetic cyclodextrin Methylene blue 228.5 mg/g Magnetic separation 

rGO-supported ferrite Methylene blue, 
rhodamine-B 

35, 23 mg g−1, 
∼100%, 92% 

Magnetic separation 

6.9 Multifunctional 3D Carbon Nanomaterials 
Superstructures 

Carbon nanomaterials have extensively been used for environmental remediation but 
a direct release of carbon nanoparticles in the environment is not preferred due to 
environmental concerns [139]. In order to tackle these problems, carbon nanomate-
rials are combined with other materials to form a three-dimensional multifunctional 
superstructure. This amalgamation can ensure environmental safety and also generate 
new functionalities. The conversion of nanomaterials to three-dimensional struc-
tures is performed using a self-assembly method, template-assisted methods, and 3D
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printing methods [135]. Different types of carbon-nanomaterial-based superstruc-
tures such as foams, sponges, aerogel, hydrogels have been successfully fabricated 
and utilized for adsorptive removal of oil spills, organic compounds, and dyes. The 
three-dimensional carbon nanomaterial-based porous sponges, foams, and aerogels 
are suitable for the removal of oil spills due to their superhydrophobic and superoleo-
phobic surface and high amount of oil wettability [133]. On the other hand, hydrogels 
are more versatile and can be used against any type of pollutants. 

Chen et al. fabricated 3D carbon aerogel materials by combining two-dimensional 
graphene oxide nanosheet and one oxidized carbon nanotubes via a self-assembly 
process. This material can adsorb several different types of pollutants including 
methylene blue dye (Fig. 20) [108]. 

The authors observed that there is a synergistic effect between graphene oxide and 
carbon nanomaterial in the ‘three-dimensional hydrogel producing a greater number 
of adsorption sites, large surface area, greater porosity, greater interspace, and as a 
consequence better adsorptive capacity. The adsorption efficiency for methylene blue 
is 685 mg/g and 94.47% of the dye could be recovered by desorption [108]. In another 
work, a graphene-based aerogel was constructed with gelatin by in situ reducing self-
assembly method. The aerogel was then used for the removal of rhodamine B, methy-
lene blue, crystal violet, and neutral red with an order of rhodamine B > methylene 
blue > crystal violet > neutral Red [65]. Chen et al. synthesized three-dimensional

Fig. 20 The synergistic effect of GO and CNTs in 3D GTs’ structure and adsorption performance 
[108]
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graphene sheets with chitosan to generate both the positively charged and negatively 
charged surface for successful adsorption of methylene blue (cationic dye) and eosin 
Y (anionic dye) with more than 300 mg/g efficiency [18]. A cheese-like foam of 
three-dimensional carbon–boron–nitride was synthesized by Liu et al. following 
a simple heating method. The material has a very small pore size (2–100 nm) and 
hydrophobic and lipophilic character. Because of the presence of boron and nitrogen, 
a strong interaction is established between the active site on the three-dimensional 
material and organic dyes containing an aromatic ring. This adsorbent material can 
remove different types of pollutants including Congo red and methylene blue with 
408 mg g−1 and 307 mg g−1 efficiency [64]. Thus, there are many such examples 
of carbon nanomaterials such as graphene, graphene oxide, carbon nanotubes, and 
nanofibers embedded into three-dimensional polymeric networks of hydrogels and 
their application in dye removal from wastewater [97].

6.10 Carbon-Based Nano/Micromotors for Adsorption 
of Dyes from Wastewater 

An artificial nano/micromotor is a highly sophisticated device that can self-propagate 
in an aqueous medium by utilizing physical and biochemical energy into mechan-
ical force. These devices can either be powered by fuel such as H2O2, water, acid, 
NaBH4, etc., or energy sources such as light, sound, electric, or magnetic field [, 
23, 113, 125]. Maria-Hormigos et al. fabricated carbon nanotube ferrite–manganese 
dioxide tubular micromotors for the removal of remazol brilliant blue R dye from 
industrial wastewater. The inside MnO2 layer in the micromotor can decompose 
H2O2 catalytically to produce oxygen gas and hydroxyl radicals which degrades the 
dye into CO2 and H2O. The scaffold of the micromotor is produced by carbon and 
Fe2O3 which generates defects in it resulting in roughness of the outer surface and 
thus creating more radicals. The presence of Fe2O3 in the outer layer can also ensure 
better separability [73]. 

Another remarkable example of self-propel micromotor is hydrothermally 
produced carbon-MnO2 micromotor used for catalytic degradation of methylene 
blue. Carbon-based micro/nanomotors have not been used so far for adsorptive 
removal of pollutants due to the high cost of production. However, due to their 
self-propagating properties, they are better than the static adsorbent [46].
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Fig. 21 Fullerene and its derivatives are used as an adsorbent as well as a photocatalyst for the 
removal of many dyes from solution [83] 

6.11 Removal of Dyes by C60 Fullerenes 

Fullerene is a zero-dimensional structured carbon material and has a number of appli-
cations including dye adsorption [44]. The discovery of fullerenes and their deriva-
tives are illustrated in Fig. 21 [83]. Depending on the functionalization, adsorption of 
dyes may occur via electrostatic interaction, π–π bonding, and hydrogen bonding. 

6.12 Removal of Dyes by Nanodiamond 

Nanodiamond (ND) is a form of carbon-based nanoparticles, offering diamond prop-
erties on a nanometer scale. It was discovered in the 1960s by the former Soviet scien-
tists. ND is available with an average diameter of ~5 nm with narrow size distribution 
and relatively large surface area. It is used in a number of fields including water purifi-
cation [57]. A number of dyes such as azo dye AO7 have been removed from ND by 
using the adsorption technique [127]. It is suggested that ND is a suitable adsorbent 
for textile dyes even at neutral pH. The unique surface chemistry of ND has made it a 
competitive candidate for carbon-based nanoparticles. Polymer/ND (PND) (nano-) 
composites are being used in a number of areas including dye removal and water 
purification in an effective manner. Synthesis, fabrication, and applications of PND 
are given in Fig. 22 [57]. However, it is a new field, so only limited work has been 
done. 

Oxidized nanodiamond (OND) and unoxidized ND (UND) have been used for 
the removal of methyl orange (MO) and methylene blue (MB) dyes and results have 
shown that UND performs much better than OND (Fig. 23) [75].
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Fig. 22 Synthesis and applications of PND [57] 

Fig. 23 Removal of MO and MB by ND [75]



176 S. Rai et al.

7 Conclusions 

Due to the industrial revolution and population growth, water has become highly 
polluted and harmful to living beings. One of the most toxic materials polluting 
water is dye. A number of methods have been used for the removal of dyes from 
water but the adsorbent technique is found to be the most efficient and economical. 
For this purpose, a suitable adsorbent with a high surface area is required. In recent 
years, different types of carbon materials have been used for dye removal. In this 
chapter, types of dyes and different carbon materials have been discussed. Effects of 
different parameters such as initial concentrations of dyes, solution pH, temperature, 
functionalization of carbon materials, doping in carbons, etc. have been discussed 
for the removal of dyes. Considering the type of dyes and carbon materials, it can 
be inferred that number of factors should be taken into account while the adsorption 
capacity of various carbon materials for dye removal is evaluated from an economic 
point of view. 
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104. Sayğılı H, Güzel F, Önal Y (2015) Conversion of grape industrial processing waste to AC 
sorbent and its performance in cationic and anionic dyes adsorption. J Clean Prod 93:84–93 
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Polysaccharide-Composites Materials 
as Adsorbents for Organic Dyes 

Paulo V. O. Toledo and Denise F. S. Petri 

1 Introduction 

Colourants are natural or synthetic molecules used to change the colour of mate-
rials, products, or surfaces. They are applied in a plethora of situations, from bench 
experiments to large-scale industrial production of food, packaging, painting, and 
textiles [1–3]. Colourants are classified according to their solubility in water as dyes 
(soluble) and pigments (insoluble); each one of them demands different procedures 
of fixation and finishing. Dye molecules show intense colour because of electronic 
transitions promoted by conjugated π linkages in their structures. The presence of 
heteroatoms in the dye molecules not only induces excitation gaps compatible with 
the absorption of visible light but also allows charge stabilization, favouring the solu-
bility in water [2, 4]. On the other hand, these structural features make dissolved dyes 
hard to be removed from aqueous media, enable their permeation into living tissues 
due to hydrophobic interactions with cell membranes, and affect cellular metabolism 
due to possible electrostatic interactions. 

“Clean water and sanitation” is one of the 17 Sustainable Development Goals 
of the United Nations [5]. Due to the importance of clean water for life, the period 
2018–2028 was set as the International Decade for Action “Water for Sustainable 
Development” [6]. These facts clearly show that world leaders are concerned with 
the issue of clean water on our planet. Due to human and industrial activities, large 
amounts of contaminants can be found in wastewater. Dyes belong to a class of
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contaminants, which stem mainly from the textile industry [7]. Hence, feasible strate-
gies are highly important to ensure the efficiency and safety of water purification. 
Adsorption is one of the simplest and most versatile methods to remove impurities 
from water [8]. Specificity, low cost, and the possibility of recycling adsorbents are 
important parameters to be considered. 

Polysaccharides are potential candidates for the development of adsorbents 
because they are biodegradable, non-toxic, and abundant. Combining polysaccha-
rides with reinforcing fillers results in composite materials with superior perfor-
mance. This chapter compiles the literature research over the last 20 years on 
polysaccharides composites designed for the removal of dyes from wastewater. It 
allows identifying the most common dyes and the most frequent polysaccharide-base 
composites used for the removal of dyes. Furthermore, it is fundamental to prospect 
alternative natural dyes and novel polysaccharide-based composites. Biomass-based 
composites were not included in this review because biomass might contain not only 
polysaccharides (cellulose and hemicellulose), but also lignin and minerals. 

1.1 State of the Art 

Polysaccharides constitute a major family of biosynthetic polymer class present in 
the composition of wood (cellulose and hemicellulose), fruits and seed (starch, galac-
tomannan, and pectin), arthropod exoskeleton (chitin), algae (alginates, carrageenan, 
and agars), and bacteria (cellulose, alginate, xanthan, gellan) [9]. According to 
IUPAC, a composite is a “multicomponent material comprising multiple, different 
(non-gaseous) phase domains in which at least one type of phase domain is a contin-
uous” [10]. This review focuses on polysaccharide composites, in which polysac-
charides are the continuous phase and the dispersed phase are particles with intrinsic 
properties that contribute to the adsorption process. Literature research was based on 
Web of Science® using the combination of “sorption” and “composite” and “dye” 
in all fields, for the period 2000–2021, refined by the type of particle (Fig. 1). The 
interest in this research field increased considerably in the last decade, probably 
motivated by the growing environmental concerns. 

The most common composites for dye adsorption have magnetic particles, which 
include magnetite (Fe3O4), maghemite (γ-Fe2O3), and undefined ferrite (FeOx) parti-
cles. The reason for this is, in contrast to diamagnetic materials, the magnetic mate-
rials can be easily recovered by approaching a magnet. The second most popular 
family of composites for dye sorption contains carbon-based materials, such as 
oxidized graphene (GO), graphite, carbon nanotubes (CN), and other activated carbon 
(AC), biochar, and fly ash. Clays are interesting fillers because of their native charges, 
which can interact with the polymer matrix improving the adsorption capacity of the 
adsorbent [11, 12], for instance, attapulgite (APT), bentonite (BNT), clinoptilolite 
(CNPT), kaolinite (KLT), laponite (LPT), montmorillonite (MMT), sepiolite (SPT), 
and vermiculite (VMT). TiO2 nanoparticles are interesting fillers not only because 
they offer a large surface area, but also because under UV light they generate electrons
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Fig. 1 Graphic of publications over time in years for “composite” and “sorption” and “dye” and 
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nium dioxide” (cyan), “bentonite” (green), “montmorillonite” (yellow), “silicon dioxide” (orange) 
and others composites (red) 

from the valence band, which react with O2 to form superoxide radicals or hydroper-
oxide radicals [13]. Such radicals promote photobleaching of adsorbed dyes like 
methylene blue [14] or reactive red 141 [15]. 

Figure 2 shows the research refinement according to the “name of polysaccha-
ride” used in the composites, one should notice that the term “polysaccharide” itself 
is a fraction of the total. Research studies involving chitosan (Chi), alginate (Alg),
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“name of polysaccharide”: “cellulose” (pink), “chitosan” (purple), “alginate” (blue), “starch” (cyan), 
“polysaccharide” (green), and “pectin” (yellow)
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and cellulose (Cel) together represented more than 80% of the total number of publi-
cations. This numeric asymmetry can be justified by their abundance and by the 
fact that they are not demanded by the food and beverage industry, as in the case 
of starch (Sta), pectin, xanthan, and gellan [9, 16]. In this context, the use of Chi in 
composites dominates because it stems from chitin, which is mainly extracted from 
bio-waste (crustaceans’ shells). The use of biomass to gain materials dedicated to 
the environmental issue is one of the pillars of a sustainable economy.

Figure 3 shows the number of publications as a function of time for the research 
including the terms “composite” and “sorption” and “polysaccharides”, after refine-
ment for the most frequent dyes. Remarkably most reports investigated the adsorption 
of methylene blue (MB), Congo red (CR), methyl orange (MO), rhodamine (Rh), 
malachite green (MG), and crystal violet (CV). These six dyes represent examples 
of the major families of organic dyes: MB is a thiazine compound; CR and MO 
are azo compounds; malachite green and CV are triphenyl compounds, and Rh are 
xanthene compounds. However, one should note that dyes are classified in eight 
families, based on the dying procedures, namely, acid (MO), basic (CV, MB+, Rh), 
direct (CR), disperse, reactive, solvent, sulphur, and vat [2, 17, 18]. The dye families 
disperse, solvent, and vat dyes are partially or insoluble in water and are used mainly 
for printing applications; if they are present in wastewater, they might be recovered 
by precipitation instead of by adsorption. On the other hand, reactive dyes have this 
name due to a fast and highly effective colouring, enabled by the presence of many 
functional groups in their molecules [2, 17]. The reading of the listed “polysaccharide 
composites for dye sorption” publications reported 102 distinct dyes, where mala-
chite green was slightly less common than remazol black B (RBl). Most of the dyes 
are reported by their Colour Index names, a system defined as “family” + “colour” 
+ “number”.
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Fig. 3 The number of publications as a function of time (years) for the terms “composite” and 
“sorption” and “polysaccharides”, after refinement for the most common dyes: rhodamine, crystal 
violet, methylene blue, malachite green, methyl orange, and congo red
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Amongst the most common dyes, methylene blue (MB) concentrates the most 
publications; it might be related to its particular photoactive properties. Under expo-
sure to visible light (633 nm) methylene blue molecules achieve singlet and triplet 
excited states. The excited states can react with O2 or undergo spontaneous decay 
[19], acting as a drug for photodynamic therapy. Both processes cause discoloura-
tion of methylene blue. For instance, the exposure of adsorbed MB molecules to a 
3 mW laser beam for 15 min is enough to observe the bleaching [20]. This particular 
feature enables the recycling of adsorbents used for MB removal by the simple expo-
sure to sunlight, although it may be a slower process than the traditional methods 
used for the recycling of adsorbents. MB molecules avoid adsorbing on hydrophobic 
substrates [21]. Water molecules in contact with hydrophilic substrates can assume 
three different states: (i) the tightly bound water molecules (non-freezing water), (ii) 
an intermediate state of water molecules that freeze below 0 °C, and (iii) free water 
[22]. The increase of intermediate water on cellulose-based hydrogels favoured the 
adsorption of MB and Rhodamine [23].

The adsorption of congo red (CR) on cellulose fibres has been used as an indirect 
method to estimate the surface area of the fibres [24]. The interactions between CR 
polar and charged groups and cellulose hydroxyl groups and hydrophobic interactions 
favour the adsorption process [25]. CR dye molecules also proved to mediate the 
adsorption of cholesterol oxidase [26] and lipase [27] on hydrophilic poly(ethylene 
glycol) modified surfaces. 

1.2 Properties of Dyes 

Table 1 comprises the physicochemical properties, toxicity, and applications of the 
most common dyes; the data were extracted from the PubChem database and USA 
Pharmacopoeia. The constant of dissociation (Ka) is important not only for the dying 
process but also for the adsorption process because it informs about the charge in the 
dye molecules as a function of pH [3, 28, 29]. The determination of Ka is dependent 
on the molecular symmetry and the technique utilized for its determination [30–32]. 
Hence, protocols for the estimation of Ka based on comparative molecular structure 
were developed. The most important contributions on simple molecules due to α and 
β positions concerning the polarization centre, while π conjugation could extend this 
contribution over large molecules [33]. Figure 4 represents the chemical structures 
of the most common dyes. 

1.3 Adsorption 

Adsorption is the increase in the concentration of dissolved molecules (adsorbate) at 
the interface of a condensed and/or a liquid phase due to intermolecular forces [10]. 
Physical adsorption is a reversible process, where the adsorbates are attached to the
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Table 1 Physicochemical properties and final applications of the most common dyes: λmax UV– 
Vis, pKa, and LD50 stand for maximal absorbance wavelength, log (Ka), and lethal dose to kill 50% 
of a group of test animals, respectively 

Congo red Crystal 
violet 

Methylene 
blue 

Methyl 
orange 

Remazol 
black B 

Rhodamine 
B 

CAS 573-58-0 548-62-9 61-73-4 547-58-0 17095-24-8 81-88-9 

Mw (g/mol) 696.66 407.99 319.85 327.33 991.8 472.09 

Solubility 
(g/L) 

116 (25 °C) 50 (20 °C) 44 (20 °C) 50 (20 °C) 550 (20 °C) 15 (20 °C) 

λmax (nm) 498 590 665 464 (pH 2) 
507 (pH 5) 

220 558 

pKa 4.1 3.29, 3.78, 
4.26 

2.6, 11.2 3.40, 3.76 6.9 3.7 

Oral LD50 
(mg/kg) 

143 (human) 420 (rat) 3500 (mice) 60 (rat) 5000 
(rat) 

887 
(mice) 

Potential 
health effects 

Carcinogenic 
teratogenic 

Serious eye 
damage 
Carcinogenic 
mutagenic 

Abdominal 
sore, vomit, 
and fever 
Reproductive 
disorders 
Mutagenic 

Skin and 
respiratory 
irritation 
Chronic 
toxicity 
Mutagenic 

Skin and 
respiratory 
irritation 

Irritation of 
respiratory 
tract, skin, 
eyes 
Carcinogenic 
teratogenic 

Application Dyestuff 
Leather 
Textile 

Dyestuff 
Leather 
Laundry 
activity 
Textiles 

Dyestuff 
Food 
Laundry 
activity 
Leather 
Natural 
sources 
Plastic 
Textile 

Food 
packages 
Laboratory 
Laundry 
activity 
Leather 
Paper 
Textiles 

Leather 
Personal 
Care 
Printing 
Textiles 

Dyestuff 
Food 
Laundry 
Leather 
Natural 
sources 
Plastic 
Textile

adsorbent by van der Waals forces, hydrophobic interactions, hydrogen bonds, or 
electrostatic interactions. Chemical adsorption is an irreversible process, where the 
adsorbates are covalently bound to the substrate. The adsorption processes can be 
studied in column or batch experiments. In fixed-bed column adsorption studies, the 
effluent (dye solution or wastewater) flows through the adsorbent (fixed-bed column) 
under constant flow. The concentration of effluent that comes out of the column as 
a function of time represents the breakthrough curve. The mass transport from the 
liquid phase to the adsorbent (column) depends mainly on the flow rate, column 
height, and adsorbate initial concentration. The breakthrough curves under different 
experimental conditions are important to optimize the operational conditions and 
to scale up to treat large amounts of wastewater [34]. However, the performance 
evaluation of polysaccharide composites as adsorbents for dyes often involves batch 
adsorption studies and small volumes of adsorbate (dye) solution. In batch adsorption 
studies the adsorbent and adsorbate solution are kept in contact (under shaking) until 
equilibrium conditions are achieved, at constant temperature (isotherm). 
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Fig. 4 The chemical structure of the most common dyes: a rhodamine B, b crystal violet, c congo 
red, d methyl orange, e remazol black, f methylene blue 

The adsorption isotherm represents the variation of adsorbed amount as a function 
of adsorbate concentration at equilibrium conditions over a range of concentrations 
and a fixed amount of adsorbent. Parameters such as pH, ionic strength, temperature, 
concentration range, the dose of adsorbent can be varied to gain deeper compre-
hension about the interactions between adsorbate and adsorbent. For instance, if the 
adsorption is driven by electrostatic interaction, (i) the increase of ionic strength 
(by the addition of salt to the medium) brings about charges screening and conse-
quent reduction of the adsorbed amount or (ii) in case the adsorbent (or adsor-
bate) molecules carry ionizable groups, depending on the pH, the groups are not 
ionized, reducing the adsorbed amount. If the adsorption process is endothermic, the 
adsorption will be favoured at a high temperature. 

Different models can be applied to batch adsorption isotherms; fitting the experi-
mental data to the models helps to understand the mechanism involved in the adsorp-
tion process. Comprehension of the adsorption mechanism is fundamental to achieve 
high adsorption efficiency. Many literature reports present the fittings of experimental 
batch adsorption isotherms with Langmuir, Freundlich, and Dubinin-Radushkevich 
model functions. In a recent review, the different models for batch adsorption exper-
iments were presented and discussed [35]. Briefly, the Langmuir model considers 
the reversible formation of a monolayer (the adsorbate interacts only with the adsor-
bent) on a homogeneous surface (all binding sites have the same energy). The empir-
ical Freundlich model is not restricted to monolayers (the adsorbate may interact 
with an adsorbent or with itself) and the adsorbent might carry adsorbing sites with
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different energies. The semi-empirical Dubinin-Radushkevich model was developed 
for microporous adsorbents, like activated carbon, and considers the effect of the 
increasing concentration of adsorbate over the energy of interaction with adsorbent. 
The reduced chi-square statistics (variance of the fit divided by the average variance) 
is a criterion to choose the model that better fits the experimental adsorption isotherm 
[36]. 

Most systems (adsorbate/adsorbent) reported in this literature compilation fitted 
the experimental adsorption isotherms with the Langmuir model [35]: 

Qe = 
Qmax KL 

1 + KLCe 
(1) 

where KL is the Langmuir adsorption constant, Qmax is the maximal adsorption 
capacity and Qe is the adsorption capacity at equilibrium: 

Qe = 
C0 − Ce 

m
× v (2) 

where C0 and Ce are the initial and equilibrium concentration, respectively, m is the 
mass of adsorbent and v is the volume of adsorbate solution. 

Thus, to compare the different systems, in the forthcoming sections, the maximal 
adsorption capacity (Qmax) will be presented along with the experimental parame-
ters dye concentration range, contact time, medium (ionic strength, pH), amount, 
and surface area of the adsorbent, and temperature used for the batch adsorption 
studies [2, 17]. In most cases, the adsorption experiments were performed in the 
absence of buffer, the pH was simply adjusted with NaOH or HCl, as needed. 
Although the systematic batch adsorption studies are important to understand the 
interactions between composites and dyes, the real contaminated wastewater might 
present different adsorption behaviour in comparison to that of the synthetic dye 
solutions. Real wastewater samples might be a complex mixture composed of many 
inorganic ions (high ionic strength) and organic interferents (chelating agents) that 
screen the interaction between dye and composites. 

2 Alginate-Based Composites 

Alginic acid is an unbranched block copolymer of β-(1→4) linked d-mannuronic acid 
(m) and α-(1→4) linked l-guluronic acid (g) (Fig. 5a), extracted mainly from brown 
seaweeds [37]. Typically, the ratio d-mannuronic acid: l-guluronic acid (m:g) is 
2.0:1.0; however, alginic acid from Laminaria hyperborean can reach m:g of 1.0:2.3. 
Pseudomonas aeruginosa and Azotobacter vinelandii can also produce alginic acid 
with m:g ratios ranging from 2.0:1.0 to 1.0:2.3 [9, 38]. Alginic acid can undergo 
the exchange of H+ by Na+ ions, resulting in the salt Na-alginate. In the presence of
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Fig. 5 Representation of a the chemical structure of the alginic acid as a copolymer of β(1–4) 
d-mannuronic acid (m block) and α(1–4) l-guluronic acid (g block), b the “egg-box model” formed 
between guluronate blocks and Ca2+ ions 

divalent (or multivalent) cations, such as Ca2+, alginate chains form the “egg box junc-
tions” (Fig. 5b) due to electrostatic interactions between Ca2+ ions and l-guluronate 
residues [39]. One simple strategy to prepare alginate-based composites is to disperse 
the fillers in the alginate solution and then drip the resulting dispersion into the CaCl2 
solution. Using this strategy, Sun and Fugetsu entrapped graphene oxide (GO) parti-
cles into the alginate beads for further removal of acridine orange; the presence of 
GO increased the Qmax value by 50%  [40]. Similarly, magnetic nanoparticles were 
dispersed in alginate solution and then precipitated into magnetic beads upon contact 
with CaCl2 solution [41–44]. The chemical crosslinking of alginate is less common 
and related to films and multiform hydrogels, using alkylsilanes [45], acrylamides 
[46–48], and other grafting polymers [49]. 

Clays are hydrated aluminium silicates with multiple negatively charged sites for 
cation capture along with their structure, according to unitary cell, cells disposition in 
layers, and the number of layers [11]. Alginate and clays tend to repel each other due 
to their intrinsic negative charges [50]. One strategy to reduce the repulsion is to use 
a nonionic surfactant to screen the charges, allowing more homogeneous solutions 
[51, 52] or crosslinking via multivalent cation co-precipitation. 

The adsorption of dyes on alginate-based composites is primarily driven by elec-
trostatic interactions. Most of the articles presented in Table 2 reported an optimum 
pH solution higher than 5; at this condition, conjugated amine and azo groups of the 
dye molecules are protonated and can interact with the alginate carboxylate groups 
[45, 46, 52–60]. The addition of concentrated acid promotes the protonation of the
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carboxylate groups of alginates and, consequently, reduces the electrostatic inter-
actions with the dye molecules. Therefore, rinsing the dye saturated alginate-clay 
adsorbent with a strong acid favours the desorption of cationic dyes for the adsorbent 
recycling [46, 48, 52–54, 60–65] On the other hand, the desorption of rhodamine 
(anionic leuco dye) can be favoured by rinsing with concentrate alkali [52]. Wang 
and co-workers investigated the adsorption of a cationic dye on alginate-PVA/MMT 
beads using various complementary techniques (EDS and XPS); they concluded that 
under mild conditions, the adsorption is equally driven by polar and electrostatic 
interactions [66].

Carbon-based materials such as graphene oxide (GO), carbon nanotubes (CNT), 
and activated carbon (AC) are less hydrophilic than the clays because they carry 
fewer charges than the clays. As a consequence, the pre-dispersion in water is more 
difficult, reducing the amounts of suspended GO [46, 71, 77], CNT [60, 61], and AC 
[44, 53, 57, 69, 73, 74, 78] that build the composites. The content of AC particles 
in alginate composites is generally smaller than that of clays (max of 10 wt% for 
carbon-based particles against min of 33 wt% of clays). Nevertheless, alginate-carbon 
materials composites seem to be more efficient adsorbent than the composites of 
alginate-charged fillers [42, 44, 75]. Durapandian and co-workers showed that Zn-
alginate/CA composites were more efficient towards the removal of crystal violet 
from dilute solutions (20–60 mg/L) [69]. 

In some composites, the content of alginate in the composite was smaller than the 
filler content [44, 70, 72]. The dye desorption can be promoted by screening effects 
[41] or by the addition of other polar solvents [49, 53, 72]. In general, the reusability 
of the adsorbents was evaluated in batch studies with many adsorption/desorption 
cycles, where the final recycling removal efficiency varied from 85 to 50% of the 
original values. One important point seldom addressed in the literature regards the 
amount of eluent necessary to recover the adsorbents. If the amount of eluent neces-
sary to recover the adsorbent is too large, maybe it is not an advantage because it will 
generate large amounts of the contaminated eluent. If the volume of eluent required 
to regenerate the adsorbent is small, then the resulting eluent is a concentrated dye 
solution that can be either returned to the textile industry or incinerated. 

Mahmoodi investigated the adsorption of three different basic dyes separately 
and in binary mixtures on ferrite-alginate composites; the Qmax values determined 
in the binary systems were up to fivefold smaller than the Qmax values determined 
for isolated dye systems [43]. These findings show that the adsorption behaviour of 
more complex systems, as real industrial wastewater, might be different from that of 
simple systems prepared in the laboratory. The increase of temperature favoured some 
adsorption processes on alginate-based composites [51–53, 55, 65, 73]. However, the 
increase of temperature decreased the adsorbed amount of dyes on some alginate-
based composites, turning the variation of the adsorption-free energy less negative 
[42, 45, 73]. Adsorption experiments using adsorbents based on pure polysaccharide 
(control) are important to show the contribution of the filler on the adsorption process. 
Nevertheless, only a few studies presented the adsorptive capacity of the control 
adsorbent [40, 46, 55, 57, 63, 74].
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For the treatment of large volumes of contaminated wastewater, fixed bad column 
adsorption tends to be more efficient. The dynamic adsorption of rhodamine B on 
hydroxyapatite/alginate composites was more efficient at low flow rates [59]. Despite 
microbeads being widely used for chromatography and filtration purposes, mate-
rials in their size range, when packed in the column, leave free volume to the solu-
tion permeation without interaction with the composite. The continuous sorption 
experiments help to optimize the operational conditions for wastewater purifica-
tion. However, the adsorption capacity of a given adsorbent packed in a column not 
necessarily is the same as that in batch experiments, because the contact time and the 
number of available binding sites on the adsorbent might be different; consequently, 
it is not trivial to correlate batch studies with column studies. 

3 Chitosan-Based Composites 

Chitin is composed of N-acetyl-d-glucosamine residues linked by β-(1→4)-
glycosidic linkages. It occurs in nature as the main structural element of arthropods 
exoskeleton and cell walls of fungi, so it is usually associated with proteins and cell 
pigments. Chitin is insoluble in water, but its deacetylation generates β-(1→4)-d-
glucosamine residues, which are soluble under acid conditions [79]. Chemical (acid 
or alkali) hydrolysis [80] or enzymatic hydrolysis [81] are common deacetylation 
processes. Depending on the source and reaction conditions, the degree of deacety-
lation might range from 60 to 99% with an average of 80% [82]. When the degree 
of deacetylation is 75% or more, the resulting copolymer of β-(1→4)-N-acetyl-
d-glucosamine and deacetylated β-(1→4)-d-glucosamine, represented in Fig. 6, is  
named chitosan [83]. Chitosan properties depend on the polymerization degree and 
the degree of deacetylation because its solubility relies upon the swelling of the 
acetylated units (subject to crystallization) and solvation of the deacetylated units 
(subject to the protonation of primary amine groups and repulsion amongst blocks) 
[79]. 

The presence of primary amine groups makes chitosan a natural polycation in 
pH > 5 with the ability to form complexes with many transition metals [79, 84, 85], 
offering a route to physical crosslinking [45, 86]. Chitosan is a versatile platform 
for the synthesis of amphoteric compounds via grafting reactions with chloro-alkyl

Fig. 6 Representation of the chemical structure of chitosan, a copolymer of and β-(1→4)-N-acetyl-
d-glucosamine and β-(1→4) d-glucosamine units
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acids [87–89], sulphonation in the presence of sulphuric and sulphurous acids [90], 
crosslinking between the polymer and the hybrid material [91–95], and creation of 
an interconnected polymer network [89]. Table 3 comprises reports about chitosan-
based composites for dye adsorption. The composites can be prepared using one of 
the strategies cited above or a combination of them, as recently reviewed by Pereira 
et al. [28].

As a polycation, chitosan chains repel cations and attract anions, promoting 
precipitation under adequate conditions due to competition for hydration or neutral-
ization. Remarkably, clays as layered hydrated aluminium silicates show polyanion 
characteristics [11] and are modified to avoid precipitation in contact with chitosan 
[89, 90, 116, 137], unless flocculation is intended to physically crosslink the 
composite materials [98, 101, 102, 106, 118, 129, 144, 155]. The structure of the 
materials resulting from the mixture of polycation and polyanion is dependent on 
the mixing conditions. The homogeneous structure is favoured by low concentra-
tion, moderate ionic strength, and pH close to point of zero charges, whereas the 
heterogeneous structure is favoured by higher molecular weight, fast pouring of the 
solutions, and low molecular shear [156]. 

Chitosan-based composites are the most common for dye adsorption. The prefer-
ence for chitosan can be explained by the electrostatic attraction to negatively charged 
fillers, which increases the stability of the composites; noteworthy, the reported point 
of zero charges for many reported composites range from 6.0 to 8.0 [58, 84, 87, 89– 
91, 94, 95, 100, 101, 103, 108, 109, 116, 118, 120, 135, 140, 142, 146, 150, 151, 
154]. The chemical composition of chitosan allows producing composites as beads 
upon precipitation induced by alkali solution [95, 96, 123, 127], as powders, flakes, 
and other composites without defined form [87, 122, 126, 133, 148]. In many cases, 
chitosan-based composites have high (<50 wt%) filler contents [84, 98, 104, 107, 
113, 136, 144, 152, 153, 155]. 

The mechanisms of adsorption might be complex and rely on different interactions 
between the composites and dyes. The attempt to unveil the adsorption mechanism 
makes use of the addition of competitor cations (Cd2+, Pb2+, Ni2+, and Cu2+) on  
the adsorption [116], multi-response optimization models [144], fittings to many 
adsorption models [113, 155], solid-state NMR analyses of dye loaded composites 
[100] and XPS analyses of the dye loaded composite in comparison to unloaded [58, 
148]. In most cases, concentrated NaOH solution is used to recover the chitosan-based 
adsorbents. Under alkaline conditions, chitosan amine groups are deprotonated and 
hydroxyl groups might be deprotonated, and many dye molecules are negatively 
charged (Table 1). Thus, the desorption is efficient due to electrostatic repulsion 
between chitosan chains and negatively charged dye molecules. In cases where the 
adsorption is driven by polar and hydrophobic interactions, ethanol or EDTA proved 
to be efficient to recover the adsorbents [94, 104, 133]. 

The increase of temperature led to the increasing of the amount of adsorbed dye on 
some chitosan-based composites [103, 108, 120, 125, 127, 128, 131, 133, 136, 147, 
148, 157]; on other composites, heating the systems brought about the decrease of 
adsorbed amount [84, 93, 96, 106, 113, 129, 138]. Noteworthy, adsorption processes 
driven by electrostatic interactions presented an increase [133] as well as a decrease
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[84, 138] of the adsorbed amount upon temperature increase. The increase of the ionic 
strength weakened the adsorption of dyes on chitosan-based composites [120, 131, 
138, 157], which involved electrostatic interactions. However, the increase of ionic 
strength favoured the H bonding-driven adsorption of dyes on chitosan composites 
[147, 148]. A few reports compared the adsorption of the dye on pure chitosan or 
pure filler with that of the chitosan composite [90, 95, 96, 110–112, 127, 141].

Table 3 shows that in general, the presence of graphene oxide (GO) nanoplatelets 
increased the adsorption capacity of chitosan-based composites, as in the case of 
alginate-based composites. Most magnetic chitosan-based composites presented high 
efficiency to adsorb different dyes. Chitosan forms composites with a variety of clays; 
the adsorption capacity of the resulting composite is dependent on the surface area 
of clay particles. Table 3 shows composites of rectorite [102] or alunite [101] and 
chitosan for the adsorption of acid red 1 (AR1). Composites of chitosan and diatomite, 
porous siliceous mineral particles, presented high Qmax values towards different dyes 
[113, 130]. 

4 Cellulose-Based Composites 

Cellulose is a linear polysaccharide of β-(1→4)-linked d-glucopyranosyl repeating 
units, a non-reducing end, and a reducing end, as depicted in Fig. 7 [158]. Cellulose 
is a very important polymer because its annual biosynthesis amounts to 1.3 billion 
metric tons [159] mainly from plants. The crystallinity and degree of polymerization 
of cellulose depend on its source and the process of purification. Cotton and bacterial 
cellulose are the natural sources with the highest contents of cellulose (higher than 
90%), whereas the cellulose content in natural fibres might range from 45 to 55%. 

Cellulose is insoluble in water. Not only the intra- and intermolecular H bonds, 
but also the hydrophobic interactions hinder the solubility of cellulose in water [160]. 
Cellulose can be modified by chemical reactions to enhance its solubility in water. 
Cellulose ethers are nontoxic water-soluble cellulose derivatives with applications 
as rheology controllers, thickeners, emulsifiers in food, drug, and paint formulations 
[161]. The chemical nature of the substituent, the degree of the substitution (DS, 
up to three by glucopyranose unit), and the degree of polymerization will define

Fig. 7 Representation of the structure of cellulose, a linear polysaccharide of β-(1→4)-d-glucose 
repeating units, a non-reducing end, and a reducing end [158]



Polysaccharide-Composites Materials as Adsorbents for Organic … 213

the properties of cellulose ethers, like solubility in water and affinity for dissolved 
molecules [162].

Amongst the cellulose ethers, carboxymethyl cellulose (CMC) is one of the most 
used for the preparation of composites. The reaction of alkali-activated cellulose 
with chloroacetic acid results in a derivative that behaves as a polyanion at pH 
higher than 4. The degree of carboxymethylation should be larger than 0.7 to achieve 
complete solubility in water. For a cationic dye like methylene blue, CMC is supposed 
to present a more pronounced uptake [163–166] in comparison to cellulose-based 
composites [167–172]. However, the interactions between CMC and fillers or other 
polymers might involve electrostatic interactions or ion–dipole interactions, reducing 
the number of CMC carboxylate groups available for the cationic dye adsorption 
[173]. Table 4 shows examples of CMC-composites with adsorption capacity smaller 
or similar [174–177] to that of cellulose-based composites [177–180]. One should 
notice that very high concentrations of dye [163, 165, 177, 178, 181] and small 
dosage of adsorbents [91, 165, 178, 179] might induce to multilayer adsorption of 
dye molecules by π-π stacking and high Qmax values. 

Effects due to net charges are also related to the loading/entrapment of clay [64, 
168, 179, 186, 190, 193], to the binding with other polymers [177, 195, 200] and/or 
other particles [181, 182, 187, 191, 192, 201]. The influence of charges is remarkable 
when comparing the adsorption efficiency of some cellulose/carbon composites [170, 
176, 182, 185, 197, 198], the phenomenon also seen in some chitosan-based [103, 
104, 121, 142, 152], and alginate-based composites [57, 69]. The adsorption of dyes 
on cellulose acetate-based composites [184, 197] containing nanocellulose particles 
(CNC and CNF, hydrophilic) [199, 203, 208] is driven by polar interactions, yielding 
Qmax approximately 100 mgdye/gsorbent. CNC produced by the hydrolysis of cellulose 
with sulphuric acid carries sulphate groups, which favour the adsorption of positively 
charged dyes, as methylene blue [210]. 

Cellulose composites are strongly related to the valorization of biomass wastes 
by mixing them directly with a second polymer [41, 64, 135, 167, 190] or by the  
valorization of their sub-products [185, 198]. 

5 Starch and Other Polysaccharide-Based Composites 

Starch is composed of amylose, a polysaccharide with α-(1→4)-linked d-
glucopyranosyl repeating units, and amylopectin, a highly branched macromolecule 
with α-(1→4)-linked d-glucose backbone and about 5% of α-(1→6) branch link-
ages [211]. Starch is produced by green plants for energy storage and is the main 
source of carbohydrates for humankind. Despite nutritional relevance, some research 
groups developed starch-based composites for dye adsorption. Table 5 shows starch-
based composites and the corresponding Qmax values. The combination of starch 
and nanosheets of graphene oxide (GO) seems to yield composites with the highest 
Qmax values, indicating that the large surface area of nanofillers plays an important 
role in dye removal efficiency. Crosslinked potato starch combined with graphene
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ağ

et
al
. 

[ 2
16
] 

C
ry
st
al
 

vi
ol
et
 

kC
ar
/L
PT

1
x

24
5.
5

14
40

1.
0

20
0

10
8.
1

5
x

K
C
l 0

.5
 M

M
ah
da
vi
ni
a 

et
 a
l. 
[ 2
17
] 

2
x

16
0.
0 

4
x

17
2.
3 

M
et
hy
le
ne
 

bl
ue
 

kC
ar
 +

 C
M
C
/M

M
T

16
.7

30
6

18
0

1
50
0

10
.7
5

5
x

E
th
an
ol
 9
8 

vo
l %

 
H
C
l 0

.0
1 
M
 

L
iu
 e
t a
l. 
[1
69
] 

M
et
hy
le
ne
 

bl
ue
 

kC
ar
-g
-P
(A

M
-c
o-
M
A
A
)/
ze
ol
ite
 
4.
0

25
7

14
40

0.
4

50
0

66
1.
91

6
x

H
3
C
C
O
C
H
3

M
itt
al
 e
t a
l. 

[ 2
18
] 

M
et
hy
le
ne
 

bl
ue
 

kC
ar
/A

M
 +

 M
B
A
/B
N
T

–
25

11
.0
 
60

0.
4

20
15
6.
25

5
x

H
3
C
C
O
C
H
3

Po
ur
ja
va
di
 

et
 a
l. 
[ 2
19
] 

R
ho
da
m
in
e 

B
 

L
oc
us
t g

um
/G
O

20
R
oo
m
 
3

14
40

0.
25

10
0

51
4.
5

10
 x

N
aO

H
 0
.1
 M

 
L
i e
t a
l. 
[2
20
] 

B
as
ic
 

ye
llo

w
 2
8 

Pe
ct
in
/M

M
T

10
.0

20
2.
0

12
0

0.
3

80
13
1.
5

–
H
O
O
C
H

N
es
ic
 e
t a
l. 

[ 2
21
] 

C
ry
st
al
 

vi
ol
et
 

Pu
llu

la
n/
PD

A
/M

M
T

11
.3

37
x

30
0

1.
0

30
0

10
3.
78

6
x

H
C
l 0

.1
 M

Q
i e
t a
l. 
[2
22
] 

22
.7

11
2.
45

(c
on
tin

ue
d)



Polysaccharide-Composites Materials as Adsorbents for Organic … 221

Ta
bl
e
5

(c
on
tin

ue
d)

D
ye

Po
ly
sa
cc
ha
ri
de

co
m
po
si
te

w
t%

Te
m
p

(°
C
)

pH
T
im

e
(m

in
)

D
os
e

(g
/L
)

C
m
ax

(m
g/
L
)

Q
m
ax

(m
g/
g)

R
eu
se

D
es
or
pt
io
n

R
ef
er
en
ce
s

34
.0

97
.4
6 

45
.3

89
.3
7 

A
ci
d 
sc
ar
le
t 

St
ar
ch
/M

M
T

5.
0

25
7.
4

15
0.
01

10
0

43
.7

–
–

K
oc
hk

in
a 
et
 a
l. 

[ 1
11
] 

C
on
go
 r
ed

St
ar
ch
 +

 P
A
A
/F
e 3
O
4

33
.3

25
5.
0

30
0

–
20
0

31
.8
47

7
x

N
aO

H
 0
.1
 M

 
Sa

be
ri
 e
t a
l. 

[ 2
23
] 

B
ri
lli
an
t 

bl
ue
 X
 

St
ar
ch
/c
la
y

10
.0

20
–

40
50
.0

–
11
2.
4

–
–

X
in
g 
et
 a
l. 

[ 2
24
] 

20
.0

12
2.
0 

30
.0

89
.3
 

B
as
ic
 b
lu
e 

17
 

St
ar
ch
/A

A
 +

 M
B
A
/K
LT

0.
5

25
–

57
60

60
.0

18
.3
5

7.
46
2

–
–

K
ar
ad
ağ
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oxide (GO) resulted in composites with Qmax of 500 mg/g towards methylene blue 
(MB) [212]. Cassava starch crosslinked with polyacrylamide (PAM) in the pres-
ence of GO nanosheets and hydroxyapatite (HAPT) showed Qmax of 297 mg/g of 
malachite green [213]. Wheat starch, poly(sodium methacrylate), P(NaMA), and 
eggshell particles or CaCO3 formed composites for the adsorption of MB and crystal 
violet (CV); in comparison to composites prepared with CaCO3, those prepared with 
eggshell particles provided larger adsorption capacity due to the intrinsic porosity 
of eggshells [214]. Composites of starch and other polysaccharides (κ-carrageenan, 
pectin, pullulan, xanthan) and clays presented high affinity for less common (BY28, 
JGB) and common (CV) dyes, as shown in Table 5.

