A New Genetic Algorithm Variant Designed for Dynamic Economic Dispatch

Harish Pulluri, Preeti, B.Vedik, and T. Anil Kumar

Abstract One of the key tasks of power production operations and control is dynamic economic dispatch (DED). It defines the optimum settings of generators for a given period with a projected load requirement. The aim is to run an electricity system cheaply as long as it operates within its safety limitations. Therefore, this article aims to propose a hybrid technique to solve DED. The basic genetic algorithm (GA) when used as a search level takes longer to get nearly optimal results. The proposed technique uses a three-parent crossover and diversity operator resulting in increasing the potential for both exploration and exploitation of the algorithm technique. Two test cases with quadratic cost function are employed to demonstrate the efficacy and validity of the proposed method. Experimental findings compared with many DED solution techniques, namely differential evolution (DE), hybrid DE, sequential quadratic programing, artificial bee colony, and other recently published results, and these results proved that proposed technique achieved superior solutions.

Keywords Dynamic economic dispatch \cdot Three-parent crossover \cdot Transmission loss \cdot Diversity factor

1 Introduction

DED is an extension of the issue of static economic transmission (SED). SED scenario finds the cost-efficient production combination of generators to fulfil the anticipated demand for a single load at a particular time hour. Because of the high-power system

H. Pulluri · T. A. Kumar

Preeti (🖂)

B.Vedik

Electrical Engineering Department, SR University, Warangal, Telangana, India

399

Electrical Engineering Department, Anurag University, Hyderabad, Telangana, India e-mail: harisheee@anurag.edu.in

Skill Faculty of Engineering and Technology, Shri Vishwakarma Skill University, Palwal, Haryana, India e-mail: preetieednith@gmail.com

[©] The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 A. Tomar et al. (eds.), *Proceedings of 3rd International Conference on Machine Learning, Advances in Computing, Renewable Energy and Communication*, Lecture Notes in Electrical Engineering 915, https://doi.org/10.1007/978-981-19-2828-4_37

load fluctuation, SED could not meet the operating restrictions of the generators. The primary aim of the DED is to reduce the overall cost of production while meeting the limitations of equality, inequality and dynamic restrictions. Moreover, owing to look ahead inability, the outcomes of SED will be suboptimal when evaluating a time horizon moment of a time instance [1]. The balance of load demand is the constraint on equality, and the restrictions on the forbidden area and limitations of capacity generation are the constraints of inequality. The solution of the DED issue is more complex by considering these dynamic restrictions. Much work has been expended in trying to successfully address the essential but complex DED issue, and a variety of solution approaches have been suggested. Until now, these techniques have been experimentally divided into two groups: classical and heuristic methods. Classical methods include Lagrangian method [2], quadratic programing [3] and dynamic programing [4], etc., and while they offer some benefits like great calculation efficiency and theoretically optimal [5], they have several drawbacks as well. As a substitute for traditional methods, heuristic techniques have received much attention and proven their efficacy as strong optimizers for the issue of DED in the past several decades, like evolutionary programing [6] particle swarm optimization (PSO) [7], differential evolution (DE) [8], artificial bee colony (ABC) [9], krill herd algorithm (KHA) [10] and artificial immune system (AIS) [11].

In 1960, John Holland invented the genetic algorithm (GA) [12]. To date GA has been used to resolve a number of real-world issues of optimization [13–15]. It may quickly reach the global minimum search area, and it takes more time to converge. A hybrid approach is one way of tackling this problem. Several GA variations were thus presented to avoid the disadvantage trap in local optima and reach global solution with in less time [16]. The major contributions in this paper are as follows:

- (i) Consider DED problem instead of classical ED, since introduction of dynamic constraints makes the DED problem more complicated.
- (ii) DED problem is solved using newly created a variant of GA with threeparent crossover. This method introduced a three-parent crossover and a typical mutation via a diversity operator, resulting in maintain efficient chromosomes.

The effectiveness of GA-TPC is shown with two distinct test systems. The remaining paper is arranged as follows, Sect. 2 provides a mathematical model of DED problem considering valve points, Sect. 3 offers about GA-TPC algorithm, Sect. 4 shows three different cases, and achieved results compare with the outcomes of the latest techniques and the final conclusion in Sect. 5.

2 Mathematical Model

DED is required to optimize the overall cost of all thermal generators exposed to different restrictions on a regular basis over a time horizon. The thermal cost characteristics, associated constraints and basic formulations are discussed more below [7].

2.1 Optimization of Total Cost (TC)

Usually, the DED problem's goal function may be approximated by a simple quadratic equation [7].

min
$$f = \sum_{t=1}^{T} \sum_{m=1}^{NG} a_m + b_m P_{Gm,t} + C_m P_{Gm,t}^2$$
 (1)

where f gives TC of all generators; $P_{Gm,t}$ indicates active power of mth generator at tth hour.

2.2 Optimization of TC with Valve Points (TCV)

However, the production curve for multi-valve steam units differs considerably in comparison with the quadratic function of the active power output. The inclusion of a valve point effect on the fuel cost of the producing unit provides a better representation of the cost of fuel. As the valve point is completed with spiking, the fuel price function includes more nonlinear series. A non-convex function to assess the effect of the valve points is thus employed in the study given below [7].

$$\min f = \sum_{t=1}^{T} \sum_{m=1}^{NG} a_m + b_m P_{Gm,t} + C_m P_{Gm,t}^2 + \left| d_m \times \sin(e_m (P_{Gm,t}^{\min} - P_{Gm,t})) \right|$$
(2)

where $a_m, b_m, c_m, d_m \& e_m$ indicate cost coefficients of *m*th generator.

2.3 Constraints

The limitations in the current work are briefly described below [7].

