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Abstract. Autonomous Transport System (ATS) architectures enable a wide
range of new applications and bring significant benefits to transport systems. How-
ever, during the design stage, errors of the architecture can have an impact on the
smooth implementation of the ATS, which will endanger the normal operation of
the transport systems. To ensure a high autonomy of the ATS architecture, i.e.,
“functionally evolvable, logically reconfigurable and physically configurable”,
the detection of ATS architecture design errors is essential. This paper aims to
fill the research gap in the existing research on diagnosing or evaluating ATS
architectures. Inspired by word embedding models in natural language processing
communities, we propose a data-driven approach to diagnose ATS architectures
without prior knowledge or rules. We use an architecture embedding model to
generate vector representations of ATS architectures, then train the model through
negative sampling of the training dataset to identify the features of abnormal ATS
architecture. Finally, we employ the trained model to classify structural errors
of the test dataset generated from the ATS architecture. The experimental results
show that the proposed method gains a relatively good effect of classifying with
an average accuracy of 79.3%, demonstrating the effectiveness of the method.

Keywords: Autonomous Transport System · Architecture embedding model ·
Triple classification · Vector computation

1 Introduction

With the development of technologies such as self-driving cars and cooperative vehicles
infrastructure system, existing transport systems are evolving from intelligent transport
systems to autonomous transport systems. To reduce human intervention, autonomous
transport systems transport passengers and goods through self-organized operations and
autonomous services. All these systems have one common character: Inside the system,
independent components have to communicatewith others to avoid incomplete or unclear
communication mechanisms and inconsistent information quality that complicates the
introduction of new services and the involvement of new stakeholders and even blocks
this process, it is essential to introduce a unified ATS architecture. An ATS architecture
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integrates transport services, communications networks, vehicles, transport infrastruc-
ture,with traffic participants to provide a steady, trustworthy, secure, and privacy-friendly
environment for users. The design process of an ATS architecture involves a great deal of
repetitive and specializedwork that requires awealth of knowledge and careful reasoning
ability, and analytical skills. The components and interactions of theATS architecture are
in continuous evolution and iteration. The above process may generate new and potential
errors in the ATS architecture. Therefore, a scientific diagnosis approach is required to
ensure the validity and reliability of the ATS architecture throughout the whole process
of architecture evolution and iteration. By diagnosing the ATS architecture designed
for a given city or region, potential errors in the architecture can be detected and fixed
before implementing the ATS. It is good practice to implement such assurance proce-
dures in the development of designing or modifying an ATS architecture. The diagnosis
characteristics can be stored in the computer and reusable. However, no feasible meth-
ods that can be applied to the diagnosis process without prior knowledge or rules. In
this paper, we propose a data-driven approach that represents the structural features of
the ATS architecture through vector representation generated by the ATS architecture
embedding model. Then the potential errors in the ATS architecture will be detected by
vector computation without additional rules. The method simplifies the anomaly detec-
tion process into vector computation, which is relatively suitable for the continuously
updated ATS architecture.

The paper is structured as follows: Sect. 2 describes the ATS architecture diagnosis
problem and provides an overview of the proposedmethod. Then our diagnosis approach
is presented in Sect. 3. In Sect. 4, we give numerical examples based on dataset from
the national ITS reference architecture to demonstrate the effectiveness of the proposed
method, and finally, Sect. 5 summarizes this paper.

2 Problem Description and Methodology Overview

Autonomous Transport System transports equipment, traffic participants, goods, infor-
mation, or resources from one point to another with minimal human intervention [1,
2]. ATS exists in a variety of transportation modes such as trucks, buses, rail, ships,
and even aircraft. At the early stage they are typically deployed in controlled indus-
trial areas but are expected to be deployed soon in public areas with various degrees
of autonomy. Unlike Autonomous Vehicles (AVs) [3], which offer excellent services to
individual passengers, ATS integrates vehicles, freight, traffic participants, infrastruc-
ture, and information into a system to meet particular needs. When it comes to ATS
architecture, the focus is on the interactions between components in a complex system
to ensure the efficiency and the stable operation of ATS.

