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Abstract One of the key tasks of power production operations and control is
dynamic economic dispatch (DED). It defines the optimum settings of generators
for a given period with a projected load requirement. The aim is to run an electricity
system cheaply as long as it operates within its safety limitations. Therefore, this
article aims to propose a hybrid technique to solve DED. The basic genetic algo-
rithm (GA)when used as a search level takes longer to get nearly optimal results. The
proposed technique uses a three-parent crossover and diversity operator resulting in
increasing the potential for both exploration and exploitation of the algorithm tech-
nique. Two test cases with quadratic cost function are employed to demonstrate
the efficacy and validity of the proposed method. Experimental findings compared
with many DED solution techniques, namely differential evolution (DE), hybrid DE,
sequential quadratic programing, artificial bee colony, and other recently published
results, and these results proved that proposed technique achieved superior solutions.

Keywords Dynamic economic dispatch · Three-parent crossover · Transmission
loss · Diversity factor

1 Introduction

DEDis an extensionof the issueof static economic transmission (SED). SEDscenario
finds the cost-efficient production combination of generators to fulfil the anticipated
demand for a single load at a particular time hour. Because of the high-power system
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load fluctuation, SED could not meet the operating restrictions of the generators. The
primary aim of the DED is to reduce the overall cost of production while meeting
the limitations of equality, inequality and dynamic restrictions. Moreover, owing
to look ahead inability, the outcomes of SED will be suboptimal when evaluating
a time horizon moment of a time instance [1]. The balance of load demand is the
constraint on equality, and the restrictions on the forbidden area and limitations
of capacity generation are the constraints of inequality. The solution of the DED
issue is more complex by considering these dynamic restrictions. Much work has
been expended in trying to successfully address the essential but complex DED
issue, and a variety of solution approaches have been suggested. Until now, these
techniques have been experimentally divided into two groups: classical and heuristic
methods. Classical methods include Lagrangian method [2], quadratic programing
[3] and dynamic programing [4], etc., and while they offer some benefits like great
calculation efficiency and theoretically optimal [5], they have several drawbacks as
well. As a substitute for traditionalmethods, heuristic techniques have receivedmuch
attention and proven their efficacy as strong optimizers for the issue of DED in the
past several decades, like evolutionary programing [6] particle swarm optimization
(PSO) [7], differential evolution (DE) [8], artificial bee colony (ABC) [9], krill herd
algorithm (KHA) [10] and artificial immune system (AIS) [11].

In 1960, John Holland invented the genetic algorithm (GA) [12]. To date GA has
been used to resolve a number of real-world issues of optimization [13–15]. It may
quickly reach the global minimum search area, and it takes more time to converge. A
hybrid approach is oneway of tackling this problem. Several GA variations were thus
presented to avoid the disadvantage trap in local optima and reach global solution
with in less time [16]. The major contributions in this paper are as follows:

(i) Consider DED problem instead of classical ED, since introduction of dynamic
constraints makes the DED problem more complicated.

(ii) DED problem is solved using newly created a variant of GA with three-
parent crossover. Thismethod introduced a three-parent crossover and a typical
mutation via a diversity operator, resulting in maintain efficient chromosomes.

The effectiveness of GA-TPC is shown with two distinct test systems. The
remaining paper is arranged as follows, Sect. 2 provides a mathematical model of
DED problem considering valve points, Sect. 3 offers about GA-TPC algorithm,
Sect. 4 shows three different cases, and achieved results compare with the outcomes
of the latest techniques and the final conclusion in Sect. 5.

2 Mathematical Model

DED is required to optimize the overall cost of all thermal generators exposed to
different restrictions on a regular basis over a time horizon. The thermal cost char-
acteristics, associated constraints and basic formulations are discussed more below
[7].



A New Genetic Algorithm Variant Designed … 401

2.1 Optimization of Total Cost (TC)

Usually, the DED problem’s goal function may be approximated by a simple
quadratic equation [7].

min f =
T∑

t=1

NG∑

m=1

am + bm PGm,t + CmP
2
Gm,t (1)

where f gives TC of all generators; PGm,t indicates active power of mth generator at
tth hour.

2.2 Optimization of TC with Valve Points (TCV)

However, the production curve for multi-valve steam units differs considerably in
comparison with the quadratic function of the active power output. The inclusion of a
valve point effect on the fuel cost of the producingunit provides a better representation
of the cost of fuel. As the valve point is completedwith spiking, the fuel price function
includesmore nonlinear series.A non-convex function to assess the effect of the valve
points is thus employed in the study given below [7].

min f =
T∑

t=1

NG∑

m=1

am + bm PGm,t + CmP
2
Gm,t + ∣∣dm × sin(em(Pmin

Gm,t − PGm,t ))
∣∣

(2)

where am, bm, cm, dm&em indicate cost coefficients of mth generator.