6 Future Trends 

The results presented in this book chapter demonstrated that the interest in devel-
oping polysaccharide-based composites for dye removal from wastewater increased 
considerably during the last decade. This tendency should remain for the next 
decade since clean water has become increasingly scarce on our planet. The topic 
“Polysaccharides-based composites for dye removal” offers opportunities to improve 
the composites, making them more functional, and creating less hazardous dyes. 
Figure 8 depicts some strategies regarding new processes and products based on 
biological or natural sources. 

The increase of composite functionality might be achieved by the combination 
of polysaccharides with sunlight-photoactive fillers. For instance, the incorporation 
of active nanofillers as TiO2, which not only improves the mechanical properties of 
the composites but also promotes the photobleaching of the dyes under UV light, is 
surely a path to follow. Another promising strategy is the incorporation of microor-
ganisms able to discolour textile effluents [230] into the composites. Bacteria, fungi, 
algae, and yeast can biodegrade a plethora of organic dyes [231]. The attachment of 
active microorganisms to the composites would provide an in situ degradation of the 
adsorbed dye. In both cases, is fundamental to study the toxicity evaluation of the 
products resulting from the dye degradation.

Fig. 8 Some possible strategies to mitigate problems related to effluents contaminated by organic 
dyes: preparation of composites with active fillers, which can be photocatalysts for the degradation 
of adsorbed dyes or microorganisms that biodegrade dyes, and the development of new natural dyes
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Since the beginning, humankind has used natural dyes [232]. The accidental 
discovery of the first synthetic dye in 1856 by William Henry Perkin started a new 
era of mass production of synthetic dyes [1]. Since then the use of natural dyes 
decreased due to the cost and the amount necessary to supply the demand. Now the 
concerns about environmental impact and the importance of clean water bring us 
back to the natural dyes. The development of new natural dyes is an increasing trend 
for the new decade due to their biodegradability and low toxicity, reducing the envi-
ronmental impact caused by synthetic dyes. For instance, recently a new chemical 
route transformed beetroot pigment (betalains) from red to orange or magenta to blue 
[233]. This new dye, named BeetBlue, dissolves in water and other solvents and is 
nontoxic. All over the world, companies combine technologies and innovations to 
achieve sustainable production of natural dyes for the textile industry. EarthColors® 

is a trademark for dyes produced from non-edible agricultural or herbal waste. In 
India, a country with traditional textile industry, companies like Ama Herbals and 
Bio Dye Goa offer a plethora of natural dyes. These trends point at a promising next 
decade with novel dyestuff based on old nature.
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1 Introduction 

As the population grew, so did the demand for textiles, resulting in an increase in 
textile waste, textiles are the materials used for human being, and its the second 
most essential requirement for life and protection from the elements. However, as 
the world’s population grows, so does the demand for textiles, resulting in a rise 
in textile waste. The planet now faces a major problem of sustainable textile waste 
management due to the linear way that textile systems operate. Pre-consumer and
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post-consumer clothing wastes are divided into two categories, Pre-consumer wastes 
are those produced during textile processing, while post-consumer wastes are those 
that have outlived their usefulness [1, 2] Colored compounds that are chemically 
bound to a substrate are known as dyes, As a result, the desired color is transferred 
to the substance, and the chemical bond strength is increased (fastness). Dyes are 
non-biodegradable and resistance to certain chemical reagents, oxidizing agents, and 
heat due to their chemical composition [3]. Decolorizing effluents after they have 
been introduced into the marine system is a major undertaking. The use of a mordant 
can improve the dye’s consistency with the substrate, pigments can also be used as 
dyeing agents, pigments, on the other hand, bind to each other by physical adsorption, 
mechanical retention, or the forming of covalent bonds [1, 2]. Organic dye molecules 
are made up of extraordinary delocalized electronic structures of conjugate double 
bonds chemistry. Toxic dyes, such as acidic and basic dyes, can be present in indus-
trial wastewater [3], radioactive dyes released into the atmosphere by the clothing, 
dyestuffs, leather, paper, foodstuffs, cosmetics, rubber, plastics, and paint industries 
pose a health risk to humans [4, 5]. Textiles require a significant amount of water 
and are polluted by dangerous poisonous substances such as inorganic compounds, 
synthetic fibers are used in phases, colourings of fabric dyeing are referred to as 
dyestuffs, salt is a suitable standard of salt that improves the affinity of dye molecules. 
In today’s dyeing methods, gross dyestuff remains unfixed at a rate of 280 kilotons 
per year, 90% of fabric dyeing colorants have an LD50 value. (lethal dosage, 50%) 
of less than 2000 mg/kg according to a survey conducted by “Ecological and Toxi-
cological Association of the Dyestuffs Manufacturing Industry” [6–9]. Because of 
the constant use of water by clothing, paint, rubber, chemical, medicinal, and urban 
wastewater companies, environmental scientists have encountered problems on a 
global scale, organic dye contamination of water supply poses a serious danger to 
the environment [10–13]. Industrial wastes that are often associated with wastewater 
treatment schemes are liquid wastes, value-added components such as ingredients 
feedstock, cleaning and washing agents, by-products, plasticizers, and solvents, may 
also be used in dissolved or dispersed forms in industrial effluents, velocity and 
flow volume, environmental conditions, toxic and chemical elements, and microbi-
ological material are all characteristics of effluents [14–17]. The dye molecules in 
the water pose a serious threat to the atmosphere, including carcinogenic potential, 
mutagenicity, and kidney, liver, brain, and human reproductive system malfunction, 
about 10,000 various varieties of marketable coloring agent, with an average output 
of thousands of tones (700,000), are released into the river and sea sources lacking 
being properly handled, it also has a significant impact on photosynthetic behavior 
in marine plants by reducing sunlight delivery through water and disrupting the 
metabolic process of living things [13, 14, 18–23]. 

Dye molecules are transported from the wastewater to a solid region during the 
adsorption process, and can then be regenerated for further use. Synthetic sorbents 
for dye removal are more expensive, and they necessitate a separate procedure for 
waste treatment and disposal. Agro-wastes (that includes plant, microbes and animal 
biomass), on the other hand, are a viable choice of converting waste to wealth for 
the adsorption of dyestuff in wastewater [13].
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Dye-contaminated wastewater is treated using a variety of approaches (biolog-
ical, chemical, and physical) [13, 14, 24–27], ion exchange, adsorption, membrane 
phase (ultrafiltration, microfiltration, nano-filtration, and reverse osmosis), precipi-
tation and flocculation-coagulation are all part of the physical system (electrocoagu-
lation) chemical coagulation, fenton oxidation, ozonation, membrane processes, and 
adsorption are the most popular approaches for removing dyes from wastewater [4, 
5, 28]. Irradiation and the oxidative mechanism are two biological processes (oxida-
tive process with sodium hypochlorite, hydrogen peroxide, photo, ozonation elec-
trochemical and oxidation process process). Fungal decolorization, microbe deple-
tion, algae decolorization, Biological treatment includes adsorption by live or dead 
microbial biomass, or industrial biomass, as well as enzyme-mediated dye reduction. 
Agricultural/ biowaste is inexpensive, plentiful (every inhabited place on the planet 
generates biowaste), and can be used to make adsorbents, nanomaterials is made from 
agricultural waste such as peels, leaves, and seeds using thermal treatment [24]. 

There are other agricultural waste that are used in so many application like in 
making composite [29–31]. Adsorption has rapidly gained interest in the treatment 
of wastewater due to its low cost, ease of operation, high-quality filtered effluents, 
and easy to handle [4, 32–37]. Adsorption, has a number of benefits, including ease 
of use, high performance, and the absence of hazardous by-products [24], where 
the benefits and drawbacks of each method are weighed, adsorption seems to be the 
better option; as a result, several study groups have focused on it. Adsorbents are 
the most important component of adsorption, and a variety of materials have been 
used for this purpose, because of their abundance and low cost, traditional adsorbents 
such as bentonite, clay, montmorillonite, and zeolite, have received a lot of attention. 
Seeking substitute methods and raw materials to make good adsorbent were critical 
at this stage [38–41]. 

There’s not been a detailed analysis of the role of agro-waste materials in biosorp-
tion dye extraction from textile wastewater, in this chapter, we present a selection 
of studies on the removal of the most widely identified cationic dyes from agri-
cultural waste, primarily leaves, stems, roots, and flower/fruit, to have a better 
understanding of the most common patterns and causes associated with this type 
of substance, the sorption capacity, isotherm, influencing factors, efficiency, and so 
on were documented. This chapter presents a current overview of using agricultural 
waste as adsorbents to dissolve dyes, with a broad variety of adsorption methods using 
environmentally friendly Agro-Waste material for dyeing wastewater treatment. 

2 Classification of Dyes 

A dye is a colored organic compound that may permanently bind to the fiber through 
chemical or physical bonding between the dye’s groups and the fiber’s groups, the dye 
must be resistant to glare, scratching, and water in order to be commercially viable, 
dyestuff is not necessarily a colored compound. The wavelength of light striking 
the retina of the eye causes a physiological phenomenon known as color, as light
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with a wavelength in the visible region of the electromagnetic spectrum strikes the 
retina of the eye, the illusion of color is produced” [42]. The chromophores, which 
provide color, and the auxochromes, which not only complement the chromophore 
but also make the molecule soluble in water and have improved affinity (to attach) 
to the fibers, are the two main components of dye molecules. The color of the dye 
is determined by the chromophores, while the strength of the color is determined 
by the auxochromes. “The chromophore group is a basic configuration consisting of 
conjugated double bonds containing delocalized electrons. The chromogen, which 
has an aromatic structure normally contains benzene, naphthalene, or anthracene 
rings, is a part of the chromogen–chromophore structure along with auxochromes. 
The presence of ionizing groups known as auxochromes results in a much stronger 
alternation of the maximum absorption of the compound and provides a bonding 
affinity”. Some common auxochrome groups include –COOH,–HSO3, –NH3, and 
–OH [43]. 

Dyes can be classified in many ways, the main classification is based on Natural 
sources of dyes (this further subdivided into origin source as plant/algae, insects or 
minerals sources), synthetic sources of dyes (this subdivided based on the possession 
of chromophore such as antraquinone, azo, phthlocyanine, triphylmathene or sulfur) 
and classification based on application (this includes acid, basic direct, disperse 
mordant reactive or vat), this classification further sub divided into based on chem-
ical structure (betalains, carotenoids, dihydropyran, indigoids, pyridine quinonoids, 
and tannins), based on the charge they possessed (anionic cationic non-ionic), organic 
chemists categorize them based on their shared parent structure (chemical classifi-
cation). The dyer, who is only interested in securing the dye to the fabric, divides 
them into categories based on how they are applied. Figure 1 summarizes the various 
dye classifications. Lee et al. [44] divides textile dyes into three categories: anionic 
(direct, acid, and reactive dyes), cationic (all basic dyes), and nonionic (all nonionic 
dyes) (dispersed dyes). For this chapter we are going to give more emphasis to the 
cationic dyes in particular. For more details about dye and pigment classification you 
can read on Removal of dyes and pigments from industrial effluents [14]. 

3 Cationic Dyes 

Cationic dyes breakdown in aqueous solution producing positively charged ions 
which are water soluble, and attach to salt groups of the fiber molecules which then 
strongly bond to them and stain them. Malachite green (MG), BR2, simple blue 
41, crystal violet, and MB, rhodamine B, methylene green, and MB are examples 
of cationic dyes, MB is a cationic dye that is causing the most concern among 
researchers. Cationic dyes are substrate to treated nylon, polyester, inks paper 
and polyacrylonitrile, chemical type related to this class of dye are (h) acridine, 
anthraquinone, azine, azo, cyanine, diazahemicyanine, diphenylmethane, hemicya-
ninem, oxazine, triarylmethane, xanthenes, etc. Garlic root can be used as a low-cost 
adsorbent, but it will not strip dyes from agricultural wastewater, according to Tran



Application of Agricultural Wastes for Cationic Dyes Removal … 243

Fig. 1 Schematic representation of dye classification

and his co-authors, reducing environmental emissions is critical in an era where 
the dye is commonly used. They come to the conclusion that there is no need to 
abandon researching and developing farm waste as dye adsorbents, the following 
some important cationic dyes are discussed. 
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3.1 Methylene Blue (MB) 

MB is a cationic dye with the molecular formula (C16H18CIN3S.3H2O) and a molec-
ular mass of 319.85 g mol1 as shown in Table 1 and a maximum absorption wave-
length of 663 nm. Methyl thioninium chloride is both a drug and a pigment. It 
is the most dispersible coloring and noxious colorant, burning sensation, causing 
methemoglobinemia, disorderly breath, mental confusion, necrosis of the tissue, 
nausea, quadriplegia, and jaundice in humans and animals [13, 45–47]. With an 
LD50 (mg/kg) of 1180, it was treated with low-cost raw or modified farming waste 
products before being released into the atmosphere. 

3.2 Malachite Green (MG) 

C23H25N2 and 364.911 g mol1 (max = 617 nm) are the molecular formula and 
molecular mass of MG, a cationic dye, it is poisonous to a variety of marine and 
terrestrial species, as well as humans, and presents significant health risks. Muta-
genesis, carcinogenesis, respiratory syndromes, and damaging effects on the eyes, 
kidney, liver, and skin are just a few of the serious health effects, anemia, blood 
coagulation, dyscrasia, and leukocytosis are among the post-exposure symptoms 
identified by MG [48, 49]. 

3.3 Crystal Violet (CV) 

CV is a dye that is cationic (C25N3H30Cl) with a molecular mass of 407.978 g mol1 

and a maximum absorption wavelength of 590 nm, in vitro clastogenic influence, 
mitotic toxicity, hepatocarcinoma. This powerful carcinogen causes, reticular cell 
sarcoma, fish tumors, and other cancers [50]. Furthermore, it harms the respiratory 
and gastrointestinal processes of humans [51]. 

3.4 Brilliant Green (BG) 

The BG dye is another type of cationic dye with the molecular mass of 475.6 g mol1 

and the molecular formula (C27H34N2O4S) and have a maximum absorption wave-
length of 625 nm. It’s widely used in simple clothing dye, and it poses a number of 
environmental health hazards, including nausea, diarrhea, vomiting, dermatitis, and 
respiratory tract inflammation [52].
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Table 1 Chemical structure and molecular weight of several cationic dyes 
S. No. Name of dye Chemical structure Molar mass 

(g/mol) 

1 Methylene 
Blue 

N 

S+ NN 
H3C 

CH3 

CH3 

CH3 

319.85 

2 Crystal violet 

N+ 

NN 

407.978 

3 Rhodamine 
–B (RhB 

O N+N 

CH3 

CH3 

COOH 

H3C 

H3C 
Cl-

479.02 

4 Malachite 
Green (MG) 

NN+ 
Cl-

364.911 

5 Brilliant 
green (BG) 

+N CH3H3C 

N CH3 

H3C 

S 

O 

O 

O-HO 

475.6
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3.5 Rhodamine–B (RhB) 

RhB is a cationic dye with a molecular mass of 479.02 g mol1 and a maximum 
wavelength of 544 nm (C28H31Cl N2O3), it’s a carcinogenic xanthine dye that pollutes 
the environment as humans and animals eat it, health threats include reproductive 
and developmental toxicity, neurotoxicity, chronic toxicity, scalp, visual impairment, 
and respiratory tract inflammation. As a result, major steps to treat dye-contaminated 
effluents have been taken, with the aim of ensuring environmental protection for 
future generations [53, 54]. 

4 Agricultural Waste Used in Adsorption of Cationic Dyes 
Removal 

The environment is seriously harmed by the improper disposal of waste provided by 
agricultural sectors, as such, proper waste management is a current need, in recent 
years, scientists have tried to solve the issue by using these wastes as a dye adsorbent 
material, which has shown to be successful, agricultural waste is cost-effective, envi-
ronmentally sound, and plentiful, and it has the ability to supplement other commer-
cial activated carbon (AC), furthermore, it needs less packaging, is nonhazardous, 
and has a low manufacturing cost, furthermore, it needs less packaging, is nonhaz-
ardous, and has a low manufacturing cost. Materials that can economically expel 
toxins from dirty water are seeing a lot of attention these days, as a result, academics 
and environmental scientists are focusing their efforts on the use of low-cost indus-
trial waste products in dye removal treatments, adsorption is a surface phenomenon 
in which the intensity of a certain ingredient rises at the interface between two phases, 
causing mixtures to separate [55], adsorption methods have become one of the most 
commonly used physicochemical procedures for successful removal of dyes from 
polluted wastewater due to their low cost, abundant raw material availability, and 
high quality, since toxic pollutants inhibit cell activity and cause cell formation to 
stop, contaminant removal by dead biomass has an advantage over live organisms 
[56]. Commercially available AC is expensive for many small-scale businesses, and 
its use necessitates regeneration and reactivation procedures, to address these issues, 
researchers are concentrating their efforts on generating AC from crop residues, 
which is seen as a promising material for eliminating contaminants. 

Agricultural materials such as seeds, fruit peel, flowers, leaves, stem bark, algal 
biomass, fish scales, fungi, and bacteria biomass are used as the majority of adsor-
bents for dye adsorption, but in this chapter, we will concentrate on plant sources 
only. Agronomic yields extracted from floras are lignocellulosic (contains lignin, 
hemicelluloses and cellulose) and contain a variety of functional groups such as 
hydroxyl, carboxyl, and others that serve as active sorption sites. The dye sorp-
tion potential of sorbents with high cellulose and lignin content is particularly high 
[57]. Selecting an appropriate adsorbent after evaluating the surface characteristics is
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needed for a successful sorption operation. Enabled adsorbents (derived from agricul-
tural production) use the van-der-Waals force or the London dispersion force during 
surface contact with sorbate. The efficacy of cationic dye removal from aqueous 
media using adsorbents derived from plant leaves, stems, seeds, fruit peel, vine, 
base, algal residue, waste of animals, and bacteria/fungi biomass has been discussed 
sequentially in this chapter. 

5 Leaves  

The plant leaves are made up of biomolecules including cellulose, hemicellulose, 
pectin, which lignin, and are the primary photosynthetic tissue. Various functional 
groups in these biomolecules, such as amino, carboxyl, carbonyl, hydroxyl, and 
nitro, act as receptors and help in the interactive biosorption of dye molecules from 
an aqueous medium, leaf-based bio-materials should be used as effective biosor-
bents for the removal of various dyestuffs (ionic or non-ionic) from contaminated 
water because the binding affinity of such functional groups with dye molecules is 
inevitably dependent on the laboratory conditions, which can be dissociated or non-
dissociated [58]. To clear dust and other impurities, the raw leaves are first washed 
with tap, distilled, or deionized water, the washed and dried leaves are ground into a 
powder and sieved to isolate the desired particle size for biosorption, Several studies 
on the decolorization of different dyes using leaf-based adsorbents have recently 
been performed with very reliable results published in the literature Das et al. [59] 
used Butea monospermic leaf powder as a biosorbent to remove methylene blue 
dye from an aqueous solution, within 120 min, the authors recorded a maximal dye 
removal efficiency of 98.7% with an adsorbent dosage of 0.5 g/L against an initial dye 
concentration of 100 mg/L at pH 8. Surprisingly, the biosorbent had an 80% desorp-
tion potential in the first loop and could be reused twice for dye removal. Furthermore, 
leaf-based biosorbents can be changed into activated carbon or bio composite mate-
rials via physical or chemical methods to boost dye-binding affinity or biosorption 
capability. Akar et al. [60] conducted a research using spent tea leaves as a waste 
material to generate activated carbon (STAC), malachite green (MG) was removed 
from aqueous solutions using STAC as a low-cost adsorbent, at 45°c, the STAC had 
the highest adsorption potential (256.4 mg g−1). STAC successfully separated 94% 
of malachite green from aqueous solution, and adsorption is beneficial under the 
operating conditions investigated. Up to pH 4, the amount of adsorbed malachite 
green increased, but remained constant above that point. The Langmuir isotherm 
suited the experimental results the most, the MG adsorption on STAC was governed 
by pseudo-second-order kinetics. The removal of MB dye with Apium graveolens 
residue modified with H2SO4 was successful. The Freundlich adsorption isotherm, 
which adopted the PSO model of kinetics, was considered to be the best match for the 
experimental results. 476.19 mg g−1 was discovered to be the maximum adsorption 
capacity (MAC). The mechanism seems to be exothermic and random, according 
to the thermodynamic analysis [61]. Pirbazari et al. [62] studied the adsorption of
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methylene blue (MB) from aqueous solution by alkali treated Foumanat tea waste 
(ATFTW) from agriculture biomass. Complexation and ion exchange tend to be the 
primary mechanisms for MB adsorption, according to FTIR data. The Langmuir, 
Sips, Redlich-Peterson, and Freundlich equations were used to suit the adsorption 
isotherm results, and the Langmuir adsorption power, Qmax, was determined to be 
461 mg g−1. The adsorption of MB increases as the temperature rises from 303 to 
323 K, indicating that the mechanism is endothermic. ATFTW used pseudo-second 
order reaction kinetics based on Lagergren equations to remove MB, the adsorp-
tion of MB on the ATFTW was primarily governed by external mass transport, with 
particle diffusion serving as the rate-limiting step, according to mechanism studies. 

The pericarp of Sapindus mukorossi (reetha) was used by Samal et al. [63] as  
a biosorbent modified chemically and physically for the removal of methyl violet 
(MV) dye. It was characterized by using advanced analytical methods such as BET, 
FE-SEM, FTIR, and EDX analysis. The CCD model was used to refine the different 
parameters (sorbent dosage, pH, and dye concentration). The biosorbent that has been 
thermally treated had maximum dye removal ability (95%) at pH 4 with an adsorbent 
dosage of 0.1 g L−1 and an MV concentration of 28 mg L−1 in 150 min. Bello et al. [64] 
investigated the use of chemically modified activated carbon obtained from gmelina 
aborea leaves (GALAC) as an adsorbent for the elimination of Rhodamine B (Rh–B) 
dye from aqueous solutions. The Langmuir isotherm model best defined RhB dye 
adsorption on GALAC, with a maximum monolayer coverage of 1000 mg g−1 and an 
R2 value of 0.9999. GALAC had a carbon content of 82.81% by weight and 91.2% by 
atom, which is needed for high adsorption capability, according to the EDX report. 
The PSO kinetic model was best suited by adsorption kinetic results, thermodynamic 
parameters for GALAC showed that the RhB dye removal from aqueous solutions 
was random and endothermic. 

Astuti et al. [65] used thermal conversion of pineapple crown leaf waste to make 
the enabled carbon that has been magnetized adsorbent and tested its effectiveness 
for removing methyl violet dye from aqueous solution. The authors found that a 
0.3 g/50 mL dosage of micro and mesoporous adsorbent could extract 100% of the 
original 50 mg/L dye concentration from the solution at pH 5 after 180 min of contact 
time. The dye sorption absorption was found to be lower in the strong acid medium 
(pH 1) due to adsorbent surface protonation, and higher in the pH 5–11 range due to 
the development of soluble hydroxy complexes between the dye and the adsorbent. 
Also under the magnetic effect, enabled carbon that has been magnetized has a benefit 
in terms of pollutant isolation. Zaidi et al. [66] looked at the dye adsorption potential 
of cellulose isolated from Artocarpus odoratissimus leaves to clear MV and CV 
from an aqueous solution. They discovered that at atmospheric pH 4.78 and 6.08, 
the adsorbent had a gross adsorption capacity of 239 and 187 mg/g for CV and MV, 
respectively, and that it could regenerate best in an alkaline medium for five rounds. 
Zaidi et al. in another research [67] studied the adsorption of malachite green dye onto 
Artocarpus odoratissimus (Tarap) leaves, the leaves’ surfaces were modified with a 
strong base, sodium hydroxide (NaOH). The Redlich–Peterson model was the perfect 
choice for the isotherm. The value of Tarap leaves increased from 254.9 to 422.0 mg/g 
after adjustment based on monolayer adsorption using the Langmuir model, and
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increased by threefold while using the Sips model. Contact time, ionic strength, 
pH, temperature, and initial dye concentrations were all investigated as affecting 
parameters on adsorption. Thionine adsorption on tea waste and rice husk has been 
used for dye therapy [68, 69]. Oil palm fronds, tendu leaves (Diospyros melanoxylon), 
tea leaves, and pistachio shells were used to clear the cationic dye Janus green [70, 
71]. Ruby S2G and brilliant 2BE and were stripped using coconut epicarp and sugar 
cane bagasse [72, 73]. These cationic dyes involve hydrogen bonding interactions 
and intra-particle diffusion, which are affected by the pH and ionic strength of the 
medium. The prevalent negative charge on the adsorbent surface forms electrostatic 
attraction with the cationic dyes in mildly acidic medium (pH > 4.5), maximizing 
dye adsorption. Natural or chemically modified leaf-derived adsorbents have a high 
potential for extracting dye from aqueous media under different ionic pressures, as 
well as good desorption and reusability, according to the literature. 

6 Stem Biomass  

The stem is the most valuable part of a plant, and it’s used in a variety of indus-
tries including wood carving, pulp, and paper. During industrial processing (selec-
tion, sorting, and other processes), some waste is produced that goes un-used and 
needs additional cost and effort to dispose of herbaceous plant stems are left in 
fields untouched to decompose. The easily available lignocellulosic stem biomass 
may be used as an adsorbent in effluent dye removal. In order to investigate the 
stain-elimination potential of adsorbents isolated from raw or activated/modified 
carbon obtained from stem biomass, a number of studies have been carried out, the 
biosorption capacity plant stem of Ananas comosus for the abstraction of cationic 
Basic Blue-3 from aqueous solution was investigated by Chan et al. [74]. After two 
consecutive cycles of sorption–desorption, the biosorbent’s total sorption capacities 
for basic blue-3 dyes were found to be 58.983 mg/g at pH 10 after 120 min, which 
was found to be reduced by 20%. This thermodynamic experiments suggest that an 
exothermic adsorption process might be affected by a higher temperature. 

Using an aqueous solution and Artocarpus odoratissimus’s axis stem, Kooh et al. 
[75] studied the adsorption of the methyl violet-2B dye was investigated, at pH 4.2 
and 65 °C, the investigators discovered that a 0.04 g adsorbent dose extracts 87.2% 
of the original dye concentration of 50 mg/L in 120 min, with a median absorption 
of 263.7 mg/g. Increases in temperature from 25 to 65 degrees Celsius increased dye 
biosorption, while raising the medium’s ionic concentration from 0 to 0.8 mol/L had 
the opposite effect. Sugarcane bagasse modified with magnetic pyromellitic dian-
hydride (PMDA) and immature sugarcane activated with H2SO4, MB [76] and its 
corresponding adsorption capacity of 304.90 mg/g were removed. Oloo et al. [77] 
investigated the function of Rhizophora mucronata stem-barks in the biosorption of 
crystal violet dye from aqueous solution, they achieved a maximum dye biosorp-
tive efficacy of 99.8% after 60 min of interaction, adsorbent biosorption efficacy 
rises with adsorbent dosage, initial dye concentration, and contact time, then falls
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with particle size and biosorbent ionic pressure. The adsorptive potential of acti-
vated carbon isolated from Cornulaca monacantha stem for the removal of malachite 
green dye from aqueous solution was investigated by Sharma et al. [78]. According 
to the scientists, the adsorbent’s total dye removal efficiency was 97.07% against a 
starting dye dose of 100 mg/L, with an overall uptake capacity of 133.33 mg/g in 
an alkaline (pH 12) medium. Machrouhi et al. [79] studied the adsorption ability of 
activated carbons from Thapsia transtagana stems for the elimination of MB and MV 
dyes from wastewater. After 145 min at 500 °C, they discovered that the maximal 
adsorption capacities for respective dyes with an impregnation ratio of 2 g/g were 
219.70 and 1137.80 mg/g. They discovered that the impregnation ratio and activa-
tion temperature were the two most significant parameters that positively affected 
the activation mechanism. To adsorb safranin O and safranin (SBP), the biosorbent 
Salvadora persica (Miswak) powder (SP) and dried sugar beet pulp were used. With 
an adsorption potential of 17.3 mg g−1 603 for SP and 147 mg g−1 for SBP, both 
sorbents were considered a suitable alternative to the industrial activated carbon. In 
SP, Langmuir and Freundlich were used to analyze the investigational results, with 
SBP and the PSO being the best fit for both [79, 80]. 

Bello et al. [81] used free radical graft co-polymerization of sodium acrylate and 
acrylamide to create banana pseudo-stem cellulose-based super-adsorbent hydrogels, 
they studied the ability of super-adsorbent hydrogels to remove methylene blue dyes 
and found that the Overall uptake was 124 mg/g, with maximal desorption for both 
dyes of >96%, resulting in improved hydrogel usage. Other agricultural wastes, such 
as walnut shells [82], sawdust biomasses [83], tarap leaves [67], spent tea leaves [60], 
cattail biomass [84], coffee beans [85], luffa aegyptica peel [86], maize cob [86], 
coconut coir [87], and rice husk [87], were also used to remove cationic Malachite 
Green from aqueous solutions. 

6.1 Flower, Fruit Peel, and Seed Biomass 

Researchers have spent years attempting to reclaim and eliminate these agricultural 
wastes, which may be by removing the necessary bio-components or repurposing the 
leftover for other manufacturing purposes. Preparation of biosorbents and derived 
adsorbents for wastewater treatment, as well as the processing of feed or fertilizer. 

Reproductive organs of Plants develop into flowers, fruit peels, and seeds. Flowers 
make up the majority of the waste produced by ornamental and spiritual establish-
ments. Fruit peels and seeds are sorted as waste in the majority of food treating 
sectors and in the majority of kitchen garbage bins, the active biomolecules in these 
pollution by-products are beneficial to people’s health [50, 73]. 

Numerous researchers have studied the adsorbents extracted from these agro-
products for the successful elimination of cationic dyes from aqueous media, as 
shown in Table 2. 

Saeed et al. [88] investigated the biosorptive potential of grapefruit peel for the 
elimination of CV cationic dye from wastewater. The biosorbent made from peels



Application of Agricultural Wastes for Cationic Dyes Removal … 251

Ta
bl

e 
2 

D
ec
ol
or
iz
at
io
n 
of

 d
if
fe
re
nt

 d
ye
s b

y 
di
ff
er
en
t t
yp

es
 o
f b

io
m
as
s 

D
ye
s

Pl
an
t

O
pt
im

um
 E
xp
er
. C

on
.: 

C
T,

 D
os
e,

 p
H
, T

em
p.
, 

rp
m

 

A
ds
or
pt
io
n 
ca
p.
/ %

 
R
em

ov
al

 
D
es
or
pt
io
n

Is
ot
he
rm

K
in
et
ic
s

R
ef
er
en
ce
s 

L
ea
ve
s 

M
et
hy
le
ne

 b
lu
e

B
am

bo
o

20
 m

in
, 1
0 
m
g/
L
, 6

,
88
.0
0%

Fr
eu
nd
lic
h

PS
O

[9
3]

 
M
et
hy
le
ne

 b
lu
e

B
ut
ea

 m
on
os
pe
rm

a
12
0 
m
in
, 1

00
 m

g/
L
, 8

, 
25

 °C
, 1
50

 rp
m

 
99
.0
0%

A
ft
er

 a
t 2

nd
 

cy
cl
e 
80
%

 
Fr
eu
nd
lic
h

[5
9]

 

M
et
hy
le
ne

 b
lu
e

B
an
an
a 
le
av
es

48
.0
0%

[9
4]

 
M
et
hy
le
ne

 b
lu
e

B
an
an
a 
le
av
es

25
0

 m
g/
L
,4

,3
0
°C

11
0 
m
g/
g

[9
5]

 
M
et
hy
le
ne

 b
lu
e

Fi
cc
us

 p
al
m
at
a

80
 m

in
, 1
5 
m
g/
L
, 7

, 
31
3 
k,

 
98
%
/6
.8
9 
m
g/
g

54
%

Fr
eu
nd
lic
h

PS
O

[9
6]

 

M
et
hy
l v

io
le
t

E
uc
al
yp
tu
s

10
 m

in
, 1
0 
m
g/
L
, 7

, 
40

 °C
, 2
00

 rp
m

 
98
%

Fr
eu
nd
lic
h

PS
O

[9
7]

 

M
et
hy
l v

io
le
t

Pi
ne
ap
pl
e

18
0 
m
in
, 2

0 
m
g/
L
, 5
, 

25
 °C

, 1
20

 rp
m

 
31
.2
4 
m
g/
g

R
ed
lic

h-
Pe

te
rs
on

[6
5]

 

Sa
fa
ri
n

Ph
lo
m
is

 c
an
ce
lla

ta
 

B
un
ge

 
39
.9
6 
m
in
, 1
00

 m
g/
L
, 9

, 
25

 °C
, 3
31

 rp
m

 
99
.6

L
am

gm
ui
r

PF
O

[9
8]

 

ST
E
M
 

C
ry
st
al

 v
io
le
t

R
hi
zo
ph
or
a 

m
uc
ro
na
ta

 
60

 m
in
, 1
00

 m
g/
L
, 7
, 

25
 °C

 
99
.8
0%

Fr
eu
nd
lic
h

PS
O

[7
7]

 

M
al
ac
hi
te

 g
re
en

C
or
nu

la
ca

 
m
on
ac
on
th
a 

12
0 
m
in
, 1

00
 m

g/
L
, 6

, 
30

 °C
, 1
40

 rp
m

 
97
%
, 4

5 
m
g/
g

A
ft
er

 6
th

 cy
cl
e 

54
%

 
L
am

gm
ui
r

PS
O

[7
8]

 

M
al
ac
hi
te

 g
re
en

Su
ge
rc
an
e 
ba
gg
as
e 

B
io
ch
ar

 
52

 m
in
, 0
.5

 g
, 7

.5
,

30
00

 m
g/
L

[9
9] (c

on
tin

ue
d)



252 A. H. Birniwa et al.

Ta
bl

e
2

(c
on
tin

ue
d)

D
ye
s

Pl
an
t

O
pt
im

um
E
xp
er
.C

on
.:

C
T,

D
os
e,
pH

,T
em

p.
,

rp
m

A
ds
or
pt
io
n
ca
p.
/%

R
em

ov
al

D
es
or
pt
io
n

Is
ot
he
rm

K
in
et
ic
s

R
ef
er
en
ce
s

M
al
ac
hi
te

 g
re
en

Su
ge
rc
an
e 
ba
gg
as
e 

(S
B
) 

15
7.
2 
m
g 
g−

1
L
am

gm
ui
r

[6
7]

 

M
al
ac
hi
te

 g
re
en

B
an
an
a 
pi
th

 c
ar
bo
n

24
 h
, 4

,
48
.2
0%

[2
3]

 
M
al
ac
hi
te

 g
re
en

B
an
an
a 
st
al
k 
A
C

12
0 
m
in
, 8

, 3
03

 k
,

14
2 
m
g/
g

[1
00
] 

M
et
hy
le
ne

 b
lu
e

B
an
an
a 
Ps
eu
do

 
st
em

 
45
0 
m
in
, 1

00
 m

g/
L
,7
, 

25
 °C

, 1
20

 rp
m

 
33
3.
3 
m
g/
g

A
ft
er

 1
st

 cy
cl
e 

98
%

 
Fr
eu
nd
lic
h

PS
O

[8
1]

 

M
et
hy
le
ne

 b
lu
e

B
an
an
a 
pi
th

12
0 
m
in
, 2

5 
m
g/
L
,

89
%

L
an
gm

ui
r

PS
O

[1
01
] 

M
et
hy
le
ne

 b
lu
e

B
an
an
a 
pi
th

 c
ar
bo
n

24
 h
, 4

,
93
.3
%

[2
3]

 
M
et
hy
le
ne

 b
lu
e

B
an
an
a 
st
al
k 
w
as
te

7,
 3
0 
°C

24
3.
90

 m
g/
g

L
an
gm

ui
r

PS
O

[1
02
] 

M
et
hy
le
ne

 b
lu
e

A
ga
va

 si
sa
la
na

20
 m

in
,3
00

 m
g/
L
, 8
, 

32
8 
k,

 2
00

 rp
m

 
55
3 
m
g/
g

Fr
eu
nd
lic
h

[1
03
] 

M
et
hy
le
ne

 b
lu
e

B
ag
as
se

60
 m

in
, 0
.5

 g
/5
0 
m
L
, 

70
0 
°C

 
13
2 
g/
m
g

[1
04
] 

M
et
hy
l v

io
le
t

T
ha
ps
ia

 tr
an
st
ag
an
a 

14
5 
m
in
, 5

00
 m

g/
L
, 6

, 
25

 °C
 

14
1 
m
g/
g

L
am

gm
ui
r

[7
9]

 

M
et
hy
l v

io
le
t

B
an
an
a 
pi
th

 c
ar
bo
n

24
 h
, 4

,
37
%

[2
3]

 
M
et
hy
l v

io
le
t-

2B
 

A
rt
oc
ar
pu
s 

od
or
at
is
si
m
us

 
12
0 
m
in
, 5

00
 m

g/
L
, 2

, 
65

 °C
, 2
50

 rp
m

 
87
%
/2
64

 m
g/
g

A
ft
er

 5
th

 cy
cl
e 
45

 m
g/
g

[7
5]

 

R
ho
da
m
in
e-
B

B
an
an
a 
pi
th

 c
ar
bo
n

24
 h
, 3

.2
,

83
%

[2
3]

 
R
ho
da
m
in
e-
B

B
an
an
a 
pi
th

4
87
%

[1
05
] 

R
ho
da
m
in
e-
B

Su
ge
rc
an
e 
ba
gg
as
e

1
g/
L

65
.5

 m
g/
g

[1
06
] (c
on
tin

ue
d)



Application of Agricultural Wastes for Cationic Dyes Removal … 253

Ta
bl

e
2

(c
on
tin

ue
d)

D
ye
s

Pl
an
t

O
pt
im

um
E
xp
er
.C

on
.:

C
T,

D
os
e,
pH

,T
em

p.
,

rp
m

A
ds
or
pt
io
n
ca
p.
/%

R
em

ov
al

D
es
or
pt
io
n

Is
ot
he
rm

K
in
et
ic
s

R
ef
er
en
ce
s

Sa
fa
ri
n

Ps
eu
do

 st
em

 
B
an
an
a 

90
 m

in
, 4
0 
m
g/
L
, 7

.5
, 

20
 °C

, 
21
.7

 m
g/
g

[1
07
] 

F
lo
w
er
, f
ru
it
 p
ee
l, 
&
 s
ee
d 

C
ry
st
al

 v
io
le
t

gr
ap
e 
fr
ui
t p

ee
l

60
 m

in
, 1
00

 m
g/
L
, 6
, 

30
 °C

, 1
00

 rp
m

 
26
6 
m
g/
g

A
ft
er

 1
st

 cy
cl
e 

98
%

 
L
am

gm
ui
r

PS
O

[8
8]

 

C
ry
st
al

 v
io
le
t

co
tto

n 
lin

te
r 

(s
po
ng
es
) 

2 
h,

 2
98

 k
, 7

,
76
.6
3 
m
g/
g,

A
ft
er

 1
2t
h 

70
.9
4%

 c
yl
cl
e 

L
an
gn
ui
r

PS
O

[1
08
] 

M
al
ac
hi
te

 g
re
en

B
or
as
su
s a

et
hi
op
um

 
flo

w
er

 
4 
h,

 1
00

 m
g/
L
, 6
.8
, 3

00
 k

 
48
.5

 m
g/
g

[8
9]

 

M
et
hy
le
ne

 b
lu
e

N
er
iu
m

 o
le
an
de
r, 

Pe
rg
ul
ar
ia

 
to
m
en
to
sa

 a
nd

 
Po

pu
lu
s t
re
m
ul
a 

se
ed
s 

90
 m

in
,6
0 
m
g/
L
, 6

, 
22

 °C
, 1
00

 rp
m

 
28
0,

 1
45
, 1

68
 m

g/
g

Fr
eu
nd
lic
h

PS
O

[5
7]

 

M
et
hy
le
ne

 b
lu
e

B
an
an
a 
pe
el

3 
h,

 1
00

 m
g/
L
, 4
–8
, 2
0 
°C

 
18
.7

 m
g/
g

[1
09
] 

M
et
hy
le
ne

 b
lu
e

B
an
an
a 
pe
el

25
 o
C

22
5 
m
g/
g

[1
10
] 

M
et
hy
le
ne

 b
lu
e

B
an
an
a 
pe
el

 
A
ct
iv
at
ed

 
3 
h,

 1
00

 m
g/
L
, 4
–8
, 2
0 
°C

 
19
.7

 m
g/
g

[1
09
] 

M
et
hy
le
ne

 b
lu
e

B
an
an
a 
pe
el

 
A
ct
iv
at
ed

 
12
0 
m
in
, 4

,
94
%

[1
11
] 

M
et
hy
le
ne

 b
lu
e

B
an
an
a 
pe
el

 A
C

24
 h
, 1

00
0 
m
g/
L
, 9
, 

25
 °C

, 
62
0 
m
g/
g

[1
12
] (c
on
tin

ue
d)



254 A. H. Birniwa et al.

Ta
bl

e
2

(c
on
tin

ue
d)

D
ye
s

Pl
an
t

O
pt
im

um
E
xp
er
.C

on
.:

C
T,

D
os
e,
pH

,T
em

p.
,

rp
m

A
ds
or
pt
io
n
ca
p.
/%

R
em

ov
al

D
es
or
pt
io
n

Is
ot
he
rm

K
in
et
ic
s

R
ef
er
en
ce
s

M
et
hy
le
ne

 b
lu
e

B
an
an
a 
pe
el

 A
C

15
0 
m
in
, 2

5 
°C

22
5 
m
g/
g

[1
13
] 

M
et
hy
le
ne

 b
lu
e

B
an
an
a 
pe
el

 A
C

25
 °C

12
63

 m
g/
g

[1
10
] 

M
et
hy
le
ne

 b
lu
e

B
an
an
a 
pe
el

 A
C

6,
 2
2 
°C

45
5 
m
g/
g

[1
14
] 

M
et
hy
le
ne

 b
lu
e

B
an
an
a 
fr
ui
t b

un
ch

 
A
C
-H

3
PO

4 

76
 m

g/
g

[1
15
] 

M
et
hy
le
ne

 b
lu
e

B
an
an
a 
fr
ui
t b

un
ch

 
A
C
-K

O
H

 
71

 m
g/
g

[1
15
] 

M
et
hy
le
ne

 b
lu
e

B
an
an
a 
fr
ui
t b

un
ch

 
A
C
-U

nt
re
at
ed

 
70

 m
g/
g

[1
15
] 

M
et
hy
le
ne

 b
lu
e

co
tto

n 
lin

te
r 

(s
po
ng
es
) 

2 
h,

 2
98

 k
, 1

1,
12
3.
46

 m
g/
g,

A
ft
er

 1
2t
h 
cy
cl
es

 
77
.0
4%

 
L
an
gm

ui
r

PS
O

[1
08
] 

M
et
hy
le
ne

 b
lu
e

Su
ge
rc
an
e 
B
ag
as
se

 
(S
B
) 

90
.1
1 
m
g/
g

[1
16
] 

SB
 m

od
ifi
ed

57
1.
4 
m
g/
g

[1
16
] 

R
oo
t 

A
ur
am

in
e 
O

Ip
om

oe
a 
aq
ua
tic
a

12
0 
m
in
, 1

00
0 
m
g/

 L
, 6

, 
25

 o
C
, 2
50

 rp
m

 
45
6 
m
g/
g

A
ft
er

 5
th

 cy
cl
e 

75
%

 
Si
ps

 m
od
el

PS
O

[1
17
] 

G
en
tia

n 
vi
ol
et
/C
ry
st
al

 
vi
ol
et

 

B
an
ya
n 
ae
ri
al

 ro
ot

9 
h,

 5
00

 m
g/

 L
, 6

, 3
18

 k
, 

18
0 
rp
m

 
45
7 
m
g/
g

L
an
gn
ui
r

PS
O

[1
18
] 

M
al
ac
hi
te

 g
re
en

A
lli
um

 S
at
iv
a 
L

2
h,
50

g/
L
,2
5
oC

, 
20
0 
rp
m

 
23
3 
m
g/
g

L
an
gn
ui
r

PS
O

[1
19
] (c
on
tin

ue
d)



Application of Agricultural Wastes for Cationic Dyes Removal … 255

Ta
bl

e
2

(c
on
tin

ue
d)

D
ye
s

Pl
an
t

O
pt
im

um
E
xp
er
.C

on
.:

C
T,

D
os
e,
pH

,T
em

p.
,

rp
m

A
ds
or
pt
io
n
ca
p.
/%

R
em

ov
al

D
es
or
pt
io
n

Is
ot
he
rm

K
in
et
ic
s

R
ef
er
en
ce
s

M
al
ac
hi
te

 g
re
en

C
as
sa
va

12
0 
m
in
, 0

.0
5 
g/
L
,4
, 

25
 o
C
, 3
00

 rp
m

 
93
3 
m
g/
g

[1
20
]



256 A. H. Birniwa et al.

was found to be successful, removing 96% of the dye in 60 min. The equilibrium 
mechanism adopted the Langmuir isotherm, and the data from kinetics studies was 
found to be best suited for a pseudo-second-order model. The peel-sorbent was also 
reusable and could be regenerated using a 1 M NaOH solution with a dye recovery 
rate of 98.25%.

