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Preface

Transport systems are evolving through advanced technologies in automation,
communication, energy, and computation power. These new technologies provide
promising and great potential to improve efficiency (both travel and energy),
accessibility, resilience, and connectivity of current mobility services, and thus
facilitate a healthy transition to a sustainable transport system and climate-neutral
mobility. To name a few, electric vehicles are sustainable alternatives to reduce
fossil energy consumption and greenhouse emission in the transport sector and have
been strongly promoted worldwide in the past years; connected and automated
vehicles have made notable progress in the past decade and are being tested and
demonstrated by various stakeholders such as car manufacturers and travel service
providers; big transport data thanks to emerging information, and connected tech-
nologies enable more comprehensive analysis about key components in transport
systems and bring a prosperity of machine learning methods to conduce powerful
analysis in a data-driven way. However, the benefits of new technologies are always
accompanied by challenges, which require collective efforts among academic
researchers and practitioners. Breakthroughs in methodologies and applications are
required to fully leverage the abovementioned techniques for a more sustainable
future transport system. In this regard, the Fifth International Symposium on Smart
Transport Systems is going to be organized in June 2022 to provide a favorable
communication environment, exchanging knowledge and collaborative platform
among researchers and practitioners in the fields of smart transport systems. The
vision is to facilitate complementary collaborations among academic and industrial
communities in terms of research, implementation, and applications.

In the symposium of 2022, 19 excellent papers from several countries were
finally accepted for the proceeding. These papers were rigorously peer-reviewed in
two rounds by at least two independent external reviewers and one editorial
member. A kind and joint dialog between reviewers and authors have been
established for improving these papers from different aspects. We have received
studies about several interesting topics in the scope of smart transport systems. We
have received two interesting and sound studies about electric bus scheduling
optimization and operation management to improve efficiency and reduce overall

v



cost. Another two studies address the human factors and driving behavior reflec-
tions regarding advanced driving-assistance systems and connected vehicles with a
focus on car-following behavior. Two studies investigate the sharing mobility,
including demand analysis and prediction of car sharing, and usage pattern analysis
of e-scooter sharing systems based on big data. Another five studies focus on traffic
safety analysis and behavior modeling in terms of human drivers’ speeding
behavior, hard-braking behavior, and traffic violations, as well as scenario-oriented
design for the safety of autonomous vehicles. Field data are used for analysis and to
derive countermeasures for improvement strategy. Moreover, we have collected
three interesting studies about traffic flow theory, modeling and control in different
scenarios including highway, roundabouts and connected intersections. Another
three articles offer exciting and applicable methods of utilizing multisource data and
data-driven algorithms for anomaly detection, road pavement material recognition,
and dynamic imputation. The rest two studies shed light on route choice behavior
based on experimental data and emission modeling of different vehicles in inter-
sections, respectively. Participants and authors are mainly scholars and practitioners
from Sweden, Germany, Belgium, and Australia, who have delivered their inter-
esting research outcomes, exchanged opinions, and built networks during the
symposium with a pleasant and relaxing atmosphere.
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Complexity Quantification of Car-Following
Dynamic Traffic in the Internet of Vehicles

Environment

Yaoyin Zhang1 , Linhong Wang1 , and Ce Wang2(B)

1 Transportation College of Jilin University, Changchun 130022, Jilin, China
2 Changchun FAWSN Automotive Technology Research and Development Co., Ltd.,

Changchun 130103, Jilin, China
cwang07@fawsn-autoparts.com

Abstract. The complexity of the car-following dynamic trafficmeans the driver’s
workload brought by the main driving task during the car-following process. The
status information between the preceding and following vehicles on the Internet of
Vehicles environment provides real-time quantification of the complex dynamic
traffic environment. In order to quantify the complexity of the traffic environment
in real time, three dynamic traffic environment complexity metrics based on the
car-following behavior spectrum are used, which are InversedModifiedMargin to
Collision, Transverse Oscillation Coefficient and Velocity Instability Coefficient.
And we use the driving simulator to collect driver’s behavior data under different
driving tasks during car-following, calculate the specific values of the three met-
rics, and use the entropy method to take a weighted sum of the three metrics. At
last, we also use NASA-TLS subjective load scale to obtain the driver’s subject
load, and this can verify the quantification model of the car-following dynamic
traffic environment. The results show that the complexity quantification model of
the car-following traffic environment can accurately quantify the driver’sworkload
brought by themain driving task to the driver during the car-following process. The
study will provide a scientific basis for the control switching of vehicles between
driver and machine and supply a more efficient driving behavior.

Keywords: Traffic environment complexity · Internet of vehicle · Car-following
behavior spectrum · Driver’s workload

1 Introduction

With the increase of car ownership, the traffic environment has become more and more
complex. Drivers always pay attention to the movement state of the surrounding vehi-
cles and adjust their driving behaviors when they drive the vehicle. The increasingly
complex dynamic traffic environment requires drivers more energy to focus on driving
tasks. However, due to people’s limited capabilities of dealing with information and
collecting resources, drivers’ information processing capabilities are not sufficient to
deal with the extremely complex dynamic traffic. The complex environment leads to

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
Y. Bie et al. (Eds.): KES-STS 2022, SIST 304, pp. 1–10, 2022.
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the driver’s driving workload increase, and it is easy to affect the driving performance.
Previous studies have shown that the complex dynamic traffic environment will increase
the driver’s perception of driving difficulty, which will increase the driver’s workload,
affect driving performance, and thus have an impact on road traffic safety [1]. With
the development of the Internet of Vehicles technology, vehicles can obtain information
about other vehicles on the road [2], and then can quantify the complex vehicle following
process in real time, which is of great significance for reducing the driving workload of
drivers and improving driving safety.

To measure traffic environment complexity, many efforts have already been made
previously. For example, some researchers used the visual information of the driver to
quantify the complexity of the road traffic environment, and used image processingmeth-
ods to propose a calculation method of the complexity of the traffic environment based
on the calculation of the driver’s visual information [3]. By calculating the driver’s visual
attention to the road information, the road traffic environment was divided into different
layers, and the weight coefficient of each visual environment layer was determined by
the eye movement data, and an information calculation model based on the visual infor-
mation hierarchical model was established [4]. Another part of the scholars used driving
simulators to simulate different driving scenarios. Through the analysis and processing
of the driver’s blinking frequency, electrocardiogram and other physiological responses
and driving performance, they explored the impact of different complex levels of traffic
scenarios on the driver’s state and driving behavior to evaluate the complexity of the road
traffic environment [5–12]. Some scholars also proposed metrics to quantify the com-
plexity of the dynamic car-following traffic environment. Xue et al. used metrics such as
speed, acceleration, reciprocal collision time, headway time, and other metrics, and used
the modified margin to the collision to evaluate the risk of car-following behavior for
different vehicle types [13]. He and others used speed, acceleration, accelerator/brake
pedal force, head distance, relative speed, TTC, and other metrics as the components
of the car-following behavior spectrum. They constructed the car-following behavior
spectrum of 6 types of drivers in 15 car-following driving scenarios [14].

To quantify the complexity of the dynamic car-following traffic environment in real
time, we select three complexity evaluation metrics based on the car-following behavior
spectrum, obtain the experimental data of the four car-following tasks performed by
the driving simulator, and use the entropy method to weight and sum the three metrics.
The complexity quantification model of the car-following dynamic traffic environment
is established, and the model is verified by the subjective load of the drivers.

2 Model

2.1 Quantitative Metrics of Car-Following Dynamic Traffic Complexity

During the car following process, there are many situations that will increase the driver’s
workload, such as emergency braking of the preceding vehicle, serpentine driving of the
vehicle, and unstable driving of the vehicle. Based on the three driving situations, the
metrics of car-following dynamic traffic complexity are respectively proposed.
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IMMC (Inversed Modified Margin to Collision) describes the reciprocal of the fol-
lowing car’s driver reaction time before braking, when the preceding car brakes sud-
denly, which can objectively quantify the driver’s workload caused by driving too fast
or following the preceding car too close.

IIMMTC = 2avf
v2p − v2f + 2aD0

(1)

where IIMMTC is the evaluation metric of Inversed ModifiedMargin to Collision. Vp and
Vf are the vehicle speeds of the preceding and following vehicles, respectively.D0 is the
initial distance between the two cars. a is the braking deceleration, which is −8 m/s−2.

Some emergencies (such as road obstacles and road depressions) will cause drivers
to adjust the lateral position of the car to avoid it, forming a serpentine driving, and
increasing the drivers’ driving workload. TOC (Transverse Oscillation Coefficient) is
used to evaluate the complexity of snake-like car-following driving.

ITOC =
∑|W (t)|
d(t) × F

(2)

where ITOC is the evaluation metric of the Transverse Oscillation Coefficient. d(t) is the
vertical travel distance within 1s before time t. W(t) is the cumulative value of lateral
offset within 1s before time t. F is the data recording frequency.

Unstable speed driving affects not only driving safety, but also affects driving com-
fort and consumes drivers’ energy. VIC (Velocity Instability Coefficient) is used as an
indicator of the complexity of the speed instability.

IVIC = Vstd (t)

Vmean(t)
× 100% (3)

where IVIC is the evaluationmetric of Velocity Instability Coefficient.Vstd(t) is the speed
standard deviation within 1s before time t. Vmean(t) is the mean value of speed within
1s before time t.

2.2 The Establishment of the Quantitative Model

(1) Metricsweight calculate --- entropyweightmethod.The entropymethoddetermines
the metric weights according to the degree of variation of each metric [15]. This is
an objective weighting method that avoids the deviation caused by human factors.
Relative to the subjective assignment method, this method has higher accuracy and
stronger objectivity and can better explain the results obtained. The weights of
IIMMTC , ITOC, and IVIC are set to W1, W2,W3.

(2) Metrics min-max standardization. After statistical calculation: The value ranges of
IIMMTC , ITOC, and IVIC are between 0–2 s−1, 0–0.01, 0–3.2, respectively. Therefore,
the data needs to be normalized, that is, to transform the original data linearly, and
the result value is mapped to [0,1]. The conversion function is as follows:

x∗
ij = xij − min

max − min
(4)
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(3) Weighted optimization model. By integrating the various metrics of the com-
plex measurement of the car-following dynamic traffic environment, the com-
plexity quantification model of the car-following dynamic traffic environment is
established:

C = W1
IIWWTC

2s−1 + W2
ITOC
0.01

+ W3
IVIC
3.2

(5)

where C is the complexity of the car-following dynamic traffic environment.

3 Experiment Plan and Data Processing

3.1 Experimental Design

Purpose. To quantify the unknown coefficients in the model, this experiment sim-
ulates different complexity of car-following scenes on a driving simulator, and the
experimenters complete their driving tasks in a virtual traffic environment.

Experiment Plan. Through the UC-winRoad scenario modeling software, a virtual
highway road scenario is built in the driving simulator. In this scenario, the road is a
two-way six-lane three-level highway, and the lane width is 3.5 m. The road speed limit
is 80 km/h. Before the experiment, the running plan of the preceding vehicle is set.
Experimenters drive the vehicle to follow the preceding vehicle in the middle lane, and
there is traffic flow in other lanes (Fig. 1).

Fig. 1. Simulated driving scenario.

In the experiment, 10 experimenters aged 24–45 years old and more than 5 years of
driving experience are selected (Table 1).

Experiment process: In order to record different dynamic traffic environment com-
plexity during the experiment, this study sets four car-following driving tasks, and each
task is carried out in sequence. Each experimenter practices using the driving simulator
before starting the experiment until they are proficient in operating the driving simulator.
The experimenters will fill in the subjective complexity scale after completing a task.
The subjective complexity scale is the NASA-TLX evaluation scale developed by the
National Aeronautics and Space Administration [16].
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Table 1. Basic statistics of drivers.

Statistics Age Driving experience/years Driving mileage/10000 km

Mean 28.6 8.2 8.5

Min 24.0 5.0 0.6

Max 45.0 23.0 14.0

Task1:Theprecedingvehicle travels at a constant speedof 40, 50, 60, 70, and80km/h
on the middle lane, respectively, and each speed lasts for two minutes. Experimenters
drive vehicles to follow the preceding vehicle according to their own driving habits.

Task 2: The preceding vehicle travels at a constant speed of 40, 50, 60, 70, and
80 km/h on the middle lane, each speed lasts for two minutes. Experimenters drive
vehicles in a serpentine route, and maximize their vehicle’s lateral movement without
wheels touching the line.

Task 3: The preceding vehicle drives at a constant speed of 40, 50, 60, 70, and 80
km/h on themiddle lane, and performs two emergency braking at random. Experimenters
drive vehicle to follow the preceding vehicle according to their own driving habits, and
they are not allowed to impact the preceding car.

Task 4: The preceding vehicle is driving at a variable speed in the middle lane, and
the speed range is random within 30–80 km/h. Experimenters drive car to follow the
preceding vehicle according to their own driving habits. In this task, experimenters are
required to follow the preceding vehicle as close as possible.

3.2 Data Processing

Find the Weight of Each Indicator. The driving simulator records the driving data of
drivers when performing driving tasks, and the data collection frequency of the simulator
is 10 Hz. The specific values of 3 metrics will be calculated (Table 2).

Table 2. Fragments of complexity quantification metrics.

IIMMTC ITOC IVIC

5.828 × 10−1 3.017 × 10−6 1.527 × 10−2

5.844 × 10−1 4.399 × 10−6 1.641 × 10−2

5.866 × 10−1 4.366 × 10−6 1.731 × 10−2

5.885 × 10−1 4.354 × 10−6 1.801 × 10−2

5.913 × 10−1 5.822 × 10−6 1.852 × 10−2

5.957 × 10−1 5.726 × 10−6 1.888 × 10−2

In order to ensure the universality of the experimental samples, 1000 sets of quantitative
metric data are randomly selected from each task of each experimenter, and a total of
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32000 sets of quantitative metric data from 8 experimenters are selected (the driving
data of the remaining two experimenters were used for verification). W1, W2, and W3

are calculated by entropy weight method and brought into Eq. 5:

C = 0.0432IIMMTC + 26.1000ITOC + 0.2039IVIC (6)

Determine the Threshold. Considering that most cars nowadays are equipped with
electronic body stabilization systems, cars generally do not have risks such as sideslip
and overturn when accelerating and decelerating on normal roads and in snake-like car-
following. Therefore, IIMMTC is used as the evaluation index to determine the threshold
of the complexity of the dynamic car-following traffic environment. The shortest braking
reaction time of the driver is 0.5 s [17]. When IIMMTC is greater than 2 s−1, there is a
risk of rear-end collision. If ITOC and IVIC are set to 0, C = 0.0864. The weight of each
metric is enlarged in equal proportion, so that the result of the model is ten at this time:

C = 5.00IIMMTC + 3020.83ITOC + 23.60IVIC (7)

The complexity of the car-following dynamic traffic environment when the experi-
menters performed the driving task is quantified by the above model. By analyzing the
complexity of the traffic environment under normal driving, the quantile value of com-
plexity 10 can be calculated, which is 95.34% and is judged to be a third-level risk state
according to the car-following risk status classification theory, which is only lower than
the fourth-level risk status of 99% quantile [18]. Therefore, a state with a complexity of
more than 10 is defined as an extremely complex state (Fig. 2).

Fig. 2. The complexity level of the dynamic traffic environment.

3.3 Result Analysis

Analysis of Complexity Quantification Results of Dynamic Traffic Environment
for Each Task. By using the car-following dynamic traffic environment complexity
quantification model, the other two experimenters’ results are shown in Fig. 3. Figure 3
shows that the complexity of the dynamic traffic environment of task 1 is around 3, which
is in a low-complexity state. When the experimenters perform task 2 with the addition
of serpentine driving, the complexity of the dynamic traffic environment is on a high
level. In task 3, the preceding vehicle randomly performs emergency braking in order
to avoid a collision. The experiment vehicle performs emergency braking in the shortest
time. At this time, the complexity of the dynamic traffic environment rises sharply. In
task 4, the variable-speed driving of the experimental vehicle causes large fluctuations
in the complexity of the dynamic traffic environment, and the overall complexity is at a
relatively high level. The mean value of the dynamic traffic environment complexity of
each task is shown in Fig. 4. Figure 4 shows that the average complexity of the dynamic
traffic environment of driving task 1 is the smallest, followed by driving tasks 2 and 3,
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and driving task 4 is the largest. The mean value of tasks 1 and 3 gradually grow with the
increase of vehicle speed, and the mean value of task 2 first decreases and then increases.
This fluctuation should be a small error caused by the driver’s driving style. The mean
value of the two experiments of task 4 fluctuates slightly, and both are in a high state.
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Fig. 3. Fragments of the complexity of the dynamic traffic environment.
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Statistical Analysis of Driver’s Workload Subjective Scale. Since the complexity of
the traffic environment is positively correlated with the driver’s load [6], We compare
each task result with the driving workload subjective scale to verify the model. Through
data processing of the NASA-TLX subjective load scale, we obtain the subjective load
of each driving task of the remaining two experimenters. The subjective load of one of
the experimenters is shown in Fig. 5.
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Fig. 5. Subjective driving load of each driving task.

Figure 5 indicates that the subjective load of driving task 1 is the smallest, followed by
driving tasks 2 and 3, and task 4 is the largest. The subjective load of driving tasks 2
and 3 slowly grow with the increase of vehicle speed, and the subjective load of driving
task 3 is more obvious with the increase of vehicle speed. The subjective load of the two
experiments of driving task 4 is at a relatively high level.

Model Validation. Pearson correlation analysis is performed on the average value of
the dynamic traffic environment complexity and the subjective load of each driving
task of the two experimenters [19], and the two were significantly correlated when the
confidence interval is 0.01. The correlation coefficients between the test result and the
subjective loadof the two experimenterswere 0.762 and0.786, respectively,which shows
a strong correlation. It also shows that the car-following dynamic traffic environment
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complexity quantification model in this thesis can accurately quantify the complexity of
the road traffic on which the vehicle is travelling.

4 Conclusion

This thesis establishes a complexity quantification model of the car-following dynamic
traffic in the environment of the Internet of Vehicles. Based on the car-following behav-
ior spectrum, three complex metrics are selected: IIMMTC , ITOC and IVIC . Based on
the entropy weight method, we took a weighted sum of the 3 metrics and established
a complexity quantification model of the car-following dynamic traffic environment.
Also, we designed 4 driving tasks in car-following states through the driving simulator
and analyzed the driving data. At last, we verified the correlation between the average
complexity of the dynamic traffic environment and the subjective load with the Pearson
correlation coefficient. The results show that the two are significantly related. Therefore,
the driving data obtained in the Internet of Vehicles environment can accurately quantify
the complexity of road traffic in the process of the car following in real time. In future
research, the complexity quantification of the dynamic traffic environment also needs
to be modeled in other driving scenarios to increase the applicating scope. In addition,
the authenticity of the research results needs to be verified in real vehicles under safe
conditions.
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Abstract. With the rapid development of voice technology, Voice recognition
technology has been bought into a large number of vehicle information systems,
and different information from HMI displays during voice interaction will affect
the driving status of drivers. In order to improve the interaction between the driver
and the HMI (Human machine interaction) display to reduce driving distraction
and to optimize the HMI information display, this study compared the difficulty
of using the three common voice interaction interfaces based on voice interaction
background and quantified the secondary task load generated by the voice inter-
action interface on the driver during driving. In this study, the indicators of head
movement and the operation parameters of the vehicle during voice interaction
are proposed to quantify the driving task load based on the hierarchical analysis
method. To achieve the goal, 10 drivers are selected for driving simulation tests
by using the UC-win/road driving simulator and head data acquisition software.
During the test, every tester performs three-voice interaction tasks: map naviga-
tion, phone calls, and switching music. The results show that the proportion of
driving load generated by the map navigation phone calling and switching music
are 0.4898, 0.1992, and 0.311. Therefore, the HMI information display interface
of map navigation and music switching needs to be simplified designed to reduce
the presentation of redundant information. The studywill provide a scientific basis
for the voice interaction function of the HMI system and the information display
design of the HMI interface.

Keywords: HMI character display · Voice interaction · Secondary task load ·
Hierarchical analysis · Interface information

1 Introduction

More frequent interactions between driver and vehicle-board information systems led
to a high rate of traffic safety accidents 50% of Highway Administration NHTSA 2013
accidents are caused by the use of vehicle-board information systems when driving
a vehicle [1]. Due to the high driving workload brought by the on-board voice task,
the driver’s attention to the main task is sometimes missing during the task time, and
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cannot control the driving state of the vehicle in time [2]. Therefore, in the design and
development of on-board information system, it is very necessary to determine the impact
on driving safety when using common functions.

Actual road test: The driver performs a voice interaction task test on the actual road
[3]. The biggest advantage of collecting the driver eye movement index and vehicle
running state parameters from the voice interaction task during driving is the test results
are real, but the cost and risk are high, and the reproducibility is poor, so the method
can only conduct some simple test, in the more complex voice interaction task driving
research, this method is generally not used [4].

Simple laboratory test: This kind of test refers to the simple laboratory configuration
testwithout the simulationmethod [5], for example, using a computer to test traffic events
on the computer screen. This has the advantages of simple cost and easy operation, but
there is a large gap between the test and real driving, and the driving environment low
the accuracy is low [6].

Simulation environment test: This kind of test uses a driving simulator with scenarios
to simulate the real driving status. This method is adopted by most current studies, with
the advantages of strong safety test design and easy test. Although the method is not as
accurate as of the actual road test results, with the development of simulation technology,
the driving simulator can give people the feeling of a real car [7]. And this kind of test
can also reflect the actual driving status well, and it is easier to obtain all kinds of driver
behavior and vehicle operation status parameters.

Considering the advantages and disadvantages of the above research methods, we
choose the simulation environment test for the study.

Task 1: Control the on-board navigation device during driving. The Security Council
of Canada, which in ref [8] is noted that in the process of destination information, the
input information is less effective than the display of the information using sound control
technology, the input or output information are transmitted through language, which can
minimize the occupation of driver visual resources and reduce the impact on the driver’s
attention.

Task 2: Phone calling during driving: The task is mainly about the following condi-
tions:1, telephone use type (contact and non-contact) 2, control method (sound control
and touch control) 3, send receive messages and phone calling (different time length and
different difficulty). Some previous research found that, in the above conditions during
driving will damage impact the driver’s reaction time and speed control, etc. Toernros
et al. showed that phones are divided into handheld, and non-handheld phones, both
non-handheld and handheld phones, which will have an impact on driving performance
[9], The study of control mode by Ishida et al. showed that sound control mode can effec-
tively reduce the impact of sub-task on driving performance [10]. Lesch et al. studied the
use of the phone during driving, where the researchers asked the simple driver questions
to answer the question accuracy as the evaluation criterion [11]. Horberry et al. found
that the drivers need to think seriously or recall to record the content of the phone and
send text messages, which will directly pose a threat to driving safety [12]. This study
analyzed the effect of voice dialing on drivers.
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Task 3: Listening to music during driving. The influence of such tasks on driving
performance varies with the volume of music rhythm, and Schoemig derived from sim-
ulation trials of famous music students [13]. Different rhythms of music by taking up the
driver attention space and increase the risk of traffic accidents, and the driver simulated
driving speed, and speed estimates cause continuous impact within a certain range the
faster the driver heart rate, the shorter the time the simulation driving time, the driver
is prone to ignore the red light turn a blind eye to the zebra crossing driving error [14].
Oviedo’s study showed that the higher the music decibel, the greater the stimulation to
the driver, the greater the impact on driving performance [15]. TheMark study found that
if the music rhythm is chosen properly and the volume is controlled at around decibels,
it will help drivers relieve fatigue and shorten the response time in an emergency [16].

2 Voice-Based Interactive Driving Simulation Test

2.1 Design of Test

Driving simulation test Map navigation interface

Call the phone interface Music switch interface

Fig. 1. Driving simulation test and voice interaction interface information display

The test is based on UC-win/road software and a driving simulator. The selected
simulator scene is urban road, speed limit:70 km/h. The front car in the simulator is set
driven freely. The following rear car in the simulator is controlled by the driver(tester)
with the steering wheel and brake pedal. In the premise of ensuring driving safety, the
diver can drive freely. The HMI monitor is simulated with a tablet computer. For the
positionof theHMI in the car,we assume the center of the steeringwheel as the coordinate
origin, and use a laser rangefinder of mm level to measure the relative position of the
HMI monitor, and fix the HMI monitor to the corresponding position of the simulator
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according to the actualmeasurement.At the beginning of the test, the driver needs towear
the sensor device which is used to record head movement indicator, and then begins the
driving simulation. During the driving simulation, the tester sends voice commands to
the HMI display at any time to act as the sequence of 1, to search for the near gas station
according to map navigation. 2, Phone calling; 3, Switching music. The tester must
ensure safe driving when searching for the targets in a quiet test environment without
any other interruption. And after the test, the tester must complete the preservation of
the driving simulator and head movement data after the test. Ten drivers (mean = 24.5,
standard deviation = 4.2) with driving experience are selected to conduct the driving
simulation test (Fig. 1).

2.2 Test Index Collection

The relationship between head motion and the HMI display position is mainly reflected
in the following two aspects, the first is the head motion time to search for the HMI
task during driving, and the second is the amplitude of head motion. Head movement
time determines whether the driver can drive safely, and the range of head movement
determines the comfort of the driver’s head.

Thedata of the driving simulatormainly reflects the driving performance of the driver.
The head movement in the driving process affects the speed, the distance between the
front and the rear, the timewhen the driver steps on the brake pedal, and the lateral control
of the vehicle. And the simulator collects the data according to the above indicators: 1,
the speed difference between the front and rear cars at the start and end of the head
movement, 2, the distance between the front and rear cars at the start and end of the
head movement, 3, the average value of the throttle opening and closing degree and 4,
the lateral deviation of the vehicle during the head movement.

2.3 Test Data Processing

The obtained driving simulator data and head data were processed, and the results are
shown in Fig. 2 and Fig. 3.

Fig. 2. Head data matching and vehicle speed data matching
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According to the head motion curve and driving simulator speed curve, the map
navigation task of the driver has the largest amplitude and unstable speed control, the
telephone task has the smallest amplitude and good vehicle control, the operation param-
eters of the music switching task are between the above two. Themetrics extracted under
the three Secondary tasks are shown in Tables 2, 3 and 4. Tables 2, 3 and 4 is to extract
the driver’s head deflection index and driving performance information (Table 1).

Table 1. Indicator encoding

Name of index Code Name of index Code

Head movement time HMT/s Start distance SD/m

Head dynamic amplitude HDA/° End distance ED/m

Speed difference at the beginning SDB/km·h−1 Map navigation MN

Speed difference at end SDE/km·h−1 Make a call MC

Average opening and closing degree of accelerator
pedal

AOCD/ω Music switching MS

Standard deviation of vehicle yaw SDVY/°

Table 2. Map navigation data extraction

Tester\Indicator HMT HDA SDB SDE AOCD SDVY SD SE

1 2.76 25.62 2.85 5.89 0.01 0.00 48.11 89.02

2 2.66 24.92 8.02 1.99 0.33 0.00 49.82 42.62

3 2.74 17.90 1.23 0.66 0.19 0.01 49.81 52.71

4 2.94 20.70 7.80 4.79 0.15 0.00 54.51 52.14

5 3.08 21.70 3.16 3.28 0.03 0.00 47.20 43.39

6 3.68 23.49 4.38 1.69 0.05 0.01 39.24 39.29

7 4.16 22.08 0.40 4.18 0.02 0.01 25.81 37.69

8 3.52 21.47 2.22 3.66 0.00 0.01 48.70 19.55

9 3.26 21.91 3.36 4.26 0.04 0.01 39.98 47.02

10 3.30 19.65 0.74 5.83 0.12 0.00 22.70 32.40

Table 3. Dial data extraction

Tester\Indicator HMT HDA SDB SDE AOCD SDVY SD SE

1 2.02 18.95 5.25 4.46 0.12 0.01 111.35 50.98

2 2.76 18.30 1.37 4.82 0.17 0.00 55.82 54.94

3 1.56 20.58 0.98 0.24 0.20 0.00 34.59 50.37

(continued)
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Table 3. (continued)

Tester\Indicator HMT HDA SDB SDE AOCD SDVY SD SE

4 1.92 16.11 2.72 7.18 0.08 0.01 61.32 60.84

5 1.74 20.56 5.01 4.48 0.09 0.00 38.86 50.58

6 1.48 21.09 0.62 5.60 0.12 0.00 30.23 44.42

7 1.86 20.63 1.33 2.71 0.04 0.00 46.31 27.75

8 2.72 11.24 0.18 4.25 0.02 0.00 44.38 51.84

9 1.72 18.53 1.83 4.82 0.21 0.01 31.48 43.91

10 2.40 20.16 2.15 0.50 0.21 0.01 21.58 22.54

Table 4. Switch for music data extraction

Tester\Indicator HMT HDA SDB SDE AOCD SDVY SD SE

1 2.26 20.88 5.60 6.06 0.06 0.00 92.34 115.25

2 1.90 20.56 1.36 0.98 0.14 0.00 43.78 56.42

3 2.06 17.14 0.33 2.31 0.05 0.00 52.63 35.52

4 2.18 17.19 5.94 3.38 0.21 0.01 55.00 59.55

5 2.00 18.08 3.36 4.13 0.14 0.00 41.70 41.46

6 3.02 15.50 2.26 1.02 0.10 0.00 38.46 31.08

7 2.32 17.71 5.14 1.89 0.07 0.00 40.18 47.52

8 2.84 18.89 1.90 0.73 0.15 0.00 17.47 44.21

9 2.26 22.71 5.92 2.30 0.11 0.00 44.45 32.87

10 2.46 20.30 5.02 2.18 0.17 0.00 36.24 20.07

3 Model Construction

Analytic Hierarchy Process is the decision-making method that decomposes the ele-
ments related to decision-making into goals, guidelines, plans, etc., for qualitative and
quantitative analysis. The proposed method has the advantages of systematization, flex-
ibility, and simplicity. In this study, the degree of HMI display is evaluated by the head
deflection index and driving performance index. The hierarchical analysis method meets
the specific requirements of this study.

The process of creating a model via hierarchical analysis is as follows:

Step 1: Define the problem, determine the target;
Step 2: From the highest layer (target layer), through the middle layer (standard layer)
to the lowest layer (scheme layer) to form a hierarchical structure model;
Step 3: Compare the scores to determine the score of the lower level to the upper level.
Each standard layer does not necessarily have the same proportion with another. Each
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of them has a certain proportion in the minds of decision makers. The scales 1–9 and
their meanings are defined as Table 5: the judgment matrix.
Step 4: The hierarchical synthesis calculation;
Step 5: The consistency test.

Table 5. Judges the matrix scale definition

Scale Meanings

l Compared with the two indicators, they have the same importance

3 The former of the two indicators is slightly more important than the latter

5 The former is obviously more important than the latter

7 The former is strongly more important than the latter

9 The former is extremely more important than the latter

2, 4, 6, 8 The median of the above-mentioned adjacent judgment

Count backward If the importance ratio of the index i to index j is aij then the importance

ratio of the index j to the index i is 1/aij

3.1 Build a Hierarchical Analysis Matrix

In order to analyze the difficulty of the interface of HMI display, the driver’s workload
is taken as the target layer. We selected eight standard layer indicators: head movement
time, the head deflections, the speed difference of voice interaction, the standard devia-
tion of the deviation, the mean of the vehicle accelerator pedal, the distance difference
of voice interaction. Scheme layer selection: map navigation, making phone calls, and
switching over music. According to the results of the test, the scale of each index is deter-
mined, and the scale matrix of the criterion layer and the significance layer is constructed
(Fig. 3).

Target layer

Criterion layer

Scheme layer

Interference of HMI information display to driver

Head motion 

amplitude

Map navigation

Start speed 

difference

End speed 

difference

Brake pedal 

depression

Standard 

deviation of 

lateral deflection

Head movement 

time Start distance End distance

Make a call Switch music

Fig. 3. Schematic diagram of the hierarchical analysis method structure
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3.2 Calculate the Consistency Index CI

CI = λmax

n− 1
(1)

where CI is the consistency index, λmax is the maximum eigenvalue of the judgment
matrix, and n is the number of indicators at the level.

3.3 Find the Consistency Indicator RI

Table 6. Mean random consistency indicators

n 1 2 3 4 5 6 7 8 9

RI 0 0 0.52 0.89 1.12 1.24 1.36 1.41 1.46

where the RI in the table is the mean random consistency index (Table 6).

3.4 Calculate the Consistency Ratio, CR

CR = CI

RI
(2)

where CR is the consistency ratio, and when CR is less-than 0. 1, a one-time test is
considered passed. Otherwise, some appropriate corrections should be made.

The second layer CI calculation and one-time test result is λmax = 8.5841, CI =
0.0834, CR = 0.0592, CR < 0.10. The third layer of index CI calculation and one-
time test results are as shown in Table 10. All the metrics shown in Table 7 passed the
consistency test. Table 8 scaling matrix was determined based on the Table 2, 3 and 4
driver performance data and Table 5. The third layer scaling matrix is obtained based on
the mean value comparison of different voice interaction tasks. The main principle of
comparison is: When the scale value is large, then the influence on the driver’s driving
workload is large. The third layer of scaling matrix was obtained based on the principles
of the interface impact on drivers and Table 5, as shown in Table 9.

Table 7. Calculation and one-time test of the third layer of consistency index CI

Standard layer index λmax CI CR Pass?

HMT 3.0468 0.0234 0.0450 Yes

HDA 3.0536 0.0268 0.0516 Yes

SDB 3.0536 0.0268 0.0516 Yes

SDE 3.0536 0.0268 0.0516 Yes

(continued)
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Table 7. (continued)

Standard layer index λmax CI CR Pass?

AOCD 3.0055 0.0028 0.0053 Yes

SDVY 3.0536 0.0268 0.0516 Yes

SD 3.0536 0.0268 0.0516 Yes

ED 3.0536 0.0268 0.0516 Yes

Table 8. The second layer of the scaling matrix

HMT HDA SDB SDE AOCD SDVY SD ED

HMT 1.0 2.0 2.0 3.0 0.2 0.2 2.0 2.0

HDA 0.5 1.0 4.0 4.0 0.2 0.2 2.0 2.0

SDB 0.5 0.3 1.0 1.0 0.3 0.2 1.0 1.0

SDE 0.3 0.3 1.0 1.0 0.3 0.2 1.0 1.0

AOCD 5.0 5.0 4.0 4.0 1.0 0.3 5.0 5.0

SDVY 5.0 5.0 5.0 5.0 4.0 1.0 5.0 5.0

SD 0.5 0.5 1.0 1.0 0.2 0.2 1.0 1.0

ED 0.5 0.5 1.0 1.0 0.2 0.2 1.0 1.0

Table 9. The third layer of the scaling matrix(part)

Metric 1 Metric 2

HMT MN MC MS HDA MN MC MS

MN 1 3 3 MN 1 2 2

MC 0.33 1 0.5 MC 0.5 1 0.5

MS 0.33 2 1 MS 0.5 2 1

3.5 Weight Calculation

Wi = 1

n

n∑

j=1

aij
n∑

k=1
akj

, i = 1, 2, ..., n (3)

where Wi is the weight value, n is the number of metrics in the corresponding scaling
matrix, and aij is the scaling value of column j, row i of the scaling matrix. Combining
the scaling matrix Tables 8 and 9 and formula 3, the calculated degree of influence to
different interfaces on the driver, as shown in Table 10.

According to the results of the hierarchical analysis method, the HMI interface of
mapnavigation is themost difficult,with the largest Secondary task load to the driver. The
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HMI information of the music playback interface is the least difficult, and the secondary
task load to the driver is small. It shows that in the case of HMI voice interface design,
the navigation interface design information is too much, and the driver’s workload will
increase when the driver acts voice interaction and observes the interaction effect. When
optimizing the design, the unnecessary information display should be reduced to reduce
the load of the driver voice interaction.

Table 10. Weight calculation of index level analysis

Weight HMT HDA SDB SDE AOCD SDVY SD SE

0.101 0.107 0.049 0.047 0.243 0.354 0.050 0.050 Weight

MN 0.590 0.491 0.312 0.198 0.539 0.491 0.491 0.491 0.490

MC 0.159 0.198 0.198 0.491 0.163 0.198 0.198 0.198 0.199

MS 0.252 0.312 0.491 0.312 0.297 0.312 0.312 0.312 0.311

4 Conclusions

We analyze the relationship between the head data of the testers and the operating
parameter data of the simulated vehicle. The hierarchical analysis method is also used
to quantify the driving load from the map navigation, phone call, and music switching
interface of the voice interaction, and the scale judgment matrix is constructed according
to the influence relationship between the head movement and the driving simulator.
Finally, the Secondary task load results are calculated at different interfaces with the
arithmetic average weight calculation method, and this makes us achieve the value of
Secondary task load degree quantification. The calculation results show that among the
three voice interaction interfaces, the map navigation interface is 0.4898, the caller is
0.1992, and switching music is 0.311. This indicates that the map navigation interface
should be appropriately simplified to reduce the impact on the driver.

