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Abstract. The road network is becoming increasingly equipped with
a multitude of sensors, monitoring a wide range of operating and con-
textual parameters. The availability of real-time sensor data enables the
realisation of diverse data-driven applications, e.g., anomaly detection,
identification of insightful patterns, monitoring the evolution of relevant
trends in time and delivery of actionable decision support. However, such
streaming data might contain vast amounts of missing values depending
on the application. This makes it very challenging, if not impossible, to
fully exploit the potential of data analysis and machine learning for these
data sources, and in particular real-time analysis is not feasible. We pro-
pose in this paper an imputation methodology dedicated to multi-source
streaming data, with a focus on the mobility domain. The proposed app-
roach is based on spatio-temporal profiling of the streaming behaviour
derived from historical data via non-negative matrix factorisation. The
profiling method takes advantage of an adaptive segmentation strategy
splitting the data into rolling time windows (chunks) allowing to use the
limited non-missing data as optimally as possible. The identified profiles
allow to devise a dynamic and scalable imputation strategy, which is able
to reliably estimate incoming missing values in streaming data as soon
as they arrive.

Keywords: Data imputation · Matrix factorisation · Streaming data ·
Vehicle counts

1 Introduction

There is an increasing trend of connecting devices (e.g., smart watches, smart
household appliances and ANPR cameras) and industrial machinery (e.g., com-
pressors, fleet tracking and melting furnaces) to the internet [20]. Since these
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assets are connected over a network, their data can be inspected in real-time.
This real-time aspect opens a wide range of opportunities as it allows for early
and continuous monitoring of trends and anomalies. By deriving an accurate
view of the latest state of affairs at all time, real-time data-driven decision sup-
port applications can be developed.

Unfortunately, exploiting directly streaming data on the fly is not straight-
forward since it is often suffering from poor quality mostly due to incompleteness
(e.g., in the mobility domain [16,25]). In practice, data capturing implementa-
tions are often rapid/experimental, i.e., sensors are quickly deployed to gather
data. Moreover, these deployments can be continuously expanding in terms of
additional sensors which are installed in order to capture supplementary infor-
mation. Last, the devices may often be located in difficult to access or widely
scattered locations (e.g., inductive loops under the asphalt of a busy road),
making it difficult to do good maintenance (e.g., replace broken sensors). Due
to these reasons, it is almost inevitable to have some flaws in the data capturing
process because of technical failures. The latter may result in various types of
missing data values: randomly scattered missing values, a single sensor missing
over a longer period, and relatively short moments in time when no values are
available at all.

Particularly in the case of streaming data, it is often important to be able to
impute missing values as soon as a limited amount of values are available. How-
ever, due to the highly dynamic nature of the data and the frequent occurrences
of long sequences of subsequent missing values, such an imputation is very chal-
lenging. For this reason, imputation approaches need to be able to learn from
the past, capturing prototypical behaviour via adequate profiling mechanisms.
Although there are many imputation algorithms proposed in the literature, some
interesting opportunities have not yet been explored. Especially in the context
of continuously incoming multi-source streaming (mobility) data, there is a lot
of room for improvement.

Some imputation algorithms are developed with the specific goal to work on
a continuous stream of data, while other algorithms try to capture the spatial
and/or temporal patterns on a static data set. Although some of these imputa-
tion algorithms yield good results, a hybrid combination of both would be more
relevant in practice since data is often both continuously incoming and exhibits
multi-source correlations. In this paper, we propose a novel imputation method-
ology for multi-source data, capable of handling continuous streaming data and
validated on real-life vehicle counting data. This approach is partially inspired
by the spatio-temporal fingerprinting approach which was proposed in [6] and
was originally used for the purpose of performance profiling. In this paper, we
exploit cleverly its characterisation potential to dynamically detect latent spa-
tial and temporal structures in multi-source data for the purpose of missing data
imputation.

The remaining of this paper is organised as follows: Section 2 focuses on
existing related approaches in the literature, while Sect. 3 outlines in detail the
proposed novel imputation methodology. Section 4 covers the obtained validation
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results of a use case on mobility data. Finally, in Sect. 5, some concluding remarks
are given.