The sorption of this dye malachite green using activated carbon obtained from 
Borassus aethiopum flower biomass was investigated by Nethaji et al. [89], the 
authors demonstrated that the adsorbent could remove 99 of the sample in a slightly 
alkaline pH medium, 95%, and 78 of dye molecules for initial 100 m, 600 m, and 
1000 m dye concentrations respectively, involving both intra-particle and boundary 
layer diffusion of dye molecules. 

Shakoor et al. [90] used the peel of Citrus limetta to remove the Methylene 
Blue stain, with a maximum sorption capacity of 227.3 mg g−1, the experimental 
findings were ideally suited to the pseudo-second-order (PSO) kinetics and Lang-
muir isotherm model. With time and equilibrium dye concentration, the adsorption 
capacity increases, the removal efficiency of the adsorbent improves from 94.61 
to 97.1 in the concentration range (0.4–2.0 g L−1) of the adsorbent, this may be 
due to an increase in surface area and the number of adsorption binding sites. 
The Gibbs energy was negative, indicating an exothermic and random adsorption 
operation, using biochar corn straw-derived backed zero-valent iron NPs (nZVI) 
composite, the MG dye was successfully removed from the aqueous solution [91]. 
The charge has a big impact on the adsorption performance on the adsorbent surface, 
the composite has a very good dye removal performance after just 20 min (99.9%), 
adsorption is a spontaneous and endothermic operation, the MAC was discovered to 
be 515.77 mg g−1. 

To extract RhB and MO dyes, Xiaoyan and collaborators used corncob as a raw 
material and mixed furfural agricultural manufacturing waste, since there are func-
tional groups bearing oxygen on the surface of the mesoporous system, the furfural 
residue (FR) has a high removal ability, with 37.93 mg g−1 as its maximum adsorp-
tion capacity, the adsorption data adopted the Freundlich isotherm. The PSO kinetic 
model accurately represented the adsorption mechanism, and thermodynamic tests 
confirmed that the process was spontaneous and exothermic. The reusability of the 
raw material is critical from an industrial standpoint, by the fifth step, the RhB dye 
removal efficiency had decreased, indicating that the adsorbent had a strong recycling 
capacity [92]. 

White rice husk ash (WRHA) [121] was used to successfully clear the BG dye 
from the aqueous solution, the MAC was estimated to be 85.56 mg g−1 at 320 K. 
The most reliable model was discovered to be the PSO model, showing that the 
adsorption is completely chemical. In the range of concentrations of 3–100 mg L−1, 
more than 96.92% of the dye was eliminated at a fixed adsorbent dosage of 5 g L−1. 
The activation energy of the chemisorption process was estimated at 50 kJ mol−1, 
meaning that it is the rate-controlling stage of the adsorption process. The adsorption 
mechanism was exothermic, and no significant improvements in the adsorbent’s 
internal structure were found during the process, as shown by ∆H° and ∆S°.
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Acetic acid is used as an activator in the production of AC by Pinus roxburghii 
(PRCAC), the initial dye concentration (60 ppm), temperature (25 °C), pH (6), are 
the best adsorption parameters for MG. The MAC of the adsorbent was calculated by 
the Langmuir model to be 250 mg g−1. The adsorbed potential of PRCAC decreased 
from 93 to 83% subsequently just 5 rounds, according to desorption studies [122]. 

The MG was adsorption removed by the coffee husk dependent biosorbent (ACH), 
an important improvement in dye removal efficiency (96%) was found when the 
adsorbent dose was increased to 0.5 g L−1. Murthi et al. calculated the adsorbent’s 
MAC to be 263 mg g−1, and found that the PSO kinetic model and sips isotherm 
model matched the experimental results better, with R2 > 0.98 [123]. The Adsorption 
mechanism was also discovered to be endothermic, practicable, and random. At pH 
6.8 and a qe value of 185 mg g−1, the MAC of MG on ACH (74%) was observed, 
the removal efficiency decreased after pH (7) when it comes to dye adsorption, pH 
is extremely important [123]. 

Terminalia arjuna with an adsorption potential of 45.99 mg g−1, sawdust (TASD) 
was discovered to be an excellent adsorbent. The adsorption potential improved 
as the dye concentration was increased, and equilibrium was reached in 120 min, 
for successful adsorption of the pH of the medium should be greater than 5 when 
using crystal violet dye as an adsorbent. The kinetics experimental data preceded the 
PFO with a k1 value of 0.013 min−1, according to the findings. The adsorption was 
accompanied by the Freundlich isotherm model, suggesting multilayer cooperative 
adsorption, the reaction was endothermic and spontaneous [124]. 

At 80° C, the orange peel (OP) was treated with FeCl3 and FeCl2, and precipitated 
with 10% ammonia. The OP’s adsorption properties were improved by the magne-
tization process, at higher temperatures and pH, the adsorbent had better adsorbed 
properties. The Langmuir isotherm, which has monolayer uptake capacity (MOP) 
of 555.6 mg g−1 for and 138.9 mg g−1 for OP, is supplemented by the PSO model, 
which has monolayer sorption capacity of 555.6 mg g−1 for MOP and 138.9 mg g−1 

for OP, suits the equilibrium data well, MOP demonstrated outstanding renewability 
by up to 5 cycles as compared to OP. MOP had a higher equilibrium adsorption 
potential than OP, with a value of 46.94 mg g−1. The adsorption of the crystal violet 
onto the orange peel is endothermic in nature and it is followed by an increase in 
power [125]. 

To further clear MB stain from textile effluents, cashew nut shells were used as a 
low-cost adsorbent, at pH 10, with an adsorbent dosage of 2.1486 gL−1 and an initial 
dye concentration of 50 mg L−1, and an equilibrium period of 63 min, the appropriate 
optimum parameters were determined using reaction surface methodology (RSM) 
[126]. 

The activated carbon extracted from sour cherry stones (Prunus cerasus L.) with 
SBET was found to extract yellow 18 (Y18), a cationic dye with V total of 1704 m2g−1 

and 0.984 cm3 g−1, respectively. The adsorption potential was 75.76 mg g−1 at 318 K, 
with the pH and temperature of the solution playing a role [68, 69]. 

For the adsorption of the BG dye, Aichour and Zaghouane [127] used lemon peel 
waste (LP), Algerian montmorillonite (Mt), and industrial AC, while AC has a higher 
adsorption capability, its high cost has restricted its use. The Langmuir and PSO
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models suit the adsorption isotherm and kinetic well, with MACs of 229,150, and 
826 mg g−1 for MT, LP, and AC, respectively. According to thermodynamic exper-
iments, the values of ∆H° and ∆G° were negative, suggesting that the adsorption 
mechanism was spontaneous and exothermic reaction. The high degree of sponta-
neously during dye adsorption onto the bio adsorbent is due to the positive value of 
∆S°. 

Chen et al. [128] used sludge-rice husk biochar to study the adsorption of the 
dye methylene blue. The dye sorption mechanism was discovered to include surface 
involvement, –π–π interactions, electrostatic interactions, and hydrogen bonds, with 
a sorption capability of 22.59 mg/g as determined by the Langmuir isotherm. 

For the MB dye sorption capacity, Asma et al. [129] used the Mangosteen peel 
as a source of AC and ZnCl2 as an activating agent, temperature, impregnation time, 
calcination time, and ratio both had an effect on the surface properties. Mesoporous 
AC has the largest surface size, pore depth, and pore diameter (1622m2g−1; 1.805 
cm3 g−1; and 4.4 nm), making it a strong contender for a variety of environmental 
applications, the MB adsorption on AC was represented using the Lagergren pseudo-
first-order and PSO models. The Langmuir isotherm was followed in this situation, 
and the MAC was found to be 1192 mg g−1, revealing the endothermic and random 
presence of MB on the AC. 

Cucurbita pepo seed husks’ biosorptive properties for removing cationic dyes 
(basic violet-10 and basic red-46) from aqueous medium were investigated by 
Kowalkowska and Jozwiak [130], they found that the seed husk absorbed 96.01 
and 163.39 mg/g of basic violet-10 and basic red-46 dyes, respectively. The sorption 
capacity differed because cationic dyes have the capacity to form additional hydrogen 
bonds with the polysaccharides in seed husk. According to published findings, the 
reproductive parts of plants as agro-waste may be used to treat dyeing wastewater, 
reducing energy loss and providing a profitable income for food industries. 

6.2 Root Biomass 

Plant roots are in charge of extracting water and minerals from the soil or water, all 
of which are needed for plant growth, the roots of aquatic plants, in particular, are 
designed to live in water and can therefore be used to extract dissolved nutrients from 
an aqueous medium. Just a few roots (carrots, sweet potatoes, and others) are edible, 
so the non-edible roots are left to decompose. To minimize dye loss, the adsorbent 
obtained from the roots of a few aquatic plants was investigated for the removal of 
dyes from aqueous media, as shown in Table 2. 

Kallel et al. [131] designed predicted values were very similar to the real values, 
they used an adsorbent with garlic straw, which removed the dye with a proficiency 
of 85% in just 200 min at pH 7. With an adsorbent dose of 0.04 g/10 mL and an IDC 
of 100 mg mL−1, the MAC was found to be 256.41 mg g−1. The sorption equilibrium 
was evaluated using Langmuir’s, Freundlich’s, and Temkin isotherm models, and the 
essence of adsorption was discovered to be exothermic.
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Fan et al. [118] investigated the sorbent behavior of modified banyan aerial roots 
for the elimination of gentian violet dye from aqueous solutions, with a bio sorbent 
dosage of 0.02 g/L, they achieved a maximal sorption potential of 456.64 mg/g in 
540 min and adsorptive equilibrium results that followed the Langmuir isotherm in 
endothermic adsorption studies with electrostatic interaction. Aerial root grinding 
resulted in significant structural non-uniformity at the bio sorbent surface as well 
as a lower crystallinity of 21.79, indicating the biosorbents exceptionally high reac-
tivity. Lu et al. [117] studied the sorption of auramine-O dye using root powder from 
Ipomoea aquatica as a adsorbent. The root powder had a dye sorption potential of 
455.74 mg/g, with successful dye removal of 75% after the fifth sorption–desorp-
tion stage, and the kinetic results adopted a PSO model with a rate constant of 
1.92 g mmol/min, according to the authors. Furthermore, the batch process was used 
to remove dye from polluted water using Musa acuminate (MA) peels and Solanum 
tuberosum (ST), when compared to MA peels, the ash content of ST peels is lower, 
and the water content is higher, SEM analysis revealed the porous nature of the 
adsorbents. Which was shown to be beneficial in the handling of water containing 
dye molecules. Adsorption tests showed that rising the adsorbent dose increases 
percent sorption in both cases. In an acidic medium, both adsorbents demonstrated 
stronger adsorption. It was also discovered that the sorption of MA rises over time, 
although there was no discernible difference in the peels of ST. At 30 °C and 10 °C, 
the maximal adsorption of ST and MA was observed. The Langmuir isotherm was 
found to be more applicable in the isothermal experiments, with R2 values of 0.854 
for ST and 0.7508 for MA. In both cases, the PSO is used, with MACs of 83.31 mg g−1 

for ST and 87.24 mg g−1 for MA [132]. 
The hydrothermal treatment system was used to remove RhB dye from water 

using agricultural waste such as bamboo shoot shell (BSS) and cassava slag (HCS), 
with a MAC of 105.3 mg g−1 and excellent regeneration efficiency, HCS will extract 
96% of the dye. At 25 °C adsorption equilibrium period of around 20 min, the MAC 
of BSS was found to be 85.8 mg g−1, In both cases, the adsorption mechanism may 
be well described by PSO kinetics. Enthalpy, entropy, and Gibbs free energy were 
determined using the Van der Hoff equation, with the temperature, the endothermic 
nature of the process was mirrored in the increased adsorption of dye onto HCS [133, 
134]. Similarly, using various farm wastes as an adsorbent, several research articles 
confirmed the elimination of MB dye. Carrot leaves and stems (CLP&CSP) [135], 
potato stems and leaves [136], foumanat tea waste [62], luffa actangula carbon [137], 
coconut shell [137], corn stalks [138], hawthorn kernels [139], raw peach shell [140], 
carica papaya [140], palm trees and date stones [141], tea waste [69], rejected tea 
[142], wheat straw [143]. It has been discovered that there are very few findings in 
the literature on the use of root biomass as a biosorbent for dye removal. The root 
biomass contains enough cellulose, suberin, starch sheath, and other active functional 
groups such as amino, carboxyl, carbonyl, and nitro, making it a strong biosorbent 
for dye removal from aqueous media.
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7 Factors affecting dye sorption 

The final dye sorption capacity of AC is determined by the conditions under which dye 
adsorption takes place. Dye sorption is influenced by a number of factors, including 
dye initial concentration, temperature, pH, in the effluent, and chemical structure of 
the dye. 

7.1 Adsorbent Dosage 

The adsorbent dosage capacity is determined by the quantity of adsorbent dose used 
for the removal of dyes under specified optimal conditions. Dye absorption usually 
improves when the adsorbent dosage increased due to the presence of more adsorbent 
active sites. Adsorption dosage can be affected by the adsorbent-adsorbate solution 
with various adsorbent quantities added to the set starting dye concentration and 
mixed together for a balance time [58]. Generally, with increasing adsorbent dose, 
the percentage of dye removal rises. At first, the rate of increase in the percentage of 
dye removal was shown to be quick and decreased as the dosage rose. The reason 
for this occurrence is the fact that adsorbate (dye) is more easily accessible in the 
less adsorbent dosage and thus the extraction of adsorbent per unit weight is larger. 
With the increase of adsorbent dosage, adsorption is less proportional due to the lack 
of saturation at many sites during adsorption [144]. However, the improvement in 
removal efficiency following a particular dosage is negligible in relation to the dose 
increase. This is due to a very rapid superficial adsorption of the adsorbent surface is 
produced in the solution at a greater adsorbent concentration than at a lower dosage 
of the adsorbent. Thus, the quantity of dye adsorbed per unit mass of adsorbent is 
decreased with increasing adsorbent dosage, producing qe decreases [145–149]. 

7.2 Effect of pH on Dye Sorption Capacity 

It’s crucial to figure out what pH a certain carbonaceous adsorbent works best for 
adsorption capacity. The pH of the dye solution has a major effect for dye uptake in the 
case of dye binding by electrostatic reaction, with the largest dye uptake happening at 
the pH where the adsorbent and molecules of dye have good sensitivity. The maximal 
affinity can be determined using the adsorbent’s zeta potential. To absorb cationic 
dyes, the carbonaceous material must be negatively charged, while to bind anionic 
dyes, the adsorbent must be positively charged. The pH of the effluent has no effect 
on dye binding through Van der Waal strength, hydrogen bonding, or hydrophobic-
hydrophobic interaction, and adsorption takes place over a wider pH spectrum. The 
best pH for adsorbent dye binding is determined by the activation processes and 
carbon feed stocks used.
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7.3 Contact Time 

This ensures the maximum adsorption of an adsorbent at suitable operating condi-
tions. In that time, the amount of adsorbed materials onto the adsorbents makes a state 
of dynamic equilibrium with the number of desorbed materials. Adsorbent–adsor-
bate solution with a set adsorbent condition and initial concentration of dye may 
be applied to the impact of contact time on dye adsorption and shaken to balance 
over a different time interval. The rate of color removal often rises to some degree 
with an increase in contact time. Further increase in contact time does not improve 
absorption since dyes are deposited in adsorbent material at the accessible adsorp-
tion site (Ansari and Mosayebzadeh 2010). The dye value that is desorbed by the 
adsorbent is now in a condition of dynamic balance with the dye quantity adsorbed to 
the adsorbent. The time needed to achieve this balance is called the equilibrium time 
and the dye adsorption at the equilibrium time represents the adsorbent’s maximal 
adsorption capacity under those operating conditions [148–151]. 

7.4 Effect of Temperature and Pressure 

According to Le Chatelier’s principles, the increase of temperature and decrease of 
pressure enhanced the rate of adsorption, heat is consumed in the process at this 
time, which favors adsorption. Temperature is another important element in adsorp-
tion research, as it reveals much about the system involved in the sorption process 
In general, temperature has two major effects on the adsorption process, since the 
viscosity of the solution decreases as the temperature rises, the diffusion rate of 
adsorbed molecules increases through the external boundary layer and in the internal 
pore of the adsorbent particle. Similarly, changes in the adsorption system’s tempera-
ture cause changes in the adsorbent’s equilibrium potential for a given adsorbent [152, 
153]. The temperature at which dye adsorption occurs is also important in the dye 
adsorption capacities of carbonaceous materials. It’s possible to have endothermic 
or exothermic interactions with dye molecules and adsorbent. Dye molecules diffuse 
and bind to the adsorbent due to the constant thermal motion of atoms and molecules, 
which is dependent on the energy available. The increase in temperature provides 
thermal energy, which increases dye molecule molecular motion and drives diffusion 
through the adsorbent. 

7.5 Effect of Dye Concentration 

The data of initial and final ions concentrations are used to calculate the adsorp-
tion capacity of an adsorbent [151, 154]. However, if the initial ion concentration 
increases for a specified amount of adsorbent dosage, then the removal efficiency
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will be decreasing due to the presence of a higher number of dye per unit mass of 
adsorbents. The adsorption potential would be determined by the dye concentra-
tion in the wastewater. Because of the low concentration of the dye, it is possible 
the dye adsorption won’t reach saturation, and the adsorbent may be underutilized. 
The dye adsorption potential rises as the dye content in the effluent rises until the 
adsorbent’s dye-binding sites are saturated, at which stage there is no increase in dye-
binding concentration since the dye-binding sites are completely packed with dye 
molecules. Furthermore, as the concentration of those cationic dye in the wastewater 
increases, the dye adsorption efficiency decreases due to adsorption site saturation 
on the adsorbent’s surface. 

7.6 Effect of Pore Volume and Particle Size of Adsorbent 

The pore volume of an adsorbent is essential in dye adsorption because it enables 
the most dye molecules to bind to it. The surface area of adsorbed materials is also 
affected by particle size, which has a significant impact on the adsorption process. 
Since ions will enter the pore structure of the adsorbent when the external surface area 
is high, the adsorption process is accelerated [155]. As the pore size of a porous mate-
rial is greater than 1.7 times the size of the adsorbate molecule, repulsion between the 
adsorbate molecules increases dramatically, necessitating higher adsorption energies 
[156]. The most powerful pores are 1.7e6 times the size of the adsorbate molecule 
[157]. As a result, the dye sorption is governed by the pore capacity of the adsorbents 
rather than their surface area [158]. 

8 Dye Adsorption Isotherm and Kinetic Modeling 

8.1 Dye Adsorption Isotherm Models 

The Langmuir, Freundlich, and Temkin, models are the most popular isotherm models 
used to explain the adsorption of cationic dyes by adsorbent. They’re useful for 
determining how dye molecules are dispersed at equilibrium on the solid adsorbent 
and in the liquid phases. Adsorption isotherms are used to describe the association of 
the dye molecule with the carbonaceous adsorbent, as well as adsorption equilibrium 
and the dye attaching active sites on the adsorbent [159]. The adsorption isotherm 
explains the volume of adsorbate on the carbonaceous adsorbent surface as a result 
of its amount at a constant temperature. 

The best match for dye adsorption by adsorbents is determined by comparing 
the R2 values obtained from the adsorption models. The affinity between the adsor-
bate and the adsorbent surface determines how well the adsorbate interacts with the 
adsorbent substance. The adsorption process starts until the adsorbate and adsorbent
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come into contact, and continues until the adsorbate on the adsorbent surface and the 
adsorbate left in the aqueous solution enter equilibrium. The amount of adsorbate 
leaving the adsorbent surface at this point would be equal to the amount adsorbed 
to the adsorbent surface. The term “adsorption isotherm” refers to the phenomena 
that defines the adsorption processes between the adsorbate on the adsorbent surface 
(that is, adsorption number, Qe) and the adsorbate in the aqueous phase (equilibrium 
concentration, Ce). By varying the quantity of adsorbent, the initial concentration of 
solute, and the volume of liquid, the number of adsorbate ions per unit mass of the 
adsorbent (Qe) and the equilibrium concentration of the adsorbate remaining in the 
aqueous phase (Ce) can be obtained over a wide range. Equation: To determine the 
equilibrium metal uptake Qe, use the following formula: 

Qe = (Ci − Ce)V 

m 
(1) 

where V is the volume of the solution, Ci and Ce are initial and equilibrium 
concentrations, and m is the dry mass of adsorbent [160–162]. 

Isotherm models are used to fit the adsorption equilibrium data by plotting Qe 
against Ce. Once the models fit the isotherm data, the adsorption properties such 
as maximum adsorption amount, affinity constant, thermodynamic parameters, and 
the mechanism of the adsorption can be obtained for the adsorption process. Such 
information allows the evaluation or prediction of the performance of the adsorption 
process and is useful to optimize the use of the adsorbent in its intended applica-
tions. The two widely used models for describing the experimental isotherm data 
were developed by renowned scientists namely Langmuir and Freundlich model 
[162, 163]. 

The Langmuir isotherm model 

For monolayer adsorption onto a surface with a finite number of equivalent sorption 
sites, the Langmuir isotherm model is accurate. It is based on the premise that any 
adsorption site is equal, regardless of whether neighboring sites are occupied or not. 
The Langmuir model is based on four assumptions: all adsorption sites are equal and 
can only accommodate one molecule, the surface is energetically homogeneous and 
adsorbed molecules do not interact, there are no phase transitions, and at maximum 
adsorption, only a monolayer appears [160]. According to the Langmuir model, 
adsorption energy is constant and unchanged by surface coverage. When a monolayer 
of dye molecules covers the adsorption surface, maximum adsorption occurs. In the 
other hand, certain adsorbates adsorb on certain parts of the surface. The equation 
that represents the model is as follows: 

Ce 

Qe 
= Ce 

Qmax 
+ 1 

QmaxkL 
(2)
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kL (L/g) is a constant related to adsorption power and energy of adsorption, and Qmax 
(mg/g) is the maximal adsorption capacity equivalent to total monolayer coverage. 
The parameters representing the Langmuir model can be determined from the slope 
and intercept by plotting Ce/Qe versus Ce. 

The dimensionless separation factor, RL, can be used to express the favorability 
of an adsorption mechanism as follows: 

RL = 1 
1 + kLCo 

(3) 

This shows that for favorable adsorption, 0 < RL < 1, while RL > 1 represents 
unfavorable adsorption, RL = 1 represents linear adsorption and RL = 0 means the 
adsorption is irreversible. 

The Freundlich isotherm model 

The experimental Freundlich model also takes into account the adsorbent’s 
monomolecular layer coverage of the solute. However, it is assumed that the 
adsorbent has a heterogeneous surface, with different binding sites. 

The Freundlich Equation, which is strictly analytical and dependent on sorption 
on a heterogeneous surface, is: 

Qe = kF (Ce)1/n (4) 

The Freundlich Equation can be linearized in logarithmic form as expressed 
below: 

ln Qe = ln kF + 1 
n 
ln Ce (5) 

The Freundlich constants k F  (L/g) and n, which represent the adsorption potential 
and strength, respectively, are used. The Freundlich constants are calculated using 
experimental data and the intercept and slope of the linear plot of ln Qe versus ln Ce. 

8.2 Adsorption Kinetic Models 

Adsorption kinetics defines the solute uptake rate, which controls the residence time 
of adsorbate uptake at the liquid–solid interface, including the diffusion mechanism 
[148, 164]. The pseudo-first-order and pseudo-second-order models are commonly 
used kinetic models of adsorption [165]. 

Pseudo-first-order kinetic model 

Lagergren [166] proposed a pseudo-first-order Equation based on significant poten-
tial for the sorption of a liquid/solid structure. It is assumed that the difference in
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the saturation concentration and the volume of solid absorption with time is directly 
proportional to the rate of change of sorbate uptake with time. In liquid phase sorp-
tion, the Lagergren Equation is the most commonly used rate equation. The following 
is the pseudo-first-order rate model: 

log(Qe − Qt ) = log Qe − k1 

2.303 
t (6) 

The Lagergren rate constant of adsorption is k1 (min−1), the maximum adsorption 
power is Qe (mg/g), and the volume of adsorption at time t is Qt (mg/g) (min). The 
intercepts and slope of the plot of log (Qe-Qt ) versus t are used to evaluate the values 
of k1 and Qe [167]. 

Pseudo-second-order kinetic model 

The pseudo-second-order kinetics is based on the premise that the rate-limiting step 
could be chemical sorption or chemosorption involving valance force by sharing or 
swapping electrons between the adsorbate and the adsorbent [167]. 

The sorption data were also studied by pseudo-second-order kinetic, which is 
expressed as follows: 

t 

Qt 
= 1 

k2 Q2 
e 

+ t 

Qe 
(7) 

k2 is the pseudo-second-order adsorption rate constant (g/mg min), and k2 and Qe 

were estimated from the intercepts and slope of the t/Q t  versus t plot. 

9 Conclusion 

The current study covers a wide range of adsorbents, including agricultural by-
products, activated carbon derived from biomass, and biosorbents, all of which can 
be used directly, modified, processed, and extracted for the removal of cationic dyes 
from contaminated wastewater using adsorption technology. The number of studies 
in this field is on a daily basis, showing that this industry has a bright future. Because 
of its abundant availability, low cost, eco-friendly, and biodegradable material, agro-
waste has drawn researchers for the development of environmental treatment systems. 
However, no comprehensive study of the efficacy of biosorbents and co-substrates, 
as well as related technical shortcomings such as additional carbon and color loading 
in bio-treated water, viability, and expense, has been undertaken to date. Agro-waste 
biomass (whether untreated or modified) has a high potential for extracting various 
dyes from an aqueous solution, according to a dye biosorption study. The biosorptive 
ability of porous biosorbents with cellulosic content and active surface functional
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groups (such as hydroxyl, carbonyl, carboxyl, amino) for dyes has been demon-
strated. Langmuir and pseudo-second-order models were used as dominant isotherm 
and kinetic models, respectively, to analyze the fundamental mechanism operative 
between the adsorbent and the adsorbate of the system. The majority of biosorption 
kinetic processes used a pseudo-second-order kinetic model, with adsorption equi-
librium results that equally correlated monolayer or multilayer adsorption isotherms. 
Agricultural waste material performed much higher as an adsorbent as compared to 
other forms of adsorbents. When comparing sorbent materials, price is an important 
consideration. The cost of AC made from farm wastes is said to be poor as compared 
to other adsorbents. Furthermore, industrial wastes as a potential adsorbent have a 
greater adsorption ability than other adsorbents. This chapter shows that agricultural 
by-products can be used as powerful and affordable adsorbents in the near future for 
a wide variety of applications. 
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Application of Aromatic-Based Synthetic
Macromolecules in Textile Wastewater

Jumina, Yehezkiel Steven Kurniawan, and Anggit Fitria

1 Introduction

Dyes and pigments are indispensable day-to-day essentials in human activity since
dyes and pigments play pivotal roles especially for textile industries, cosmetic formu-
lations, leather processing, paper andpaintmanufacturing, andplastic production [96,
110]. In 2015, the annual world production of dyes and pigments reached 700,000
tonnes.However, the estimated amount of leaked dyes and pigments during the indus-
trial processes yielding up to 15% of dyes and pigments in the textile wastewater,
amounting to 105,000 tonnes/year, which represent a significant potential bio-hazard
[4]. The textile industry, for example, produces a large amount of liquid waste that
contains synthetic dyes which are inevitable because not all colors remain attached
to the textiles. The resulting textile wastewater is not readily biodegradable, thus,
textile wastewater becomes a serious health threat to the environment and human life
[30, 40].

Synthetic dyes are categorized as toxic and create potentially carcinogenic waste
[67]. In the long-term exposure, there will be a definite possibility for human contam-
ination, which can cause respiratory and skin problems. Other symptoms that can
be experienced include itching, watery eyes, sneezing, asthma symptoms, skin irri-
tation, and nasal congestion [40]. Additionally, synthetic dyes significantly damage
the aesthetic quality of water bodies, as well as increase biochemical and chemical
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oxygen requirements. Furthermore, synthetic dyes inhibit plant growth, damage the
food chain, and cause bioaccumulation of toxins, which will increase toxicity, muta-
genicity and carcinogenicity in living organisms. Therefore, serious attention should
be given to textile wastewater treatment [2].

2 Synthetic Dyes

Several synthetic dyes have been widely applied in textile industries. Synthetic dyes
are mainly produced from aromatic hydrocarbons derived from coals and crude oils
through apetrochemical process [41]. Several functional groups such as nitro, nitroso,
cyano, azo, anthraquinone, and phthalocyanine are introduced as a chromophore
to give strong absorption signals at visible light region (400–800 nm). Therefore,
synthetic dyes gave a stronger color intensity and higher chemical stability than
natural dyes [67].

In general, synthetic dyes can be categorized into two major classes, i.e. cationic
and anionic dyes according to their charges. On the other hand, synthetic dyes can be
categorized also according to the generated color in the solution such as red, yellow,
orange, black, brown, violet, blue, and green. The commonly used red synthetic dyes
are acid scarlet 3R, alizarin red S, basic fuchsin, butyl rhodamine B, congo red, eosin-
y, methyl red, neutral red, rhodamine 6G, rhodamine B, rose bengal, and safranin T.
The chemical structures of red synthetic dyes are shown in Fig. 1. The commonly
used yellow and orange synthetic dyes are acid orange 5, acridine orange, auramine
O, metanil yellow, methyl orange, Orange I, Orange II, reactive yellow 42, and titan
yellow [36]. The chemical structures of yellow and orange synthetic dyes are shown
in Fig. 2.

The commonly used black, brown, and violet synthetic dyes are Bismarck brown
Y, crystal violet, direct black 38, direct violet 51, methyl violet, reactive black 5, and
reactive black 45. The chemical structures of black, brown, and violet synthetic dyes
are shown in Fig. 3. The commonly used blue and green synthetic dyes are brilliant
green, bromophenol blue, Chicago sky blue 6B, direct blue 15, direct blue 71, Evans
blue, malachite green, methyl green, methylene blue, reactive blue 19, toluidine blue,
and Victoria blue B [36]. The chemical structures of blue and green synthetic dyes
are shown in Fig. 4. Meanwhile, the molecular formulas and molecular weights of
synthetic dyes are listed in Table 1.

The existence of synthetic dyes can be easily detected according to the gener-
ated colors since the synthetic dyes are highly stable and give a strong colored
solution even at a concentration below 1 mg L−1 [41]. The potential for water pollu-
tion becomes worse because almost all synthetic dyes are rapidly soluble at high
concentrations in the water [110]. Consequently, water pollution has become a global
problem and textile wastewater treatment must be carefully considered for a sustain-
able future [8, 66]. The easiest way to prevent water pollution is an efficient textile
wastewater treatment, thus, the discharge of synthetic textiles to the main streams
can be suppressed [116].
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Fig. 1 The chemical structures of red synthetic dyes, i.e. acid scarlet 3R, alizarin red S, basic
fuchsin, butyl rhodamine B, congo red, eosin-y, methyl red, neutral red, rhodamine 6G, rhodamine
B, rose bengal, and safranin T

A number of textile wastewater treatment technologies have been introduced
and developed such as adsorption, coagulation, precipitation, membrane filtration,
photocatalysis, and bioremediation [2, 5, 7, 13, 31, 48, 64, 97, 102]. Among these
technologies, adsorption is the simplest, cheapest, and most convenient technique
for a large-scale process [2]. The adsorption process is a mass transfer phenomenon
in which the adsorbate (in this case, synthetic dyes) accumulates on the surface
of the adsorbent materials [21, 114]. Ideal adsorbent materials should have a high
maximum adsorption capacity (qmax), a high selectivity, and an easy regeneration
process [22]. Among the hundreds of adsorbent materials, aromatic-based synthetic
macromolecules such as calixarenes and carbon nanotubes nearly fulfil all of the
mentioned requirements; thus, an ideal adsorption process can be established for a
real textile wastewater treatment [99, 129, 131].
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Fig. 2 Chemical structures of yellow and orange synthetic dyes, i.e. acid orange 5, acridine orange,
auramineO,metanil yellow,methyl orange, Orange I, Orange II, reactive yellow 42, and titan yellow

Fig. 3 Chemical structures of black, brown, and violet synthetic dyes, i.e. Bismarck brown Y,
crystal violet, direct black 38, direct violet 51, methyl violet, reactive black 5, and reactive black 45
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Fig. 4 Chemical structures of blue and green synthetic dyes, i.e. brilliant green, bromophenol blue,
Chicago sky blue 6B, direct blue 15, direct blue 71, Evans blue, malachite green, methyl green,
methylene blue, reactive blue 19, toluidine blue, and Victoria blue B

3 Aromatic-Based Synthetic Macromolecules

3.1 Calixarenes

Calixarenes are macrocyclic host compounds exhibiting unique and selective molec-
ular discrimination abilities [88]. Calixarenes belong to the third generation of
supramolecules after crown ether and cyclodextrin [25]. The general structure of
calixarene is shown in Fig. 5. Extensive attention is focused on the research of
calixarenes because of their gram-scale synthesis process, easy chemical modifica-
tion, excellent selectivity, rigid chemical scaffold, and high stability [44]. Further-
more, calixarenes are able to interact with the guest compounds through electrostatic,
hydrogen bonding, and π-π stacking interactions [60].

The first synthesis of calixarene was reported by A. von Bayer in 1872 and then
about a century later, C.D. Gutsche coined the term of calixarene in 1970 [106].
From that year, the calixarene era was started and calixarenes have been widely
applied in separation science, catalytic reaction, chemosensors, drug delivery agent,
electronic material, and membrane polymers [61, 62, 65, 105, 113, 128]. These
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Table 1 Commonly used synthetic dyes over the past several years

No. Name Molecular formula Molecular weight (g mol−1)

1 Acid orange 5 C18H14N3NaO3S 375.38

2 Acid scarlet 3R C20H11N2Na3O10S3 604.47

3 Acridine orange C17H19N3 265.35

4 Alizarin red S C14H7NaO7S 342.26

5 Auramine O C17H22ClN3 303.83

6 Basic fuchsin C19H18ClN3 323.82

7 Bismarck brown Y C18H20ClN8 419.31

8 Brilliant green C27H34N2O4S 482.63

9 Bromophenol blue C19H10Br4O5S 669.96

10 Butyl rhodamine B C32H39ClN2O3 535.12

11 Chicago sky blue 6B C34H24N6Na4O16S4 992.80

12 Congo red C32H22N6Na2O6S2 696.66

13 Crystal violet C25H30ClN3 407.98

14 Direct black 38 C34H25N9Na2O7S2 781.70

15 Direct blue 15 C34H24N6Na4O16S4 992.80

16 Direct blue 71 C40H23N7Na4O13S4 1029.9

17 Direct violet 51 C32H27N5Na2O8S2 719.70

18 Eosin-y C20H6Br4Na2O5 691.86

19 Evans blue C34H24N6Na4O14S4 960.81

20 Malachite green C23H25ClN2 364.91

21 Metanil yellow C18H14N3NaO3S 375.38

22 Methyl green C27H35BrClN3 458.47

23 Methyl orange C14H14N3NaO3S 327.33

24 Methyl red C15H15N3O2 269.30

25 Methyl violet C24H28ClN3 407.99

26 Methylene blue C16H18ClN3S 319.85

27 Neutral red C15H17ClN4 288.78

28 Orange I C16H11N2NaO4S 350.30

29 Orange II C16H11N2NaO4S 350.32

30 Reactive black 5 C26H21N5Na4O19S6 991.80

31 Reactive black 45 C39H26ClN10Na5O16S5 1201.4

32 Reactive blue 19 C22H16N2Na2O11S3 626.50

33 Reactive yellow 42 C19H14ClN4Na3O12S3 690.94

34 Rhodamin 6G C28H31N2O3Cl 479.01

35 Rhodamine B C28H31ClN2O3 479.02

36 Rose bengal C20H2Cl4I4Na2O5 1017.6

(continued)
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Table 1 (continued)

No. Name Molecular formula Molecular weight (g mol−1)

37 Safranin T C20H19ClN4 350.84

38 Titan yellow C28H19N5Na2O6S4 695.72

39 Toluidine blue C15H16ClN3S 270.37

40 Victoria blue B C33H32ClN3 506.08

Fig. 5 General structures of calixarenes and carbon nanotubes

remarkable applications are due to host–guest interactions between the calixarene
derivatives and targeted compounds [72]. Because of that, hundreds of calixarenes
have been designed, synthesized, evaluated, and developed over the past several years
[49, 50, 63, 95, 125].

Calixarenes have been successfully applied for the removal of dyes from textile
wastewater. Since the dye compounds are mainly constructed by aromatic and ioniz-
able functional groups, the derivatives of calixarenes can be utilized as the adsorbent
material. The aromatic moieties of dyes interact with the aromatic rings of calixarene
through π-π stacking, while the ionizable functional groups of dyes interact with
phenolic and/or other polar groups of calixarenes through either hydrogen bonding
or electrostatic interaction [3]. Moreover, calixarenes are recognized for their size-
exclusion selectivity allowing only a specific dye to be adsorbed during the separa-
tion process [90]. Therefore, the calixarenes have been reported for their outstanding
adsorption capability and selectivity for the removal of dyes from textile wastewater.

3.2 Carbon Nanotubes

Another aromatic-based synthetic macromolecule with an outstanding adsorption
capability for dyes removal is the carbon nanotube. Similar to calixarenes, carbon
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nanotubematerial is composed of polycyclic aromatic frameworks with an organized
π conjugation system [24]. Carbon nanotubes are defined as a nanomaterial with a
polycyclic aromatic framework of graphene and/or graphite in a cylinder formwith a
hemisphere end structure. Carbon nanotubes were discovered by Iijima and Ichihashi
in 1991 [45]. In general, carbon nanotubes are classified into two major classes:
single- and multi-walled carbon nanotubes [46]. The general structures of carbon
nanotubes are shown in Fig. 5. Carbon nanotubes are generally prepared through
arc evaporation, electrolysis, chemical vapor deposition, flame synthesis, and laser
ablationmethods.Among the preparationmethods, arc evaporation and laser ablation
methods are able to produce a near-perfect structure of carbon nanotubes [77].

Carbon nanotubes are widely useful advanced materials in various aspects such
as electronic, catalyst, and advanced materials [108]. Carbon nanotubes consist of
graphene or graphitic sheets that haveπ conjugations resulting in a high hydrophobic
surface. The existence of the hydrophobic active sites causes the surface of carbon
nanotubes to play an important role in the adsorption process. Adsorption of dye on
carbon nanotubes occurred through mainly hydrophobic, and π-π stacking interac-
tions. The adsorption sites may locate in the external grooves, interstitial channels,
internal sites, and outer surface sites of carbon nanotubes. The chemical interac-
tions might have a role simultaneously or individually in the adsorption process of
synthetic dyes from the textile wastewater [99].

4 Removal of the Synthetic Dyes from Aquatic
Environmental Samples Using Aromatic-Based Synthetic
Macromolecules

4.1 Removal of the Synthetic Dyes from Aquatic
Environmental Samples Using Calixarenes

Functionalized calixarenes and the corresponding composite materials have been
designed and evaluated for the adsorption of synthetic dyes. The chemical struc-
tures of functionalized calixarenes are shown in Fig. 6. At first, the applications of
calixarenes for a single synthetic dye molecule are reviewed and then followed by a
description of simultaneous adsorption of several synthetic dyes. At the end of the
section, the summarized data on the adsorbent material, adsorbed synthetic dyes, pH
and qmax values are listed in Table 2.