In later studies, other forms of voice interaction tasks or other forms of driving
Secondary tasks can be analyzed, And further study can comprehensively improve the
voice interaction system and reduce the workload generated by the voice interaction
interface on drivers.
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Abstract. Various advanced driving assistance systems (ADAS) are designed to
help drivers make reasonable evasive decisions in emergency conditions. How-
ever, different drivers have different perceptions of driving risks, resulting in dif-
ferences in the choice of evasive behaviors (e.g., car-following, overtaking, etc.).
To explorer the impact of ADAS on vehicle interaction behaviors under dangerous
conditions, this study objectively assessed how ADAS affected drivers’ choice of
evasive behaviors in near-crash events (NCEs). An on-road experiment was con-
ducted on public highways in real traffic. The dangerous driving data of NCEs
in different working states of ADAS (i.e., activated or not) were collected and
combined to classify NCEs’ risk levels: lower, medium, and higher based on the
K-means clustering results. Drivers’ evasive behaviors during ADAS engagement
(i.e., during the use of the forward collision warning system) were then found
closely associated with NCEs’ risk levels. Differences of probabilities for evasive
behaviors were further compared within and across the three risk groups. Results
showed that ADAS engagement has a positive impact on reducing the occur-
rence of NCEs and reduces the probability that drivers in medium and high-risk
groups choose overtaking behavior. ADAS engagement can help drivers maintain
a greater time headway (THW) when taking evasive action. Findings in this study
could optimize ADAS intervention strategies and further enhance the ability of
safe driving assistance.

Keywords: Evasive behavior · Advanced driver assistance system · Near-crash
events · Driving risk perception

1 Introduction

More than 94% of traffic accidents in the road traffic system are related to human
factors [1]. To improve the driver’s attention and risk perception capabilities, various
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advanced driving assistance systems (ADAS) such as forward collision warning (FCW),
automatic emergency braking (AEB), adaptive cruise control (ACC), and lane departure
warning (LDW) [2–4]. These systems are used to guide drivingbehavior in real-time, thus
preventing human error, leading to accidents. ADAS measures the position relationship
between the vehicle and the road system in real-time through onboard sensors. When
a specific dynamic parameter of the vehicle exceeds the warning threshold, the system
will provide the driver with sound, light, or tactile warning information feedback in
time [5]. Since ADAS could promptly remind drivers to take evasive measures such
as deceleration or steering, most ADAS users believe that reliable driving assistance
systems can effectively improve driving safety. However, in practical applications, when
the FCW predicts a collision or NCEs, different drivers have different evasive behaviors
[6].

Due to the difficulty of obtaining large amounts of collision data, the crash surrogate
is widely used in the research of driving risk. NCEs are common crash surrogates, which
are defined as a combination of steering, braking, decelerating, and control inputs [7].
Near-crash data can provide controllable laboratory data as a useful supplement to traffic
safety research [8]. Time headway (THW), time to collision (TTC), TTC−1, longitudinal
deceleration, operation response time, steering wheel angle, etc., have been extensively
and quantitatively adopted to study car-following behaviors to replace traditional safety
indicators [9]. However, taking THW and TTC as general indicators for ADAS assess-
ment and risk quantification still have limitations [10]. THW only retains vehicle speed
information without considering the influence of relative speed, while TTC only retains
relative speed information without considering the impact of vehicle speed. Besides, the
expected averages of THW and TTC between drivers with different characteristics are
also very different [11]. Drivers’ evasive behaviors are affected by many factors, such as
Drivers’ expectations, gender, age, cognitive load, and the urgency of driving conditions
[12].

Given the above, many efforts had been made to explorer the influence of ADAS
on driving behavior and to evaluate the effectiveness and reliability of ADAS. How-
ever, most studies focused on the impact of ADAS on driving risk and the acceptance
of different types of drivers under normal driving conditions. Few studies pay atten-
tion to the influence of ADAS on drivers’ evasive behavior under dangerous driving
conditions. Thus, this study focused on exploring the influence of ADAS on drivers’
evasive behaviors during car-following in NCE on highways. An on-road experiment
was conducted on public highways in real traffic. The dangerous driving data of drivers
in NCE under different working states of ADAS (i.e., activated or not) were collected.
K-means clustering method was used to classify the risk level of NCE. The effects of
the risk level of NCE, the working state of ADAS and THW on the probability of drivers
choosing evasive behavior are analyzed. The research results will help to objectively and
real-time evaluate the impact of ADAS on highways car-following and evasive behaviors
and better enhance the ability of safe driving assistance.

2 Methodology

The analyses of this study had three main parts: (1) Combined with maximum longitu-
dinal deceleration, average longitudinal deceleration, and percentage of vehicle kinetic
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energy reduction, the risk levels of NCEs were divided into different groups by using
K-means clustering. (2) The probability differences of drivers in different risk groups
choosing different evasive behaviors were studied. (3) The internal influence of ADAS
engagement on different evasive behaviors was evaluated by the THW index.

2.1 Experiment

To investigate the effectiveness of the ADAS, we recruited 20 drivers to participate in
the field operation test, including six female drivers and 14 male drivers. Their average
age is 32 (ranging from 26 to 53) years old. Their practical driving experience was more
than five years. All experimental vehicles were required to be equipped with a forward
collision warning device based on the Beidou navigation satellite system (equivalent to
ADAS with only FCW function). The test route was located at Xinbo Expressway in
Guangdong Province, China, as shown in Fig. 1. The test route had a length of 25 km, a
design speed of 120 km/h, and six lanes in both directions. In the test, the test vehicles
were required to run in clusters, and the speed is maintained at 80–100 km/h.

Fig. 1. The test route (blue line), showing the begin/end point (red dot to up), the northern turn-
around point at Lantian Interchange (red dot to down), and the three points at which participants
were asked to do dangerous driving tasks while driving (three yellow five-pointed star points along
route)

2.2 Data Extraction

The raw data collected in this study and the preprocessed data types were presented in
Table 1. The original data included the real-time vehicle position data collected through
the onboard terminal and the highway alignment design data collected in advance. The
preprocessed data included data related to the mapping relationship between vehicles
and roads and the interaction relationship between vehicles and vehicles.
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Table 1. Raw data and preprocessed data list

Raw data Preprocessed data

Vehicle terminal Highway Vehicle-road mapping
relationship

Vehicle-to-vehicle interaction

Vehicle ID
Time (ms)
Coordinate (X, Y )
Speed (km/h)
Engagement state

Highway
Alignment
Design data

Lateral distance (m)
Lane location (1, 2, 3)
Accumulated mileage
(m)

Preceding vehicle’s ID
Acceleration (m/s2)
Spatial headway (m)
Time headway (s)

2.3 Modeling Evasive Behaviors

The evasive behaviors of NCEs in this study consisted of two types: car-following and
overtaking. Based on the differences in the interaction between the front and rear vehicles
in the two different evasive behaviors, this study carried out quantitative modeling and
descriptions.

(1) Car-following
The two test vehicles with the smallest difference in mileage in the same lane
could be defined as the front and rear vehicles. The car-following state could be
determined when the THW of the front and rear vehicles was less than 5 s [13]. The
Gazis-Herman-Rothery (GHR) model was used as the car-following model [14],
as shown in Eq. (1).

an = αVn(t)
β �Vn(t − τn)

�Xn(t − τn)
γ (1)

where, Vn is the speed of the rear vehicle (km/h), an is the acceleration of the rear
vehicle (m/s2); �Vn is the relative speed of the front and rear vehicles (km/h); �Xn

is the distance between the front and rear vehicles (m), τn is reaction time (s); n is
the nth vehicle (i.e. the rear vehicle); α, β, γ as parameters.

(2) Overtaking
Aminimum safety distance (MSD) model for lane changing [15] was used to judge
the safe lane-changing behavior of test vehicle m at any time t, as shown in the
Eq. (2).

yn(t) − ym(t) >
Lm
2
cosθ(t) + Wm

2
sinθ(t) + Ln

2
(2)

where, Lm denotes the length of the vehicle m;Wm denotes the width of the vehicle
m;Ln denotes the length of the vehicle n; θ is the angle between the tangent direction
of the track of vehicle m and the lane line.

Based on the mathematical models of different evasive behaviors, this study
proposed the judgment rules for Drivers’ emergency evasive behaviors in NCEs, as
shown in Table 2.
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Table 2. Two typical hedging behavior judgment rules

Evasive behaviors Judgment rules

Car-following • The headway value was less than 5s
• Minimum headway of the front and rear vehicles
• The position and speed relationship with the preceding vehicle satisfied
Eq. (1)

Overtaking • The headway value was less than 5s
• The position and speed relationship with the preceding vehicle satisfied
Eq. (2)

2.4 K-means Clustering

Cluster analysis can classify driving risks involved in different NCEs into different risk
levels and had been used to assess individual driver risks [16]. In previous studies,
maximum longitudinal deceleration, average deceleration, and vehicle kinetic energy
reduction ratio were widely used to classify the driving risk levels of NCEs [10]. This
study used the following characteristics to characterize the driving risk level involved in
typical NCEs during naturalistic driving:

(1) maximum longitudinal deceleration dmax.
(2) The average deceleration dave, it was calculated as follows:

dave = 1

t1 − t0

∫ t1

t0
a(t)dt = v(t1) − v(t0)

t1 − t0
(3)

where, v(t) and a(t) denote the vehicle’s velocity and acceleration; t0 is the ini-
tial moment when longitudinal deceleration is greater than 2.0 m/s2; t1 is the
corresponding moment of maximum deceleration.

(3) The percentage reduction in vehicle kinetic energy ηr, it was calculated as follows:

ηr = 0.5 × mv(t0)2 − 0.5 × mv(t1)2

0.5 × mv(t0)2
= 1 −

(
v(t1)

v(t0)

)2

(4)

where m denotes the vehicle mass.

K-means clustering is an iterative algorithm for clustering analysis. K-means clus-
tering divides the data into k groups in advance and randomly selects k objects as the
initial cluster centers. Finally, according to the distance between each object and seed
cluster center, each object is assigned to the cluster center closest to it [17]. This process
can be described as follows:

argmin
ω

∑k

i=1

∑
xεωi

‖x − μi‖2 (5)

where x is the observed data, ω = [ω1, ω2, . . . , ωn] denotes the set of k clusters and μi

denotes the mean point of cluster set ωn.
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3 Results

3.1 NCEs Classification by K-means Clustering

In the end, a total of 347 groups of NCEs that met the criteria were obtained, of which
185 groups were without warning, and 163 groups were with a warning. This study used
the K-means clustering algorithm to divide NCEs into three groups: high, medium, and
low risk. The output of the cluster analysis was shown in Fig. 2. Table 3 summarized
the statistical characteristics of the three driving risk groups. The classification results
shown that: 1) The distribution of NCEs in different risk groups followed a pyramid
structure. This result was consistent with previous similar research results [18]. 2) The
average longitudinal deceleration of the high-risk group was about twice that of the low-
risk group. 3) ADAS engagement could effectively reduce the proportion of medium
and high-risk NCEs by more than 10%.

Fig. 2. Clustering results of driving risk under different ADAS states

Table 3. Risk classification of NCEs in various states of ADAS

Risk
groups

Number of NCEs Percentage
(%)

Cluster center feature mean

ADAS
ON

ADAS
OFF

Total ADAS
ON

ADAS
OFF

� dmax dave ηr

Low risk 92 109 201 46 54 8 −1.969 −1.873 0.088

Medium
risk

49 60 109 45 55 10 −2.721 −2.535 0.123

High risk 15 6 37 41 59 18 −3.908 −3.643 0.163
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3.2 Comparison of the Probability of Different Evasive Behaviors

As the results illustrated in Fig. 3, the probability of drivers choosing car-following in
low, medium, and high-risk NCEs was greater than overtaking. For the low-risk group,
ADAS engagement could increase the probability that drivers chose overtaking behavior,
making the probability that drivers chose car-following (P = 55%) and overtaking (P =
45%) were almost equal. ADAS engagement could reduce the probability that drivers
chose overtaking for the medium and high-risk groups. More than 70% of drivers were
more willing to slow down and follow the vehicle to avoid danger.

0.64 
0.58 0.60 

0.36 
0.42 0.40 

0.55 

0.71 0.73 

0.45 

0.29 0.27 

0.00

0.20

0.40

0.60

0.80

1.00

Low risk Medium risk High risk

Fr
eq

ue
nc

y

Risk groups

ADAS ON - ADAS ON - ADAS OFF - ADAS OFF -

Fig. 3. Probability of different evasive behaviors for different risk groups

3.3 Analysis of the Influence of THW on Different Evasive Behaviors

The Shapiro-Wilk test first showed that the THW from car-following and overtaking
behaviors did not obey the normal distribution (p< 0.05, rejecting the null hypothesis of
the normal distribution), which violated the normal hypothesis of the T-test andANOVA.
Thus, the Mann-Whitney U test was used to check the significant influence of ADAS
engagement on the headway of different risk-averse behaviors. The Mann-Whitney U
test is a non-parametric alternative to the T-test. When the normal distribution and the
homogeneity of variance do not meet the requirements of the T-test, the Mann-Whitney
U test should be used [19]. According to the Mann-Whitney U test results shown in
Table 4, ADAS engagement showed significant differences in the THW of overtaking
behaviors (p < 0.05).
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Table 4. THW statistical test results of different evasive behaviors in ADAS OFF and ON states

Evasive behaviors Sample size Mean S.D Mann-whitney U test

Car-following 114 1.395 0.931 ADAS OFF vs. ADAS ON: p = 0.412

Overtaking 131 1.376 1.056 ADAS OFF vs. ADAS ON: p = 0.038

As shown in Fig. 4(a-b) and Fig. 4(d-e), when ADAS was turned on, the THW of
the two evasive behaviors of car-following and overtaking presents an overall increasing
trend. Figure 4(c) and (f)were the box-type comparison diagrams of theTHWof different
evasive behaviors. The results showed that whenADASwas turned on, the average THW
of car-following increased from 1.32 s to 1.46 s (an increase of 0.14 s), while the average
THW of overtaking increased from 1.13 to 1.59 s (an increase of 0.46 s). Thus, ADAS
engagement had a greater impact on THW when overtaking.

1.32 1.46

1.13
1.59

Fig. 4. Boxplot of minimum THW corresponding to following and overtaking behavior of ADAS
OFF andON states. The frequency distribution of THWwas depicted using the data recorded from
the following behavior and overtaking behavior.

4 Discussion and Conclusion

Cluster analysis is an effective method to classify the driving risks in different NCEs
into different levels [20]. Consistent with other studies, the optimal number of clusters
for driving risk in NCEs was 3 [17, 21]. The driving risks were classified into three
categories (low,medium, and high risk) using theK-means clusteringmethod combining
maximum longitudinal deceleration, average deceleration, and vehicle kinetic energy
reduction ratio. The above three indicators indicated that speed and deceleration during
emergency braking were significant risk variables.
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Results of this study showed that ADAS could effectively reduce the proportion of
NCEs, and it also affected the driver’s choice of evasive behaviors. ADAS engagement
could reduce the ratio ofmedium and high-riskNCEs bymore than 10%. For the low-risk
group, ADAS engagement could increase the probability that drivers choose overtaking
behavior. For the medium and high-risk groups, ADAS engagement could reduce the
probability that drivers choose overtaking, and more than 70% of drivers were more
willing to choose car-following. ADAS engagement could improve the driver’s risk
perception and early response capabilities. The study also found that ADAS engagement
can help drivers maintain a greater headway with the vehicle ahead during the avoidance
process. ADAS engagement had a significant impact on the THWof overtaking behavior.
WhenADASwas turned on, the average THWfor car-following behavior increased from
1.32 s to 1.46 s, while the average THW for overtaking behavior increased from 1.13 to
1.59 s.

Conducting a real vehicle test that simulated a critical highway crash event was very
dangerous, which might lead to some limitations of this research. To ensure the safety
of this test, the participants were all 25~40 years old drivers of a passenger transport
company with skilled driving skills, and the test was carried out under clear weather
conditions. The study results ignored the influence of gender, age, driving skills, weather,
and traffic flow on Drivers’ evasive behaviors. The driving risk varied greatly among
individual drivers [22]. Despite the study’s limitations, the methods and results of this
study still evaluated the impact of ADAS on highway aversion behaviors in an objective
and reliable way.
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Abstract. In order to investigate the effect factors of route deviation when drives
use navigation application on freeways, we conducted a route deviation question-
naire on 219 drivers. The driver cognitive patterns were summarized from the
questionnaire by exploratory factor analysis, and effective explanatory variables
were screened by chi-square test. Meanwhile, related social factors were screened
by chi-square test andTukey’sHonestly SignificantDifference (HSD) test. Finally,
a binary logistic regression model was established to reveal the influence weight
of related factors on deviation from the route. The results show that navigation
application design, navigation usage habits, traffic environment and education can
influence drivers’ use of navigation, with navigation application design having the
greatest degree of influence, followed by navigation usage habits, and then traffic
environment interference and education. Specifically, navigation application that
is consistent with most drivers’ habits can reduce the probability of route devi-
ation; those with good driving habits have less route deviation; complex traffic
environments can increase the probability of route deviation; the probability of
route deviation decreases as education increases. The research contributes to the
optimization of freeway navigation application.

Keywords: Route deviation · Freeway · Navigation language optimization ·
Logistic regression

1 Introduction

In recent years, navigation map application has developed rapidly as an essential tool for
travel planning and route navigation. Although the overall performance of navigation
maps tends to improve the efficiency of drivers’ travel in unfamiliar environments and
solve congested sections [1, 2], the partial inability of existing navigation systems still
has optimization potential. Even, some studies found that it has some negative effects
on driving behavior, for example, Tamer et al. concluded that it can distract drivers with
the help of navigation systems, which may lead to an increase in road accidents, and
investigated that navigation system display size, ambient lighting, and gender can affect
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driving safety [3, 4]; Kaber analyzed that when the driver’s vision and cognition are
occupied by navigation information, it will increase the response time and the number
of operation errors [5]; Jamson et al. found that both visual and auditory navigation
tasks delayed the driver’s response to unexpected conditions [6]. Thus, navigation still
has optimization potential, e.g., Zhao identified the effect of variable message signs on
individual path selection behavior by studying the different effects on different groups
[7]; Lee explored the best strategy for delivering navigation information to drivers by
controlling the type and mode of information [8]; Larsson proposes pro-social control
strategies for vehicles that take into account driving comfort and traffic efficiency [9];
Li propose a heuristic routing algorithm to identify the feasible routing paths for shared
rides that interest both ridesharing drivers and riders [10]. Shi explored factors related
to autonomous driving safety [11].

In terms of the navigation voice prompt method, Uang et al. noted that the choice
of command or descriptive voice announcements depending on the content of the infor-
mation was beneficial in improving driver compliance with prompts [12]; Large et al.
showed that high trust speech increased driver trust in navigation but did not signifi-
cantly affect driver attention to wayfinding signs [13]; Lavie et al. found that drivers
performed best when using the least informative map [14]. The above studies reveal
the effects of navigation information giving methods on driving behavior and subjective
cognition, and point the way for further optimization of navigation information giving
methods. In terms of speech wording, Dalton et al. found that simple voice commands
were easier to follow and less intrusive to drivers than complex voice commands [15];
Rasker et al. suggested that navigation voice prompts don’t need to provide road names
because it is not easily and quickly understood by the driver [16]. Visually, Lin et al.
found no significant difference in driving performance between 2D and 3D map, while
sweeping behavior was more frequent in 3D than 2D, and drivers made significantly
fewer navigation errors when using the sub-window navigation display [17].

As for drivers, Yang explored the factors that influence drivers’ willingness to use
mobile navigation applications and found that the influencing factors are attitude, per-
ceived usefulness, driver orientation, navigation application affinity, and perception of
distraction [18]. Meanwhile, Bian’s study found that an interaction between prompt tim-
ing and prompt message of the voice navigation system affect the driver’s psychological
state and vehicle operation on urban highways [19]; Ali and Fu did some research on
lane change conditions separately [20, 21]; Imants believes that a deeper understand-
ing of how drivers use multiple sources of traffic information can help improve driver
safety and comfort, increase the availability of information sources, and help reduce
driver stress, anxiety and information overload while driving [22]. Pan explored the
relationship between speed behavior of participants and driving styles [23]. In addition,
Emmerson has found that the use of in-car navigation systems provides better road infor-
mation for older drivers, and that further improvements in navigation design are needed
to improve the quality of service for older drivers [24].

From the above research, it is clear that there is still potential for optimizing naviga-
tional speech. In this paper, the influencing factors of route deviation will be studied and
analyzed from the driver’s cognitive pattern, hoping to explore the navigation language
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that is more in line with the driver’s cognitive habits, make the electronic navigation
system better assist the driver on the freeway.

2 Research Content

2.1 Questionnaire Design

Combined with the existing questionnaires [18], the questionnaire of this study is
designed based on the problems of voice prompts in navigation application and the
actual situation of drivers using navigation application, in order to investigate the factors
influencing drivers’ deviation from the route when using navigation on freeways. The
questionnaire consists of two parts: the first part is a non-scale questionnaire, which
collects basic information about the respondents, such as gender, age and whether they
often deviate from the route when using navigation on freeway; the second part is a
scale questionnaire, with 17 questions related to the use and design of navigation (Table
1). The scale questions were scored on a 5-point Likert scale: 1 - strongly disagree, 2 -
disagree, 3 - barely agree, 4 - relatively agree, 5 - strongly agree.

Table 1. Question content

Question Content

Q6 Trust the navigation can provide useful information

Q7 When you go off course, it’s mostly a navigation issue

Q8 Voice prompt is too quick to think and judge accordingly

Q9 Voice prompt is too late, resulting in delayed response

Q10 Voice prompt is too early and are disruptive to current driving

Q11 The default voice is too monotonous to focus on the prompt

Q12 Insufficient voice prompt times result in poor prompt effect

Q13 More focus on navigation voice than screen

Q14 I will take action immediately when hearing the prompt

Q15 I slow down and notice the traffic conditions when hearing the prompt

Q16 Focus on navigation information such as routes, turns, and distances

Q17 Focus on location information such as maps, locations, and driveways

Q18 Focus on violation information such as speed limit

Q19 Focus on road conditions information such as traffic congestion,

Q20 There are more traffic around, which affects my operation

Q21 The prompt doesn’t match the road markings

Q22 The prompt doesn’t match the actual road
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2.2 Respondents

The surveywas focused on drivers in the age of 20 to 64 given that drivers aged 18–20 are
still in their drivingpractice period andhave little experience in freewaydriving, aswell as
the minority of drivers over 65 who use mobile phones while driving. This questionnaire
was distributed in April 2021. To ensure that the surveyed drivers fill in the questionnaire
as honestly as possible, a statement is made at the beginning of the questionnaire to
inform the respondents of the purpose and meaning of this questionnaire. In the end,
231 questionnaires were returned with 12 questionnaires with missing information, 219
questionnaires were valid, with an efficiency rate of 94.8%.

The basic information statistics of the survey objects are shown in Table 2. Among
them, 107 were males and 112 were females with similar percentages. The age was
divided into segments by every 15 years, with 40.18% of the survey objects aged 20–34,
40.64% aged 35–49 and 19.18% aged 50–64. The percentage of driving experience less
than 3 years was 29.22% (including 11.41% less than 1 year; 17.81% 1–3 years) and
greater than 3 years was 70.78%. Education was divided according to junior high school
and below, high school, bachelor and postgraduate, accounting for 12.79%, 36.53%,
42.92%, and 7.76%, respectively.

Table 2. Information of participants

Information Categories Number Proportion

Gender Male 107 48.86%

Female 112 51.14%

Age 20–34 88 40.18%

35–49 89 40.64%

50–64 42 19.18%

Driving experience Less than 1 year 25 11.41%

1–3 years 39 17.81%

More than 3 years 155 70.78%

Education Junior high and below 28 12.79%

High school 80 36.53%

Bachelor 94 42.92%

Postgraduate 17 7.76%

3 Effect Factors of Route Deviation

3.1 Exploratory Factor Analysis (EFA)

An exploratory factor analysis was conducted on the 17 questions that reflect the use of
navigation application, to determine the corresponding factor structure. The KMO test
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and Bartlett’s spherical test were conducted on the questionnaire data: the KMOmeasure
was 0.857, indicating that the sample size was suitable for factor analysis; the Bartlett’s
spherical test result was 2002.298 (the significance level P= 0.000< 0.001), indicating
the possibility of common factors among the observed variables. Then, the results of
the Scree Test are shown in Fig. 1, the first 3 triangles are above the bend of the curve,
indicating that there are 3 factors with eigenvalues greater than 1, so the questionnaire
data are suitable for extracting 3 common factors.

The factor structure and its loadings are shown in Table 3: Factor 1, named as nav-
igation application design, contains 7 questions, mainly reflecting the driver’s feelings
about navigation and the reasonableness of navigation voice settings, with a variance
contribution rate of 26.476%; Factor 2, navigation usage habits, contains 7 questions,
mainly reflecting the driver’s behavioral habits and concerns about navigation infor-
mation, with a variance contribution rate of 25.631%; Factor 3 is traffic environment
interference, containing 3 questions, reflecting the influence of traffic environment on
navigation use, with a variance contribution rate of 13.815%, and a cumulative variance
contribution rate of 65.922% for the 3 common factors.

Fig. 1. Parallel analysis scree plots

Table 3. The factor loading matrix

Question Navigation design Usage habits Traffic environment

Q6 0.733

Q7 0.813

Q8 0.805

Q9 0.779

(continued)
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Table 3. (continued)

Question Navigation design Usage habits Traffic environment

Q10 0.774

Q11 0.757

Q12 0.812

Q13 0.761

Q14 0.808

Q15 0.795

Q16 0.793

Q17 0.811

Q18 0.849

Q19 0.778

Q20 0.853

Q21 0.875

Q22 0.870

3.2 Questionnaire Reliability and Validity Tests

Cronbach’s alpha reliability coefficient method was used to test the internal and overall
reliability of the questionnaire. The test results showed that the alpha coefficient of
navigation application design, navigation usage habits, traffic environment interference
and the overall questionnaire were 0.896, 0.906, 0.845, and 0.841, which were higher
than 0.80, indicating that the internal and overall questionnaire had good reliability.
Meanwhile, the cumulative variance contribution of the three public factors according
to the exploratory factor analysis was 65.922%, which is higher than 60%, indicating
that the questionnaire has good structural validity.

4 The Effect of Driver Cognitive Models on Route Deviation

One-way ANOVA was used to analyze the differences in driver cognitive patterns and
whether route deviations occurred frequently, and the results are shown in Table 4. Nav-
igation application design, navigation usage habits, and traffic environment interference
were significantly different in whether or not to deviate (P < 0.01). The 219 samples
were divided into two small samples based on whether they deviated from the route (153
for the frequently deviated sample and 66 for the infrequent deviated sample). The mean
and variance of each question score were respectively calculated for the two samples,
while the chi-square test was used to further determine whether there was a significant
difference between each question, and the results are shown in Table 5.

It is apparent that the frequently deviated group score higher than the infrequently
deviated group on each question, and the scores are distributed around 4 (relatively



38 N. Zhou et al.

agree), indicating that drivers who use navigation and frequently deviate aremore depen-
dent on the navigation application, while their driving behavior is more influenced by
navigation. In the results of the chi-square test, each question of the 3 factors has a signifi-
cant difference for frequent route deviation, with the navigation application design factor
has a more significant difference for frequent route deviation. Therefore, for improv-
ing the driver’s behavior of route deviation when using navigation application on the
freeway, we should first consider the navigation application’s own design.

Table 4. Analysis of variance

Variable Navigation design Usage habits Traffic environment

F-value Saliency F-value Saliency F-value Saliency

Route deviation 61.534 0.000** 19.472 0.000** 22.562 0.000**

Note: ** indicates P < 0.01; * indicates P < 0.05

Table 5. Chi-square test

Question Mean (Standard deviation) Results

Frequently deviate Infrequently deviate

Factor 1: Q6 4.16(0.97) 3.20(1.40) 0.000

Q7 4.03(1.06) 3.12(1.23) 0.000

Q8 3.96(1.09) 2.89(1.22) 0.000

Q9 4.07(1.00) 2.91(1.29) 0.000

Q10 4.01(1.05) 2.79(1.29) 0.000

Q11 4.08(1.00) 3.23(1.30) 0.000

Q12 4.06(1.04) 2.95(1.30) 0.000

Factor 2: Q13 3.91(1.18) 3.14(1.16) 0.000

Q14 3.97(1.04) 3.27(1.25) 0.000

Q15 4.05(1.10) 3.33(1.35) 0.002

Q16 3.99(1.06) 3.32(1.39) 0.003

Q17 3.94(1.14) 3.52(1.19) 0.008

Q18 3.86(1.12) 3.30(1.24) 0.001

Q19 3.94(1.06) 3.21(1.26) 0.000

Factor 3: Q20 4.11(1.03) 3.48(1.04) 0.000

Q21 3.99(1.04) 3.03(1.12) 0.000

Q22 4.08(0.96) 3.33(1.26) 0.000



Effect Factors Analysis of Driver’s Freeway Route Deviation 39

5 The Effect of Demographic Factors on Route Deviation

Gender, age, driving age and education were subjected to a chi-square test to explore the
effect on route deviation, and the results are shown in Table 6. Education was associated
with whether route deviation occurred frequently (P = 0.000 < 0.01). The participants
with high school degrees accounted for 45% of frequent route deviations; a bachelor’s
degree accounted for 64% of infrequent route deviations. To further investigate differ-
ences in education levels, a multiple comparison analysis of the two was conducted
using the Tukey’s HSD test, and the results are shown in Fig. 2. There is a significant
difference between education below high school and education above the bachelor level
at the confidence interval 95% level, indicating that the higher the education level, the
less frequent route deviation occurs when using navigation application, which confirms
that the level of education is a factor in driving accidents. Based on the above tests, high
school can be used as a cut-off to redefine the classification and values of the education
variable: 1 - high school and below, 2 - bachelor’s degree or higher.

Fig. 2. Multiple comparison of means-Tukey HSD

6 Response to Effect Factors of Route Deviation

To understand the extent ofwhich navigation application design, navigation usage habits,
traffic environment interference, and educational attainment could affect deviation, a
binary logistic regression model is established to make predictions. Whether a driver
frequently occurs route deviation is a dichotomous quantity, where 0 indicates infre-
quent or no deviation and 1 indicates frequent deviation. The model uses whether route
deviation occurs frequently as the dependent variable, and uses the three factors and the
education variable as the independent variables, to establish a model for freeway route
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deviation. The results obtained are shown in Table 7. The significance level of each
variable is less than 0.01 and can be used to predict the likelihood of route deviation.
The Hosmer-Lemeshow test value for the overall model was 2.318 (P = 0.970 > 0.05),
indicating that the model fits well and the prediction accuracy is 85.40%. Therefore, the
four factors can be used as inputs to the route deviation prediction model.

According to the regression coefficients of the independent variables, the design of
the navigation application has the greatest influence on deviate from the route. Specif-
ically, the more the design of the navigation voice and display screen conforms to the
cognitive habits of most drivers, the less deviations from the route occur. The second
is the driver’s habit of using navigation. Those who have good driving habits can get
information from the navigation tips that are beneficial to them to reduce the deviation
from the route. Furthermore, the traffic environment can reduce the effectiveness of
navigation prompts and increase the probability of route deviation. Finally, the higher
the driver’s education, the lower the probability of route deviation. The model is useful
for predicting route deviation when drivers use navigation application on the freeway,
improving navigation prompts and reducing the probability of route deviation.

Table 6. Chi-square test for demographic factors

Information Categories Proportion Results

Frequently deviate Infrequently deviate

Gender Male 46% 55% 0.269

Female 54% 45%

Age 20–34 36% 50% 0.127

35–49 44% 32%

50–64 20% 18%

Driving
experience

Less than 1 year 10% 15% 0.518

1–3 years 18% 17%

More than 3 years 72% 68%

Education Junior high and below 16% 6% 0.000**

High school 45% 17%

Bachelor 34% 64%

Postgraduate 5% 13%
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Table 7. Logistics regression analysis results

Independent variable B Wald Sig Exp(B)

Education −2.170 20.038 0.000** 0.114

Navigation application design 1.695 39.809 0.000** 5.449

Navigation usage habits 1.328 27.759 0.000** 3.775

Transportation environment 1.106 20.932 0.000** 3.021

Constant 5.114 31.802 0.000** 166.368

Note: ** indicates P < 0.01; * indicates P < 0.05

7 Conclusion

In this paper, a questionnaire was used to analyze the use of navigation applications
by 219 drivers, and the concept of the cognitive model was introduced to illustrate
the factors influencing the occurrence of route deviation when drivers use navigation.
In general, navigation application that meets most drivers’ usage habits can reduce
the probability of route deviation; those with good driving habits have fewer cases of
deviations from the route; and complex traffic environments can enhance the probability
of route deviation. The paper also proposes corresponding optimization suggestions for
navigation application based on navigation application design factors.

Social factors also influence the use of navigation by drivers, specifically, the prob-
ability of route deviation decreases with increasing education. In addition, the negative
correlation between education and the impact of the traffic environment suggests that
the key point for a better traffic environment is the development of traffic awareness and
quality of traffic participants, so that to improve traffic safety in society, drivers need to
be systematically educated and trained, as well as social propaganda.
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Abstract. As people’s demand for travel increases, sharing travel, especially car-
sharing, is receiving more and more attention and anticipation. In order to fully
study the characteristics of customizable car sharing products and the demand
tendency of consumers, on the basis of determining the advantages of customiz-
able car sharing, this paper intends to explore and analyze the personalized needs
of users of customizable car sharing products through a series of qualitative and
quantitative research methods. A great deal of research has been carried out by
scholars at home and abroad on the analysis of consumer needs and satisfaction,
creating a good theoretical basis and reference for the research work in this paper.
From the data obtained from the questionnaire survey, this paper summarized
the customizable attribute items of product and their customization priorities and
proposed an analysis method of personalized demand items based on the Kano
model. Firstly, the Kano model combined with the fuzzy clustering method is
used to identify and screen the personalized demand items of 24 initial car shar-
ing products obtained from the survey, and the hierarchy of demand model of
the product is constructed. Then, according to the personalized demand items
screened by the Kano model, the questionnaire is designed for the importance
survey. Based on the data obtained from the importance survey, the initial weights
of the underlying personalized demand items of the hierarchy of demand model
are calculated, and the entropy method is used to adjust the weights. After that,
the importance ranking of 12 personalized demand items of car sharing prod-
ucts is determined. The results show that the security attribute has the highest
overall importance among the 12 customized functions. This fully shows that the
safety customization function of car sharing is most valued by consumers, and
its demand and expectation are strong. The research results can provide certain
guiding significance for customized production of car sharing companies.

Keywords: Car sharing · Fuzzy clustering · Quantitative Kano model ·
Hierarchy of needs
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1 Introduction

1.1 Background and Study Motivation

With the increase of people’s travel demand, there exists a serious imbalance between the
development of road and energy resources and the growth of private car ownership. For
one thing, there is a huge potential scale of consumption in the car market. For another,
there is a huge disparity between the current population and car ownership. At the same
time, given recent incontrovertible evidence that the environment (and our planet) will
face serious threats unless we humans finally act quickly, some are calling for a tougher
stance against the misuse of private cars [1]. Under severe traffic and environmental
pressures, shared mobility is receiving more and more attention and expectation.

When car sharing companies provide customization services, the richer the selection
of customizable attributes offered, the more detailed the customer’s individual needs
will be. The more customer needs are met, the higher the satisfaction generated. At the
same time, however, the cost of production, the complexity of the production process,
and the difficulty of maintenance increase as the number of customizable attribute items
increases.Due to cost and capacity constraints, it is not possible for car sharing companies
to use all customizable attribute items, so only a select number of core items are open
for customization.

To this end, this paper will use a personalized demand acquisition method based on
the Kano model to analyze the personalized demand characteristics of consumers from
their point of view. Furthermore, the customizable attribute items of the car sharing and
their customization priorities are presented in a graphical format.

1.2 Current Research Status

Advances in digital technology will further develop the sharing economy. In the field
of transportation, autonomous vehicle technology will accelerate the development of
customizable car sharing, and will change the way of land use and traffic system com-
position. Akimoto used a global energy system model to quantify the impact of cus-
tomizable travel and car sharing on global energy demand and emissions reductions [2].
Wang’ s research on some shared electric transportation products shows that when the
average utilization rate of shared cars is low, the energy loss of batteries in an idle state
is large. So improving the utilization of shared cars can reduce energy waste [3]. Lu
[4] proposed a cooperative adaptive cruise control method for the mixed traffic flow of
autonomous vehicles and manned vehicles. This method can reduce fuel consumption
and improve the environmental friendliness of the transportation system. The research
results of Kumakoshi [5] show that the influence of self-driving car sharing on land
use and transportation is heterogeneous, which highlights the importance of formulat-
ing appropriate urban and transportation planning strategies. Wu [6] proposed a shared
automatic rail transport system. The system can adapt to dynamic traffic demand and
is not limited by fixed routes and timetables. Studies have shown that this automated
transportation systemwill not increase energy consumptionwhile shortening travel time.

In a study of the behavior and attitudes of riders and car-sharing practitioners, Xu [7]
used the random forest method to evaluate the influencing factors of commercial vehi-
cle drivers’ acceptance of the advanced driver assistance system (ADAS). The results
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show that duration time, vehicle speed, and driver age are three key factors. Chen [8]
combined the protection motivation theory with the use situation theory to explore the
mechanism of passenger protection behavior in the environment of car sharing and the
findings can help enterprises of car sharing to take appropriate strategies to improve
safety. Etminani-Ghasrodasht [9] discussed the concerns and preferences of passengers,
especially disabled passengers, after integrating self-driving shared buses into exist-
ing carpooling services. Hartl [10] uses the social problem framework to analyze the
contribution of car sharing to the needs of different groups.