Equality constraints: It is a real power balance constraint and is given below,

$$\sum_{n=1}^{NG} P_{Gnt} = P_D(t) + P_{loss}(t) \qquad t = 1, 2, ...T$$
(3)

where P_D reports load demand, and P_{loss} indicates transmission loss and is calculated as follows,

$$\sum_{k=1}^{NG} \sum_{m=1}^{NG} P_{kt} B_{km} P_{mt} + \sum_{k=1}^{NG} B_0 P_{kt} + B_{00} \qquad t = 1, 2, \dots T$$
(4)

where B_{km} , $B_k \& B_{00}$ are called loss coefficients.

Inequality constraints: These are expressed among their low and high limits and are given below,

$$P_{Gn}^{\min} \le P_{Gnt} \le P_{Gn}^{\max}$$
 $n = 1, 2, \dots, N_G$ $t = 1, 2, \dots, T$ (5)

3 Proposed Genetic Algorithm with Three-Parent Crossover

Different GAs for many real-world numerical problems have been presented over several decades. However, the effectiveness of the various approaches is dependent only on features of the objective function. In certain instances, GA did not perform nor was compared with other algorithms [17, 18]. Therefore, GA performance is improved by adding three-parent crossover instead of a typical two-point crossover, and diversity operator is applied instead of a fairly regular mutation [17]. The current crossover uses three parents to produce three new children, helping explore and leverage the diversity operator.

Crossover is a GA operator of great importance. It is responsible for recombination structure and GA convergence speed. The conventional GA combines the chromosomes from the two chosen parents to produce a new chromosome which inherits information regions contained in parent chromosomes. The crossover suggested in the GA-MPC is based on an idea of heuristic crossover, and here, a child (c) is created from a set of two parents (a, b), like c = a + rand(a - b), where 'rand' is a random number among 0,1. The GA-MPC nevertheless uses three rather than two parents.

The procedure for the proposed algorithm is explained below.

(i) Selection

Selection of the parents is a simple process by which parents are chosen based on fitness of the chromosomes. The likelihood of adding additional offspring to the following generation is that solutions with high fitness ratings. A basic selection of roulette wheels rule utilized in our approach [19].

(ii) Proposed three-parent crossover

Crossover procedure is very important in GA. To generate new offspring, the crossover must be able to use search space information. Offspring distribution should neither be disproportionately narrow or disproportionately large compared to that of their parents. It is possible that the offspring will lose diversity and converge early if their distribution is much smaller than that of their parents. The opposite may be

true if the children are dispersed extensively, in which case they may be too varied and require an excessively long time to converge to optimality. There should be a balance between exploration and exploitation in the next generation. Based on the aforementioned idea, in the proposed work, three parent crossover based on random procedure is used rather than regular two parent crossover. The procedure is given below [17].

- 1. Select the parent individuals by using selection process.
- 2. If any two individuals are similar, then one is replaced with randomly from selection pool.
- 3. Arrange those three individuals according to best to worst fitness value.
- 4. A number 'E' is produced randomly;
 - (a) New off springs are produced by using following equations

$$OF_1 = x_1 + \varepsilon(x_2 - x_3)$$

$$OF_2 = x_2 + \varepsilon(x_3 - x_1)$$

$$OF_3 = x_3 + \varepsilon(x_1 - x_2)$$
(6)

where $x_1, x_2 \& x_3$ are the selected parents by using selection process, and OF₁, OF₂ & OF₃ denote newly generated off springs.

(iii) Diversity operator

To improve the exploitation capability in the individuals, diversity operator introduced in [14] considered here.

The step-wise procedure of GA-TPC to solve ED is given below:

Step 1: Initialize GA-TPC variables, max generations (G_{max}).

Step 2: Each chromosome in GA-TPC is a solution to a DED issue. The kth chromosome in mth generation is expressed in below given form

$$X_{k}^{m} = \begin{bmatrix} P_{g1,1,k}^{m} & P_{g1,2,k}^{m} & \cdots & P_{g1,t,k}^{g} \\ P_{g2,1,k}^{m} & P_{g2,2,k}^{m} & \cdots & P_{g2,t,k}^{m} \\ \vdots & \vdots & \ddots & \vdots \\ P_{gNg,1,k}^{m} & P_{gNg,2,k}^{m} & \cdots & P_{gNg,t,k}^{m} \end{bmatrix} k = 1, 2 \dots NP$$

$$g = 1, 2 \dots G_{\max}$$
(7)

where *t* indicates number of intervals in the dispatch period.

Step 2: Evaluate fitness of every individual using Eq. 8.

$$|F| = f + w_P \left(|P_{G1} - P_{G1}^{\lim}| \right)^2$$
(8)

where w_P indicates penalty value of slack bus real power.

Step 3: Apply the selection, proposed crossover, diversity operator, and create new generation.

Step 4: If any variable exceeds its existing limits, then it will be set to inline high or low value.

Step 5: Terminate the process, if utmost iterations are marked, and take the best result from previous iteration as best solution. Else, go to Step 2.

4 Simulation Results

Two different modules are investigated to assess the feasibility and efficacy of the GA-TPC technique suggested in the solution of the DED issue. The dispatch time is chosen as 24 h for one day. The number individuals and utmost iterations in all the cases are considered 40 and 300, respectively. The following are the two cases:

M1: a three-generator system without point loadings.

M2: a ten-generator system with valve point loadings.

4.1 M1: 3 Unit System

The proposed system consists of three generators and complete data for this system that includes cost characteristics of generators, generator limits, and load demand in each interval is referred from reference [20]. The optimal set of active powers obtained to this system with GA & GA-TPC are given in Table 1. These results are compared with CSA [20] and ISA [20], RGM [21] and ACO [21] and are given in Table 2. From this table, it is noticed that the suggested approach provides a superior way to discover solutions to such complex DED issues, with minimum, average and maximum costs. A minimum of 176,017.5363 (\$/day) and a minimum of 176,059.3264 \$/day achieved utilizing the formulations of proposed GA-TPC and original GA, showing the remarkable nature of the suggested method. In addition, the convergence characteristic of the method suggested is compared and shown in Fig. 1 with the original GA. This figure indicates that both convergence speed and optimum objective function of the proposed GA-TPC beats conventional GA. Here, 3-unit system size is very small, so the deviation of optimal cost from GA to GA-TPC is very small. Thus, the convergence curves are much closer to each other.