A composite material of calix[n]arene 1 on starch support through an epichloro-
hydrin linker has been evaluated for butyl rhodamine B adsorption. The composite
material exhibited the qmax value of 2.43× 10–2 mol g−1 which is much higher than
the starch support (1.08 × 10–3 mol g−1) at pH 9.0. The regeneration of adsorbent
material was easily performed by an eluting ethanol and water mixture at 4:1 volume
ratio. Furthermore, the composite material did not lose the adsorption capability after
the ten-cycle adsorption process, which was remarkable [17].
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Fig. 6 Chemical structures of functionalized calixarenes

Another calix[6]arene derivative 2 with ether and alcohol functional groups was
employed for methyl red removal from the aqueous media [78]. The methyl red was
selectively extracted (99%) while the other dyes (methylene blue, methyl green, and
methyl violet) were extracted in less percentages (28–45%). The removal percentage
ofmethyl red using calix[6]arene (99%)was higher thanD2EHPA(65%),Cyanex301
(85%), and tetrabutylammonium bromide (95%) as the commercial extraction agents
[57, 74, 84]. The preconcentration process of methyl red can be achieved by trans-
porting methyl red from the donor solution at pH 5.5 to the acceptor solution at
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Table 2 Summary of adsorption conditions and maximum adsorption capacity value of synthetic
dyes using calixarenes

No. Material Analyte pH qmax (mol g−1) References

1 Starch-calix[8]arene (200 mg) Butyl
rhodamine B
(50 mL,
0.04 mM)

9.0 2.43 × 10–2 [17]

2 Calix[6]arene (15 mg) Methyl red
(10 mL,
0.03 mM)

5.5 1.65 × 10–5 [78]

3 Chitosan-calix[4]arene
(20 mg)

Reactive
yellow 42
(25 mL,
0.15 mM)

4.0 2.80 × 10–4 [39]

4 C-cinnamal
calix[4]resorcinarene (100 mg)

metanil
yellow
(10 mL,
0.03 mM)

3.0 5.67 × 10–5 [26]

5 Silica-calix[6]arene (75 mg) Direct black
38 (10 mL,
0.02 mM)

9.0 2.43 × 10–6 [53]

6 PbS-calix[6]arene (44 mg) Methylene
blue (10 mL,
0.06 mM)

6.0 1.72 × 10–5 [101]

7 Alginate-graphene
oxide-calix[4]arene (10 mg)

Methylene
blue (10 mL,
0.30 mM)

4.0 5.32 × 10–4 [81]

8 Silica gel-calix[8]arene
(200 mg)

Methylene
blue
(200 mL,
0.06 mM)

8.0 6.53 × 10–4 [16]

9 Silica-calix[4]arene (20 mg) Methylene
blue (20 mL,
0.06 mM)

12 6.65 × 10–4 [117]

10 Silica-calix[4]arene (75 mg) Reactive
blue 19
(10 mL,
0.02 mM)

4.0 8.62 × 10–3 [51]

11 Calix[6]arene (25 mg) Chicago sky
blue 6B,
Evans blue,
and direct
blue 15
(10 mL,
0.02 mM)

5.0 Chicago sky
blue 6B: 7.12
× 10–6

Evans blue:
6.00 × 10–6

Direct blue 15:
3.60 × 10–6

[91]

(continued)
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Table 2 (continued)

No. Material Analyte pH qmax (mol g−1) References

12 Calix[4]arene polymer (5 mg) Methylene
blue and
toluidine
blue (50 mL,
0.10 mM)

7.0 Methylene
blue: 5.65 ×
10–3

Toluidine blue:
8.01 × 10–3

[68]

13 Amberlite
XAD-4-calix[4]arene
(100 mg)

Congo red,
reactive
black-5, and
reactive
black-45
(10 mL,
0.02 mM)

Congo
red: 6.0
Reactive
black-5:
11
Reactive
black-45:
3.0

Congo red:
1.58 × 10–5

Reactive
black-5: 1.61
× 10–5

Reactive
black-45: 1.17
× 10–5

[52]

14 Amberlite
XAD-4-calix[4]arene (5 mg)

Methylene
blue, methyl
green, and
methyl
violate
(25 mL,
0.03 mM)

6.0 Methylene
blue: 2.78 ×
10–6

Methyl green:
2.27 × 10–6

Methyl violate:
3.63 × 10–6

[79]

15 Calix[4]arene (10 mg) Chicago sky
blue 6B and
orange II
(10 mL,
0.02 mM)

3.0–9.0 Chicago sky
blue 6B: 1.94
× 10–5

Orange II: 1.98
× 10–5

[4]

16 Fe3O4-calix[4]arene (5 mg) Evans blue
and Chicago
sky blue 6B
(5 mL,
0.01 mM)

2.5 Evans blue:
1.39 × 10–2

Chicago sky
blue 6B: 1.75
× 10–2

[11]

17 Two-dimensional covalent
organic framework (7.5 mg)

Methylene
blue and
rhodamine B
(15 mL,
0.01 mM)

7.0 Methylene
blue: 1.16 ×
10–4

Rhodamine B:
8.35 × 10–5

[29]

18 Calix[8]arene (10 mg) Direct violet
51, methyl
orange,
orange II,
and reactive
black 5
(10 mL,
0.02 mM)

11 Direct violet
51: 1.54 ×
10–5

Methyl orange:
8.00 × 10–6

Orange II: 1.60
× 10–5

Reactive black
5: 9.40 × 10–6

[34]

(continued)
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Table 2 (continued)

No. Material Analyte pH qmax (mol g−1) References

19 Hydrogel calix[4]arene (3 mg) Neutral red,
methylene
blue, and
eosin-y
(20 mL,
500 ppm)

7.0 Neutral red:
1.82 × 10–3

Methylene
blue: 7.19 ×
10–4

Eosin-y: 6.16
× 10–4

[86]

20 Calix[8]arene (25 mg) Evans blue,
orange II,
reactive
black 5,
methyl
orange, and
Chicago sky
blue 6B
(10 mL,
0.02 mM)

3.0 Evans blue:
7.84 × 10–6

Orange II: 7.04
× 10–6

Reactive black
5: 7.68 × 10–6

Methyl orange:
6.88 × 10–6

Chicago sky
blue 6B: 7.84
× 10–6

[35]

21 β-cyclodextrin-calix[4]arene
(100 mg)

Methylene
blue and
basic fuchsin
(25 mL,
140 ppm)

9.0 Methylene
blue: 5.94 ×
10–5

Basic fuchsin:
9.47 × 10–5

[127]

22 Calix[4]arene (25 mg) Chicago sky
blue 6B,
Evans blue,
and direct
blue 15
(10 mL,
0.02 mM)

8.0 Chicago sky
blue 6B: 7.84
× 10–6

Evans blue:
7.68 × 10–6

Direct blue 15:
7.84 × 10–6

[3]

23 β-cyclodextrin-calix[4]arene
(25 mg)

Methyl
orange,
direct blue
71, titan
yellow, and
Orange II
(10 mL,
0.03 mM)

11.0 Methyl orange:
8.28 × 10–6

Direct blue 71:
8.40 × 10–6

Titan yellow:
8.52 × 10–6

Orange II: 8.28
× 10–6

[122]

24 Mesoporous calix[4]arene
(15 mg)

Methylene
blue, crystal
violet,
brilliant
green, and
rhodamine B
(15 mL,
0.01 mM)

7.0 ~9.5 × 10–6 [129]

(continued)
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Table 2 (continued)

No. Material Analyte pH qmax (mol g−1) References

25 Porous calix[4]arene (5 mg) Methylene
blue, congo
red, and
rhodamine B
(10 mL,
0.50 mM)

7.0 Methylene
blue: 1.95 ×
10–3

Congo red:
9.66 × 10–4

Rhodamine B:
1.01 × 10–3

[112]

26 Calix[4]resorcinarene (10 mg) Congo red,
acid orange
5, and
methyl
orange
(4 mL,
0.02 mM)

7.0 Congo red:
2.91 × 10–5

Acid orange 5:
3.48 × 10–4

Methyl orange:
2.90 × 10–5

[56]

27 Calix[4]resorcinarene (1 mg) Congo red,
methyl
orange, and
acid orange 5
(4 mL,
0.002 mM)

7.0 Congo red:
8.97 × 10–4

Methyl orange:
1.14 × 10–3

Acid orange 5:
1.32 × 10–3

[109]

28 Calix[4]pyrrole (5 mg) Methylene
blue and
methyl
orange
(2 mL,
0.10 mM)

7.0 Turnover
number for
methylene blue
degradation:
3.79 × 10–4

Turnover
number for
methyl orange
degradation:
3.85 × 10–4

[58]

29 Chitosan-crown-calix[4]arene
(10 mg)

Brilliant
green,
victoria blue
B, neutral
red, and
Orange I
(10 mL,
1.00 mM)

Brilliant
green,
victoria
blue,
neutral
red: 9.0
Orange I:
5.0

Brilliant green:
1.64 × 10–3

Victoria blue
B: 1.86 × 10–3

Neutral red:
1.95 × 10–3

Orange I: 1.78
× 10–3

[120]

pH 12. By employing this process, methyl red can be selectively removed from the
industrial wastewater samples with 99.5–99.9% purity, which was remarkable [78].

Copolymer material of chitosan and p-tert-butylcalix[4]arene 3 was utilized for
reactive yellow 42 dye adsorption from the aqueous solution. The copolymermaterial
adsorbed reactive yellow 42 according to a pseudo-second-order kinetic model at pH
4.0 within 135 min. The pH 4.0 was suitable to protonate amine functional groups
of chitosan; thus, the reactive yellow 42 dye was adsorbed through electrostatic
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interactions. Since the copolymer material has a random and heterogenous structure,
the adsorption process is time-consuming (135 min). However, the reaction rate
constant of copolymermaterial (3.63× 10–4 gmg−1 min−1) was still 1.50 times faster
than the unmodified chitosan material (2.42 × 10–4 g mg−1 min−1). The copolymer
material yielded the qmax value of 2.80 × 10–4 mol g−1 which was higher than
activated hyacinth (6.62× 10–6 mol g−1), activated reeds (1.17× 10–5 mol g−1), and
copolymer of eugenol (1.83 × 10–5 mol g−1) [39].

Utilization ofC-cinnamal calix[4]resorcinarene 4was reported formetanil yellow
adsorption. TheC-cinnamal calix[4]resorcinarenewas prepared from a cycloconden-
sation reaction between cinnamaldehyde and resorcinol. The metanil yellow adsorp-
tion reached optimum condition at pH 3.0. At pH lower than 3.0, the metanil yellow
was protonated and the ion exchange interaction was suppressed. On the other hand,
at pH higher than 3.0, the hydroxyl groups of C-cinnamal calix[4]resorcinarene was
deprotonated and the electrostatic repulsion hindered the metanil yellow adsorption
process. From the isotherm adsorption experiment, the qmax value of metanil yellow
was 5.67 × 10–5 mol g−1 [26].

Immobilized calix[6]arene 5 on the silica resin material was effective for the
removal of direct black 38 dye. The immobilization reactionwas conducted in toluene
using triethylamine as the base catalyst. The best pH for direct black 38 removal
percentage (91%) was achieved at pH 9.0. The adsorption mechanism happened
with the aid of sodium cations. The sodium ion was chelated by the lower rim of
calix[6]arene and then the sulfonate group of direct black 38 was locked by the
electrostatic interaction with a sodium ion, as well as π-π stacking interactions with
aromatic rings of calix[6]arene. The resin material exhibited 70% removal of direct
black 38 from the real textile wastewater samples. Furthermore, the resin material
can be regenerated by removing the adsorbed dyes by using an acidic solution [53].

The composite material of lead(II) sulfide and calix[6]arene 6 was reported for
methylene blue adsorption. The composite material was prepared by connecting
lead(II) sulfide with calix[6]arene 6 with 3-glycidopropyltrimethoxysilane as the
linker agent. The average size of the composite material was less than 30 nm with
a point of zero charge at pH 7.28. At pH lower than 7.28, the composite material
has positive zeta potential charges on the surface of adsorbent material. On the other
hand, at a pH higher than 7.28, the composite material has negative zeta potential
charges on the surface of adsorbent material [101].

The experimental conditionwas optimized by a response surfacemethodology and
the optimum adsorption condition was achieved by using 44 mg composite material
at pH 6.0 at 304 K. The optimum pH value (6.0) was achieved below the point
of zero charge of the composite material demonstrating that the adsorption process
mainly happened through π-π stacking and hydrogen bonds rather than electrostatic
interaction. The methylene blue adsorption followed the Langmuir model with the
qmax value of 1.72× 10–5 mol g−1. The qmax value (1.72× 10–5 mol g−1) was higher
than natural zeolite (1.61 × 10–5 mol g−1), wood material (1.48 × 10–5 mol g−1),
carbon material (1.28× 10–5 mol g−1), and activated carbon (8.03× 10–6 mol g−1),
whichwas remarkable [9, 32, 33, 38]. The regeneration of the compositematerial was
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done by eluting 0.75 M HNO3. The composite material did not lose the adsorption
capability after the four-cycle adsorption process, which was remarkable [101].

The nanocompositematerial between alginate, graphene oxide, and calix[4]arenes
7 has been reported for methylene blue removal from the aqueous solution. The
nanocomposite material was prepared through a cross-link reaction and followed by
an agitation process. The nanocomposite material was stable up to 490 K from the
TGA analysis. The optimum adsorption condition for methylene blue was achieved
using 10 mg adsorbent material at pH 4.0 within 1 h adsorption process. The
adsorption kinetics followed the pseudo-second-order model with a rate constant
of 46 mg mg−1 min−1. Meanwhile, the methylene blue adsorption followed the
Langmuir model yielding the qmax value of 5.32 × 10–4 mol g−1 [81].

Additionally, composite material between calix[n]arene 8 and silica gel with 3-
glycidoxypropyltrimethoxysilane as the linker agentwas effective formethylene blue
removal from the aqueous media. The composite material was prepared through a
reflux method for 6 h under alkaline condition using NaH as the base. Through the
reflux method, as much as 0.4 mmol g−1 calix[n]arene was successfully impregnated
on the silica gel as the support. The calix[4]arene composite material gave slower
(160min) and lower qmax value (9.38× 10–5 mol g−1) than the calix[6]arene- (80min,
5.03 × 10–4 mol g−1) and calix[8]arene-composite (2 min, 6.53 × 10–4 mol g−1)
materials. A wider calix[n]arene was able to accommodate more methylene blue
compounds on the calix[n]arene cavity during the adsorption process. The qmax value
of methylene blue adsorption using calix[4]arene-, calix[6]arene-, and calix[8]arene-
composite materials was in good order with the size of the calixarene cavity [16].

The qmax value of calix[8]arene-composite (6.53 × 10–4 mol g−1) was higher
than sawdust (1.53 × 10–5 mol g−1), marine seaweed (1.63 × 10–5 mol g−1),
orange peel (1.83 × 10–5 mol g−1), rice husk (3.09 × 10–5 mol g−1), silica (3.50
× 10–5 mol g−1), and date pits (5.41 × 10–5 mol g−1) [6, 20, 47, 54, 85, 89, 119].
Furthermore, the qmax value (6.53 × 10–4 mol g−1) was also higher than the dead
biomass (5.79 × 10–5 mol g−1), lemon peel (9.06 × 10–5 mol g−1), hazelnut shell
(1.29 × 10–4 mol g−1), yellow passion fruit (1.40 × 10–4 mol g−1), fly ash (2.36
× 10–4 mol g−1), sewage sludge (3.59 × 10–4 mol g−1), and coir pith (3.76 ×
10–4 mol g−1) adsorbent materials, which was remarkable [14, 28, 55, 59, 92, 93,
111].

The composite material of silica-calix[4]arene 9 was investigated for methy-
lene blue removal. The preparation of composite material was done by using
3-glycidoxypropyltrimethoxysilane under alkaline condition. The amount of
calix[4]arene derivative in 1 g of composite material was up to 0.34 mmol. The
composite material was stable up to 470 K. The composite material adsorbed 93%
of methylene blue through electrostatic interaction between nitro functional group
and the positive charge of methylene blue at pH 12 [117].

The bare silica material and calix[4]arene derivative itself only adsorbed 61 and
41% of methylene blue using the same adsorbent mass and experimental condition.
A higher adsorption percentage of the composite material (93%) demonstrated a
synergistic effect between silica and calix[4]arene derivative, which was remark-
able. The adsorption kinetics followed the second-order kinetic model with a rate
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constant of 32 mg mg−1 min−1. Meanwhile, the isotherm adsorption followed the
Langmuir model with a qmax value of 6.65 × 10–4 mol g−1. The composite mate-
rial has been applied for the simulated textile wastewater samples. The composite
material adsorbed 40–75% of methylene blue from the simulated textile wastewater
samples, which was remarkable [117].

The compositematerial of silica-piperidine-calix[4]arene 10 has been investigated
for reactive blue 19 dye adsorption in the fixed-bed experiment. The composite
material with 0.4 mmol g−1 calix[4]arene was prepared through the reflux method
under alkaline condition using trimethylamine as the homogeneous catalyst. The
adsorption process was favorable at a pH region of 2.0–4.0 giving the qmax value
of 8.62 × 10–3 mol g−1 according to the Langmuir model. The composite material
exhibited 69–98% removal percentages of reactive blue 19 dye removal from three
independent wastewater samples, which was remarkable [51].

Utilization of carboxylic acid type of calix[6]arene 11 for adsorption of Chicago
sky blue 6B, Evans blue, and direct blue 15 dyes has been reported. The p-
tert-butylcalix[6]arene was reacted with methyl bromoacetate in acetone and then
hydrolyzed with potassium hydroxide in ethanol. The adsorption percentage for
Chicago sky blue 6B, Evans blue, and direct blue 15 dyes at pH 5.0 was 89, 75,
and 45%, respectively. The adsorption percentages were not significantly changed at
a pH range of 3.5–8.5. The synthetic dyes were adsorbed through hydrogen bonds
between carboxylic acid groups of calix[6]arene and sulfonate groups of dyes at
acidic condition. On the other hand, the adsorption of dyes was facilitated by sodium
cations in an alkaline condition; thus, the adsorption percentages were maintained
[91].

Calix[4]arene 12 polymers exhibit high adsorption capability for methylene
blue and toluidine blue removal. The polymer material was prepared through a
coupling reaction between chloro-substituted calix[4]arene and amino-substituted
calix[4]arene under an alkaline condition in 45% yield. The polymer material has
a surface area and a pore volume of 122 m2 g−1 and 0.1 mL g−1, respectively.
The polymer material rapidly adsorbed methylene blue and toluidine blue dyes with
adsorption percentage of 99.4–99.6% within 5 min [68].

The qmax values were 5.65 × 10–3 and 8.01 × 10–3 mol g−1 for methylene blue
and toluidine blue dyes, respectively. Selective adsorption was achieved only for
methylene blue and toluidine blue, while the other dyes, i.e. rhodamine B, crystal
violet, and fluorescein were hardly adsorbed. The favorable dyes adsorption mainly
happened through electrostatic, hydrogen bonds, and π-π stacking interactions. The
regeneration of the compositematerial was easily carried out bywashing the polymer
material withmethanol. The compositematerial did not lose the adsorption capability
after the four-cycle adsorption process, which was remarkable [68].

The composite material of calix[4]arene 13 on the Amberlite XAD-4 support
was evaluated for the adsorption process of congo red, reactive black 5, and reactive
black 45 dyes. The composite material was prepared through a consecutive chemical
reaction, i.e. nitration, reduction, diazotization, and coupling reaction through -N=N-
linkage. As much as 72% of congo red, 82% of reactive black 5, and 60% of reactive
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black 45 were adsorbed at pH 6, 11, and 3, respectively, using the composite material
[52].

Immobilization of calix[4]arene 14 on Amberlite XAD-4 support has been
also applied for the adsorption of methylene blue, methyl orange, methyl green,
methyl violet, and eosin dyes. The adsorbent material contained 0.05 mmol g−1 of
calix[4]arene 14. The adsorbent material (5 mg) adsorbed 90% of each methylene
blue,methyl green, andmethyl violet dyes, however, other dyeswere hardly adsorbed
demonstrating high selectivity of calix[4]arene 14 at pH 6.0. The adsorption process
fits well with the Freundlich model yielding 0.89, 1.04, and 1.25 mol g−1 as the qmax

values of methylene blue, methyl green, and methyl violet, respectively [79].
The qmax value for methylene blue adsorption (0.89 mol g−1) was much higher

than the unmodified Amberlite XAD-4 resin adsorbent (6.0 × 10–6 mol g−1) and
activated carbon (3.7 × 10–6 mol g−1) materials [103, 126]. Meanwhile, the qmax

value for methyl green adsorption (1.04 mol g−1) was much better than NiFe2O4-
carbon nanotubes (2.4 × 10–6 mol g−1) and activated carbon (1.0 × 10–5 mol g−1)
materials [10, 37]. On the other hand, the qmax value for methyl violet adsorption
(1.25mol g−1)was higher thanwood sawdust (1.2× 10–5 mol g−1), carbon nanotubes
(1.1 × 10–4 mol g−1), and activated carbon (3.7 × 10–6 mol g−1) materials [83, 87].
Furthermore, the adsorbent material adsorbed 99% of each methylene blue, methyl
green, and methyl violate dyes from the real textile wastewater samples, which was
remarkable. The regeneration of adsorbent material was easily performed by eluting
0.6MHCl solution. The adsorbentmaterial still exhibited 90%adsorption percentage
of synthetic dyes after the five-cycle process [79].

Calix[4]arene 15 owing to benzylpiperidine functional group has been evaluated
for the removal of Chicago sky blue 6B and orange II dyes. The calix[4]arene exhibit
97–99% of both dyes removal in each individual system within 15 min process
at pH 3.0–9.0. The inclusion of both Chicago sky blue 6B and orange II dyes was
facilitated byπ-π stacking and electrostatic interactions between the negative charge
of sulfonate groupswith the positive charge of piperidine groups. The combination of
both interactions was absent in the monomer structure; thus, the removal percentage
(97–99%) was eight times higher than the monomer structure (12%) due to the
chelating ability of calix[4]arene 15, which was remarkable [4].

Composite adsorbent material of calix[4]arene with magnetite (Fe3O4) 16 was
investigated for the removal of Evans blue and Chicago sky blue 6B dyes. The adsor-
bent material was prepared by mixing Fe3O4 and calix[4]arene with the presence of
[3-(2,3-epoxypropoxy)-propyl]-trimethoxysilane as the linker agent in acetonitrile as
the reaction media. From the spectroscopic calculation, the composite material was
composed of 34% calix[4]arene and 66% Fe3O4 materials. The adsorbent material
(5 mg) exhibited a rapid and efficient adsorption process of Evans blue and Chicago
sky blue 6B dyes at 95% adsorption percentage within 15 min at pH 2.5. At pH 2.5,
the piperidine heterocyclic ring was protonated, making the nitrogen atoms possible
to interact with the negatively charge-sulfonate functional groups of either Evans
blue or Chicago sky blue 6B dye [11].

The adsorption of Evans blue and Chicago sky blue 6B dyes using the composite
adsorbent material 16 followed the Langmuir model with a qmax value of 1.39× 10–2
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and 1.75× 10–2 mol g−1, respectively. The obtained qmax value using the composite
adsorbent material 16was higher than the β-cyclodextrin polymers with 9.58× 10–3

and 1.06× 10–2 mol g−1 for Evans blue and Chicago sky blue 6B, respectively [123].
The regeneration of the composite material was conducted by eluting 0.1 M NaOH.
The composite material did not lose the adsorption capability after the ten-cycle
adsorption process, which was remarkable [11].

A two-dimensional covalent organic framework serves as an ideal platform for
dyes adsorption due to their tunable pore functionality, high stability, and well-
organized structure. Two-dimensional covalent organic framework 17 was obtained
from the reaction between p-carbaldehyde-calix[4]arene and benzidine compounds
in chloroform as the reaction media. By using two different experimental conditions,
the covalent organic framework was generated in fiber-like and sphere-like structure
in 25% yield. Both materials were stable up to 650 K. Surfaces of fiber-like and
sphere-like adsorbent materials were composed of negative charges of −45 and −
41 mV, respectively [29].

When utilizing the two-dimensional covalent organic framework as the adsorbent
materialwas taken into account, the adsorbentmaterial (7.5mg) strongly adsorbed the
cationic dyes such as methylene blue and rhodamine B. The adsorption of methylene
blue and rhodamine B dyes rapidly and selectively occurred by using fiber-like adsor-
bent material within 1 min. In contrast, the sphere-like adsorbent material required
180 min to reach the same adsorption percentage (95%) due to its narrower surface
area leading to a slower kinetic process. The experimental results agreed with the
computational study that revealed the association of methylene blue and rhodamine
B dyes in the fiber-like adsorbent material happened within 200 ns. The favorable
adsorption yielded the qmax value of 1.16 × 10–4 and 8.35 × 10–5 mol g−1 for
methylene blue and rhodamine B, respectively [29].

Evaluation of nitro and carboxylic acid derivatives of calix[n]arene for removal
of direct violet 51, methyl orange, orange II, and reactive black 5 has been reported.
The calix[8]arene derivatives 18 gave higher removal percentages (up to 80%)
than calix[4]arene derivatives (up to 28%) due to larger cavity size. Furthermore,
the carboxylic acid calix[4]arene derivative (40–80%) exhibited higher removal
percentages than nitro derivatives (4–12%) due to the ion-exchange mechanism. The
optimum condition for dyes removal was 1 h contact time at pH 11. Calix[8]arene
18 gave removal percentage of direct violet 51, methyl orange, orange II, and reac-
tive black 5 at 77, 40, 80, and 47%, respectively. The simultaneous removal of the
synthetic dyes occurred due to suitable ion-exchange interaction as well as π-π
stacking and hydrogen bonds [34].

Hydrogel compositematerial of graphene oxide and calix[4]arene sulfonic acid 19
demonstrated a high adsorption capability for synthetic dyes removal. The hydrogel
material was prepared from a mixture of graphene oxide, calix[4]arene sulfonic acid
19, and L-cysteine under alkaline condition for 3 h at 360 K. The hydrogel material
was composed mostly of water (90% weight); thus, the hydrogel material can be
considered as an environmentally friendly material. When the hydrogel material was
employed for the removal of synthetic dyes, the positively charged dyes (methylene
blue and crystal violet) were adsorbed faster than the neutral dye (neutral red) and
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much faster than negatively charged dyes (methyl orange and eosin-y). The reason
was due to the presence of negatively charge sulfonic acid which could suitably
interact with the positively charged dyes [86].

The qmax values of neutral red,methylene blue, and eosin-ywere 1.82× 10–3, 7.19
× 10–4, and 6.16× 10–4 mol g−1, respectively. The qmax value ofmethylene blue from
an adsorption process using the hydrogel material (7.19× 10–4 mol g−1) was higher
than reduced graphene oxide hydrogel (2.45 × 10–5 mol g−1), graphene-Ag3PO4

(2.63× 10–4 mol g−1), reduced graphene oxide-ascorbic acid (5.31× 10–4 mol g−1),
and graphene oxide itself (5.88 × 10–4 mol g−1) [19, 70, 71, 118]. Meanwhile, the
qmax value of eosin-y using the hydrogel material (6.16 × 10–4 mol g−1) was higher
than graphene oxide-chitosan hydrogel (4.71 × 10–4 mol g−1) due to the presence
of calix[4]arene sulfonic acid [18].

The hydrogelmaterial was simply regenerated by dipping the dyes-laden hydrogel
material with copper(II) sulfate and hydrazine inwatermedia to degrade the synthetic
dyes. The hydrogel material did not lose the adsorption capability after the five-cycle
adsorption process. Furthermore, an in situ degradation of a mixture of methylene
blue, crystal violet, methyl orange, eosin-y, neutral red, congo red, bromophenol
blue, rose bengal, rhodamine 6G, acridine orange, and bismarck brown Y dyes (at
500 ppm concentration each) was established at 360 K to obtain a colorless filtrate,
which was remarkable [86].

Fast adsorption of Evans blue, orange II, reactive black 5, methyl orange, and
Chicago skyblue 6Bdyeswas achievedwithin 10minbyusing calix[n]areneowing to
pyrazine-2-carboxylic acidmoieties. The adsorptionwas favorable at pH 3.0 yielding
86–98% adsorption percentages by using calix[8]arene derivative 20. In contrast, the
calix[4]arene derivatives gave lower adsorption percentages (59–73%) due to limited
space on its surface cavity. The aqueous solution with a pH value of 3.0 was suitable
for protonation of pyrazine functional groups; thus, the adsorption of dyes occurred
through the electrostatic interactions. The regeneration of the adsorbent material
was done by eluting with a brine solution. The composite material did not lose the
adsorption capability after the five-cycle adsorption process, which was remarkable
[35].

The composite material of β-cyclodextrin and calix[4]arene 21 was employed as
the adsorbent material for methylene blue and basic fuchsin dyes adsorption. The
calix[4]arene was connected to β-cyclodextrin biomaterial through amide bonds in
70% yield. The adsorption process of methylene blue and basic fuchsin dyes was
optimum at pH 9.0 yielding the qmax value of 5.94 × 10–5 and 9.47 × 10–5 mol g−1

for methylene blue and basic fuchsin dyes, respectively [127].
The calix[4]arene polymer material 22 was reported as an efficient adsorbent

material for Chicago sky blue 6B, Evans blue, and direct blue 15 dyes. The adsor-
bent material was prepared by the polymerization process of calix[4]arene through
the reaction between phenolic groups of calix[4]arene with p-dibromoxylene under
alkaline condition. The yield of polymerization reaction was 70% and the polymer
material was stable up to 450K. The polymermaterial was employed as the adsorbent
material yielding high removal percentages (96–98%) at pH 8.0. The Chicago sky
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blue 6B, Evans blue, and direct blue 15 dyes were adsorbed through electrostatic,
hydrogen bonds, and π-π stacking interactions [3].

The combination of β-cyclodextrin and calix[4]arene 23 as the adsorbent material
was evaluated for the removal of methyl orange, direct blue 71, titan yellow, and
Orange II dyes. The oligomer material was obtained in 65% yield with a molecular
weight of 2150 gmol−1 and thermal stability up to 570 K. The adsorption percentage
ofmethyl orange, direct blue 71, titan yellow, andOrange IIwas in a range of 69–71%.
The qmax values of methyl orange, direct blue 71, titan yellow, and Orange II were
obtained from the Langmuir isotherm model giving the value of 8.28 × 10–6, 8.40
× 10–6, 8.52× 10–6, and 8.28× 10–6 mol g−1, respectively. The mechanism of dyes
adsorption was driven by hydrogen bond, chelation, electrostatic, and hydrophobic
interactions [122].

Application of mesoporous calix[4]arene 24 was used for the preconcentration
process of synthetic dyes. The phenolic groups of p-sulfonic acid calix[4]arene
was esterified with terephthaloyl chloride under the alkaline condition to form the
calix[4]arene polymer material 24. The surface area of the polymer material was 123
m2 g−1 with around 3 nm pore size. Several synthetic dyes such as methylene blue,
crystal violet, brilliant green, and rhodamine B were effectively preconcentrated by
using the polymermembranematerial. The removal percentages of the synthetic dyes
were around 95%. The regeneration of the polymer membrane material was done by
washing with ethanol. The polymer membrane material did not lose the adsorption
capability after the five-cycle adsorption process, which was remarkable [129].

The porous material of calix[4]arene 25 was prepared through a
Sonogoshira-Hagihara coupling reaction between p-bromo-calix[4]arene and
1,4-diethynylbenzene by using a palladium-based catalyst. The porous material has
a very large surface area (~600 m2 g−1); thus, this material rapidly and effectively
adsorbed methylene blue, congo red, and rhodamine B dyes from the aqueous
solution. As much as 95, 80, and 50% removal percentages were achieved within
5 min for methylene blue, congo red, and rhodamine B dyes, respectively [112].

After 15 min adsorption process, a quantitative (~100%) removal percentage was
achieved for each dye in the individual experiment. The qmax value was 1.95 ×
10–3, 9.66 × 10–4, and 1.01 × 10–3 mol g−1 for methylene blue, congo red, and
rhodamine B dyes, respectively. The favorable dyes adsorption was mainly driven
by a combination of hydrophobic, electrostatic, hydrogen bonds, and π-π stacking
interactions with the amorphous surface of the porous material. The regeneration
of the composite material was done by washing the porous material with 0.10 M
HNO3. The composite material did not lose the adsorption capability after several
adsorption cycles, which was remarkable [112].

Another group of metacyclophanes, i.e. calix[4]resorcinarenes, calix[4]pyrrole,
and crown-calix[4]arene have also been studied for the dyes adsorption process.
Functionalized calix[4]resorcinarene 26 with dodecyloxybenzyl substituent was
reported for congo red, acid orange 5, andmethyl orange dyes. Themethyl orangewas
98% adsorbedwhile the quantitative adsorption percentage (99–100%) for congo red
and acid orange 5 was achieved using calix[4]resorcinarene 26, which was remark-
able. The dyes were adsorbed through both electrostatic interaction and hydrogen
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bonds. The qmax values for congo red, acid orange 5, and methyl orange dyes were
2.91 × 10–5, 3.48 × 10–4, and 2.90 × 10–5 mol g−1, respectively [56].

The nitrogenated calix[4]resorcinarene 27 polymer material has been applied for
the adsorption process of congo red, methyl orange, and acid orange 5 dyes. The
polymer material was obtained in 65% yield from calix[4]resorcinarene derivative
with diethylenetriamine in a solvent mixture of methanol and toluene. The polymer
material was stable up to 490 K. The qmax values of congo red, methyl orange,
and acid orange 5 dyes were 8.97 × 10–4, 1.14 × 10–3, and 1.32 × 10–3 mol g−1,
respectively. The synthetic dyes were adsorbed mainly through hydrogen bonds and
electrostatic interactions [109].

A composite material consisting of calix[4]pyrrole 28 and palladium nanoparti-
cles has been applied formethylene blue andmethyl orange degradation process. The
zeta potential charge of the composite material was -26.2 mV; thus, this composite
material was appropriate for the removal of methylene blue andmethyl orange which
are categorized as cationic dyes. Within 12 min, as much as 90% and 95% of methy-
lene blue and methyl orange dyes were degraded to yield a colorless filtrate. The
degradation mechanism occurred through an electron transfer process from sodium
borohydride to the composite material; thus, the reduction of azo functional groups
happened [58].

From the mass spectra analysis, the methylene blue was degraded to form phenol
and amine compound, while methyl orange was degraded to form aniline and
benzenesulfonic acid. The turnover number for the dyes removal process using the
composite material was 3.79× 10–4 and 3.85× 10–4 for methylene blue and methyl
orange, respectively.The regenerationof the compositematerialwas donebywashing
the composite material with a mixture of water and acetone. The composite material
did not lose the adsorption capability after the six-cycle adsorption process, which
was remarkable [58].

A composite material between chitosan and crown-calix[4]arene 29 has been
evaluated for the adsorption of brilliant green, Victoria blue B, neutral red, and
Orange I dyes. The composite material was prepared through an imine connection
between carbaldehyde-crown-calix[4]arene and amino groups of chitosan. Around
22% of crown-calix[4]arene was successfully impregnated on the chitosan material.
The optimum pH value was achieved at pH 9.0 for brilliant green, Victoria blue B,
and neutral red dyes, while the optimum pH value for orange I was found at pH 5.0
[120].

The composite material exhibited higher adsorption percentages (75–90%) than
the bare chitosan (45–60%). The qmax values for brilliant green, Victoria blue B,
neutral red, and Orange I were 1.64 × 10–3, 1.86 × 10–3, 1.95 × 10–3, and 1.78 ×
10–3 mol g−1, respectively. The regeneration of the composite material was done
by washing the composite material with HCl and followed by NaOH solution.
The composite material did not lose the adsorption capability after the five-cycle
adsorption process, which was remarkable [120].
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4.2 Removal of the Synthetic Dyes from Aquatic
Environmental Samples Using Carbon Nanotubes

Functionalized carbon nanotube materials have been prepared and investigated for
the adsorption of synthetic dyes. At first, the application of carbon nanotubes for a
single synthetic dye molecule was reviewed and then followed by a description of
the simultaneous adsorption of several synthetic dyes. At the end of the section, the
summarized data on the adsorbent material, adsorbed synthetic dyes, pH and qmax
values are listed in Table 3.

Nanoadsorbent materials consisting of single- andmulti-walled carbon nanotubes
were investigated against adsorption of Alizarin red S. The qmax values produced by
single- and multi-walled carbon nanotubes were 9.1× 10–4 and 3.9× 10–4 mol g–1,
respectively. The equilibrium time required for single-walled carbon nanotubes
(65 min) was faster than the multi-walled carbon nanotubes (100 min). The adsorp-
tion process was carried out at a temperature of 318 K with an optimal pH of 2.0
which causes the carbon nanotubes to be positively charged so that the electrostatic
interactions can occur with negatively charged Alizarin red S [73].

Single-walled carbon nanotubes consist of an independent cylinder form thus
having a larger and more open surface structure compared to the multi-walled
carbon nanotubes. Because of that, single-walled carbon nanotubes exhibit a higher
adsorption capability than multi-walled carbon nanotubes indeed. However, from
the economic point of view, the preparation of single-walled carbon nanotubes is a
costly process. In contrast, bulk synthesis of multi-walled carbon nanotubes is avail-
able at a cheaper production price and multi-walled carbon nanotubes are less toxic
for aquatic organisms [104]. Therefore, researchers give more attention to the design
and application of multi-walled carbon nanotube materials for a real application for
wastewater treatment [77].

Multi-walled carbon nanotubes were also employed to adsorb acid scarlet 3R,
auramine O, and crystal violet synthetic dyes. The qmax values for acid scarlet 3R,
auramine O, and crystal violet were 4.1× 10–2, 8.0× 10–2, and 6.0× 10–2 mol g–1,
respectively. The optimum adsorption condition was found at pH 7.0 with an equilib-
rium time of 60 min. The adsorbent material can be reused after the adsorbent regen-
eration process [107]. Furthermore, in other reports, multi-walled carbon nanotubes
were also able to adsorb methyl orange, eosin-y, crystal violet, acridine orange,
congo red and reactive black 5 at pH 6.0 yielding a qmax value of 1.2 × 10–4, 2.3
× 10–4, 4.0 × 10–4, 1.5 × 10–3, 3.7 × 10–4, and 5.5 × 10–5 mol g–1, respectively
[27, 69, 75, 121, 124].

Multi-walled carbon nanotubes in a hydrogel form were recently investigated for
the adsorption of safranin T, crystal violet, malachite green, and methylene blue
dyes. The adsorption was carried out at an optimum condition of pH 7.0 with an
equilibrium time of 90 min which fit well with the pseudo-second-order adsorption
kinetics model. The qmax values for safranin T, crystal violet, malachite green, and
methylene blue were 2.6 × 10–3, 2.4 × 10–3, 2.3 × 10–3, and 1.6 × 10–3 mol g–1,
respectively, in the range of 293–313 K. The hydrogel material can be used for three
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Table 3 Summary of adsorption condition and maximum adsorption capacity value of synthetic
dyes using carbon nanotubes

Material Analyte pH qmax (mol g–1) References

Single- and multi-walled carbon
nanotubes (30 mg)

Alizarin red
S (20 mL,
2.92 mM)

2.0 Single-walled:
9.1 × 10−4

Multi-walled:
3.9 × 10−4

[73]

Multi-walled carbon nanotubes (40 mg) Acid scarlet
3 R,
auramine O,
and crystal
violet
(100 mL,
10 ppm)

7.0 Acid scarlet
3R: 4.1× 10−2

Auramine O:
8.0 × 10−2

Crystal violet:
6.0 × 10−2

[107]

Multi-walled carbon nanotubes (15 mg) Methyl
orange
(50 mL,
0.06 mM)

2.3 1.2 × 10−4 [121]

Multi-walled carbon nanotubes
(100 mg)

Eosin-y and
acridine
orange
(50 mL)

7.0 Eosin-y: 2.3 ×
10−4

Acridine
orange: 1.5 ×
10−3

[124]

Multi-walled carbon nanotubes (15 mg) Crystal
violet
(20 mL,
0.05 mM)

7.0 4.0 × 10−4 [75]

Multi-walled carbon nanotubes (10 mg) Congo red
(10 mL,
0.29 mM)

6.0 3.7 × 10−4 [27]

Multi-walled carbon nanotubes
(2500 mg)

Reactive
black 5
(100 mL,
0.04 mM)

7.0 5.5 × 10−5 [69]

Multi-walled carbon nanotube hydrogel
(50 mg)

Safranin T,
crystal
violet,
malachite
green, and
methylene
blue
(50 mL,
1000 ppm)

7.0 Safranin T: 2.6
× 10−3

Crystal violet:
2.4 × 10−3

Malachite
green: 2.3 ×
10−3

Methylene
blue: 1.6 ×
10−3

[80]

Multi-walled carbon functionalized
thiol (20 mg)

Methylene
blue
(20 mL,
0.13 mM)

6.0 3.1 × 10−4 [100]

(continued)
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Table 3 (continued)

Material Analyte pH qmax (mol g–1) References

Oxidized multi-walled carbon
nanotubes (10 mg)

Malachite
green
(25 mL,
0.08 mM)

5.0 Oxidized
multi-walled
carbon
nanotube: 5.4
× 10−5

Multi-walled
carbon
nanotube: 1.3
× 10−5

[23]

Magnetite-multi-walled carbon
nanotubes (50 mg)

Crystal
violet and
methylene
blue
(50 mL,
20 ppm)

6.0 Crystal violet:
5.6 × 10−4

Methylene
blue: 1.5 ×
10−4

[98]

Magnetite-chitosan-multi-walled
carbon nanotubes (30 mg)

Methyl
orange
(50 mL,
0.12 mM)

4.3 2.6 × 10−4 [130]

Starch-multi-walled carbon nanotubes
(50 mg)

Methyl
orange and
methylene
blue
(100 mL,
1.0 mM)

7.0 Methyl orange:
4.2 × 10−4

Methylene
blue: 2.9 ×
10−4

[15]

Chitosan-poly-2-hydroxyethyl
methacrylate-multi-walled carbon
nanotubes (10 mg)

Methyl
orange
(15 mL,
0.11 mM)

4.0 1.9 × 10−3 [76]

Magnetite-chitosan-silica-multi-walled
carbon nanotubes (50 mg)

Reactive
blue 19 and
direct blue
71 (50 mL,
50 ppm)

Reactive
blue 19:
2.0
Direct
blue 19:
6.8

Reactive blue
19: 1.7 × 10−3

Direct blue 19:
6.8 × 10−4

[1]

Water-soluble hyperbranched
polyamine functionalized multiwalled
carbon nanotubes nanocomposite
(5 mg)

Methylene
blue,
malachite
green, and
methyl
violet
(10 mL,
0.12 mM)

6.0 Methylene
blue: 2.5 ×
10−3

Malachite
green: 2.3 ×
10−3

Methyl violet:
2.4 × 10−3

[43]

(continued)
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Table 3 (continued)

Material Analyte pH qmax (mol g–1) References

Polyethersulfone-multi-walled carbon
nanotubes (100 mg)

Rhodamine
B and
crystal
violet
(100 mL,
100 ppm)

6.0 Rhodamine B:
2.0 × 10−3

Crystal violet:
2.1 × 10−3

[94]

β-cyclodextrin-multi-walled carbon
nanotubes (10 mg)

Methylene
blue and
methyl
orange
(20 ppm)

8.0 Methylene
blue: 2.8 ×
10−4

Methyl orange:
3.0 × 10–4

[82]

Copolymer acrylic acid-N-isopropyl
acrylamide-multi-walled carbon
nanotubes (50 mg)

Rhodamine
B, crystal
violet, and
methylene
blue
(50 mL,
50 ppm)

8.0 Rhodamine B:
4.8 × 10−4

Crystal violet:
7.0 × 10−4

Methylene
blue: 9.4 ×
10−4

[42]

Magnetite-alginate-oxidized
multi-walled carbon nanotubes
(700 mg)

Methylene
blue
(100 mL,
0.72 mM)

5.0 2.8 × 10−3 [12]

times after being regenerated without losing the adsorption capability, which was
remarkable [80].

Multi-walled carbon nanotubes functionalized with thiol functional groups were
tested for methylene blue dye removal. The adsorption was done at optimum condi-
tions at pH 6.0 and 298 Kwith 60 min contact time. The adsorbent material followed
the Langmuir isothermmodel. The qmax value formethylene blue adsorption by using
multi-walled carbon nanotubes functionalized with thiol functional groups (3.1 ×
10–4 mol g–1) was much higher than the unmodified one (7.4× 10–6 mol g–1) [100].

Effort on the further modification of multi-walled carbon nanotubes has been
given to improve the adsorption capability for synthetic dyes adsorption.Oxidation of
multi-walled carbon nanotubes by using oxidation agents such as HNO3 and NaOCl
generates hydroxyl and/or carboxylic acid functional groups on the surface of multi-
walled carbon nanotubes thus increasing the surface area of carbon nanotubes from
115 to 158 m2 g−1 [115]. The increment of the surface area gave a positive effect
on the adsorption capability of multi-walled carbon nanotubes. The qmax value of
unmodified carbon nanotubes for malachite green adsorption was 1.3× 10–5 mol g−1

while oxidized carbon nanotubes exhibited a four-time higher qmax value (5.4 ×
10–5 mol g−1), which was remarkable [23].

Another modification is the preparation of a composite material between multi-
walled carbon nanotubes and other organic/inorganic materials. The combination of
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magnetite and multi-walled carbon nanotubes increased the surface area of multi-
walled carbon nanotubes to 145 m2 g−1. The improvement of the surface area
enhanced the adsorption capability of crystal violet and methylene blue dyes. The
qmax value for crystal violet adsorption was slightly improved from 4.0× 10–4 to 5.6
× 10–4 mol g–1 while the qmax value for methylene blue adsorption was significantly
improved from 7.4 × 10–6 to 1.5 × 10–4 mol g–1 [98].

A different structure of synthetic dye gives different adsorption preference for
modified multi-walled carbon nanotubes. The chemical structure of crystal violet is
larger than methylene blue, thus adsorption of crystal violet is sterically hindered
by multi-walled carbon nanotubes thus the adsorption mechanism mainly happened
through hydrophobic interactions. In contrast, methylene blue with a smaller chem-
ical structure was able to infiltrate the structure of the adsorbent material and then
trapped with strong interactions with magnetite structure [98].

A composite material consisting of magnetite, chitosan, and multi-walled carbon
nanotubes showed a higher adsorption capacity for the adsorption of methyl orange
in the distilled water media. The adsorption isotherm of methyl orange followed the
Langmuir model while the adsorption kinetics fitted well with the pseudo-second-
order kinetic model. The qmax value for methyl orange adsorption was slightly
improved from 1.2× 10–4 to 2.6× 10–4 mol g–1 compared to the unmodified carbon
nanotubes material. The adsorbent material can be easily separated through filtration
with the aid of a magnet thus the adsorbent material can be reused for a further
adsorption process [130].

The combination of starch and multi-walled carbon nanotubes increased the
biocompatibility and hydrophilicity properties, as well as surface area enhance-
ment (from 115 to 133 m2 g−1). The composite material gave higher adsorption
capability towards methyl orange and methylene blue dyes in the aqueous solution.
The qmax value for methyl orange adsorption was increased from 1.2 × 10–4 to 4.2
× 10–4 mol g–1 compared to the unmodified carbon nanotubes material. On the
other hand, the qmax value for methylene blue adsorption was improved from 7.4
× 10–6 to 2.9 × 10–4 mol g–1 compared to the unmodified carbon nanotubes mate-
rial. The enhancement of the adsorption capacity of synthetic dyes mainly occurred
due to the better dispersion ability of multi-walled carbon nanotubes due to higher
hydrophilicity and surface area [15].

A composite material consisting of chitosan, poly-2-hydroxyethyl methacrylate
and multi-walled carbon nanotubes were employed as the adsorbent material for
the removal of methyl orange. The qmax value for methyl orange adsorption using
the composite material was improved 15 times fold from 1.2 × 10–4 to 1.9 ×
10–3 mol g–1. Furthermore, the composite material can be regenerated by the desorp-
tion process of methyl orange at pH 13. The adsorption mechanism was reported to
be happened through hydrogen bonds and electrostatic interactions between methyl
orange with chitosan and poly-2-hydroxyethyl methacrylate, together with π-π
stacking interactions between methyl orange and multi-walled carbon nanotubes
[76].