Krauss [11] uses amixed logit model, considering four shared travel modes and three
traditional travel modes, to calculate the respective travel times as well as entrance, exit
and parking search times. At the same time, part-worth analysis is used to analyze the
importance of individual attributes.

In 1984, Kano created a Kano model based on customer experience and product
objective performance. Fatma [12] proposed to integrate the Kano model into the archi-
tecture case to clarify the quality of architecture design. Xu [13] established an analytical
Kano (A-Kano) model based on customer demand analysis for the inherent defects of
the traditional Kano method. The model can effectively integrate customer preferences
into product design, and achieve the optimal balance between customer satisfaction and
producer capacity.

The interpretation of personalized needs from a narrow perspective can be directly
regarded as customized needs, that is, enterprises set a scope limit of customization
and design for customers to choose. Ma [14] used perceived value theory, trust theory,
and transaction cost theory to construct a structural equation model to explain pas-
senger loyalty. The results show that enterprises should provide differentiated services
for passengers according to the purpose of car sharing. Based on the concept of “cus-
tomer customization”, Wind [15] proposes to help customers identify and define their
unique needs based on various cutting-edge Internet technologies. Tseng [16] indicated
that parameter setting and classification tree could be used to feedback personalized
customer needs, and improved the method of selecting established products.

2 Research Contents and Methods

2.1 Interview Research and Questionnaire Survey

Interview survey and identification of the initial personalized demand items of products:
design a series of questions about the habits and preferences of online ride-hailing
drivers and passengers, and conduct qualitative research through individual interviews
or collective conversations.

Firstly, relevant information and literature such as industry information reports are
consulted, and user needs are combed in major information platforms. At the same time,
combined with personal experience of sharing automotive product services, sorting out
the product quality characteristics that may be customized. On this basis, the demand of
consumers is qualitatively analyzed. According to the preliminary user needs, in-depth
interviews with users of shared automobile products and obtain the detailed needs of
the group for customized shared automobiles. Then fully tap the consumer demand for
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customized shared car models and functions, and provide research direction for Kano
questionnaire design.

In the actual survey, eight in-depth interviewees were selected. Including 3 drivers
and 5 passengers. Through in-depth interviews with these eight objects, a total of 30
original needs items were sorted out.

Later, after the initial personalizeddemandaffinity graphmodelwasobtained through
a small range of pre-survey, the Kano questionnaire was designed around the items at
the bottom of the initial model. Kano questionnaire in all the functional attributes are
open two questions, one positive and one negative, combined with five options, details
can refer to Table 1.

Table 1. Kano two-factor questionnaire

Question: how do you feel I like it It should be I don’t care I can stand I hate it

If it has a function? ◯ ◯ ◯ ◯ ◯

If it doesn’t have a function? ◯ ◯ ◯ ◯ ◯

The Kano questionnaire is delivered by random sampling, and the sample data are
collected by electronic questionnaire. The target group is users of car sharing (including
drivers and general customers). A total of 300 questionnaires were delivered, and 233
valid questionnaires were finally recovered. The effective rate of the questionnaire was
77.6%.

2.2 Survey Method of Importance Degree

This article is based on the hierarchical model to obtain the bottom of the requirements.
In order to further understand and clarify the importance of these needs, special ques-
tionnaires are prepared to investigate and clarify the importance. The specific form of
questionnaire is the question of scale ten, which is based on a standard importance
questionnaire. This survey must be carried out after personalized needs screening.

3 Building a Hierarchy of Needs Model

3.1 Identify and Screen the Kano Category of Personalized Demand Items
for Car Sharing

Interviews can be used to identify the initial personalized demand items for the product:
Set up a series of questions about the habits and preferences of drivers and passengers,
and conduct qualitative research through individual interviews or group conversations.
The initial personalized demand items are shown in Table 3.

Referring to the survey results, the membership degree of each demand item under
each Kano category is calculated by comparing and analyzing the Kano evaluation table.
In the Kano evaluation table, according to the impact on satisfaction when user needs
are met, user needs are classified into five categories. The comparison table is shown in
Table 2
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Table 2. Comparison table of Kano model evaluation results

Functions/Services Negative questions

I hate it I can stand I don’t care It should be I like it

Positive questions I hate it Q R R R R

I can stand M I I I R

I don’t care M I I I R

It should be M I I I R

I like it O A A A Q

A: Charm attribute; O: Expected attribute; M: Necessary attribute; I: No difference attribute; R:
Reverse attribute; Q: Suspicious attribute.

Table 3. Coding of initial personalized demand items

Initial personalized demand items

1. Side airbags 2. Vehicle data recorder 3. Panoramic images

4. Emergency call for accident 5. Automatic parking 6. Parking assist

7. Adaptive cruise control 8. Lane keeping system 9. Behavior detection system

10. AED Emergency System 11. Air cleaning system 12. Car roof display

13. Automotive connectivity
ecosystem

14. Single side electric
sliding door

15. Intelligent lighting system

16. Intelligent windshield 17. Smart NFC key 18. Multifunction chair

19. New warehouse 20. In-car Wi-Fi 21. Central control system

22. Catering facilities 23. Personal entertainment
facilities

24. Takeout/Express delivery
system

First, re-encode the personalized demand items, details are shown in Table 3.
TheKano categorymembership degree of each personalized demand item is obtained

from the Kano questionnaire data, and the maximum membership principle is used to
judge.

However, when the different classification membership degrees of the same person-
alized demand item are similar, the mixed classification judgment standard proposed
by Lee and Newcomb is adopted. That is, the values of TS (Total Strength) and CS
(Category Strength) are calculated. When TS ≥ 0.6 and CS ≤ 0.06, it is a mixed class
attribute. Otherwise, the Kano classification of the demand item is directly determined
by the ‘maximum membership principle’. The calculation methods of TS and CS are as
follows:

TS = A + O + M

A + O + M + Q + R + I
(1)
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CS = Maximum − Minimum

A + O + M + Q + R + I
(2)

Based on the above membership principle, the following table is used to determine
whether the personalized demand item belongs to a mixed classification (Table 4).

Table 4. Kano questionnaire survey results

Functions 3 4 5 6 7 9 11

Classification M, I A, I I, O O, I O, I O, I O, I

TS 0.672 0.642 0.622 0.682 0.622 0.662 0.667

CS 0.01 0.05 0.03 0.06 0 0.06 0.025

Functions 13 15 16 17 19 20

Classification O, I I, M I, O O, I I, O O, I

TS 0.622 0.657 0.622 0.662 0.617 0.652

CS 0.03 0.045 0.035 0.04 0.04 0.015

By observing the above tables, it is not difficult to find that the demand items
3,4,5,6,7,9,11,13,15,16,17,19,20 conform to the characteristics of ‘TS ≥ 0.6 and CS
≤ 0.06’. They have two sets of similar membership values, so they are classified as
‘mixed ‘, meaning that the Kano category to which they belong cannot be directly deter-
mined. Therefore, it is necessary to introduce fuzzy clustering in the end to classify the
personalized demand items and clarify their Kano categories. The detailed process is as
follows:

➀ According to the five categories of Kano and the corresponding personalized
needs, create a fuzzy similar matrix. The items distributed in the lowest level of the
model are set to Xi, and the number of demand items is n. A five-dimensional vector
(Xi1, Xi2, Xi3, Xi4, Xi5) is constructed for any Xi, where the demand items corresponding
to Xi1~Xi5 correspond to the membership degrees ofM, O, A, I and R respectively. Thus,
we can get the fuzzy similarity matrix R, where rij is the similarity of Xi and Xj. Using
the absolute value subtraction method, rij can be obtained:

rij =
⎧
⎨

⎩

1, i = j

1 − c
n∑

k=1

∣
∣Xik − Xjk

∣
∣, x ≥ 0

(i, j = 1, 2, · · · n) (3)

Parameter c is a correction factor, valued at (0, 1).0 ≤ rij ≤ l。
➁ Solving transfer closure t(R). The minimum fuzzy equivalent matrix t(R) con-

taining the similar matrix R is constructed, and the t(R) is obtained by the square
method:

R2 = R · R =
k=1∨

n

(
rik

∧
rjk

)
(4)
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In the above expression, ∨ denotes the maximum value from two elements, and
∧ denotes the minimum value. After a certain number of operations, there must be a
positive integer m, so that R2m = Rm, and t(R) = R2m.

➂Clustering analysis and generating clustering diagram. Since t(R) is a fuzzy equiv-
alent matrix, when λ ∈ [0, 1], the truncation matrix Rλ is an ordinary equivalent matrix,
which can be used to divide X. The calculation method of Rλ is as follows: when rij ≥
λ, let rij = 1; when rij< λ, let rij = 0. Thus, Rλ = (

rij
)
n×n is calculated. When the sub-

matrix elements constructed by relative rows and columns are 1, they can be classified
as the same clustering. When � changes from 1 to 0, this means classifying from fine
to coarse, integrating in turn, and finally getting the dynamic clustering graph. Then the
corresponding λ value is selected on-demand, and the corresponding Rλ is combined to
clarify the Kano type of the requirement class and the personalized requirement. When
� changes from 1 to 0, this means classifying from fine to coarse, integrating in turn, and
finally getting the dynamic clustering graph. Then, the corresponding λ value is selected
on-demand, and the corresponding Rλ is combined to clarify the requirements category
and the corresponding Kano type of personalized requirements. The fuzzy clustering
analysis is carried out by MATLAB, and the results are summarized. The details are as
follows (Table 5).

Table 5 Results summary of Kano fuzzy classification

Kano type Initial personalized demand items

M 3

O 1 2 6 7 8 9 11 13 14 17 20

A 4

I 5 10 12 15 16 18 19 21 22 23 24

The selection of requirement items should be highlighted: CategoryO can be retained
as a customizable item for satisfaction reasons as a desired requirement with a high level
of attention. Category A is an unexpected demand item that contributes to satisfaction
and can therefore be retained as a customizable item. So, all items except categories
A and O do not need to be retained. So far, we obtain the bottom requirements of the
hierarchical of needs model through the above steps.

4 Importance Ranking of Personalized Demand Items

4.1 Calculating Initial Weights of Personalized Demand Items for Car Sharing

(1) In the screening of personalized needs, 12 items are finally retained. In order to clar-
ify the importance of these projects, it is necessary to prepare a special questionnaire
for further investigation. Still using the sampling method used in the previous Kano
survey, 100 questionnaires were issued and 83 valid questionnaires were recovered,
with an effective rate of 83%.
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(2) Based on the survey results, the initial weight wj of each demand is solved by the
entropy method. The steps of the entropy method are as follows:
First: Construct decision matrix A = (aij)m×n. Letm customers evaluate the impor-
tance of n personalized demand items. aij represents the rating of customer i for
personalized demand item j, which is used as the basis for the construction of the
decision matrix A.
Second: normalize the decision matrix A. Normalize the decision matrix A to B =
(bij)m×n using bij = aij/

∑m
i=1 aij.

Third: Calculate the entropy value. Let the entropy value of personalized demand
term j be ej, then ej = ∑m

i=1 bij ln bij, i = 1, 2, · · · ,m, j = 1, 2, · · · , n.
Fourth: Determine the initial weight of the personalized demand item. Let uj =
1
ej

, j = 1, 2, · · · , n. When uj is normalized, the initial weight of item j is wj =
uj/

∑n
j=1 uj, and

∑j
i=1 wj = 1.

The calculation results of the initial weight wj are shown in Table 6.

Table 6. Result of initial weight and weight adjustment

Demand
items FRi

Side
airbags

Vehicle
data
recorder

Emergency
call for
accident

Adaptive
cruise
control

Parking
assist

Lane
keeping
system

wj 0.088 0.082 0.090 0.083 0.087 0.088

w’i 0.081 0.076 0.083 0.154 0.087 0.081

Demand
items FRi

Behavior
detection
system

Air
cleaning
system

Automotive
connectivity
ecosystem

Electric
sliding door

Smart
NFC key

In-car
Wi-Fi

wj 0.090 0.083 0.080 0.078 0.078 0.076

w’i 0.082 0.077 0.074 0.072 0.072 0.069

4.2 Weight Adjustment and Determining the Importance Ranking
of Personalized Demand items for car Sharing Functions

When considering the importance of each demand, we should not only pay attention
to the importance evaluation given by customers, but also take into account the role of
satisfaction improvement. Therefore, based on the Kano model, the process of weight
adjustment is redesigned to obtain the weight results of each requirement. The specific
adjustment methods are as follows:

(1) Find the corresponding adjustment factor k according to the Kano category. A
parametric function can be used to represent the correlation between the realization
of demand and customer satisfaction in the Kano model. The formula is as follows:

s = cxk (5)
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In the formula, s is customer satisfaction, c represents a constant, x reflects
the level of demand satisfaction, k represents the adjustment coefficient of various
Kano. In this paper, previous studies are used as a reference and the values of k
corresponding toM,O, A, I, and R are established as 0.5, 1, 2, 0, and -1 respectively.

(2) Adjust the initial weight. Usually, k value is used as a reference to calculate the
weight of all requirements. To represent a personalized requirement i withw

′
i, there

are:

w′
i = wiki

∑n
i=1 wiki

(i = 1, 2, · · · , n) (6)

In the formula, wi represents the initial weight of the personalized demand item
i and ki is its corresponding adjustment factor. The process of adjusting the weights
is shown in Table 6.

The final personalized demand items can reflect their importance to a certain extent.
Then, according to the weight size order, sort out the personalized demand items and
import them into the model. See Fig. 1 for details.

Fig. 1. Final hierarchy of needs model of personalized requirements

5 Conclusion

At present, the demand of car sharing consumers is gradually showing a personalized
trend, but the existing car sharing is difficult to meet the needs of a variety of con-
sumers. At the same time, car sharing enterprises can only appropriately select some
key personalized needs and give them the opportunity to customize. Therefore, this paper
intends to analyze the advantages of car sharing customization, and determine the prod-
uct customization attributes and customization priorities, to balance the contradiction
between customer satisfaction and product production and maintenance costs. Firstly, a



Demand Analysis of Customizable Car Sharing Functions 53

personalized demand acquisition method based on Kano model is proposed. Based on
the principle of fuzzy theory, the Kano model is introduced to screen the personalized
demand items, so that the personalized demand items of car sharing are presented in hier-
archy of needs model, and their importance ranking is determined. The research results
tell us that the overall importance of safety functions is the highest. This shows that con-
sumers have high demand and expectations for the safety customization function of car
sharing. When encountering conflicts of attributes or requirements, the customization
of demand items should be arranged step by step based on the order of importance.
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Abstract. To efficiently deter the repeated speeders who are frequently fined but
continue to commit the violation, this study attempts to investigate the charac-
teristics of the repeated speeding behaviors and propose an increasing block fine
modeling approach. Based on the off-site law enforcement data collected from
the Deyang City, three speeding ranges (low (≤20%), medium (20%–50%), and
high (≥50%)) were considered, and then the characteristics of repeated speeding
behaviors were extracted. After that, the cost-benefit theory was introduced to
develop an increasing block fine model by taking into account the speeding range
and frequency. Considering theminimum total number of speeding as the goal and
the economic cost as the constraint, an optimization model of increasing block
fine was developed. The pattern search algorithm was used to solve the developed
optimization model to determine the best number of blocks and corresponding
fine within each speeding range. Finally, a case study was conducted to validate
the performance of the developed model. The results show that for the repeated
speeders, the percent of the low speeding behavior is the highest, and the speeding
behaviors largely occur during the daytime. Furthermore, within the increasing
block fine mechanism, the reduction rates of medium and high speeding behav-
iors are clearly higher than that of the low speeding behavior. The findings of this
study offer a fresh viewpoint on the repeated speeding intervention and enable the
speeding enforcement more equitable.

Keywords: Repeated speeding behavior · Increasing block fine · Cost-benefit
theory · Price elasticity · Traffic violation

1 Introduction

Speeding behavior refers to the driving speed of a vehicle that exceeds the speed specified
by law and regulations [1]. In China, traffic accidents caused by speeding are among the
top traffic offenses [2]. In other countries, speeding is also responsible for approximately
one-third of road fatalities. Related studies focused on the characteristics of speeders
(such as gender [3–5], age [6, 7], personality [8–10], behavior [11], and so on) and the
consequences of the accident [12].However, few studies have explored the characteristics
of speeding behavior, especially for repeated speeding behavior.
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Bahram et al. [13] found that drivers with repeated speeding experiences were more
likely to speed again.Manderso et al. [14] believed that repeat speeders aremore likely to
exceed the speed limit by 20 km/h in the process of speeding. Moreover, studies display
that serious speeders are more likely to commit speeding again [15, 16].

To reduce speeding, the corresponding penalty mechanism was proposed and imple-
mented. However, the current punishment scheme for speeding only takes into account
the radius of action. Namely, the greater the speeding range, the heavier the punishment.
It is worth noting that the current penalty system for speeding offenses does not take into
account the number of times of speeding, making it difficult to efficiently deter repeated
offenders [17]. This leads to a lack of fairness in traffic enforcement.

In order to deal with repeat traffic offenders, academics are learning from the eco-
nomics scale theory [18]. The stepwise increasing penalty models of illegal parking and
red-light running are constructed successively [19–22]. This provides a theoretical refer-
ence for the construction of the stepwise increasing penalty model of repeated speeding.
However, the step-up penalty model for illegal parking and red light running only takes
into account the number of violations. In fact, the stepwise penalty model should not
only consider the speeding range [23] but also take into account the number of illegal
times under different speeding ranges [24], which needs further studies.

Therefore, based on the off-site law enforcement data, extracting repeated speeding
behavior characteristics, introducing the theory of ladder pricing, the increasing block
fine model of repeated speeding behaviors with the consideration of both speeding
range and frequency is developed, and then a case study is conducted to verify the
model performance. The results of this study help not only to deter offenders who have
been repeatedly punished for speeding but also to enhance the fairness of traffic law
enforcement.

2 Off-Site Law Enforcement Data Collection and Preprocessing

The off-site law enforcement data collected from 2017 from the Traffic police Detach-
ment of Deyang Public Security includes the illegal vehicle license plate, illegal content,
vehicle type, occurrence time and location, and other information. Based on illegal con-
tent, the keyword “exceeding the prescribed speed limit” was used to extract the data of
speeding offenses. After deleting duplicate and invalid data, 179,221 speeding violations
were recorded, and a total of 114,976 vehicles were involved. Among them, 110,093
speeding data were labeled with speed limit conditions. Further, the speeding range was
divided into: low (less than 20%), medium (greater than or equal to 20% but less than
50%), and high (greater than or equal to 50%).

3 Speeding Behavior Feature Extraction

3.1 Speeding Frequency Within Each Range

Among the 179, 221 speeding data of Deyang, there were 132064 low-range speed-
ing behaviors; 44,206 medium-range speeding behaviors; and 2,951 high-range speed-
ing behaviors. For 100,096 items, the speed limit situation of the speeding location is
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indicated, and the data is counted according to different speeding ranges and different
speed limit values, as shown in Fig. 1. It can be seen that under low-speed limit condi-
tions, drivers are more likely to have high-range speeding behaviors; under high-speed
limit conditions, drivers are more likely to have low-range speeding behaviors and less
frequent high-range speeding behaviors.

Fig. 1. The rate of each speeding range under different speed limit conditions

3.2 Speeding Range and Interval Time

The distribution of single and repeated speeding behaviorswith different speeding ranges
is shown in Table 1. It can be seen that the percentages of repeated speeding behaviors
with different ranges are greater than those of single speeding behaviors.

Table 1. Distribution of single and repeated speeding behaviors with different speeding ranges.

Speeding range Single Repeated Total

Number Percentage number Percentage

Low (≤20%) 58153 44.03% 73911 55.97% 132064

Medium (20~50%) 20604 46.61% 23602 53.39% 44206

High (≥50%) 1473 49.92% 1478 50.08% 2951

As shown in Table 2, among the repeated speeding behaviors, two types of speeding
behaviors occurred themost.With the increase of the number of speeding, the proportion
of speeding behaviors gradually decreased. Because China currently adopts a point
deduction mechanism for speeding behaviors, too many penalty points will make drivers
lose their licenses, which has a great inhibitory effect on repeated speeding behaviors.
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Table 2. The times of speeding behavior

Violation times Number of speeding behaviors Percentage

1 80230 69.78%

2 20810 18.10%

3 7401 6.44%

4 3100 2.70%

5 1483 1.29%

6 774 0.67%

4 Increasing Block Fine Model Development

4.1 The Number of Speeding Violations Within Each Block

Based on the research on the characteristics of speeding behavior, a stepwise incremental
penalty model considering the number of steps and the proportion of covered drivers is
constructed.

Use Pi to indicate the original speeding range i (i = 1, 2, 3, corresponding to
low, medium, and high ranges, respectively). After the newly implemented tiered
fines mechanism, the amount of change in the fines at all levels of the speeding
range is as follows: �Pi = [�Pi1,�Pi2, . . . ,�Pim]. Then the newly implemented
step fines will be fined at all levels of the speeding range is Pa = Pi + �P =
[Pi + �Pi1,Pi + �Pi2, . . . ,Pi + �Pim] (m corresponds to the order). In the formulation
of the number of steps, the proportion of the number of speeding drivers is considered.
At low stairs, it covers the vast majority of drivers. As the number of steps increases,
the number of drivers covered by a single step gradually decreases. The number of steps
and the reference value of coverage is shown in Table 3.

Table 3. Reference values for the numbers of steps and coverage rate

Number of steps Speeding interval of each order

First step Second step Third step Fourth step

2 (0, 1] (1, +∞)

— —

3 Cover 70% or
80% of speeding
drivers

Accumulated
coverage of 90%
or 95% of
speeding drivers

Cumulative
coverage 100%
Speeding drivers

—

4 (0, 1] Accumulatively
cover 70% or
80% of speeding
drivers

Accumulated
coverage of 90%
or 95% of
speeding drivers

Cumulative
coverage 100%
speeding drivers
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4.2 Model Construction of Fines

1) The elasticity of fines for motorists’ demand for speeding
In the theory of supply and demand, the price elasticity of demand is used to describe
the sensitivity of consumer demand to changes in commodity prices. such as:

�Q

Q
= E

�P

P
(1)

where Q is the demand before price adjustment; E is the price elasticity coefficient;
�Q is the change in demand after price adjustment; �P is the price adjustment
amount.

According to the theory of supply and demand, the driver’s demand for speeding
(speeding times) will change as the amount of fines changes. When the speeding
fine is increased, the number of speeding of the driver will decrease accordingly;
conversely, the number of speeding will increase.

2) The response of a single driver to the increasing block fine mechanism for
speeding behavior
According to formula (1), after adjusting the fine limit, the amount of change in the
number of speeds after the driver responds is:

�Qi = E
�Pij

Pi
Qi (2)

Where i =[1, 2, 3] is the speeding range;Pi is the fine amount of i under the speeding
range before the adjustment; �Pij is the speeding range i, the adjustment amount of
the j-th order fine.Qi is the number of excessive speeds of the driver in the speeding
range i before the adjustment.

The number of speeding times when the driver is in the speeding range level
i Qi > m. The fine adjustment amount under the speeding range i of this order is
�Pim. After adjustment, the amount of change in the number of speeding times and
the number of speeding times after the response of the driver in the speeding range
i are as follows:

�Qi = E
�Pi1

Pi
N1 + E

�Pi2

Pi
(N2 − N1) + · · · + E

�Pim

Pi
(Qi − Nm−1) (3)

Qaim = Qi + E
�Pi1

Pi
N1 + E

�Pi2

Pi
(N2 − N1) + · · · + E

�Pij

Pi
(Qi − Nm−1) (4)

3) Changes in fines after the driver responds
According to the driver’s response to the speeding behavior in a stepwise increase of
fines, it can be seen that: After the driver responded, the number of speeding times
under the speeding range level i changed from Qi to Qai, at this time, the speeding
rank to which the driver belongs also changes. After responding, the fines faced by
the driver of the new m-level speeding times under the speeding range level i are:

Faim = (�Pi1 + Pi)N1 + (�Pi2 + Pi)(N2 − N1) + · · · + (�Pim + Pi)(Qaim − Nm−1) (5)
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4) The response of all drivers to the increasing block fine mechanism for speeding
behavior
The response of the driver in the speeding range i to the increasing block fine
mechanism for speeding behavior. Before the implementation of the increasing block
fine mechanism for speeding behavior, the total number of speedingQsi and the total
fineFsi of the driver under the speeding range i can be obtained by the relevant points
of f (Qi) in the entire speeding range:

Qsi =
+∞∫

0

f (Qi)QidQi (6)

Fsi =
+∞∫

0

f (Qi)PiQidQi (7)

In the model, it can be approximated that drivers with the same number of speeding
have the same response to this fine mechanism. After implementation, the total
number of speedingQsai and the total fine Fsai of drivers in the speeding range i can
be obtained by summing the responses of drivers of all levels:

Qsai =
N1∫

0

f (Qi)Qai1dQi +
N2∫

N1

f (Qi)Qai2dQi + · · · +
+∞∫

Nm−1

f (Qi)QaimdQi (8)

Fsai =
N1∫

0

f (Qi)Fai1dQi +
N2∫

N1

f (Qi)Fai2dQi + · · · +
+∞∫

Nm−1

f (Qi)FaimdQi (9)

5) A stepwise increasing fine limit optimization model based on driver response
According to the fine elasticity of the driver’s speeding demand, and its response
to the implementation of a step-by-step penalty mechanism for speeding behavior,
it is possible to establish a stepwise increasing fine limit optimization model for
speeding behavior. The goal of the model is to minimize the number of speeding in
the study area after implementation, that is, the objective function is:

minQsa =
3∑

i=1

wi

⎡
⎢⎣

N1∫

0

f (Qi)Qai1dQi +
N2∫

N1

f (Qi)Qai2dQi + · · · +
+∞∫

Nm−1

f (Qi)QaimdQi

⎤
⎥⎦ (10)

When implementing this stepped incremental fine mechanism, the total fines for
speeding drivers in each speeding range should be greater than the total fines before
the implementation. But it should not exceed the driver’s acceptable range. At the
same time, under the same speeding range level of the model, the fines of each level
should be increased sequentially; taking into account the more serious impact of the
high speeding range, the fine for each speeding range should be greater than the fine
for the lower speeding range and smaller than the fine for the higher speeding range.
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4.3 Optimization of Fines for Each Level

By introducing the calibrated parameters into the fine limit optimization model and
considering the number of speeding times, a stepwise increasing fine limit optimization
model for repeated speeding behaviors can be proposed as follows:

minQsa =
3∑

i=1

wi[
+∞∫

0

f (Qi)QidQi +
+∞∫

0

f (Qi)E
�Pi1

Pi
QidQi+

+∞∫

1

f (Qi)E
�Pi2 − �Pi1

Pi
(Qi − 1)dQi +

+∞∫

3

f (Qi)E
�Pi3 − �Pi2

Pi
(Qi − 3)dQ] (11)

Where Eq. (11) represents the goal which is to minimize the number of speeding
behaviors in the study area after implementation.

5 Case Analysis

Based on traffic violation data and traffic violation penalties in Deyang City, a case
analysis is carried out on the constructed stepwise increasing fine limit optimiza-
tion model. Using the pattern search method to solve the model in MATLAB, obtain
the amount of change in the amount of the fines at all levels of the speeding range
compared to the original fines that only consider the speeding range is �P =
[10, 30, 60, 20, 60, 100, 60, 200, 350]. Then the amount of the fines at all levels corre-
sponding to each speeding range is P = [110, 130, 160, 170, 210, 250, 560, 700, 850].
Therefore, the corresponding stepwise incremental penaltymechanism is shown inFig. 2.

Fig. 2. Increasing block fine mechanism of the speeding behavior.

By comparing the driver’s total number of speeding times and the original number of
speeding times after the incremental penalty mechanism was tested, the rate of change
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of the number of speeding times is obtained, as shown in Table 4. It can be seen from
Table 4 that in each speeding range, as the number of speeding steps increases, the
number of speeding decreases, and the percentage of decrease gradually increases. The
rate of decrease in the number of speeding in the middle and high speeding ranges is
significantly higher than that in the low speeding range, especially under the second and
third levels of speeding.

Table 4. Changes of speeding number in each step due to the incremental fine

Speeding range Speeding
block

Speeding
interval

Original
speeding
times

Speeding
times after
response

The change
rate of
speeding times

Low range <20% 1 1 58153 57462 −1.19%

2 2~3 47292 45604 −3.57%

3 >3 26619 24337 −8.57%

Mid
range20%~50%

1 1 20604 20278 −1.58%

2 2~3 15488 14736 −4.85%

3 >3 8114 7232 −10.87%

High range >50% 1 1 1473 1452 −1.42%

2 2~3 1043 995 −4.65%

3 >3 435 388 −10.76%

Total
— —

179221 172485 −3.76%

6 Conclusions and Future Research Directions

The speed limits are found to be significantly associated with speeding behavior;
Repeated speeding behaviors account for about 55% of speeding violations; most of
repeated speeding drivers will speed again within a month.

A stepwise incremental fine limit and optimizationmodel that concurrently considers
speeding frequency and severity is constructed to determine the best step number and
fine limit for each step, so that the penalty for speeding violations is fairer.

The case analysis shows that the stepwise incremental penalty mechanism has a
significant deterrent effect on repeated speeding behaviors.

In China, as the times of speeding increase, the drivers might become more careful
while driving since they are worried about losing their licenses because of accumulated
penalty points. This may impact the inhibitory effect of increasing block finemechanism
on repeated speeding behaviors, which should be accounted for in future works.

In the future, the fines for repeated speeding behaviors can be further adjusted by
considering the speeding-related outcomes such as crash risk (e.g., potential crashes and
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traffic conflicts [25–27]). As well, the microscopic traffic simulation approach [28] can
be applied to investigate the effectiveness of increasing block fine strategy.

Acknowledgment. This work was supported by the National Natural Science Foundation of
China (Grant No. 71801182) and the Fundamental Research Funds for the Central Universities
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Abstract. To accurately estimate the capacity of multi-lane drop-off exclusive
roadway, a calculation approach based on effective berths is proposed. First, the
study specifically analyzes different layout types of parking and through lanes
and introduces the concept of effective berths of drop-off exclusive roadway. A
calculation approach of the capacity of multi-lane drop-off exclusive roadway
at airport terminal based on effective berth and spatiotemporal trajectory theory
is proposed. The effective berth under a certain level of delay is determined via
VISSIMsimulation and the drop-off exclusive roadway in JinanYaoqiangAirport-
China is taken as an example for case analysis. The results show that the accuracy
of the proposed method is more than 95%. The proposed approach is more in line
with the actual unload process of the drop-off vehicles than traditional methods
and lays a theoretical foundation for service level evaluation and the management
and guidance of drop-off vehicles.

Keywords: Traffic capacity · Effective berth · Drop-off exclusive roadway ·
Spatiotemporal trajectory theory · Airport terminal

1 Introduction

In recent years, due to the rapid growth of the number of passengers traveling by air and
the limitation of airport land space, many cities are extending or constructing airports.
In this context, how to rationally design the layout of landside facilities to improve the
corresponding traffic capacity is one of the main problems to be resolved. As one of
the airport’s roadside facilities, the drop-off exclusive roadway refers to the road set up
in front of the departure hall of the terminal building for vehicles to complete passage
and short stops for passengers to disembark and unload luggage. There are flows of
passengers and vehicles which intertwine on the staging area (i.e., the section outside
the terminal). Especially for the peak period, the congestion and traffic disorder are
widespread and seriously affect traffic efficiency of the airport’s landside (i.e., the drop-
off exclusive roadway). How to accurately estimate the traffic capacity of a drop-off
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exclusive roadway is a key issue for accurately evaluating its service level, effectively
managing drop-off vehicles, which requires in-depth exploration.

At present, scholars have carried out a lot of studies on the calculation approach of
the capacity of the drop-off exclusive roadway at the airport terminal, mainly focusing
on theoretical and simulation methods. De Neufville and Odoni [1] defined the drop-
off exclusive roadway and gave the empirical formula for calculating the length of the
drop-off roadway in “Airport System: planning, design, and management”. Zhang et al.
[2] analyzed the characteristics of traffic flow on the drop-off exclusive roadway and
proposed calculation methods of traffic indicators (including average vehicle stay time,
average number of vehicles on the drop-off exclusive roadway, etc.) based on the queuing
theory. Chen et al. [3] proposed a lane-changing behavior based on a deep learning
approach to simulate the relationship between the speed and spacing of the lane-changing
vehicle. Liu et al. [4] developed a model to control the demand scale of the drop-off
exclusive roadway based on the multi-desk queuing theory with the capacity limitation
(M/M/n/C/). Parizi andBraaksma [5] established a basicmathematical calculationmodel
for the capacity of the drop-off exclusive roadway with a single parking lane, which
ignores the deceleration behavior of vehicles parking and driving away. Zhang et al. [6–8]
proposed formulas for calculating the capacity of two-lane drop-off exclusive roadwayby
considering the change of speed and the interaction between internal and external lanes.
Zhang [9] analyzed the capacity of a three-lane drop-off exclusive roadway with double
parking lanes. The introduction of connected and autonomous vehicles will reshape the
transport system. Traffic flow, particularly the road capacity and free-flow speed could
considerably be improved [10, 11]. Carrone et al. [12] investigated how the utilization
of the road capacity degraded as a function of heterogeneity in congested motorways.

Javid et al. [13] proposed the conceptual model of the simulation analysis of the
drop-off exclusive roadway, laid a theoretical foundation for the subsequent simulation
system practice. Chang [14] developed a multi-lane parking simulation model with
driver preferences in mind. ACRP and TRB [15] gave a method to estimate the required
length of parking lane in “Airport Cooperative Research Program Report 40 (ACRP40)”
and suggested VISSIM simulation could be used to estimate the capacity of drop-off
exclusive roadway.

The above-mentioned works mostly focus on the two-lane drop-off exclusive road-
way with one parking lane. Currently, the drop-off exclusive roadways lanes of most
terminals are more than three. For multi-lane drop-off exclusive roadways with different
layouts of lane functions, each has its operation regulation, and the utilization rate of
parking lanes is also diverse. There are varying degrees of mutual interference between
vehicles. The capacity of the drop-off exclusive roadway is not equal to the mere accu-
mulation of the capacity of every single lane. Therefore, the existing capacity calculation
methods are not applicable anymore.

This study starts from the differences in the layout of parking and through lanes
of drop-off exclusive roadway at airport terminal, summarizes the lane function layout
types, and proposes a calculation approach of the capacity of multi-lane drop-off exclu-
sive roadway based on effective berth and spatiotemporal trajectory theory. Effective
berth at each delay level under a certain level of delay is determined via VISSIM sim-
ulation, and a case study is conducted to verify the accuracy of the capacity calculation
approach proposed in this study. The proposed approach is suitable for various numbers



An Effective Berths-Based Approach to Calculate the Capacity 67

of lanes and lane function layout types and provides a new method for calculating the
capacity of drop-off exclusive roadways.

2 Lane Function Layout Types of Drop-Off Exclusive Roadway

Drop-off exclusive roadways are composed of single or multi-lane groups. Each lane
group includes one parking lane and one through lane at least. Drop-off vehicles make
a short stop and drop off on the parking lane, and complete the process of entering
and leaving the drop-off area on the through lane. Figure 1 is a schematic diagram of a
double-width drop-off exclusive roadway.

Fig. 1. The layout of the curbside area alone the drop-off exclusive roadway.

The drop-off exclusive roadway can be divided into double-lane, triple-lane, four-lane,
and five-lane according to the number of lanes. Two and three-lane groups are used
primarily at small or medium airports, and four and five-lane groups are used at large
airports. The layout types of drop-off exclusive roadways are also diverse, which are
summarized into 9 types, as shown in Table 1.

Table 1. Lane function layout types of drop-off exclusive roadway.

epyttuoyaLsenalforebmuN

Double-lane

 Airport Terminal Building

1P1T

Triple-lane

 Airport Terminal Building  Airport Terminal Building  Airport Terminal Building

1P2T 2P1T 2P1T* 

Four-lane

 Airport Terminal Building  Airport Terminal Building  Airport Terminal Building

2P2T 2P2T* 1P3T 

Five-lane

 Airport Terminal Building  Airport Terminal Building

2P3T 2P3T*
Note: P stands for the parking lane; T represents the through lane; * represents the middle lane. 
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3 Calculation Approach of the Capacity of Multi-lane Drop-Off
Exclusive Roadway Based on Effective Berths

3.1 The Theoretical Model Based on Time-Space Trajectory Theory

Parizi and Braaksma [5] have proposed a method for calculating the capacity of drop-off
exclusive roadway based on time-space trajectory theory, which mainly considers the
following assumptions:

1) Only for two-lane drop-off exclusive roadways.
2) Ignore drop-off vehicles’ acceleration and deceleration behaviors.
3) Assuming that the driver has no preference when choosing a parking space.

As shown in Fig. 2, this method divides drop-off exclusive roadway into n linearly
arranged parking spaces, and the capacity of drop-off exclusive roadway is the sum of
the number of vehicles parked and departed on n parking spaces within a unit time.

Fig. 2. Time-space diagram of vehicles in case with n entries [5].