TheATSarchitecture is a static framework for givingmacroguidance for the transport
system [4]. Designing an ATS architecture involves lots of repeatable and technical
work that requires fund of knowledge and careful reasoning ability and analytical skills.
With continuous evolution and iteration of the ATS architecture, the components and
interactions can change accordingly. While unforeknown errors may be generated in the
ATS architecture. Detecting potential errors at the architecture design stage can help to
reduce cost and improve productivity [5]. The architecture diagnosis checks over the
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internal logical relations, providing a basis for tracing and solving problems of the ATS
architecture. It is vital in ensuring the valid deployment of an ATS through the diagnosis
techniques.

With the rise of artificial intelligent technology, diagnosis methods that focus on
sensors monitoring and signal processing as core tasks have gradually transitioned to
diagnosis approaches based on knowledge [6–8]. The diagnosis knowledge can be stored
in the computer and reusable. Therefore, the theoretical ATS architecture will relatively
match up with the knowledge-based diagnosis approaches.

Currently, knowledge-based diagnosis methods [9–12] can be broadly classified into
two categories: symbolic logic inference methods and representation learning methods.
Traditional symbolic logic approaches focus on deterministic deductive reasoning and
achieve inference diagnosis by defining ontological axioms or logical rules, which have
the advantage of being precise and interpretable. While the main disadvantage is that
they require the manual definition of logically strict inference rules, so their coverage
is narrow and not easily extended. Besides, they cannot handle implicit or uncertain
knowledge. To avoid the manual definition of rules, another kind of symbolic inference
method uses statistical models of inductive reasoning to automatically learn rules from
a large amount of facts. It can generalize abstract logical rules by learning the common
features of tagged cases. The main advantage is that it reduces the workload of manually
defining rules, but rule learning consumes too much computing resource and cannot
represent implicit or uncertain knowledge either.

The representation learning diagnosis method transforms both entities and relations
into the vector space and completes inferential diagnosis by vector computation [13],
using low-dimensional dense vectors to represent entities and relations. The parameter-
ized vector is an approximate representation in the vector space based on the existing
knowledge in the knowledge graph as a sub-supervised signal. On the other hand, vector-
based or neural network based inference computing is an approximate inference result
obtained through differentiable representation learning [14]. Therefore, the inference
process and result are also uncertain. Thus, representation learning methods and neural
network approaches are easier to represent uncertain knowledge and implement uncertain
reasoning than logical inference and symbolic rule-based approaches. In addition, the
inference is more efficient as the inference process is simplified to a vector computation,
eliminating the need for symbolic matching and rule search.

The ATS architecture is a flexible and future-proof architecture that guides the evo-
lution and iteration of the transport system. Therefore, ATS architecture diagnosis also
accompanies the whole process of architecture evolution and iteration. The above pro-
cess may cause unpredictable and artificial errors in the ATS architecture. These changes
in architecture caused by the evolution and iteration require updating diagnosis knowl-
edge frequently to accommodate them. Since the dynamic problem is not well solved
by traditional logical reference methods, we need a scientific diagnosis approach to
ensure validity and reliability. Inspired by the word embedding model in the natural
language processing community [15], this paper proposes a data-driven approach to
diagnose potential errors without extra knowledge or rules in ATS architectures through
our architecture embedding model and vector computation. The method simplifies the
inference process into vector computation, overcoming the shortcomings of traditional



88 A. Zhou et al.

diagnosis methods that rely on expert knowledge and rules. The method consists of two
key components: architecture embedding model and anomaly detection.

3 Architecture Embedding Model

An ATS architecture consists of requisite structural knowledge and constraint rules that
provide a guide to establish a relationship with infrastructure, vehicles, traffic partici-
pants and system-level functional objects in a transport system. This knowledge can be
represented through classical knowledge graph methods, stored in the form of triples as
(head entity, relationship, tail entity). Here a single example (roadside devices, provision-
ing, road network health status detection) means that roadside devices are responsible
for provisioning road network health status. While triples are powerful in represent-
ing structured data, the symbolic characteristic of such triples makes knowledge graph
difficult to handle, especially on a large scale. Due to the above reason and ATS archi-
tecture embedding model is proposed, inspired by word embedding models from the
natural language processing (NLP) community. The key idea is to vectorize structural
details into the continuous vector space, simplifying the difficulty and workload while
maintaining the inherent structure of the knowledge graph. The vector representation
embedded contains semantic information that can be used in rich downstream appli-
cations of NLP such as link prediction and triple classification. The embedding model
utilizes rich semantic information about entities and relations, which can significantly
improve knowledge acquisition and reasoning ability. The vector representation makes
it possible to check whether the triple is correct by vector computation. The criterion of
correct triples is defined by the truth value, which is calculated as the Euclidean distance.
Architecture anomalies are then identified based on the truth value of the triples. The
rationality of the architecture is measured by computing the mean value of all triples in
the same vector space. This section consists of two parts: knowledge representation and
model training.