2 Related Work

In this section, the state of the art in recent imputation strategies and approaches
is discussed. First, in Sect. 2.1, existing imputation techniques for time series are
briefly summarised. Next, in Sect. 2.2, the most relevant latest developments in
streaming data imputation approaches are discussed.

2.1 Time Series Data Imputation

Existing imputation approaches for time series data can be divided into three
different classes: interpolation, statistical learning and prediction [15]. The first
class, interpolation, is the most straightforward imputation method, as it approx-
imates the missing data by fitting a curve on top of the available data. The curve
aims to define the sequence of data points by a linear or polynomial function,
allowing to estimate unknown values [24]. Secondly, statistical learning-based
imputation approaches aim to encapsulate statistical features of the data into a
model. The latter could be achieved for example by applying the k-nearest neigh-
bours approach [4,15,17], where estimations are made based on the k most sim-
ilar situations, or a principal component analysis [18,22], where an expectation-
maximisation algorithm is used to estimate values of missing data points. Finally,
prediction-based imputation approaches aim to capture the temporal relation-
ship within time series. These imputation algorithms are developed to find long
term and short term relations, giving an idea about what value to expect next.
The autoregressive integrated moving average method [13,28] and Bayesian net-
works [9,26] are two methods that belong to the category of prediction-based
imputation approaches.

More recently, factorisation techniques are used to impute missing values in
matrix-like data sets. Completion of matrix-like data has shown to be relevant in
many applications, such as image inpainting [14] and recommender systems [21].
For example, singular value decomposition can be used for matrix completion [7].
Bao et al. [2] illustrate how this approach can be applied on a multi-variate time
series data set, where each row represents a time series for a different sensor and
each column captures exactly one value for each sensor at a particular moment
in time. Apart from the good imputation results, the non-parametric approach
allows for reliable data imputation without user intervention. Note that existing
factorisation imputation techniques are only designed to fill in gaps within a
matrix. In case of streaming data, new unseen columns (i.e., moments in time) are
continuously added to the data matrix. Consequently, the full factorisation must
be recalculated each time new columns with missing values are added to the back
of the matrix. For high-frequency multi-variate data streams, such an approach
would be highly inefficient and therefore unusable in real-time. Section 2.2 gives
an overview on the latest developments on streaming data imputation.
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2.2 Streaming Data Imputation

The increasing availability of real-time sensor data, opens a wide range of
new opportunities to instantaneously analyse the data and provide data-driven
decision-making. However, in the case of low-quality data, this means that data
imputation strategies also need to be adapted to run efficiently on new chunks
of incoming data. Coupled to this, data imputation algorithms should be able
to define a level of certainty in order to express how reliable the imputation
results are.

Depending on the use case, different streaming imputation strategies are
appropriate. In situations where computational power is limited (think of data
imputation on the edge) or a short latency is crucial, it is good practice to
construct a fixed imputation model on beforehand which allows for efficient
imputation on continuously incoming data. Following this approach, Fountas and
Kolomvatsos propose an ensemble correlation approach to identify the pairwise
similarity between a number of different sensors (i.e., multi-variate time series).
Missing values are imputed based on the values of the top-k correlated sensors,
weighted by their correlation [8]. In [6], a similar approach is proposed, imputing
missing values in an incremental way. First, missing data is imputed based on
the top-k moments in time with the most similar non-missing values. Next, the
remaining gaps are filled by use of the most similar larger periods of time (e.g.,
days).

If the data is more complex (e.g., new unseen or diverging data patterns
may arise over time) or there is initially only a limited amount of historical
data available, a continuous learning imputation approach is expected to be
more appropriate. To give an example, in [19] a single factorisation to iden-
tify temporal features for historical missing data imputation is exploited. Then,
an incremental learning scheme based on an autoregressive model is proposed,
allowing for response forecasting based on the temporal features. In the study
of Halder et al. [10], some problems with imbalanced data during data stream
imputation are considered. To overcome these problems, an adaptive imputa-
tion approach is proposed which includes an oversampling method per chunk
of streaming data and a fuzzy decomposition method to determine the interre-
lationship among instances. Despite the good results on imbalanced data sets,
this approach has some performance issues in the case of noisy data, which is
rather crucial in a real-wold context. Furthermore, none of these methods are
able to store and recognise historically occurred relations between sensors. For
instance, imagine a multivariate time series that counts the number of vehicles
on a number of streets close to a charging bridge over a canal. Whether this
bridge has opened (and influenced the traffic flow) during a gap of missing data,
is impossible to know (i.e., impute) based on only the time aspect of one sensor.
In such a case, the imputation method should be able to dynamically recognise
the situation based on the other sensors at that moment in time. The novel
imputation method we propose in this work is able to deal with such situations
and also tackles most of the other shortcomings of the related works discussed
above. More specific, our approach can efficiently impute multi-variate streaming
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data, while still considering both temporal and spatial relations using a dynamic
profiling methodology.