Zhang [6] distinguishes the speed of the through lane and the parking lane and takes
into account that the vehicle will travel a certain distance on the parking lane and get a
modified method, which is constructed as:

C = n(T − L−LR
vL

− LR
vR

)

ts + n α
vR

(1)

LR = 1.007LE − 2.959

2
(2)

The capacity of the drop-off exclusive roadway is represented byC, where L is the length
of the drop-off exclusive roadway; LR is the driving distance of the vehicle in the parking
lane; LE is the farthest distance between parked vehicles and the entry; vL represents
the speed of the vehicle in the through lane; vR represents the speed of the vehicle in
parking lane; n is the number of parking spaces; T is time, usually, 3600 s; α denotes the
average safe distance of vehicles driving in drop-off exclusive roadway; ts is the time of
vehicles parking in the parking lane.

The C obtained by Eq. (1) is the capacity of a two-lane drop-off exclusive road-
way (1P1T) in ideal conditions. This calculation method lays the foundation for the
calculation approach of themulti-lane drop-off exclusive roadway proposed in this study.
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3.2 Concept of Effective Berths

Federal Transit Administration (FTA) [16] first introduced the concept of effective berth
and use it to explore the difference between multiple on-line and off-line bus stops.
Since then, effective berths have been used to study the transfer capacity of bus stops
and the optimal design of bus stops [17]. This study introduces effective berths into the
calculation of the capacity of the drop-off exclusive roadway at the airport terminal. The
main reasons are as follows:

1) The lane function layout types of drop-off exclusive roadway are diverse, and the
number of parking lanes and through lanes are different. The capacity of multiple
lanes is not equivalent to the simple accumulation of the capacity of a single lane.

2) Because of the driver’s preference, the further the parking lane is, the fewer vehicles
are parked and the greater the gaps between parked vehicles are.

3) Vehicles that expect to park on the inner parking lane often need to cross the outer
parking lane from the through lane to park, which often occupies the outer parking
lane’s time and space resources available for parking.

4) When a vehicle parking inner prepares to leave, the distance and enough time for
the vehicle to pass need to be considered. Sometimes it is necessary to wait for the
outer vehicle to leave before looking for a gap to drive away.

Therefore, the effective berth factor of drop-off exclusive roadway is defined as:
under a certain delay level, the ratio of the number of vehicles served by the multi-lane
drop-off exclusive roadway and the number of vehicles served by the standard drop-off
exclusive roadway (1P1T) within a unit time, which can be seen in Eq. (3):

Nei = Qi/Q1 (3)

The effective berth factor of the drop-off exclusive roadway is represented byNei, where
Q1 is the number of vehicles served by the standard drop-off exclusive roadway with 1
parking lane and 1 through lane within a unit time; Qi is the number of vehicles served
by the multi-lane drop-off exclusive roadway within a unit time.

3.3 Calculation Approach of the Capacity of Drop-Off Exclusive Roadway

The formula for calculating the capacity based on effective berth is:

Ci = Nei
n(T − L−LR

vL
− LR

vR
)

ts + nα
vR

(4)

For multi-carriageway drop-off exclusive roadway, the capacity is the sum of the
capacity of the lane groups.

4 Determination of the Effective Berth Factors Based on Simulation

This section simulates 9 lane function layout types of the drop-off exclusive roadway
via VISSIM. To analyze each type, the vehicle input of each type and the corresponding
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delay in the simulation are recorded, and then draw scatter diagrams of the simulation
output data. Use Eq. (3) to calculate efficient berth factors for different types of lane
arrangements on exclusive drop-off roadway under a certain level of delay.

4.1 Basic Assumptions and Parameter Settings

When calculating effective berth factors, in addition to limiting a certain level of delay, it
is also necessary to ensure that the traffic of drop-off exclusive roadways is comparable.
This simulation ensures that the main boundary conditions of all drop-off exclusive
roadways are the same, that is, vehicles have the same operating characteristics. The
VISSIM simulation is based on the following assumptions:

1) Vehicles on exclusive roadways are all cars of the same size and parameters.
2) The drop-off vehicle’s arrival obeys the same negative exponential distribution.
3) The parking time of vehicles on obeys the same distribution.
4) The length and width of each lane are identical.
5) Ignore the pedestrian and vehicle interference caused by the pedestrian crossing.

The simulation parameters used in the simulation are listed in Table 2:

Table 2. Parameters used in the simulation.

Simulation parameter Value

Expected speed of vehicles on through lanes 30 km/h

Expected speed of vehicles on parking lanes 5.5 km/h

Parking time distribution Empirical distribution (6~225 s)

Vehicle type 100% cars

Length of drop-off exclusive roadway 270 m

Lane width 3.5 m

The standard number of parking spaces of a parking lane 40

Length of per parking spaces 6 m

Priority rules Vehicles on the through lane first

4.2 Simulation Results Analysis

The simulation software VISSIM is used to establish the operation simulation systems to
analyze the drop-off exclusive roadways. Delay measurements are set in 9 sub-models,
and the attributes of results are output. Delay is equal to the actual travel time on the
drop-off exclusive roadway minus the theoretical (ideal) travel time.

Set the initial value of the traffic flow on the drop-off exclusive roadway to start
the simulation, and record the vehicle inputs and delays for each simulation. In the first
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stage, the vehicle input is added by 100 pcu/h in turn, and the average delay of the vehicle
is recorded after each simulation. After that, add the vehicle input until the simulation
gives a capacity limit warning that “the vehicle cannot be input completely”. On the
basis of the input of vehicles before the warning appears, add the vehicle input 10 pcu/h
in turn, until the capacity limit warning appears again. Then, the vehicle input is added
by 1 pcu/h in turn until the warning appears again, which means the traffic volume of
the drop-off exclusive roadway in the simulation system has reached its peak and the
drop-off exclusive roadway has reached its capacity.

From the simulation results, we found that the capacity of drop-off exclusive roadway
was not directly proportional to the number of parking lanes, but was related to the
number of through lanes and the layout of lane functions. Select the two-lane drop-off
exclusive roadway (1P1T) as the base type, analyze the simulation results of the three-
lane, four-lane, and five-lane drop-off exclusive roadway respectively. Take the average
delay as the x-axis, and the vehicle arrival rate (vehicle input) as the y-axis, then draw
the data scatter diagram of each lane group, as shown in Fig. 3.

Fig. 3. Comparative analysis of simulation results of each lane group.

Drop-off exclusive roadways have an upper limit of their capacity. According to the
model of vehicle arrival rate and delay given by Zhang et al. [18], combined with the
changing trend of the curve in Fig. 3, it can be concluded that when the vehicle arrival rate
reaches the upper limit of the load-bearing capacity of the drop-off exclusive roadway,
the average delay is about 25 s. The arrival rate-delay curves intersect at some points on
the delay interval (5, 10), and use the new methodology proposed by Wang et al. [19]
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to calibrate. Use Eq. (3) to calculate the effective berth factors for various lane groups
when the average delay is 25 s, as shown in Table 3.

Table 3. Effective berth factors of each type.

IDX Qty of lane Lane function layout Qty of P Qty of T Effective berth factor

1 Double-lane 1P1T 1 1 1.00

2 Triple-lane 1P2T 1 2 2.08

3 2P1T 2 1 1.14

4 2P1T* 2 1 2.17

5 Four-lane 2P2T 1 3 1.53

6 2P2T* 2 2 1.88

7 1P3T 2 2 2.76

8 Five-lane 2P3T 2 3 2.01

9 2P3T* 2 3 2.88

5 Case Analysis

To verify the accuracy of the calculation approach of the capacity of multi-lane drop-off
exclusive roadway, this study takes Jinan Yaoqiang International Airport-China as a case
to analyze the capacity of drop-off exclusive roadway.

The drop-off exclusive roadway at Jinan Yaoqiang Airport adopts the type of lane
function layout of 1 parking lane and 2 through lanes arranged in sequence (1P2T), the
effective berth factor found in Table 4 is 2.08. Use Eq. (4) to calculate the capacity of the
drop-off exclusive roadway at Jinan Yaoqiang Airport. The values of specific parameters
are shown in Table 4, which are determined based on survey results.

Table 4. Values of parameters in calculating drop-off exclusive roadway capacity.

Parameter L/m Nei n ts/s LR/m vL /km·h−1 vR /km·h−1 α/m

Value 270 2.08 37 61.2 30 30 10 6

Substitute the above parameters into Eq. (4), the capacity of the inner drop-off exclusive
roadway is 1942 pcu/h. According to the actual survey results, due to the driver’s pref-
erence, the ratio of traffic volume between the inner and outer roadways is about 2:1, so
the capacity of the drop-off exclusive roadway is as follows:

C = Cinner + Couter = (1+ 0.5)Cinner = 1.5× 1942 = 2913 pcu/h (5)
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Jinan Yaoqiang International Airport  terminal building

Entry EntryEntry Entry

Fig. 4. VISSIM simulation model of Jinan Yaoqiang Airport drop-off exclusive roadway.

Then simulates this drop-off exclusive roadway via VISSIM, as shown in Fig. 4.
When the capacity limit warning appears, the maximum input is 3049 pcu/h. Compared
with the calculated capacity (2913 pcu/h), the relative error is 4.3%. The results verify
the accuracy of the effective berth-based calculation approach of the capacity of the
drop-off exclusive roadway at the airport terminal.

6 Conclusions

In this study, the capacity of drop-off exclusive roadway at airport terminal is studied,
and an approach for calculating the capacity for multiple lane numbers and different lane
function layout types is proposed. The lane function layout types of drop-off exclusive
roadway are sorted out, the concept of effective berth is introduced, and the capacity
calculation approach of multi-lane drop-off exclusive roadway based on effective berth
is proposed. VISSIM simulation is used to determine the effective berth factors under
different delay levels, and a case study at the terminal of JinanYaoqiangAirport is carried
out. The results show that the accuracy of the calculation approach for the capacity based
on effective berth is as high as 96%. Compared to traditional methods, the proposed
approach for calculating capacity is more consistent with the parking characteristics of
vehicles on drop-off exclusive roadways.

However, the drop-off area in front of the airport terminal is very complex. The
proposed methodology ignores the influence of pedestrian and vehicle interference
and the arrival distribution, which may affect the accuracy of the capacity calculation.
Therefore, the mutual interference, conflicts between pedestrians and vehicles [20–22],
and the arrival distribution [23] should be considered in future studies. Furthermore,
drop-off exclusive roadway performance under mixed connected and regular vehicle
environments is also a meaningful direction to explore [24].
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Abstract. In recent years, many cities in the world are committed to promoting
the electrification of public transportation. For bus companies, how to select the
right charging facilities accurately and quickly has become an urgent problem
to be solved. In this paper, we propose a simulation method based on Anylogic
to describe the operation of electric buses under wired charging and wireless
charging conditions. We provide decision-making suggestions for bus companies
by analyzing the impact of wireless charging and wired charging on operation cost
and passenger waiting time. According to the simulation results, we found that the
waiting time of passengers under wired charging conditions is about 8.63% higher
than that under wireless charging in the same operating conditions. The use of
wireless charging facilities can effectively reduce the waiting time of passengers.

Keywords: Charging facilities · Electric buses · Passengers waiting time ·
Simulation

1 Introduction

Electric buses (EBs) have the advantages of zero emission and low noise, which is
of great significance to reduce urban motor vehicle exhaust emission and the operation
cost of public transport enterprises [1]. A recent study by Bloomberg new energy finance
electric predicts that the number of electric buses in operation will double from 386000
in 2017 to 1.2 million, accounting for more than 47% of the total number of urban buses
in the world by 2025 [2]. Although EBs have many advantages and develop rapidly,
they still have limitations such as short driving range and long charging time [3]. In
order to maintain the normal operation of EBs and improve their operational efficiency,
the optimization of EBs charging facilities has become an urgent problem for public
transport companies.

To solve the charging problem of EBs, there are three charging technologies are used
at present: station-based charging [4], battery swapping [5] and wireless lane-based
charging [6]. The charging facilities are divided into two categories: wired charging
facilities and wireless charging facilities. Wired charging facilities are the most com-
mon at present, which have good stability and controllability. However, due to complex
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equipment operation and slow charging speed, wired charging facilities can only be set
up in the terminal stations or depots, which limits the charging accessibility of EBs
and requires EBs to equip large capacity batteries [7]. The wireless charging facility
adopts WPT technology. EBs can be charged without cables and connectors. The wire-
less charging facility is convenient, and does not have spark and electric shock risk, in
addition, the charging speed of it is very fast. They can be set not only at the terminal
bus stations, but also at intermediate stations; By setting up multiple wireless charging
facilities in bus stations, the battery capacity of EBs can be reduced and the charging
efficiency of EBs will be greatly improved [8].

For the selection and optimization of charging facilities, current studies are mainly
based on the theoretical analysis model and verified by practical operation [9, 10].
However, due to the shortage of funds, time, materials and so on, it is difficult for
researchers to conduct tests directly in the early research stage,whichmakes it impossible
to evaluate the impact of different facilities on bus operation efficiency and passenger
satisfaction. Compared with the real experiment, the virtual experiment save a lot of cost
and time. In previous studies, Hao et al. developed a dynamic programming model that
optimally schedules the bus operating speed at road sections and multiple signal timing
plans at intersections to improve bus schedule adherence [11]. Shi et al. used the pre-
established Anylogic urban dynamics model to simulate the hourly power demand of
private electric vehicles considering population, commerce, housing and transportation
infrastructure, and solved the problem of power imbalance [12]. Although many articles
used virtual experiments to solve problems, no simulation experiment is used to study
the selection of charging facilities.

Anylogic is a simulationmodeling software that supports agent-basedmodeling. The
software has specific industry libraries such as process library, pedestrian library and
road traffic library, which can meet the needs of EBs simulation experiment. Therefore,
based on Anylogic simulation software, this paper constructs the operation status of EBs
under wired charging and wireless charging respectively; The program is written with
the built-in module of Anylogic to analyze the impact of different charging facilities on
passenger waiting time and charging cost, so as to provide suggestion in the selection
of charging facilities of EBs.

The structure of the rest of this paper is as follows: the second part expounds the
basic operation strategy, the third part analyzes the example, and the fourth part is the
conclusion.

2 Problem Description

2.1 Problem Environment Descriptions

It is assumed that only one EBs line is operating on the public transit exclusive lane. The
upward direction of the line is represented by u and the downward direction is represented
by d ; There are 2N stations along the line, n is the station number, n = 1, 2...,N . The
number of initial station and terminal station is 1 and N respectively. It is assumed that
the maximum number of EBs which can be put into operation is K , k is the number
of EBs, k = 1, 2, . . . ,K ; the rated battery capacity of EB k is Bk (unit: kWh), the
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remaining battery capacity of EB k is B′
k , and the average energy consumption per

hundred kilometers of EB k is Ck (unit: kWh/km).
If EBs use wired charging facilities, a wired charging station will be established at

station 1 (i.e. the initial station). Assume that there are M wired charging piles in the
starting station, and m is the serial number of wired charging piles, m = 1, 2, . . . ,M . It
is assumed that the 0–1 variable Pm

c to judge whether the wired charging pile is in use.
If the wired charging pile m is used, Pm

c = 1; otherwise, Pm
c = 0. The charging power

of the wired charging pile m is Pm
w (unit: kW).

If EBs use wireless charging facilities, the wireless charging pad will be built at the
midway stations. Assuming that the 0–1 variable Fn,u is the use state of the wireless
charging pad at the upward line, if the wireless charging pad is used at the upward
station n, set Fn,u = 1; otherwise, set Fn,u = 0. The power of the wireless charging pad
at upward station n is Fn,u

w (unit: kW). The expression of downward stations is in a same
way.

If the driver’s rest time Td is satisfied, EBs operate as far as possible when the
available operation time is less than the shift time, the EBs stop operation. Set the total
operation shift of each EBs on the same day as X .

2.2 Basic Operation Strategies

Charging Strategy. In the case of laying wired charging facilities, the wired charging
pile is only set at the bus departure station. In order to minimize EBs queuing and
maintain the health of the battery, EB will charge when the power decreases to a certain
level.The minimum state of charge (SOC) for EB to maintain battery health is SOCy,
and the minimum SOC to meet the operation requirements is SOCl . In order to reduce
the charging time, the EB ends the charging behavior when the highest SOCh is reached
each time. It is necessary to judge the charging behavior according to the following
strategies every time it returns to the departure station.

When EB arrives at the charging station, enter Step 1.

Step 1: if SOC less than SOCy, enter Step 2; otherwise, enter Step 6, and set Tp1 and Tp2
to 0.
Step 2: if SOC is less than SOCl and can not be satisfied with the next trip, enter Step 3;
otherwise, enter Step 3.
Step 3: if there is no free position for charging pile, otherwise, enter Step 6, and set Tp1
and Tp2 to 0.
Step 4: if there is an idle charging pile, EB starts charging and record the charging start
time tp1 and charging duration Tp1, enter Step 5; otherwise, waiting in the charging
waiting area and recording the charging waiting time Tp2, and then repeat Step 4.
Step 5: EB is charged. If SOC of EB reaches SOCh, end the charging, record the charging
end time tp2, and enter Step 6; otherwise, enter Step 4.
Step 6: if Tp1 + Tp2 ≥ Td , EB starts the next trip; Otherwise, the EBs will leave when
the waiting area rests to Td (Fig. 1).



78 W. Qin et al.

Fig. 1. Wired charging strategy logical flow chart.

In the case of laying wireless charging facilities, the starting station does not need to
build charging piles, and the wireless charging pad is set up at the midway station. In
order to maintain battery health, EB only uses the time for boarding and alighting when
SOC is lower than SOCy. When EB enters the midway station, the charging strategy
will be judged according to the actual situation of passengers getting on and off the bus
(Fig. 2):

Fig. 2. Wireless charging strategy logical flow chart.

Step 1: when EB arrives at the bus midway station, judge whether the station is equipped
with a wireless charging pad. If so, enter Step 2; otherwise, EB will load and unload
passengers normally.
Step 2: if SOC of EB is less than SOCy, enter Step 3; otherwise, EB will load and unload
passengers normally.
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Step 3: EB stops steadily, passengers start getting on and off, wireless charging facilities
start working at the same time, and record the start time tf 1; the wireless charging
behavior stops while the bus service passengers complete and tf 2 is recorded.

Passenger Simulation Strategy. The passenger simulation strategy is divided into two
parts: one is to determine the passenger arrival probability distribution, and the other is
to calculate the passenger boarding and alighting time. When the traffic flow density is
small and the overall flow is small, the discrete distribution model is more suitable to
describe the pedestrian arrival law [13–15], in which Poisson distribution is commonly
used to describe the pedestrian arrival law at the bus station.

P(s) = hse−h

s! (1)

where, h is the average number of arriving passengers per minute and P(s) is the
probability that there are exactly s passengers per minute.

Passenger boarding and alighting time Ts can be divided into vehicle opening time
Ts1, passenger boarding and alighting time Tpa and bus closing time Ts2:

Ts = Ts1 + Tpa + Ts2 (2)

Tpa = max{su · Tu, sd · Td } (3)

where, su and sd are the number of people getting on and getting off, Tu and Td are the
time for each passenger to get on and get off.

Charging Cost Calculation Strategy. Assuming that the electricity price of the city
where the line located is time-of-day tariff, there are q electricity price periods, and the
cost per kilowatt hour isMq in period Tq.
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Where, C is charging cost, Tm
k is charging duration, tm,s

k and tm,e
k are charging start time

and end time, tsq and t
e
q are charging start time and end time of q electricity price periods,

ϕ is the total electricity price periods.

3 Example Analysis

3.1 Simulation Parameter Setting

In this paper, a bus line in operation is selected for simulation. The line has five midway
stations, with a total mileage of 9.5 km and travel time is about 35 min. The line has
eight EBs with the same model and the same battery. The battery capacity is 100 kWh
and the average energy consumption per 100 km is 80 kWh. Among them, 4 EBs start
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Table 1. Distance between stations and average travel time

Section name s0–s1 s1–s2 s2–s3 s3–s4 s4–s5 s5–s6

Length of road section (m) 1800 1100 1300 1800 1500 2000

Average travel time (min) 2.8 2.6 4.2 5.0 4.2 4.2
*s0 represents departure station and s6 represents terminal. s1, s2, s3, s4 and s5 respectively
represent midway station 1, 2, 3, 4 and 5.

from the departure station and the other 4 EBs start from the terminal station. Midway
stations are straight-line midway stations. The distance between stations and average
travel time are shown in the Table 1.

In this simulation, the number ofwired charging pilem is 3, and the charging power of
charging pilePw is 100 kW;Thewireless charging pad is set in the upward and downward
of station 2, upward of station 4 and downward of station 5 with large passenger flow.
The power of the wireless charging pad is 200 kW; Set the driver’s rest time to 300 s; Set
the maintenance battery health SOCy to 50%, the SOCl to 20%, and the SOCh to 80%.

For the convenience of the study, it is assumed that no passengers get on and off at the
departure station, only passengers get on at themidway station, and all passengers get off
at the terminal. Set the door opening time Ts1 as 1.5 s and the vehicle door closing time
Ts2 as 1.5 s; The boarding time Tu of each passenger is 1.8 s and the alighting time Td
is 1.2 s. The passenger flow at the midway station conforms to the Poisson distribution.
The average number of passengers arriving at the midway station per minute is shown
in the Table 2.

Table 2. Average passengers arrival rate (pas/min)

Direction 1 2 3 4 5

Upward 1.71 2.31 2.00 2.14 1.57

Downward 1.22 2.45 1.76 1.64 1.88

The city uses time-of-day tariff to adjust the electricity price. The specific electricity
price and time period are shown in Table 3.

Table 3. Time-of-day tariff table (CNY/kWh)

Time period 7:00–9:00 9:00–11:30 11:30–14:30 14:30–17:00 17:00–19:00

Electricity price 0.975 1.250 1.500 1.250 1.500
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3.2 Establishment of Simulation Environment

The simulation steps are divided into simulation scene construction, simulation module
connection and data analysis based on Anylogic’s own data statistics function. The
simulation scene is mainly set up based on Anylogic’s process library, pedestrian library
and road traffic library. The specific scene setting is shown in the Fig. 3.:

Fig. 3. Laying scenario of wireless charging facilities (a) and wired charging facilities (b)

The simulation module connection is mainly based on Anylogic’s process library and
pedestrian library. The blue box adopts the process library and the green box adopts the
pedestrian library. The specific module connection settings are shown in the Fig. 5.

EBs are produced by the Electric buses source module, moved to the station through
the Electric buses move module, and then the Electric buses delay module is used to
control the boarding and alighting time of passengers and the Electric buses pick is
used to complete the action of obtaining passengers. Passengers are generated by the
Passengers source module. Passengers are controlled to move to the station through the
Passengers move module, and Passengers wait for boarding by using the Passengers
wait module. Finally, the boarding behavior is completed by using the Passengers queue
module and Passengers exit module (Fig. 4).
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Fig. 4. Connection diagram of simulation module

3.3 Results and Analysis

The model runs from 7:00 a.m. to 19:00 p.m. for a total of 12 h. The waiting time of up
and down passengers at each station is analyzed respectively. The results are shown in
the Table 4.

Table 4. Waiting time of passengers (s)

Charging facilities Direction 1 2 3 4 5

Wired charging Upward 380.4 310.4 390.5 402.3 506.9

Downward 510.3 530.6 410.3 346.2 339.3

Wireless charging Upward 367.8 275.1 388.1 368.2 480.6

Downward 502.4 512.4 379.2 345.2 340.2

It can be seen from the Table 4. that the waiting time of passengers is greater than that
of wireless charging under the condition of wired charging. After statistical analysis of
all data, the waiting time of passengers under wired charging is about 8.63% higher
than that under wireless charging. The use of wireless charging facilities can effectively
reduce the waiting time of passengers.

In addition, the total trip of EBs will be different under the influence of different
charging methods. Affected by the total trip, the total charging cost of EBs is different.
Through data acquisition, the total trip and total charging cost of each vehicle can be
obtained, as shown in the Table 5.
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Table 5. Total running trips and total charging cost

Vehicle number Wired charging Wireless charging

Total trip Total charging cost (CNY) Total trip Total charging cost (CNY)

1 13 42.25 14 98.75

2 12 40.75 14 96.88

3 12 76.52 13 90.15

4 12 75.89 13 89.65

5 13 40.25 14 99.25

6 12 43.98 14 99.30

7 12 71.12 13 91.14

8 12 64.28 13 90.45

After statistical analysis, the average total trip of wireless charging is higher 1.25 times
than that of wired charging. EB does not need to spend additional time on charging,
which effectively makes use of the time for passengers to get on and off, and improves
the operation intensity of EBs under wireless charging.

At the same time, the total charging cost of wireless charging ismuch higher than that
of wired charging, and the average charging cost has increased by 37.56. There are two
reasons for the increase of charging cost. First, the fleet of wireless charging and wired
charging total trip is 108 and 96 respectively. Wireless charging requires more power,
resulting in an increase in charging costs. Second, wireless charging is more frequently
charged in the peak period of electricity price, while wired charging often occurs in the
flat peak period of electricity price, which increases the Total charging cost.

In order to consider the influence caused by the power difference between wireless
charging and wired charging, we changed the power of wireless charging facilities to
100 kW and 80 kW. Through simulation, it is found that EB cannot complete daily
operation tasks through wireless charging alone. In this case, wired and wireless co-
charging is required, so the merits and demerits of wired charging and wireless charging
cannot be compared.

4 Conclusions

The construction of EBs charging facilities has always been one of the important direc-
tions of EBs research. This paper discusses EBs operation and passenger waiting time
under the conditions of wired charging andwireless charging. A bus line is simulated and
compared by using Anylogic, which provides a new preliminary investigation method
for the construction of bus charging facilities.

This paper only discusses the influence of charging facility selection on EBs from
the perspective of simulation, which is still different from the actual operation. However,
if you need to further choose charging facilities, it is necessary to conduct more in-depth
research in combination with the cost and specific road environment.
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Abstract. Autonomous Transport System (ATS) architectures enable a wide
range of new applications and bring significant benefits to transport systems. How-
ever, during the design stage, errors of the architecture can have an impact on the
smooth implementation of the ATS, which will endanger the normal operation of
the transport systems. To ensure a high autonomy of the ATS architecture, i.e.,
“functionally evolvable, logically reconfigurable and physically configurable”,
the detection of ATS architecture design errors is essential. This paper aims to
fill the research gap in the existing research on diagnosing or evaluating ATS
architectures. Inspired by word embedding models in natural language processing
communities, we propose a data-driven approach to diagnose ATS architectures
without prior knowledge or rules. We use an architecture embedding model to
generate vector representations of ATS architectures, then train the model through
negative sampling of the training dataset to identify the features of abnormal ATS
architecture. Finally, we employ the trained model to classify structural errors
of the test dataset generated from the ATS architecture. The experimental results
show that the proposed method gains a relatively good effect of classifying with
an average accuracy of 79.3%, demonstrating the effectiveness of the method.

Keywords: Autonomous Transport System · Architecture embedding model ·
Triple classification · Vector computation

1 Introduction

With the development of technologies such as self-driving cars and cooperative vehicles
infrastructure system, existing transport systems are evolving from intelligent transport
systems to autonomous transport systems. To reduce human intervention, autonomous
transport systems transport passengers and goods through self-organized operations and
autonomous services. All these systems have one common character: Inside the system,
independent components have to communicatewith others to avoid incomplete or unclear
communication mechanisms and inconsistent information quality that complicates the
introduction of new services and the involvement of new stakeholders and even blocks
this process, it is essential to introduce a unified ATS architecture. An ATS architecture
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integrates transport services, communications networks, vehicles, transport infrastruc-
ture,with traffic participants to provide a steady, trustworthy, secure, and privacy-friendly
environment for users. The design process of an ATS architecture involves a great deal of
repetitive and specializedwork that requires awealth of knowledge and careful reasoning
ability, and analytical skills. The components and interactions of theATS architecture are
in continuous evolution and iteration. The above process may generate new and potential
errors in the ATS architecture. Therefore, a scientific diagnosis approach is required to
ensure the validity and reliability of the ATS architecture throughout the whole process
of architecture evolution and iteration. By diagnosing the ATS architecture designed
for a given city or region, potential errors in the architecture can be detected and fixed
before implementing the ATS. It is good practice to implement such assurance proce-
dures in the development of designing or modifying an ATS architecture. The diagnosis
characteristics can be stored in the computer and reusable. However, no feasible meth-
ods that can be applied to the diagnosis process without prior knowledge or rules. In
this paper, we propose a data-driven approach that represents the structural features of
the ATS architecture through vector representation generated by the ATS architecture
embedding model. Then the potential errors in the ATS architecture will be detected by
vector computation without additional rules. The method simplifies the anomaly detec-
tion process into vector computation, which is relatively suitable for the continuously
updated ATS architecture.

The paper is structured as follows: Sect. 2 describes the ATS architecture diagnosis
problem and provides an overview of the proposedmethod. Then our diagnosis approach
is presented in Sect. 3. In Sect. 4, we give numerical examples based on dataset from
the national ITS reference architecture to demonstrate the effectiveness of the proposed
method, and finally, Sect. 5 summarizes this paper.

2 Problem Description and Methodology Overview

Autonomous Transport System transports equipment, traffic participants, goods, infor-
mation, or resources from one point to another with minimal human intervention [1,
2]. ATS exists in a variety of transportation modes such as trucks, buses, rail, ships,
and even aircraft. At the early stage they are typically deployed in controlled indus-
trial areas but are expected to be deployed soon in public areas with various degrees
of autonomy. Unlike Autonomous Vehicles (AVs) [3], which offer excellent services to
individual passengers, ATS integrates vehicles, freight, traffic participants, infrastruc-
ture, and information into a system to meet particular needs. When it comes to ATS
architecture, the focus is on the interactions between components in a complex system
to ensure the efficiency and the stable operation of ATS.

TheATSarchitecture is a static framework for givingmacroguidance for the transport
system [4]. Designing an ATS architecture involves lots of repeatable and technical
work that requires fund of knowledge and careful reasoning ability and analytical skills.
With continuous evolution and iteration of the ATS architecture, the components and
interactions can change accordingly. While unforeknown errors may be generated in the
ATS architecture. Detecting potential errors at the architecture design stage can help to
reduce cost and improve productivity [5]. The architecture diagnosis checks over the
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internal logical relations, providing a basis for tracing and solving problems of the ATS
architecture. It is vital in ensuring the valid deployment of an ATS through the diagnosis
techniques.

With the rise of artificial intelligent technology, diagnosis methods that focus on
sensors monitoring and signal processing as core tasks have gradually transitioned to
diagnosis approaches based on knowledge [6–8]. The diagnosis knowledge can be stored
in the computer and reusable. Therefore, the theoretical ATS architecture will relatively
match up with the knowledge-based diagnosis approaches.

Currently, knowledge-based diagnosis methods [9–12] can be broadly classified into
two categories: symbolic logic inference methods and representation learning methods.
Traditional symbolic logic approaches focus on deterministic deductive reasoning and
achieve inference diagnosis by defining ontological axioms or logical rules, which have
the advantage of being precise and interpretable. While the main disadvantage is that
they require the manual definition of logically strict inference rules, so their coverage
is narrow and not easily extended. Besides, they cannot handle implicit or uncertain
knowledge. To avoid the manual definition of rules, another kind of symbolic inference
method uses statistical models of inductive reasoning to automatically learn rules from
a large amount of facts. It can generalize abstract logical rules by learning the common
features of tagged cases. The main advantage is that it reduces the workload of manually
defining rules, but rule learning consumes too much computing resource and cannot
represent implicit or uncertain knowledge either.

The representation learning diagnosis method transforms both entities and relations
into the vector space and completes inferential diagnosis by vector computation [13],
using low-dimensional dense vectors to represent entities and relations. The parameter-
ized vector is an approximate representation in the vector space based on the existing
knowledge in the knowledge graph as a sub-supervised signal. On the other hand, vector-
based or neural network based inference computing is an approximate inference result
obtained through differentiable representation learning [14]. Therefore, the inference
process and result are also uncertain. Thus, representation learning methods and neural
network approaches are easier to represent uncertain knowledge and implement uncertain
reasoning than logical inference and symbolic rule-based approaches. In addition, the
inference is more efficient as the inference process is simplified to a vector computation,
eliminating the need for symbolic matching and rule search.

The ATS architecture is a flexible and future-proof architecture that guides the evo-
lution and iteration of the transport system. Therefore, ATS architecture diagnosis also
accompanies the whole process of architecture evolution and iteration. The above pro-
cess may cause unpredictable and artificial errors in the ATS architecture. These changes
in architecture caused by the evolution and iteration require updating diagnosis knowl-
edge frequently to accommodate them. Since the dynamic problem is not well solved
by traditional logical reference methods, we need a scientific diagnosis approach to
ensure validity and reliability. Inspired by the word embedding model in the natural
language processing community [15], this paper proposes a data-driven approach to
diagnose potential errors without extra knowledge or rules in ATS architectures through
our architecture embedding model and vector computation. The method simplifies the
inference process into vector computation, overcoming the shortcomings of traditional
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diagnosis methods that rely on expert knowledge and rules. The method consists of two
key components: architecture embedding model and anomaly detection.

3 Architecture Embedding Model

An ATS architecture consists of requisite structural knowledge and constraint rules that
provide a guide to establish a relationship with infrastructure, vehicles, traffic partici-
pants and system-level functional objects in a transport system. This knowledge can be
represented through classical knowledge graph methods, stored in the form of triples as
(head entity, relationship, tail entity). Here a single example (roadside devices, provision-
ing, road network health status detection) means that roadside devices are responsible
for provisioning road network health status. While triples are powerful in represent-
ing structured data, the symbolic characteristic of such triples makes knowledge graph
difficult to handle, especially on a large scale. Due to the above reason and ATS archi-
tecture embedding model is proposed, inspired by word embedding models from the
natural language processing (NLP) community. The key idea is to vectorize structural
details into the continuous vector space, simplifying the difficulty and workload while
maintaining the inherent structure of the knowledge graph. The vector representation
embedded contains semantic information that can be used in rich downstream appli-
cations of NLP such as link prediction and triple classification. The embedding model
utilizes rich semantic information about entities and relations, which can significantly
improve knowledge acquisition and reasoning ability. The vector representation makes
it possible to check whether the triple is correct by vector computation. The criterion of
correct triples is defined by the truth value, which is calculated as the Euclidean distance.
Architecture anomalies are then identified based on the truth value of the triples. The
rationality of the architecture is measured by computing the mean value of all triples in
the same vector space. This section consists of two parts: knowledge representation and
model training.

3.1 Knowledge Representation in ATS Architecture

The embedding model generates the vector representation of the architectural content
based on the co-occurrence distribution of the architectural content in the training dataset.
Inspired by the word2vec model proposed by Google in 2013 [13], the architecture
embedding model in this paper also uses negative sampling to increase the training
speed of the model and improve the quality of the vector representation. Negative sam-
pling training means that the model will be trained on both positive and negative data
features during the training process. The architecture embedding model is a three-layer
neural network, as shown in Fig. 1, with input, output and hidden layers. It is trained on
both positive samples (true connections) and negative samples (incorrect functional and
physical object connections). The weights of the hidden layer are a vector representation
of a word. To achieve the best effect of the embedding model, this paper defines a loss
function towhich increases the differentiation between the positive and negative samples
by minimization of loss. The trained neural network shows that words that appear in
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similar contexts will have similar vector representations. In the architecture embedding
model, this means that entities co-occurring under the same semantic conditions have
similar vector representations.

We obtain an ATS architecture K = {(ei, rk, ej)} containing triples, each containing
two entities ei, ej ∈ E and the relation rk ∈ R between them, where E is the set of entities
and R is the set of relations, respectively. Modeling triples we use the TransE model
[16], based on its simplicity and effectiveness in achieving state-of-the-art predictive
performance. Given a triple instance (ei, rk, ej), the relation rk in the modeled triple
instance is used as a vector transformation from ei to ej, i.e. when the triple holds, we
want to have the effect that ei + rk≈ej. We then score each triple based on ||ei + rk -
ej ||1, defining the true value of the triple as:

P(ei, rk, ej) = 1 − 1√
3d

‖ei + rk − ej‖1 (1)

Where d is the dimension of the embedding space. It is clear to see that P
(
ei, rk , ej

) ∈
[0, 1] because of ‖ei‖2≤1, ‖ej‖2≤1, ‖rk‖2≤1.

Note that 0 � ‖ei + rk − ej‖1� ‖ei‖2+‖rk‖2+‖ej‖2 � 3
√
d , where the last

inequality holds because ‖x‖1 = Σi|xi| ≤
√
dΣix2i = √

d‖x‖2, according to the
Cauchy-Schwarz inequality.