2.3 Constraints

The limitations in the current work are briefly described below [7].
Equality constraints: It is a real power balance constraint and is given below,

NG∑

n=1

PGnt = PD(t) + Ploss(t) t = 1, 2, ...T (3)

where PD reports load demand, and Ploss indicates transmission loss and is calculated
as follows,
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NG∑

k=1

NG∑

m=1

Pkt Bkm Pmt +
NG∑

k=1

B0Pkt + B00 t = 1, 2, ...T (4)

where Bkm, Bk&B00 are called loss coefficients.
Inequality constraints: These are expressed among their low and high limits and

are given below,

Pmin
Gn ≤ PGnt ≤ Pmax

Gn n = 1, 2, . . . , NG t = 1, 2, . . . , T (5)

3 Proposed Genetic Algorithm with Three-Parent
Crossover

Different GAs for many real-world numerical problems have been presented over
several decades. However, the effectiveness of the various approaches is dependent
only on features of the objective function. In certain instances, GA did not perform
nor was compared with other algorithms [17, 18]. Therefore, GA performance is
improved by adding three-parent crossover instead of a typical two-point crossover,
and diversity operator is applied instead of a fairly regular mutation [17]. The current
crossover uses three parents to produce three new children, helping explore and
leverage the diversity operator.

Crossover is aGAoperator of great importance. It is responsible for recombination
structure and GA convergence speed. The conventional GA combines the chromo-
somes from the two chosen parents to produce a new chromosome which inherits
information regions contained in parent chromosomes. The crossover suggested in
the GA-MPC is based on an idea of heuristic crossover, and here, a child (c) is created
from a set of two parents (a, b), like c = a + rand(a − b), where ‘rand’ is a random
number among 0,1. The GA-MPC nevertheless uses three rather than two parents.

The procedure for the proposed algorithm is explained below.

(i) Selection

Selection of the parents is a simple process by which parents are chosen based on
fitness of the chromosomes. The likelihood of adding additional offspring to the
following generation is that solutions with high fitness ratings. A basic selection of
roulette wheels rule utilized in our approach [19].

(ii) Proposed three-parent crossover

Crossover procedure is very important in GA. To generate new offspring, the
crossover must be able to use search space information. Offspring distribution should
neither be disproportionately narrow or disproportionately large compared to that of
their parents. It is possible that the offspring will lose diversity and converge early
if their distribution is much smaller than that of their parents. The opposite may be
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true if the children are dispersed extensively, in which case they may be too varied
and require an excessively long time to converge to optimality. There should be a
balance between exploration and exploitation in the next generation. Based on the
aforementioned idea, in the proposed work, three parent crossover based on random
procedure is used rather than regular two parent crossover. The procedure is given
below [17].

1. Select the parent individuals by using selection process.
2. If any two individuals are similar, then one is replaced with randomly from

selection pool.
3. Arrange those three individuals according to best to worst fitness value.
4. A number ‘ 1’ is produced randomly;

(a) New off springs are produced by using following equations

OF1 = x1 + ε(x2 − x3)

OF2 = x2 + ε(x3 − x1)

OF3 = x3 + ε(x1 − x2)

(6)

where x1, x2 & x3 are the selected parents by using selection process, and OF1, OF2
& OF3 denote newly generated off springs.

(iii) Diversity operator

To improve the exploitation capability in the individuals, diversity operator intro-
duced in [14] considered here.

The step-wise procedure of GA-TPC to solve ED is given below:
Step 1: Initialize GA-TPC variables, max generations (Gmax).
Step 2: Each chromosome in GA-TPC is a solution to a DED issue. The kth

chromosome in mth generation is expressed in below given form

Xm
k =

⎡

⎢⎢⎢⎢⎣

Pm
g1,1,k Pm

g1,2,k · · · Pg
g1,t,k

Pm
g2,1,k Pm

g2,2,k · · · Pm
g2,t,k

...
...

. . .
...

Pm
gNg,1,k Pm

gNg,2,k · · · Pm
gNg,t,k

⎤

⎥⎥⎥⎥⎦
k = 1, 2 . . .NP
g = 1, 2 . . .Gmax (7)

where t indicates number of intervals in the dispatch period.
Step 2: Evaluate fitness of every individual using Eq. 8.

|F | = f + wP
(|PG1 − P lim

G1 |)2 (8)

where wP indicates penalty value of slack bus real power.
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Step 3: Apply the selection, proposed crossover, diversity operator, and create new
generation.

Step 4: If any variable exceeds its existing limits, then it will be set to inline high
or low value.

Step 5: Terminate the process, if utmost iterations are marked, and take the best
result from previous iteration as best solution. Else, go to Step 2.

4 Simulation Results

Two different modules are investigated to assess the feasibility and efficacy of the
GA-TPC technique suggested in the solution of the DED issue. The dispatch time is
chosen as 24 h for one day. The number individuals and utmost iterations in all the
cases are considered 40 and 300, respectively. The following are the two cases:

M1: a three-generator system without point loadings.
M2: a ten-generator system with valve point loadings.