4.2 M2: 10 Unit System

GA-TPC performance is identified by considering 10 unit systems for solving DED problem with inclusion of valve points. This system is believed to have a complete date from [7]. Table 3 illustrates the findings achieved for the 10-unit system with

GA-TPCGA-TPC(MW) P_3 (MW)Cost (S/h) P_1 (MW) P_3 (MW)Cost (S/h).659506150.8083790942.547659.5436148.4312.17263.5326377.58140.71145.744363.5456376.6675.11356.9266493.50143.02247.174764.8036491.4402.11356.9266493.50143.02247.174764.8036491.4402.11356.9266493.50143.02247.174764.8036491.4402.11361.436723.75943.68852.002969.309672.0393.48777.681683.982245.96952.910971.1216837.9471.42866.942695.98948.2253.66973.146954.2919.43190.2667781.99359.31561.643760.613887.7239.10857703.06583.5180275.210971.121687.729.1086771.0857791.91287.725987.7239.10857703.06585.316969.613893.95587.7239.108693.3098503.61969.515877.927987.7239.1086771.08577.9199.51677.9199.516.118180.78387.73877.9190.26677.19122.13180.78387.73877.9190.26673.14.13180.78387.73877.9190.5677.91.131 <th>al solutio</th> <th>on of 3-unit system</th> <th>without VPL usin</th> <th>ng GA & GA-TPC</th> <th>-</th> <th></th> <th></th> <th></th>	al solutio	on of 3-unit system	without VPL usin	ng GA & GA-TPC	-			
(MW) P_3 (MW)Cost (S/h) P_1 (MW) P_3 (MW) P_3 (MW)Cost (S/h).659506150.80837.90942.547659.5436148.4312.65963.5326377.58140.11145.74436.5.5456376.6675.11356.9266493.50143.02247.174764.8036491.4402.611566.141543.42349.861666.715660.4585.50266493.50143.02249.861666.7156491.4402.611356.9266493.50943.242349.861666.715660.4285.611361.43672.375943.88223.910971.121683.94219.42860.426955.98948.2253.180273.146954.2919.42860.9426955.98948.2253.639671.121687.9471.42860.9426955.98948.2253.639671.121683.7.9471.42860.9426955.98948.2253.639671.121683.7.9471.1085710.857073.06553.180273.14695.1353.1085710.857073.06553.180273.14695.1353.108571.0857073.06553.180255.18027071.0227.1108571.0857073.06553.180255.18027071.0227.1108571.0857073.06553.180255.180255.213.211390.26685.33.821953.180257.12287.045.211 <t< th=""><th></th><th></th><th></th><th></th><th>GA-TPC</th><th></th><th></th><th></th></t<>					GA-TPC			
659606150.80837.90942.547659.5436148.43127.7263.5326377.58140.71145.744363.5456376.6651.1356.9266493.50143.02247.174764.8036491.440281.6186614.1543.02243.68655.02969.309672.039357161.436573.75943.68852.010971.1216606.458557161.43659.20695.58943.56852.910971.121695.203348777.681685.98249.56653.639673.14695.203348777.081685.98948.2253.639671.121695.203348777.083695.598948.2253.639671.121695.203348777.081686777.092779.1027779.102731390.2667781.99359.31563.64485.7372982.01.5334991.81788.70585.032866.43769.64369.13685.772943981.87787.44372.56994.122779.102243085.0361969.570569.570594.12287.045987.045944993.81669.53866.94269.53666.72269.572643088.70587.443372.56994.12287.045987.045943189.78777.91.02377.91.02377.91.02343180.78377.91.6650.74869.772989.777294	P_2	(MM)	P_3 (MW)	Cost (S/h)	P_1 (MW)	P_2 (MW)	P_3 (MW)	Cost (S/h)
72 63.532 $63.71.581$ 40.711 $45.74.43$ 63.545 6376.6675 113 56.926 6493.501 43.022 47.1747 64.803 6491.4402 113 56.926 6493.501 43.022 49.8616 66.715 6606.4585 571 61.43 661.4415 43.423 49.8616 66.715 6606.4585 571 61.43 6723.759 43.688 52.0029 693.099 672.0393 571 61.43 6723.759 43.688 52.0029 69.309 672.0393 587 6723.759 43.688 52.0029 69.309 672.0393 595 71.681 683.9822 49.569 52.9109 71.121 6937.9471 731 90.266 773.065 49.569 55.1802 77.2719 927.2039 731 90.266 7781.993 59.315 66.443 87.045 7777.919 731 90.266 7781.993 59.315 66.438 77.251 777.272 749 99.108 8503.082 66.437 72.551 777.249 749 87.1697 87.045 87.045 87.045 87.045 751 $88.02.7284$ 87.045 87.045 87.045 87.045 791 99.166 85.7032 86.1333 $80.2.7284$ 791 88.706 87.045 87.045 87.045 87.045 791 88.706 87.045 87.045 <	48	.659	50	6150.808	37.909	42.5476	59.543	6148.4312
113 56926 6493.501 43.022 47.1747 64.803 6491.4402 71 81.618 6614.415 43.423 49.8616 66.715 660.4385 571 61.43 6723.759 43.688 52.0029 693.09 6722.0393 487 77.681 6839.822 43.568 52.9109 71.121 6837.9471 487 77.681 68539.822 49.569 55.1802 73.14 6954.2919 428 66.942 6955.989 48.22 53.6396 71.121 6837.9471 795 71.085 6955.989 48.22 53.6396 71.121 687.22199 795 71085 7073.065 49569 55.1802 73.14 $9777.79.7419$ 795 90.266 7781.993 59.315 69.6437 69.6138 93.95 820.1533 795 90.266 7781.993 87.045 7779.7419 87.045 87.045 799 98.187 8260.228 66.437 69.6138 93.95 820.1533 800 85.705 87.045 87.045 87.045 87.045 810 87.045 87.045 87.045 87.045 87.0459 810 87.05 87.0459 87.045 87.0459 87.045902 810 87.045 87.0459 87.045 87.045902 810 88.705 $89.03.619$ 69.735 72.5499 87.04592 910	42	72	63.532	6377.581	40.711	45.7443	63.545	6376.6675