3.2 Training Model with Negative Sampling

The architectural embedding model is trained with positive and negative samples. We
first generate a training set containing all positive samples, and then we make the model
work best by defining a minimizing global loss function.

min{e},{r}
∑

f +∈F
∑

f −∈Nf +
[
γ − P

(
f +) + P

(
f −)]

+,

s.t.‖e‖2 ≤ 1,∀e ∈ E; ‖r‖2 ≤ 1,∀r ∈ R.
(2)

Here f + ∈ F is a positive sample, f − ∈ Nf + is a negative sample constructed
from a positive sample, and γ is the boundary condition for determining positive and
negative samples. For a triple (ei, rk, ej), we achieve minimization by replacing ei or ej
randomly with an arbitrary entity e in the entity set, which ensures the triple after the
replacement does not exist in the original training set.We believe that the vast majority of
triple instances generated in this way are negative samples, using small-batch stochastic
gradient descent. The effect of model training is shown in Fig. 2.
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Fig. 1. General structure of the ATS embedding model

Fig. 2. The effect of training model by negative sampling

4 Experiments

4.1 Preparing Dataset

The classification results are obtained by triple classification to find the incorrect part
of the ATS architecture. This task is to verify if any unobserved triples (ei, rk, ej) are
correct. The dataset comes from the National ITSReference Architecture (ARC-IT 9.0)1

developed by the U.S. Department of Transportation. The part we use is the exchange
process of information flow with a physical view of the ATS architecture, including the
source and destination physical objects and the information flow. The physical source
object acts as the head entity ei, the destination physical object acts as the tail entity ej , and
we take the information flow as the relation rk. The dataset is respectively divided into
a training dataset, a validation dataset, and a test dataset for model training, parameter
tuning, and evaluation. The training dataset contains 1896 positive triples, 154 entities
and 905 relations.We constructed 14 negative samples for every positive triple (Table 1).

1 The Architecture Reference for Cooperative and Intelligent Transportation (ARC-IT) provides
a common framework for planning, defining, and integrating intelligent transportation systems.
ARC-IT 9.0 includes all views of the National ITS Reference Architecture - Enterprise, Func-
tional, Physical and Communications views. The information is available at https://www.arc-
it.net/index.html.

https://www.arc-it.net/index.html
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Table 1. A sample for training the architecture embedding model

Sources (head entity) Flow (relation) Destination (tail entity)

Alerting and advisory system Alerts and advisories Emergency management center

Basic vehicle Driver input information Vehicle OBE

Basic vehicle Host vehicle status Vehicle OBE

Connected vehicle roadside
equipment

Intersection status Commercial vehicle OBE

Connected vehicle roadside
equipment

Signal priority status Commercial vehicle OBE

Connected vehicle roadside
equipment

Data provision Data distribution system

Connected vehicle roadside
equipment

Data query Data distribution system

… … …

4.2 Evaluation Results

We set up an evaluation scheme similar to the TransE model [17]. We first generate test
data for evaluation. For each positive triple in the test or validation set, we construct 10
negative triples by randomly replacing entities, five in the head position and the other
five in the tail position. To make the evaluation process as accurate as possible, we use
only the entities that occurred in that position to replace the corresponding position,
and further ensure that the replaced triples do not exist in the training, validation or
test datasets. We only use every triple’s truth value as the classifying criterion. Triples
with large truth values are often predicted to be correct. F1 is used here to measure the
accuracy of the triple classification task. As shown in Table 2, let TP be the triples that
our method correctly predicts to hold, let FP be the triples that our method incorrectly
predicts to hold, and FN be the triples that our method incorrectly predicts not to hold.
The F1-score formula is established as follows:

Table 2. Results of triple classification

Predicted True triple

Positive Negative

Positive TP FP

Negative FN TN

Precision = TP

TP + FP
(3)
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Recall = TP

TP + FN
(4)

F1 = 2 × Precision · Recall

Precision + Recall
(5)

We set upmultiple training sets with different proportions of triples, using 30%, 50%
and 75% of the triples as training sets to calculate the accuracy of the triple classification
task (Table 3).

Table 3. The F1-score accuracy comparison results of triple classification task (in percentage)

Training dataset Precision(%) Recall(%) F1(%)

30% 74.8 71.3 73.0

50% 76.2 73.5 74.8

75% 80.4 78.2 79.3

The experimental results show that the model gains relatively good results with
different sizes of training sets, and the classification accuracy can reach 79.3% as the
training set increases, which is positive for separating the incorrect triples from the ATS
architecture.

5 Conclusions and Future Work

In this paper, we propose a new method to achieve the purpose of the ATS architecture
abnormality detection. We generate the vector representation of the ATS architecture
structural features through an embedding model, and classify features of the incorrect
type from the ATS architecture by vector computation and triple classification. The
experimental results show that the method can diagnose most of the structural errors and
achieve good detection accuracy. The method can diagnose ATS architecture without
prior knowledge or rules. It has potential for further applications such as tracing and
solving problems of the ATS architecture.

For future work, we would like to consider expanding the diagnosing scope of ATS
architecture and adding more features of the ATS architecture as embedding content,
such as the logic of collaboration between functional objects, the hierarchical relationship
between transport services and functional objects, etc. The relationship of “1-to-many”
and “many-to-many” between them, grows the complexity of the embedding model
and the difficulty of model training. We will also improve the diagnosis framework by
integrating rules with the embedding model, and use the improved embedding model to
obtain the vector representation of rules, which may enhance the accuracy or efficiency
of detection.

Acknowledgments. This study was supported by the National Key R&D Program of China (No.
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Abstract. Electric buses have the advantages of small noise, zero emission and
simple control, which can effectively reduce urban pollutant emissions and energy
consumption. Therefore, vigorously promoting the development of electric buses
is of great significance to accelerate the low-carbon development of the city and
realizes the goal of “carbon peak” and “carbon neutrality”. The operating condi-
tion of electric buses is an important factor affecting their energy consumption.
Ensure buses under reasonable working conditions can improve the operation
efficiency, reduce the operation energy consumption and the operation cost of bus
enterprises. For the bus route with dedicated bus lane, we divide road sections
based on road characteristics and analyze the operation state of buses on different
units. Considering the constraints such as the bus travel punctuality rate between
stations and the intersection delay rate, we taking the minimum operation energy
consumption between stations as the optimization objective. Taking the traveling
speed of the bus on the road section unit between stations and the starting moment
of green light on the intersection as the optimization variables, the dynamic control
model of the electric buses is established. Finally, the simulated annealing algo-
rithm is used to solve the built model. Comparing the optimization scheme with
the original scheme target value and analyzing the model optimization effect, the
numerical results show that the total operating energy consumption can be saved
up to 8.29%, which proves the optimal travel can meet the needs of passengers
while reducing operating energy consumption.

Keywords: Electric bus · Dynamic control · Energy consumption · Simulated
annealing algorithm

1 Introduction

As an important part of urban transportation, electric buses have the advantages of small
noise, high travel stability, zero emission and simple control. It is also a vital measure
to solve urban congestion and reduce traffic pollution. Operation energy consumption
of electric buses is not only related to the operating mileage, traveling time and the
number of passengers, but also closely related to the speed and acceleration of the
electric buses. The working conditions of electric buses are important factor affecting
energy consumption [1–3]. Ensure electric buses working under reasonable operating
conditions can reduce the bus energy consumption, improve the operation efficiency, and
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reduce the operation cost of bus enterprises. Therefore, how to correctly estimate and
reduce the operating energy consumption of electric buses is one of the wide concerns
of scholars. The current research on electric buses energy consumption estimation can
be divided into kinetic methods and data-driven methods [4, 5]. The former uses the
vehicle operating state parameters per second to calculate traction energy consumption
and power recovery energy, the latter mainly uses laboratory data or actual observation
data to establish a training model of operating energy consumption based on machine
learning method.

The control research of electric buses mainly focuses on travel energy consumption
[6–11] and vehicle control optimization [12–17], but most of the studies are indepen-
dently conducted for the above two directions, which lack of discussion and research on
the overall operation of the bus. Moreover, the actual operating environment of electric
buses is a dynamic system with many uncertainties. The static vehicle control method
cannot well adapt to the actual travel environment of bus operation. Therefore, how
to apply the existing technology combined with data to improve the travel efficiency,
to reduce the energy loss, and to improve the service quality of electric buses is a very
important problem for the development of the current urban public transportation system.

For the bus route with dedicated bus lane, the state of the electric bus is relatively
simple and easy to control. Therefore, we dynamically optimize the driving parameters
of the electric bus and the signal timing parameters of the intersection according to
the information such as the position and speed of the bus, so that the bus travels in
the best state. Compared with the traditional electric bus control research, we combine
the optimization of intersection signal timing and control the bus driving plan from
the perspective of the overall operation of the bus, so as to achieve the purpose of
energy saving and consumption reduction. Remainder of this paper is organized as
follows. Section 2 presents the concept of the dynamic control method. Next, we conduct
validation examples to demonstrate the effectiveness of the proposed model and provide
the concluding remarks in Sect. 3.

2 Methodology

2.1 Problem Analysis

There areN1 bus stations andN2 intersections on the line. The road on the line is divided
into intersection units and section units. The intersection units Int is the road from the
maximum queue length of vehicles on the intersection to the stop line on the intersection.
The remainder is divided into section units Seg. The driving process of the bus between
station i and i + 1 is from the station i where the bus starts at tsi to the station i + 1
where the bus arrives and waits for passengers to get on and off then drives off. In order
to calculate the total energy consumption Ei,i+1 of all units between station i and i +
1, we establish an energy optimization model between adjacent sites which takes the
minimumEi,i+1 as optimization objective and takes the driving speedVSeg

i,j and the green
light starting moment gsi,k corresponding to the phase m of the intersection unit Inti,k as
the optimization variables. The energy optimization model is as follows.

min Ei,i+1 (1)
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s.t. ts∗i+1 − ε ≤ tsi+1 ≤ ts∗i+1 + ε (2)

Vmin
i ≤ VSeg

i,j ≤ Vmax
i j = 1, 2, 3...Ni + 1 (3)

∣
∣
∣
∣
∣

Dei,k − De0i,k
De0i,k

∣
∣
∣
∣
∣
≤ δ k = 1, 2, 3...Ni (4)

where ts∗i+1 is the departure time at station i + 1 specified in the departure schedule; ε

is the allowable error time of departure time, s; Vmin
i and Vmax

i are the minimum and
maximum speed limits of the bus at station i and i + 1, m/s; De0i,k and Dei,k are the
average delay time of intersection before and after changing the timing scheme, which
can be calculated through delay model; δ is the delay rate of change on the intersection.
The constraint (2) indicates that the buses meet the departure time limit of the departure
schedule, the departure time of station i + 1 is equal to the sum of the departure time of
station i and travel time between station i and i + 1; The constraint (3) indicates that the
driving speed VSeg

i,j of the bus between stations i and i + 1 will be within the allowable
speed range of the section. The constraint (4) indicates that the average delay of the
intersection needs to be within the allowable range after adjusting the green light.

2.2 Calculation of Travel Time of the Electric Bus

(i) Bus travel time calculation on the section unit

The bus changes the speed at the initial speedVSeg
i,j (0), accelerationai at the beginning

of the section unit Segi,j through tSegi,j (1) to VSeg
i,j , then keeps the uniform speed for tSegi,j

seconds and reaches the end of the section at the acceleration ai2 through t
Seg
i,j (2). Define

the 0–1 variable Y Seg
i,j , Y Seg

i,j = 0 indicates the bus accelerating on the unit, or that the

bus slowing down on the unit, therefore when Y Seg
i,j = 0, ai = ai1; Y

Seg
i,j = 1, ai = ai2.

The initial speed of the electric bus at unit Segi,j between section i and i + 1 is
expressed as follows:

VSeg
i,j (0) =

{

0 The road unit starts with the station or the stop line and X k
i = 1

V Int
i,k The road unit starts with the station or the stop line and X k

i = 0
(5)

where X k
i is a 0–1 variable, indicating whether the bus needs to stop on the intersection

unit Inti,k . If X k
i = 0 the bus does not stop on the intersection unit; otherwise X k

i = 1;
V Int
i,k is the speed when the bus leaves the intersection k, m/s.

tSegi,j (1) is calculated by the following equation

tSegi,j (1) = VSeg
i,j − VSeg

i,j (0)

ai
(6)
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The calculation of tSegi,j (2) is affected by the end of the section:

tSegi,j (2) =

⎧

⎪⎨

⎪⎩

VSeg
i,j

|ai2| The section unit ends with stop i + 1

0 The section unit ends with the stop line

(7)

The travel time TSeg
i,j of the electric bus on the section unit j can be calculated as

follows:

TSeg
i,j = tSegi,j (1) + tSegi,j + tSegi,j (2) (8)

(ii) Bus travel time calculation on the intersection unit

When the electric bus from the section unit Segi,J enters the intersection unit Inti,k
with speed VSeg

i,J , time tsi,k . It reaches the intersection stop line at t
e
i,k through t

t
i,k . When

the bus enters the intersection unit, the signal intersection performs the cycle ci,k , and
the cycle duration is Ci,k , which starts at csi,k and ends at c

e
i,k . The cycle has ϕi,k phases,

each phase’s green light time is ghi,k (h ∈ [1, ϕi,k ]) and yellow light time is yhi,k . The
bus is controlled by the phase m (1 ≤ m ≤ ϕi,k ). Phase m starts green light at moment
gsi,k(0), at g

s
i,k after optimization.

tsi,k = tsi +
J

∑

j=1

TSeg
i,j +

J−1
∑

k=1

T Int
i,k (9)

The following equation shows the travel time and travel distance when the bus passes
through the intersection in different ways:

a. The electric bus passes freely through the intersection

When the bus passes freely, the travel speed V Int
i.k of the bus is equal to the section

speed VSeg
i,J when the bus enters the intersection unit. At this time, the travel time tti,k of

the bus on the intersection unit is equal to the uniform speed travel time tInti,k .

tInti,k = dInt
i,k

V Int
i,k

(10)

b. The electric bus speed changes through the intersection

The bus speed changes through the intersection, including the bus accelerates and
the bus slows down through the intersection. At this time, the bus needs to leave the
intersection at tsi,k with initial speed V

Seg
i,J , acceleration ai through tInti,k (1). Define the 0–1
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variable Y Seg
i,j , when Y Int

i,j = 0, ai = ai1; Y Int
i,j = 1, ai = ai2.

tInti,k (1) =
√
√
√
√

2xInti,k
∣
∣ai

∣
∣

(11)

The speed change time tInti,k (1) of the bus is determined by the length xInti,k of the
intersection unit. However, the bus travel on the line is limited by the road conditions,
so when the bus accelerates to the maximum speed allowed by the section, the bus stops
accelerating and keeps the speed through the intersection. The deceleration case has
same argument. At this time the tInti,k (1) is:

tInti,k (1) = V
′
i − VSeg

i,J

ai
(12)

where V
′
i is the speed limit of the bus between station i and i + 1, when accelerating

V
′
i = Vmax

i , otherwise, V
′
i = Vmin

i , m/s.
The travel time tti,k of the bus is expressed as follows:

tti,k = tInti,k (1) + tInti,k (13)

c. The electric bus cannot directly pass through the intersection

When the electric bus cannot directly pass the intersection, the bus needs to keep the
speed of the starting line of intersection unit, and slows down to 0 at the stop line of the
intersection at acceleration ai2. The deceleration time tt−i,k , and the bus travel time tti,k are

the same as Eq. (12)–(13). Among, V
′
i = 0, ai = ai2.

The time twaiti,k of the bus waiting on the intersection is equal to:

twaiti,k = gsi,k − tei,k (14)

Above all, the travel time T Int
i,k of the electric bus on the intersection unit between

stations i and i + 1 is expressed as follows:

T Int
i,k =

{

tti,k + twaiti,k X k
i = 1

tti,k X k
i = 0

(15)

The total travel time of the electric bus between stations i and i+ 1 is equal to the sum
of the travel time on all road units and intersection units between stations i and i + 1.

2.3 Energy Consumption Calculation of the Electric Bus

The operating consumption EC(tC) of the electric bus during tC can be obtained by the
instantaneous power PW (t) on the wheel:

PW (t) = (mai + mg cos(θ)
f (c1V (t) + c2)

1000
+ 1

2
ρairACDV

2(t) + mg sin(θ))V (t)

(16)
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where m is the bus weight, kg; g is the gravitational acceleration, m/s2; f is the rolling
resistance coefficient; θ is the road slope angle, rad; c1, c2 is the rolling resistance
parameter; ρair is air density; i is road slope, kg/m3; A is automobile windward area, m2;
CD is air resistance coefficient; V (t) is the travel speed of the vehicle at the fixed speed
(details from 2.2), which can be calculated when the bus is in accelerated state, m/s.

V (t) = V (0) + ait (17)

where V (0) is the initial speed when the bus starts accelerating (detailed calculation
methods from 2.2), m/s; ai = ai1.

EC(tC) =
∫ tC

0

PW (t)

η1η2η3
dt (18)

where η1 is transmission system efficiency; η2 is power generation efficiency for motor;
η3 is charging efficiency for battery pack.

In addition, when the motor is in the generator state under the wheel inertia, the
power output is negative, and the energy generated by the brake inch can be recovered
by the recovery device. The braking energy ER(tR) of the vehicle during deceleration tR
seconds is expressed as follows:

ER(tR) =
∫ tR

0
−PW (t)η1η2η3η4dt (19)

η4 = e
− ∂

ai (20)

where η4 is regenerative braking efficiency; ai = ai2.
Therefore, theoperationenergyconsumptionESeg

i,j of thebus sectionunit and theoper-

ation energy consumption EInt
i,k of the bus section unit between the stations i and i + 1 are

expressed as follows:

ESeg
i,j =

⎧

⎨

⎩

EC(tSegi,j (0)) + EC(tSegi,j ) − ER(tSegi,j (1)) Y Seg
i,j = 0

EC(tSegi,j ) − ER(tSegi,j (0)) − ER(tSegi,j (1)) Y Seg
i,j = 1

(21)

EInt
i,k =

{

EC(tInti,k ) + EC(tInti,k (1)) Y Int
i,k = 0

EC(tInti,k ) − ER(tInti,k (1)) Y Int
i,k = 1

(22)

The total energy consumption Ei,i+1 of the electric bus between stations i and i + 1
is expressed as follows:

Ei,i+1 =
Ni+1
∑

j=1

ESeg
i,j +

Ni∑

k=1

EInt
i,k (23)
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3 Solution Algorithm

Simulated annealing is a kind of heuristic algorithm, which is widely used because of its
advantages of simple description, high efficiency and less constraint of initial conditions.
In this paper, the travel speed of the bus and the starting moment of green light on the
intersection affect each other in time, and the best starting moment cannot be obtained
through the determined speed optimization, which increases the difficulty of solving the
model to some extent. Therefore, we select the simulated annealing algorithm, which
applies the analogy of solidmatter in physics to the optimizationmodel, taking the actual
speed of the bus and the signal timing scheme on the intersection as the initial solution,
and gradually adjusting to solve the optimal travel scheme of the vehicle on the bus line.

Step 1: Set the initial parameters. Set the starting temperature T0 = 120 °C,
termination temperature Tf = 1 °C, temperature attenuation coefficient γ = 0.99,
number of perturbations at each temperature Markov = 100. Determine the ini-
tial state T = T0, set the actual running data as the initial solution plani =
[VSeg

i,1 ,VSeg
i,2 , ...,VSeg

i,Ni
, gInti,1 , g

Int
i,2 , ..., g

Int
i,Ni

], then take it as the optimal solution plan_best.
Calculate the energy consumption of the initial solution energyi , and take it as the optimal
target value energy_best.

Step 2: Produce a new solution. If T > Tf , produce a new solution plan_new = plani
and generate the random number rand, by which changes the traveling speed of the bus
on the section unit between stations and the starting moment of green light on the
intersection.

Step 3: Select solution. Calculate the target value of the new solution, comparing the
initial solution with the new solution to determine whether the new solution is accepted.
If the target value under the optimization scheme exceeds the corresponding target value
of the initial solution, the generated optimization solution is replaced with the optimal
solution. Conversely, compare the generated random number with the cooling probabil-
ity. If the random number is less than the cooling probability, accept the new solution
and replace the optimal solution, otherwise, the optimal solution remains unchanged.

Step 4: Repeat the perturbation. At this temperature, Step2 and Step3 are repeated
Markov times.

Step 5: Decay temperature. Repeat Step2–Step4 at the new temperature until the
temperature is equal to the end temperature Tf .

Step 6: End. Output the optimal scheme solution from the recording and the
corresponding minimum energy consumption.

4 Case Study

4.1 Data Description

We collect the data of a bus from line 108 in a city, which has 25 stations. The total length
of the bus line is 8.1 km and there are four signalized intersections on it. Under normal
circumstances, the whole trip takes 1457 s and 3.5 kWh. For the sake of description,
sections are numbered from 1 to 24 and intersections are numbered from 1 to 4. The
bus trip starts at 10:36:09 and ends at 11:00:26. The traveling time requirements of the
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line are as follows: Section 1 → Section 3 (4 min) → Section 7 (10 min) → Section 11
(15 min) → Section 19 (23 min) → Section 24 (30 min).

Above all, the departure moments of the bus at the stations are the time constraint
control points of the trip, that is, the bus must finish Section 3 before 10:40:09, Section 7
before 10:46:09, Section 11 before 10:51:09, Section 19 before 10:59:09, Section 24
before 11:06:09. And the average acceleration of the electric bus is set as ai1 = 0.51m/s2

and ai2 = −0.48 m/s2. Other parameters are expressed as follows (Table 1):

Table 1. Parameter table

Parameters Values Parameters Values

η1 0.9 CD 0.7

η2 0.9 δ 1.21

η3 0.99 i0 0

∂ 0.0411 A 8.037

c1 0.0328 m 8275

c2 4.575 Vmin
i 5.6

f 0.012 Vmax
i 16.6

4.2 Results Analysis

Taking the actual operation solution as the initial solution, the travel scheme brought into
the model optimization calculation is shown in Table 2. In the optimization scheme, the
bus starts at 10:36:09 and finishes Section 24 at 11:00:33, taking 1504 s, which is within
the travel time limit of 30 min ensuring the demand of punctuality and meeting the needs
of passengers. The green light at Intersection 3 will start 10 s in advance, and the signal
timing scheme at other intersections will not change. Besides, under the optimization
scheme, the travel energy consumption between the corresponding stations decreased
from 0.21 kWh, 0.15 kWh, 0.05 kWh, 0.12 kWh to 0.16 kWh, 0.14 kWh, 0.03 kWh and
0.11 kWh respectively. The whole line consumption is 3.21 kWh. Compared with the
3.5 kWh of the original scheme, it decreased by 8.29%, which shows that optimizing the
travel scheme of the electric bus based on the number of bus passengers can reduce the
operation energy consumption of single-line buses, and save bus operation cost, which
further proves the effectiveness of the built model.
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Table 2. Travel scheme

Section
number

Leaving
time

Arrival
time

Traveling
speed (m/s)

Section
number

Leaving
time

Arrival
time

Traveling
speed (m/s)

1 10:36:09 10:37:29 6.53 13 10:49:28 10:50:17 8.77

2 10:37:30 10:38:03 8.15 14 10:50:20 10:51:11 8.55

3 10:38:03 10:39:05 7.15 15 10:51:11 10:52:10 4.04–0–8.43

4 10:39:07 10:40:22 12.15 16 10:52:29 10:53:20 9.05

5 10:40:35 10:41:20 9.15 17 10:53:23 10:54:08 8.59

6 10:41:25 10:43:04 5.8–12.5 18 10:54:10 10:55:03 10.49

7 10:43:05 10:43:47 10.15 19 10:55:05 10:55:37 8.5

8 10:44:10 10:45:10 10.85 20 10:55:39 10:56:36 9.51

9 10:45:12 10:45:55 9.95 21 10:56:36 10:57:26 10.60

10 10:45:56 10:46:49 11.85 22 10:57:30 10:59:04 3.01–0–9.11

11 10:46:51 10:47:51 5.97–9.67 23 10:59:05 10:59:58 9.69

12 10:48:16 10:49:25 10.75 24 10:59:59 11:01:13 9.58

5 Conclusions

In this paper, for the bus route with dedicated bus lane, we analyze the movement of
the electric bus between adjacent stations. With the optimization objective of minimum
energy consumption between stations, taking the operation speed of the bus on the road
section unit between stations and the starting moment of green light on the intersection
as the optimization variables, the bus travel punctuality rate between stations and the
intersection delay rate as the constraints, the dynamic control model of the electric bus
is established. The model is solved with the actual survey data. Results show that the
total energy consumption is 3.21 kWh, which is reduced by 0.29 kWh compared with
the original energy consumption, accounting for 8.29%. It shows that this model can
effectively reduce the energy consumption of bus operation, proving its effectiveness
and feasibility. However, the optimization model designed in this paper takes only into
account the dynamic control of single line single bus, and does not consider the influence
of other buses on the same line and buses on different lines. In the future, the above factors
can be considered to build the dynamic control method of electric buses.
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Abstract. Transport emission has become an increasingly serious problem, and
it is an urgent issue in sustainable transport. In this study, by constructing traffic
emission models for different vehicle types and operating conditions, the changes
in CO, HC, and NOx emissions of light-duty and heavy-duty vehicles before and
after signal control optimization were quantified based on VISSIM simulation.
The OBEAS-3000 vehicle emission testing device was used to collect data on the
micro-operational characteristics of different vehicles under different operating
conditions as well as traffic emission data. Based on the data collected, the VSP
(Vehicle Specific Power)model combinedwith theVISSIM traffic simulation plat-
form was used to calculate the emissions of light and heavy vehicles in the mixed
traffic flow before and after intersection signal optimization. It is known from the
study that signal control optimization has a greater impact on heavy vehicles than
on light vehicles. Emissions of CO, HC, and NOx from heavy vehicles and light
vehicles are all reduced, but NOx emissions from light vehicles remain largely
unchanged. The research results reveal the emission patterns of light and heavy
vehicles in different micro-operating conditions and establish a traffic emission
model. It provides a theoretical basis for accurate traffic emission analysis and
traffic flow optimization, as well as a scientific basis for the formulation of traffic
management measures and emission reduction in large city transport systems.

Keywords: Mixed traffic flow · Instantaneous emissions · Traffic simulation

1 Introduction

In recent years, vehicle ownership in Chinese major cities has increased year by year,
it brings convenience to transportation but also causes numerous urban problems, espe-
cially urban air pollution caused by traffic emissions [1, 2], and pollutants from traffic
emissions have become one of the main sources of urban pollutants [3]. Global envi-
ronmental problems are becoming increasingly serious, and with the increase of motor
vehicles, traffic emissions are one of the “main culprits” [4]. According to the proportion
of pollutants emitted by air pollution sources published by the Chinese Environmental
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Protection Administration, motor vehicle emissions account for 20%–30% of air pol-
lution, and in some cities even reach 30%–50%, urban air pollution is gradually trans-
forming from “soot type” to “tailpipe type” [5, 6]. Excessive emissions of pollutants
from transport have already had a serious negative impact on air quality, public health
and climate [7]. Vehicles account for 87.7% of traffic emissions of CO, 84.1% of HC
and 92.5% of NOx [8]. Vehicle fuel consumption in peak hours increases by an average
of 10%, CO, HC, and NOx emissions in-crease by 20% compared to off-peak hours [9].

In mixed urban traffic flows, especially where heavy vehicles account for a certain
proportion, the high density of vehicles and the many interweaving points result in high
traffic emissions, which not only endanger the urban living environment but also cause
incalculable economic losses [10–13]. Traffic emissions have become one of the most
important problems facing cities [14]. Urban managers need management measures
and instruments that can effectively reduce traffic emissions. This requires accurate
analysis and modeling of motor vehicle emission patterns [15]. This study aims to
analyze the emission patterns of light and heavy vehicles, a traffic emission model
for different vehicle types and operating conditions is construct-ed. On this basis, the
emission ratios of different vehicle types in mixed traffic flows are quantified by building
traffic simulations.

2 Literature Review

Traffic signals have come a long way since traffic signal control was first introduced
to prevent traffic accidents. Kerosene-lit traffic lights were first used as traffic signals
in London’s Westmeath district in 1868 [16]. The hand-controlled three-colored traffic
signal (red, green, and yellow) was first used in 1925 in Piccadilly Street, London,
England [17], the yellow light was placed before the appearance of the red light as a
preparatory signal for drivers to stop. The advent of intersection signals has improved
the transport efficiency of traffic systems, and typically traffic signals operate in three
modes: fixed signal timing, prior and adaptive control [18, 19].

In the early stages of traffic signal development, researchers developed methods
to determine fixed signal timings assuming that the traffic flow from each intersection
remained constant [20], which did not take into account the uncertainty of traffic flow
and has lost its relevance in the contemporary traffic climate [21]. From the recognition
of the uncertainty of traffic, a great deal of research work has been de-voted to improving
the analysis of delay models and the development of computer software [22].

In previous studies, scholars have focused more on optimizing signal timing in terms
of vehicle queue lengths, stopping times, and vehicle delays at intersections [23]. But
there is no focus on the transport environment. As traffic pollution has become more
serious, researchers have not only limited research to solving the problems of time and
delays, but more and more studies are linking signal control and traffic emissions. Scien-
tific signal control can be effective in reducing traffic emissions. As early as 1981, Gipps
et al. [24] assumed the speed and acceleration of following vehicles based on the desired
braking that each driver sets for himself under intersection signal control, the traffic
prevalence was assessed to have an impact on traffic emissions. Zhang et al. [25] inves-
tigated the relationship between vehicle emissions and simulated operating conditions,
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traffic emissions were measured by superimposing vehicle emissions under different
simulated operating conditions (queuing and waiting at intersections, the proportion of
accelerating vehicles, the proportion of decelerating vehicles, etc.) for vehicles at signal-
ized intersections. Meszaros [26] gave traffic flow parameters, such as the concentration
of traffic flow and the overall speed of traffic flow, based on real traffic data from the
investigated intersections. Not only intersections but also the whole road network were
calculated the emissions of CO2, CO, CH, NOx.

In mixed traffic flows, particularly with a proportion of heavy vehicles, it is un-
clear whether optimizing traffic signal control will achieve emission reductions. Most
of the existing studies have been conducted for single traffic flow situations, while
less research has been conducted on mixed traffic flows, and the changes in vehicle
emissions under different operating conditions have not been considered. This study
summarises research and makes a quantitative study of emissions from mixed traffic
flows in intersections, and compared the effects of signal control optimization on light
and heavy vehicles, and analyzed the changes in CO, HC, and NOx emissions before
and after signal optimization.

3 Methods

3.1 VSP Model

In order to obtainmore accurate vehicle emission factors and build a detection system for
traffic emissions, this study made use of the vehicle driving data obtained by the testing
equipment in the urban road. The distribution pattern ofmotor vehicle emissions was dif-
ferent under different operating conditions of the vehicle. To unify the calibrated traffic
emission model and improve the accuracy of traffic emission calculation, this study uni-
formly adopted VSP distribute intervals to study the emission factors of vehicles. VSP is
the instantaneous power per unit mass of the vehicle in kW/t, and the transient emissions
of the vehicle are closely related to the VSP value [27]. The formula VSP of is:

VSP = v × (a + g × grade(%) + g · CR) + 1

2
· ρα ·CD

m
· A · v3 (1)

where v is the instantaneous speed, m/s; a is the instantaneous acceleration, m/s2; g is the
acceleration of gravity, m/s2; grade is the road gradient, %; CR is the rolling resistance
coefficient; ρa is the air ambient density;CD is the air resistance coefficient, m2; m is the
total vehicle mass, kg.

Wyatt [28] provided detailed values on VSP modeling based on the data taken for
each relevant parameter of the light vehicle. The VSP values are related to speed and
acceleration and it can be expressed in Eq. (2).

VSP = v × (1.1a + g × grade + 0.132) + 0.000302v3 (2)

TheVSP formula is not uniformbecause of the large variability in the values taken for
each parameter of heavy vehicle [29]. This study simplified the VSP calculation formula
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for heavy vehicles using vehicle weight, front-end cross-section, and other parameters
to obtain.

VSP = v × (a + g × grade + 0.09199) + 0.000169v3 (3)

In the formula, the vehicle speed and acceleration are real-time data of the vehicle,
the road gradient is 0 and the gravitational acceleration is 9.81 m/s2.

By making full use of real-time vehicle operating data to accurately quantify the
instantaneous emission rate based on VSP, we divided the VSP value by a step of 1 kW/t
to generate the BIN partition.

∀VSP ∈ VSPBINi =
⎧
⎨

⎩

(−∞,−30]
[n − 1, n), n = (−29, 29], n ∈ Z
[30,+∞)

(4)

3.2 Mixed Traffic Flow VSP

Based on the real-time speed and acceleration recorded by the instrument, the corre-
sponding instantaneous motor vehicle emissions detected by the OBEAS-3000 system
are simultaneous. The system can relate instantaneous emission rates to VSP values
by averaging multiple instantaneous emission values for the same VSP interval. The
mean value of the instantaneous emissions in each interval of the VSP is obtained.
These results construct a relationship between light and heavy vehicle VSP intervals
and vehicle proportions.

Table 1. Proportion of light and heavy vehicles in different VSP intervals

VSP intervals (kW/t) Proportion of light vehicles Proportion of heavy vehicles

[−5, 5] 60.31% 50.26%

[−10, 10] 67.93% 65.37%

[−15, 15] 75.20% 80.11%

[−20, 20] 88.46% 90.62%

[−25, 25] 94.28% 95.81%

[−30, 30] 97.33% 98.45%

4 Case Study and Results

4.1 VISSIM Simulation

In this study, the intersection of Caoan Highway North Jiasong Road in Shanghai was
selected as the research object. The traffic volume in VISSIM was input according to
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the traffic volume of the intersection in the field survey, and the road network was built
according to the actual construction of the intersection in the original scenario of the
simulation. The VISSIM simulation platformwas built based on field research. The road
network structurewas divided into two parts: road sections and connectors. In the process
of constructing road sections, the length of the road section coverage in the simulation
was 500m in order to facilitate subsequent lanes and to ensure smooth vehicle operation
before entering the intersection in VISSIM, it could reduce vehicle operation errors. The
running screen is shown in Fig. 1.

Fig. 1. Simulation screen

4.2 Signal Timing Optimization

The signal timing cycle at the intersection of Caoan Highway North Jiasong Road is 230
s. The timing of each phase’s signal cycle is shown in Table 2, where the yellow light
flashes for 3 s and the all-red time is 2 s. In Table 2, 1 is east-west straight ahead, 2 is
east-west left turn, 3 is north-south straight ahead, 4 is north-south left turn.

The optimum signal period is 205 s according to the headway of heavy ve-hicles and
light vehicles. The left-turn signal timing for the east-west import is 29 s, the straight-
ahead signal timing is 41 s, the left-turn signal timing for the north-south import is 45 s,
and the straight-ahead signal timing is 69 s.
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Table 2. Signal timing diagram before and after optimization by conventional method

1(S) 2(S) 3(S) 4(S)

Red light before signal optimization 177 187 157 177

Yellow light before signal optimization 3 3 3 3

Green light before signal optimization 50 40 70 50

Red light after signal optimization 173 161 157 133

Yellow light after signal optimization 3 3 3 3

Green light after signal optimization 29 41 45 69

4.3 Emission Calculation

For intersection emissions, the peak hourly emissions of CO, HC and NOx for heavy
and light vehicles before and after intersection signal control optimization are shown in
Table 3.

Table 3. Emissions of light vehicle and heavy vehicle before and after signal control optimization

Light vehicles
before signal
optimization (g/h)

Light vehicles after
signal optimization
(g/h)

Heavy vehicles
before signal
optimization (g/h)

Heavy vehicles after
signal optimization
(g/h)

CO 1208.69 1169.92 3129.98 2713.72

HC 196.62 188.33 425.32 361.03

NOx 32.65 32.53 542.88 473.78

By vehicle type, theCOemissions of the light vehicle in the peak hourwere 1208.69 g
before signal control optimization and 1169.92 g after signal control optimization, a
reduction of 3.21%.

HC emissions were 196.62 g in the peak hour for light vehicles and 188.33 g in the
peak hour for light vehicles after signal control optimization, a reduction of 4.22%. The
NOx emissions from light vehicles in the peak hour were 32.65 g. After signal control
optimization, the NOx emissions from light vehicles in the peak hour were 32.53 g, and
the NOx emissions remained unchanged.

CO emissions were 3129.98 g for heavy vehicles in the peak hour before signal
control optimization, and 2713.72 g for heavy vehicles in the peak hour after signal
control optimization, a reduction of 13.30%. HC emissions were 425.32 g in the peak
hour for heavy vehicles, and 361.03 g in the peak hour for heavy vehicles after signal
control optimization, a reduction of 15.12%. The NOx emissions of heavy vehicles in
the peak hour were 542.88 g. After signal control optimization, the NOx emissions of
heavy vehicles in the peak hour were 473.78 g, a reduction of 12.73%.
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5 Summary

This study analyses the impact of intersection signals on traffic emissions, and signal
control optimization of intersections is carried out based on vehicle conversion factors.
VISSIM simulation is used for data collection of vehicle operating conditions to analyse
traffic emissions at intersections. The results of their research are as follows.

(1) After signal control optimization, emissions from both heavy and light vehicles in
the intersection are reduced, and the effect on emissions from heavy vehicles is
more significant than those from light vehicles.

(2) After signal control optimization, the emissions of CO, HC, and NOx of heavy
vehicles are reduced, as well as CO and HC of light vehicles, but NOx emissions
of light vehicles remained unchanged.