3.1 Knowledge Representation in ATS Architecture

The embedding model generates the vector representation of the architectural content
based on the co-occurrence distribution of the architectural content in the training dataset.
Inspired by the word2vec model proposed by Google in 2013 [13], the architecture
embedding model in this paper also uses negative sampling to increase the training
speed of the model and improve the quality of the vector representation. Negative sam-
pling training means that the model will be trained on both positive and negative data
features during the training process. The architecture embedding model is a three-layer
neural network, as shown in Fig. 1, with input, output and hidden layers. It is trained on
both positive samples (true connections) and negative samples (incorrect functional and
physical object connections). The weights of the hidden layer are a vector representation
of a word. To achieve the best effect of the embedding model, this paper defines a loss
function towhich increases the differentiation between the positive and negative samples
by minimization of loss. The trained neural network shows that words that appear in
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similar contexts will have similar vector representations. In the architecture embedding
model, this means that entities co-occurring under the same semantic conditions have
similar vector representations.

We obtain an ATS architecture K = {(ei, rk, ej)} containing triples, each containing
two entities ei, ej ∈ E and the relation rk ∈ R between them, where E is the set of entities
and R is the set of relations, respectively. Modeling triples we use the TransE model
[16], based on its simplicity and effectiveness in achieving state-of-the-art predictive
performance. Given a triple instance (ei, rk, ej), the relation rk in the modeled triple
instance is used as a vector transformation from ei to ej, i.e. when the triple holds, we
want to have the effect that ei + rk≈ej. We then score each triple based on ||ei + rk -
ej ||1, defining the true value of the triple as:

P(ei, rk, ej) = 1 − 1√
3d

‖ei + rk − ej‖1 (1)

Where d is the dimension of the embedding space. It is clear to see that P
(
ei, rk , ej

) ∈
[0, 1] because of ‖ei‖2≤1, ‖ej‖2≤1, ‖rk‖2≤1.

Note that 0 � ‖ei + rk − ej‖1� ‖ei‖2+‖rk‖2+‖ej‖2 � 3
√
d , where the last

inequality holds because ‖x‖1 = Σi|xi| ≤
√
dΣix2i = √

d‖x‖2, according to the
Cauchy-Schwarz inequality.

3.2 Training Model with Negative Sampling

The architectural embedding model is trained with positive and negative samples. We
first generate a training set containing all positive samples, and then we make the model
work best by defining a minimizing global loss function.

min{e},{r}
∑

f +∈F
∑

f −∈Nf +
[
γ − P

(
f +) + P

(
f −)]

+,

s.t.‖e‖2 ≤ 1,∀e ∈ E; ‖r‖2 ≤ 1,∀r ∈ R.
(2)

Here f + ∈ F is a positive sample, f − ∈ Nf + is a negative sample constructed
from a positive sample, and γ is the boundary condition for determining positive and
negative samples. For a triple (ei, rk, ej), we achieve minimization by replacing ei or ej
randomly with an arbitrary entity e in the entity set, which ensures the triple after the
replacement does not exist in the original training set.We believe that the vast majority of
triple instances generated in this way are negative samples, using small-batch stochastic
gradient descent. The effect of model training is shown in Fig. 2.
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Fig. 1. General structure of the ATS embedding model

Fig. 2. The effect of training model by negative sampling

4 Experiments

4.1 Preparing Dataset

The classification results are obtained by triple classification to find the incorrect part
of the ATS architecture. This task is to verify if any unobserved triples (ei, rk, ej) are
correct. The dataset comes from the National ITSReference Architecture (ARC-IT 9.0)1

developed by the U.S. Department of Transportation. The part we use is the exchange
process of information flow with a physical view of the ATS architecture, including the
source and destination physical objects and the information flow. The physical source
object acts as the head entity ei, the destination physical object acts as the tail entity ej , and
we take the information flow as the relation rk. The dataset is respectively divided into
a training dataset, a validation dataset, and a test dataset for model training, parameter
tuning, and evaluation. The training dataset contains 1896 positive triples, 154 entities
and 905 relations.We constructed 14 negative samples for every positive triple (Table 1).