3 Materials and Methods

In this section the building blocks of our novel dynamic profiling and impu-
tation methodology are discussed. Section 3.1 outlines the concept of matrix
factorisation, while Sect. 3.2 is devoted to the description of the spatio-temporal
profiling. Next, Sect. 3.3 explains how to exploit the profiles to impute missing
values. Section 3.4 indicates how to deploy this approach on real-time streaming
data. Finally, Sect. 3.5 provides a description of the test data set and the used
computer code.

3.1 Matrix Factorisation

Matrix factorisation is a discipline of linear algebra allowing to decompose a
matrix into a product of matrices. One popular example of this approach is the
singular value decomposition (SVD). Consider a matrix X ∈ C

M×N . By
the use of SVD, X can be factorised into UΣV T , with U a unitary matrix
∈ C

M×M , Σ a rectangular diagonal matrix ∈ R
M×N
+ and V a unitary matrix

∈ C
N×N . SVD has many applications, such as solving homogeneous linear equa-

tions (e.g., [1]), total least squares minimisation (e.g., [27]) and low-rank matrix
approximations (e.g., [23]).

Another factorisation approach is non-negative matrix factorisation
(NMF). As the name reveals, this approach is designed to work with matri-
ces containing only positive values. Consider a matrix X ∈ R

M×N
+ . NMF is

able to approximate X by a product of two factors WS, where W ∈ R
M×R
+ ,

S ∈ R
R×N
+ and R < min(M,N). The smaller the value of parameter R, the

greater the dimensionality reduction performed, at the expense of the recon-
struction error for X. In contrast to SVD, NMF is an approximation for which
no exact solution exists. There are multiple heuristic algorithms developed to find
W and S [11]. In our approach, the fast hierarchical alternating least squares
(Fast HALS) algorithm is used [5]. Compared to SVD, the added value of NMF
is the constraint of having only positive values in matrices W and S. Depending
on the nature of the data from the original matrix, it often is a more natural
process to decompose it into positive factors [12]. To reconstruct the original
matrix X, no element-wise subtractions need to be performed.

3.2 Spatio-Temporal Profiling

Spatio-temporal profiling is an essential prerequisite for our imputation strategy.
It allows to extract latent spatial and temporal patterns from historical data,
which are subsequently used by the imputation algorithm. Consider a matrix
representing data from a multi-variate time series as visualised in Fig. 1(a). In
such a matrix, each row represents one of the M different parameters (e.g., sensor
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values for different locations). Each column represents a consecutive timestamp
(e.g., one value per minute). Considering we are working with streaming data,
the time dimension is infinite.

Adaptive Dynamic Segmentation. To obtain resilient profiles, gaps of miss-
ing data are avoided during the profiling procedure. The first step in that pro-
cedure is to extract chunks of data with a fixed time window of N timestamps.
The width N of each time window should be large enough so that meaningful
temporal patterns can be identified, but small enough so that enough chunks of
data without missing values can be found. The fulfilment of these requirements
are dependent on the use case of interest. The data chunk extraction happens
by chronologically looping over all timestamps (t1, t2 · · · , tT ), with t1 the oldest
timestamp and tT the most recent timestamp. A chunk is only selected if it con-
tains no missing values. Each time a chunk is selected, a number of timestamps
is skipped before proceeding with the selection of the next chunk in order to
avoid excessive overlap between chunks. As a rule of thumb, we do a forward
jump of 1

3N timestamps in order to have a maximum overlap of 2
3N timestamps

between chunks. In Fig. 1(b), the selected chunks from Fig. 1(a) are visualised.
The overlap between the different chunks is essential for being able to capture
transitions between different patterns in time.