This study quantifies the changes in CO, HC, and NOx emissions from light and
heavy vehicles before and after signal control optimization. It can quantify the emis-
sion patterns of vehicles under traffic control, providing a theoretical basis for the
development of measures to reduce traffic emissions.
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Abstract. Hard-braking constitutes a critical surrogate measure of traffic safety
on urban road networks. Efforts aiming to unveil the effects of contributing factors
on the occurrence of hard-braking are inadequate. This study extracted the hard-
braking event (HBE) and ordinary-braking event (OBE) by GPS trajectories from
float cars. The effect of several factors onHBEwas examined, including the factors
of time, pre-braking behaviors, and road characteristics. The possibility of HBE
was compared with that of OBE through binary logistic models (BLM). To further
disclose the influence of factors, we considered the interaction between variables
(BLM-VI) in modeling. The analysis results indicate that the BLM-VI is superior
to the classical BLM in goodness-of-fit and factor interpretation. For the factors,
peak hours on weekdays and daytime on weekends are positively linked to HBE,
while driving at night is not. HBEs can be triggered by pre-braking behaviors such
as speeding and approaching an intersection, but it is not likely to occur after chang-
ing lanes. Roadswithwork zones or intensive accesses can decrease the possibility
of HBE. The factors of on-road parking, median divider, and one-way control have
mixed effects on HBE when they interact with the factor of speed limits.

Keywords: Hard-braking event · Contributing factors · Urban road networks ·
Binary logistic model · Variable interaction

1 Introduction

Brake is a common reaction for drivers to obey the traffic controls or avoid incidents
on-road. Among the braking behaviors, those whose decelerative velocity is extremely
large are called hard-braking/harsh-braking. Hard-braking can indicate drivers strive to
dodge a critical event involved or minimize its damage if it is inevitable [1]. As such,
hard-braking typically serves as a kinematic indicator or surrogate measure of incidents
in the urban area, such as conflict, crash, etc. [2, 3], and is widely used by the insurance
industry [4].

Hard-braking tends to be triggered by both subjective and objective reasons. In
some cases, hard-braking can be related to the lack of alert. For instance, past studies
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revealed that hard-braking is associated with distracted driving [5], driving at high speed
[1], and miscalculating the speed of the following vehicle [6]. For other cases, hard-
braking is likely to be found in scenarios with safety risks that are inclined to be ignored.
These scenarios contain driving on downhill roads, approaching an intersection, and
dazzling due to sunlight in the daytime [7–9]. Due to these reasons, drivers usually have
difficulties slowing down in advance of critical events because the response time-to-brake
is increased [10].

Recent studies highlighted the effects of road characteristics on hard-braking. They
suggested hard-braking is likely to be found on longer roads, secondary roads, and
roundabouts with wide entries [2, 9]. However, their conclusions are limited in two
aspects. First, nearly all of them focus on hard-braking frequency, while they failed to
use an exposure (such as traffic flow) or adopt a categorical response to evaluate the
actual hard-braking risk across scenarios. Second, considering the complexity of road
networks, there are still factors of many kinds that need to be examined. Fortunately,
naturalistic driving data have been used to extract braking behaviors [1, 7, 8], which
would be inspired to fill the gaps above.

According to the review, we found several knowledge gaps among the analyses of
hard-braking. Hereby, this study is conducted to explore the effect of factors including
time, vehicle maneuvers prior to the brake (pre-braking behaviors), and road character-
istics on hard-braking in urban road networks. The current study justifies the validity of
using a large amount of float car data to extract braking events.Moreover, this study finds
several pre-braking behaviors and road characteristics that are significantly associated
with hard-braking.

2 Materials and Methods

2.1 Process of Raw Data

In the current study, floating car data (FCD) were used. The FCDwere recorded through
the vehicular GPS devices installed in taxis [11]. These data include the GPS trajectories
of 5,755 taxis with a frequency of 0.1 Hz, which were generated in November 2016
in Chengdu. We restricted the study area to a rectangular zone because the road and
environmental characteristics had been previously collected (Fig. 1). Each GPS point
was matched to its nearest road by a map-matching algorithm. The specific steps of the
algorithm are listed as follows [12, 13].

1) Prepare the digital Geo-map within the study area, the map layers consist of
boundary, road geometry, facilities, etc.;

2) Manually measure the coordinate of the centerline and the center point for each road
and intersection, respectively;

3) Choose a floating car and extract its trajectories from the first GPS point recorded
through the timestamp, then load these GPS points to the Geo-map;

4) Match the GPS points to their nearest road centerlines with an improved Euclidean
distance;

5) Check the trend of driving angle of the adjacent GPS points to filter U-turn and
wrong-way driving behaviors, then remove these GPS points.

6) Redo step 1) to step 6) with another floating car.
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Fig. 1. Study area

2.2 Identification of Hard Braking Event

The braking events and hard-braking events are extracted from the FCD in the first two
weeks of November (14 days). In order to minimize the possible error of identification,
we deleted the FCD on curve segments. The identification steps of a braking event and
hard braking event are given by:

1) First, select a pairwise point of adjacent GPS points generated by one vehicle. Note
that the time interval of each pairwise of points is 10 s, which is determined by the
frequency of the GPS device.

2) Record the instant speed of the start-point and the end-point of this pairwise point,
respectively.

3) We assume that the vehicle movement between the two points is approximately
close to uniformly accelerated motion so the accelerated velocity can therefore be
calculated as

am,m+1 = vm+1 − vm
tm,m+1

(1)

where am,m+1 is the accelerated velocity of the pairwise points (m, m+ 1), vm+1 and vm
are the speed on point m (start-point) and point m + 1 (end-point), respectively, tm,m+1
is the difference of time between the two points.

4) The pairwise points whose accelerated velocity is <−0.2 g (g means the gravita-
tional acceleration, i.e., 9.8m

/
s2) are defined as a hard braking event (HBE), while

pairwise points whose accelerated velocity is [−0.1 g, −0.2 g] are treated as an
ordinary-braking event (OBE). Both HBE and OBE are sorted as braking events.
Pairwise points whose accelerated velocity is (−0.1 g, 0 g) are classified as slight
slowdown rather than braking events.
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The definition of HBE is achieved through the threshold of the accelerated velocity.
However, such a threshold varies among the existing studies. Most studies defined the
HBE with the threshold of [−0.75 g, −0.2 g], with the minimum acceptance of −0.2 g
[14–16]. Botzer et al. [17] suggest a varying threshold of [−0.6 g, −0.2 g] due to the
uncertainty of driving conditions. Here, we adopted a tolerable threshold of −0.2 g
suggested by Olson et al. [16]. This is because the severe HBEs are quite rare in the
current study area where is not associated with obvious changes in gradient.

Additionally, while the assumption of treating vehicle movement as uniformly accel-
erated motion may be problematic in reflecting the real-time path, it does not hamper
the effectiveness of capturing HBE. Figure 2 presents the speed changes either set by
our assumption or reflected by the actual movement. We provide several speed changes
reflected by the possible actual paths (dash lines) for the study vehicle during the interval
of the GPS record (10 s). For the threshold of −0.2 g that equals to the slope of the bold
red line (assumption), no matter what the actual movement of the vehicle is, there will be
at least one interval of the actual paths that has an accelerated velocity<−0.2 g (between
the start-point and the end-point). In a sense, the assumption of uniformly accelerated
motion can effectively capture the HBE during the interval of pairwise points, although
not all the HBEs of a vehicle are fully recorded.

Fig. 2. The changes on vehicle speeds during the interval of the GPS record

The process of identification above is conducted to each float car through the plate
number. Finally, the study recorded 12,424 HBEs and 344,823 OBEs extracted from the
float cars during the study period.

2.3 The Measure of Potential Factors

Factors of time, driving behavior, traffic conditions, and road characteristics are associ-
ated with risky events such as crashes, speeding, conflicts, etc. [18–20], thus are consid-
ered in this study. All factors are processed to be categorical variables. Table 1 lists the
description of these key factors.
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2.4 Statistical Methods

This study aims to examine the effect of factors on triggeringHBEs comparedwithOBE.
To this end, we used a binary logistic model (BLM) to measure the effect of factors on
HBE risk. In the binary logistic model, whether a braking event is HBE was selected
as dependent variables. Besides, we also examined the interaction between categorical
independent variables through a binary logit model with variable interaction (BLM-VI)
to prevent any biased estimation. Note that the BLM and BLM-VI only include the
variables with variance inflation factor (VIF) <5.

Table 1. Description and explanation of key factors

Type Factor Explanation

Time Time of day Whether the HBE.OBE occurs on
daytime (=0), peak hours (=1), or at
night (=2)

Weekend Whether the HBE/OBE occurs on
weekend (=0 if no and = 1 if yes)

Pre-braking behavior Speeding Speeding before an HBE/OBE (=0 if
no and = 1 if yes)

Lane-changing Chang lanes or steer before an
HBE/OBE (=0 if no and = 1 if yes)

Approaching an intersection The distance between an HBE/OBE
and an intersection is less than 30 m
(=0 if no and = 1 if yes)

Road characteristics Speed limit The posted speed limit of the road
where an HBE/OBE occurs (=0 if ≥
60 km/h, = 1 if 30–60 km/h, = 2 if ≤
30 km/h)

Work zone HBE/OBE is located nearby a work
zone (=0 if no and = 1 if yes)

One-way control HBE/OBE occurs on a road with
one-way control (=0 if no and = 1 if
yes)

On-road parking HBE/OBE occurs on a road where
on-road parking is observed (=0 if no
and = 1 if yes)

Median divider HBE/OBE occurs on a road with
median divider (=0 if no and = 1 if
yes)

Accesses per km The number of accesses per each
kilometer on the road where an
HBE/OBE occurs (=0 if ≤ 10, = 1 if
10–13.5, = 2 if ≥ 17)
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3 Results and Discussions

3.1 Estimates of Contributing Factors of HBE

Table 2 lists the estimates and goodness-of-fit of BLM and BLM-VI. The factor of
speeding is eliminated from BLM since it is severely multicollinear with the factor of
speed limits. The results show that driving at night (β = −0.643), implementing lane-
changing maneuver (β = −0.716), roads with 10–13.5 accesses per km (β = −0.111)
and ≥17 accesses per km (β = −0.215), and work zone (β = −0.141) significantly
decrease the possibility of HBE. Conversely, approaching an intersection (β = 0.292),
speed limits of 30–60 km/h (β = 0.406) and ≤30 km/h (β = 1.231), on-road parking (β
= 0.137), and median divider (β = 0.238) significantly increase the possibility of HBE.
It is also noticed that driving on-peak hours, roads with 13.5–17 accesses per km, and
weekends are not significantly related to the occurrence of HBE.

It is noted that four factors that do not interact with others in both models show a
similar trend in affecting HBEs. However, the remaining factors in BLM-VI are interac-
tive and show discrepant signs and significance as compared with those in BLM. More
specifically, estimates of BLM-VI indicate that peak hours on weekdays (β = 0.091)
are positively associated with HBEs, while the effect of peak hours in BLM is insignifi-
cant overall. Speeding is removed in BLM due to multicollinearity. Conversely, it could
be a good indicator in BLM-VI if this behavior occurs on roads with a speed limit of
≤30 km/h (β = 1.039) or≥60 km/h (β = 1.069). On-road parking andmedian divider are
positively associated with HBEs in BLM. However, on-road parking is only positively
linked to HBEs on roads whose speed limit is <30 km/h (β = 0.367) or 30–60 km/h
(β = 0.179), while median divider merely increases HBE risk on ≥60 km/h roads (β =
0.337). We also notice that one-way control, which is insignificant in BLM, has varied
effects across the speed limits as estimated by BLM-VI (β = −1.046 for speed limits
of <60 km/h, β = −0.395 for speed limits of 30–60 km/h and β = 0.418 otherwise).
In addition to the difference of estimates, it shows that BLM-VI is superior to BLM in
goodness-of-fit (7918 vs. 10,431 for AIC; −3,933 vs. −5,203 for log-likelihood). This
justifies the necessity and benefit of accounting for variable interaction. As a result, we
adopt the estimates of BLM-VI to interpret the contribution of factors.

Table 2. Estimation results of BLM and BLM-VI.

BLM BLM-VI

Variable Mean (β) S.D. Variable Mean (β) S.D.

Intercept −3.091* 0.025 Intercept −3.176* 0.027

Time of day Time of day × Weekend

[peak hours] 0.037 0.025 [night] × [yes] −0.573* 0.036

[night] −0.643* 0.023 [peak hours] × [yes] −0.017 0.044

[daytime] 0a – [daytime] × [yes] 0.065* 0.026

(continued)
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Table 2. (continued)

BLM BLM-VI

Variable Mean (β) S.D. Variable Mean (β) S.D.

– – – [night] × [no] −0.638* 0.028

– – – [peak hours] × [no] 0.091* 0.03

– – – [daytime] × [no] 0a –

Lane-changing Lane-changing

[yes] −0.716* 0.02 [yes] −0.677* 0.02

[no] 0a – [no] 0a –

Speed limit Speeding × Speed limit

[30–60 km/h] 0.406* 0.029 [yes] × [≤30 km/h] 1.039* 0.048

[≤ 30 km/h] 1.231* 0.304 [yes] × [30–60 km/h] −0.075 0.049

[≥ 60 km/h] 0a – [yes] × [≥60 km/h] 1.069* 0.038

– – – [no] × [≤30 km/h] 2.691* 0.066

– – – [no] × [30–60 km/h] 1.516* 0.045

– – – [no] × [≥60 km/h] 0a –

Approaching an intersection Approaching an intersection

[yes] 0.292* 0.024 [yes] 0.295* 0.024

[no] 0a – [no] 0a –

On-road parking On-road parking × Speed limit

[yes] 0.137* 0.03 [yes] × [≤30 km/h] 0.367* 0.055

[no] 0a – [yes] × [30–60 km/h] 0.179* 0.065

– – – [yes] × [≥60 km/h] −0.375* 0.055

– – – [no] × [≤30 km/h] 0a –

– – – [no] × [30–60 km/h] 0a –

– – – [no] × [≥60 km/h] 0a –

Median divider Median divider × Speed limit

[yes] 0.238* 0.02 [yes] × [≤30 km/h] −0.297* 0.089

[no] 0a – [yes] × [30–60 km/h] −0.205* 0.078

– – – [yes] × [≥60 km/h] 0.337* 0.022

– – – [no] × [≤30 km/h] 0a –

– – – [no] × [30–60 km/h] 0a –

– – – [no] × [≥60 km/h] 0a –

NA One-way control × Speed limit

– – – [yes] × [≤30 km/h] −1.046* 0.187

– – – [yes] × [30–60 km/h] −0.395* 0.106

(continued)
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Table 2. (continued)

BLM BLM-VI

Variable Mean (β) S.D. Variable Mean (β) S.D.

– – – [yes] × [≥60 km/h] 0.418* 0.069

– – – [no] × [≤30 km/h] 0a –

– – – [no] × [30–60 km/h] 0a –

– – – [no] × [≥60 km/h] 0a –

Accesses per km Accesses per km

[10–13.5] −0.111* 0.026 [10–13.5] −0.261* 0.028

[13.5–17] 0.029 0.027 [13.5–17] −0.04 0.028

[≥17] −0.215* 0.027 [≥17] −0.167* 0.026

[≤10] 0a – [≤10] 0a –

Work zone Work zone

[yes] −0.141* 0.04 [yes] −0.082* 0.039

[no] 0a – [no] 0a –

Log-likelihood −5,203 −3,933

AIC 10,431 7,918

Note: * indicates the variable is significant at 95% confidence interval; a means the factor is set
as reference so its coefficient equals to 0; NA means the variable is not available.

3.2 Explanation of Contributing Factors

For the effect of time-related factors, we found that peak hours on weekdays and daytime
on weekends are associated with HBEs. The two periods usually have more traffic
activities and larger traffic volumes, which could cause a higher risk of traffic incidents
[21]. Conversely, driving at night tends to encounter fewer incidents and experience
better traffic conditions, consequently reducing the HBE risk.

With respect to the pre-braking behaviors, lane-changing maneuver requires the
vehicle to move slower and carefully steer to the target lane, which is not likely to
encounter a sudden brake. Speeding, as expected, can trigger HBEs. This is attributed to
the drivers could have difficulties responding fast while speeding and need to implement
emergency brakes if an unexpected incident occurs [22].Note that speeding on roadswith
a 30–60 km/h speed limit is not linked to HBEs, which may be that fewer incidents are
found on these roads. Drivers who approach an intersection are more likely to encounter
HBEs, possibly owing to the situation that drivers are unaware of the forthcoming change
on the signal phase when they are about the get across the intersection [23].

Interestingly, speed limits interact with several road characteristics and yield mixed
effects on HBEs. A reasonable explanation is that these characteristics have varied
functions across the road class. Therefore, for the factor of on-road parking, moving
vehicles are more easily affected by vehicles entering/leaving a parking space set on
secondary or branch roads that have fewer available lanes, increasing HBE risk on roads
with lower speed limits as well. Median divider and one-way control could raise the
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travel speed so they may be more likely to cause HBEs on arterial roads where rear-end
conflicts are common [24]. The findings also show that access density and work zone are
associated with lower HBE risk, which implies that the factors can decrease the vehicle
speed and eventually hamper the occurrence of HBE.

4 Conclusion

Hard-braking events are usually related to safety incidents thus serve as surrogate mea-
sures. Our study investigated the effect of factors including time, road design, and pre-
braking behavior on HBEs in urban areas. The effect of contributing factors is explored
by binary logistic models with variable interaction.

Results demonstrate that HBEs tend to occur at the daytime on weekends and peak
hours on weekdays, while is less likely found at night. Speeding on roads with a speed
limit of ≤30 km/h or ≥60 km/h and approaching an intersection can trigger HBEs, yet
changing lanes prior to the brake does not lead to an HBE. On-road parking tend to cause
HBEs on roadswith lower speed limits (<60 km/h);Median divider and one-way control
are associated with the occurrence of HBE if the corresponding roads have a speed limit
of ≥60 km/h. Also, HBE risk reduces as the roads are observed with intensive accesses
or work zone. We also highlight the consideration of variable interaction in modeling
harsh driving behaviors to obtain a robust estimation.

There are two limitations that need to be further revised. First, themodeling approach
can be extended with random effects/parameters approaches which are able to capture
unobserved heterogeneity [25–27]. Second, the driver’s socio-demographic informa-
tion, enforcement, and underlying spatial-temporal effects can be combined to extend
the modeling approach [28–30]. Also, we recommended that countermeasures such as
warning system can be used to restrict harsh driving behaviors [31].
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Abstract. Swedish cities are embracing shared micro-mobility systems (SMMS)
such as e-scooters sharing systems to promote sustainable travel behavior in urban
contextswith corresponding infrastructure planning. SMMS is associatedwith var-
ious social, environmental, and economic benefits, as well as providing solutions
for the first- and the last-mile problem of using public transit. This study analyzes
the usage patterns of e-scooter systems, based on the scooter operation data of
VOI company in Gothenburg, Sweden. The used data cover the transaction data
of two and half months during the summer and include over five hundred thousand
valid trip records. The result shows that most trips travel a distance between 0.5–
1.8 km while the duration lasts between 4–7 min. Fridays and Saturdays are the
most popular days while Sunday is the least popular day. The number of trips on
Sundays decreases by about 60% compared to Fridays and Saturdays. Moreover,
the e-scooters are used to varying degrees in the different areas of Gothenburg.
The e-scooters are used at a much higher extent in central Gothenburg compared
to areas outside the city center. This can be due to several different factors such
as location, land use, and accessibility. Lastly, the results show that the e-scooters
are not primarily used for commuting but rather for leisure, which can be seen
in the average distance and duration of the entire zone as well as the temporal
distribution.

Keywords: Micro-mobility · Shared micro-mobility · E-scooters · Usage
patterns

1 Introduction

Every year more than one hundred million people are affected by climate catastrophes.
According to the Red Cross [1], up to two hundred million people may need emergency
aid by 2050 if the world does not act now. In connection with the climate changes that
are currently taking place because of global warming, multiple countries around the
world have decided to reduce their emissions. Sweden has a goal of attaining net-zero
emissions of GHG into the atmosphere by 2045 [2–4]. To achieve this, Sweden must
reduce their emissions from other sectors including the transport sector, which accounts
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for one-third of all greenhouse gases emitted [5]. According to a study conducted by
traffic analysis [6], the majority of all journeys that take place in Sweden are carried out
by car. This corresponds to 55% of all trips made in 2020. The remaining 45% were
distributed rather evenly between public transport, walking, and cycling, see Fig. 1.

Fig. 1. Travel mode split structure in Sweden 2020.

There are several different approaches available to reduce the utilization of cars
which has a negative effect on the environment. One of them is the use of shared micro-
mobility systems such as electric scooter sharing mobility. According to Mansky [7, 8],
electric scooters have existed for over one hundred years, but it is not until recent years
that the demand for these micro-mobility devices has increased radically. The modern-
day electric scooters were first introduced in the United States in 2017 and have since
spread rapidly around the world [9, 10]. Electric scooters reached the Swedish market
shortly after when the Swedish company VOI launched their own electric scooters in
2018. Without doubts, shared e-scooter systems (SESS) can provide convenient travel
tools for users to reduce travel time or cost in many situations, as a result of its flexibility.
The convenience and flexibility of shared electric scooter systems bring prosperity by
implementing them in urban contexts, especially in the European Union, EU. The aim
of this thesis is to answer the above-mentioned research questions based on massive
real usage data of SESS. We got access to the transaction data of e-scooter systems in
Gothenburg from the openAPI of theVOI company. Based on the unique data, wemainly
investigate the spatiotemporal usage patterns of SESS in Gothenburg. Particularly, this
study reveals the potential differences in the usage patterns in different urban areas with
different built environments.

2 Literature Review

As urban areas throughout the world continue to expand rapidly, and the demand for the
existing transportation network is increasing, micro-mobility is gaining attention as a
practical alternative. Micro-mobility is defined as a short-distance transport and can be
described as “Personal transportation using devices and vehicles weighing up to 350 kg
and whose power supply, if any, is gradually reduced and cut off at a given speed limit
which is no higher than 45 km/h” [11]. In micro-mobility, human-powered vehicles are
used exclusively, such as bikes, e-scooters, skateboards, e-rickshaws, etc.Micromobility
is offering attractive solutions for “first and last-mile connectivity,” as well as assisting
in the reduction of traffic [12].
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Moreover, the term “micro-mobility” gained popularity around the year 2016 when
Dediu [10] an American analyst, connected the term to sharing vehicles such as bicycles
and scooters. The term “micro,” according to Dediu [10] refers to either the short dis-
tances that are traveled by such vehicles or the vehicle itself. In recent years, the usage of
micro vehicles has increased drastically in connection with the introduction of electric
scooters.Manymicro vehicles are owned by private individualswho utilize them for their
daily trips. In addition to the privately owned vehicles, it is also common to find electric
scooters and bicycles on the streets in the city that are available to rent [11]. Shared
micro-mobility system (SMMS), is the system of sharing using low-speed modes such
as electric scooters (e-scooters) and electric bikes (e-bikes). This innovative transporta-
tion system provides users temporary access to small modes of transportation to satisfy
short-distance travel demands [12, 13] and thus has an impact on users’ travel behavior
and decision-making. Shared bike-sharing can be divided into station-based (docked),
dockless, and hybrid bike-sharing systems. Scooter sharing, on the other hand, can be
divided into standing electric scooter sharing andmoped-style scooter sharing. Themain
difference between docked -and dockless sharing systems is that docked sharing system
provides one-way station-based service, while dockless sharing system enables check-
ing out the sharing mode and returning in any locations within a predefined geographic
region [14].

Furthermore, Bielinski and Wazna [15] concluded that the availability of shared
micro-mobility needs to be considered and improved to reach out to as many social
groups as possible. Urban areas are increasingly affected by different issues such as
traffic congestion, car accidents, space occupied by cars, air pollution and external
transportation costs. Accordingly, Bielinski and Wazna [15] state that increasing the
availability of these services will support municipal administrations in addressing the
challenges associated with urbanized areas.

Additionally, Insurance Soved Blog [16] reports that 31% of the pedestrians in the
Australian city Adelaide are uncomfortable when sharing the sidewalk with electric
scooters, with a proportion increasing with the pedestrian’s age. Moreover, the study
shows that 29% of the pedestrians have been forced to move quickly aside to avoid col-
liding with electric scooters. The study also states that up to 40% of the e-scooters were
not parked as per the instructions of the operator, which posed a potential safety risk to
the pedestrians [16]. According to the Swedish Transport Agency [17], the number of
accidents with electric scooters has risen to 1 000 accidents in the past year. In 2016–
2018, approximately twenty personal injury accidents occurred per yearwhere an electric
scooter was involved. In the following years, the number of injury accidents increased,
and 1 056 accidents involving electric scooters occurred from August 2021 [17].

3 Study Area and Data

The area examined in this study is the city Gothenburg located in the western part of
Sweden. Gothenburg is the second-largest city, with an area of 448 km2 and a population
of 580,000 inhabitants [18]. Gothenburg is divided into 4 major urban areas consisting
of Northeast, Centrum, Southwest, and Hisingen, as shown by Fig. 2.

Since the purpose of this thesis is to investigate the usage patterns of VOI’s electric
scooters in Gothenburg the study area will be limited to VOI’s own zone which can be
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seen in Fig. 3. VOI has limited the use of their electric scooters to Gothenburg’s inner
city as well as some other adjacent areas. This area will henceforth be referred to as the
“VOI zone”. As presented in Fig. 3 the zone lies within major roads such as E20, E6
and E45. The zone also contains all the major districts that lie within Gothenburg’s inner
city. The zone has an area of 152.2 km2 and a circumference of 71 km.

Fig. 2. Map of the study area.

Fig. 3. Land use in central Gothenburg [20].

The different zones in Gothenburg include the inner city and the middle city. The
inner city is the most central part of Gothenburg and constitutes most of our study area,
while the middle city is directly adjacent to the inner city. These areas consist mainly of
mixed urban development that hold housing, workplaces, offices, trade, facilities, and
various public services. In addition to buildings, mixed urban areas also include local
streets, pedestrian, and bicycle paths, as well as public places such as squares and parks
[20]. Furthermore, Fig. 3 illustrates that there are several important public transport
hubs, marked as red dots, within the study area. Other areas of interest are parks and
sports grounds, marked in green, as well as university campuses which are marked with
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many small red dots. Moreover, even though there are residentials/housing in all areas
the proportion of households is much smaller in the city center compared to the rest of
the zone as there is a greater focus on, for example, trade within the city center [21, 22].

3.1 Extracting Trip Transactions from Position Data

The rawdata providedbyVOIwasdownloaded fromopenAPIdata in formofpositioning
data.Meaning it only contained theGPS information about the electric scooters that were
not in use. Once an electric scooter was in use it was excluded from the list.Moreover, the
data was downloaded at a frequency of 10–15 s, making it possible to record many trips
to provide a fair representation of the situation. By downloading the data at such high
frequency, it was ensured that the start and end coordinates of each trip were included
in the dataset. It also made it possible to extract the distance based on the position
data. Lastly, by knowing the download frequency the time stamps of each trip could
also be extracted. In total, approximately two months’ worth of positioning data was
transformed into transaction data which was then used to perform the different analyses.
The dataset contained 762 565 trips. Some trips were, however, abnormal, indicating the
need of clearing the dataset from outliers. This was done by limiting the travel distance,
duration, and speed. According toVOI’s terms of service, users can only travel for 45min
continuously at a maximum speed of 20 km/h, thus setting the maximum duration to
45 min and limiting the speed to 20 km/h. The distance was also limited to a maximum
of 10 km. Once all the outliers were cleared out of the transaction data, the number of
trips were reduced from 762 565 to 532 938. The analysis was then performed using the
new cleared dataset.

4 Results

4.1 Usage Demand and Trip Characteristics

The result is based on data that begins on the 14th of May and ends on the 20th of
July. Figures 4 and 5 show the number of trips that have taken place in each zone. The
dark red color in Fig. 4 indicates that many trips have taken place in that specific area
while yellow indicates that the number of trips in that area is small and lastly orange is
somewhere in between. The exact intervals can be seen in Fig. 4. From the figure and
the diagram, it is clear that the areas with the largest number of trips are Olivedal-Haga,
InomVallgraven and Johanneberg in descending order. On the other hand, the areas with
the lowest number of trips are Skår, Delsjöområdet, and Tingstadsvassen-Hisingsbron
in descending order. The other areas are somewhere in between. Nevertheless, a clear
pattern is distinguished where the areas located in the city center have a high number of
tripswhile the areas towards the edges have amuch smaller number of trips. Furthermore,
an exception to this trend is the areaKvillebäcken that has a larger number of trips despite
being at the edge of the zone as well as being surrounded by zones that have a smaller
number of trips.

Based on the approximately two months’ worth of data, the distribution of trip
distance and duration was calculated as well as the temporal distribution for all the
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Fig. 4. Number of Voi trips for different zones.

Fig. 5. Number of VOI trips in Gothenburg for different zones based on transaction data.

zones within the VOI zone. Figure 6 shows the result of each of those calculations.
For the network distance, the results show that most trips travel a distance between 0.5–
1.8 km, and the number of trips decreases gradually with the distance. Furthermore, most
trips have a duration between 4–7 min. Similar to previous mentioned pattern, most trips
are shorter rides, and the number of trips decreases as the duration increases. Lastly, the
temporal distribution shows during what day of the week and what time of the day most
of the users ride the e-scooters. Figure 6 (c) shows that the most popular days are Fridays
and Saturdays where the number of trips is around 800, while the least popular day is
Sundays where the number of trips decreases by about 60% compared to Fridays and
Saturdays. Furthermore, the graph also shows that the number of trips increases during
the day. The least number of trips occurs in themorning between 06.00–09.00 with about
200–300 trips. During noon, the number of trips has increased by about 150% to around
500 trips. The maximum peak hour occurs in the afternoon between 15.00–19.00 with
around 600–800 trips where the number of trips has increased by 300–350% compared
to the morning peak hour. Additionally, it can also be observed that the afternoon peak
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hour has a longer duration during the weekends (Friday and Saturday nights) and lasts
until 22.00.

Fig. 6. Spatial and temporal distributions for the entire Voi zone.

4.2 Differences of Using SESS Different Zones

Figure 7 shows that all areas have a trip distance distribution that is skewed to the right
except Delsjöområdet. This areas distribution reminiscent of the right-skewed shape
however because of the bar standing out to the left it deviates from the traditional shape.
The right-skewed distribution indicates that the number of trips decreases as the distance
increases.

A clear difference regarding the travel distances, as well as the number of trips,
can be seen between the areas that have a high demand compared to the areas with a
small demand (top three and bottom three). Areas with a high demand tend to travel
very short distances between 0.8–1.5 km. For instance, in Fig. 7 (b), about 5000 of all
trips that take place in Olivedal Haga are between 0.8–1.2 km. Similar occurrences can
also be seen for Inom Vallgraven and Johanneberg, see Table 4. Trips that take place
in the three low demand areas tend to have slightly longer distances ranging between
1–2.5 km apart from Delsjöområdet, see Fig. 7 (e). In this area, most trips are about
1.5 km, followed by a distance between 3–4 km. In addition, the number of trips in the
low demand areas is significantly less than the number of trips that take place in high
demand areas. Among the low demand areas, Tingstadsvassen illustrated in Fig. 7(d–f)
has the highest number of trips occurring at distances between 0.8–1.5 km where the
number of trips amounts to approximately 1400. For the other two areas, the number of
trips amounts to approximately 500 respectively. This means that there are almost eight
times more trips occurring in the three high demand areas compared to the three low
demand areas. Moreover, VOI has limited the trips to a max distance of 10 km. However,
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the results show that the longest distance among all the areas was approximately 9.3 km
which yet again occurred in Delsjöområdet.

Since all the distributions have a right skew, the average value is a little larger than the
median value. By comparing the different values with the figures for both trip distance
and trip duration, it may be considered that the median is more representative than
the mean. For example, the average trip distance for Johanneberg is 1701 m while the
median is 1391 m, and Fig. 7 (c) shows that there are more trips occurring at 1400 m
compared to 1700 m. Nevertheless, the most correct parameter is the mode value of all
trips. The modes for the different areas can be seen in Table 4, which shows that trips
in Delsjöområdet have the longest travel distance of 1500 m while Skår has the shortest
travel distance of 600 m.

Small values of standard deviation indicate that the dispersion of the data from the
mean value is small, while high values indicate that the data has a great variance which
obtains more uncertain results. The standard deviation for both the trip distance and
duration is high for all areas, thus indicating that the data has a large dispersion. The
area with the lowest value for standard deviation is Skår since most of the values are on
the left side of the data, while Delsjöområdet has the highest standard deviation, which
is expected since its data is very dispersed.

Fig. 7. Trip distance for the three areas with the biggest and smallest demand.

The percentiles show how the data is distributed within different intervals. In this
study, it has been chosen to report for the 25th, 50th and 75th percentiles. For trip distance,
it appears that 25% of all trips for the three high demand areas have a distance less than
approximately 800 m, while 50% of all trips are shorter than approximately 2000 m.
Lastly 75% of all trips are shorter than 2350 m. For the three low demand areas, there
are slightly larger differences between the different areas. This is due to Delsjöområdet,
which as previously mentioned, deviates from the traditional right-skewed distribution.
However, in general, it can be said that about 25% of all trips are shorter than 1130 m
while 50% of all trips are shorter than 2140 m and lastly 75% of all trips are shorter than
3140 m.
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Table 4. Statistical parameters for trip distance.

Area Nr of
trips

Mean Mode Std Min 25% 50% 75% Max

Inom vallgraven 42 274 1676 800 1178 52 770 1343 2344 6778

Olivedal-Haga 56 307 1649 1000 1172 49 760 1374 2232 7568

Johanneberg 41 251 1701 800 1215 51 779 1391 2334 7614

Tingstadsvassen-Hisingsbron 17,330 1763 800 1187 49 830 1491 2511 6931

Delsjöområdet 4092 2978 1500 1597 54 1591 3066 3951 9289

Skår 7738 2107 600 1431 53 961 1864 2950 8349

5 Conclusion

Based on the transaction data of e-scooter sharing system in Gothenburg, this study
investigates the usage patterns of the systems in both spatial and temporal dimensions.
The main findings can be summarized as:

• The results show that e-scooters are used to varying degrees in the different areas
of Gothenburg. E-scooters are used to a much higher extent in central Gothenburg
compared to areas outside the city centre. This can be due to several different reasons
such as location, land use, and accessibility.

• When e-scooters were first introduced, they were described as a means to solve the
problem of the first and last mile. However, the results show that e-scooters are not
primarily used for commuting but rather for leisure. This can be seen in the average
distance and duration of the entire zone as well as the temporal distribution.

• The average distance and duration for the entire zone are 1.8 km and 10 min, which
indicates that it is mainly very short trips that occur. Furthermore, the e-scooters are
used mainly during weekday afternoons and especially during late weekend evenings
when the demand for commuting is insignificant.
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Abstract. Intelligent recognition of traffic road damage is essential for
realizing smart vehicles and intelligent transportation systems. The clas-
sification of road material types before recognition is a challenge for traf-
fic road damage recognition due to differences in features such as concrete
and asphalt. In addition, the widely distributed roads make environmen-
tal factors a critical factor affecting the classification. In this paper, we
propose a deep learning-based road material classification method that
introduces an attention mechanism to deal with the influence of dif-
ferent environments on road material recognition. We acquired tens of
thousands of road surface images for training and testing and performed
practical validation in real roads. The experiments show that our method
has high accuracy and recall in road material classification.

Keywords: Machine learning · Road engineering · Intelligent
transportation

1 Introduction

With the development of intelligent transportation systems, the number of vehi-
cles operating on the road has increased dramatically, putting tremendous pres-
sure on the existing road system. On the other hand, with the growth of smart
devices, the management and the maintenance of roads also face the need for
smart. Researchers have started to focus on attacking the intelligent identifica-
tion of road diseases, and excellent results have been achieved [1,2].

Road damage has different manifestations with different road surface mate-
rials. In general is divided into two main categories: asphalt and concrete. The
current existence of road damage intelligent detection models is usually applied
to a single road surface material [3]. However, in the existing road system, there
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is a large number of different materials road mix distribution, for the deploy-
ment of intelligent equipment and intelligent transportation system has caused
a significant obstacle.

The vast road network system makes manual classification of road mate-
rials costly and impractical. Moreover, due to the similar distribution of pixel
values, it is not easy to distinguish different road materials automatically. Fortu-
nately, with artificial intelligence and computer vision, a new way is provided for
computers to solve this problem. In recent years, several researchers have been
using artificial intelligence methods for vehicle trajectory prediction [4], vehicle
self-localization [5], and etc.

There are two challenges for the classification of road materials using machine
learning. First, due to the low information entropy in road images, the informa-
tion contained in the images can be easily lost in operators such as convolution.
Second, it is not easy to sport different materials independently because the
representation of road features varies significantly in different environments or
regions.

In this paper, we propose a method for road material classification based on
deep learning. We apply a computer vision approach to feature extraction of road
images. On the other hand, for the problem that road images vary significantly
in performance in different environments, we introduce an attention module to
smooth the internal information of the images.

2 Relation Work

Image classification is one of the fundamental tasks in computer vision.
Researchers have persevered in it for decades, such as the maximum likelihood
method, linear discriminant, etc. With the development of computer technology,
neural networks, SVM, and decision trees have been developed to perform image
classification.