(1)81.618661.41543.42349.861666.715660.4585571161.43673.75943.68852.002969.309672.03935.8777.6816839.82245.96952.910971.1216837.94715.48766.9426955.98948.2253.639673.146957.9195.192571.05549.56955.180273.146957.9195.19390.2667781.99359.31566.43769.64377071.0275.19390.2667781.99359.31569.643769.61387071.0275.19390.2667781.99359.31569.643769.61387071.0275.19390.2667781.99359.31569.643769.61387071.0275.94987.045850.228860.643769.613887.04587.04195.9592.05685.979487.04587.045987.057995.49998.18787.04872.239998.17285.02.72995.49987.05857.308269.54874.5422102.785.49998.18772.68972.539998.17285.02.72995.49988.70587.04869.54969.54974.19035.49998.18772.44969.74874.19035.49988.705809.54169.24997.24987.04905.31088.705809.54150.47852.4474.19035.32474.163777166150.47852.19270.496 </td <td>5</td> <td>1.113</td> <td>56.926</td> <td>6493.501</td> <td>43.022</td> <td>47.1747</td> <td>64.803</td> <td>6491.4402</td>	5	1.113	56.926	6493.501	43.022	47.1747	64.803	6491.4402
571 61.43 6723.759 43.688 52.0029 69.309 672.0393 $.487$ 71.681 6839.822 45.690 52.9109 71.121 6837.9471 $.428$ 66.942 6955.989 48.22 53.6396 71.121 6857.9219 $.428$ 66.942 6955.989 48.22 53.6396 71.121 6857.9219 $.795$ 71085 7073.065 49.569 55.1802 75.251 7071.027 $.5133$ 90.266 7781.993 59.315 64.43 87.045 7779.7419 $.519$ 92.066 7781.933 59.315 64.37 69.6138 93.95 820.1533 $.519$ 92.066 7781.933 59.315 69.6138 93.95 820.17299 $.519$ 92.309 $85.03.082$ 69.537 69.6138 93.95 870.5299 $.649$ 95.705 8503.082 69.5479 870.45 870.5299 $.9395$ $85.03.082$ 69.548 74.5422 93.955 870.57284 $.971$ 93.309 86.13264 $74.6.9002$ 870.27284 $.971$ 93.309 870.568 870.57284 870.57284 $.971$ 93.309 $850.3.6196$ 69.735 71.9122 870.7284 $.971$ 93.309 870.568 870.9722 $810.91.6$ $.93332$ 80.7337 870.868 74.86 741.9093 $.8703$ 80.7932 70.469 833.516 74.492 70.496 <td>4</td> <td></td> <td>81.618</td> <td>6614.415</td> <td>43.423</td> <td>49.8616</td> <td>66.715</td> <td>6606.4585</td>	4		81.618	6614.415	43.423	49.8616	66.715	6606.4585
487 77.681 6839.822 45.969 52.9109 71.121 6837.9471 428 66.942 6955.989 48.22 53.6396 73.14 6954.2919 479 7071.055 49.569 55.1802 75.251 7779.7419 61313 90.266 7781.993 59.315 63.64 87.045 7779.7419 61313 90.266 7781.993 59.315 63.64 87.045 7779.7419 61313 90.266 7781.933 59.315 66.437 69.6138 87.045 7779.7419 61313 90.266 7781.933 59.315 66.437 69.6138 87.045 8260.1533 6190 95.705 8503.082 66.437 69.6138 93.95 8260.1533 6191 92.309 85705.082 60.437 71.22599 98.172 8260.1533 6191 93.309 85705.082 69.735 71.9122 98.172 8502.7299 611 88.705 8019.541 63.295 65.9794 90.725 8019.16 88.705 8019.541 63.295 65.9794 90.725 8019.16 88.705 8019.541 63.273 826.1728 874.9002 88.705 8019.546 52.448 55.3434 74.179 7071.0302 88.705 8019.564 52.448 55.3434 74.179 7071.0302 88.705 8019.566 $71.818.803$ 74.866 74.846 74.846 74.876 <	Š.	4.571	61.43	6723.759	43.688	52.0029	69.309	6722.0393
42866.9426955.98948.2253.639673.146954.2919.77971.0857073.06549.56955.180275.2517779.7419.31390.2667781.99359.31569.64387.0457779.7419.63148260.22866.43769.613893.958260.1533.68695.7058503.08269.56872.259998.1728502.7299.68695.7058503.08269.56872.259998.1728502.7299.68193.3098503.61969.73571.912298.3538502.7284.69193.3098503.61969.73571.912298.3538502.7284.69188.7058019.54163.29565.979490.7288019.16.83180.7837541.00386.43371.912290.7288019.16.83180.7837542.07656.40860.843982.7487541.9033.8327542.07656.40860.843982.7487541.9033.33270.166150.47855.343474.1797071.0302.332703.68703.88.1673.121270.4966837.9733.64975.6871.88.180376.5270.4966837.9733.340795.0871.88.1677.96981.837742.0067.332703.6971.88.1677.99770.4966837.9733.64975.16677.96981.837742.0067.64975.16971.99770.496 <td< td=""><td>4</td><td>7.487</td><td>77.681</td><td>6839.822</td><td>45.969</td><td>52.9109</td><td>71.121</td><td>6837.9471</td></td<>	4	7.487	77.681	6839.822	45.969	52.9109	71.121	6837.9471
795 1.085 7073.065 49.569 55.1802 75.251 7071.0227 313 90.266 7781.993 59.315 63.64 87.045 7779.7419 29 94.018 8260.228 66.437 69.6138 93.95 8260.1533 686 95.705 8503.082 69.568 72.2599 81.72 8502.7299 610 87.05 8748.433 72.68 74.5422 102.78 8746.9002 631 98.187 8748.433 72.68 74.5422 98.172 8502.7284 971 93.309 8503.619 69.735 71.9122 98.353 8502.7284 971 93.309 8503.619 69.735 71.9122 98.353 8502.7284 971 93.309 8503.619 69.735 71.9122 98.353 8502.7284 051 88.705 8019.541 63.295 65.9744 90.725 8019.16 051 88.705 8019.541 63.226 55.444 74.179 7071.0302 051 80.783 6801.571 56.408 55.3424 74.179 7071.0302 053 7071.661 50.478 55.3424 74.179 7071.0302 051 70.368 6838.516 57.468 55.3424 74.179 7071.0302 051 70.368 738.166 778.466 52.192 70.496 6837.9732 0569 70.866 70.866 70.866 70.466 70.496 </td <td>5</td> <td>3.428</td> <td>66.942</td> <td>6955.989</td> <td>48.22</td> <td>53.6396</td> <td>73.14</td> <td>6954.2919</td>	5	3.428	66.942	6955.989	48.22	53.6396	73.14	6954.2919