Fig. 1. Selection of data chucks for profiling.
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In the second step, all selected data chunks are stacked on top of each other:

X =

⎡
⎢⎢⎢⎣

X1

X2

...
XL

⎤
⎥⎥⎥⎦ ∈ R

(ML)×N
+ , (1)

where Xi represents the ith selected chunk and L the total number of selected
chunks.

Temporal Profiles Extraction. Temporal profiles are extracted from the
stacked matrix X by applying a decomposition method. In this paper, NMF is
used due to the non-negative properties that are suitable for the use case data
and to facilitate interpretation. In this way, matrices W and S are obtained as
shown in Eq. (2). Conceptually, each row of matrix S can be interpreted as a
temporal profile while matrix W represents the weights, which can be used to
reconstruct X thanks to the temporal building blocks from S.

X ≈ WS, (2) X ≈

⎡
⎢⎢⎢⎣

W1

W2

...
WL

⎤
⎥⎥⎥⎦ S. (3)

These matrices are as follows: W ∈ R
(ML)×R
+ and can be evenly split into

L sub-matrices Wi ∈ R
M×R
+ , with i = 1, 2, . . . , L (see Eq. (3)), S ∈ R

R×N
+ , and

R ∈ N+ being a hyperparameter representing the amount of temporal profiles,
as explained in Sect. 3.1. Moreover, each chunk Xi can be approximated by a
weighted sum of the temporal profiles as shown in Equation (4).

Xi ≈ WiS, with 1 ≤ i ≤ L. (4)

Alternatively, SVD or any other decomposition technique could be used
depending on the properties of the use case (e.g., if values can be negative). Note
that in the case of SVD three matrices are obtained (see Sect. 3.1). However, in
this situation, matrices U and Σ should be multiplied to replace the weight
matrix W , while V T can directly be used as the temporal profile matrix S.

Spatial Profiles Extraction. The decomposition of matrix X above via
NMF resulted in latent temporal profiles and corresponding weights. The weight
matrix W is of interest for further decomposition since it contains useful rela-
tional information between the different data sources. In situations where each
parameter represents a sensor at a different location, this can be interpreted as
the spatial relationship. To extract those relations, each individual weight matrix
Wi is first transposed. Then, a modified weight matrix W ′ is constructed that
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vertically stacks all individual transposed matrices:

W ′ =

⎡
⎢⎢⎢⎣

W T
1

W T
2
...

W T
L

⎤
⎥⎥⎥⎦ ∈ R

(RL)×M
+ . (5)

Next, we approximate this modified weight matrix W ′ (by using a suitable
factorisation approach) as the product of two matrices V and U , as shown
in Eq. (6). Assuming we again use NMF, both matrices will be non-negative.
Similarly as above, the rows of the resulting matrix U can be interpreted as a
set of prototypical spatial profiles, which can be used to reconstruct W ′ by the
weights of matrix V .

W ′ ≈ V U , (6) W ′ ≈

⎡
⎢⎢⎢⎣

V1

V2

...
VL

⎤
⎥⎥⎥⎦ U , (7)

with V ∈ R
(RL)×Q
+ , V can be evenly split into L sub-matrices Vi ∈ R

R×Q
+ ,

with i = 1, 2, . . . , L, U ∈ R
Q×M
+ , and Q ∈ N+ being a hyperparameter repre-

senting the amount of spatial profiles. Similarly, Eq. (7) can be split as follows:

W T
i ≈ ViU , with 1 ≤ i ≤ L. (8)

3.3 Estimation of Missing Values

Spatial and temporal profiles, as extracted in Sect. 3.2, contain very valuable
information which can be used to estimate missing values. To do that, we com-
bine Eq. (4) and (8) as follows:

Xi ≈ (ViU)T S. (9)