With the development of deep learning, image classification techniques have
reached new heights [6–9]. VGG networks [6] have been proposed for image
classification tasks. Inception models [10] show that increasing the depth of the
network can significantly improve the quality of representation learned by the
network. In addition, Batch Normalization (BN) [11] regulates the distribution
of inputs at each layer, adding stability to the learning process of deep networks.
Wang et al. [8] proposed a novel end-to-end Attention Recurrent Convolutional
Network (ARCNet) for scene classification. LSLRR [7] improves the classical
low-rank representation with a location constraint criterion and a structure-
preserving strategy. Building on these works, ResNets [9] demonstrated that it
is possible to learn deeper and stronger networks by using identity-based skip
connections. Finally following these works, some work has further reconfigured
the connections between network layers [12,13], improving the learning and rep-
resentation properties for deep networks.
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3 Method

We propose a deep learning-based convolutional network framework applied to
road material classification. The framework consists of two parts: 1. a deep resid-
ual network to preserve road features in convolutions. 2. a self-attention module
to exclude the interference of the environment.

Fig. 1. The overview of our method. Our approach consists of two parts: 1. the resid-
ual network serves as a backbone network. 2. the ULSAM module is used to extract
self-attention information. Given a pavement image, the residual layer encodes it into
feature vectors, the feature vectors go through the ULSAM layer to calculate the inter-
nal relationships of the feature map and then send it to the next residual layer. Finally,
the classification results are output through the fully connected layer.

3.1 Basic Network

We introduce residuals as the backbone network framework, called R. The basic
idea of ResNets is to skip blocks of convolutional layers by using shortcut con-
nections to form shortcut blocks (residual blocks). These stacked residual blocks
greatly improve the training efficiency and the difficulty of representation learn-
ing, and largely solve the degradation problem by using BN [11] and MSR [14].
The residual network mathcalR consists of a large stack of residual blocks R.
The structure of each residual block is shown in the Fig. 1. Each residual block
can be viewed as a mapping of Eq. 1.

xl+1 = h(xl) + F (xl,Wl) (1)

where xl and xl+1 are input and output of the l-th block, respectively. F is a
residual mapping function, h(xl) = xl is an identity mapping function.

The entire network is built by stacking multiple residual blocks. It has three
groups of residual blocks, and each group has equal numbers of blocks. The loss
function contains cross-entropy and norm Eq. 2:
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Lcross = − 1
N

N∑

n=1

[yn log (yn) + (1 − yn) log (1 − yn)] ,

Ln = ‖y − y‖
(2)

where N means the class number, yn means the class label of sample n and yn
means the probability that the sample n is predicted to be a positive class. Then
y, y denote the predicted results and labels of all classes respectively.

3.2 Self-attention Module

To solve the road of feature representation, we introduce the ULSAM module
[15] to build the self-attention layers. ULSAM learns individual attention maps
for each feature subspace and enables compute efficient learning of cross-channel
information along with multi-scale and multi-frequency feature learning.

Let F ∈ Rm×h×w be the feature maps from an intermediate convolution layer,
where m is the number of input channels, h, andw is the spatial dimensions of
the feature maps. ULSAM divides the input feature maps F into g mutually
exclusive groups [F1, F2, ....Fñ, ....Fg] where each group have G feature maps.
We define Fñ as a group of intermediate feature maps and proceed as Eq. 3:

Añ = softmax
(
PW 1

(
maxpool3×3,1

(
DW 1×1 (Fñ)

)))

F̂ñ = (Añ ⊗ Fñ) ⊕ Fñ

F̂ = concat
([

F̂1, F̂2, . . . .F̂ñ, . . . .F̂g

]) (3)

In the Eq, maxpool3×3,1 is maxpool with kernel size = 3× 3 and padding
= 1, DW 1×1 is depthwise convolution with 1× 1 kernel, PW 1 is pointwise con-
volution with only one filter, and Añ is an attention map inferred from a group
of intermediate feature maps Fñ. Attention map Añ in each group (subspace)
captures the non-linear dependencies among the feature maps by learning to
gather cross channel information. ULSAM employ a gating mechanism with a
softmax activation. Each group of feature maps gets the refined set of feature
maps Fñ after the featurere distribution where ⊕ is element-wise multiplication
and ⊕ is element-wise addition. The final output of ULSAM F̂ is obtained by
concatenating the feature maps from each group.

The multi-scale feature learning of ULSAM can provide accurate represen-
tation of pavement image features and avoid feature interference in different
environments.
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4 Experiments

4.1 Datasets

We collected images of all classes of roads throughout China as a dataset. A total
of 23122 images containing 2892 concrete roads and 20230 asphalt roads were
included, the samples as shown in Fig. 2. We capture 1 mm pavement images
using a vehicle equipped with a line laser scanner. We use 3D line laser scanners
to obtain all data with a sampling accuracy of 1 mm mounted on the engineering
vehicle. The raw data is obtained by scanning the road information as the vehicle
moves. We then converted the raw data to image format and solved the varying
brightness of the laser-acquired images by homogenizing the light operation. The
original size of the image was 2048 × 2048 and was resized to 512 × 512 for input.
We take 80% as the test set, 10% as the validation set, and 10% as the test set.
The accuracy reported on the Road datasets is obtained by training the models
from scratch (not on the ImageNet pre-trained model).

Fig. 2. The samples of dataset. (a) and (b) show images of concrete pavement. (c) and
(d) show images of asphalt pavement.

Fig. 3. The location of the case study and sample images.
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4.2 Experimental Setting

We perform experiments using PyTorch deep learning framework. We used four
1080Ti GPU for experiment. We train all method with batch size 4 and adam
optimizer for 200 epochs. The initial learning rate is set to 0.001.

4.3 Comparison to Existing Methods

In order to accurately benchmark the performance of our method, we compared it
with: (1) ResNet20 (20 means number of resblock) (2) ResNet32 (3) ResNet44 (5)
ResNet56 (6) Our(bone network based on ResNet20). All comparison methods
were set up the same as in the 4.2 section to ensure unbiased results of the
experiment.

Table 1. Comparison results with other methods

Methods Precision

ResNet20 96.078

ResNet32 98.039

ResNet44 99.010

ResNet56 99.505

Our 99.846

As shown in Table 1, our method achieves the highest precision rate per-
formance. The improved precision rate of 3.768 compared to Bone network
(resnet20) is even better than other computational space-consuming methods.

4.4 Case Study

To further measure the effectiveness of our method, we searched for two road
with different environments in different regions to test our method.

Setting. We chose a section of a high-grade road with mixed pavement materials
in Haimen, Jiangsu, China, at around 10:00 a.m. BST on April 14, 2021, as a
case study. There are 1727 pavement images of the road, including 804 images
of concrete pavement and 922 images of asphalt pavement, as shown Fig. 3. We
validate our method performance using the model trained in the dataset and
the data collected in the case. All training settings are the same as in the 4.2
section.

Results. As shown in Table 2, our model exhibits very high robust performance,
and the practical implementation maintains stability in terms of precision and
recall relative to the laboratory setting.
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Table 2. Case study metrics

Classes Results Ground Truth

Concrete 802 804

ResNet32 925 922

Classes Results Precision

Wrong concrete 1 99.88

Wrong asphalt 3 99.68

Classes Results Recall

Wrong concrete 1 99.88

Wrong asphalt 3 99.67

5 Discussion

We propose a deep learning-based road material classifier method that intro-
duces an attention mechanism to optimize road feature extraction for different
environments. The performance of our model achieves a significant accuracy rate.
Our future work will exploit different applications of the attention mechanism
to capture complex global relationships in complex road systems to help the
development of smart vehicles and intelligent transportation systems.

Acknowledgement. This work was supported by the National Natural Science Foun-
dation of China: [Grant Number NSFC71871165] and the Fundamental Research Funds
for the Central Universities: [Grant Number TTS2021-03], TaiJi chason machine learn-
ing engine.

References

1. Lang, H., Lu, J.J., Lou, Y., Chen, S.: Pavement cracking detection and classification
based on 3D image using multiscale clustering model. J. Comput. Civ. Eng. 34(5),
04020034 (2020)

2. Wen, T., et al.: Automated pavement distress segmentation on asphalt surfaces
using a deep learning network. Int. J. Pavement Eng., 1–14 (2022)

3. Lang, H., Lou, Y., Lu, J.J., Chen, Y.: A review of 3D pavement automatic mea-
surement system. In: CICTP 2017: Transportation Reform and Change-Equity,
Inclusiveness, Sharing, and Innovation, pp. 831–841 (2018)

4. Shi, X., Zhao, D., Yao, H., Li, X., Hale, D.K., Ghiasi, A.: Video-based trajec-
tory extraction with deep learning for high-granularity highway simulation (HIGH-
SIM). Commun. Transp. Res. 1, 100014 (2021)

5. Jiang, Z., Xu, Z., Li, Y., Min, H., Zhou, J.: Precise vehicle ego-localization using
feature matching of pavement images. J. Intell. Connected Veh. (2020)

6. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

http://arxiv.org/abs/1409.1556


140 Y. Yuan et al.

7. Wang, Q., He, X., Li, X.: Locality and structure regularized low rank representation
for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 57(2),
911–923 (2018)

8. Wang, Q., Liu, S., Chanussot, J., Li, X.: Scene classification with recurrent atten-
tion of VHR remote sensing images. IEEE Trans. Geosci. Remote Sens. 57(2),
1155–1167, 100014 (2018)

9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

10. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

11. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: International Conference on Machine Learning,
pp. 448–456 (2015). PMLR

12. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4700–4708 (2017)

13. Chen, Y., Li, J., Xiao, H., Jin, X., Yan, S., Feng, J.: Dual path networks. arXiv
preprint arXiv:1707.01629 (2017)

14. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-
level performance on ImageNet classification. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision, pp. 1026–1034 (2015)

15. Saini, R., Jha, N.K., Das, B., Mittal, S., Mohan, C.K.: ULSAM: ultra-lightweight
subspace attention module for compact convolutional neural networks. In: Proceed-
ings of the IEEE/CVF Winter Conference on Applications of Computer Vision,
pp. 1627–1636 (2020)

http://arxiv.org/abs/1707.01629


Traffic Flow Model of the Weaving Section
in Signalized Roundabouts

Tianshu Zhan1 , Xianmin Song1(B) , Yunxiang Zhang1 , and Kunwei Wang2

1 School of Transportation, Jilin University, Changchun 130022, Jilin, China
songxm@jlu.edu.cn

2 Qingdao Hisense Network Technology Co., Qingdao 266071, Shandong, China

Abstract. The efficiency of the roundabout is severely constrained by the pres-
ence of multiple conflicting traffic flows in the weaving section. An accurate
description of the traffic flow in the weaving section of roundabouts is the key to
intelligent traffic control. In this paper, the approach, the circulation section, the
weaving section and the exit of roundabouts are taken as a unit to analyze, and a
model of traffic flow for entering the weaving section is established. The impact
of entering flow, circulation flow and leaving flow on the condition of the weaving
section is analyzed and a model of traffic flow for leaving the weaving section is
established. A new traffic flow model of the weaving section is also established
considering an iterative-algorithm-based parameter calibration method. Finally,
this paper builds a VISSIM-based simulation platform and collects field data to
verify the accuracy of the traffic flow model. The results show that the average
relative error of the simulation outputs and the values of theoretical model calcula-
tion is within 10%, and with the increase of passing vehicles, the calculation error
decreases. Therefore, the model established in this paper can accurately calculate
the traffic flow characteristics of the weaving section in roundabouts, which can
provide theoretical support for the microscopic simulation of roundabouts and the
formulation of traffic management strategies.

Keywords: Roundabout · Traffic flow model · Weaving section · Entering flow ·
Leaving flow

1 Introduction

Traffic flow theory mainly describes the operating characteristics of vehicles and pedes-
trians and expounds the generation mechanism of traffic phenomenon so as to find the
cause of traffic congestion, improve the utilization efficiency of road facilities, and pro-
vide theoretical support for urban traffic management [1–3]. Probability method was
widely used in early studies on traffic flow theory. Kinzert et al. first proposed the pos-
sibility of studying traffic flow with Poisson distribution [4]. Greenshields et al. used
Poisson distribution to analyze the traffic condition in intersections and established the
speed-density linear expression [5]. By the 1950s, the probability method was gradu-
ally replaced by many new findings, mainly including the traffic wave theory and the
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car following theory [6]. Based on machine learning, Yang Liu et al. proposed deep
learning architectures, termed as Deep Traffic State Prediction (DeepTSP) [7] and Deep
Passenger Flow (DeepPF) [8], to predict traffic flows. Shuaian Wang et al. proposed a
holistic modeling framework based on the concept of mean absolute error minimization
to empirically calibrate stochastic traffic flow fundamental diagram [9].

The traffic flow theory has been carefully studied by scholars. As the key nodes of
urban road networks, roundabouts have also been studied. Fouladvand et al. analyzed
the delay of single-lane roundabouts and established a key traffic flow value model [10].
Lakouari et al. proposed a stochastic cellular automatamodel to study the traffic behavior
in a single-lane roundabout and got five distinct traffic phases, namely free flow, conges-
tion, maximum current, jammed, and gridlock [11]. A metering signal-based strategy
was examined by Yuzhou Duan et al. to mitigate the problems of large entry delays
that are often observed in roundabouts with unbalanced flow patterns [12]. Davidovic
et al. analyzed the speed characteristics of traffic flow in urban roundabouts with differ-
ent geometrical characteristics in the city of Banja Luka and established the correlation
between the achieved speeds and geometrical characteristics of the intersection [13]. By
analyzing the traffic capacities and traffic behaviors of domestic and foreign weaving
areas and combining them with field investigation, Haijian Li et al. proposed the active
and fine lane management methods for ICVs to optimal driving behavior in a weaving
area [14]. Huang divided the weaving section of the single-lane roundabout into one-
dimensional rectangular cells, and an asymmetric simple exclusion process was used
to simulate the vehicle operation process. Therefore, Huang adopted the phase changes
of entering and leaving roundabouts [15] and the phase transitions rules in single-line
roundabouts [16].

Most of the existing studies on the traffic characteristics of roundabouts mainly
focus on single-lane roundabouts. However, there are few studies about operational
characteristics of traffic flow in multi-lane roundabouts. Considering that the capacity
of an approach in a multi-lane roundabout is closely related to the traffic flow of relevant
circulation lanes and the flow of relevant weaving sections, and the average speed of
the vehicles in the weaving section is related to the number of vehicles and weaving
behavior, it is necessary to establish a model of traffic flow for multi-lane roundabouts,
which can provide theoretical support for the management of roundabouts.

2 Model Development

2.1 Description

The paper selects multi-lane roundabouts as the study object, as is shown in Fig. 1.
Due to the special geometric characteristics of the roundabouts, vehicles have the same
operating rules in each circulation section (CS) and weaving section (WS). Therefore,
the CS hr, the WS r and the corresponding approach i are selected as study objects.

During the establishment process of themodel in this paper, the impact of the vehicles
in the CS and the WS on vehicle operation of the approach is considered. Therefore, the
following assumptions must be met during the modeling:
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(i) Follow the rule of “vehicles in roundabouts first”, i.e. entering vehicles give way
to vehicles in roundabouts.

(ii) An exclusive right-turn lane is provided within the roundabout, i.e. right-turning
vehicles do not enter theWS, and therefore vehicles in theWSwill not be impacted.

Fig. 1. Structure of the roundabout.

2.2 Model Methodology

Efforts are made in this section to analyze the traffic characteristics of the roundabout
and establish a model to describe the relationship among the maximum release rate of
the approach and the arrival rate of the CS, and the capacity of theWS.We also propose a
model to describe the relationship between the average speed of the vehicles and the flow
of the WS, and the ratio of entering to leaving. Based on the spatial-temporal transition
mechanism of the vehicles in roundabouts, a traffic flowmodel of the WS is established,
which can reflect the vehicle operating condition in roundabouts.

The traffic flowmodel consists of three parts: themodel of traffic flow for entering the
WS, the model of traffic flow for leaving the WS and the parameter calibration method.

The Model of Traffic Flow for Entering the WS. The entering flow of the WS con-
sists of the entering flow from the CS and the approach flow. Therefore, it can be
calculated as follows.

qinr [k] = qoutr−1[k] + qouti [k] (1)

where qinr [k] is the number of vehicles entering the upstream of the WS r during step
k, pcu/�t s; qoutr−1[k] is the number of vehicles leaving the WS r − 1 during step k,
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pcu/�t s; qouti [k] is the number of vehicles leaving the approach i during step k,
pcu/�t s; k is the time step, an index corresponding to time, t = k � t .

As the principle of “vehicles in roundabouts first”, when there are few vehicles in
the approach i, vehicles can enter the WS and the queuing length in the approach will
not exceed a certain value. Otherwise, the queuing length in the approach will gradually
increase and the queue-jump behavior of vehicles in the approach will severely impact
the operation of vehicles in the roundabout and may lead to a gridlock phenomenon in
the roundabout. The number of vehicles released from the approach can be calculated as
follows, providing that the normal operation of traffic in the roundabout is guaranteed.

qouti [k] = min
{
qarri [k] + xi[k], Si · gi[k]

}
(2)

where qarri [k] is the number of vehicles arriving at the end of the queue in the approach i
during step k, pcu/�t s; xi[k] is the number of queuing vehicles in the approach i during
step k, pcu/�t s; Si is the maximum release rate of the approach i during step k, pcu/h;
gi[k] is the green time of the approach i during step k, h.

In order to establish a model to describe the relationship between the maximum
release rate of the approach, the number of vehicles in the WS and the number of
vehicles entering the CS, a VISSIM-based simulation platform is built.

The number of vehicles passing the WS is collected by varying the arriving flow in
the approach, providing that the number of vehicles arriving the CS is guaranteed. The
relationship between qarri , qoutr−1 and qinr is shown in Fig. 2 as follows:

Fig. 2. Relationship among qarri , qoutr−1 and q
in
r .

As is shown in Fig. 2, when the sum number of arriving vehicles from the approach
and the CS is less than the capacity of the WS, the number of passing vehicles in the
WS is the sum number of the arriving vehicles from the approach and the CS. When it
is above the capacity of the WS, the number of arriving vehicles will gradually increase
until the number of passing vehicles in the WS is roughly static, providing that the
number of arriving vehicles is a certain value. Therefore, we can draw the conclusion
that the number of vehicles entering the WS from the approach has no relationship with
the number of vehicles in the approach. The maximum release rate of the approach can
be calculated as follows:
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Si = p1 q
out
r−1

3 +p2 q
out
r−1

2 + p3q
out
r−1 + p4 (3)

where p1, p2, p3, p4 are model parameters to be calibrated.
Therefore, the number of vehicles entering the WS can be calculated as follows:

qinr [k] = qoutr−1[k] + min
{
qarri [k] + xi[k],

(
p1 q

out
r−1

3 + p2 q
out
r−1

2 + p3q
out
r−1 + p4

)
gi[k]

}

(4)

The Model of Traffic Flow for Leaving the WS. By analyzing the travelling charac-
teristics of vehicles in roundabouts, we can draw the conclusion that only when the
observing step exceeds the time required for vehicles to pass the WS at free-flow speed
can leaving vehicles be observed at the end of the WS.

Therefore, the number of vehicles leaving the WS can be calculated as follows:

qarrr [k] =
{
min{ρr[k] · vr[k] · nr · �t,Nr} if k ≥ lr

�t·vfreer

0 otherwise
(5)

where qarrr [k] is the number of vehicles arriving the downstream of the WS r, pcu/�t s;
ρr[k] is the density of vehicle flow in the WS r during step k, pcu/km/lane; vr[k] is the
average speed of traffic flow in the WS r during step k, km/h; nr is the number of lanes
in the WS r; �t is system update interval, s; Nr is the capacity of the WS r, pcu; lr is the
average length of lanes in the WS r, km; vfreer is the free-flow speed in the WS r, km/h.

Entering vehicles need to find gaps to enter theWS and leaving vehicles also need to
change lanes in time to leave the WS. Therefore, vehicles in the WS need to slow down
to avoid the above two types of vehicles, and the average speed of traffic flow in the
WS will be impacted. We use the SPSS to analyze the correlation between the average
speed of traffic flow in the WS and the ratio of entering to leaving. The result shows that
R2 = 0.8037, which means the ratio of entering to leaving has a significant impact on
the average speed of traffic flow in the WS. Also, the average speed of traffic flow in the
WS is impacted by the number of passing vehicles.

The relationship among the average speed of vehicles in theWS, the ratio of entering
to leaving, and the number of passing vehicles are shown in Fig. 3.

As is shown in Fig. 3, vehicles in the WS travel at speed close to the free-flow speed
when the number of passing vehicles is below 500 pcu/h, and as the number of passing
vehicles and ratio of entering to leaving increase, the average speed of vehicles in the
WS gradually decreases until it is close to the jam-speed. Therefore, the average speed
of vehicles in the WS can be calculated as follows:

vr [k] =

⎧
⎪⎨

⎪⎩

v
free
r qr [k] < qminr &&αr [k] < αminr
vminr qr [k] > qmaxr &&αr [k] > αmaxr
ω1 + ω2qr [k] + ω3αr [k] + ω4qr [k]

2 + ω5qr [k] · αr [k] otherwise

(6)

where vminr is the jam-flow speed in theWS r, km/h;ω1,ω2,ω3,ω4 are model parameters
to be calibrated; qr[k] is the number of vehicles passing theWS r during step k, pcu/�t s;
qminr

(
qmaxr

)
is the flow of vehicles when traveling at free-flow speed (jam-flow speed) in

the WS r, pcu/h; αr[k] is the ratio of the number of vehicles entering and leaving the
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Fig. 3. Relationship among qr[k], vr[k], and αr[k]

WS r to the total number of the vehicle during step k; αmin
r

(
αmax
r

)
is ratio of entering to

leaving when traveling at free-flow speed (jam-flow speed) in the WS r.
The number of passing vehicles in the WS r is the sum of the number of entering

vehicles during the step k and the number of present vehicles at the initial moment of
step k . It can be calculated as:

qr[k] = qinr [k] + Nr[k] (7)

where Nr[k] is the number of vehicles in the WS r at the initial moment of step k.
The ratio of entering to leaving in the WS r can be calculated as:

αr[k] = εr[k] + χr[k] (8)

where εr[k] is the ratio of number of vehicles entering the WS r from the CS hr and
leaving from the exit lane i + 1 to the total number of vehicles passing the WS r during
step k, assuming that we know εr[0] at the initial moment;χr[k] is the ratio of the number
of vehicles entering theWS r from the approach i to the total number of vehicles passing
the WS r during step k, assuming that we know χr[0] at the initial moment.

The number of vehicles in the WS can be calculated by substituting the Eq. (7) and
(8) into the Eq. (6) and substituting the Eq. (6) into the Eq. (5). According to the different
destinations, the vehicles leaving the WS r can be de divided into the vehicles entering
the CS r + 1 and the vehicles arriving the exit i + 1, which can be described by Eq. (9).

qarrr [k] = qoutr [k] + qouti+1[k] (9)

where:

qoutr [k] = (γr[k] + χr[k]) · qarrr [k] (10)

qouti+1[k] = εr[k] · qarrr [k] (11)

Parameter Calibration. The entering and leaving of vehicles in the WS will lead to
the change of the total number of vehicles and the proportion of flow distribution in
the WS. Therefore, an iterative-algorithm-based parameter calibration method should
be established to make sure the continuity of the iterative process of the traffic model.
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The iterative process of the total number of vehicles in the WS r is as follows:

Nr[k + 1] = Nr[k] +
∑

j∈	(r)
Qjr[k]−

∑

j∈	−1(r)
Qrj[k] (12)

where
∑

j∈	(r) Qjr[k] is the total number of vehicles entering the WS r from upstream
approach (or the CS) j during step k, pcu/h;

∑
j∈	−1(r) Qrj[k] is the total number of

vehicles travelling from the WS r to downstream exit (or circulation section) j during
step k, pcu/h.

The iterative process of the distribution rate in the WS r is as follows:

γr[k + 1] = [
γr[k] · Nr[k + 1] + qouti [k + 1] · βr[k + 1]

]
/qr[k + 1] (13)

εr[k + 1] = [
εr[k] · Nr[k + 1] + qoutr−1[k + 1] · (1 − βr[k + 1])

]
/qr[k + 1] (14)

χr[k + 1] = (
χr[k] · Nr[k + 1] + qouti [k + 1]

)
/qr[k + 1] (15)

where γr[k] is the ratio of the number of vehicles entering the CS hr from the WS r and
passing the WS r and leaving the CS hr + 1 to the number of the total vehicles passing
the WS r during step k; βr[k] is the ratio of the number of vehicles entering the CS hr to
leaving the circulation area hr + 1 and the number of vehicles entering the WS r during
step k.

3 Model Validation

In order to verify the accuracy of the traffic flowmodels above,we useVISSIM to analyze
the field traffic flow characteristics of a case roundabout, and evaluate the accuracy of the
models by comparing the simulation outputs and the values calculated by the theoretical
models.

3.1 Simulation Condition Setting

The WS between the Zhengyang Street and the Jinyang Avenue in Jinyang Square can
meet the simulation condition and is chosen as our study object, as is shown in Fig. 4
(left).

In Fig. 4 (left), α = 74.70◦, L = 84.8m. In the WS, the travel time of 1351 passing
vehicles in 2 h is collected and the average speed of vehicles is calculated. We plot a
cumulative velocity curve, as is shown in Fig. 4 (right). The obtained speed distribution
patterns are used in the speed distribution of VISSIM.

The parameters of the geometric condition, vehicle type, vehicle behavior, driving
behavior, and the survey interval are calibrated in Table 1.
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Fig. 4. Structure of Jingyang Square (left) and Velocity distribution in the WS (right)

Table 1. Other simulation condition settings.

Index Settings Font size and style

Geometric design The length of WS (L) (m)
The width of WS (W ) (m)
The width of approach (e1) (m)
The width of CS (e2) (m)
The average width of WS (e) (m)

84.8
14
8
10.5
10.5

Driving behavior Using the car following model of Wiedemann74
Additional safety distance (m)
Increased safety distance available (m)

2.75
3.75

Interval Simulation cycle
Sampling interval

1 h (3600 s)
5 min

3.2 Parameter Calibration

The detectors are set at the corresponding sections as the red line shown in Fig. 1. 2163
types of flow operation characteristics are obtained by varying the lane changing ratio
and arriving flow in the approach and CS. The result of parameter calibration is shown
in Table 2.

Table 2. The results of parameter calibration.

Parm Calibration result R2

Si Si = −0.0009qout2r−1 + 0.2166qoutr−1 + 2280.4 0.7953

vr[k] vr(k) = 40.8while qr[k] < 400&&αr[k] < 80%

vr[k] = 27.28 − 0.009896qr[k] − 0.1251αr[k] + 0.000004684qr[k]2 +
0.0002623qr[k] · αr[k]
while qr[k] ∈ [400, 1500)‖αr[k] ∈ [70%, 80%)

vr[k] = 13.5while qr[k] > 1500&&αr[k] > 80%

0.7620
0.8823
0.88826
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3.3 Result Analysis

The number of vehicles leaving the WS can be calculated by substituting the results
in Table 2 into the traffic flow model. By comparing the calculation results and the
simulation outputs, the figures of the calculation error and the error percentage can be
plotted, as is shown in Fig. 5.

Fig. 5. The results of simulation

As is shown in Fig. 5, when the number of passing vehicles is 208 pcu/5min, the
maximum calculation error of the model is 16 pcu/5min, and the average relative error
percentage is 7.96%, which is within the range of acceptable error, which means that
the traffic flow characteristics of the WS in roundabouts can be accurately described.

4 Conclusions

The paper analyzes the relationship among the number of vehicles passing the WS and
the flow of the approach and the CS and establishes a traffic flow model of the WS
in signalized roundabouts. The relationships among the maximum release rate of the
approach, the arriving flow, the travel speed of CS and other factors are described by
the model. In the simulation section, the average relative error is controlled within 10%,
which means the model established in the paper can provide theoretical support for the
management of signalized roundabouts and the implementation of simulation software.
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Abstract. In recent years, vehicle-to-infrastructure (V2I) and vehicle-to-vehicle
(V2V) communication are the leading technologies in intelligent transportation
systems. With V2I and V2V, new strategies are enabled to better facilitate emer-
gency rescue and traffic emergency management. Since signalized intersection is
the major source of delay and congestion, how to prioritize emergency vehicles
(EVs) at intersections becomes an indispensable research topic and has drawn
extensive studies. Albeit that emergency vehicles should be granted absolute pri-
ority, the influence of EVs on the intersection was rarely studied, especially when
aggressive preemption strategies are adopted. To this end, this paper is devoted
to evaluating the impacts of EVs on the control of signalized intersections, as an
effort to better emergency management. Mixed-integer linear programming mod-
els are developed to optimize the intersection control before and after the pass of
EVs, respectively. Case studies indicate that, by assuming the EV will take exclu-
sively one lane at the intersection, the average delay could increase by 11.28%
along with a capacity decrease of 6.63% .

Keywords: Emergency vehicle · Connected vehicles · Intersection control

1 Introduction

With the rapid development of urbanization, urban transportation systems are becoming
increasingly congested, bringing a series of side effects such as air pollutions, noise, and
traffic accidents. Traffic accidents, in particular, endanger the life and property of the
general public. Each incident poses a challenge to the emergency management capacity
of the transport agency. According to research, half of the serious injuries can be treated
if treated in a timely manner within 30 min of an accident. In medical science, the 30
min are called “prime time” [1].

In traditional intersections, emergency vehicles cannot have access to real-time infor-
mation, such as queue length and signal, which hinders the key decision-making of speed
control and route choices. It is common that a large queue exists at the intersection when
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Fig. 1. Emergency vehicle travel in smart connected environment

emergency vehicles arrive due to the lack of communication and cooperation. In the
environment of the smart connected vehicles, real-time sharing of vehicles and road
information, can be realized through V2V and V2I to enable smarter EV preemption as
well as intersection control.

In this area, a large body of research focused on the development of emergency vehi-
cle priority systems. An emergency vehicle priority system ensures the passage of emer-
gency vehicles through priority signal control, route guidance and social vehicle diver-
sion [2]. The use of TPNS in themodeling emergency vehicle priority systemwas studied
to ensure that emergency vehicles can pass through intersections quickly [3]. There are
also dynamic preemption strategies that tend to balance different objectives [4].

In recent years, Intelligent Connected Technology is also of great significance to
emergency rescue and traffic emergency management control. Intersection signal coor-
dination optimization, enabled by smart connected technology, can accurately obtain
the vehicle trajectory information and feed it to the controller for better optimization
performance. Intersection collisions are studied in the context of CVIC, so that vehicles
can safely and quickly pass through the intersection without collision with other vehicles
[5–7]. A lane advance strategy based on integer linear programming (ILP) algorithmwas
proposed to achieve the absolute priority of emergency vehicles by clearing lanes for
approaching emergency vehicles [8].

In order to solve the problem of low traffic efficiency at intersections, two experi-
mental scenarios were designed, using intelligent networked vehicles to guide multiple
ordinary vehicles [9]. A * algorithm is used to solve the intelligent interconnected vehicle
sequencing problem and find the shortest path quickly [10]. The influence of whether to
force lane change on execution time in intelligent networked vehicle environment was
discussed [11].

Most of the current research on emergency vehicle preemption gives priority to emer-
gency vehicles based on a limited number of road detectors. The detectors are however
costly, cumbersome to set up, and unreliable, especially under unfavorable weather. At
the same time, under the control environment of traditional intersection,emergency vehi-
cles cannot have access to the exact information of intersection, such as queue length,
traffic information. Frequent acceleration and deceleration at crowded urban intersec-
tionsmake it evenmore challenging to dissipate queues when emergency vehicles arrive.
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This to some extent leads to aggressive preemption strategies, even with connected and
automated vehicles [12, 13]. However, few studies investigated the influence of such pre-
emption strategies. To this end, the present paper is devoted to evaluating the influence
of EV preemption strategies on the intersection performance under optimal control.

2 Methodology

In this study, we assume to grant the emergency vehicles the highest priority so that
they can pass through the intersection without delay. In the smart connect environment,
a lane at an intersection can be cleared and used exclusively for EVs. When a lane is
occupied by emergency vehicles, as shown in Fig. 1, the signal control plan is adjusted to
optimize the intersection capacity for normal vehicles. In summary, we seek to evaluate
the impacts on signalized intersectionswhile ensuring the priority of emergency vehicles.
The signal timing optimization and the collaborative control of the emergency vehicle
are coordinated andmodeled in a mixed-integer linear programming framework (Fig. 2).

Fig. 2. Emergency vehicle occupancy

In view of the characteristics of the smart connected vehicles, the following
assumptions are made.

1. All vehicles are intelligent connected vehicles.
2. All common vehicles voluntarily clear one lane for emergency vehicles throughV2V

and V2I communication.
3. We assume perfect communication.
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4. Pedestrian-related factors (e.g., pedestrian-vehicle conflicts) are ignored to focus on
the studied problem (Tables 1 and 2).

Table 1. The set of input parameters

Notations Descriptions

Ts Traffic arms

Ax Approaching lanes

Bx Exit lanes

m From arm x to arm c through lane q

γ A collection of incompatible movements

γ s A collection of incompatible signal groups

Fm1m2 An interval of incompatible movements

Dx,v,q The binary variable determines the allowable movements at the lane

λ Common flow multiplier

Ox,v Traffic demand matrix at intersections

Ox,v,q The assigned flow is distributed from arm x to arm c

Sx,q Saturation flow of lane q in arm x

rx,v,q The radius of the turning trajectory

f x,v,q Flow ratio

Sx,q Saturated flow in a straight moving lane

Ψ x,v Green start time

Px,v Green duration

βx,q The start of the green display received on lane q in arm x

Ωx,q The duration of the green display received on lane q in arm x

gx,v Minimum green duration

Nx,q Maximum acceptable saturation of lane q in arm x

η The total number of arms from x to c

M Any large number

c Cycle length

δ Reciprocal of the cycle length

∩ Successor function

e The difference between effective green time and actual green time

x Arm x can be numbered as 1, 2, 3, 4

v Number clockwise with respect to x

q Lane number
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Table 2. The set of decision variables

Variables set

Binary variables Dx,v,q The binary variable determines the allowable movements at
the lane

∩ x,v,i,d The order in which signal groups (x, v), (i, d) are displayed

Continuous variables λ Common flow multiplier

Ψ x,v Green start time

Px,v Green duration

Bx,q The start of the green display received on lane q in arm x

Ωx,q The duration of the green display received on lane q in arm x

δ Reciprocal of the cycle length

Ox,v,q The assigned flow is distributed from arm x to arm c

The developed model is as follows.

Maximize λ (1)

Subject to

∑Ts−1

c=1
Dx,v,q ≥ 1 ∀ q = 1, . . . ,Ax; ∀ x = 1, . . . ,Ts (2)

λOX ,v = ∑Ax
q=1Ox,v,q ∀ x = 1, . . . ,Ts; ∀ v = 1, . . . ,Ts − 1

MDx,v,q ≥ Ox,v,q ≥ 0
(3)

∀ x = 1, . . . ,Ts; ∀ v = 1, . . . ,Ts − 1; ∀ q = 1, . . . ,Ax (4)

1 ≥ ψx,v ≥ 0 ∀ x = 1, . . . ,Ts; ∀ v = 1, . . . ,Ts − 1 (5)

1 ≥ ρx,v ≥ gx,v δ ∀ x = 1, . . . ,Ts; ∀ v = 1, . . . ,Ts − 1 (6)

M
(
1 − Dx,v,q

) ≥ βx,q − ψx,v ≥ −M
(
1 − Dx,v,q

)
(7)

M
(
1 − Dx,v,q

) ≥ Ωx,q − ρx,v ≥ −M
(
1 − Dx,v,q

)
(8)

1

Cmin
≥ δ ≥ 1

Cmax
(9)

Bη(x,v) ≥ ∑Ax
q=1Dx,v,q ∀ x = 1, . . . ,Ts; ∀ v = 1, . . . ,Ts − 1

1 − Dx,v,q+1 ≥ Dx,d ,q ≥ Dx,v,q+1 ∀ d = v + 1, . . . , Ts − 1; ∀ v = 1, . . . ,Ts − 2
(10)
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∀ q = 1, . . . ,Ax − 1 ∀ x = 1, . . . ,Ts
m1 = (x, v, q) m2 = (i, d , t)

(11)

ψid + ∩x,v,i,d + M
(
2 − Dx,v,q − Di,d ,t

) ≥ ψx,v + ρx,v + Fm1m2δ ∀ m1,m2 ∈ γ

(12)

∩x,v,i,d + ∩i,d ,x,v = 1 ∀ ((x, v), (i, d)) ∈ γs (13)

M
(
2 − Dx,v,q − Dx,v,q+1

) ≥ 1
Sx,q

∑
v=1,...,Ts−1 (1 + 1.5

rx,v,q
)Ox,v,q

− 1
Sx,q+1

∑
v=1,...,Ts−1 (1 + 1.5

rx,v,q
Ox,v,q+1) ≥ −M

(
2 − Dx,v,q − Dx,v,q+1

)

∀ q = 1, . . . ,Ax; ∀ x = 1, . . . ,Ts

(14)

βxq + eδ ≥ 1
Sx,qNx,q

∑
v=1,...,Ts−1 ((1 + 1.5

rx,v,q
)Ox,v,q)

∀ q = 1, . . . ,Ax; ∀ x = 1, . . . ,Ts
(15)

In the constraints listed above, Eq. 1 represents the objective of the optimization,
where capacity is positively correlated with traffic demand, and the problem can thus
be converted into solving the common flow multiplier. Equation 2 indicates that move-
ment should be greater than 1 in each lane. Equation 3 ensures the normal operation of
the intersection as traffic demand increases. Equation 4 defines if lane q indicates no
movement, then there is no traffic allocation in the lane. Equation 5 and Eq. 6 define
the constraints on green start time ψ x,v and Px,v. Equation 7 and Eq. 8 ensure that all
traffic movements on a lane q are consistent, with the green starting at the same time
as the green received on the lane, and green duration time equals the green on the lane.
Equation 9 defines the range of cycle length, ensuring that c is a reasonable value. Equa-
tion 10 indicates that the number of exit lanes on lane v should be greater than or equal
to the number of lanes x in one movement.