A combination of magnetite, chitosan, silica, and multi-walled carbon nanotubes
in a composite material has been prepared for the adsorption of reactive blue 19 and
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direct blue 71. The composite material was prepared through a gelation technique
employing glutaraldehyde as the linker agent. The optimum pH for reactive blue
19 dye adsorption was found at pH 2 while the optimum pH for direct blue 71 dye
adsorption was found at pH 6.8. The adsorption isotherm of both reactive blue 19
and direct blue 71 dyes followed the Langmuir model yielding the qmax value of 1.7
× 10–3 and 6.8 × 10–4 mol g–1, respectively. The adsorption mechanism of reactive
blue 19 and direct blue 71 dyes adsorption happened mainly through electrostatic,
hydrogen bonds, and π-π stacking interactions [1].

A nanocomposite of water-soluble hyperbranched polyamine functionalized
multi-walled carbon nanotubes has been used for the adsorption of organic dyes,
i.e. methylene blue, malachite green, and methyl violet. Each adsorbent had an effi-
cient removal value of more than 90% for each dye with an optimum pH of 6.0.
The contact time of the nanocomposite material for methylene blue adsorption was
10 min, while the adsorption of malachite green and methyl violet required 120 min.
The qmax values for methylene blue, malachite green, and methyl violet were 2.5 ×
10–3, 2.3× 10–3, and 2.4× 10–3 mol g–1, respectively. Adsorption kinetics followed
a pseudo-second-order model, while the adsorption isotherm followed the Langmuir
model. The adsorbent regeneration was conducted by using a mixture of ethanol and
water. Furthermore, the nanocomposite adsorbentmaterial did not lose the adsorption
capability after the five-cycle adsorption process [43].

Compositematerial frompolyethersulfone andmulti-walled carbonnanotubes has
been evaluated for the adsorption of rhodamine B and crystal violet. The composite
materialwas preparedusing triethylenediamine as the linker agent through an impreg-
nation method. The composite material gave high adsorption capacity for rhodamine
B and crystal violet adsorption. The qmax value for rhodamine B and crystal violet
adsorption was 2.0 × 10–3 and 2.1 × 10–3 mol g–1, respectively. Compared to the
unmodified multi-walled carbon nanotubes, the composite material has a higher
thermal and chemical stability, aswell as a larger surface area and stronger antifouling
properties [94].

On the other hand, composite material between β-cyclodextrin and multi-walled
carbon nanotubes has been used for the adsorption of methylene blue and methyl
orange. The composite material was produced through an impregnation reaction by
using glycine as the linker agent. The qmax value for methylene blue adsorption was
improved from 7.4× 10–6 to 2.8× 10–4 mol g–1 compared to the unmodified carbon
nanotubes material. On the other hand, the qmax value for methyl orange adsorption
was slightly improved from 1.2 × 10–4 to 3.0 × 10–4 mol g–1 compared to the
unmodified carbon nanotubes material. The adsorption mechanism was reported to
be happened through hydrogen bondings between synthetic dyeswithβ-cyclodextrin,
together with π-π stacking interactions between synthetic dyes and multi-walled
carbon nanotubes [82].

Copolymerization of acrylic acid andN-isopropyl acrylamide togetherwithmulti-
walled carbon nanotubes and magnetite have been prepared through a chain transfer
copolymerization reaction. The composite material was evaluated for rhodamine B,
crystal violet, and methylene blue dyes adsorption. The qmax value for rhodamine
B, crystal violet, and methylene blue adsorption was found to be 4.8 × 10–4, 7.0 ×
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10–4, and 9.4× 10–4 mol g−1, respectively. The adsorption mechanism occurred via
hydrogen bonds and electrostatic interactions. The composite material was easily
regenerated by washing with HNO3. Furthermore, the composite material can be
reused for up to five-cycle process [42].

Recently, composite material frommagnetite, alginate, and oxidizedmulti-walled
carbon nanotubes was prepared and applied for methylene blue adsorption. The
composite material gave 380 times higher qmax value (2.8 × 10–3 mol g–1) than the
unmodified multi-walled carbon nanotubes (7.4× 10–6 mol g–1), which was remark-
able. The methylene blue adsorption was found to be a spontaneous and endothermic
reaction from the thermodynamic data. The regeneration of the composite material
was done by washing the porous material with 0.10 M HNO3. The composite mate-
rial did not lose the adsorption capability after the six-cycle process, which was
remarkable [12].

5 Conclusions

Aromatic-based synthetic macromolecules, i.e. calixarenes and carbon nanotubes
are found to be suitable adsorbent materials for dyes adsorption and removal from
the textile wastewater. Adsorption of synthetic dyes using aromatic-based synthetic
macromolecules offers an easy and simple operation process as well as high adsorp-
tion capability and selectivity. The calixarenes possess a strong binding affinity with
synthetic dyes mainly through hydrogen bonds and electrostatic interactions. On the
other hand, the carbon nanotubematerials serve as an adsorbentmaterial for synthetic
dyes mainly through π-π stacking and hydrophobic interactions. Furthermore, the
aromatic-based synthetic macromolecules are easily regenerated by either adjust-
ment of the pH value or solvent washing; thus, a consecutive adsorption process for
dyes removal from textile wastewater is possible for a real-life application.

Acknowledgements Financial support from theDirectorate of Research, Technology andCommu-
nity Services, KEMDIKBUDRISTEK, The Republic of Indonesia, through the PTUPT Scheme for
the budget year 2020–2022 is greatly acknowledged.

References

1. Abbasi M (2017) Synthesis and characterization of magnetic nanocomposite of
chitosan/SiO2/carbon nanotubes and its application for dyes removal. J Clean Prod 145:105–
113. https://doi.org/10.1016/j.clepro.2017.01.046

2. Afroze S, Sen TK (2018) A review on heavy metal ions and dye adsorption from water by
agricultural solid waste adsorbents. Water Air Soil Pollut 229:225. https://doi.org/10.1007/
s11270-018-3869-z

https://doi.org/10.1016/j.clepro.2017.01.046
https://doi.org/10.1007/s11270-018-3869-z
https://doi.org/10.1007/s11270-018-3869-z


Application of Aromatic-Based Synthetic Macromolecules … 303

3. Akceylan E, Bahadir M, Yılmaz M (2009) Removal efficiency of a calix[4]arene-based
polymer for water-soluble carcinogenic direct azo dyes and aromatic amines. J Hazard Mater
162:960–966. https://doi.org/10.1016/j.jhazmat.2008.05.127

4. Akceylan E, Erdemir S (2015) Carcinogenic direct azo dye removal from aqueous solution
by amino-functionalized calix[4]arenes. J Incl PhenomMacrocycl Chem 82:471–478. https://
doi.org/10.1007/s10847-015-0518-7

5. Alotaibi NF, Nassar AM, Alrwaili GM, Elnasr TAS, Zeid EFA (2019) Selective, efficient and
complete precipitation of anionic dyes in aqueous solutions using Ag@PbCO3 nanocom-
posite. Inorg Nano-metal Chem 49:395–400. https://doi.org/10.1080/24701556.2019.166
1463

6. Annadurai G, Juang RS, Lee DJ (2002) Use of cellulose-based wastes for adsorption of
dyes from aqueous solutions. J Hazard Mater 92:263–274. https://doi.org/10.1016/S0304-
3894(02)00017-1

7. Ariyanti D, Iswantini D, Sugita P, Nurhidayat N, Effendi H, Ghozali AA, Kurniawan YS
(2020) Highly selective phenol biosensor utilizing selected Bacillus biofilm through an
electrochemical method. Makara J Sci 24:24–30. https://doi.org/10.7454/mss.v24i1.11726

8. AryalN,Wood J, Rijal I, DengD, JhaMK,BoaduAO (2020) Fate of environmental pollutants:
a review. Water Environ Res 92:1587–1594. https://doi.org/10.1002/wer.1404

9. Aygun A, Yenisoy-Karakas S, Duman I (2003) Production of granular activated carbon from
fruit stones and nutshells and evaluation of their physical, chemical and adsorption proper-
ties.MicroporousMesoporousMater 66:189–195. https://doi.org/10.1016/j.micromeso.2003.
08.028

10. Bahgat M, Farghali AA, Rouby WE, Khedr M, Ahmed MYM (2013) Adsorption of methyl
green dye onto multi-walled carbon nanotubes decorated with Ni nanoferrite. Appl Nanosci
3:251–261. https://doi.org/10.1007/s13204-012-0127-3

11. Bhatti AA,OguzM,YilmazM (2017)Magnetizing calixarene: azo dye removal from aqueous
media by Fe3O4 nanoparticles fabricated with carboxylic-substituted calix[4]arene. J Chem
Eng Data 62:2819–2825. https://doi.org/10.1021/acs.jced.7b00128

12. Boukhalfa N, Bouthala M, Djebri N, Idris A (2019) Kinetics, thermodynamics, equilibrium
isotherms, and reusability studies of cationic dye adsorption by magnetic alginate/oxidized
multiwalled carbon nanotubes composites. Int J Bio Macromol 123:539–548. https://doi.org/
10.1016/j.ijbiomac.2018.11.102

13. Butler EB, Hung YT, Mulamba O (2017) The effects of chemical coagulants on the decol-
orization of dyes by electrocoagulation using response surface methodology (RSM). Appl
Water Sci 7:2357–2371. https://doi.org/10.1007/s13201-016-0410-7

14. Cengiz S, Cavas L (2008) Removal of methylene blue by invasive marine seaweed: Caulerpa
racemosa var. cylindracea. Bioresour Technol 99:2357–2363. https://doi.org/10.1016/j.bio
rtech.2007.05.011

15. Chang PR, Zheng P, Liu B, Anderson DP, Yu J, Ma X (2011) Characterization of magnetic
soluble starch-functionalized carbon nanotubes and its application for the adsorption of the
dyes. J Hazard Mater 186:2144–2150. https://doi.org/10.1016/j.jhazmat.2010.12.119

16. Chen M, Chen Y, Diao G (2010) Adsorption kinetics and thermodynamics of methylene blue
onto p-tert-butyl-calix[4,6,8]arene-bonded silica gel. J ChemEngData 55:5109–5116. https://
doi.org/10.1021/je1006696

17. Chen M, Shang T, Fang W, Diao G (2011) Study on adsorption and desorption properties of
the starch grafted p-tert-butyl-calix[n]arene for butyl rhodamine B solution. J Hazard Mater
185:914–921. https://doi.org/10.1016/j.jhazmat.2010.09.107

18. Chen Y, Chen L, Bai H, Li L (2013) Graphene oxide-chitosan composite hydrogels as broad-
spectrum adsorbents for water purification. J Mater Chem A 1:1992–2001. https://doi.org/10.
1039/C2TA00406B

19. Cheng Z, Liao J, He B, Zhang F, Zhang F, Huang X, Zhou L (2015) One-step fabrication
of graphene oxide enhanced magnetic composite gel for highly efficient dye adsorption and
catalysis. ACS Sustain Chem Eng 3:1677–1685. https://doi.org/10.1021/acssuschemeng.5b0
0383

https://doi.org/10.1016/j.jhazmat.2008.05.127
https://doi.org/10.1007/s10847-015-0518-7
https://doi.org/10.1007/s10847-015-0518-7
https://doi.org/10.1080/24701556.2019.1661463
https://doi.org/10.1080/24701556.2019.1661463
https://doi.org/10.1016/S0304-3894(02)00017-1
https://doi.org/10.1016/S0304-3894(02)00017-1
https://doi.org/10.7454/mss.v24i1.11726
https://doi.org/10.1002/wer.1404
https://doi.org/10.1016/j.micromeso.2003.08.028
https://doi.org/10.1016/j.micromeso.2003.08.028
https://doi.org/10.1007/s13204-012-0127-3
https://doi.org/10.1021/acs.jced.7b00128
https://doi.org/10.1016/j.ijbiomac.2018.11.102
https://doi.org/10.1016/j.ijbiomac.2018.11.102
https://doi.org/10.1007/s13201-016-0410-7
https://doi.org/10.1016/j.biortech.2007.05.011
https://doi.org/10.1016/j.biortech.2007.05.011
https://doi.org/10.1016/j.jhazmat.2010.12.119
https://doi.org/10.1021/je1006696
https://doi.org/10.1021/je1006696
https://doi.org/10.1016/j.jhazmat.2010.09.107
https://doi.org/10.1039/C2TA00406B
https://doi.org/10.1039/C2TA00406B
https://doi.org/10.1021/acssuschemeng.5b00383
https://doi.org/10.1021/acssuschemeng.5b00383


304 Jumina et al.

20. Choy KKH, McKay G, Porter JF (1999) Sorption of acid dyes from effluents using activated
carbon. Resour Conser Recyl 27:57–71. https://doi.org/10.1016/S0921-3449(98)00085-8

21. Crini G, Lichtfouse E (2019)Advantages and disadvantages of techniques used forwastewater
treatment. Environ Chem Lett 17:145–155. https://doi.org/10.1007/s10311-018-0785-9

22. Crini G, Lichtfouse E, Wilson LD, Morin-Crini N (2019) Conventional and non-conventional
adsorbents forwastewater treatment. EnvironChemLett 17:195–213. https://doi.org/10.1007/
s10311-018-0786-8

23. Derakhshan MS, Moradi O (2014) The study of thermodynamics and kinetics methyl orange
and malachite green by SWCNTs, SWCNT-COOH and SWCNT-NH2 as adsorbents from
aqueous solution. J Ind Eng Chem 20:3186–3194. https://doi.org/10.1016/j.jiec.2013.11.064

24. Dutta DP, Venugopalan R, Chopade S (2017) Manipulating carbon nanotubes for efficient
removal of both cationic and anionic dyes from wastewater. ChemistrySelect 2:3878–3888.
https://doi.org/10.1002/slct.201700135

25. Espanol ES, Villamil MM (2019) Calixarenes: generalities and their role in improving the
solubility, biocompatibility, stability, bioavailability, detection, and transport of biomolecules.
Biomolecules 9:90. https://doi.org/10.3390/biom9030090

26. Etika SB, Nasra E (2021) Utilization of C-cinnamal calix[4]resorcinarene as adsorbent for
methanil yellow. J Phys Conf Ser 1788:012012. https://doi.org/10.1088/1742-6596/1788/1/
012012

27. Ferreira GMD, Ferreira GMD, Hespanhol MC, Rezende JP, Pires ACS, Gurgel LVA, Silva
LHM (2017) Adsorption of red azo dyes on multi-walled carbon nanotubes and activated
carbon: a thermodynamic study. Colloids Surf A 529:531–540. https://doi.org/10.1016/j.col
surfa.2017.06.021

28. Ferrero F (2007) Dye removal by low cost adsorbents: hazelnut shells in comparison with
wood sawdust. J Hazard Mater 142:144–152. https://doi.org/10.1016/j.jhazmat.2006.07.072

29. Garai B, ShettyD, Skorjanc T,Gandara F, NaleemN,Varghese S, Sharma SK,BaiasM, Jagan-
nathan R, OlsonMA, Kirmizialtin S, Trabolsi A (2021) Taming the topology of calix[4]arene-
based 2D-covalent organic frameworks: interpenetrated vs noninterpenetrated frameworks
and their selective removal of cationic dyes. J Am Chem Soc 143:3407–3415. https://doi.org/
10.1021/jacs.0c12125

30. Garg T, Hamilton SE,Hochard JP, Kresch EP, Talbot J (2018) (Not so) gently down the stream:
river pollution and health in Indonesia. J Environ Econ Manage 92:35–53. https://doi.org/10.
1016/j.jeem.2018.08.011

31. Ghadhban MY, Majdi HS, Rashid KT, Alsalhy QF, Lakshimi DS, Salih IK, Figoli A (2020)
Removal of dye from a leather tanning factory by flat-sheet ultrafiltration (UF) membrane.
Membranes 10:47. https://doi.org/10.3390/membranes10030047

32. Ghaedi M, Nasab AG, Khodadoust S, Rajabi M, Azizian S (2014) Application of activated
carbon as adsorbents for efficient removal of methylene blue: kinetics and equilibrium study.
J Ind Eng Chem 20:2317–2324. https://doi.org/10.1016/j.jiec.2013.10.007

33. Ghaedi M, Kokhdan SN (2015) Removal of methylene blue from aqueous solution by wood
millet carbon optimization using response surface methodology. Spectrochim Acta A Mol
Biomol Spectrosc 136:141–148. https://doi.org/10.1016/j.saa.2014.07.048

34. Gungor O, Yilmaz A, Memon S, Yilmaz M (2008) Evaluation of the performance of
calix[8]arene derivatives as liquid phase extraction material for the removal of azo dyes.
J Hazard Mater 158:202–207. https://doi.org/10.1016/j.jhazmat.2008.01.060

35. Gungor O (2019) Efficient removal of carcinogenic azo dyes by novel pyrazine-2-carboxylate
substituted calix[4,8]arene derivatives. Supramol Chem 31:776–783. https://doi.org/10.1080/
10610278.2020.1711908

36. Gupta VK, Khamparia S, Tyagi I, Jaspal D, Malviya A (2015) Decolorization of mixture of
dyes: a critical review. Glob J Environ Sci Manage 1:71–94. https://doi.org/10.7508/GJESM.
2015.01.007

37. Gustavo L, Reis TD, Robaina NF, Pacheco WF, Cassella RJ (2011) Separation of malachite
green and methyl green cationic dyes from aqueous medium by adsorption on amberlite
XAD-2 and XAD-4 resins using sodium dodecylsulfate as carrier. Chem Eng J 171:532–540.
https://doi.org/10.1016/j.cej.2011.04.024

https://doi.org/10.1016/S0921-3449(98)00085-8
https://doi.org/10.1007/s10311-018-0785-9
https://doi.org/10.1007/s10311-018-0786-8
https://doi.org/10.1007/s10311-018-0786-8
https://doi.org/10.1016/j.jiec.2013.11.064
https://doi.org/10.1002/slct.201700135
https://doi.org/10.3390/biom9030090
https://doi.org/10.1088/1742-6596/1788/1/012012
https://doi.org/10.1088/1742-6596/1788/1/012012
https://doi.org/10.1016/j.colsurfa.2017.06.021
https://doi.org/10.1016/j.colsurfa.2017.06.021
https://doi.org/10.1016/j.jhazmat.2006.07.072
https://doi.org/10.1021/jacs.0c12125
https://doi.org/10.1021/jacs.0c12125
https://doi.org/10.1016/j.jeem.2018.08.011
https://doi.org/10.1016/j.jeem.2018.08.011
https://doi.org/10.3390/membranes10030047
https://doi.org/10.1016/j.jiec.2013.10.007
https://doi.org/10.1016/j.saa.2014.07.048
https://doi.org/10.1016/j.jhazmat.2008.01.060
https://doi.org/10.1080/10610278.2020.1711908
https://doi.org/10.1080/10610278.2020.1711908
https://doi.org/10.7508/GJESM.2015.01.007
https://doi.org/10.7508/GJESM.2015.01.007
https://doi.org/10.1016/j.cej.2011.04.024


Application of Aromatic-Based Synthetic Macromolecules … 305

38. Han R, Zhang J, Han P, Wang Y, Zhao Z, Tang M (2009) Study of equilibrium, kinetic and
thermodynamic parameters about methylene blue adsorption onto natural zeolite. Chem Eng
J 145:496–504. https://doi.org/10.1016/j.cej.2008.05.003

39. Handayani DS, Purnawan C, Pranoto HS, Hilmiyana D (2016) Adsorption of Remazol yellow
FG from aqueous solution on chitosan-linked P-T-butylcalix[4]arene. IOP Conf SerMater Sci
Eng 107:012011. https://doi.org/10.1088/1757-899X/107/1/012011

40. Hassaan MA, Nemr A (2017) Health and environmental impacts of dyes: mini review. Am J
Environ Sci 1:64–67. https://doi.org/10.11648/j.ajese.20170103.11

41. Holkar CR, Jadhav AJ, Pinjari DV, Mahamuni NM, Pandit AB (2016) A critical review on
textile wastewater treatments: possible approaches. J Environ Manage 182:351–366. https://
doi.org/10.1016/j.jenvman.2016.07.090

42. Hosseinzadeh S, Hosseinzadeh H, Pashaei S, Khodaparast Z (2018) Synthesis of magnetic
functionalized MWCNT nanocomposite through surface RAFT co-polymerization of acrylic
acid and N-isopropyl acrylamide for removal of cationic dyes from aqueous solutions.
Ecotoxicol Environ Saf 161:34–44. https://doi.org/10.1016/j.ecoenv.2018.05.063

43. Hu L, Yang Z, Wang Y, Li Y, Fan D, Wu D, Wei Q, Du B (2017) Facile preparation of
water-soluble hyperbranched polyamine functionalized multiwalled carbon nanotubes for
high-efficiency organic dye removal from aqueous solution. Sci Rep 7:3611. https://doi.org/
10.1038/s41598-017-03490-6

44. Huang F, Anslyn EV (2015) Introduction: supramolecular chemistry. Chem Rev 115:6999–
7000. https://doi.org/10.1021/acs.chemrev.5b00352

45. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–
605. https://doi.org/10.1038/363603a0

46. Iijima S (2002) Carbon nanotubes: past, present, and future. PhyB 323:1–5. https://doi.org/
10.1016/S0921-4526(02)00869-4

47. Janos P, Buchtova H, Ryznarova M (2003) Sorption of dyes from aqueous solutions onto fly
ash. Water Res 37:4938–4944. https://doi.org/10.1016/j.watres.2003.08.011

48. John J, Dineshram R, Hemalatha KR, Dhassiah MP, Gopal D, Kumar A (2020) Bio-
decolorization of synthetic dyes by a halophilic bacterium Salinivibrio sp. Front Microbiol
11:594011. https://doi.org/10.3389/fmicb.2020.594011

49. Jumina J, Priastomo Y, Setiawan HR,MutmainahM, Kurniawan YS, Ohto K (2020) Simulta-
neous removal of lead(II), chromium(III) and copper(II) heavy metal ions through an adsorp-
tion process using C-phenylcalix[4]pyrogallolarene material. J Environ Chem Eng 8:103971.
https://doi.org/10.1016/j.jece.2020.103971

50. Jumina J, Setiawan HR, Triono S, Kurniawan YS, Siswanta D, Zulkarnain AK, Kumar N
(2020) The C-arylcalix[4]pyrogallolarene sulfonic acid: a novel and efficient organocatalyst
material for biodiesel production. Bull Chem Soc Jpn 93:252–259. https://doi.org/10.1246/
bcsj.20190275

51. Junejo R, Memon S, Memon FN, Memon AA, Durmaz F, Bhatti AA, Bhatti AA (2019)
Thermodynamic and kinetic studies for adsorption of reactive blue (RB-19) dye using
calix[4]arene-based adsorbent. J Chem Eng Data 64:3407–3415. https://doi.org/10.1021/acs.
jced.9b00223

52. Kamboh MA, Solangi IB, Sherazi STH, Memon S (2009) Synthesis and application of
calix[4]arene based resin for the removal of azo dyes. J Hazard Mater 172:234–239. https://
doi.org/10.1016/j.jhazmat.2009.06.165

53. Kamboh MA, Bhatti AA, Solangi IB, Sherazi STH, Memon S (2014) Adsorption of direct
black-38 azo dye on p-tert-butylcalix[6]arene immobilizedmaterial. Arab J Chem 7:125–131.
https://doi.org/10.1016/j.arabjc.2013.06.033

54. Kannan N, Sundaram MM (2001) Kinetics and mechanism of removal of methylene blue by
adsorption on various carbons: a comparative study. Dyes Pigm 51:25–40. https://doi.org/10.
1016/S0143-7208(01)00056-0

55. Kavitha D, Namasivayam C (2007) Experimental and kinetic studies on methylene blue
adsorption by coir pith carbon. Bioresour Technol 98:14–21. https://doi.org/10.1016/j.bio
rtech.2005.12.008

https://doi.org/10.1016/j.cej.2008.05.003
https://doi.org/10.1088/1757-899X/107/1/012011
https://doi.org/10.11648/j.ajese.20170103.11
https://doi.org/10.1016/j.jenvman.2016.07.090
https://doi.org/10.1016/j.jenvman.2016.07.090
https://doi.org/10.1016/j.ecoenv.2018.05.063
https://doi.org/10.1038/s41598-017-03490-6
https://doi.org/10.1038/s41598-017-03490-6
https://doi.org/10.1021/acs.chemrev.5b00352
https://doi.org/10.1038/363603a0
https://doi.org/10.1016/S0921-4526(02)00869-4
https://doi.org/10.1016/S0921-4526(02)00869-4
https://doi.org/10.1016/j.watres.2003.08.011
https://doi.org/10.3389/fmicb.2020.594011
https://doi.org/10.1016/j.jece.2020.103971
https://doi.org/10.1246/bcsj.20190275
https://doi.org/10.1246/bcsj.20190275
https://doi.org/10.1021/acs.jced.9b00223
https://doi.org/10.1021/acs.jced.9b00223
https://doi.org/10.1016/j.jhazmat.2009.06.165
https://doi.org/10.1016/j.jhazmat.2009.06.165
https://doi.org/10.1016/j.arabjc.2013.06.033
https://doi.org/10.1016/S0143-7208(01)00056-0
https://doi.org/10.1016/S0143-7208(01)00056-0
https://doi.org/10.1016/j.biortech.2005.12.008
https://doi.org/10.1016/j.biortech.2005.12.008


306 Jumina et al.

56. Kazakova EK, Morozova JE, Mironova DA, Konovalov AI (2012) Sorption of azo dyes from
aqueous solutions by tetradodecyloxybenzylcalix[4]resorcinarene derivatives. J Incl Phenom
Macro Chem 74:467–472. https://doi.org/10.1007/s10847-011-0075-7

57. Kazemi P, PeydayeshM, Bandegi A,Mohammadi T, Bakhtiari O (2013) Pertraction ofmethy-
lene blue using a mixture of D2EHPA/M2EHPA and sesame oil as a liquid membrane. Chem
Papers 67:722–729. https://doi.org/10.2478/s11696-013-0374-0

58. Kongor A, Panchal M, Athar M, Vora M, Makwana B, Jha PC, Jain V (2020) Calix[4]pyrrole
stabilized PdNPs as an efficient heterogeneous catalyst for enhanced degradation of water-
soluble carcinogenic azo dyes. Catal Lett 151:548–558. https://doi.org/10.1007/s1056-020-
03304-x

59. Kumar KV, Porkodi K (2006) Relation between some two- and three-parameter isotherm
models for the sorption of methylene blue onto lemon peel. J Hazard Mater 138:633–635.
https://doi.org/10.1016/j.jhazmat.2006.06.078

60. Kumar R, Sharma A, Singh H, Suating P, Kim HS, Sunwoo K, Shim I, Gibb BC, Kim JS
(2019) Revisiting fluorescent calixarenes: from molecular sensors to smart materials. Chem
Rev 119:9657–9721. https://doi.org/10.1021/acs.chemrev.8b00605

61. Kurniawan YS, Sathuluri RR, Iwasaki W, Morisada S, Kawakita H, Ohto K, Miyazaki M,
Jumina J (2018) Microfluidic reactor for Pb(II) ion extraction and removal with amide deriva-
tive of calix[4]arene supported by spectroscopic studies. Microchem J 142:377–384. https://
doi.org/10.1016/j.microc.2018.07.001

62. Kurniawan YS, Sathuluri RR, Ohto K, Iwasaki W, Kawakita H, Morisada S, Miyazaki M,
Jumina J (2019) A rapid and efficient lithium-ion recovery from seawater with tripropyl-
monoacetic acid calix[4]arene derivative employing droplet-based microfluidic reactor
system. Sep Purif Technol 211:925–934. https://doi.org/10.1016/j.seppur.2018.10.049

63. Kurniawan YS, Ryu M, Sathuluri RR, Iwasaki W, Morisada S, Kawakita H, Ohto K, Maeki
M, Miyazaki M, Jumina J (2019) Separation of Pb(II) ion with tetraacetic acid derivative
of calix[4]arene by using droplet-based microreactor system. Indones J Chem 19:368–375.
https://doi.org/10.22146/ijc.34387

64. Kurniawan YS, Anggraeni K, Indrawati R, Yuliati L (2020) Functionalization of titanium
dioxide through dye sensitizing method utilizing red amaranth extract for phenol photodegra-
dation. IOP Conf Ser Mater Sci Eng 902:012029. https://doi.org/10.1088/1757-899X/902/1/
012029

65. Kurniawan YS, Sathuluri RR, Ohto K (2020b) Droplet microfluidic device for rapid and
efficient metal separation using host-guest chemistry. In: Ren Y (ed) Advances in microflu-
idic technologies for energy and environmental applications. IntechOpen, London, pp 1–19.
https://doi.org/10.5772/intechopen.89846

66. Kurniawan YS, Priyangga KTA, Krisbiantoro PA, Imawan AC (2021) Green chemistry influ-
ences in organic synthesis: a review. J Mult App Nat Sci 1:1–12. https://doi.org/10.47352/
jmans.v1i1.2

67. Lellis B, Polonio CZF, Pamphile JA, Polonio JC (2019) Effects of textile dyes on health
and the environment and bioremediation potential of living organisms. Biotechnol Res Innov
3:275–290. https://doi.org/10.1016/j.biori.2019.09.001

68. Li H, Huang H, Yan X, Liu C, Li L (2021) A calix[4]arene-crosslinked polymer for rapid
adsorption of cationic dyes in water. Mater Chem Phys 263:124295. https://doi.org/10.1016/
j.matchemphys.2021.124295

69. Luca PD, Chiodo A, Macario A, Siciliano C, Nagy JB (2021) Semi-continuous adsorption
processes with multi-walled carbon nanotubes for the treatment of water contaminated by an
organic textile dye. Appl Sci 11:1687. https://doi.org/10.3390/app11041687

70. Ma J, Chen C, Yu F (2016) Self-regenerative and self-enhanced smart graphene/Ag3PO4
hydrogel adsorbent under visible light. New J Chem 40:3208–3215. https://doi.org/10.1039/
C5NJ03404C

71. Ma J, SunY, ZhangM,YangM,GongX, Yu F, Zheng J (2017) Comparative study of graphene
hydrogels and aerogels reveals the important role of buried water in pollutant adsorption.
Environ Sci Technol 51:12283–12292. https://doi.org/10.1021/acs.est.7b02227

https://doi.org/10.1007/s10847-011-0075-7
https://doi.org/10.2478/s11696-013-0374-0
https://doi.org/10.1007/s1056-020-03304-x
https://doi.org/10.1007/s1056-020-03304-x
https://doi.org/10.1016/j.jhazmat.2006.06.078
https://doi.org/10.1021/acs.chemrev.8b00605
https://doi.org/10.1016/j.microc.2018.07.001
https://doi.org/10.1016/j.microc.2018.07.001
https://doi.org/10.1016/j.seppur.2018.10.049
https://doi.org/10.22146/ijc.34387
https://doi.org/10.1088/1757-899X/902/1/012029
https://doi.org/10.1088/1757-899X/902/1/012029
https://doi.org/10.5772/intechopen.89846
https://doi.org/10.47352/jmans.v1i1.2
https://doi.org/10.47352/jmans.v1i1.2
https://doi.org/10.1016/j.biori.2019.09.001
https://doi.org/10.1016/j.matchemphys.2021.124295
https://doi.org/10.1016/j.matchemphys.2021.124295
https://doi.org/10.3390/app11041687
https://doi.org/10.1039/C5NJ03404C
https://doi.org/10.1039/C5NJ03404C
https://doi.org/10.1021/acs.est.7b02227


Application of Aromatic-Based Synthetic Macromolecules … 307

72. Ma J, Zhang Y, Zhao B, Jia Q (2020) Supramolecular adsorbents in extraction and separa-
tion techniques: a review. Anal Chim Acta 1122:97–113. https://doi.org/10.1016/j.aca.2020.
04.054

73. Machado FM, Carmalin SA, Lima EC, Dias SLP, Prola LDT, Saucier C, Jauris IM, Zanella
I, Fagan SB (2016) Adsorption of alizarin red s dye by carbon nanotubes: an experimental
and theoretical investigation. J Phys Chem C 120:18296–18306. https://doi.org/10.1021/acs.
jpcc.6b03884

74. Madaeni SS, Jamali Z, Islami N (2011) Highly efficient and selective transport of methylene
blue through a bulk liquid membrane containing Cyanex 301 as carrier. Sep Purif Technol
81:116–123. https://doi.org/10.1016/j.seppur.2011.07.004

75. Madrakian T, Afkhami A, Ahmadi M, Bagheri H (2011) Removal of some cationic dyes from
aqueous solutions using magnetic-modified multi-walled carbon nanotubes. J Hazard Mater
196:109–114. https://doi.org/10.1016/j.jhazmat.2011.08.078

76. Mahmoodian H, Moradi O, Shariatzadeha B, Salehf TA, Tyagi I, Maity A, Asif M, Gupta VK
(2015) Enhanced removal of methyl orange from aqueous solutions by polyHEMA-chitosan-
MWCNT nano-composite. J Mol Liq 202:189–198. https://doi.org/10.1016/h.molliq.2014.
10.040

77. Mashkoor F, Nasar A, Inamuddin (2020) Carbon nanotube-based adsorbents for the removal
of dyes from waters: a review. Environ Chem Lett 18:605-629. https://doi.org/10.1007/s10
311-020-00970-6

78. Memon FN, Memon S, Minhas FT (2014) Rapid transfer of methyl red using calix[6]arene
as a carrier in a bulk liquid membrane. C R Chim 17:577–585. https://doi.org/10.1016/j.crci.
2013/.09.015

79. MemonFN,MemonS (2015)Sorption anddesorptionof basic dyes from industrialwastewater
using calix[4]arene based impregnated material. Sep Sci Technol 50:1135–1146. https://doi.
org/10.1080/01496395.2014.965831

80. Meng Y, Miao L (2019) Adsorption of dyes using multi-walled carbon nanotube hydrogel.
Chem Res Chin Univ 35:311–318. https://doi.org/10.1007/s40242-019-8228-0

81. Mohammadi A, Doctorsafaei AH, Zia KM (2018) Alginate/calix[4]arenes modified graphene
ozide nanocomposite beads: preparation, characterization, and dye adsorption studies. Int J
Biol Macromol 120:1353–1361. https://doi.org/10.1016/j.ijbiomac.2018.09.136

82. Mohammadi A, Veisi P (2018) High adsorption performance of β-cyclodextrin-functionalized
multi-walled carbon nanotubes for the removal of organic dyes from water and industrial
wastewater. J Environ Chem Eng 6:4634–4643. https://doi.org/10.1016/j.jece.2018.07.002

83. Mohddin AT, Hameed BH (2010) Adsorption of methyl violet dye on acid modified activated
carbon: isotherms and thermodynamics. J Appl Sci Environ Sani 5:151–160

84. Muthuraman G, Ibrahim M (2013) Use of bulk liquid membrane for the removal of Cibacron
red FN-R from aqueous solution using TBAB as a carrier. J Ind Eng Chem 19:444–449.
https://doi.org/10.1016/j.jiec.2012.08.025

85. Namasivayam C, Radhika R, Suba S (2001) Uptake of dyes by a promising locally available
agricultural solid waste: coir pith.WasteManage 21:381–387. https://doi.org/10.1016/S0956-
053X(00)00081-7

86. Narula A, Rao CP (2019) Hydrogel of the supramolecular complex of graphene oxide
and sulfonatocalix[4]arene as reusable material for the degradation by spectroscopy and
microscopy. ACS Omega 4:5731–5740. https://doi.org/10.1021/acsomega.9b00545

87. Ofomaja AE, Ho YS (2008) Effect of temperatures and pH on methyl violet biosorption
by Mansonia wood sawdust. Biores Tech 99:5411–5417. https://doi.org/10.1016/j.biortech.
2007.11.018

88. Ohto K (2010) Review of the extraction behavior of metal cations with calixarene derivatives.
Solvent Extr Res Des, Jpn 17:1–18

89. Otero M, Rozada F, Calvo LF, Garcia AI, Moran A (2003) Kinetic and equilibrium modeling
of the methylene blue removal from solution by adsorbent materials produced from sewage
sludges. Biochem Eng 15:59–68. https://doi.org/10.1016/S1369-703X(02)00177-8

https://doi.org/10.1016/j.aca.2020.04.054
https://doi.org/10.1016/j.aca.2020.04.054
https://doi.org/10.1021/acs.jpcc.6b03884
https://doi.org/10.1021/acs.jpcc.6b03884
https://doi.org/10.1016/j.seppur.2011.07.004
https://doi.org/10.1016/j.jhazmat.2011.08.078
https://doi.org/10.1016/h.molliq.2014.10.040
https://doi.org/10.1016/h.molliq.2014.10.040
https://doi.org/10.1007/s10311-020-00970-6
https://doi.org/10.1007/s10311-020-00970-6
https://doi.org/10.1016/j.crci.2013/.09.015
https://doi.org/10.1016/j.crci.2013/.09.015
https://doi.org/10.1080/01496395.2014.965831
https://doi.org/10.1080/01496395.2014.965831
https://doi.org/10.1007/s40242-019-8228-0
https://doi.org/10.1016/j.ijbiomac.2018.09.136
https://doi.org/10.1016/j.jece.2018.07.002
https://doi.org/10.1016/j.jiec.2012.08.025
https://doi.org/10.1016/S0956-053X(00)00081-7
https://doi.org/10.1016/S0956-053X(00)00081-7
https://doi.org/10.1021/acsomega.9b00545
https://doi.org/10.1016/j.biortech.2007.11.018
https://doi.org/10.1016/j.biortech.2007.11.018
https://doi.org/10.1016/S1369-703X(02)00177-8


308 Jumina et al.

90. Ovsyannikov A, Solovieva S, Antipin I, Ferlay S (2017) Coordination polymers based on
calixarene derivatives: structures and properties. Coord Chem Rev 352:151–186. https://doi.
org/10.1016/j.ccr.2017.09.004

91. Ozmen EY, Erdemir S, Yilmaz M, Bahadir M (2007) Removal of carcinogenic direct azo
dyes from aqueous solutions using calix[n]arene derivatives. Clean 35:612–616. https://doi.
org/10.1002/clean.200700033

92. Pavan FA, Lima EC, Dias SLP, Mazzocato AC (2008) Methylene blue biosorption from
aqueous solutions by yellow passion fruit waste. J Hazard Mater 150:703–712. https://doi.
org/10.1016/j.jhazmat.2007.05.023

93. Pekkuz H, Uzun I, Guzel F (2008) Kinetics and thermodynamics of the adsorption of some
dyestuffs from aqueous solution by poplar sawdust. Bioresour Technol 99:2009–2017. https://
doi.org/10.1016/j.biortech.2007.03.014

94. Peydayesh M, Mohammadi T, Bakhtiari O (2018) Effective treatment of dye wastewater via
positively charged TETA-MWCNT/PES hybrid nanofiltration membranes. Sep Purif Technol
194:488–502. https://doi.org/10.1016/j.seppur.2017.11.070

95. Priyangga KTA, Kurniawan YS, Yuliati L (2020) Synthesis and characterizations of C-3-
nitrophenylcalix[4]resorcinarene as a potential chemosensor for La(III) ions. IOP Conf Ser
Mater Sci Eng 959:012014. https://doi.org/10.1088/1757-899X/959/1/012014

96. PriyanggaKTA,KurniawanYS, Yuliati L, PurwonoB,Wahyuningsih TD, LintangHO (2021)
Novel Schiff base azo-imine for ultra-sensitive and highly selective fluorescent chemosensor
of Fe3+ ions. Luminescence. https://doi.org/10.1002/bio.4049

97. Priyangga KTA, Kurniawan YS, Yuliati L (2021) Effect of calcination temperature on the
photocatalytic activity of Zn2Ti3O8 materials for phenol photodegradation. Bull Chem React
Eng Catal 16:196–204. https://doi.org/10.9767/bcrec.16.1.10322.196-204

98. Qu S, Huang F, Yu S, Chen G, Kong J (2008) Magnetic removal of dyes from aqueous
solution using multi-walled carbon nanotubes filled with Fe2O3 particles. J Hazard Mater
160:643–647. https://doi.org/10.1016/j.jhazmat.2008.03.037

99. Rajabi M, Mahanpoor K, Moradi O (2017) Removal of dye molecules from aqueous solu-
tion by carbon nanotubes and carbon nanotube functional groups: critical review. RSC Adv
7:47083–47090. https://doi.org/10.1039/c7ra09377b

100. Robati D,Mirza B, Ghazisaeidi R, RajabiM,Moradi O, Tyagi I, Agarwal S, Gupta VK (2016)
Adsorption behavior of methylene blue dye on nanocomposite multi-walled carbon nanotube
functionalized thiol (MWCNT-SH) as new adsorbent. J Mol Liq 216:830–835. https://doi.
org/10.1016/j.molliq.2016.02.004

101. Rosly NZ, Abdullah AH, Kamarudin MA, Ashari SE, Ahmad SAA (2021) Int J Environ Res
Public Health 18:397. https://doi.org/10.3390/ijerph18020397

102. Sagita CP, Nulandaya L, Kurniawan YS (2021) Efficient and low-cost removal of methylene
blue using activated natural kaolinite material. J Mult Appl Nat Sci 1:69–77. https://doi.org/
10.47352/jmans.v1i2.80

103. Santhi T, Manonmani S, Smitha T (2010) Kinetics and isotherm studies on cationic dyes
adsorption onto annona squamosa seed activated carbon. Int J Eng Sci Tech 2:287–295

104. Sarkar B, Mandal S, Tsang YF, Kumar P, Kim KH, Ok YS (2018) Designer carbon nanotubes
for contaminant removal inwater andwastewater: a critical review. Sci Total Environ 612:561–
581. https://doi.org/10.1016/j.scitotenv.2017.08.132

105. Sathuluri RR, Kurniawan YS, Kim JY, Maeki M, Iwasaki W, Morisada S, Kawakita H,
Miyazaki M, Ohto K (2018) Droplet-based microreactor system for stepwise recovery of
precious metal ions from real metal waste with calix[4]arene derivatives. Sep Sci Technol
53:1261–1272. https://doi.org/10.1080/01496395.2017.1366518

106. Savyasachi AJ, Kotova O, Shanmugaraju S, Bradberry SJ, OMaille GM, Gunnlaugsson T
(2017) Supramolecular chemistry: a toolkit for soft functional materials and organic particles.
Chem 3:764–811. https://doi.org/10.1016/j.chempr.2017.10.006

107. Shabaan OA, Jahin HS, Mohamed GG (2020) Removal of anionic and cationic dyes from
wastewater by adsorption using multiwall carbon nanotubes. Arab J Chem 13:4797–4810.
https://doi.org/10.1016/j.arabjc.2020.01.010

https://doi.org/10.1016/j.ccr.2017.09.004
https://doi.org/10.1016/j.ccr.2017.09.004
https://doi.org/10.1002/clean.200700033
https://doi.org/10.1002/clean.200700033
https://doi.org/10.1016/j.jhazmat.2007.05.023
https://doi.org/10.1016/j.jhazmat.2007.05.023
https://doi.org/10.1016/j.biortech.2007.03.014
https://doi.org/10.1016/j.biortech.2007.03.014
https://doi.org/10.1016/j.seppur.2017.11.070
https://doi.org/10.1088/1757-899X/959/1/012014
https://doi.org/10.1002/bio.4049
https://doi.org/10.9767/bcrec.16.1.10322.196-204
https://doi.org/10.1016/j.jhazmat.2008.03.037
https://doi.org/10.1039/c7ra09377b
https://doi.org/10.1016/j.molliq.2016.02.004
https://doi.org/10.1016/j.molliq.2016.02.004
https://doi.org/10.3390/ijerph18020397
https://doi.org/10.47352/jmans.v1i2.80
https://doi.org/10.47352/jmans.v1i2.80
https://doi.org/10.1016/j.scitotenv.2017.08.132
https://doi.org/10.1080/01496395.2017.1366518
https://doi.org/10.1016/j.chempr.2017.10.006
https://doi.org/10.1016/j.arabjc.2020.01.010