31390.2667781.99359.31563.6487.0457779.7419.2994.0188260.22866.43769.613893.958260.1533.68695.7058503.08269.56872.559998.1728502.7299.63098.1878748.43372.6874.5422102.788746.9002.97193.3098503.61969.73571.912298.3538502.7284.05193.3098503.61969.73571.912298.3538502.7284.05188.7058019.54163.29565.979490.7558019.16.05188.7058019.54163.29565.979490.7558019.16.05188.7058019.54163.29565.979490.7558019.16.05180.7837542.07656.40860.843982.7487541.9093.05170.166150.47855.343474.1797071.0302.05474.1637071.66150.47855.343474.1797071.0302.05479.688.51647.31252.19270.4966837.9732.64979.687188.4652.2456.107176.6527188.1803.64995.1667548.11657.96960.193881.8377542.0067.64495.1668505.09869.5771.59798.338502.7333	62	2.795	71.085	7073.065	49.569	55.1802	75.251	7071.0227
2994.0188260.22866.43769.613893.958260.1533.68695.7058503.08269.56872.259998.1728502.7299.43998.1878748.43372.6874.5422102.788746.9002.91193.3098503.61969.73571.912298.3538502.7284.93188.7058019.54163.29565.979490.7258019.16.83188.7058019.54163.29565.979490.7258019.16.83180.7837542.07656.40866.843982.7487541.9093.83180.7837071.66150.47855.343474.1797071.0302.33270366838.51647.31252.19270.4966837.9732.64979.686838.51657.49955.19270.4966837.9732.64979.5086838.51677.81.1657.1937071.0302.64979.50868.38.51677.8176.50370.4966837.9732.64979.6677.81.1657.96960.193881.8377542.0067.64995.1668505.09869.5771.59798.338502.7333	56	.313	90.266	7781.993	59.315	63.64	87.045	7779.7419
.686 95.705 8503.082 69.568 72.599 98.172 8502.7299 .439 98.187 8748.433 72.68 74.5422 102.78 8746.9002 .430 98.187 8748.433 72.68 74.5422 102.78 8746.9002 .971 93.309 8503.619 69.735 71.9122 98.353 8502.7284 .051 88.705 8019.541 63.295 65.9794 90.725 8019.16 .051 88.705 8019.541 63.295 65.9794 90.725 8019.16 .831 80.783 7542.076 56.408 66.8439 82.748 7541.9093 .801 74163 7071.661 50.478 55.3434 74.179 7071.0302 .332 70.568 633.516 47.312 52.192 70.496 6837.9732 .332 669 73.643 74.179 74.179 7071.0302 .332 70.568 67.943 52.192 70.496 6837.9732	68	.29	94.018	8260.228	66.437	69.6138	93.95	8260.1533
.43998.1878748.43372.6874.5422102.788746.9002.97193.3098503.61969.73571.912298.3538502.7284.05188.7058019.54163.29565.979490.7258019.16.83180.7837542.07656.40860.843982.7487541.9093.83174.1637071.66150.47855.343474.1797071.0302.33274.1637071.66150.47855.343474.1797071.0302.33270.3686838.51647.31252.19270.4966837.9732.64979.5087188.4652.2456.107176.6527188.1803.64495.1667548.11657.96960.193881.8377542.0067.332103.68505.09869.5771.59798.8381.8377542.0057	74	.686	95.705	8503.082	69.568	72.2599	98.172	8502.7299
.97193.3098503.61969.73571.912298.3538502.7284.05188.7058019.54163.29565.979490.7258019.16.83180.7837542.07656.40860.843982.7487541.9093.83180.7837542.07656.40860.843982.7487541.9093.332701.166150.47855.343474.1797071.0302.332703.686838.51647.31252.19270.4966837.9732.64979.5087188.4652.2456.107176.6527188.1803.64495.1667548.11657.96960.193881.8377542.0067.654103.68505.09869.5771.59798.838502.7353	72	2.439	98.187	8748.433	72.68	74.5422	102.78	8746.9002
(051) 88.705 8019.541 63.295 65.9794 90.725 8019.16 .831) 80.783 7542.076 56.408 60.8439 82.748 7541.9093 .807 74.163 7071.661 50.478 55.3434 74.179 7071.0302 .332 74.163 60.8439 55.3434 74.179 7071.0302 .332 70.368 6838.516 47.312 52.192 70.496 6837.9732 .649 79.508 79.508 57.164 56.1071 76.652 7188.1803 .644 95.166 758.4116 57.969 60.1938 81.837 7542.0067 .644 95.166 75.864 81.837 76.652 7188.1803 .644 95.166 75.864 60.1938 81.837 7542.0067	7L	1.971	93.309	8503.619	69.735	71.9122	98.353	8502.7284
1.831 80.783 7542.076 56.408 60.8439 82.748 7541.903 366 74.163 7071.661 50.478 55.3434 74.179 7071.0302 356 74.163 7071.661 50.478 55.3434 74.179 7071.0302 332 70.368 6838.516 47.312 52.192 70.496 6837.9732 490 79.508 7188.46 52.24 56.1071 76.652 7188.1803 649 95.166 7548.116 57.969 60.1938 81.837 7542.0067 649 103.6 8505.098 69.57 71.5977 98.83 802.7353	6	5.051	88.705	8019.541	63.295	65.9794	90.725	8019.16
36674.1637071.66150.47855.343474.1797071.030233270.3686838.51647.31252.19270.4966837.973264979.5087188.4652.2456.107176.6527188.180364495.1667548.11657.96960.193881.8377542.0067392103.68505.09869.5771.599798.838502.7353	9	0.831	80.783	7542.076	56.408	60.8439	82.748	7541.9093
.33270.3686838.51647.31252.19270.4966837.9732.64979.5087188.4652.2456.107176.6527188.1803.66495.1667548.11657.96960.193881.8377542.0067.392103.68505.09869.5771.599798.838502.7353	S.	2.366	74.163	7071.661	50.478	55.3434	74.179	7071.0302
.649 79.508 7188.46 52.24 56.1071 76.652 7188.1803 .664 95.166 7548.116 57.969 60.1938 81.837 7542.0067 .392 103.6 8505.098 69.57 71.5997 98.83 8502.7353	5	6.332	70.368	6838.516	47.312	52.192	70.496	6837.9732
1.664 95.166 7548.116 57.969 60.1938 81.837 7542.0067 392 103.6 8505.098 69.57 71.5997 98.83 8502.7353	5(6.649	79.508	7188.46	52.24	56.1071	76.652	7188.1803
.392 103.6 8505.098 69.57 71.5997 98.83 8502.7353	5	9.664	95.166	7548.116	57.969	60.1938	81.837	7542.0067
	9	4.392	103.6	8505.098	69.57	71.5997	98.83	8502.7353