In this equation, any chunk Xi is expressed as the weighted combination of
the temporal and spatial profiles using the weight matrix Vi. Since the temporal
and spatial profiles contain the latent building blocks for any period in time, this
equation is assumed to also hold for any chunk with missing data (Xmissing).
In that case, some values of Xmissing, as well as Vmissing, are unknown. Conse-
quently, these unknown values can be heuristically found as a continuous opti-
misation problem. Technically, this can be achieved by minimising the squared
error between values from the resulting matrices from the left and right sides of
Eq. (9), as shown in Eq. (10):
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min
χ,Vmissing

:
(
Xmissing[1,1] − X̂[1,1]

)2

+ · · · + (Xmissing[1,N ] − X̂[1,N ])2

+
(
Xmissing[2,1] − X̂[2,1]

)2

+ · · · + (Xmissing[2,N ] − X̂[2,N ])2

...

+
(
Xmissing[M,1] − X̂[M,1]

)2

+ · · · + (Xmissing[M,N ] − X̂[M,N ])2

s.t. : X̂ = (VmissingU)T S

χ := {Xmissing[i,j] | [i, j] is missing in Xmissing }
x ≥ 0 for x ∈ χ

Vmissing[i,j] ≥ 0 for 1 ≤ i ≤ Q and 1 ≤ j ≤ R,
(10)

with indices between squared brackets representing the coordinates of one value
within a matrix, e.g., Xmissing[i,j] being the value in matrix Xmissing at row i
and column j.

3.4 Imputation Strategy

The design of our novel imputation approach allows for data imputation on both
historical and streaming data. The approach is focused on mobility data due to
its strong spatial and temporal dependencies. However, it can be used in other
domains that exhibit such strong dependencies. The imputation workflow’s steps
are as follows:

1. Composition of training data repository. Starting from historical data
covering a sufficiently long time period allowing to capture all possible tem-
poral and spatial patterns, a representative training data repository of only
complete data chunks is composed following the segmentation approach in
Sect. 3.2.

2. Extraction of spatio-temporal profiles. Following the two-step process
described in Sect. 3.2, prototypical spatio-temporal profiles are extracted from
matrix X, constructed by stacking vertically the data chunks from the train-
ing repository.

3. Imputation. To impute data, chunks with missing data are extracted in the
same way as in Fig. 1. However, a candidate data chunk X(ti) is now only
selected if it contains at least one missing value. Subsequently, the missing
values in each data chunk are estimated as outlined in Sect. 3.3. Since chunks
are allowed to overlap with 2

3N timestamps, each missing data point occurs in
exactly 3 chunks. The relative position of a particular missing value in a chunk
has an influence on the matched temporal profiles since each time window
captures a different part in time, giving thus slightly deviating estimations.
To obtain the most resilient imputation, the average of all three estimations
is used to finally impute the missing value.
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– For historical data, all missing values are imputed at once following the
process described above.

– For real-time streaming data, at any moment a chunk with missing data is
detected and selected, estimations are immediately computed for missing
values in that chunk. Because the average of the estimation for the 3
overlapping incomplete chunks is used as final imputation value, the real-
time imputation faces a latency of up to one time window (N timestamps).
In parallel, one should monitor for concept drift since streaming data
might be capturing a deviating or changing phenomenon. In that case,
the spatial and temporal profiles need to be updated. To ease this update,
chunks with no missing values should be identified as they are encountered
and stored in the training data repository in order to be used later on.

3.5 Data and Computer Code

To illustrate the novel imputation approach proposed in this work, experiments
have been carried out on a real-world data set from the mobility domain. More
specifically, vehicle counts from 16 automatic number-plate recognition (ANPR)
cameras were used. As shown in Fig. 2, the cameras are situated in 8 different
locations on a circumferential urban highway (i.e., the small ring of Brussels,
Belgium), while each camera monitors traffic in one direction. The data covers
a period of 20 months, from February 2020 until the end of 2021. Within this
period, the amount of vehicles that passed by per minute is provided for each
location. This data has been collected using the real-time open API of Brussels
Mobility1, the public administration responsible for the mobility infrastructure
in Brussels.