Application of Aromatic-Based Synthetic Macromolecules … 309

108. Shahidi S, Moazzenchi B (2018) Carbon nanotube and its applications in textile industry—a
review. J Text Inst 109:1653–1666. https://doi.org/10.1080/00405000.2018.1437114

109. Shalaeva YV, Morozova JE, Mironova DA, Kazakova EK, Kadirov MT, Nizameev IR, Kono-
valov AL (2015) Amidoamine calix[4]resorcinarenes-based oligomers and polymers as effi-
cient sorbents of azo dyes from water. Supramol Chem 27:595–605. https://doi.org/10.1080/
10610278.2015.1046455

110. Sharma K, Dalai AK, Vyas RK (2018) Removal of synthetic dyes from multicomponent
industrial wastewaters. Rev ChemEng 34:107–134. https://doi.org/10.1515/revce-2016-0042

111. Sharma YC, Uma (2010) Optimization of parameters for adsorption of methylene blue on a
low-cost activated carbon. J Chem Eng Data 55:435–439. https://doi.org/10.1021/je900408s

112. Shetty D, Jahovic I, Raya J, Ravaux F, Jouiad M, Olsen JC, Trabolsi A (2017) An ultra-
adsorbent alkyne-rich porous covalent polycalix[4]arene for water purification. JMater Chem
A 5:62–66. https://doi.org/10.1039/C6TA08388A

113. Shumatbaeva AM, Morozova JE, Syakaev VV, Shalaeva YV, Sapunova AS, Voloshina AD,
Gubaidullin AT, Bazanova OB, Babaev VM, Nizameev IR, Kadirov MK, Antipin IS (2020)
The pH-responsive calix[4]resorcinarene-mPEG conjugates bearing acylhydrazone bonds:
synthesis and study of the potential as supramolecular drug delivery systems. Colloids Surf
A 589:124453. https://doi.org/10.1016/j.colsurfa.2020.124453

114. Sikosana ML, Sikhwivhilu K, Moutloali R, Madyira DM (2019) Municipal wastewater treat-
ment technologies: a review. Procedia Manuf 35:1018–1024. https://doi.org/10.1016/j.pro
mfg.2019.06.051

115. Sobhanardakani S, Zandipak R, Sahraei R (2013) Removal of Janus Green dye from aqueous
solutions using oxidized multi-walled carbon nanotubes. Toxicol Environ Chem 95:909–918.
https://doi.org/10.1080/02772248.2013.840379

116. Sousa JCG, Riberio AR, Barbosa MO, Pereira FR, Silva AMT (2018) A review on environ-
mental monitoring of water organic pollutants identified by EU guidelines. J Hazard Mater
344:146–162. https://doi.org/10.1016/j.jhazmat.2017.09.058

117. Temel F, Turkyilmaz M, Kucukcongar S (2020) Removal of methylene blue from aqueous
solutions by silica gel supported calix[4]arene cage: investigation of adsorption properties.
Eur Polym J 125:109540. https://doi.org/10.1016/j.eurpolymj.2020.109540

118. Tiwari JN, Mahesh K, Le NH, Kemp KC, Timilsina R, Tiwari RN, Kim KS (2013) Reduced
graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous
solutions. Carbon 56:173–182. https://doi.org/10.1016/j.carbon.2013.01.001

119. Tsai WT, Hsien KJ, Yang JM (2004) Silica adsorbent prepared from spent diatomaceous
earth and its application to removal of dye from aqueous solution. J Colloid Interface Sci
275:428–433. https://doi.org/10.1016/j.jcis.2004.02.093

120. Xiaoting F, Hongyu G, Fafu Y, Xiaoyan B (2015) Synthesis and dyes adsorption properties
of calix[4]grown-grafted chitosan chelating polymer. Chem Res Chin Univ 31:1051–1055.
https://doi.org/10.1007/s40242-015-5242-8

121. Yao Y, Bing H, Feifei X, Xiaofeng C (2011) Equilibrium and kinetic studies of methyl orange
adsorption onmultiwalled carbon nanotubes. ChemEng J 170:82–89. https://doi.org/10.1016/
j.cej.2011.03.031

122. Yilmaz A, Yilmaz E, Yilmaz M, Bartsch RA (2007) Removal of azo dyes from aqueous
solutions using calix[4]arene and β-cyclodextrin. Dyes Pigm 74:54–59. https://doi.org/10.
1016/j.dyepig.2006.01.011

123. Yilmaz E, Memon S, Yilmaz M (2010) Removal of direct azo dyes and aromatic amines from
aqueous solutions using two β-cyclodextrin-based polymers. J Hazard Mater 174:592–597.
https://doi.org/10.1016/j.jhazmat.2009.09.093

124. YuH, FugetsuB (2010)Anovel adsorbent obtained by inserting carbon nanotubes into cavities
of diatomite and applications for organic dye elimination from contaminated water. J Hazard
Mater 177:138–145. https://doi.org/10.1016/j.jhazmat.2009.12.007

125. Zadmard R, Hokmabadi F, Jalali MR, Akbarzadeh A (2020) Recent progress to construct
calixarene-based polymers using covalent bonds: synthesis and applications. RSC Adv
10:32690. https://doi.org/10.1039/d0ra05707j

https://doi.org/10.1080/00405000.2018.1437114
https://doi.org/10.1080/10610278.2015.1046455
https://doi.org/10.1080/10610278.2015.1046455
https://doi.org/10.1515/revce-2016-0042
https://doi.org/10.1021/je900408s
https://doi.org/10.1039/C6TA08388A
https://doi.org/10.1016/j.colsurfa.2020.124453
https://doi.org/10.1016/j.promfg.2019.06.051
https://doi.org/10.1016/j.promfg.2019.06.051
https://doi.org/10.1080/02772248.2013.840379
https://doi.org/10.1016/j.jhazmat.2017.09.058
https://doi.org/10.1016/j.eurpolymj.2020.109540
https://doi.org/10.1016/j.carbon.2013.01.001
https://doi.org/10.1016/j.jcis.2004.02.093
https://doi.org/10.1007/s40242-015-5242-8
https://doi.org/10.1016/j.cej.2011.03.031
https://doi.org/10.1016/j.cej.2011.03.031
https://doi.org/10.1016/j.dyepig.2006.01.011
https://doi.org/10.1016/j.dyepig.2006.01.011
https://doi.org/10.1016/j.jhazmat.2009.09.093
https://doi.org/10.1016/j.jhazmat.2009.12.007
https://doi.org/10.1039/d0ra05707j


310 Jumina et al.

126. Zhang X, Li A, Jiang Z, Zhang Q (2006) Adsorption of dyes and phenol from water on resin
adsorbents: effect of adsorbate size and pore size distribution. J HazardMater 137:1115–1122.
https://doi.org/10.1016/j.jhazmat.2006.03.061

127. Zhang X, Shi L, Xu G, Chen C (2013) Synthesis of β-cyclodextrin-calix[4]arene coupling
product and its adsorption of basic fuchsin and methylene blue from water. J Incl Phenom
Macrocycl Chem 75:147–153. https://doi.org/10.1007/s10847-012-0155-3

128. Zhang Y, Su K, Hong Z, Han Z, Yuan D (2019) Robust cationic calix[4]arene polymer as an
efficient catalyst for cycloaddition of epoxides with CO2. Ind Eng Chem Res 59:7247–7254.
https://doi.org/10.1021/acs.iecr.9b05312

129. Zhao Q, Liu Y (2018) Macrocycle crosslinked mesoporous polymers for ultrafast separation
of organic dyes. Chem Commun 54:7362–7365. https://doi.org/10.1039/C8CC04080J

130. Zhu HY, Jiang R, Xiao L, Zeng GM (2010) Preparation, characterization, adsorption kinetics
and thermodynamics of novel magnetic chitosan enwrapping nanosized γ-Fe2O3 and multi-
walled carbon nanotubes with enhanced adsorption properties for methyl orange. Bioresour
Technol 101:5063–5069. https://doi.org/10.1016/j.biortech.2010.01.107

131. Zhu Z, Liu D, Ren Q, Tan Y, Chen Y, Zhang Y (2019) Microcapsule dispersion of
poly(calix[4]arene-piperazine) for hazardous metal cations removal from wastewater. Iran
Polym J 28:697–706. https://doi.org/10.1007/s13726-019-00739

https://doi.org/10.1016/j.jhazmat.2006.03.061
https://doi.org/10.1007/s10847-012-0155-3
https://doi.org/10.1021/acs.iecr.9b05312
https://doi.org/10.1039/C8CC04080J
https://doi.org/10.1016/j.biortech.2010.01.107
https://doi.org/10.1007/s13726-019-00739


Synthesis of Hydroxyapatite 
Nanoparticle from Papermill Sludge 

A. Geethakarthi 

1 Introduction 

1.1 General 

The exponential growth and proliferation in industrial and urban sector have led to 
great demand for utilization of resources, thereby causing increased waste produc-
tion. Critical issues are faced by the society in managing and disposing these wastes 
in an economic and sustainable manner. Stringent legislation and regulations have 
banned most of the conventional disposal method [3]. To attain these sustainable 
strategies, development of innovative techniques to recover and reuse the industrial 
wastes and byproducts have become significant. Among many industries, this chapter 
focuses on the recovery and utilization of pulp and paper industry sludge to attain 
circular economy and industrial symbiosis. Paper industry is one of the diversified 
industries next to textile, tanning and automobile sector, consuming high natural 
resources (wood pulp), chemicals, water and energy. Consequently, higher level of 
greenhouse gases such as CO2, sludge, lime mud and furnace ash is released. 

The paper industry is expanding particularly in Asia and South America with 
the high usage of paper and is quadrupled over the past 50 years. The worldwide 
paper production has reached 400 MT by 2014 and is expected to reach up to 550 
MT by the next 30 years [14]. The paper consumption is at unsustainable levels 
with negative impacts on forest, surface and sub-surface water quality, air quality 
and other climatic changes. Besides, high volume of greenhouse gas emission with 
high energy utilization, paper mills generate large amount of sludge from various 
treatment process of paper manufacturing units.
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1.2 Papermill Manufacturing Process 

The paper mill sludge constitutes of organic components (wood, cellulose and organic 
binders) and inorganic components such as calcium carbonate, paper additives and 
other heavy metal impurities [26]. India contributes to about 3.18% of global paper 
production (408 million tons per annum) as per Indian Paper Industry, 2016. 13 
million tons of paper, paper board and newsprint are manufactured per year in 
India. Conversion of raw fibrous wood into pulp followed by pulp into paper are the 
basic steps involved in paper production. The paper manufacturing industry involves 
a series of stages including raw material processing and handling, bleaching and 
chemical recovery and the schematic representation is shown in Fig. 1. 

1.3 Waste Generation and Characterization of Paper Mill 
Industry 

Every tone of paper produces about 40–50 kg of dry sludge on an average from a 
paper industry. The sludge being the end derivative from pulp and paper industry 
is released from various operational stages such as paper processing and screening, 
deinking, pulping and bleaching process (Fig. 1). The characterization of sludge 
generated from various manufacturing units of a paper mill sludge is given in Table 
1. The present disposal management practices of these sludge are landfilling, land 
application and other reclamation purposes [16, 29]. Mechanical dewatering is the 
commonly adopted method to improve and reduce the volume of solid content in 
the sludge (Table 2). Composting is one of the well-recognized disposal method of 
paper sludge to obtain effective end derivative used for soil stabilization. 

This chapter highlights on sludge conversion into an effective and efficient mate-
rial hydroxyapatite (HAp). The converted HAp has a wide range of application that 
would be used in water treatment technology to pave the way towards sustainable 
and circular economy. In specific, the paper sludge ash from the deinking process 
contains about 71% of calcium carbonate. From these CaCO3 wastes, the calcium 
source required for the synthesis of hydroxyapatite can be prepared. 

1.4 Extraction and Conversion of Calcium Carbonate 
from Sludge Ash to Calcium Hydroxide 

The paper sludge ash (PSA) from deinking plant contains about 54% of calcium 
carbonate. 

Decomposition of this calcium carbonate does not occur even at 800 °C inciner-
ating temperature and remains as ash. The extraction of the calcium carbonate from 
the paper sludge ash is through the acid solvent followed by wet precipitation process
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Fig. 1 Schematic layout of wastewater generation from various stages of pulp and paper 
manufacturing industry

[8, 25]. The precipitated and extracted calcium from PSA was about 71% of the sludge 
ash. In this process, solvents like acetic acid, hydrochloric acid, ammonium chloride, 
ammonium acetate, sodium citrate and ultra-pure water are used [25]. Out of all the 
solvents, acid behaves as the best solvent in calcium extraction. From the previous 
experimental works [2, 18, 37, 42, 46] carried out by many researchers, calcium 
hydroxide was found to be a very good calcium source in obtaining hydroxyap-
atite nanoparticle. Synthesis of calcium carbonate into HAp is not possible directly, 
hence it is necessary to convert CaCO3 to Ca(OH2) to use it as a calcium source
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Table 1 General characteristics of primary and deinking paper sludge [19] 

Parameters Paper sludge Deinking sludge 

Moisture content (%) 8.18 2.91 

Ash content of oven-dried sample (%) 19.50 53.62 

Klason lignin content of oven-dried sample (%) 27.84 25.69 

Halocellulose content of oven-dried sample (%) 62.73 42.88 

pH 5.65 7.01 

Acid buffering capacity, mmol NaOH/100 g 2.71 0.17 

Base buffering capacity, mmol H2SO4/100 g 5.18 5.11 

Table 2 Characterization of 
paper mill sludge considered 
under the study 

Parameters Values 

Moisture content (%) 62.5 ± 0.01 
pH 8.285 ± 0.5 
Electrical conductivity (mS/cm) 1.73 ± 0.2 
Loss of ignition (%) 24.96 ± 0.01 
Ash content (%) 12.54 ± 0.03 
Sodium (mg/L) 5.583 ± 0.02 
Potassium (mg/L) 0.01 

for further conversion into a nanostructured particle. The hydroxyapatite can be 
synthesized by various methods [28]. The most commonly followed methods in the 
synthesis of nano-crystalline HAp include precipitation, hydrothermal, hydrolysis, 
mechano-chemical and sol–gel.

2 Hydroxyapatite Nanoparticle 

2.1 Source and Application 

Hydroxyapatite (HAp), is a naturally occurring mineral form of calcium apatite 
with the chemical formula Ca10(PO4)6(OH)2 as represented in Fig. 2. HAp can be 
derived from natural or synthetic calcium resource possessing high pore, biocom-
patibility and are osteoconductive [5, 30]. Some of the natural calcium source used 
for HAp synthesis are coral, eggshell, limestone and seashell [6, 9]. Hydroxyapatite 
is the hydroxyl ion of the apatite group that can be replaced by fluoride, chloride or 
carbonate, producing fluorapatite or chlorapatite [12] has a hexagonal crystal system. 

Pure hydroxyapatite powder is white, whereas the naturally occurring apatites 
have brown, yellow or green in colour. The Ca-HA, Ca10(PO4)6(OH2), is an insoluble 
calcium phosphate mineral, which is a major constituent of bones, teeth and are
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Fig. 2 Structure of 
hydroxyapatite crystals [34] 

found within pineal glands. The human body constitutes up to 70% by weight of 
bone as hydroxyapatite and are usually referred as ‘bone mineral’. Dental enamel is 
composed of carbonated hydroxyapatite as the main mineral. 

Calcium hydroxyapatite (HAp), has proved to be an efficient adsorbent in the 
removal of metal ions. The use of HAp has found to be significant in both environ-
mental and industrial aspects in long-term containment of contaminants because of 
its high sorption capacity and high stability under reducing and oxidizing conditions 
[17]. The mechanism involved in sorption of HAp may be through ionic exchange 
reaction, surface complexion with phosphate, calcium and hydroxyl groups and 
co-precipitation of new partially soluble phases. 

2.2 Synthesis Methods 

Synthesis of HAp using different methods had been experienced and reported [2, 
28, 37]. Common methods used to produce synthetic nano-crystalline HAp include 
precipitation [35], hydrothermal [49], hydrolysis, mechano-chemical and sol–gel 
[24] and are discussed below. 

i. Wet (chemical method) 

– Precipitation method 
– Hydrothermal techniques 
– Hydrolyses 

ii. Dry method (solid-state reaction) 
iii. Mechano-chemical method 
iv. Other methods like sol-gel, spray pyrolysis and electrochemical deposition.
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Fig. 3 Schematic diagram 
of wet-chemical 
precipitation of HAp 

2.2.1 Wet Chemical Method 

Precipitation Method 

Precipitation also known as wet precipitation is the most widely researched tech-
nique for HAp synthesis [18, 35]. This technique is chosen widely to synthesize 
HAp in contrast to other techniques due to its high amount of synthesis and cost 
effectiveness. In this method, calcium and phosphorus ions undergo a chemical reac-
tion at controlled pH and temperature in an aqueous medium as illustrated in Fig. 3. 
The precipitated powder is calcined at high temperature to obtain a stoichiometric 
apatitic structure (Ca/P ratio as 1.67). Constant and slow titration are to be maintained 
to improve the homogeneity and stoichiometry of the mixture [38]. A decrease in 
solution pH below 9.0 would lead to the formation of Ca-deficient apatite structure. 

Hydrothermal Techniques 

The hydrothermal technique [27, 49] was identified as an important method for the 
synthesis of ceramic and nanomaterials including HAp. Hydrothermal synthesis is a 
process that utilizes single or heterogeneous phase reactions in aqueous conditions 
at temperature and pressure greater than 25 °C and 100 kPa, respectively. 

The application of high temperature and pressure results in the formation of a 
homogenous and crystallized powder with improved Ca/P ratio [49]. HAp prepared
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from this method, has high purity with different shapes like spherical, rod, needle, 
hexagonal and spine like [21]. 

2.2.2 Dry Method 

Solid-state synthesis or dry method is a relatively simple and low-cost procedure and 
does not require any solvent. The stability of the phases during the processing of 
ceramic materials are maintained in solid-state synthesis at high temperatures [22]. 
These methods are widely used for huge production of ceramics at lower precision 
control [23]. The heterogenous end product with lower diffusion coefficient is the 
main drawback of this method, especially in biomedical field. To overcome and 
homogenize the phase, longer calcination period is required. The two main reactions 
involved in the solid-state synthesis of HAp are as follows: 

3CaP2O7 + 7CaCO3 + H2O → Ca10(PO4)6(OH)2 + CO2 + 7.5O2 (1) 

3Ca(PO4)2 + 7CaCO3 + H2O → Ca10(PO4)6(OH)2 + CO2 + 9O2 (2) 

2.2.3 Mechano-chemical Method 

The mechano-chemical process is also known as mechanical alloying. It is used for 
fabrication of Nano crystalline alloys and ceramics. In this method, the mechanical 
energy accelerates the structural and chemical changes of the precursor ions, thereby 
improving the kinetic performance [11]. Mechano-chemical method is simple to 
process and produce well defined structural advanced materials like HAp. The 
schematic representation of a mechano-chemical method is shown in Fig. 4. The  
stoichiometric ratio of the Ca and P, pH and the milling time are the main operational 
parameters to be considered in this process. The decrease in milling time leads to 
decrease in crystalline size. 

2.2.4 Other Methods 

The sol–gel [24] approach is an effective method for the synthesis of nano-structural 
HAp. The HAp synthesized by this method improves the contact and stability at the 
artificial bone interfaces with high purity and crystallinity. Though only limited 
attempts have been reported on the sol–gel processing, recent attention is seen 
towards the synthesis of HAp and other ceramic, fibre and coating materials [4]. 
The main disadvantages of this method are the yield of low homogeneous final 
product and the high cost of the raw materials. Recently, sol–gel method has been 
extensively used in development of biocompatible nanomaterials [44].
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Fig. 4 Schematic 
representation of 
Mechano-chemical method 

The monocrystal HAp prepared by molten salt growth method are grown from 
the molten phase (with a given composition) at high temperatures but are severely 
deformed due to high temperature gradients that occur during growth. This gel growth 
occurs in an aqueous phase containing Ca2+ and PO4 

3− ions under neutral condition at 
temperature around 37 °C [32, 33]. High porous calcium phosphate is used in the field 
of tissue engineering and drug delivery system. Electrospinning is one such method 
used in the production of ceramic fibres and calcium phosphate based scaffolds. A 
number of researchers have reported, synthesis of micro-porous ceramic structures 
with submicron fiber range using electrospinning. 

3 Application of HAp in Environmental Remediation 

HAp has been used in variety of fields such as biomedical, bone transplantation, 
protein synthesis, drug delivery system and other pharmaceutical industries due to 
their excellent biocompatible and osteoconductive nature [41, 48]. Moreover, HAp 
is substantially used in column separation technique, environmental management 
including air, water and soil. The shift towards circular and sustainable treatment 
technologies, had diverted research field into development of new and innovative 
materials to eliminate the contaminant in all three phases [36]. 

The unique properties of HAp like molecular arrangement, stoichiometric ratio, 
thermal stability, adsorption capacities, coagulation and ion exchange, had made
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the application of HAp in the field of environmental management [20]. HAp has 
proven to be an excellent sorption material, especially in human body. It is also a 
cost-effective natural material with low water solubility, surface area and oxidizing 
condition. The diversified application of hydroxyapatite is due to its high degree of 
crystallinity and its correlation with its ion adsorption behaviour was reported in a 
study conducted by Stotzel et al. [39]. Usage of crystallized HAp in the nutrient 
recovery and removal in the advanced wastewater treatment process was found to 
be an alternative removal process of phosphorus and uranium removal in compar-
ison with the granulated activated carbon, thereby confirming it to be an potential 
adsorbent [10]. In spite of its use in the surface water and wastewater treatment tech-
nologies, HAp has paved its way in the remediation of groundwater treatment too 
and is recognized as a potential reactive barrier to mitigate leaching. 

In a work carried out by Sharanabasava et al. [37], nano-sized HAp nanopar-
ticle was synthesized via wet chemical precipitation. Ca(OH)2 and ortho phosphoric 
acid (H3PO4) were used for extraction and synthesis process. Experiments were 
conducted under controlled environment parameters such as required pH, concen-
tration of solutions and temperature as well. The variation in any of these parameters 
resulted change in the synthesized HAp obtained. The pore size of HAp was around 
35–90 nm and was optimized subjecting it to different temperature conditions [2]. 
These optimized HAp nano-powders were subjected for further characterization and 
surface area analysis. 

4 Development of Hydroxyapatite from Paper Mill Sludge 

4.1 Processing of Raw Sludge 

This chapter discusses on feasibility of deinking sludge produced as a by-product 
from the deinking plant. Wood, cellulose fibres and lignin are the major organic 
components present in the paper mill sludge [40]. The inorganic components of 
the paper mill sludge are kaolinite (clay) and calcium carbonate, which are used 
as paper additives. Inorganic components are usually predominant in sludge from 
printing paper and board production, whereas in the packaging paper industry sludge 
of a more organic character is typical. Paper Sludge Ash (PSA) is ash generated 
during the paper manufacturing process and is of alkaline nature. PSA obtained as 
a by-product has high volume of calcium-containing reagents, including calcium 
carbonate, which can be used as fillers or coating pigments to improve the paper 
quality.
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4.2 Conversion of Sludge to Ash and Its Characterization 

The dried paper sludge is converted to ash by incinerating at 800 °C± 3 °C (Fig. 5). At 
this temperature it is found that the organic matter present in sludge gets decomposed 
and the calcium carbonate exist in the ash after incineration. 

The final loss of weight analysed by the TG–DTA curves for the converted ash 
from the paper sludge was found at 799.45 °C and maintained a constant weight loss 
till 1200 °C and is shown in Figs. 6 and 7. But the raw sludge was able to withstand 
a temperature of around 374.40 °C due to the dominance of organic matter in the 
sludge composition [45]. 

Fig. 5 Paper sludge (a) and paper sludge ash (b) 

Fig. 6 TG–DTA profile curves of paper sludge
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Fig. 7 TG–DTA profile curves of paper sludge ash 

4.3 Synthesis and Characterization of Hydroxyapatite 

4.3.1 Synthesis of Calcium Hydroxide 

The paper sludge ash was made up to 1 M HC1 in the ratio of 1:10—sludge to HCl to 
dissolve Ca, Si, Al and Mg compounds with pH maintained at 1. Non-soluble silicate 
components were filtered from the suspension to provide a clear liquid phase silicates 
precipitate at bottom. The extracted calcium carbonate is synthesized into calcium 
hydroxide by wet chemical precipitation method. By using calcium hydroxide as 
calcium source, hydroxyapatite is synthesized. 

4.3.2 Synthesis of Hydroxyapatite 

The hydroxyapatite was synthesized by wet chemical precipitation using calcium 
source as calcium hydroxide obtained from paper sludge ash and orthophosphoric 
acid as a phosphate source. Figure 8 shows the experimental setup for hydroxyapatite 
synthesis. The pH of the medium was maintained at 8.5 ± 0.25 °C by the addition 
of ammonium hydroxide. The entire experiment was conducted at a temperature 
between 40 and 45 °C. A continuous and homogenous stirring given to the aqueous 
medium turned the solution into milky white, which were kept for different aging 
time for 24 h and 48 h, respectively for precipitate formation.
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Fig. 8 Experimental setup for nano-hydroxyapatite synthesis 

4.3.3 Characterization of Hydroxyapatite 

Fourier Transform-Infrared Spectral Studies (FT-IR) 

The purity and formation of the hydroxyapatite differs with the precipitate formed 
during different aging period. 

The FT-IR spectra of the HAp for the aging period at 24 and 48 h are shown in 
Fig. 9. The peaks seen in the figure showed the formation of the apatite lattice and 
was confirmed by the stretching and flexural peaks at 3410.15 cm−1. The calcium 
and phosphate group absorption bands were identified at 1014.5 and 550.50 cm−1. 
The quantification of the calcium and phosphate for the different aging period also 
depends on the stoichiometric ratio of the two ions [23]. 

Thermal Analysis 

The thermal gravimetric analysis (TGA) showed a weight loss in the temperature 
region up to 450 °C. The differential thermal analysis (DTA) showed exothermic 
peaks in the temperature region of 250–350 °C. The HAp under thermal decompo-
sition for the different aging period resulted in residual masses of 85% and 76.35%, 
respectively and is interpreted from Figs.10 and 11. This proves the thermal stability 
of the synthesized hydroxyapatite.
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Fig. 9 FT-IR spectral analysis of synthesized hydroxyapatite during aging period of 24 h and 48 h 

Fig. 10 TG–DTA profile curves of synthesized hydroxyapatite during aging period of 24 h 

Brunauer–Emmett–Teller (BET) Isotherm 

Brunauer–Emmett–Teller (BET) isothermal plot clearly depicts the molecular 
behaviour and kinetics due to adsorption of the gas molecule adhering to the HAp 
surface. The occupancy of the gas molecules determines the specific surface area
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Fig. 11 TG–DTA profile curves of synthesized hydroxyapatite during aging period of 48 h 

Fig. 12 BET isothermal plot 
of 24 h aged HAp

and the pore volume of the synthesized HAp. Based on the precipitation formed with 
respect to the aging period, 24 h aging yielded high purity HAp at an adsorption 
temperature of 77 K and saturated vapour pressure of 97.605 kPa in the presence of 
an inert N2 atmosphere. The specific surface area, pore volume and pore diameter 
for 24 h aging period analyzed from the adsorption–desorption isothermal plot in 
Figs. 12 and 13 were 7.4425 m2/g, 0.00843 cm3/g and 45.422 nm, respectively. 
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Fig. 13 
Adsorption/desorption 
isothermal curves of 24 h 
aged HAp 

5 Conclusion 

The usage of paper is very predominant among the Asian and South American coun-
tries. India being one among them accounting to about 2% of the paper and newsprint 
production. The disposal of the sludge generated by the pulp and paper mill is one of 
the challenges faced by the paper industry. This chapter has effectively discussed on 
the effective utilization of paper sludge, produced as the end product from paper 
mill effluent. The sludge ash constituting of high calcium source was extracted 
and synthesized to hydroxyapatite by wet chemical precipitation. The synthesized 
hydroxyapatite possessed an excellent adsorbent property such as porous nature, 
thermal stability and highly specific area. It specifically had very high capacity in 
removal of divalent heavy metal ion due to the presence of calcium and phosphate 
ions. The pore size of 45.422 nm confirmed the formation of nanoparticle sized 
Hydroxyapatite. 
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Adsorptive Removal of Reactive Blue Dye 
by Cucumber Peel Adsorbent: Isotherm, 
Kinetics and Mass Transfer Studies 

Gajendiran Vasu and Selvaraju Sivamani 

1 Introduction 

Dyes are substances added to fabric material which are making chemical bonds 
to impart colour to the cloth [18]. In ancient days, natural dyes, biodegradable in 
nature, are used and the use of natural dyes is not polluting the environment like 
synthetic dyes [24]. Synthetic dyes are chemical compounds, aromatic in nature and 
non-biodegradable because of their high thermal stability and photostability [14]. 
Due to the increase in demand, the production of textile products also increasing 
proportionally, and the use of synthetic dyes has together contributed to dye wastew-
ater becoming one of the important sources of severe pollution problems in current 
times [3]. By considering the volume of effluent generated and its composition, the 
wastewater from textile industries is the most polluting one among all the industry 
sectors. 

The disposal of wastewater produced from dyeing industries affects the soil, water 
bodies and aquatic life [6]. Dyes have the nature of absorbing and reflecting the 
sunlight in water, which affect the photosynthetic activity of algae present in the 
water bodies which are seriously affecting the food chain. Since the dyes are synthetic 
in nature, their breakdown products are carcinogenic, mutagenic, and toxic to life 
[13]. A report revealed that the dyeing industrial workers are affected with skin 
cancer, kidney cancer, urinary bladder cancer, and liver cancer. Dyes can cause skin 
allergy, skin irritation, eye allergy, and irritation in the mucus membrane and upper 
respiratory tract [7]. 

Treatment of wastewater from dyeing industries before disposing it is an essential 
and highly challenging one [15]. Though various physical and chemical treatment 
methods such as ozonation, electrochemical destruction, photochemical, membrane
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filtration, ion exchange, irradiation, and electrocoagulation methods are available, 
still there is demand for an economical method for removing the dyes from wastew-
ater. Adsorption creates interest among the researchers because of its efficiency, 
simplicity in operation, and can remove the contaminant even at low concentrations. 
Adsorption is a separation operation which utilizes the attractive force that naturally 
exists between adsorbent and adsorbate molecules for separation [8]. Adsorbent is 
a solid on which adsorbate molecules are deposited. Adsorbate is solute from the 
solution which is being got adsorbed by the adsorbent used. 

The choice of adsorbent is an important factor to make the adsorption the cheapest 
method. Recent studies reveal that the use of agricultural wastes as a source of adsor-
bent is the cheapest one for treating the dye containing wastewater [9]. Since agricul-
ture is a main occupation in the developing countries, the production of agricultural 
waste is abundant, and its disposal has become a challenging task for farmers as 
it requires huge manpower. The place for disposing these agricultural wastes pose 
threat to the environment. 

As cucumber contains antioxidants, vitamins, and minerals that help in weight 
loss and are suitable for reducing blood sugar, cucumber has become unavoidable in 
people dining throughout the world [11]. As the need for cucumber increases daily, 
the production of cucumber is increasing proportionally. Among the farmers, the 
cultivation of cucumber become popular, and they are producing several thousand 
tons of cucumber throughout the year. This generates a huge amount of cucumber 
waste [10]. 

In this study, cucumber peel is used as an adsorbent for the removal of copper 
from its aqueous solution. Batch studies were conducted by changing the parameters 
like pH, contact time, agitation speed, initial adsorbate concentration, and adsorbent 
dosage along with isotherm, kinetics, and mass transfer studies. 

2 Literature Review 

Basu et al. [4] studied the adsorption removal of lead from solution using cucumber 
peel adsorbent. Batch adsorption studies were performed by varying pH, temperature, 
time, initial adsorbate concentration, and co-ion effect on adsorption capacity. A 
maximum adsorption capacity of 133.6 mg/g was achieved at pH 5.0, 30 °C, and 
60 min. Pseudo-second order kinetics and Langmuir isotherm fitted with the data. Co-
ion effect was negligible. The adsorbent was characterized using Thermo Gravimetric 
Analysis (TGA), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray 
Analysis (EDAX), X-ray Diffraction (XRD), Fourier Transform Infrared Analysis 
(FTIR), and zeta potential. Desorption studies were also executed using hydrochloric 
acid. 

Basu et al. [5] studied the adsorption removal of cadmium from wastewater in a 
packed bed reactor using cucumber peel adsorbent. Continuous adsorption studies, 
by varying flow rates, bed height, and influent concentration were conducted at pH 
5.0. The maximum percentage removal of 78.03% was achieved with an adsorption
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capacity of 107.76 mg/g at 50 mg/L influent concentration, 20 mL/min flow rate, and 
8.0 cm bed height. Adsorption pattern in continuous mode was studied, and Thomas 
model and Yoon–Nelson model fitted with the data. Desorption studies were executed 
successfully with 0.1 M HCl. 

Stavrinou et al. [23] studied the percentage removal of cationic methylene blue 
(MB) and anionic Orange G (OG) dye from wastewater with cucumber peel adsor-
bent. Batch adsorption studies, by varying pH, adsorbent dosage, contact time, and 
dye concentration were conducted. A maximum adsorption capacity of 179.9 mg/g 
for MB at pH 6.0 and 40.5 mg/g for OG at pH 2.0 were achieved. Freundlich isotherm 
fitted with data for low MB concentration and Langmuir isotherm fitted with data 
for a high concentration of MB. For OG, Langmuir isotherm well fitted with the 
data. The adsorbent was characterized using Attenuated Total Refluctant Fourier 
Transform Infrared analysis (ATR-FTIR), N2 sorption, SEM, and XRD. Adsorption 
kinetic models are studied and found chemisorption was the dominant mechanism. 

Pandey et al. [16] investigated the percentage removal of divalent lead ions from 
an aqueous solution by using a cucumber peel. Batch adsorption studies, by varying 
conditions like pH, adsorbent dosage, and contact time on adsorption capacity were 
conducted. A maximum adsorption capacity of 28.25 mg/g was achieved at pH 5.0 
for initial concentration of 25 mg/L at 25 °C was obtained. Pseudo-second order 
kinetics and Langmuir isotherm fitted with the data. Desorption studies with 1 M 
HNO3 were also executed. 

Mahmoodi et al. [12] investigated the adsorption removal of low-cost meso-
porous activated carbon prepared from cucumber peel for removing single dye (MB), 
binary dyes ((MB + Malachite Green, MG) and (MB + Rhodamine B, RhB)), and 
ternary dye (MB + MG + RhB) from wastewater. Batch adsorption studies, by 
varying conditions like MB concentration, Activated carbon (AC) dosage, process 
time, temperature, and solution pH were conducted on adsorption capacity. Pseudo-
second order kinetics and Langmuir isotherm fitted with the data. Thermodynamic 
data like Gibbs free energy (−15.14 kJ/mol), enthalpy (25.84 kJ/mol), and entropy 
(0.1327 J/mol) revealed that MB adsorption by the prepared AC was spontaneous 
endothermic and physical sorption respectively. The prepared AC was character-
ized by XRD, Field Emission Scanning Electron Microscopes (FESEM)/EDAX, 
TGA/Differential Thermal Analysis (DTA), FTIR, Brunauer-Emmet-Teller surface 
area analysis (BET)-Barret-Joyner-Halenda (BJH) pore size and volume analysis, 
X-ray Photoelectron Spectroscopy (XPS), particle size, and zeta potential analyses. 
The Artificial Neural Network (ANN) model was studied extensively and overlaps 
the experimental data due to the low divergence between actual and estimated data. 
Also, the prepared AC has the ability for removing dyes from binary (MB + MG 
and MB + RhB) and ternary (MB + MG + RhB) systems. 

Sayğılı and Güzel [19] studied the adsorption capacity of chemically modified 
cucumber peel adsorbents for removal of reactive black 5 and direct blue 7 dye from 
wastewater. Batch adsorption studies were conducted and the maximum adsorp-
tion capacity of 95.24 mg/g for reactive black 5 and 129.87 mg/g for direct blue 
7 was achieved. Pseudo-second order kinetics and Langmuir isotherm fitted with 
the data. Thermodynamic studies revealed that the adsorption was spontaneous and
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endothermic in nature. The adsorbent was characterized by FTIR, SEM, TGA, XRD, 
proximate and ultimate analyses, and pHzpc measurements. Desorption studies were 
conducted using NH3 and NaOH solutions. 

Shakoor and Nasar [20] investigated the applicability of cucumber peel waste 
as low-cost adsorbent for the removal of methylene blue dye from wastewater. 
Batch adsorption studies on adsorbate removal varying parameters like adsorbent 
dose, contact time, initial dye concentration, particle size, pH, and temperature were 
conducted. Freundlich adsorption isotherm fitted with data shows that the adsorbent 
surface was heterogeneous in nature. The deviation from normal or ideal Langmuir 
adsorption has been explained considering non-idealized cooperative adsorption. 
Adsorption kinetics was found to obey pseudo-second order kinetics. Thermody-
namic data was obtained indicating that the adsorption process is spontaneous and 
exothermic in nature. The values of ∆H° and ∆S° have been found to be negative 
which indicate that the feasibility of the process decreases with increasing tempera-
ture. The adsorbent was analysed by SEM and FTIR spectroscopy, Desorption studies 
were examined using HCl. 

Akkaya and Güzel [1], conducted a batch study and investigated the adsorption 
removal of divalent copper and lead from their aqueous solution by using cucumber 
peel adsorbent. Batch adsorption studies by changing the variables like pH, biosor-
bent dosage, contact time, and initial adsorbate concentration were conducted. A 
maximum adsorption capacity of 88.50 and 147.06 mg/g for copper(II) and lead(II) 
ions, respectively, was achieved at pH 5.0, biosorbent dose of 0.1 g, contact time 
of 60 and 85 min, and initial concentration of 100 and 150 mg/L. Pseudo-second 
order kinetics and Langmuir isotherm fitted with the data. Thermodynamic param-
eters were examined and shows that the adsorption process was spontaneous and 
endothermic. Desorption studies were carried out with HCl. 

Smitha et al. [21] examined the adsorption removal of acid black7 (acid dye) 
from wastewater by using low-cost adsorbent produced from cucumber peel. Batch 
adsorption studies by changing the parameters such as pH, contact time, adsorbent 
dosage, and initial adsorbate concentration were executed. A maximum percentage 
removal of 85% was achieved at pH 3.0, contact time of 55 min. and 1.0 mg/g of 
adsorbent dosage at an initial adsorbate concentration of 100 mg/L. Pseudo-second-
order kinetics and Langmuir isotherm fitted with the data. FTIR, XRD, SEM, EDAX, 
and zeta potential measurements were characterized for the adsorbent. 

Akkaya and Güzel [2] examined the removal of methylene blue (MB) from an 
aqueous solution by using low-cost adsorbent prepared from cucumber peel. Batch 
adsorption studies on varying parameters like pH, initial dye concentration, temper-
ature, dye concentration, ionic strength, and adsorbent dosage were conducted. A 
maximum adsorption capacity of 111.11 mg g−1 at pH 6.42 was achieved. Pseudo-
first-order kinetics fitted with data, thermodynamic studies were conducted and 
concluded that the biosorption was spontaneous and feasible. Desorption studies 
were also conducted with HCl and H3PO4. 

Rodríguez et al. [17] investigated the Chromium (VI) removal capacity of 
cucumber shell biomass. Batch studies by changing the variables like pH, contact 
time, temperature, and initial concentration of metal, biomass, and contaminated
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niches were conducted. A complete Chromium (VI) removal was achieved at pH 
1.0, 28 °C, 100 rpm by using 1.0 g of biomass for the initial metal concentration of 
100 mg/L. 

3 Materials and Methods 

3.1 Preparation of Cucumber Peel (Adsorbent) 

Fresh cucumber was purchased from the local market and peeled; the peel was washed 
with tap water for three times followed by distilled water three times. The washed 
cucumber peel was kept in a hot air oven at 70 °C for drying, periodically the weight 
of the peel was measured. Drying was continued until the constant weight of the peel 
reached. The dry cucumber peel was pulverized using mortar and pestle and stored 
in an airtight bottle for experimental uses. 

3.2 Preparation of 1000 ppm Reactive Blue Dye Solution 
(Stock Solution) 

One gram of reactive blue dye was taken and dissolved with 200 ml of distilled water. 
Then the solution was transferred to 1 l standard flask and distilled water was added 
up to the mark. Now the 1000 ppm reactive blue dye solution is ready to use. 

3.3 Effect of pH 

Five conical flasks were taken and labelled with pH 3, pH 5, pH 7, pH 9, and pH 11. 
100 mL of 500 ppm reactive blue dye solution was taken in the first conical flask and 
the pH was measured and adjusted to 3 by adding 0.1 N Sulphuric acid with the help 
of a pH meter. 100 mL of 500 ppm of reactive blue dye solution was taken in the 
second conical flask and the pH was adjusted to 5 by adding 0.1 N Sulphuric acid 
with the help of a pH meter. Similarly, other conical flasks were taken with 100 mL 
of 500 ppm of reactive blue dye solution each and the pH was adjusted to 7, 9, and 
11 by adding 0.1 N Sulphuric acid/ Sodium hydroxide. Weigh 0.5 g of cucumber 
peel adsorbent and add to each conical flask. Put the flasks in a water bath shaker 
and set the time for 30 min at 100 rpm (revolution per minute). After 30 min of 
shaking, the sample from each conical flask was filtered. The absorbance value for 
each sample after adsorption was measured by adsorption using Atomic Absorption 
Spectrophotometer (AAS).
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3.4 Effect of Time 

100 mL of 500 ppm adsorbate (Reactive blue dye solution) was taken in an Erlen-
meyer’s flask and the pH was adjusted to 7 by adding 0.1 N NaOH solution drop 
by drop manner. Then 0.5 g of adsorbent (cucumber peel powder) was added to 
the flask. The flask was kept in a water bath shaker for mixing at 100 rpm and at 
room temperature. After every 5 min, 10 mL of the sample from the flask was taken 
and filtered. The absorbance of the filtered sample was measured by using Atomic 
Absorption Spectrophotometer (AAS). 

3.5 Effect of Initial Concentration 

Five Erlenmeyer flasks were taken and numbered 1, 2, 3, 4 and 5. Each flask was taken 
with 100 mL of reactive blue dye solution with different concentrations as 100 ppm, 
200 ppm, 300 ppm, 400 ppm, and 500 ppm, respectively. 0.5 g of Cucumber peel 
powder was added to each flask. The mixture is put in a water bath shaker and mix it 
for 25 min at 100 rpm and at room temperature. After 25 min of mixing the content 
from each flask was filtered and their absorbance was measured by using Atomic 
Absorption Spectrophotometer (AAS). 

3.6 Effect of Adsorbent Dosage 

Five Erlenmeyer flasks were taken and numbered as 1, 2, 3, and 4. 100 mL of 500 ppm 
reactive blue dye solution was taken in each flask and its pH was adjusted to 7 by 
using 0.1 N Sodium hydroxide. Cucumber peel adsorbents were added to the flasks 
in the order of 0.5 g, 1.0 g, 1.5 g, and 2.0 g. All the flasks were put in the water bath 
shaker and mix it for 25 min at 100 rpm and at room temperature. After 25 min, 
the sample from each flask was filtered and their absorbance was measured by using 
Atomic Absorption Spectrophotometer (AAS). 

3.7 Effect of Agitation Speed 

Four Erlenmeyer flasks were taken and numbered 1, 2, 3, and 4. All the flasks are 
filled with 100 mL of 500 ppm reactive blue dye solution and the pH of the sample in 
each flask was adjusted to 7 by adding 0.1 N Sodium hydroxide drop by drop. 0.5 g 
of Cucumber peel powder was added to each flask. The flask which numbered 1 was 
kept in a water bath shaker and mix it for 25 min at 50 rpm. Similarly, other flasks 
are kept in the water bath shaker and mix it for 25 min in the order of 100, 150, and
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200 rpm. After mixing, the sample from each flask was filtered and the absorbance of 
each sample was measured by using Atomic Absorption Spectrophotometer (AAS). 