GA & GA-TPC without VDI neing Table 1 Ontimal solution of 3-unit system

Table 1 (c	sontinued)							
	GA				GA-TPC			
<i>t</i> (h)	P_1 (MW)	P_2 (MW)	P_3 (MW)	Cost (S/h)	P_1 (MW)	P_2 (MW)	P_3 (MW)	Cost (S/h)
21	67.307	65.251	92.442	8139.833	64.692	67.3155	92.992	8139.4628
22	54.213	55.534	80.253	7305.985	51.872	58.4052	79.723	7305.7212
23	48.387	49.286	62.327	6607.532	43.017	49.8323	67.151	6606.4604
24	45.796	49.204	50	6266.213	38.384	47.6841	58.932	6262.345
TC (\$/h)				176,059.3264	TC (\$/h)			176,017.5363

406

A New Genetic Algorithm Variant Designed ...

Method	Minimum cost (\$/h)	Average cost (\$/h)	Maximum cost (\$/h)	ET (min)
RGM [21]	177,291	-	-	-
ACO [21]	176,212	-	-	-
CSA [20]	176,370	-	-	-
ISA [20]	176,320	-	-	-
GA	176,059.3264	176,066.6535	176,095.8222	0.38
GA-TPC	176,017.5363	176,019.1552	176,028.3286	0.42

Table 2 Comparison of the statistical analysis for 3-unit system with the other methods

Fig. 1 Convergence curve of 3-unit system

valve point loading effect. These findings are compared to those of previously developed algorithms such as DE [8], hybrid EP-SQP [6], hybrid PSO-SQP [18], deterministically guided PSO (DGPSO) [7], hybrid DE (HDE) [7], improved DE (IDE) [7], ABC [6], modified DE (MDE) [7], AIS [12], AIS-SQP [12], chaotic DE (CDE) [7] and improved PSO (IPSO) [7]. This table shows a comprehensive comparison of solution quality, including lowest, average and maximum cost, as well as simulation time, and it is confirmed that the proposed method produces more optimum results outcomes that the methods described in the literature. Tables 4 and 5 shows the optimal set of active powers obtained to this system with GA-TPC and GA respectively. The suggested algorithm's convergence characteristic is shown in Fig. 2 and compared to the original GA. As can be seen from the graph, the suggested method beats the original GA in terms of convergence speed and optimality. The variation

Method	Minimum cost (\$/h)	Average cost (\$/h)	Maximum cost (\$/h)	ET (min)
DE [8]	1,019,786	0	0	11.25
EP-SQP [6]	1,031,746	1,035,748	0	20.51
PSO-SQP [7]	1,027,334	1,028,546	1,033,986	16.37
DGPSO [7]	1,028,835	1,030,183	0	15.39
HDE [7]	1,031,077	0	0	0
IDE [7]	1,026,269	0	0	0
ABC [6]	1,021,576	1,022,686	1,024,316	2.6029
MDE [7]	1,031,612	1,033,630	0	12.5
AIS [12]	1,021,980	1,023,156	1,024,973	19.01
AIS-SQP [12]	1,029,900	0	0	0
CDE [7]	1,019,123	1,020,870	1,023,115	0.32
IPSO [7]	1,018,217	1,018,965	1,020,418	2.8
GA	1,029,091.80	1,029,189.56	1,029,455.20	1.2
GA-TPC	1,015,473.71	1,015,536.60	1,015,823.71	1.1

Table 3 Comparison of the statistical analysis for 10-unit system with the other methods

of TC with 20 trials is shown in Fig. 3 for 6-unit system, and it is observed that 17 trials were achieved optimal cost by the GA-TPC method over 20 trials and indicates the precision of the proposed method. Aforementioned simulation results depict that GA-TPC is successful in addressing small-scale test systems and using it to solve multi-objective DED for large and practical power systems would be an extension of the current study.