1 The Architecture Reference for Cooperative and Intelligent Transportation (ARC-IT) provides
a common framework for planning, defining, and integrating intelligent transportation systems.
ARC-IT 9.0 includes all views of the National ITS Reference Architecture - Enterprise, Func-
tional, Physical and Communications views. The information is available at https://www.arc-
it.net/index.html.

https://www.arc-it.net/index.html
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Table 1. A sample for training the architecture embedding model

Sources (head entity) Flow (relation) Destination (tail entity)

Alerting and advisory system Alerts and advisories Emergency management center

Basic vehicle Driver input information Vehicle OBE

Basic vehicle Host vehicle status Vehicle OBE

Connected vehicle roadside
equipment

Intersection status Commercial vehicle OBE

Connected vehicle roadside
equipment

Signal priority status Commercial vehicle OBE

Connected vehicle roadside
equipment

Data provision Data distribution system

Connected vehicle roadside
equipment

Data query Data distribution system

… … …

4.2 Evaluation Results

We set up an evaluation scheme similar to the TransE model [17]. We first generate test
data for evaluation. For each positive triple in the test or validation set, we construct 10
negative triples by randomly replacing entities, five in the head position and the other
five in the tail position. To make the evaluation process as accurate as possible, we use
only the entities that occurred in that position to replace the corresponding position,
and further ensure that the replaced triples do not exist in the training, validation or
test datasets. We only use every triple’s truth value as the classifying criterion. Triples
with large truth values are often predicted to be correct. F1 is used here to measure the
accuracy of the triple classification task. As shown in Table 2, let TP be the triples that
our method correctly predicts to hold, let FP be the triples that our method incorrectly
predicts to hold, and FN be the triples that our method incorrectly predicts not to hold.
The F1-score formula is established as follows:

Table 2. Results of triple classification

Predicted True triple

Positive Negative

Positive TP FP

Negative FN TN

Precision = TP

TP + FP
(3)
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Recall = TP

TP + FN
(4)

F1 = 2 × Precision · Recall

Precision + Recall
(5)

We set upmultiple training sets with different proportions of triples, using 30%, 50%
and 75% of the triples as training sets to calculate the accuracy of the triple classification
task (Table 3).

Table 3. The F1-score accuracy comparison results of triple classification task (in percentage)

Training dataset Precision(%) Recall(%) F1(%)

30% 74.8 71.3 73.0

50% 76.2 73.5 74.8

75% 80.4 78.2 79.3

The experimental results show that the model gains relatively good results with
different sizes of training sets, and the classification accuracy can reach 79.3% as the
training set increases, which is positive for separating the incorrect triples from the ATS
architecture.

5 Conclusions and Future Work

In this paper, we propose a new method to achieve the purpose of the ATS architecture
abnormality detection. We generate the vector representation of the ATS architecture
structural features through an embedding model, and classify features of the incorrect
type from the ATS architecture by vector computation and triple classification. The
experimental results show that the method can diagnose most of the structural errors and
achieve good detection accuracy. The method can diagnose ATS architecture without
prior knowledge or rules. It has potential for further applications such as tracing and
solving problems of the ATS architecture.

For future work, we would like to consider expanding the diagnosing scope of ATS
architecture and adding more features of the ATS architecture as embedding content,
such as the logic of collaboration between functional objects, the hierarchical relationship
between transport services and functional objects, etc. The relationship of “1-to-many”
and “many-to-many” between them, grows the complexity of the embedding model
and the difficulty of model training. We will also improve the diagnosis framework by
integrating rules with the embedding model, and use the improved embedding model to
obtain the vector representation of rules, which may enhance the accuracy or efficiency
of detection.
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