4.1 M1: 3 Unit System

The proposed system consists of three generators and complete data for this system
that includes cost characteristics of generators, generator limits, and load demand
in each interval is referred from reference [20]. The optimal set of active powers
obtained to this system with GA & GA-TPC are given in Table 1. These results are
compared with CSA [20] and ISA [20], RGM [21] and ACO [21] and are given
in Table 2. From this table, it is noticed that the suggested approach provides a
superior way to discover solutions to such complex DED issues, with minimum,
average and maximum costs. A minimum of 176,017.5363 ($/day) and a minimum
of 176,059.3264 $/day achieved utilizing the formulations of proposed GA-TPC and
original GA, showing the remarkable nature of the suggested method. In addition,
the convergence characteristic of the method suggested is compared and shown in
Fig. 1 with the original GA. This figure indicates that both convergence speed and
optimum objective function of the proposed GA-TPC beats conventional GA. Here,
3-unit system size is very small, so the deviation of optimal cost fromGA toGA-TPC
is very small. Thus, the convergence curves are much closer to each other.

4.2 M2: 10 Unit System

GA-TPC performance is identified by considering 10 unit systems for solving DED
problem with inclusion of valve points. This system is believed to have a complete
date from [7]. Table 3 illustrates the findings achieved for the 10-unit system with
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Table 2 Comparison of the statistical analysis for 3-unit system with the other methods

Method Minimum cost ($/h) Average cost ($/h) Maximum cost ($/h) ET (min)

RGM [21] 177,291 – – –

ACO [21] 176,212 – – –

CSA [20] 176,370 – – –

ISA [20] 176,320 – – –

GA 176,059.3264 176,066.6535 176,095.8222 0.38

GA-TPC 176,017.5363 176,019.1552 176,028.3286 0.42

0 50 100 150 200
1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Number of generations

T
C

 (
$/

h
)

 

 

GA
GA-TPC

50 100 150 200
1.76

1.7605

1.761
x 10

5

 

 

Fig. 1 Convergence curve of 3-unit system

valve point loading effect. These findings are compared to those of previously devel-
oped algorithms such as DE [8], hybrid EP-SQP [6], hybrid PSO-SQP [18], deter-
ministically guided PSO (DGPSO) [7], hybrid DE (HDE) [7], improved DE (IDE)
[7], ABC [6], modified DE (MDE) [7], AIS [12], AIS-SQP [12], chaotic DE (CDE)
[7] and improved PSO (IPSO) [7]. This table shows a comprehensive comparison of
solution quality, including lowest, average and maximum cost, as well as simulation
time, and it is confirmed that the proposed method produces more optimum results
outcomes that the methods described in the literature. Tables 4 and 5 shows the
optimal set of active powers obtained to this system with GA-TPC and GA respec-
tively. The suggested algorithm’s convergence characteristic is shown in Fig. 2 and
compared to the original GA. As can be seen from the graph, the suggested method
beats the original GA in terms of convergence speed and optimality. The variation
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Table 3 Comparison of the statistical analysis for 10-unit system with the other methods

Method Minimum cost ($/h) Average cost ($/h) Maximum cost ($/h) ET (min)

DE [8] 1,019,786 0 0 11.25

EP-SQP [6] 1,031,746 1,035,748 0 20.51

PSO-SQP [7] 1,027,334 1,028,546 1,033,986 16.37

DGPSO [7] 1,028,835 1,030,183 0 15.39

HDE [7] 1,031,077 0 0 0

IDE [7] 1,026,269 0 0 0

ABC [6] 1,021,576 1,022,686 1,024,316 2.6029

MDE [7] 1,031,612 1,033,630 0 12.5

AIS [12] 1,021,980 1,023,156 1,024,973 19.01

AIS-SQP [12] 1,029,900 0 0 0

CDE [7] 1,019,123 1,020,870 1,023,115 0.32

IPSO [7] 1,018,217 1,018,965 1,020,418 2.8

GA 1,029,091.80 1,029,189.56 1,029,455.20 1.2

GA-TPC 1,015,473.71 1,015,536.60 1,015,823.71 1.1

of TC with 20 trials is shown in Fig. 3 for 6-unit system, and it is observed that 17
trials were achieved optimal cost by the GA-TPCmethod over 20 trials and indicates
the precision of the proposed method. Aforementioned simulation results depict that
GA-TPC is successful in addressing small-scale test systems and using it to solve
multi-objective DED for large and practical power systems would be an extension
of the current study.

5 Conclusion

To address the dynamic economic dispatch issue of power systems with valve point
loading effects, this article proposes a novel method termed genetic algorithm with
three-parent crossover. Two different test scenarios are used to validate the tech-
nique. Comparing the suggested technique to other previously published approaches,
including lowest, average and maximum costs as well as simulation time, provides
a thorough understanding of the pros and cons of each. The findings of the study
show that GA-TPC was able to find solutions that were more cost-effective. The
comparison of suggested algorithm’s convergence characteristics with conventional
GA also confirms the speed and ability of the GA-TPC method to discover superior
solutions. These facts suggest that the technique under consideration is capable of
resolving DED problems.
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