5 Conclusion

To address the dynamic economic dispatch issue of power systems with valve point loading effects, this article proposes a novel method termed genetic algorithm with three-parent crossover. Two different test scenarios are used to validate the technique. Comparing the suggested technique to other previously published approaches, including lowest, average and maximum costs as well as simulation time, provides a thorough understanding of the pros and cons of each. The findings of the study show that GA-TPC was able to find solutions that were more cost-effective. The comparison of suggested algorithm's convergence characteristics with conventional GA also confirms the speed and ability of the GA-TPC method to discover superior solutions. These facts suggest that the technique under consideration is capable of resolving DED problems.

AI	vew (1/\$/)	359.6021 B	002.0057	95.292 Second	169.1056)22.3118 mt	Var 117.5852	260.2457 uu	339.2702 Des	394.9451 ^{di}	346.7458 p	239.2323	271.1464	523.3424	140.8612	559.2939	118.2678	922.3118	981.7692	266.6374	500.466	921.2908	(continued)
	$P_{10}(\mathrm{MW})$ Cos	55.00 28,	55.00 30,0	55.00 33,0	55.00 36,	55.00 37,9	55.00 41,	55.00 42,	55.00 44,	55.00 47,8	55.00 51,	55.00 53,2	55.00 55,2	55.00 51,0	55.00 48,	55.00 44,	55.00 39,4	55.00 37,9	55.00 40,9	55.00 44,2	55.00 51,0	55.00 47,9	
	$P_9(MW)$	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	52.05	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	52.05	
	$P_8(MW)$	47.00	47.00	47.00	47.00	47.00	47.00	47.00	47.00	120.00	120.00	120.00	85.31	47.00	47.00	120.00	47.00	47.00	47.00	47.00	47.00	85.31	
	$P_7(\mathrm{MW})$	129.59	129.59	129.59	129.59	129.59	129.59	129.59	129.59	129.59	129.59	129.59	129.59	129.59	129.59	129.59	129.59	129.59	129.59	129.59	129.59	129.59	
	$P_6(MW)$	122.45	122.45	122.45	122.45	160.00	160.00	122.45	160.00	123.51	122.45	148.11	160.00	142.66	160.00	144.60	122.45	160.00	122.45	122.45	122.45	126.144	
	$P_5(MW)$	167.33	73.00	73.00	73.00	73.00	73.00	122.86	222.59	222.59	222.59	222.59	222.59	222.59	222.59	172.73	222.59	73.00	122.86	172.73	222.59	222.59	
sing GA-TPC	$P_4(MW)$	60.00	60.00	60.00	60.00	60.00	60.00	60.00	60.00	60.00	241.25	300.00	300.00	241.25	300.00	60.00	60.00	60.00	60.00	60.00	241.25	60.00	
mit system us	$P_3(MW)$	73.00	88.087	73.00	286.17	311.98	306.73	291.79	305.13	340.00	307.81	297.39	298.94	297.39	300.40	297.39	284.57	311.98	305.06	315.93	317.61	340.00	
lution of 10-u	$P_2(MW)$	135.00	135.00	222.26	309.53	396.79	396.79	396.79	396.79	396.79	396.79	396.79	460.00	460.00	309.53	396.79	309.53	396.79	309.53	396.79	460.00	396.79	
Optimal sol	$P_1(MW)$	226.62	379.87	455.69	303.25	226.62	379.87	456.50	379.87	456.50	456.50	456.50	456.50	456.50	379.87	379.87	303.25	226.62	456.50	456.50	456.50	456.50	
Table 4	<i>t</i> (h)	-	2	3	4	5	6	7	8	6	10	=	12	13	14	15	16	17	18	19	20	21	

(continued)	
4	
le	
<u>_</u>	

Table 4	(continued)										
<i>t</i> (h)	$P_1(MW)$	$P_2(MW)$	$P_3(MW)$	$P_4(MW)$	$P_5(MW)$	$P_6(MW)$	$P_7(\mathrm{MW})$	$P_8(MW)$	$P_9(MW)$	$P_{10}(MW)$	Cost (\$/h)
22	456.50	135.00	304.00	60.00	222.59	160.00	129.59	85.31	20.00	55.00	41,303.7322
23	303.25	396.79	190.36	60.00	73.00	57.00	129.59	47.00	20.00	55.00	34,804.1756
24	456.50	135.00	85.46	60.00	73.00	122.45	129.59	47.00	20.00	55.00	31,611.0776
TC (\$/)	(h										1,015,473.713

AI	NUW	Jei	ictic		gorn		v al	ant	Des	igne	.u	•											
	Cost (\$/h)	28,835.4134	30,081.4690	33,514.2946	36,581.9959	38,159.0757	41,522.4435	43,423.0248	44,949.1070	48,765.2458	52,222.2846	53,935.9627	55,997.8655	52,381.0673	48,784.4983	44,967.6019	40,057.3805	38,271.5555	41,875.6074	45,209.9895	52,359.3581	48,655.8495	(continued)
	P_{10} (MW)	55.00	55.00	55.00	55.00	55.00	55.00	55.00	55.00	55.00	55.00	55.00	55.00	55.00	55.00	55.00	55.00	55.00	55.00	55.00	55.00	55.00	
	P_9 (MW)	20.00	20.00	20.00	20.00	20.00	20.00	48.58	20.00	20.00	29.67	20.00	23.63	20.00	30.16	20.00	20.00	20.00	53.02	20.00	80.00	20.00	
	P_8 (MW)	47.00	47.00	120.00	47.00	47.00	47.00	47.00	84.04	48.81	47.00	120.00	77.61	47.00	83.61	47.00	83.87	47.00	84.33	47.00	80.58	81.38	
	P_7 (MW)	130.00	130.00	130.00	130.00	124.58	130.00	130.00	123.86	130.00	130.00	130.00	130.00	130.00	130.00	130.00	128.57	128.21	130.00	121.39	130.00	130.00	
	P_6 (MW)	104.23	133.18	118.74	141.72	125.20	160.00	144.79	160.00	160.00	160.00	124.53	121.46	126.19	126.34	134.01	109.03	120.45	112.94	126.28	143.55	160.00	
	P_5 (MW)	116.58	73.00	73.00	73.00	123.12	221.38	84.679	184.16	112.55	234.30	243.00	243.00	243.00	243.00	73.00	73.00	157.71	218.73	243.00	218.01	211.23	
sing the GA	P_4 (MW)	60.00	60.00	60.00	60.00	60.00	60.73	60.00	60.00	165.23	197.25	300.00	300.00	300.00	60.00	60.00	60.00	60.00	60.00	60.00	171.32	170.77	
unit system u	P3 (MW)	73.00	73.00	311.54	300.01	73.00	340.00	289.50	312.71	316.42	298.52	314.69	340.00	340.00	293.19	340.00	340.00	292.44	73.00	340.00	340.00	318.71	
olution of 10-	P_2 (MW)	135.00	135.00	135.00	135.00	399.24	135.00	391.59	394.32	460.00	460.00	460.00	460.00	419.50	460.00	460.00	310.12	135.00	396.70	384.23	395.86	309.39	
5 Optimal se	P_1 (MW)	295.18	383.81	234.70	444.25	452.82	458.88	450.83	381.89	455.97	460.24	378.76	469.28	391.29	442.68	456.99	374.39	464.17	444.25	379.08	457.65	467.50	
Table :	<i>t</i> (h)	-	5	3	4	5	6	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	