An interesting aspect of this specific data set is that the 16 ANPR cameras
are situated along one single road, half of them in each direction (see Fig. 2).
Therefore, many vehicles traverse several, if not all, of the 8 locations in one
direction, creating a flow of vehicles. Note however that, as only aggregated
information about vehicle counts is available, it is not possible to track the
trajectory followed by an individual vehicle. It is important to understand that
the quality of this real-world data set is not very high. Over 23% of all values
are missing, making further advanced analysis of this data not really feasible,
unless an appropriate data imputation method could increase the completeness.

The implementation of the proposed methods was done in Python. The
Python code can be provided on request.

4 Results and Benchmarking

To validate the proposed imputation method, vehicle counting data for 16 loca-
tions, as described in Sect. 3.5, is used. Section 4.1 explains the construction of
the training and validation data sets. Next, in Sect. 4.1, the imputation results
on the validation data sets are given. Finally, the imputation results are bench-
marked in Sect. 4.2.
1 https://data.mobility.brussels/traffic/api/counts/.

https://data.mobility.brussels/traffic/api/counts/
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Fig. 2. Map of the ANPR cameras in Brussels, Belgium.

4.1 Validation Strategy

The original real-world data set as described in Sect. 3.5 is first smoothed such
that a continuous flow of data points is obtained. The latter is achieved by
assigning per minute the mean value of the (known) values for the last 15 min.
In this way, time gaps of up to 14 min are filled while the data set’s original
granularity is preserved.

Validation Data Sets. To allow for a qualitative and objective validation
of our imputation approach, the ground truth of the missing values needs to be
known. Since the missing data rate of our original data set (>23%) is too high to
introduce additional missing values, several validation data sets are constructed
as follows. After smoothing, only the 34 days with no missing values are retained.
Next, 5 validation data sets with missing values are composed by randomly
removing data values from these 34 days. Each data set has a different level of
missing values: 5%, 10%, 15%, 20% and 25%.

Training Data Sets. To derive representative spatio-temporal profiles, we need
more than 34 full days. For this reason, a dedicated training data set is composed
for each of the 5 validation data sets, containing the smoothed data of all 20
available months. The 34 full days are contained with their different amounts of
added missing values across the different data sets.

To validate our imputation approach on historical data, the training data set
allows for the derivation of spatio-temporal models from the full time period,
while the validation data set is used to validate the imputation accuracy based
on the ground truth of the 34 full days. For the validation of our approach
on streaming data, we split both data sets in two parts. The first 9 months of
the training set are used to derive the spatio-temporal models. Next, the (16)
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days in the validation set that fall after those 9 months are used to validate the
imputation approach. In this way, we can test how well our historical spatio-
temporal patterns can be used to impute future data.

Profile Extraction. As explained in Sect. 3.2, first the spatial and temporal
profiles are extracted from the training set. The chunks Xi have a spatial dimen-
sion (M) of 16 and a temporal dimension of 3 h (N = 180). The latter was chosen
as a trade-off between a higher chance to segment a complete time window (no
missing values), while still capturing sequences that represent a meaningful ten-
dency. In addition, the lower the value of N , the larger the training set of chunks
becomes. Since we use NMF as decomposition approach, the rank hyperparam-
eter has to be chosen for both the extraction of the spatial and the temporal
profiles. As validation method for the rank of the temporal (R) and spatial (Q)
profile extraction we used the explained variance, i.e., the ratio between the
variance after reconstruction and the original variance. We considered a rank
resulting in an explained variance of over 99% as fulfilling, although we exper-
imented with some other levels of explained variance. To obtain an explained
variance of 99%, an R value of 64 and a Q value of 14 were chosen. To estimate
the imputation values, the limited-memory version with bound constrains of the
Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS-B) was used [3]. As ini-
tial solution for V T

missing, a linear interpolation per vehicle counting location was
used. As shown in Fig. 3, the amount of latent temporal and spatial profiles has a
big impact on the root mean squared error (RMSE) for all of the 5 training and
validation data sets. Note that the RMSE values are only based on the artificially
removed data values in 34 out of the 708 days since we only know the ground
truth of these values. Remarkably, the imputation approach gives better results
in the cases where more data is missing. The latter might be attributed to the
increased degrees of freedom, avoiding the optimisation algorithm to overfit on
the non-missing values. This statement will of course not hold for more extreme
ratios of missing values.