3.8 Adsorption Calculations 

The percentage of sopper removal and adsorption capacity is used to evaluate the 
effectiveness of adsorption. They are given in Eqs. (1) and (2) as follows 

Percentage copper removal = 
Ci − C f 

Ci 
× 100% (1) 

Adsorption capacity q = 
( 
Ci − C f 

) 
V 

m 

mg adsorbate removed 

g adsorbent added 
(2) 

where Ci and Cf are initial and final concentrations of adsorbate, respectively, V 
is the volume of solution taken and m is the mass of adsorbent added. Equilibrium 
adsorption capacity is calculated as given in Eq. (2) at equilibrium time. 

3.9 Adsorption Isotherms 

Adsorption isotherm relates equilibrium adsorption capacity and concentration of 
adsorbate at a constant temperature. The maximum adsorption capacity can be calcu-
lated from the models developed for adsorption isotherms. The widely used isotherm 
models are developed by Langmuir and Freundlich. Langmuir adsorption isotherm 
is represented in Eq. (3) as follows: 

1 

qe 
= 

KL 

qmCe 
+ 

1 

qm 
(3) 

where qe and Ce are equilibrium adsorption capacity and concentration, respectively, 
KL is Langmuir constant and qm is maximum equilibrium capacity. 

Freundlich adsorption isotherm is represented in Eq. (4) as follows: 

ln qe = ln KF + n ln Ce (4) 

where KF is Freundlich constant and n is adsorption intensity.
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3.10 Adsorption Kinetics 

Adsorption kinetics reveal the rate of adsorption of adsorbate on the adsorbent. It 
is also used to find the rate constant and order of adsorption. In general, adsorp-
tion follows pseudo kinetics, either first or second order. Pseudo-first order kinetics, 
proposed by Lagergren, is given in Eq. (5) is as follows:  

ln(qe − qt ) = ln qe − k1t (5) 

where qt is adsorption capacity at any time t, and k1 is pseudo-first order constant. 
Pseudo-second order kinetics, proposed by Blanchard, is given in Eq. (6) is as  

follows: 

t 

qt 
= 1 

k2q2 
e 

+ 
t 

qe 
(6) 

where k2 is pseudo-second order constant. 

3.11 Diffusion in Adsorption 

The diffusional steps involved in adsorption are as follows: (i) Transfer from the 
interior of the adsorbate to the adsorbate-solvent interface; (ii) Movement across the 
adsorbate-solvent interface; (iii) Diffusion through the relatively stagnant liquid film 
surrounding the adsorbate; (iv) Transport through the bulk solvent; (v) Diffusion 
through the relatively stagnant liquid film surrounding the adsorbent; (vi) Movement 
across the adsorbate-adsorbent interface; (vii) Diffusion through the pores of adsor-
bent; and (viii) Transport through the surface of adsorbent to occupy the active site. 
Diffusion is due to two mechanisms: Intraparticle and liquid film diffusion. 

Weber and Morris developed a model for the intraparticle diffusion mechanism 
in adsorption, as given in Eq. (7). 

qt = k 't0.5 + C (7) 

where k' is intraparticle diffusion constant and C is integral constant. 
Elovich developed a model for liquid film diffusion mechanism in adsorption, as 

given in Eq. (8). 

ln(1 − F) = −k ''t (8) 

where k'' is liquid film diffusion constant and F = qt /qe.



Adsorptive Removal of Reactive Blue Dye by Cucumber … 337

y = 0.0046x 
R² = 0.9891 

0 

0.5 

1 

1.5 

2 

2.5 

0 100 200 300 400 500 600 

A
bs

or
ba

nc
e 

Concentration of reactive blue dye solution (ppm) 

Fig. 1 Calibration graph for standard reactive blue dye solution 

4 Results and Discussion 

4.1 Calibration Curve 

Figure 1 shows the calibration graph of standard reactive blue dye solution. A stock 
solution was prepared with a concentration of 1000 ppm. According to Lambert– 
Beer’s law, absorbance is directly proportional to the concentration of a standard 
solution with a proportionality constant of mass absorptivity. When the concentration 
of standard solution increased from 100 to 500 ppm, absorbance increases linearly 
with mass absorptivity of 0.0046 L/(mg cm). The value of R2 of 0.9981 affirms that 
the prepared reactive blue dye solution follows Lambert–Beer’s law with a minimum 
deviation of 0.19%. Mass absorptivity is used in further experimental studies to 
calculate the concentration of a solution from absorbance. 

4.2 Effect of pH 

Figure 2 shows the effect of pH on the percentage removal of reactive blue dye 
from an aqueous solution by cucumber peel adsorbent. The percentage removal of 
reactive blue dye was studied with different pHs maintained at 3, 5, 7, 9 and 11. 
When pH increased from 3 to 5, percentage removal decreases from 92.6 to 92.3%. 
The percentage removal increases to 94.8% on a further increase of pH to 7. Again, a 
decline in percentage removal to 94.3% is observed when pH is increased to 9. Upon 
further elevation of pH to 11, the percentage removal dipped to 92.5%. From the
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Fig. 2 Effect of pH on reactive blue dye removal using cucumber peel adsorbent 

results, it was observed that a pH of 7 is an optimum value to achieve the maximum 
percentage of reactive blue dye removal of 94.8% using cucumber peel adsorbent. 

4.3 Effect of Time 

Figure 3 shows the effect of time on the percentage removal of reactive blue dye from 
an aqueous solution by cucumber peel adsorbent. The percentage removal of reactive
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Fig. 3 Effect of time on reactive blue dye removal using cucumber peel adsorbent
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blue dye was studied with various time intervals to achieve equilibrium. When time 
increased from zero to 5th minute, percentage removal increased from zero to 26.1%. 
The percentage removal further increases to 44.7, 58.8, 72.9, and 95.9% on a further 
increase of time to 10, 15, 20, and 25 min. After a further increase of time beyond 
25 min, percentage removal becomes almost constant at around 96%, which means 
that equilibrium time is reached at 25 min. Equilibrium time is an important factor 
to study adsorption isotherm and kinetics. Also, it is an important criterion for the 
design of continuous and industrial adsorbers.

4.4 Effect of Initial Reactive Blue Dye Concentration 

Figure 4 shows the effect of initial reactive blue dye concentration on the percentage 
removal of reactive blue dye from an aqueous solution by cucumber peel adsorbent. 
The percentage removal of reactive blue dye was studied with different initial reactive 
blue dye concentrations ranging from 100 to 500 ppm. Percentage reactive blue 
dye removal decreases with an increase in initial metal concentration because of 
loading adsorbate on the adsorbent. When initial reactive blue dye concentration 
increased from 100 to 200 ppm, percentage removal decreases from 79.69 to 58.84%. 
The percentage removal further decreases to 33.31% on a further increase of initial 
reactive blue dye concentration to 300 ppm. Again, a decline in percentage removal 
to 13.79% is observed when the initial reactive blue dye concentration is increased 
to 400 ppm. Upon further elevation of the initial reactive blue dye concentration to 
500 ppm, the percentage removal dipped to 3.12%. Adsorption isotherm is studied 
from the effect of initial reactive blue dye concentration on percentage metal removal. 
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Fig. 4 Effect of initial reactive blue dye concentration on metal removal using cucumber peel 
adsorbent
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Fig. 5 Effect of adsorbent dosage on reactive blue dye removal using cucumber peel adsorbent 

4.5 Effect of Adsorbent Dose 

Figure 5 shows the effect of adsorbent dosage on the percentage removal of reactive 
blue dye from an aqueous solution by cucumber peel adsorbent. The percentage 
removal of reactive blue dye were studied with different adsorbent dosage maintained 
at 0.5, 1, 1.5, and 2 g per 100 mL of feed solution. When adsorbent dosage increased 
from zero to 0.5 g per 100 mL of the feed solution, percentage removal observed a 
steep increase from zero to 91.17%. The percentage removal increases to 93.71% 
on a further increase of initial reactive blue dye concentration to 1 g per 100 mL of 
feed solution. Again, a plateau is observed in percentage removal at 94.25% when 
the adsorbent dosage is increased to 1.5 g per 100 mL of feed solution. Upon further 
elevation of adsorbent dosage to 2 g per 100 mL of the feed solution, the percentage 
removal saturated at 94.4%. From the results, it was observed that an adsorbent 
dosage of 1.5 g per 100 mL of the feed solution is an optimum value to achieve a 
maximum percentage of reactive blue dye removal of 94.25% using cucumber peel 
adsorbent. 

4.6 Effect of Agitation Speed 

Figure 6 shows the effect of agitation speed on the percentage removal of reactive 
blue dye from an aqueous solution by cucumber peel adsorbent. The percentage 
removal of reactive blue dye was studied with different agitation speeds ranging 
from 50 to 200 rpm. When agitation speed increased from 50 to 100 rpm, percentage 
removal increases from 94.4 to 94.6%. The percentage removal increases to 94.7% 
on a further increase of agitation speed to 150 rpm. Again, an increase in percentage
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Fig. 6 Effect of agitation speed on reactive blue dye removal using cucumber peel adsorbent 

removal to 94.9% is observed when agitation speed is increased to 200 rpm. From 
the results, it was observed that an agitation speed of 100 rpm is an optimum value to 
achieve maximum percentage reactive blue dye removal of 94.6% using cucumber 
peel adsorbent as the plateau is observed between 100 and 150 rpm. 

4.7 Adsorption Isotherms 

4.7.1 Langmuir Isotherm 

Figure 7 shows Langmuir isotherm for reactive blue dye removal using cucumber 
peel adsorbent. A non-linear form of Langmuir isotherm is given in Eq. (9) as follows:  

qe = qmCe 

KL + Ce 
(9) 

From Fig. 7, the maximum adsorption capacity and Langmuir constant were 
calculated to be 59.17 mg/g and 26.87 L/mg, respectively. The value of R2 of 0.9891 
affirms that the experimental data fitted well with the Langmuir isotherm with a 
minimum deviation of 1.09%. 

4.7.2 Freundlich Isotherm 

Figure 8 shows Freundlich isotherm for reactive blue dye removal using cucumber 
peel adsorbent. A non-linear form of Freundlich isotherm is given in Eq. (10) as
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Fig. 7 Langmuir isotherm for reactive blue dye removal using cucumber peel adsorbent 
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Fig. 8 Freundlich isotherm for reactive blue dye removal using cucumber peel adsorbent 

follows: 

qe = KFC
n 
e (10) 

From Fig. 8, the Freundlich constant and adsorption intensity was calculated to be 
6.916 and 0.4064, respectively. The value of adsorption intensity of 0.4064 reveals 
that the adsorption layer between adsorbate and adsorbent is not homogeneous, i.e., 
the interaction between adsorbate and adsorbent is not formed through a single layer
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but multiple layers. Two layers of adsorbate are formed over the active sites of the 
adsorbent. The value of R2 of 0.9885 affirms that the experimental data fitted well 
with the Freundlich isotherm with minimum deviation of 1.15%. 

4.8 Adsorption Kinetics 

4.8.1 Pseudo-first Order Kinetics 

Figure 9 shows pseudo-first order kinetics for reactive blue dye removal using 
cucumber peel adsorbent. A non-linear form of pseudo-first order kinetics is given 
in Eq. (11) as follows:  

qe 
qe − qt 

= ek1t (11) 

From Fig. 9, rate constant and equilibrium adsorption intensity were calculated 
to be 0.0694 min−1 and 133.23 mg/g, respectively. The value of the rate constant of 
0.0694 min−1 reveals that the adsorption rate is better when compared to 0.058 min−1 

for crystal violet and 0.065 min−1 for rhodamine B using raw cucumber peel adsor-
bent [22]. The value of R2 of 0.9915 affirms that the experimental data fitted well 
with pseudo-first order kinetics with a minimum deviation of 0.85%. 
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R² = 0.9915 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

5 

0 5 10 15 20 25 30 

ln
(q

e-q
t) 

Time (min) 

Fig. 9 Pseudo-first order kinetics for reactive blue dye removal using cucumber peel adsorbent
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Fig. 10 Pseudo-second order kinetics for reactive blue dye removal using cucumber peel adsorbent 

4.8.2 Pseudo-second Order Kinetics 

Figure 10 shows pseudo-second order kinetics for reactive blue dye removal using 
cucumber peel adsorbent. A non-linear form of pseudo-second order kinetics is given 
in Eq. (12) as follows:  

t 

qt 
= 

(1 + tk2qe) 
k2q2 

e 

(12) 

From Fig. 10, the  value of  R2 of 0.4921 affirms that the experimental data does not 
fit well with pseudo-second order kinetics with a significant deviation of 50.79%. 
Hence, it is concluded that the adsorption kinetics follows the pseudo-first order 
model. 

4.9 Diffusion in Adsorption 

4.9.1 Intraparticle Diffusion 

Figure 11 shows the intraparticle diffusion mechanism for reactive blue dye removal 
using cucumber peel adsorbent. From Fig. 11, the intraparticle diffusion constant was 
calculated to be 0.2 min−0.5. The integral constant was calculated to be 100 mg/g. The 
value of the intraparticle diffusion constant of 0.2 min−0.5 reveals that the adsorp-
tion mechanism is due to the interaction between adsorbate and adsorbent at the 
interface. Adsorption is better when compared to 0.193 min−0.5 for crystal violet 
and 0.196 min−1 for rhodamine B using raw cucumber peel adsorbent. The value of
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Fig. 11 Intraparticle diffusion mechanism for reactive blue dye removal using cucumber peel 
adsorbent 
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Fig. 12 Liquid film diffusion mechanism for reactive blue dye removal using cucumber peel 
adsorbent

R2 of 1 affirms that the experimental data fitted well with the intraparticle diffusion 
mechanism with insignificant deviation. 
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4.9.2 Liquid Film Diffusion 

Figure 12 shows the liquid film diffusion mechanism for reactive blue dye removal 
using cucumber peel adsorbent. From Fig. 12, the  value of  R2 of 0.7111 affirms that 
the experimental data does not fit well with the liquid film diffusion mechanism with 
a significant deviation of 28.89%. Hence, it is concluded that the adsorption kinetics 
follow the intraparticle diffusion mechanism. 

5 Conclusion 

The present work aimed to study the applicability of raw cucumber peel adsorbent 
to remove reactive blue dye (cupric chloride) from its aqueous solution. The optimal 
values of pH 7, 25, min equilibrium time, 400 ppm initial reactive blue dye concentra-
tion, 1.5 g per 100 mL of the feed solution, and 100 rpm of agitation speed showed 
the maximum percentage reactive blue dye removal of around 95%. Adsorption 
isotherm follows Langmuir and Freundlich models. Adsorption kinetics reveals the 
fitting of experimental data to pseudo-first order model. Mass transfer or diffusion 
studies explore the intraparticle diffusional mechanism for the adsorption of reac-
tive blue dye on cucumber peel adsorbent. Thus, cucumber peel could be utilized 
as a cost-effective adsorbent for the removal of reactive blue dye from its aqueous 
solution. 
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Application of Dried Fungus in Textile 
Wastewater 

Ariani Dwi Astuti and Yonik Meilawati Yustiani 

1 Introduction 

Currently, industrial growth is growing rapidly, as evident from the number of 
growing small and large industries. As such, the people’s standard of living can 
improve. However, industries may increase the level of air and water pollution. One 
industry that pollutes the environment is textiles, which generates wastewater with 
a high concentration of dyes and organic substances [72]. In 2012, global textile 
production was 140.84 million tons with a growth rate of 6.5%/year [33]. A report 
shows that the total consumption of textile goods can increase to 49 billion kg/year 
[49]. About 15–20% of the dyes used in textile manufacturing go unused and are 
dumped into bodies of water without being treated [38]. 

Dyes used in textile production are generally synthetic materials, which have 
molecules in the form of bonds from unsaturated organic compounds. When the 
dye used is not fully absorbed by the fiber, the fibers will become colored waste. 
The absorption of the dye by the fiber is affected by the dye’s absorption rate. The 
absorption rate of the fiber to the dye varies according to the dye used. One of them 
is a reactive dye with an absorption rate of 50–90%. The loss of reactive dyes in the 
production process can reach up to 50%, which will become colored waste [55]. 

Several treatment methods are often used in dealing with textile waste, i.e., chem-
ical, physical and biological processing. Coagulation-flocculation, adsorption and 
aerobic processes with the activated sludge method are examples of those processing
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methods, respectively. However, color removal through the coagulation process has 
a disadvantage, i.e., excess production of chemical sludge. Thus, further processing 
of the sludge is required. The current sludge processing includes drying the sludge 
in a drying bed and then putting it in a sack. Therefore, it is necessary to find other 
alternatives to handle the textile industry’s wastewater production. 

The adsorption method is recorded as the better process for color removal. It’s 
relatively simple in reactor design, inexpensive and effective in removing high dye 
concentrations. Adsorption is a mechanism of attaching a substance (adsorbate) to 
the surface of another substance (adsorbent) of the solid adsorbent. This adsorption 
process occurs due to the attractive force of molecules on the surface of the media. 
A widely used adsorption method in textile wastewater treatment is activated carbon 
[51], which has been used to remove dyes in liquid waste as it is proven to be 
very useful in treating color waste. However, the high price of activated carbon 
becomes an obstacle in its use. Another pollutant sorption method is processing 
through a biosorption process that utilizes both dead and live fungi [36]. Biosorption 
is the removal/recovery of pollutants using microorganisms, in the process of which 
absorption (sorption) is carried out by microorganisms [24]. Biosorption can take 
place in living or dead microorganisms. Dead biomass provides a better sorption 
result compared to live biomass [12]. Compared to the living ones, the dead fungus 
has several advantages, including a high level of resistance to the environment, a 
greater level of toxicity tolerance, and relatively fast regeneration for reuse [35]. A 
particular culture media is not needed to maintain its active conditions. The use of 
dried fungi is expected to be an alternative in removing dyestuff waste. 

Fungi are usually widely used in food, beverage, and drug productions. Waste 
generated from these industries will contain a lot of molds. The fungus in this waste 
can be taken and used for processing industrial textile waste. These fungi can be either 
alive or dead. The Rhizopus sp, for example, is easily obtained from the Indonesian 
special cuisine tempe, a soybean fermentation cake. This fungus is expected to be 
an option to activated carbon in adsorbing dyes. Furthermore, the usage of fungi in 
the biosorption of textile wastes can also remove other pollutants such as salts and 
surfactants [67]. 

2 Dye Removal Using Fungus 

2.1 Dye in Textile Wastewater 

Azo dyes produce bright, vivid colors, and are primarily used in the production of 
colored cotton, leather, cosmetics, and food. Compared to organic dyes, azo dyes 
comprise the majority (over 3000 different varieties) of all textile dye substances 
manufactured owing to their easy and cost-efficient synthesis, stability, and the wide 
range of colors available [18]. They are utilized in various industries, including 
textiles, paper, food, leather, cosmetics, and medicines [66].
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Adsorption approaches have gotten significant attention because they have a more 
excellent performance of decolorization for wastewater consisting of several dyes, 
including azo. When evaluating an adsorbent for dye removal, high affinity, compo-
nent capacity, and regeneration ability are the main influential factors. Activated 
carbon is an attractive material for a wide type of dyes. Its high cost and difficulty in 
regeneration, however, limit its use in decolorization. Some scientists have utilized 
low-cost adsorbents such as peat, bentonite clay, fly ash, and polymeric resins to make 
the sorption process cost-effective. For the decolorization of textile wastewater, some 
scientists have used natural resources such as treated ginger water, groundnut shell-
charcoal, date-stones, and potato-plant waste. However, several issues with these 
adsorbents have limited their use, including adsorbent recovery and/or disposal, 
slurry production, and the high price. As a result, adsorbents should be used in 
processes with low pollutant concentrations or when the adsorbent is inexpensive or 
easily regenerated [32]. 

2.2 Dried Fungus 

Gymnomycota, Mastigomycota, and Amastigomycota are the three categories of 
fungi. Zygomycetes, Basidiomycetes, Ascomycetes, and Deuteromycetes are the 
four classes of Amastigomycota. Fungi are chemoheterotrophic microbes that can 
be parasitic or saprophytic. Some are single-celled, while others have cell walls 
and are filamentous. Fungi are vital for health and a sustainable ecosystem. Molds, 
mushrooms, and yeasts are the three types of fungi. The former two are filamentous 
in nature, whereas the latter are unicellular. These organisms are crucial in terms of 
biotechnology. 

White rot fungus, brown rot fungi, and soft rot fungi are three forms of wood-
rot fungi that exhibit a variety of enzymes and can breakdown a variety of wood 
types, depending on the type of decay. Pleurotus, Trametes, Phanerochaete, Lentinus, 
Ganoderma, and other genera of white rot fungi are among the most important. These 
can cause the lignin component of woody plants to breakdown, resulting in wood 
bleaching. They produce enzymes such as laccase, lignin peroxidase, and manganese 
peroxidase, which are all necessary for the breakdown of wood and other refractory 
and xenobiotic compounds such as dyes [73]. 

The fungal body structure, in general, its parts and functions are listed below: 

(a) Thallus is the overall form of the fungus because the fungus does not yet have 
true roots, stems, and leaves. 

(b) Fungal cell walls are composed of chitin and beta-glucan substances. Chitin 
is a carbohydrate polymer containing nitrogen and has an essential role in the 
color adsorption process by dried fungi. 

(c) Septa (singular: septum) is a dividing wall between one or more nuclei with 
other nuclei.
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(d) Hyphae (micrometers to meters) are rows of cells that form threads in multi-
cellular fungi. It is known that there are aseptic hyphae, uninuclear septate 
hyphae, and multinucleated septate hyphae, based on the presence or absence 
of a septum or septa. 

(e) Pores are holes in the septa that allow the cytoplasm to move from cell to cell 
to distribute nutrients. 

(f) Haustoria is a modified form of hyphae possessed by fungi whose life is 
parasitic. 

(g) Mycelium is made up of hyphae that branch out, where spores are formed, and 
it is a means of reproduction and food. 

(h) The sporophore (fruiting body) is a clump of hyphae that emerges from the soil 
or weathered wood. Fruiting bodies can be found in a variety of fungi. Yeast 
cells range in size, widths of 1–5 µm, and lengths of 5–30 µm or more. Other 
types of mushrooms with fruiting bodies that measure 20–25 cm in diameter 
and 25–30 cm in length. 

(i) Fungi reproduce primarily through spores. 
(j) Extracellular hydrolytic enzymes break down food substances that are still 

complex compounds before being absorbed by fungi (Figs. 1 and 2). 

Fungi are used to removethe color from textile waste in the biosorption process, 
both living and dead cells. Dried fungi are viable for treating textile wastewater 
because they reduce operational costs [68]. Biosorption has several advantages, 
including high efficiency, low-cost, good removal results, low recovery costs, and 
equipment availability. 

Decolorization in living cells is more complicated than in dead cells, involving 
intracellular, extracellular oxidase, and biosorption. Operating conditions such as 
nutrient requirements, effect concentrations, and toxicity are closely related to living 
cells’ processes. However, decolorization by dried fungi speeds up the process; dead 
cells have a high sorption capacity under most circumstances and the potential to be 
effective biosorbents. This chapter goes into detail about the ability of dead fungi to 
remove the color from textile wastewater. 

a) b) C) 

Fig. 1 Culture of white rot fungi a Bjerkandera adusta, b Phanerochaete crhysosporium, c 
Trametes versicolor
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a) b) 

Fig. 2 a Bjerkandera adusta, b Trametes versicolor (https://commons.wikimedia.org/wiki/File: 
2011-09 and https://commons.wikimedia.org/w/index.php?curid=25175312) 

2.3 Dried Fungus Preparation 

The fungus must first be treated before being used in the adsorption process. Several 
dried-fungus pretreatment methods can improve biomass adsorption capacity. Phys-
ical and chemical pretreatment methods or a combination of both are used: physi-
cally through drying only; heat-drying or autoclaving-drying and chemically, through 
contact with organic or inorganic compounds such as formaldehyde or NaOH, 
H2SO4, HCl, NaHCO3, and CaCl2. 

Twenty fungal endophytes were dried and tested for the capacity in breaking down 
azo dyes. Furthermore, those dyes decolorized at a rate of 97%, 56%, 48%, and 33%, 
for Remazol Brilliant Blue R., methyl red, congo red, and orange G, respectively, 
by this isolate’s strain [48]. Another researcher employed dried fungi to remove 
methylene blue (MB) dye using Artist’s Bracket (AB) mushrooms. They washed the 
fungi particles with deionized water and dried them at 105 °C for 24 h [47]. Asma 
et al. [9] discovered that the dried white rot fungus Phanerochaete chrysosporium 
ME446 performed better at removing colors than Funalia trogii ATCC 200800. The 
drying procedure for fungi is carried out at a temperature of 30 °C for 24 h. After 
5 min, the adsorption effectiveness of dried algae was more significant than the 
adsorption efficiency of living algae [19]. 

The fungus’ structure may be ruptured during autoclaving, exposing potential 
dye-binding sites. The porosity and surface area of R. oryzae biomass was measured 
by Gallagher et al. [29], who discovered that the autoclave process could disrupt 
particle structure [29]. The destruction may enhance the particles’ surface area and 
monolayer quantity, as well as the porosity, exposing latent sites and thus increasing 
dye adsorption. Astuti and Muda [11] conducted a color removal study using artificial 
textile wastewater and Bjerkandera adusta with pretreatment autoclaving-drying; 
they obtained a color removal result of 53.55% [11]. 

Other pretreatments to obtain biosorbents can also be carried out by combining 
autoclaving and immersion such as 0.1 M NaOH, 0.1 M HCl, 0.1 M H2SO4, etc.

https://commons.wikimedia.org/wiki/File:2011-09
https://commons.wikimedia.org/wiki/File:2011-09
https://commons.wikimedia.org/w/index.php?curid=25175312
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[28]. Basic Blue 9’s biosorption capacity grew from 1.17 to 18.54 mg/g after auto-
claving, while Acid Blue 29’s sorption potency increased from 6.63 to 13.83 mg/g 
after 0.1 M H2SO4 pretreatment [28]. It shows approximately 100% biosorption 
potency enhancement. Another improvement was also performed in acid pretreat-
ment of Acid Blue 29 as an anionic dye. The addition of a negative charge of fungus 
surface as media could change into positive in this treatment [64]. The combination 
of autoclaving with chemical pretreatment using HCl acid was also carried out by 
Astuti and Muda [10], which could increase the percentage of color removal from 
artificial textile wastewater from 53.55 to 81.3% using Bjerkandera adusta [10]. 

Zhou and Banks [71] increased the biosorption capacity by soaking R. arrhizus 
biomass with 2 M NaOH for 1 h. The relatively long the treatment, the more signif-
icant the increase in biosorption capacity. They argued that eliminating proteins 
and glucans from the cell wall would result in a higher amount of chitin/chitosan 
throughout the cell fraction. A mount of chitin can be converted to chitosan over 
time using a concentrated alkaline solution. R. oryzae was pretreated by heating 
using autoclave, calcium saturation, NaOH, and chitin/chitosan enhancement by 
Gallagher et al. [29], and all these processes improved the sorption capacity from 7 
to 15%. Calcium was an excellent activating counter ion because due to its ease of 
substitution with dyes that formed more stable complexes, an increase in adsorption 
capacity by Ca2+ saturation suggested that R. oryzae had a poor affinity for Ca2+ ions; 
calcium was an excellent activating counter ion because it was easily replaced by dyes 
that formed more stable complexes. Pretreated with NaOH could result in anionic 
sites and expose the cell’s chitin/chitosan complex by dissolving some biopolymers 
from the biomass particle surface, as chitin/chitosan was identified as the primary 
biosorbent of the colorant. Pretreated can be done by dissolving it in an acid–alkali 
solution to maximize chitin/chitosan in biomass. 

The capacities and mechanisms of native and treated white rot fungus Lentinus 
sajurcaju for removing textile dye (i.e., Reactive Red-120) from an aqueous solution 
were evaluated by Yakup and Bayramoǧlu [46]. The most excellent dye uptake was 
seen at pH 3.0 for all tested fungal biomass preparations. The dye uptake capabilities 
of the biosorbents were 117.8, 182.9, 138.6, and 57.2 mg/g for native and heat-
treated (100 °C in 10 min), acid-treated (H2SO4), and base-treated (NaOH) dry 
fungal preparations, respectively [46]. Further research by Bayramoǧlu and Yakup 
[14] resulted that the biosorption capabilities of native and heat-treated Trametes 
Versicolor were 101.1 and 152.3 mg/g for Direct Blue-1, and 189.7 and 225.4 mg/g 
for Direct Red-128, respectively. 

3 Factors Affecting Dye Removal Using Dried Fungus 

Adsorption is the separation of a compound from the solution attached to the media 
surface, in the contact area between the media and the solution. Desorption is the 
opposite of adsorption, which releases a compound from a solid where the compound 
is deposited or attached to it in the solution [53]. The adsorption and desorption
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processes occur simultaneously. If the rate of adsorption is the same as that of 
desorption, then the condition is considered a state of achieving equilibrium. 

Several factors influence the adsorption process [34, 37]: 

• The physical condition of the adsorbent and adsorbate: surface area, pore 
dimension, molecular size, etc. 

• Chemical characteristics of adsorbent and adsorbate: chemical composition, 
structure, polarity, etc. 

• Solubility of substances and their concentration in solution 
• The state of the liquid, such as temperature and pH 
• The retention time of wastewater in the system. 

Wastewater, in general, can be absorbed (adsorption power) by dissolved 
compounds, which are very varied and complex. The molecular structure of solubility 
affects the adsorption power. This effect can be seen as follows [25]. 

• Increasing the solubility of a material in a liquid will decrease its adsorption power 
• Branched chains are easier to adsorb than long chains 
• Groups that affect the adsorption power, including, i.e., hydroxyl groups, usually 

decrease the adsorption power depending on the molecular structure, amino 
groups usually decrease adsorption power, but with a greater effect, sulfonic 
groups usually reduce adsorption power, and nitro groups can increase the 
adsorption power 

• Generally, robust ion solutions are more difficult to adsorb than weak ion solutions 
• The amount of hydrolytic adsorption depends on the hydrolysis ability to form 

adsorbable acids or bases 
• Large molecules are more easily adsorbed than small molecules with the same 

chemical properties 
• Molecules with low polarity are easier to adsorb than high polarity. 

Several factors that affect the biosorption process in removing color from textile 
wastewater are as follows. 

1. pH: the main parameter that can affect the biosorption capacity. Wastewater 
color and solubility of several types of dye can also be affected by pH. Thus, pH 
may influence the biosorption process that depends on the dye type. For anionic 
dyes, the biosorption process will increase with the decreasing pH [62]. In 
cationic dyes like Orlamar, the biosorption process increases with the increasing 
pH [15, 39]. In a study of dyes and metal adsorption from textile wastewater, it 
was found that the maximum process occurs at a pH of 5.5 for Methyl Orange, 
pH of 6 for Cr, and pH of 7 for Pb, an increase in pH can decrease the biosorption 
of the dyes [65]. 

2. Temperature: textile dyestuff wastewater generally has a high temperature of 
up to 60 °C. Thus, temperature becomes an essential factor that can affect 
the sorption process. The biosorption process will decrease with increasing 
temperature in anionic dyes (Remazol Black B reactive) [3]. The biosorption 
process will decrease with increasing temperature in cationic dyes of Violet 3
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and Basic Yellow 23 [20, 21]. This is caused by a decrease in cell surface activity 
[3]. 

3. Initial concentration: a higher dye concentration may lead to higher biosorption 
capacity. The initial condition plays an essential role as a driving force to deal 
with resistance in mass, a transferring process of the dye between phases [2]. 

4. Salt: the dyeing process requires a lot of salt. The salt concentration in the textile 
industry wastewater is an essential factor affecting the biosorption process. High 
ionic strength resulting in strong sorption of humic acids by fungi is similar to 
the effect of strong ions of colloids [71]. At high ionic strength, the two layers 
between fungi biomass and humic acid will be pressed thinly, thereby increasing 
van der Waals bonds and causing increased biosorption. 

5. Heavy metals: metal ions such as Cd2+, Cu2+, and Al3+ are often found in the 
wastewater of textile industries due to the usage of metal-containing dyes. These 
affect the humic acid adsorption by fungi, which can perform higher sorption 
in higher concentrations; the metal ions may link Rhizopus arrizus and humic 
acids, both negatively charged [71]. Therefore, the existence of metal ions can 
make a neutral condition of the surface charge and lower the repulsion strength 
among fungi and humic acids so that the bond increases. 

6. Mixing speed: the absorption capacity of the biomass increases with the 
increasing speed of stirring. A study on the effect of the stirring rate of dye 
biosorption in activated sludge was conducted with a particle size of 300– 
600 µm [20, 21]. The biomass absorption capacity increased from 18 to 53 mg/g 
with an increase in stirring speed from 40 to 160 rpm. It was also found that the 
layer around the biomass particles lowering the sorption capacity and increasing 
speed can overcome this problem. 

7. Contact Time: the biosorption rate is rapid at the beginning of contact between 
the dyes and adsorbent [12]. In general, the longer the contact duration, the more 
the adsorbed material. However, in a certain period, the adsorbent is saturated 
so that it does not adsorb effectively, and then desorption can occur. 

8. Amount of adsorbent: the amount of adsorbent media is essential in the sorption 
process because it will determine the amount of dye to be removed. The more 
media used, the more dye will be absorbed. This occurs due to the increasing 
number of media surfaces available for the dye to stick. The amount of absorbent 
that can remove a certain amount of dye will give the value of adsorption 
capacity. Media is said to be good if it can absorb a lot of dye in small quantities, 
which gives economic benefits [60]. 

9. Particle size: the biosorption kinetics are strongly related to the absorbent surface 
area. The sorption capacity of the fungi may improve in a smaller particle grain 
size because the total surface area will be larger with smaller particle grains 
for the same amount of biomass. A wide surface area can also be formed as 
numerous pores can give more opportunity to the dye substances to attach to 
the media. Figure 3 shows the SEM of dried Rhizopus sp. 

The use of live microorganisms for biosorption has several weaknesses is as 
follows [2]:
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Fig. 3 Scanning electron 
microscopes (SEM) analysis 
of dried Rhizopus sp pores 
2000× magnification [57] 

• The difficulty in maintaining the biomass alive during the biosorption process 
because it will continue to require a nutritional intake 

• It can affect the life of microorganisms if pollutants are toxic. 

Several benefits of the use of dried microorganisms as an absorbent for wastewater 
treatment are as follows [2]: 

• Dried organisms do not affect toxic waste 
• Dried organisms do not need nutritional intake because they are dead 
• It can be regenerated and reused. 

The conditions that must be met by a biosorbent to adsorb pollutants are as follows 
[52, 54]: 

• It has a very large ratio of surface area to weight 
• It has a high affinity and selectivity to certain ions 
• Available in large quantities and relatively inexpensive. 

4 Mechanism of Dye Adsorption on Dried Fungus 

The dye adsorption mechanism for dead cells is biosorption, characterized by physic-
ochemical contact such as adsorption, deposition, and ion-exchange. The most crucial 
active ingredient is chitin/ chitosan. It was performed in the study of humic acid 
adsorption by R. arrhizus [71]. Another study showed that various physical mecha-
nisms might occur during the biosorption process. The usage of R. oryzae in adsorbing 
Reactive Brilliant Red discovered that both the Freundlich and Langmuir isotherm 
models are suitable for biosorption, implying physical sorption through various 
mechanisms on a heterogeneous surface [29]. 

The Scanning Electron Microscopes (SEM) analysis was used to describe the 
morphological properties of the used adsorbent sample, including surface features. 
The surface porosity and structure/texture of the treated adsorbent were also 
projected. The adsorption capacity is determined by pore size distribution, particle 
size, and surface area [43].
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a) b) 

Fig. 4 Scanning electron microscopes (SEM) analysis Bjerkandera adusta using an autoclave a 
before and b after adsorption processes at 2000× magnification [11] 

The SEM analysis of biosorbent B. adusta was performed at 2000× magnification 
before and after the artificial textile wastewater adsorption process [11]. The changes 
in the biosorbent after being added to the contaminant dye were observed (Fig. 3). 
Figure 4a and b depicts the morphology of the biosorbent B. adusta, highlighting the 
pores. The B. adusta cell wall appears shrunken and has more holes (Fig. 4b) than 
before contact (Fig. 4a), which tends to be more moisturized and supple. Biosorbent 
B. adusta had pores ranging in size from 2.74 to 8.30 m, but after biosorption, they 
shrank to 1.31–2.14 m. The dye that accumulates between B. adusta biosorbent is 
clearly visible in a crystalline form [11]. The findings of this study agree with those 
of Ririhena et al. [56], who used S. cerevisiae to study  Cu2+ ion absorption [56]. 

Regeneration potency is one of the most valuable properties of sorbent media. 
Several solutions may perform as a regeneration solvent. Ethanol, methanol, and 
surfactants such as nonionic Tween and NaOH solvent can elute and regenerate 
fungal biomass [28]. 

To adsorb humic acid from R. arrhizus biosorbent, Zhou and Banks [71] utilized 
0.1 M NaOH. The average efficiency of desorption was greater than 90%. According 
to the findings, R. arrhizus biomass can be used for various sorption–desorption 
processes with comparable results [71]. 

5 Kinetics of Dye Adsorption on Dried Fungus 

Adsorption kinetics describes the rate of material adsorbed at constant environmental 
conditions, especially temperature. There are two kinetic models that often describe 
the biosorption process of this dye. The first model is Lagergren pseudo first-order, 
suitable for the initial biosorption process. The second model is the Ho and McKay 
pseudo second-order, which can describe biosorption process in a long range until
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equilibrium occurs. The equilibrium is stated in the duration of 18 or 24 h in certain 
temperatures [50]. The adsorption isotherm is a description of a relationship between 
the solute adsorbed per unit mass and the equilibrium concentration. In the acid dye 
biosorption study using lyophilized Cunninghamella elegans, it was found that the 
appropriate kinetics were both models of pseudo first-order and second-order [58]. 

In addition, the adsorption isotherm also reveals the number of pores filled by the 
adsorbate. The adsorption isotherm was carried out to acquire data on the adsorption 
capacity of an adsorbent against solutes or adsorbates. Calculation using isotherm 
equations is conducted to determine this capacity. The Freundlich sorption isotherm 
and Langmuir sorption isotherms are often used for this purpose. 

5.1 Types of Sorption Isotherms 

The popular sorption isotherm types are Freunlich’s and Langmuir’s. Freundlich’s 
sorption isotherm is developed on the assumption in which adsorption happens 
in a bilayer and affects a heterogeneous adsorbent surface, commonly used to 
describe dyes sorption [59]. This surface condition presumes that the adsorption 
rate differs according to the energy or strength of a specific location. Some locations 
or surfaces attract adsorbate strongly while some other sites do so weakly. Adsorption 
or desorption rates differ according to the energy/strength of the surface [40]. 

Freundlich sorption isotherm can be seen in the following equation [45]: 

X 

M 
= K f × C1/n 

eq (1) 

where Kf is Freundlich constant (mg/g), 1/n is constant, X/M is the weight of 
substance adsorbed on the adsorbate (mg/g), Ceq is a solution concentration at equi-
librium (mg/L). Kf indicates the adsorption capacity while 1/n indicates adsorption 
intensity. 

The sorption isotherm proposed by Langmuir has the assumption that adsorption 
occurs in one layer and is used on a homogeneous adsorbent surface. The homoge-
neous surface of the adsorbent states that the adsorption energy (the adsorption force 
between the surface and the adsorbed molecule) is the same for all locations [22]. 

Langmuir sorption isotherm can be seen in the following equation [69, 70]: 

X 

M 
= 

b × qm × Ceq 

1 + b × Ceq 
(2) 

where b is Langmuir equilibrium value, X/M depicts the amount of substance 
adsorbed on the adsorbate (mg/g), Ceq is a concentration of solution at equilibrium 
(mg/L), qm is a constant indicating the maximum weight of adsorbate per adsorbent. 
It gives an adsorption capacity in mg/g.
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The condition of this isotherm type can be expressed in the adsorbent suitability 
constant (RL), using this equation [31]: 

RL = 1 

1 + (b × C0) 
(3) 

where RL is the adsorbent suitability value in the Langmuir isotherm equation, b is 
the Langmuir equilibrium constant. RL is also expressed as a separation factor. 

In describing the effect of the porous configuration of a sorption media, an 
isotherm model was developed for the monolayer condition [16]. This model is 
more general and not assuming homogeneity of media or constant sorption potential 
like other models. 

q = qmax exp(−βε2 ) (4) 

where qmax describes the capacity in a saturated state (mol/g), β is specific number 
(mol2/kJ2) associated with sorption energy. The Polanyi potential (ε) is calculated 
by Eq. 5. 

ε = RT ln
(
1 + 

1 

C f

)
(5) 

where R is gas constant (8.314 J/mol/K), and T is the absolute temperature (K). 
In general, the Dubinine Radushkevich isotherm equation is frequently applied 

to determine the mean biosorption energy, which provides significant information 
about the chemical or physical character of the biosorption process [42]. Biosorption 
energy (E) is analyzed using Eq. 6. 

E = 1 √
2B 

(6) 

Biosorption process follows the chemical ion-exchange when energy (E) shows  
between 8 and 16 kJ/mol. If E is more than 8 kJ/mol, it suggests the occurrence of 
physical activity of sorption. 

5.2 Isotherm of Dye Biosorption on Dried Fungus 

A study of isotherm equations determination on Remazol Golden Yellow 6 Color 
Removal by dried fungi of Rhizopus sp shows that the kinetics follow both the 
Freundlich and Langmuir isotherm mechanisms [57]. Furthermore, the constant of 
determination of Langmuir is more suitable rather than Freundlich. Aksu and Tezer
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[3] conducted a study on the sorption of Remazol Black B dye using dried fungus 
Rhizopus arrhizus. The result suggests that the Freundlich isotherm pattern is more 
suitable for dye biosorption with varying concentrations and temperatures than the 
Langmuir pattern. However, the Langmuir pattern is also thought to be suitable for 
dye studies, given that the linear regression coefficient obtained is more than 0.95. 
Another study shows that the Freundlich model was found suitable for the sorption 
process of Everzol Black using Rhizopus arrhizus [30]. 

Calculation of biosorption energy in D-R isotherm of zinc ions results in a range 
of 9.81–11.16 kJ/mol using C. utilis and 10.15–12.33 kJ mol−1 using C. tropicalis. It  
indicates that an ion-exchanging occurred chemically before the biosorption process 
[1]. 

6 Application of Dried Fungus in Textile Wastewater 

The white rot fungi have a high potential for biosorption of contaminants like 
metals and dyes from wastewater and solutions. The only microorganisms capable of 
degrading wood components such as cellulose, lignin, and hemicellulose are white 
rot fungi. 

Many studies (Table 1) have been carried out to see how ligninolytic fungi like 
Phanerochaete chrysosporium decolorize and degrade synthetic dyes [13], Trametes 
versicolor [4, 5], Trametes trogii [41], Applatanum, artist’s bracket [47] and Bjerkan-
dera adusta [10, 11]. In addition, fungi such as Rhizopus sp, Rhizopus arrhizus are 
also widely used for dye removal [5, 6, 8, 44, 57], Saccharomyces cerevisiae [7, 
26], and Aspergillus niger [5]. Das et al. [23] reported removing the carcinogenic 
dye rhodamine B from wastewater using biomass from several fungi and yeasts. The 
biomass of Rhizopus oryzae MTCC 262 is the most effective of all the fungal species 
investigated [23]. 

Endophytic fungi can also remove the color of anthraquinone dyes. The high 
removal efficiency was shown more than 90% for Remazol Brilliant Blue R (RBBR) 
[48]. This proves that in addition to white rot fungi, endophytic fungi can also 
decolorize synthetic dyes and are potentially attractive for the removal of dye waste. 

It was discovered that the flow rate and the concentration of dye in the inlet affect 
the sorption of each dye in the continuous application. The breakthrough curve rises 
as the flow rate rises, as did the breakpoint time and quantity of adsorbed dye, most 
likely due to insufficient dye liquid contact time in the column [6]. 

Initial concentration, pH, contact time, and biosorbent dosage are the most 
frequently modified parameters in the adsorption process. In general, the lower the 
pH, the better the color removal efficiency. However, Naghipour et al. [47] found that 
using artist’s bracket fungi, they were able to remove 90% of methylene blue with a 
pH of 9 in the adsorption process. The increased absorption at lower pH values could 
be explained by the electrostatic interaction between negatively-charged dye anions 
and positively-charged cell surfaces.
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7 Conclusion 

It was discovered among microorganisms, that fungi can play an effective role in 
decolorizing the wastewater of the textile industries and can be used for a variety of 
reasons, including cost-effectiveness, ease of access, environmental compatibility, 
and a shorter duration than other methods. In the application of dried fungi, the 
adsorption process to decolorize dye is divided into biosorbent preparation (phys-
ical and chemical) and the adsorption process itself. The most significant factors 
influencing color removal are pH, initial concentration, contact time, and biosorbent 
dosage. The types of fungi that can be used for dye removal are not limited to white 
rot fungi but also other types, such as single-celled and endophytic, which also have 
great potential for dye removal. 