A New Genetic Algorithm Variant Designed ...

Table 5	(continued)										
<i>t</i> (h)	P_1 (MW)	P_2 (MW)	P_3 (MW)	P_4 (MW)	P_5 (MW)	P_6 (MW)	P_7 (MW)	P_8 (MW)	P_9 (MW)	P_{10} (MW)	Cost (\$/h)
22	454.19	306.56	276.10	60.00	119.13	160.00	130.00	47.00	20.00	55.00	41,456.3079
23	231.34	135.00	322.07	60.00	171.58	160.00	130.00	47.00	20.00	55.00	34,990.4801
24	226.30	135.00	157.17	60.00	235.83	114.92	130.00	49.75	20.00	55.00	32,093.9229
TC (\$/]	(h										1,029,091.801

Fig. 2 Convergence characteristics of 10-unit system

Fig. 3 Variation of TCV for 10-unit system with 20 trials

References

- 1. Li F, Morgan R, Williams D (1997) Hybrid genetic approaches to ramping rate constrained dynamic economic dispatch. Elect Power Syst Res 43:97–103
- Hindi SK, Ab Ghani MR (1991) Dynamic economic dispatch for large scale power systems: a Lagrangian relaxation approach. Int J Elect Power Energy Syst 3:51–56
- Chen CL, Wang S (1993) Branch-and-bound scheduling for thermal generating units. IEEE Trans Energy Conversi. 8(2):184–189
- Travers D, Kaye RJ (1998) Dynamic dispatch by constructive dynamic programming. IEEE Trans Power Syst 13:72–78
- Xia X, Elaiw AM (2010) Optimal dynamic economic dispatch of generation: a review. Electr Power Syst Res 80(8):975–986
- 6. Victoire T, Jeyakumar AE (2005) A modified hybrid EP–SQP approach for dynamic dispatch with valve-point effect. Int J Electr Power Energy Syst 27(8):594–601
- 7. Rabiee B-I, Ehsan M (2012) Time-varying acceleration coefficients IPSO for solving dynamic economic dispatch with non-smooth cost function. Energy Convers Manage 56:175–183
- Balamurugan R, Subramanian S (2008) Differential evolution-based dynamic economic dispatch of generating units with valve-point effects. Elect Power Compon Syst 36:828–843
- 9. Hemamalini S, Simon S (2011) Dynamic economic dispatch using artificial bee colony algorithm for units with valve-point effect. Euro Trans Electr Power 21:70–81
- Pulluri H, Kumar NG, Rao UM, Kumar MG (2019) Krill Herd algorithm for solution of economic dispatch with valve-point loading effect. Appl Comput Auto Wireless Syst Electr Eng. Lecture Notes in Electrical Engineering 553, 383–392
- 11. Hemamalini S, Simon SP (2011) Dynamic economic dispatch using artificial immune system for units with valve-point effect. Int J Elect Power Energy Syst 33:868–874
- Pulluri H, Vyshnavi M, Shraddha P, Priya BS, Hari TS (2020) Genetic algorithm with multiparent crossover solution for economic dispatch with valve point loading effects. Innovations in Electr Electro Eng Lecture Notes in Electrical Engineering 6, 429–438
- Sloiman HA (2011) Modern optimization techniques with applications in electric systems. Springer Publications. https://doi.org/10.1007/978-4614-1752-1
- Malik TN, Asar AU, Wyne MF, Akhtar S (2010) A new hybrid approach for the solution of nonconvex economic dispatch problem with valve-point effects. Int J Elctr Power Syst Res 80, 1128–1136
- Celal Y, Serdar O (2011) A new hybrid approach for nonconvex economic dispatch problem with valve-point effect. Energy 36:5838–5845
- ElsayedRuhul SM, SarkerDaryl A, Essam L, A comparative study of different variants of genetic algorithms for constrained optimization simulated evolution and learning, vol 6457, pp 177–186
- 17. Saber N, Ruhul A, Dary L (2011) GA with a new multi-parent crossover for constrained optimization, in IEEE Congress on Evolutionary Computation, pp 857–864
- Tomar A, et al (2020) Machine learning, advances in computing, renewable energy and communication, LNEE Vol 768. Springer Nature, Berlin, p 659. https://doi.org/10.1007/978-981-16-2354-7. ISBN 978-981-16-2354-7
- 19. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning, reading. Addison-Wesley, Reading, MA
- Trivedi IN, Jangir P, Bhoye M, Jangir N, An economic load dispatch and multiple environmental dispatch problem solution with microgrids using interior search algorithm Neural Comput & Appl. https://doi.org/10.1007/s00521-016-2795-5
- Esmat A, Magdy A, ElKhattam W, ElBakly AM (2013) A novel energy management system using ant colony optimization for micro-grids. In: 2013 3rd International conference on Electric power and energy conversion systems (EPECS), Istanbul, pp 1–6