Fig. 3. RMSE values for various hyperparameters on different degrees of missing values.
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4.2 Imputation Results

Figure 4a compares the RMSE of the two imputation approaches, in combina-
tion with the two best parameter settings from Fig. 3 for the validation strategy
on historical data. As baseline imputation algorithm, we simply impute a miss-
ing value by copying the value from one week back at the same time. If that
value would also be missing, we trace back in past weeks until a value is found.
Traffic has a very clear weekly pattern and therefore this imputation method
produces quite accurate imputation results as it can be witnessed in Fig. 4a (see
“Preceding Weekday Imputation”). To compare the results with a state of the
art imputation algorithm, the incremental spatio-temporal imputation method
from [6] was chosen. Since the same data set was used in that paper, we reused
the same hyperparameters. Compared to the baseline algorithm, only a small
improvement was obtained for missing value rates of 5% and 10% as depicted in
Fig. 4a (see “Incremental Imputation Method”). Figure 4a also illustrates that
the two different versions of our dynamic profiling approach strongly outperform
both alternative imputation approaches. Moreover, the strength of the dynamic
profiling approach for higher missing rates is also very clearly demonstrated.

In Fig. 4b, the RMSE values for the validation strategy on streaming data
are shown. Although this is a more difficult task, as confirmed by the increased
RMSE values of the “Preceding Weekday Imputation” and “Incremental Impu-
tation Method”, the performance of the dynamic imputation methodology is
equally as good as during the benchmarking on historical data imputation. This
illustrates that our novel dynamic imputation method is able to robustly extract
the latent spatio-temporal structures even from a reduced historical data set.

Fig. 4. Comparative results for various imputation strategies on different degrees of
missing values.

5 Conclusion

In this work, we introduced a novel data imputation approach for multi-source
streaming data. The method relies on spatio-temporal patterns, which are
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extracted via a double factorisation approach, and are able to encapsulate latent
information structures in historical data. Real-world vehicle counting data has
been used for the validation phase. The obtained results show that the approach
performs extremely well for data sets with high rates of missing values (20–25%).
The latter are very often detected in mobility data.

As future research we plan a further validation of the imputation approach
by considering more advanced and realistic patterns for missing values, including
a single sensor missing over a longer period and relatively short moments in time
where no values are available at all. Our expectations are that the usage of spatio-
temporal profiles might be even superior to alternative imputation methods as
our approach can exploit patterns from both spatial and temporal dimensions
simultaneously. Finally, we will try to improve the dynamic imputation method-
ology by experimenting with more intelligent initialisation strategies, as these
can help the L-BFGS-B algorithm to converge faster and find better estimations.
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6. Dhont, M., Tsiporkova, E., González-Deleito, N.: Deriving spatio-temporal trajec-
tory fingerprints from mobility data using non-negative matrix factorisation. In:
2021 International Conference on Data Mining Workshops (ICDMW), pp. 750–759.
IEEE (2021)

7. Feuerverger, A., He, Y., Khatri, S.: Statistical significance of the Netflix challenge.
Stat. Sci. 27(2), 202–231 (2012)

8. Fountas, P., Kolomvatsos, K.: A continuous data imputation mechanism based on
streams correlation. In: 2020 IEEE Symposium on Computers and Communica-
tions (ISCC), pp. 1–6. IEEE (2020)

9. Ghosh, B., Basu, B., O’Mahony, M.: Bayesian time-series model for short-term
traffic flow forecasting. J. Transp. Eng. 133(3), 180–189 (2007)

10. Halder, B., Ahmed, M.M., Amagasa, T., Isa, N.A.M., Faisal, R.H., Rahman, M.,
et al.: Missing information in imbalanced data stream: fuzzy adaptive imputation
approach. Appl. Intell., 1–23 (2021)

11. Langville, A.N., Meyer, C.D., Albright, R., Cox, J., Duling, D.: Algorithms, initial-
izations, and convergence for the nonnegative matrix factorization. arXiv preprint
arXiv:1407.7299 (2014)

12. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix fac-
torization. Nature 401(6755), 788–791 (1999)

http://arxiv.org/abs/1407.7299


198 M. Dhont et al.

13. Lee, S., Fambro, D.B.: Application of subset autoregressive integrated moving aver-
age model for short-term freeway traffic volume forecasting. Transp. Res. Rec.
1678(1), 179–188 (1999). https://doi.org/10.3141/1678-22