The right biosorbent selection affects not only adsorption capacity but also regen-
eration, waste management, and overall maintenance costs. In some special waste 
situations, cheap biosorbents with adequate adsorption capacity, such as dried fungus, 
may prove to be more appropriate than other, more expensive sorbents, such as 
activated carbon. 
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Application of Waste Utilization 
in Textile Dye Removal 

Arti Malviya and Dipika Jaspal 

1 Introduction 

Industrial sectors like textile, plastics, printing, tanning, rubber etc. widely use dyes 
to fabricate colored materials. The wastewater produced from these industrial units 
is continuously discharged into water bodies thereby deteriorating the quality of the 
water streams. The polluted natural water source becomes inefficient to facilitate 
aquatic life, wherein acts as light absorbers and interferes with the photosynthetic 
activity of the aquatic plants. The persistent nature of the dyes poses the danger 
of allergic impact, skin diseases, mutation and even cancer depending upon the 
exposure to the dye containing wastewater [3]. Color removal thus becomes a matter 
of acute concern environmentally, aesthetically and from the health perspective. The 
scientific community has always shouldered the responsibility to contribute to the 
wastewater treatment methods. In this regard, efforts are constantly being made to 
develop eco-friendly green methods for eradicating the dyes from wastewaters. 

Among the treatment technologies, methods like Fenton process, photo-
catalytic and electrochemical combined treatments, photo-catalytic degradation 
using UV/TiO2, biodegradation, electrochemical degradation, chemical coagula-
tion, ozonation, oxidation, chemical precipitation, ion-exchange, reverse osmosis 
and ultra-filtration have been explored. But adsorption technique is prominently 
employed due to its low cost, regeneration possibility, simple equipment and sludge
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free operation [9]. In order to make adsorption technique more suitable and effi-
cient, researchers have focused their hunt on agricultural waste materials and their 
potentiality. 

A number of agricultural waste materials have been considered for the exclusion 
of different types of dyes (direct, reactive dyes, basic dyes, dispersive dyes) from 
aqueous solutions at different operating conditions till date. The chapter focuses on 
different types of agricultural wastes, their utilization routes and dye sequestration 
ability. Further in the chapter, the challenges in the utilization of agro-waste have 
been unfolded with an attainable solution. 

2 Types of Agricultural Waste 

Agricultural waste refers to the residue obtained from agricultural products either in 
raw condition or after their processing. This includes fruits, vegetable plants, meat, 
poultry, livestock, aquaculture, dairy products, agro-industrial products etc. (Fig. 1). 
The nature of the agricultural product, activity or processing decides whether the 
waste obtained will be of solid, liquid or semisolid nature. Cultivation activities are

Fig. 1 Sources of agricultural waste
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one of the major contributors to agricultural waste. According to Plant Protection 
Department, approximately 2% of the chemicals used for increasing fertility or as 
pesticides in the field remain in their packaging after their use. The packaging, 
containers or bottles add to the waste generated from the crop fields [62].

Waste from livestock includes manure, animal carcasses, organic materials and 
wastewater (75–79%). The peels of fruits/vegetables, hoofs and bones generated 
from the processing of the agricultural products/livestock adds to the waste produc-
tion. Several wastes are generated from the crop fields like husks, crop residues, saw 
dust, weeds and pruning, stocks, hull, kernels, grass/plant cuttings etc. Agricultural 
fields contribute majorly to the waste generation due to different kinds of activities 
performed from land clearing till harvest. In the case of aquaculture, the type and 
amount of feed given decides the waste output. Furthermore, agro-based industrial 
residue significantly contributes to the agricultural load [12]. The solid waste gener-
ated is dumped indiscriminately or burnt resulting in contamination of soil and air 
pollution. The improper handling alters the climatic patterns as well which indirectly 
affects the food production. The untreated waste can generate greenhouse gases and 
have a negative impact on the fertility of the soil. These if discarded to the envi-
ronment contribute only in increasing the organic load for the natural decomposers 
[45]. 

Research is being carried out to explore the potential of these waste substances 
and their utilization for several purposes for the benefit of mankind as well as for the 
sustainable environment. 

3 Waste Utilization 

Wastes of agricultural origin can be processed in a variety of ways in order to diminish 
their negative impact on the environment and human health (Fig. 2). They can either 
be rendered ineffective or stored inert or disposed off in an efficient manner. Waste 
utilization techniques result in the reduction of greenhouse gas emission, create jobs 
in the relevant field and help the production of non-conventional fuels. Some of the 
waste utilization technologies explored are as follows: 

3.1 Combustion 

This is one of the oldest methods of reducing biomass. On-site burning of residues 
decreases the soil carbon content and dries the soil [48]. Agricultural waste is usually 
burnt for heating, cooking, secondary fuel production, steam generation and for 
thermal applications. The greater the proper designing of the method utilized, the 
greater is the energy output obtained by the process. Improperly managed combustion 
process adds to greenhouse gases and increases air pollution [55].
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Fig. 2 Utilization of agricultural waste 

3.2 Animal Feed 

Fibrous crop waste including straw and stover is usually used as feed for the domestic 
animals. The residues of maize, sugar cane, sorghum, soyabean, wheat and vegetables 
are usually involved in animal feeding. This adds to the traditional way of increasing 
the livestock production and is a key livelihood resource for farmers. 

3.3 Composting 

One of the very efficient and eco-friendly waste utilization routes is the conversion 
of organic agricultural waste into manure. The formed manure greatly amends the 
soil characteristics, increases soil fertility, ion exchange capacity, water absorbing 
capacity and microbial population. But, the method is associated with large energy 
and cost input, transportation load, storage issues and odor related problems 
encountered during the conversion process.
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3.4 Pyrolysis 

It is a technique of anaerobic thermal decomposition of agricultural waste at elevated 
temperatures and in inert conditions. This technique generates bio-oil, char, fuel 
alcohol, and energy rich gaseous fuel. But the technique demands high energy and 
cost input and has the possible drawback of generating toxic air [36]. 

3.5 Bio-remediation 

The newer approach for utilization of agricultural waste is by employing them for 
the removal of heavy metals [21, 51], pesticides [20], organics [11, 47] and colorants 
[68] and microbes [8]. Waste utilization for bioremediation offers the advantage of 
being cost effective and easy availability. The contaminants can be removed based 
on ion exchange, complexation process, adsorption or absorption or by precipitation. 

4 Agricultural Waste for Dye Removal 

4.1 Dyes and Their Toxicity 

A dye is a coloring substance employed for imparting color or altering the color of 
different substances. Dyes are characterized by the presence of chromophores and 
auxochromes. 

Indiscriminate and unplanned discharge of the effluent produced from the textile 
industries containing dyes alters the color, smell and taste, encourages chemisorp-
tions and impairs biological and chemical characteristics of water bodies. The azo 
group containing dyes are difficult to get rid of due to strong bonding between 
nitrogen atoms. These dyes are found to drastically affect the soil profile and water 
quality and are mutagenic [27, 41], as observed by Khamparia et al. [32]. Nylon 
clothing initiates allergic reactions due to the dye, employed during its manufacture 
[35]. Various anionic dyes used in textiles pollute the water bodies and are substan-
tially responsible for causing mutations in living systems. They alter the ecological 
balance and disturb the self-purification capacity of the water bodies [31, 13, 57]. 
Reactive dyes are found to be responsible agents in causing dermatitis and skin 
disorders [22]. Disperse dyes initiate sensitization of the skin and can cause allergic 
contact dermatitis [38], and tend to bio-accumulate in alga and higher plants [28]. 
Table 1 represents the different categories of dyes along with their toxicity. 

Treatment of textile effluent thus becomes crucial and agricultural wastes act as 
promising substances for addressing the problem.
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Table 1 Characterization of Dyes 

Types of 
dyes 

Category Textile 
Substrate 

Properties Toxicity Example References 

Basic 
dye 

Cationic Polyesters, 
jute, 
acrylics, 
linen, hemp 

Water soluble, 
salts of organic 
bases, Soluble 
in alcohol, 
average to 
good fastness 

Carcinogenic, 
eye damage/eye 
irritation, toxic to 
aquatic life with 
long lasting 
effects 

Basic 
yellow 37 

[35] 

Acid dye Anionic Nylons, 
wool, silk 

Water soluble, 
carboxylic or 
sulphuric acid 
salts, poor 
wash fastness 

Carcinogenic, 
health hazards 
and ecological 
disorders 

Acid blue 
45, acid 
yellow 
127 

[31, 57] 

Direct 
dye 

Anionic Cotton, 
protein fiber 
and 
cellulosic 
fabric 

Water soluble, 
cheap, poor 
wet fastness 

Carcinogenic Direct red 
216, 
direct 
blue 18 

[46] 

Reactive 
dye 

Anionic Cotton Water soluble, 
halogen 
containing 
reactive group, 
powder as well 
as liquid 

Dermatitis, 
asthma, eye 
damage/irritation 

Reactive 
Red 195 

[22] 

Vat dye Non ionic Cellulosic 
fabric 

Water 
insoluble, 
presence of 
keto group, 
attaches in 
leuco form, 
excellent 
fastness, costly 

Mutagenic Quinonic 
dye 

[1, 60] 

Disperse 
dye 

Non ionic Polyesters Water 
insoluble, 
substituted azo, 
anthraquinone, 
or 
diphenylamine 
compound, low 
molecular 
weight, 
physically 
trapped in 
fibers 

Allergenic, skin 
irritant 
carcinogenic 

Disperse 
Red 60 

[28, 38]
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Fig. 3 Reported analytics on agro-waste as adsorbent for dye removal till date 

4.2 Agricultural Waste for Textile Dye Removal 

4.2.1 Dye Sequestration Using Different Adsorbents 

The abundance, cost effectiveness and renewability of agro-waste have enabled them 
to behave as excellent materials for confiscation of the dyes from aqueous media [58]. 

Substantial research based on the harnessing of the potential of agro-waste for 
dye elimination has been carried out worldwide. Figure 3 depicts the number of 
investigations reported year wise, as well as country wise. It undoubtedly suggests 
a massive perspective provided by the biomass material for efficient environmental 
remediation which has been investigated by researchers worldwide. 

Agricultural byproducts usually have no economic value unless they are valorized. 
The process of carbonization and physical or chemical activation is executed to 
develop activated carbon from agricultural waste. The conversion process proves 
to be economical, reduces the cost of waste disposal and shows superiority over 
conventional activated adsorbents. During the physical carbonization process, a non-
porous material called char is obtained at a temperature of 1000 °C. 

Further activation of char in presence of oxidizing gases occurs at about 900 °C 
which generates a highly porous structure having excellent efficiency to remove 
dyes. On the other hand chemical activation involves infusion with chemicals like 
zinc chloride, potash, caustic soda and phosphoric acid followed by heating. Chem-
ical activation is much more favorable for developing the adsorbent as it is a low 
temperature single step process and the end product is greatly porous for efficient 
removal of dye from waste water [23]. 

Better adsorption capacities were achieved by modifying the agricultural waste as 
the process enhanced the active adsorption sites and also the porosity. The increase in 
the surface area along with the generation of new functional groups also contributes 
to the elimination enhancement. The investigations include the effect of opera-
tional parameters like contact time, pH and temperature to understand the operative 
mechanism in dye sequestration by agricultural biomass.



378 A. Malviya and D. Jaspal

Fig. 4 Procedure of eradicating dye using agro-waste 

The following figure illustrates the complete procedure involved in the study 
(Fig. 4). 

Although a number of agricultural wastes are available as adsorbents, the selection 
of a suitable material is governed by its availability, cost and chemical composition 
(Table 2). 

Lignin 

The agro-industrial waste comprising of lignin has been employed by a number of 
researchers for the removal of textile dye either in its raw or modified form. Lignin 
is polymeric aromatic with alkyl phenols and three dimensional structures. Lignin 
is the chief structural component of the plant. The elimination and resurgence of 
cationic dyes like cationic red GTL, turquoise GB and cationic yellow X-5GL has 
been carried out by Liu and Hang [37] wherein endothermic adsorption has been 
reported. Synthetic dye, congored elimination (71.8%) was achieved using waste 
wood biomass of Euroamerican poplar, and biosorption capacity was obtained as 
3.3 mg g−1. The Langmuir model fitted well with the biosorption data, and kinetics 
data confirmed pseudo second-order kinetics [63].
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Table 2 Agricultural wastes for textile dye removal 

Type of waste Type of dye eliminated References 

Garlic peel, jack fruit peel, oil plant fiber and 
pineapple stem 

Basic dyes [23, 24] 

Groundnut shell Basic dyes [39] 

Cauliflower leaf powder Basic dyes [ 4] 

Banana empty fruit bunch, Delonixregia fruit 
pod 

Basic dyes [64] 

Rice hull Azo dye [18] 

Sugarcane bagasse, rice straw, cotton stalk, and 
corn stalk 

Reactive Dye [17] 

Coir pith Reactive dye [54, 56] 

Rice husks Basic dyes, synthetic dyes [25, 50] 

Tea waste Basic dyes [19] 

Neem saw dust Triarylmethane dye [33] 

Guava leaf waste Thiazine dye [49] 

Jute waste Basic dyes [6], 

Wheat straw Anionic dye [69] 

Barley husk Azo dye [26] 

Citrus waste Reactive azo dye [5, 53] 

De-oiled soya Azo dye, triarylmethane dyes [41] 

Saw dust Basic dyes [13] 

Papaya seed Cationic dye [30] 

Cotton hull, Sesame hull Anionic dye [66] 

Sugarcane Bagasse 

Pressed stalks from sugarcane are known as Bagasse. About 43% of the global 
production of waste sugar cane bagasse has been reported in Brazil. Most of the 
bagasse is used as fuel, as raw material for paper and fiberboard. The excess of 
bagasse, stored in the open air on incineration gives off soot and pollutes the air. 
Thus it is thoughtful to utilize it for environmental remediation. It is enriched with 
various elements like nitrogen, sodium, aluminum, calcium and magnesium which 
act as activators during the activation process of the adsorbent. Researchers have 
harnessed sugar cane agro-waste for sequestration of reactive dyes remazol black, 
blue and brilliant red [9]. 

Rice Husk 

Rice husk is an agro industrial waste, and about 96% of it is produced in developing 
nations. It is the outer hard shielding jacket (20–25% of its weight) surrounding the
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paddy grain and is obtained from the paddy during rice milling. This material has 
proved to be alternative and cheaper material in water management than commer-
cially available activated carbon. Silica (15–20%) and carbon (30–50%) present in 
the rice husk imparts it the characteristic to adsorb dyes [25]. The operating variables 
investigated were contact time, pH, temperature, initial dye concentration etc. The 
monolayer adsorption capacity was obtained to be 40.5 mg/g at 25 °C. The adsorption 
process was established to be controlled by external mass transfer and intraparticle 
diffusion [50]. The authors suggested that the spent adsorbent can be disposed of by 
dewatering and drying and flaming with simultaneous recovery of the heat liberated. 
Dyes like acid violet 54, acid violet 17, acid blue, acid violet and acid red etc. were 
efficiently eradicated using rice husk as adsorbent. 

Similarly, a Rice hull based adsorbent was investigated for the adsorptive removal 
of EBT (Eriochrome Black T) from an aqueous solution. The optimum conditions 
were obtained as 95 mg/L dye concentration, 2 g adsorbent dose and pH as 2, using 
Box–Behnken design. Pore diffusion was the limiting step in the adsorption process 
[18]. 

Groundnut Shell 

Groundnut shell was employed by the researcher for its adsorptive characteristics of 
malachite green dye. Groundnut shell is carbonaceous and fibrous material having 
fuel value. But its disposal is of concern to the environmentalists. Thus, it is employed 
as an adsorbent in its modified form using zinc chloride by the researchers. Fibrous 
solid waste of groundnut shell was investigated for malachite green elimination and 
about 95% removal efficiency was observed. The simulation studies about the effect 
of temperature, pH, and contact time were carried out. Investigators reported 94.5% 
percent removal of dye in 30 min equilibrium time at an adsorbent dose of 0.5 g/L. 
BET equation was used to determine maximum adsorptive ability [39]. 

Saw Dust 

Among the various agro-based adsorbents, saw dust is the most appealing mate-
rial for decontamination. It has lignocellulose and hemicellulose for binding with 
colorants. Usually, the process of adsorption involves ion exchange, complex forma-
tion and hydrogen bonding. Various variables like temperature, concentration, pH 
and contact time were studied by the investigators to understand the adsorption profile 
of the textile dyes. The obtained data were analyzed using Langmuir and Freundlich 
isotherms and the best fit was observed with the Langmuir isotherm [13].
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Banana Peel 

Another investigation reported the elimination of methylene blue dye using banana 
empty fruit bunch and Delonixregia fruit pod carbonized at 450 °C and 400 °C 
respectively. The presence of phosphoric acid enhanced the reduction of the color 
[64]. The stalks of the banana consisted of cellulosic and lignin which have strong 
chemical adsorption capacity for cationic species like metal ions or organic bases. 

Other Agro Wastes 

Basic dyes like malachite green and methylene blue have been eradicated from the 
textile wastewaters by a number of researchers. Hameed et al. in their research 
revealed that Garlic peel, jack fruit peel, oil plant fiber and pineapple stem showed 
large adsorption potential for removing the colorant [24]. 

The porous structure of the leaf biomass was explored by a number of researchers 
[39]. Leaf biomass with characteristic functional groups attracted the dye molecules 
thereby effectively eliminating it [29]. The cauliflower leaf powder was investigated 
for the removal of methylene blue with an adsorption capacity of 149.22 mg/g at 
room temperature [4]. 

Wong et al. proved the potential of coffee waste for eradicating the reactive 
black 5 and congo red dyes from textile wastewater. The adsorption was monolayer 
with chemisorption as the rate-controlling step [68]. Barley husk was employed by 
researchers to eradicate the azo dyes and proved to be efficient to remove color as 
well as chemical oxygen demand from textile wastewater [26]. 

Sesame and cotton seed hulls were used for adsorption of acid red 114 from 
wastewater. The optimum conditions obtained for the process were pH 3, adsorbent 
dose of 3 g/L and equilibrium time of 4 h. They reported a greater adsorption capacity 
of sesame seed hull than cotton seed hull [66]. 

One of the cationic dyes (methylene blue) was removed using papaya seeds where 
intraparticle diffusion was operative. The interaction between the dye and adsorbent 
obeyed pseudo second-order kinetics and monolayer adsorption capacity was found 
to be 555 mg/g [30]. 

A number of investigators have studied the utilization of coir pith, an agricultural 
solid state waste for the elimination of textile dyes like rhodamine B, acid violet and 
procion orange [54, 56]. Researchers are constantly working to develop inexpen-
sive and effortlessly available agro-based adsorbents according to their physical and 
chemical characteristics. 

The sorption characteristics of different adsorbents vary according to the condi-
tions of temperature, pH, agitation speed, other operative factors and experimental 
conditions. The comparison of adsorption capacities of the materials is thus difficult 
to interpret. However, studies reveal that nonconventional agro-based adsorbents are 
readily available, have a high capacity and good kinetics and thus act as efficient 
sequestrating agents (Table 3).
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Table 3 Reported absorption capacities and thermodynamic parameters 

Agricultural 
waste 

Maximum 
adsorption 
capacity 
(mg/g)

∆Ho (kJ 
mol−1)

∆So (JK-1 mol−1) ∆G°(kJ 
mol−1) 

References 

Almond shells 58.13 64.059 253.740 −12.824 [40] 

Almond 
leaves 

22.96 −16.106 67.667 −4601.12 [44] 

7.77 −10.481 37.340 −788.312 

Gipto seed 
peel 

36.14 −4.697 −11.083 −1.339 [2] 

Wild gourd 166.66 −72.876 294.51 −7.283 [7] 

Kutaj seed 144.92 −67.362 276.073 −6.472 

Sugarcane 
baggase 

190 19.36 −31.57 −9.79 [43] 

Corn cob 25.5 −14.324 28.853 −22.578 [65] 

Cotton stick 
biomass 

– −12.66 −0.145 −2.1 [10] 

Breadfruit 
seed 

16 −23.30 −49.99 −1940.08 [14] 

Mango bark 0.53 20.21 0.18 −20.40 [61] 

Neem bark 0.36 25.25 0.13 −21.45 

4.3 Dye Desorption 

The utilization of agricultural waste also offers the advantage of being recycled. The 
desorption characteristics of the adsorbent have been studied for their reusability. 
Desorption agents can either be acidic, basic or neutral. In one of the studies on 
the desorption of textile dyes from pinecone as adsorbent, the maximum desorption 
percentage for acid black 26 and acid blue 7 was obtained as 93 and 98%, respec-
tively [9]. The desorption pattern was also influenced by pH [67]. Basic and neutral 
solutions had no significant effect on the desorption characteristics of crystal violet, 
while acetic acid showed about 50% desorption [34]. 

4.4 Mechanism of Elimination 

The adsorption behavior is governed by various factors like the structure and size 
of the adsorbate, the surface characteristics of the adsorbent, steric influences along 
with interactive forces like van der Waals interaction and hydrogen bonding. The 
complexation between the dye and the adsorbent can be through strong bonding, 
ionic interaction or weak van der Waals forces. External transport is the rate limiting 
step in systems with improper mixing, small particle size and low concentrations
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whereas intraparticle transfer governs the system with proper mixing, large particle 
diameter and high concentration. It is well reported that the mechanism of adsorptive 
exchange helps to distinguish between the particle and film diffusion. There are 
three steps involved in the process. Firstly, transport of the adsorbate ions from 
bulk to the external surface of the adsorbent (film diffusion). Secondly, transport 
of the adsorbate particles within the pores of the adsorbent (particle diffusion) and 
adsorption of the adsorbate ions on the interior surface and capillary spaces [41]. 
It was observed that the intraparticle diffusion process was predominant in the case 
of high adsorption rates, concentrations, and high adsorbent particle sizes [42]. The 
quantitative treatment of the sorption dynamics was in agreement with the annotations 
of Reichenberg [52]. 

5 Advantages and Disadvantages of Agro-Waste 

The noticeable advantage of using agro-waste is its cost effectiveness with a high 
potential of removing contaminants including recalcitrant dyes when compared to 
other types of adsorbents and methods. The process is applicable to a large variety 
of target substrates. The efficiency of the process further improves when coupled 
with other advanced methods like nano-filtration and advanced oxidation [59]. The 
utilization of leftover residue from farms, poultry, aquaculture and industries based 
on agricultural processing diminishes the total organic load on the environment. This 
reduces the likelihood of destructive bio-amplification and air quality degradation. 

The agro-waste definitely proves to be an efficient alternative over conventional 
methods but their selective nature towards contaminants limits their application. The 
cost input involved in the regeneration is also an important constraint. Large-scale 
utilization of agro-based adsorbents for textile effluent treatment is yet to be achieved 
as most of the studies carried out are lab based. The real situation implication is still 
being explored for a better understanding of the applicability of the agro-waste in 
combating the mentioned problem [15, 16]. 

6 Conclusion 

The scientific community, industrialists, stakeholders, researchers as well as policy 
makers are working towards the preservation of the environment. The demand of 
the environmentalists for pollution free water bodies has compelled textile based 
industries to prioritize the decontamination process. Thus, exploration of agro-waste 
as a potential sequesting agent would benefit the environment as well as human life. 
Consistent efforts of the industrialist and researchers can facilitate utilization of agro-
waste for strengthening socio economic conditions of the farmers and protection 
of the environment. The existing methods of textile wastewater treatment need to 
be supplemented with novel and robust techniques, cost effective equipments, and
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regeneration methodology, aiming at the best utilization of agricultural based waste 
for textile water remediation. 
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Fig. 2 Data from Pubmed (From Year 1928–2021), the number and cumulative publications related 
to Removal of textile Dyes from water matrices 
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Fig. 3 Pubmed data shows work on adsorption of dyes from wastewater from 1923 to 2021
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Commonly available material with 
large information 1st Step in Selection 

Studies from available Dataset 2nd Step in Selection 

By arranging experiments 3rd Step in Selection 

Fig. 4 Selection process of good adsorbent 

AGRICULTURAL WASTE 

(Jujuba seeds, Psyllium stalks, Ash seed. Pine cone powder, Peanut Husk powder) 

CHEMICAL TREATMENTPHYSICAL TREATMENT NO TREATMENT 
(DIRECT USE) 

HCl, NaOH, PEI, CTAB, 
H2SO4 

Autoclaving, Boiling 

WASHING, DRYING, PULVERIZATION 

PACKING 

USED IN ADSORPTION EXPERIMENT 

Fig. 5 Processing of agricultural waste before use for adsorption
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Palygorskite- Dye Congo Red. Raw 
adsorbed 51.22 mg g-1 and modified 

adsorbed 684.01 mg g-1 

Dong et al. (2019) 

Natural Clay – Dye Reactive Red 
120.  

Equilibrium reached 80-100 mins 
Errais et al. (2011) 

Three Natural Clay – Dye removed 
Congo Red.  

80% dye removed in 5 mins 
Vimonses, et al. (2009) 

Attapulgite, Bentonite – Dye 
removed Remazol brilliant blue R. 

Endothermic reaction 
Bhatt et al. (2012) 

Activated Fe-Clay – Dye Alizarin 
red s. Adsorption capacity 32.7 mg 

g-1 

Fu et al. (2011) 

Enzyme Modified Clay – Dye 
Reactive Orange 84 and Reactive 

Blue 160. 
Abidi, et al. (2015) 

Clay minerals (kaolinite, smectite 
and minor illite) – Dye Reactive 

Red 120.  
Errais et al. (2012) 

Modified Bentonite – Dye Congo 
Red. Pseudo second order kinetic 

model. 
Ayari et al. (2019) 

Clay kaolinite KGa-2 – Dye 
Reactive Red 120. Adsorption 

capacity 2.5 mg g-1 

Abidi, et al. (2017) 

Modified KSF-montmorillonite – 
Dye Remazol brilliant blue R. 

Exothermic reaction 
Silva et al. (2012) 

CLAYNatural and Organophilic Clay – 
Dye Reactive Red 120. Dyes form 

monolayer over clays. 
Nejib et al. (2015) 

Smectite rich natural clays – Dye 
Acid Brown 75. Adsorption 

capacity 8.33 mg g-1. 
Chaari et al. (2019) 

Clay Minerals (Kaolinite & 
halloysite) – Dye Direct Orange 34.  
Adsorption favoured in acidic pH 

Chaari et al. (2015) 

Modified organovermiculite- Dye 
Congo Red. Maximum adsorption 

192.31 mg g-1 

Yu et al. (2010) 

Organobentonite – Dye Orange II & 
Orange G. Dye Orange II- 249.7 mg 

g-1, Orange G - 167.6 mg g-1 

Ma et al. (2011) 

Natural and modified zeolite- Dye 
Reactive Red 239 and Reactive 

Blue 250.  
Alver and Metin (2012) 

Sepiolite- Dye Reactive Blue 221. 
Acidic pH and increase in 

temperature favours adsorption 
Alkan et al. (2007)  

Surfactant-modified zeolites- Dye 
Congo Red 

monolayer adsorption 69.94 mg g-1 

Liu et al. (2014) 

ZSM-5 zeolite membrane – Dye 
Eriochrome black T. Adsorption 

2.17 mg g-1 

Radoor et al. (2020) 

Clinoptilolites- Dye Congo Red. 
Raw adsorbed 16.9 mg g-1 and 
modified adsorbed 36.7 mg g-1 

Akgul (2014) 

Fig. 6 Glimpse of modified and un-modified clays for adsorption of dyes
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Bleaching 

Washing + Grinding 

Demineralization 

Deproteinization 

Extraction 

Washing + Grinding 

Chitin 

Deacetylation 

Washing + Grinding 

Chitosan 

Organic acids 

Protease Enzyme 

Chitin Deacetylase 

Fig. 7 Production process of chitin and chitosan from animal sources
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Fig. 8 Cumulative work with chitosan beads as adsorbent from 1992 to date as per Pubmed database
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Chitosan (C)- dissolved in 2 % glacial acetic acid. Agitated by a magnetic stirrer (8–10 h) at 
room temperature (23 ± 20C). 

Then with the help of syringes the solution dropped into 0.5 M NaOH to form spherical 
beads, and was kept for minimum 16 hrs. 

For crosslinking purpose, the known weight of beads was treated with 15 ml glutaraldehyde 
solution (2.5%) at pH 5.0 for 3 hrs at room temperature (150 rpm). 

Washing of the activated beads to remove unreacted glutaraldehyde until a neutral pH is 
obtained. 

Finally, the beads were dehydrated in hot air oven at 500C for 24 hrs and stored 

After Drying Before Drying 

Fig. 9 Development of chitosan beads
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Chitosan remains intact and gets protonated improves adsorption of dyes 

Fig. 10 Reaction of chitosan at low pH 

Chitosan- dissolved in glacial acetic acid. Agitated by a magnetic stirrer at room temperature  

Known weight of Clay/ Plant materials mixed with dissolved chitosan with desired ratio 

Then with the help of syringes the solution dropped into NaOH to form spherical beads, and was kept 
for hrs. 

Washing of the activated beads to remove unreacted glutaraldehyde until a neutral pH is obtained. 

Finally, the beads were dehydrated in hot air oven and stored 

For crosslinking purpose, beads treated with glutaraldehyde solution at room temperature with 
stirring (Optional step) 

Fig. 11 Development of chitosan composite beads



C10 J. Dutta

Table 1 Advantages and disadvantages of adsorption 

S. No. Advantages Disadvantages 

1 Easy operation Non selective method 

2 Adaptable and can be shaped in different 
formats 

Performance depends on the type of 
materials 

3 Technologically simple Several types of adsorbents required 

4 Can be operated at different scenarios Chemical modifications required of 
adsorbents for better results 

5 Low energy requirements Different operating conditions 

6 Low economy involved (when raw materials 
used) 

Elimination of the adsorbent after 
adsorption i.e. disposal 

7 Used for wide range of contaminants and 
excellent ability 

Costly when pyrolysis or other 
methods involved
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Table 2 Adsorption capacities of dyes by some of the agricultural wastes 

Agri waste Dye Adsorption capacity References 

Wood sawdust Acid blue 25 5.92 mg g−1 Ho and McKay 
(1998a) 

Coir pith Congo red 2.6 mg g−1 Namasivayam and 
Kavitha (2002) 

Peanut hull Amaranth 14.9 mg g−1 Gong et al. (2005) 

Peanut hull Sunset yellow 13.99 mg g−1 Gong et al. (2005) 

Peanut hull Fast green 15.60 mg g−1 Gong et al. (2005) 

Hazelnut shell Acid blue 25 60.2 mg g−1 Ferro (2007) 

Saw dust—cherry Acid blue 25 31.98 mg g−1 Ferro (2007) 

Saw dust—oak Acid blue 25 27.85 mg g−1 Ferro (2007) 

Saw dust—walnut Acid blue 25 36.98 mg g−1 Ferro (2007) 

Palm kernel fibre BDH 38.6 mg g−1 Ofomaja and Ho 
(2007) 

Almond shell Direct red 80 90.09 mg g−1 Ardejani et al. 
(2008) 

Sugar cane bagasse Orange 16 34.48 mg g−1 Wong et al. (2009) 

Sugar cane bagasse Basic blue 3 37.59 mg g−1 Wong et al. (2009) 

Neem bark Malchite green 0.36 mg g−1 Srivastava and 
Rupainwar (2011) 

Mango bark Malchite green 0.53 mg g−1 Srivastava and 
Rupainwar (2011) 

Jujuba seeds Congo red 55.56 mg g−1 Reddy et al. (2012) 

Walnut shell Reactive brilliant red 
K-2BP 

568.18 mg g−1 Cao et al. (2014) 

Pristine sawdust Reactive red 196 13.39 Doltabadi et al. 
(2016) 

Wheat straw Orange II 506 mg g−1 Lin et al. (2017) 

Banana pseudo-stem Methyl orange 124 mg g−1 Bello et al. (2018) 

Banana peel Orange G 20.9 mg g−1 Stavrinou et al. 
(2018) 

Potato peel Orange G 23.6 mg g−1 Stavrinou et al. 
(2018) 

Cucumber peel Orange G 40.5 mg g−1 Stavrinou et al. 
(2018) 

Psyllium stalks Coomassie brilliant 
blue 

237.2 mg g−1 Periyaraman et al. 
(2019) 

Tea waste Acid blue 25 127.14 mg g−1 Jain et al. (2020) 

Coffee Reactive black 5 77.52 mg g−1 Wong et al. (2020) 

Coffee Congo red 34.36 mg g−1 Wong et al. (2020)

(continued)
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Table 2 (continued)

Agri waste Dye Adsorption capacity References

Eucalyptus bark Remazol BB 34.10 mg g−1 Morais et al. (1999) 

Mango seed kernel Methylene blue 142.90 mg g−1 Kumar and Kumrana 
(2005) 

Guava leaf powder Methylene blue 95.10 mg g−1 Ponnusami et al. 
(2008) 

Orange peel Direct red 23 10.72 mg g−1 Arami et al. (2005) 

Orange peel Direct red 80 21.05 mg g−1 Arami et al. (2005) 

Sugarcane bagasse Methylene blue 34.20 mg g−1 Filho et al. (2007) 

Sugarcane bagasse Methylene blue 99.60 mg g−1 Raghuvanshi et al. 
(2004)
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Table 3 Microorganisms as adsorbent 

Organisms Dye Adsorbed 
mg g−1/removal % 

References 

Pichia carsonii Reactive black 5 25 mg g−1 Polman and 
Breckenridge (1996)B. suhtilis Reactive yellow 2 2–97 mg g−1 

E. coli Reactive blue 5 9–31 mg g−1 

Aeromonas sp. Reactive red 22 114–146 mg g−1 

P. luteola, Reactive violet 2 80–113 mg g−1 

S. aureus 1–3 mg g−1 Hu (1996) 

Aspergillus niger Congo red 98.8% Hamad and Saied 
(2021) 

Fomes fomentarius Methylene blue 204.38–232.73 mg g−1 Maurya et al. (2006) 

Phellinus igniarius Rhodamine B 25.12–36.82 mg g−1 Maurya et al. (2006) 

Trametes versicolor Acid violet 7 104.2 mg g−1 

Indigo carmine 51.0 mg g−1 

Acid green 27 53.5 mg g−1 Wang and Yu (1998) 

A. niger 
(Autoclaved) 

Basic blue 9 18.54 mg g−1 Fu and Viraraghavan 
(2000) 

A. niger (Living) Basic blue 9 1.17 mg g−1 

Cunninghamella 
elegans 

Acid blue 62 300–600 mg g−1 Russo et al. (2010) 

Acid red 266 

Acid yellow 49 

Lentinus concinnus Reactive yellow 86 190.2 mg g−1 Bayramoglu and 
Yilmaz (2018) 

Rhizopus stolonifera Bromophenol blue 1111 mg g−1 Zeroual et al. (2006) 

Fusarium sp. Bromophenol blue 714 mg g−1 Zeroual et al. (2006) 

Geotrichum sp. Bromophenol blue 588 mg g−1 Zeroual et al. (2006) 

Aspergillus 
fumigatus 

Bromophenol blue 526 mg g−1 Zeroual et al. (2006) 

K. marxianus Remazol blue 161 mg g−1 Aksu and Dönmez 
(2003) 

Kluyveromyces 
waltiiq 

Reactive blue 19 14 mg g−1 Polman and 
Breckenridge (1996) 

C. lipolytica Remazol blue 250 mg g−1 Aksu and Dönmez 
(2003) 

Aspergillus 
fumigatus 

Methylene blue 93.5% Kabbout and Taha 
(2014) 

Ochrobactrium sp. 

Salmonella enterica 

Pseudomonas 
aeruginosa 

Reactive black B 59.3 mg g−1 Kılıç et al. (2007)

(continued)
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Table 3 (continued)

Organisms Dye Adsorbed
mg g−1/removal %

References

Bacillus subtilis Congo red 92.8% Sarim et al. (2019) 

Aeromonas sp. Red G 27.41 mg g−1 Hu (1992) 

Aureispira sp. Congo red 88.1% Hasyimah et al. (2020) 

Table 4 Modification of chitin of adsorption of dyes 

Modification system Dye sorbed References 

Sodium hypochlorite Reactive red 141 Dolphen et al. (2007) 

CaBr2·xH2O/CH3OH Methylene blue Cao et al. (2018) 

Ultrasonic modified Methylene blue Yazidi et al. (2020) 

Ultrasound-modified Indium(III) Li et al. (2019) 

Ultrasonic processor Methylene blue Franco et al. (2015) 

Ultrasonic processor Methylene blue Sellaoui et al. (2017) 

HCl modified Helactine, polactine and remazol Klimiuk et al. (2003) 

HCl and KOH modified Helactine, polactine and remazol Klimiuk et al. (2003) 

Chitinase Congo red Hou et al. (2021) 

Sonoenzymolysis Congo red Hou et al. (2021) 

Maleic anhydride Indigo carmine Akkaya et al. (2009) 

Maleic anhydride Trypan blue Akkaya et al. (2009) 

1,2,4-benzenetricarboxylic 
anhydride 

Indigo carmine Akkaya et al. (2009) 

1,2,4-benzenetricarboxylic 
anhydride 

Trypan blue Akkaya et al. (2009) 

Acid treatment + 
ultrasonication 

Methylene blue Ablouh et al. (2020) 

Polystyrene-modified Methyl orange Umar (2020) 

Poly (acrylic acid) Malachite green Huang et al. (2012) 

Poly (acrylic acid) Methyl violet Huang et al. (2012) 

Poly (acrylic acid) Paraquat Huang et al. (2012)
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Table 5 Adsorption of some dyes, heavy metals, pharmaceuticals and pesticides and adsorption 
capacity of chitosan and modified chitosan 

Adsorbate Adsorption capacity Isotherm References 

Reactive red 222 250–420 μm Langmuir Juang et al. (1997) 

Reactive yellow 145 380 μm Langmuir Juang et al. (1997) 

Reactive blue 222 179 μm Langmuir Juang et al. (1997) 

Copper(II) ions 110 mg/L – Mende et al. (2016) 

Iron(II) ions 80 mg/L – Mende et al. (2016) 

Nickel (II) ions 80 mg/L – Mende et al. (2016) 

Reactive red 222 1106 mg g−1 Langmuir Wu et al. (2000) 

Reactive red 189 950 mg g−1 Langmuir Chiou and Li (2003) 

Reactive black 5 201.90 mg g−1 Langmuir Chatterjee et al. (2011) 

Reactive black 5 4.83 mg g−1 Langmuir and BET Ong and Seou (2013) 

Congo red 93 mg g−1 Langmuir Chatterjee et al. (2007) 

Congo red 178.32 mg g−1 Sips Chatterjee et al. (2009) 

Methylene blue 99.01 mg g−1 – Chatterjee et al. (2012) 

Reactive yellow 334 mg g−1 Langmuir Kyzas and Lazaridis (2009) 

Pb(II) 431.7 mg g−1 Langmuir Zhang et al. (2019) 

Cd(II) 370.37 mg g−1 Langmuir Zhang et al. (2019) 

Cr(VI) 374.4 mg g−1 Langmuir Guo et al. (2018) 

Cr(VI) 166.98 mg g−1 Langmuir Ali (2018) 

Ni (II) 100% Langmuir Abou El-Reash (2018) 

Mn(II) 100% Langmuir Abou El-Reash (2018) 

Co(II) 916.6 mg g−1 Redlich-Peterson Bahmani et al. (2019) 

Hg(II) 204.1 mg g−1 Langmuir Liu et al. (2019) 

Cefotaxime 1003.64 mg g−1 Freundlich Li et al. (2021) 

Amoxicillin 8.71 mg g−1 Langmuir Adriano et al. (2005) 

Clindamycin 238.24 mg g−1 Langmuir Gupta et al. (2017) 

Tetracycline 388.52 mg g−1 – Li et al. (2020) 

Cefotaxime 309.26 mg g−1 – Li et al. (2020) 

Ciprofloxacin 267.7 mg g−1 – Wang et al. (2019) 

Enrofloxacin 387.7 mg g−1 – Wang et al. (2019) 

Cefazolin 1250 mg g−1 Langmuir Ahmadzadeh et al. (2017) 

Gemifloxacin 84% Langmuir Mala and Dutta (2021) 

Methyl parathion 86% Langmuir Yoshizuka et al. (2000) 

Permethrin 99% – Dehaghi et al. (2014) 

2,4-d 6.2 mg g−1 Freundlich Harmoudi et al. (2014) 

Pentachlorophenol 94% Langmuir Shankar et al. (2020) 

Malathion 322.6 mg g−1 Langmuir Jaiswal et al. (2012)
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Table 6 Chitosan composite beads for adsorption of dyes, heavy metals etc. 

Chitosan Composite with Adsorbate Reference 

Magadite Cationinc, anionic dyes Mokhtar et al. (2020) 

Nano ZnO RB5 Çınar et al. (2017) 

Carbon nanotube Bilirubin Ouyang et al. (2015) 

Sodium alginate Bisphenol A Luo et al. (2019) 

Oil palm ash Reactive blue 19 Hasan et al. (2008) 

Clay Ni(II) and Cd(II) Tirtom et al. (2012) 

Magnetite Ni(II) and Pb(II) Tran et al. (2010) 

Alginate Cu(II) Huang et al. (2018) 

Bamboo charcoal Silver(I) Nitayaphat and Jintakosol 
(2015) 

Graphene oxide-magnetite Reactive blue 19 Le et al. (2019) 

Activated clay Tannic acid, humic acid Chang and Juang (2004) 

Activated clay Methylene blue, reactive 
dye RR222 

Chang and Juang (2004) 

Montmorillonite Silver(I) Jintakosol and Nitayaphat 
(2016) 

Palygorskite Pb(II) Rusmin et al. (2015) 

Rice husk Cr(VI) Sugashini and Sheriffa 
(2013) 

Alginate Cr(VI) Zhang et al. (2019) 

Montmorillonite Reactive red 120 Kittinaovarat et al. (2010) 

Halloysite Methylene blue Peng et al. (2015) 

Fe3O4 Cu(II) Chen et al. (2012) 

Carbon nano tube Hg(II) Shawky et al. (2012) 

Zirconium Cr(VI) Zhang et al. (2013) 

Activated carbon carrier Cu(II) Li et al. (2017) 

Fe0 + carboxymethyl β-cyclodextrin Arsenic(III) and (V) Sikder et al. (2014) 

Tea activated carbon Methylene blue and acid 
blue 29 

Auta and Hameed (2013) 

β-cyclodextrin + 
hexamethylenetetramine 

Anionic dye Wang et al. (2019) 

Nano-magnetite + heulandite Methyl orange Cho et al. (2015) 

Sodium alginate Acid black 172 Zhao et al. (2021) 

Cellulose Congo red Vega-Negron et al. (2018) 

Fe(OH)3 Congo red, methyl orange Li et al. (2018) 

Poly(ethylene glycol) and acrylamide 
monomer 

Acid red 18 Zhao et al. (2012) 

Montmorillonite Remazol blue Pereira et al. (2017)

(continued)
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Table 6 (continued)

Chitosan Composite with Adsorbate Reference

Carbon clay Azo acid blue 29 Marrakchi et al. (2020) 

Coffee residue Reactive red 152 Nitayaphat (2017) 

Magnetic graphene oxide 
nanoparticle + isophthaloyl chloride 

EBT Jamali and Akbari et al. 
(2021) 

Activated oil palm ash and zeolite Acid blue 29 Khanday et al. (2017) 

Alginate-bentonite Congo red Oussalah et al. (2019) 

Kaolin-nanosized γ-Fe2O3 Methyl orange Zhu et al. (2010) 

Zeolite Reactive red 120 Jawad et al. (2020) 

Bamboo charcoal Reactive red 152 Nitayaphat (2014) 

TiO2 nanoparticles-polyacrylamide 
matrix 

Sirius yellow K-CF dye Binaeian et al. (2020) 

Calcium chloride Methyl orange Tay et al. (2020) 

Maghemite Methyl orange Obeid et al. (2013)
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