14. Li, X.P., Liu, Q., So, H.C.: Rank-one matrix approximation with l p-norm for
image inpainting. IEEE Signal Process. Lett. 27, 680–684 (2020)

15. Li, Y., Li, Z., Li, L.: Missing traffic data: comparison of imputation methods. IET
Intel. Transport Syst. 8(1), 51–57 (2014)

16. Nikfalazar, S., Yeh, C.-H., Bedingfield, S., Khorshidi, H.A.: A hybrid missing data
imputation method for constructing city mobility indices. In: Islam, R., et al. (eds.)
AusDM 2018. CCIS, vol. 996, pp. 135–148. Springer, Singapore (2019). https://
doi.org/10.1007/978-981-13-6661-1 11

17. Oehmcke, S., Zielinski, O., Kramer, O.: KNN ensembles with penalized DTW for
multivariate time series imputation. In: 2016 International Joint Conference on
Neural Networks (IJCNN), pp. 2774–2781. IEEE (2016)

18. Qu, L., Li, L., Zhang, Y., Hu, J.: PPCA-based missing data imputation for traffic
flow volume: a systematical approach. IEEE Trans. Intell. Transp. Syst. 10(3),
512–522 (2009)

19. Ren, P., Chen, X., Sun, L., Sun, H.: Incremental Bayesian matrix/tensor learning
for structural monitoring data imputation and response forecasting. Mech. Syst.
Signal Process. 158 (2021)

20. Shi, Z., Chen, J., He, S.: DIY smart house: exploration and practice of IoT MOOC
education. In: 2020 15th International Conference on Computer Science & Educa-
tion (ICCSE), pp. 557–560. IEEE (2020)

21. Sun, S., et al.: Joint matrix factorization: a novel approach for recommender sys-
tem. IEEE Access 8, 224596–224607 (2020)

22. Tipping, M.E., Bishop, C.M.: Mixtures of probabilistic principal component ana-
lyzers. Neural Comput. 11(2), 443–482 (1999)

23. Ye, J.: Generalized low rank approximations of matrices. Mach. Learn. 61(1–3),
167–191 (2005)

24. Yin, W., Murray-Tuite, P., Rakha, H.: Imputing erroneous data of single-station
loop detectors for nonincident conditions: comparison between temporal and spa-
tial methods. J. Intell. Transp. Syst. 16(3), 159–176 (2012)

25. Zafar, A., Kamran, M., Shad, S.A., Nisar, W.: A robust missing data-recovering
technique for mobility data mining. Appl. Artif. Intell. 31(5–6), 425–438 (2017)

26. Zhang, C., Sun, S., Yu, G.: A Bayesian network approach to time series forecasting
of short-term traffic flows. In: Proceedings, The 7th International IEEE Conference
on Intelligent Transportation Systems (IEEE Cat. No. 04TH8749), pp. 216–221.
IEEE (2004)

27. Zhang, C., Chen, Q., Wang, M., Wei, S.: Optimised two-dimensional orthogonal
matching pursuit algorithm via singular value decomposition. IET Signal Proc.
14(10), 717–724 (2021)

28. Zhong, M., Sharma, S., Lingras, P.: Genetically designed models for accurate impu-
tation of missing traffic counts. Transp. Res. Rec. 1879(1), 71–79 (2004)

https://doi.org/10.3141/1678-22
https://doi.org/10.1007/978-981-13-6661-1_11
https://doi.org/10.1007/978-981-13-6661-1_11

	Dynamic Imputation Methodology for Multi-source Streaming Mobility Data
	1 Introduction
	2 Related Work
	2.1 Time Series Data Imputation
	2.2 Streaming Data Imputation

	3 Materials and Methods
	3.1 Matrix Factorisation
	3.2 Spatio-Temporal Profiling
	3.3 Estimation of Missing Values
	3.4 Imputation Strategy
	3.5 Data and Computer Code

	4 Results and Benchmarking
	4.1 Validation Strategy
	4.2 Imputation Results

	5 Conclusion
	References