Equation 11 denotes the lane q on the arm x is prohibited from turning onto other
arms which do not include arm v when the lane q + 1 on the arm x allows turning onto
the arm v to avoid unnecessary traffic collisions between adjacent lanes. Equation 12
defines themovements (x, v, q) (i, d, t) that a set of conflicts γ, and when bothmovements
are allowed, we set the clearing time to avoid their conflicts. Equation 13 indicates the
sequence of conflicting signaling groups. Equation 14 restricts the flow factor between
adjacent lanes to make them equal. Equation 15 defines that the saturation on the lane q
cannot exceed its maximum saturation Nx, q.

3 Case Study

In this section, we demonstrate the impacts of the EVs on the normal traffic flow at
intersections with a series of numerical experiments. In order to solve the model in
this paper, we apply it to the four-branch road intersection. By constraint (2)–(15) and
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mixed integer programming algorithm, a mixed integer linear programming model is
established.Traffic signal optimization before and after the EV arrivals are conducted
with the commercial solver Gurobi, respectively. At the studied four-leg intersection, the
number of arms is set at 4. Since emergency vehicle traffic occupies one lane, one of the
four legs can be reconsidered with 3 approaching lanes. Considering the principle that
the number of exit lanes is greater than the number of approaching lanes, the exit lanes
of each arm remain 4. The maximum cycle length is set to be 120 s. Assume that the
minimum duration of all vehicle movements equals 5 s with a turning radius of 12 m.
The maximum acceptable saturation per lane is set at 0.9. The time difference between
a valid green and an actual green is set as 1 s, and the clear time for movements with
conflicting trajectories is set as 3 s (Table 3).

Table 3. Pre-set values of parameters

Parameter Interpretation Value

Ts Traffic arm 4

Ax The approaching lane where arm X is located 4 or 3

Bη The exit lanes where arm η is located 4

Cmax Maximum cycle length 120

gx,v Minimum green duration 5

rx,v,q Radius of the turn trajectory 12

Nx,q Maximum acceptable saturation of lane q in arm x 0.9

e The difference between effective green time and actual green time 1

Fm1m2 An interval of incompatible movements 3

To demonstrate the results of allocating one exclusive lane for the EV. All simulation
scenarios are implemented via the python platform. Specifically, before the arrival of
EV, we assume λ = 2.23 c = 120 s, while after the EV arrival, we assume λ = 2.26 c
= 120 s.

The results of optimization indicate themaximum capacity of the direction ofmotion
based on the pre-set saturation flow. X is calculated using the ratio of the total assigned
flow in the direction ofmotion to the capacity of the traffic, and then the delay is calculated
according to Eq. 16 (Fig. 3 and Table 4).

d = C
(
1− g

C

)2

2(1−Xg/C)
(16)
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Fig. 3. Flow distribution at intersections

Table 4. Optimal results for one lane occupied by emergency vehicles

From x To v Total assigned flow (pcu/h) Delay (s) Traffic capacity (pcu/h) Px,v

1 1 1132 38.53 1227 0.33

1 2 452 29.94 739 0.38

1 3 226 25.97 739 0.38

2 1 226 52.05 236 0.13

2 2 1132 38.62 1227 0.33

2 3 226 52.26 236 0.12

3 1 679 34.10 739 0.10

3 2 679 40.23 962 0.26

3 3 679 40.01 986 0.26

4 1 226 52.07 236 0.13

4 2 906 43.22 975 0.26

4 3 906 24.96 991 0.54

In Fig. 4 and Fig. 5, group 1 represents the cases of lane occupancy by emergency
vehicles and group 2 indicates the scenario before EV arrival. As can be seen from Fig. 4,
delays generally increased due to the EV. Calculations of the overall average delay show
that the overall average delay increased by a modest 11.28%. The movement to the
right of the north entrance observed the biggest increase in delays at 36.63%. Of these,
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delays decreased in four directions, with the largest decrease of 30.94%. Comparisons
of the traffic capacity of the two optimization results can be seen in Fig. 5. Following
the occupancy of lanes by emergency vehicles, the overall average capacity decreased
by 6.63%.
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4 Conclusion

In this paper, we developed an optimization framework to evaluate the impact of aggres-
sive emergency vehicles preemption strategies under optimal intersection control. A
mixed-integer linear programming model is developed and solved by the Gurobi soft-
ware. Numerical simulation results indicate that delay and capacity changes vary, with
the overall average delay increase by 11.28% and the overall average capacity decrease
by 6.63%. Future extension of the present study can be exploring the possibility of
incorporating EV route choice with intersection optimization.
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Abstract. Exploring the spatial and temporal distribution of traffic violations is
vital to road safety management. This study investigated the traffic violations of
illegal parking and disobeying the guide lane, which are the most observed in a
middle-sized cityLuzhou.The temporal distributions between the traffic violations
are compared in timeof day, day ofweek, andmonth of year. The underlying spatial
dependency and cluster of the violations are investigated by globalMoran’s I, local
Moran’s I, and kernel density. Results show that the frequency of illegal parking is
remarkably higher in the period ranging from September to December, weekdays,
morning, and afternoon. However, the violations of disobeying the guide lane
are more frequently observed in the first-half year and daytime. Both two types
of violation are positively correlated in space. Moreover, the density of illegal
parking is higher in the upper area of the city where commercial and residential
zone are common, while disobeying the guide lane is mostly found in several
intersections which are close to the freeway exit. The possible explanations of the
spatial and temporal distributions are discussed.

Keywords: Traffic violation · Spatiotemporal distribution · Moran’s I test ·
Kernel density analysis · Illegal parking · Disobeying the guide lane

1 Introduction

Numerous studies have pinpointed that drivers who commit traffic violations frequently
were more likely to be involved in crashes [1–3]. Accordingly, traffic violation is viewed
as one of the leading causes of road trauma [4, 5]. However, Traffic violations are much
more common in developing countries [1, 6]. With these facts in mind, it is worth
preventing urban traffic violations with effective approaches.

Generally, the researchers and authorities of road safety tend to focus on several
types of urban traffic violations, which are regarded as risky behaviors, such as speeding
[7–10], driving under the influence [11–15]. In contrast to those, others including illegal
overtaking [16, 17], disobeying the guide lane [18] (driver should use guide lanes to enter
intersections to avoid potential conflicts), and illegal parking [19] are less concerned,
although they are sometimes more common in the city areas than the “risky violations”.
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The guide lane is a turning lane generally set in the entering section of the intersection.
Drivers whose turning are inconsistent with the guide lane it is in will get tickets for
disobeying the guide lane. Vehicles are not allowed to park in front of the entering
of public service buildings, intersections, and narrow roads. Such a violation is called
illegal parking. It should be noted that disobeying the guide lane and illegal parking
(especially on-road parking) can affect the traffic flow by causing hard-braking and
traffic conflict [20–22], which is considered to be a pre-crash improper behavior [23]
and significantly associated with pedestrian-related crashes [24]. As such, it is urgent to
explore the characteristics of such two types of traffic violations.

The spatial and temporal distribution of traffic violations is commonly investigated.
Red-light running was inclined to be detected on alleys, roads with physical dividers,
and intersections [25] on weekends, midday, morning peak hours, and evening [26],
speeding behaviors are more likely to be found at nighttime [27], and driving without
seat belt is more commonly observed on urban roads rather than rural roads [28, 29].
Moreover, traffic violations are found to be associated with both temporal and spatial
autocorrelations [30], with certain clustering patterns in space and time are observed.
Traffic engineers can have a better understanding of determinants spatiotemporal char-
acteristics and autocorrelation effects in traffic violations. However, the studies have
several limitations. In addition to the incomplete researches on some types of violations,
the existing study often uses the data of traffic violations collected from the whole coun-
try, state, andmetropolitan, while the violations fromminor sizes (such as medium-sized
cities) are ignored.

To fill the knowledge gaps in the literature, this study attempts to explore both the
spatial and temporal distribution characteristics of two types of traffic violations, i.e.,
disobeying the guide lane and illegal parking. Luzhou, a medium-sized city located in
Southwestern China, is selected to be analyzed. The temporal and spatial patterns of the
traffic violations are investigated on different scales. This effort could provide guidance
for road safety management in similar cities.

2 Method

2.1 Data

Data of traffic violations were collected from the Department of Policy in Luzhou City,
2016. Luzhou is a medium-sized city in Sichuan Province, China. The core urban area
of this city consists of three districts, namely Jiangyang, Longmatan, and Naxi. Both
Jiangyang and Longmatan districts are located in the upper area of the city, while the
Naxi district belongs to the lower area of the city. Luzhou is a typical industrial and port
city in mainland China, which has considerable needs for cargo shipping and a high ratio
of citizens engaged in logistics.

According to data processing, 14 types of traffic violations are identified and ranked
in frequency, as shown in Fig. 1. It shows that the violations of illegal parking and
disobeying the guide lane make up the majority of total traffic violations in Luzhou
(84.6%), while other violations only account for minor parts. Due to the dominance
of illegal parking and disobeying the guide lane, the two types of traffic violations are
selected to be investigated.
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Fig. 1. Frequency of 14 types of traffic violation in 2016

2.2 Analytical Approach

The approaches used to analyze the spatial and temporal distributions of the traffic
violations are presented as follows.

1) Temporal analysis

Temporal distributions of the traffic violations are measured by descriptive statistics.
We explore the distribution of the violation frequency in three-time scales, including
time-of-day, day of week, and month of year.

2) Spatial analysis

We use global Moran’s I test, local Moran’s I test, and kernel density analysis to unveil
the spatial pattern of the violations. Global Moran’s I and local Moran’s I require spatial
units with attributes of interest (e.g., points, lines, grids). Thus, the study area is divided
into grids with violation frequency to be analyzed.

(1) Global Moran’s I test

Global Moran’s I test is used to examine the underlying spatial autocorrelation of a
variable in the entire study area. It can be given by

Moran′s I = N
∑

ij
wij

∑

i

∑

j
wij(xi − x)(xj − x)

∑

i
(xi − x)2

(1)

where, xi and xj are the frequency of a type of traffic violation in the grid i and j,
respectively; x is the mean value of the traffic violation; N is the total number of the
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grids; wij is the spatial weight, specifically, if grid xi and grid xj are adjacent, then wij =
1, otherwise, wij = 0.

The interval of global Moran’s I statistic is [−1, 1]. If the statistic is close to −1, the
attributes of interest are more negatively correlated in space. If the statistic is close to 1,
the attributes are more positively correlated in space.

(2) Lobal Moran’s I test

Moreover, the study uses a local Moran’s I test to explore whether a local spatial
autocorrelation existing among the adjacent grids [31], it takes the form as

Ii = xi − x

S2

n∑

j

wij(xj − x) (2)

where S2 is the variance of xj.
Local Moran’s I test sorts the grids into different patterns of spatial clusters, which

are high-high cluster, high-low cluster, low-high cluster, and low-low cluster. High-high
clusters and low-low clusters mean that the grids with high violation frequency or low
violation frequency are surrounded by similar grids, respectively; while the high-low
or low-high clusters mean the target grid which has a high/low value of the violation
frequency is surrounded by the dissimilar grids.

(3) Kernel density analysis

In addition to the grid-based approaches, we use kernel density analysis to reflect the
continuous spatial distribution of the traffic violations on point elements. Generally,
geographic events aremore likely to occur in areaswith high kernel density and less likely
to occur in areas with low kernel density. The equation of kernel density is expressed as

fn(z) = 1

nh

n∑

i=1

k(
z − zi
h

) (3)

where, k(·) is the kernel function; h is the bandwidth; z represents the points with
attributes; zi is the adjacent points of z.

3 Results

3.1 Temporal Characteristics

Figure 2 shows the temporal distribution of the traffic violations in time-of-day, which
are presented by bar charts. It shows that the violations of illegal parking are mostly
found in the morning (9:30–11:30) and afternoon (15:30–16:30) (Fig. 2 (a)). A slight
incensement is also found after the evening peak hours (19:30–20:30). For the number of
disobeying the guide lane, it is commonly found during the whole daytime (8:30–19:00).
We also observe an extreme of such violation in the evening peak hours (see Fig. 2 (b)).
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Fig. 2. The time-of-day distribution of the two types of traffic violation

Neither the two types of traffic violation are inclined to be found in late night and dawn
(21:30–6:30).

Figure 3 illustrates the distribution on the day of week for the illegal parking and
disobeying the guide lane. It can be seen that Monday and Tuesday are the two days with
the highest frequencies of illegal parking (12,240 and 11,295 tickets), while Saturday and
Sunday have lower frequencies of illegal parking than other days (see Fig. 3 (a)). As to
the distribution of disobeying the guide lane, it seems no obvious difference is observed
between weekdays and weekends, although the frequency ofMonday and Friday (10030
and 9618 tickets) slightly surpasses this of other days.

Fig. 3. The day of week distribution of the two types of traffic violation

The monthly distribution of the two types of traffic violations is illustrated in Fig. 4.
Results show that illegal parking is more likely to occur in the range from September to
December (Fig. 4 (a)), yet the frequency of these violations are much fewer in the first
half-year. However, the monthly trend of disobeying the guide lane is quite discrepant in
contrast to illegal parking. These violations are commonly observed in the first half-year
with the extreme in January, while the frequency at the end of this year is quite low (see
Fig. 4 (b)).
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Fig. 4. The monthly distribution of two types of traffic violations

3.2 Spatial Characteristics

1) Global Moran’s I Test

As presented in Table 1, the pseudo p-values of the global Moran’s I statistic show that
both the violations of illegal parking and disobeying the guide lane are not randomly
distributed in the study area, indicating that there are significant spatial autocorrelations
among these violations. Moreover, we found the global Moran’s I statistic is positive
for either the types of violation. This signifies that the violations are spatially clustered
rather than dispersed.

Table 1. The results of global Moran’s I test of two types of traffic violations

Traffic violations Moran I Z-value p-value

Illegal parking 0.2687 311.3763 p < 0.01

Disobeying the guide lane 0.0013 2.3451 p < 0.05

2) Local Moran’s I Test

Results of the local Moran’s I test are shown in Fig. 5. Grids with high-high clusters are
mostly found in the center and the southwest corner of the city. This presents that the
grids with the high frequency of illegal parking tend to be correlated. Only one grid of
low-high outliers is observed in the city center, indicating that the frequency of illegal
parking in this grid is relatively less than its neighbors. With respect to the violation of
disobeying the guide lane, the grids with high-high clusters are much fewer than those
of illegal parking in the upper area of the city. It is also found that a grid with a high-
low cluster is located downstream of urban rivers, meaning that the grid with the high
frequency of disobeying the guide lane is surrounded by the grids with less violation
frequency.
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Fig. 5. The results of local autocorrelation analysis of the two types of traffic violation

3) Kernel Density

The results of kernel density are presented in Fig. 6 (a) and Fig. 6 (b). It is shown that the
density of illegal parking in the upper area surpasses that of other areas where land-use
is typed as a commercial and residential zone. Moreover, the location with public and
residential land-use tends to have a higher density of illegal parking as well. The kernel
density analysis for disobeying the guide lane shows that only one location is observed
with extremely high density, which is located in the northern part of the city and close
to the freeway exit. Some public facilities and commercial buildings are also found in
this location, including hospitals, pharmacies, and guesthouse complexes.

Fig. 6. The result of kernel density of the two types of traffic violations
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4 Discussions and Conclusions

This study explores both temporal and spatial characteristics of illegal parking and
disobeying the guide lane in a medium-sized port city. Global Moran’s I, local Moran’s
I, and kernel density analysis are conducted to uncover the spatial patterns. We also
investigate the temporal distribution of the two types of traffic violations on various
scales (hourly, day of the week, and monthly). Results show that the frequencies of
traffic violations are linked to spatial autocorrelation and spatial-temporal variation.

For the spatial distribution, the illegal parking behaviors are clustered in uncertain
areas. The areas serve as the core with a huge amount of traffic activities. The increasing
requirements of parking are failed to be met by the parking lots and roadside parking
spaces, resulting in considerable illegal parking violations. The violations of disobeying
the guide lane are mostly found in the northeastern region of the city. One reason is that
the intersections, which are installed with cameras, are located in an arterial close to the
freeway exit. Thus, drivers who are unfamiliar with the lane-setting (e.g., cargo shipping
drivers and travelers from other cities) may commit the violation easily. Another reason
may be attributed to the setting of the camera. Compared to other cameras in other
regions, those installed in this region are covert, which could hamper the alert of the
surrounding drivers.

For the temporal distribution, the illegal parking violations are mostly detected in the
morning, afternoon (before the evening peak hours), andworking days. This could be that
most vehicles are temporarily parking on the roadside due to business reasons or dining
needs. Nevertheless, the frequencies of disobeying the guide lane are uniform during the
same range as the traffic volume, and underlying offenders passing the detection point
are very large. Interestingly, the two types of traffic violations are remarkably discrepant
across the months. It could be that the inner-city traffic activities are less intensive in the
first half-year due to the imbalanced activities of such a port city. As a result, it leads
to fewer illegal parking violations. Conversely, the city has more cargo-shipping needs
from other cities in this period, and there are more vehicles that are detected nearby the
freeway exit.

A limitation of our study is the analysis may be affected by the layout of detection
devices. New detection approaches such as naturalistic driving data and GPS trajectories
are encouraged to figure out more robust conclusions [32–34].
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Abstract. The development and advances in the domain of
Autonomous Vehicles (AVs) provide disparate benefits including
improved safety, enhanced reliability, and reduction in accidents (which
saves thousands of human lives). However, the guarantee of safety is cru-
cial for the successful deployment of AVs on the road. The safety-related
issues of AVs are disparate in nature and are not solvable with a single
technological solution, but require interaction and distributed responsi-
bility across numerous interactive components, rendering the evaluation
of safety concerns a challenge. We have presented an Assume/Guarantee
(A/G) based contract for solving the safety-related concerns of AVs. Our
preeminent focus is on the collision avoidance of AVs. Our approach is
based on 1. the formal specification of A/G based contracts 2. creation
of collision-based scenarios, 3. implementation of scenario-oriented con-
troller implementing A/G contracts, 4. testing of controller implementing
A/G contracts (allows the verification of contracts in terms of minimiz-
ing collision risks) based on the simulation performed in CARLA Scenic
while considering the different (collision oriented) scenarios. Each con-
tract is based on the extended assumption considering a specific scenario,
referred as scenario-oriented contracts. The proposed methodology shows
adequate results and proves that the Contract-Based Design (CBD) can
provide a propitious road map for solving the safety-related concerns
of AV.

Keywords: Autonomous vehicles · Safety · CARLA · Scenic ·
Contract-based design

1 Introduction

The domains of mobility and transportation is changed profoundly due to
expected advancements in autonomous driving. The computing power and func-
tional complexity of Autonomous Driving Systems (ADSs) have increased ade-
quately over the past few years. Factually, we only have prototypes of ADSs,
and the safety of AV is preponderant for its safe deployment. ADSs are classi-
fied as safety-critical systems due to the societal dependence on their reliability
and safety. The ever-growing heterogeneity and sophistication of these systems
demand radical changes in the way safety-related requirements are modeled and
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articulated. It seems imperative to enforce an extensive safety formalism during
the design process of these systems, foreseeing and preventing catastrophic sit-
uations during operation. The performance and safety of AV (along with their
successful launch) are highly dependent on the 1. driving policies adopted in dif-
ferent traffic scenarios (keeping in context the safety concerns) and 2. the huge
amount of socio-temporal data extracted from the environment. Therefore, it is
imperative to analyze the data (extracted during driving of AVs) in a manner
that safe policies can be adopted for the minimizing the ratio of accidents. There-
fore, it can be claimed that with driving policies based on rigorous coverage of
1. the behavior of the environment (assumptions pertain to the environment)
and 2. the requirements the system fulfills relative to these (guarantees), the
safety of autonomous driving can be justified.

Recent studies show that to ensure safety millions of miles of test driving
are needed which require tens of years [1]. Formal verification methods com-
plemented with simulation-based testing can fulfill the safety demands of AVs.
Adopting CBD as a rigorous basis of these methods has recently gained momen-
tum for the safety assessment of 1. Cyber-Physical Systems (CPS) [2] in general
and 2. automotive prototypes [3]. Together with verification, it can improve the
predictability and reliability of CPS [4]. The CBD provides a modular approach
for system design and verification. A contract C is a pair of an assumption A
and a guarantee G, represented as C = (A,G). Assumptions refer to the char-
acteristics or a set of behavioral preferences of the environment in which the
design artifact operates while the guarantee explicates the artifact’s behavior in
environments conforming to the assumption [5].

Therefore, deriving the contracts with the set of assumptions (applicable
to every possible safety situation that may occur during driving maneuvers)
is a complex task. It is impossible to model all the differentiated scenarios in
the contracts. But if we create the extended versions of contracts in complex
scenarios then there is a possibility that the risk of catastrophic situation can
be mitigated up to acceptable levels. Keeping this context in mind we leverage
such assume-guarantee (A/G) based contracts (while defining some particular
scenarios of collision in the assumptions) along with controller implementation
and simulation-based testing for verifying the efficiency of these contracts. The
controller implementation of these contracts is then programmed in CARLA
Scenic so that evidence can be presented that the system design fulfills them
(results presented in Sect. 5).

To our knowledge, this is the first paper in which safety-based contracts
are created, implemented (through the controller), and tested (for finding the
fact that they are fulfilling the specified requirements or not) relative to specific
scenarios. Our major contribution is to prove that A/G-based contracts are
capable of solving safety-related issues of AVs. We are trying to counter the
collision-based challenges faced by AV by implementing scenario-oriented A/G
contracts. The proposed methodology comprises the following steps:
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1. Modelling of an environment (comprising of AVs, pedestrians, roads, and
town) using CARLA Scenic

2. Creation of basic scenarios (Each scenario provides a situation in which the
probability of collision between AVs is high). We have specified only three
scenarios so that we can keep our assumptions simple and fewer. For any
finite number of concrete scenarios, we can implement detailed mechanisms
safeguarding exactly these scenarios without necessarily generalizing to other
scenarios. Therefore, fewer assumptions are easier to satisfy due to the reduc-
tion of the criticality of requirements addressed by the proposed contract.

3. Creation of A/G based contract specifications (based on the scenarios speci-
fied in point 2) for avoiding collisions.

4. Creating controllers implementing contracts using CARLA Scenic.
5. Verifying the behavior of contracts in different scenarios for knowing the fact

that they are capable of fulfilling the specified requirements or not?
6. Generating results 1. for analyzing the effect of creating safety controllers

implementing contracts (for minimizing the risk of collision between AVs)
and 2. to analyze that proposed contract-based specifications are capable of
fulfilling safety-based requirements needed for the AVs.

The rest of the paper is structured a follows. Section 2 explains the existing
work concerning contracts in AVs. Section 3 describes the proposed methodol-
ogy including the creation of scenes, collision scenarios and contracts. Section 4
explains the CARLA simulation and code snippets for the implementation of con-
tracts. Section 5 explains the results considering the two different cases. Section 6
describes the conclusion and future work.

2 Literature Review

Fremont et al. have tested the scenario-based safety of AVs using the simulation
and real-world testing methodologies. They have answered the two questions
in their research: 1. is simulation-based testing helpful for the safety-related
concerns of AVs? and 2. is data collected from the simulation-based testing is
accurate enough when compares to the data extracted from the real-world track
testing (for avoiding AV accidents)? For building the test scenarios the program-
ming language Scenic is used and for capturing the safety-related details of AV,
metric temporal logic is employed. Therefore, a formal methods-based approach
for evaluating the safety of machine learning AVs spanning safety properties and
formal specification of scenarios is applied. Simulation-based testing along with
the evaluation of the methodology (in both simulation and the real world) is
performed [6]. Proposed methodology is closer to our work up to some extent in
terms of selected scenarios and implementation of scenarios in Scenic. However,
we have only selected three collision based scenarios and then employed CBD
for avoiding collision.
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Majzik et al. presents a system-level assurance technique for the black-box
testing of AVs while employing the various model-based techniques. In order to
extract qualitative data from the simulation runs, coherent and structured model
queries are employed. Safety properties of AVs are continuously monitored (while
creating different challenging scenarios) using graph queries and complex event
processing techniques [7]. Authors in [8] have proposed the formal verification
method for the normal behavior of AVs. Traffic situations and possible reactions
of AVs are verified at the abstract level. Simulations are widely employed for
analyzing the behavior of AVs [9]. However, the creation of diverse scenarios
based on the collision along with the particular implementations satisfying the
contract (for collision avoidance) and verification (that how these contract imple-
mentations can avoid collision in AVs) performed in simulation in the Scenic is
not implemented before.

3 Methodology

This section describes the methodology followed for the implementation of our
proposed technique. Figure 1 shows the steps followed in the proposed method-
ology.

Modelling of the Scene. The first step is the creation of a scene. A simulation
scene SC1 within the environment E is created. E comprises roads, lanes, trees,
signals and AVs etc. For SC1 an environment E is mathematically described as
E = (L,Cf , Cr). L represents the lane while Cf represents the front car and
Cr represents the rear car. The creation of E is performed in Scenic which is
domain-specific scenario description language and used for describing these types
of environments [10]. The syntax of the language is designed in a way that it
allows the user to create the disparate scenarios along with the implementation
of soft and hard constraints. When executing Scenic, the CARLA server runs
in the background. CARLA [11] is an open source driving simulator used for
the purpose of autonomous driving research. CARLA provides the support for
development, training and validation of AVs in the context of urban driving.

Creation of Scenario. In this step three different and basic scenarios S1, S2,
S3 are created within the SC1 (created in previous step). Other scenarios S4, S5

and S6 are the extensions of these basic scenarios. S1, S2 and S3 are collision
based scenarios. However, created scenarios may incur some increased risk of
collision. At this point of time the SC1 is already created and running in Scenic.
All scenarios have two AVs Cf and Cr driving at different speeds (while speed
of Cf is represented by Vf and speed of Cr is represented by Vr) with the safe
distance (D) above 30 m. The three scenarios (represented by S1, S2, S3) are
based on the following situations (in which there is a high probability of collision
due to the increase or decrease of speeds):



Scenario-Oriented Contract Based Design for Safety of Autonomous Vehicles 175

Fig. 1. Proposed methodology Fig. 2. Mapping of contracts on sce-
narios

S1: After covering a distance of 5 km, Cr increases its speed and D between the
Cf and Cr is less than 30 m.
S2: After covering a distance of 5 km, Cf decreases its speed and D between Cf

and Cr is now less than 30m at first and then D decreases to 10 m.
S3: After covering a distance of 5 km, Cf decreases its speed and D between the
Cf and Cr is less than 30 m. (The distance covered by the AVs (i.e.: 5 km) (after
which we introduce the collision oriented situation is selected randomly)).

In order to keep the simulation simple only two AVs are considered within the
SCi rather than considering extremely busy road situations. However, making
such assumptions explicitly opens up for automatic ways of detecting potential
conflicts, thus rigorously uncovering potential incompleteness as well as potential
conflicts in safety specifications.

Creation of Contracts. After the creation of collision based scenarios, the next
step is based on the creation of contracts. Implementation of all contracts are
performed in Scenic. The A/G contracts deal with collision avoidance (elaborated
in S1, S2, S3, S4, S5 and S6). The contracts in our context are extracted from the
mathematical rules defined in [8]. These rules have numerous dimensions, one of
them is termed as “safe longitudinal distance-same direction”. This rule is based
on the fact that two AVs moving in the same direction should maintain a safe
distance. The methodology for mapping contracts on the scenarios based on the
rules is shown in Fig. 2. Whenever the contracts are satisfied in the scenarios and
collision is avoided, these contracts (a program written for implementation of a
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contract monitor signalling satisfaction of the contract) return the true value
for the variable Contract Implementation (CI). The rule (R1) that is taken into
consideration is defined as follows: R1: Two AVs front AV (Cf ) and rear AV
(Cr) are driving in the same direction on the road with single lane.
Based on S1: If the distance (D) between the Cf and Cr is reduced to less
than 30 m as the Cr increases its speed then Cf should accelerate and increase
its speed.
Based on S2: In case if Cf decreases its speed and D between Cf and Cr is
reduced to 10 m then Cr should brake.
Based on S3: If the distance (D) between the Cf and Cr is reduced to less than
30 m as the Cf decreases its speed then Cr should also decreases its speed. The
contracts extracting from the R1 are as follows:
C1: First contract is created based on R1 as the Cr increases its speed (this
contract is revitalized in case when the scenario S1 can occur).
Assumption: Cf should accelerate if the distance between Cf and Cr is less than
30 m.
Guarantee: A safe distance of 30 m should be maintained between Cf and Cr.
C2: Second contract is created based on R1 as Cf decreases its speed (this
contract is revitalized in case when the scenario S2 can occur).
Assumption: Cr will brake while the distance between Cf and Cr is less than
10 m
Guarantee: A safe distance of 10 m should be maintained between Cf and Cr.
C3: Third contract is created based on R1 as Cf decreases its speed (this contract
is revitalized in case when the scenario S3 can occur).
Assumption: Cr will reduce its speed when the minimum distance between Cr

and Cf approaches to 30 m.
Guarantee: Safe distance of 30 m should be maintained between Cf and Cr.

Implementation of (Controller Implementing) Contracts in Simula-
tion. The implementation of (controllers implementing) contracts in CARLA
Scenic (along with the code snippets) is elaborated in Sect. 4. The controller
implementing contract C1 activates its collision avoidance mechanism when there
is a probability of collision occurrence in the scenario S1. Same procedure is
applied for C2 and C3 for scenarios S2, S3, S4, S5, and S6. However, the pro-
posed implementation in this context not only “employs the contract” but also
selects the particular implementations satisfying the contract i.e. changing the
current speed of AV when there is a chance of collision. This distinction is fun-
damental to CBD in the context of our work.
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Results. This section will demonstrate the results in detail. Each scenario runs
multiple times and simulation results in CARLA before and after the implemen-
tation of (controller implementing) contracts are analyzed.

4 Running CARLA Simulation

As mentioned in Sect. 3 that Scenic is used with the CARLA simulator for imple-
menting 1. the scenes, 2. the created scenarios and 3. the impact of the contract
implementation wrt. collision avoidance. Next few sections will elaborate these
steps in detail.

4.1 Creation of a Scene in Scenic

Scenic allows to create an environment E, by using different maps that are
present in the repository of CARLA. These maps has urban areas along with
different objects (which the user can add to) including buildings, trees, walls,
street lights etc. Map supported CARLA libraries (a library containing maps)
are available at [12].

4.2 Creation of Scenarios in Scenic

After creating environment E in Scenic as explained in Sect. 4.1. E allows the
user to add the vehicles according to the requirement of defined scenarios. In
our case we have created two AVs (Cf and Cr) for all proposed scenarios.

Scenario 1 (S1): The scenario S1 is elaborated in the Sect. 3. If the rear AV
(Cr) increases its speed (Vf ) then front AV (Cf ) should accelerate. Therefore,
in this scenario (S1) the (controller implementing) contract C1 is implemented
to avoid the collision. The implementation of controller implementing C1 for S1

in Scenic is shown in Fig. 3.

Scenario 2 (S2): Scenario S2 is elaborated in the Sect. 3. If the front AV (Cf )
decreases its speed (Vf ) (due to the signal) then rear AV (Cr) should also reduce
its speed (Vr). Therefore, in S2 the C2 (controllers implementing contract C2)
is implemented to avoid the collision (when the safe distance between Cf and
Cr becomes less than 10 m or 30 m, Cr should minimize it speed first and then
should brake due to the possibility of collision occurrence). The implementation
of controller implementing C2 in Scenic is shown in Fig. 4.

Scenario 3 (S3): Scenario S3 is elaborated in the Sect. 3. If front AV (Cf )
decreases its speed Vf then rear AV (Cr) should also reduce its speed Vr. There-
fore, in this scenario (S3) the C3 (controllers implementing contract C3) is imple-
mented to avoid the collision (when the safe distance D between Cf and Cr

becomes less than 30 m). The implementation of C3 is almost similar to the
implementation shown in Fig. 4
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Fig. 3. Code snippet C1 for S1 Fig. 4. Code snippet C2 for S2

Scenario 4 (S4): Scenario S4 is based on the scenario S1 with different param-
eters for speed and safe distance. However, the A/G based contracts are not
changed. Both AVs have the same speed while the safe distance is 10 m. These
specifications of S4 are implemented for contracts C2 (used by S5 based on S2)
and C3 (used by S6 based on S3) so that the varied results are generated and
analyzed.

5 Results

This section elaborates the results generated by running the CARLA simula-
tion. Time taken by each scenario is represented by TS. Collision occurrence
time (considering each scenario one by one) without the implementation of con-
trollers implementing contracts is represented by CT . Collision occurrence time
with the implementation of controllers implementing contracts is represented by
CTC. Safe time with controllers implementing contracts is defined as the time
until the AVs drive safely and collision do not occur, is represented by STC. Safe
time without controllers implementing contracts is represented by ST . BC rep-
resents a mechanism (a built-in mechanism provided by CARLA) that avoids the
collision of AVs with fences, walls and other objects on the road. BC = 0 means
that there is no basic collision implemented in the simulation while BC = 1
means that basic collision detection mechanism is already employed in the sim-
ulation. The calculated time in all tables is represented in minutes.
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Table 1. Scenarios without contracts

Scenarios TS CT ST BC

S1 without C1 – – – –

Run 1 (R11) 10 3 2 0

Run 2 (R12) 10 4 3 0

Run 3 (R13) 10 6 5 1

Run 4 (R14) 10 5 4 1

S2 without C2 – – – –

Run 1 (R15) 10 3 2 0

Run 2 (R16) 10 4 3 0

Run 3 (R17) 10 5 4 1

Run 4 (R18) 10 4 3 1

S3 without C3 – – – –

Run 1 (R19) 10 4 3 0

Run 2 (R20) 10 5 4 0

Run 3 (R21) 10 6 5 1

Run 4 (R22) 10 5 4 1

Table 2. Scenarios with contracts

Scenarios TS CTC STC BC

S1 with C1 – – – –

Run 1 (R31) 10 5 4 0

Run 2 (R32) 10 6 4 0

Run 3 (R33) 10 10 10 1

Run 4 (R34) 10 10 9 1

S2 with C2 – – – –

Run 1 (R35) 10 6 4 0

Run 2 (R36) 10 5 4 0

Run 3 (R37) 10 10 10 1

Run 4 (R38) 10 10 10 1

S3 with C3 – – – –

Run 1 (R39) 10 6 5 0

Run 2 (R40) 10 5 4 0

Run 3 (R41) 10 10 10 1

Run 4 (R42) 10 10 10 1

Table 3. Scenarios without contracts

Scenarios TS CT ST BC

S4 without C1 – – – –

Run 1 (R43) 10 1 0 0

Run 2 (R44) 10 1 0 0

Run 3 (R45) 10 2 1 1

Run 4 (R46) 10 1 0 1

S5 without C2 – – – –

Run 1 (R47) 10 1 1 0

Run 2 (R48) 10 2 1 0

Run 3 (R49) 10 3 2 1

Run 4 (R50) 10 3 2 1

S6 without C3 – – – –

Run 1 (R51) 10 3 2 0

Run 2 (R52) 10 2 1 0

Run 3 (R53) 10 3 2 1

Run 4 (R54) 10 3 2 1

Table 4. Scenarios with contracts

Scenarios TS CTC STC BC

S4 with C1 – – – –

Run 1 (R55) 10 4 3 0

Run 2 (R56) 10 6 5 0

Run 3(R57) 10 10 10 1

Run 4 (R58) 10 10 10 1

S5 with C2 – – – –

Run 1 (R59) 10 5 4 0

Run 2 (R60) 10 4 3 0

Run 3 (R61) 10 10 10 1

Run 4 (R62) 10 10 10 1

S6 with C3 – – – –

Run 1 (R63) 10 4 3 0

Run 2 (R64) 10 3 2 0

Run 3 (R65) 10 10 10 1

Run 4 (R66) 10 10 10 1
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5.1 Case 1: Results Without Controller Implementing Contracts

In this case we are running all the scenarios without contracts while considering
the two special cases for BC: 1. BC is implemented (BC = 1) and 2. BC is not
implemented (BC = 0). Overall it is evident from the Table 1 that when different
scenarios are run without contracts, collision will always occur specially in case
when BC = 0. However, collisions arises some how later in the case of BC = 1
(visible from the ST increase) but still collision cannot be completely avoided.
Cf and Cr do not collide with the fence or other objects on the road but they
will collide with each other due to the fact that there is no implementation of the
contracts. Therefore, when we consider the results in Table 3 where both AVs
(Cf and Cr) are driving at the same speed. It is clearly evident that the collision
occurs as soon as the simulation start running (in both cases when BC = 1 or
BC = 1) and the overall safe time ST is dramatically decreased.

5.2 Case 2: Results with Controller Implementing Contracts

In this case we are running all the scenarios with controllers implementing the
contracts while considering again the two possibilities for switching the basic
collision avoidance for BC (contract-conformant control) on or off. Overall it
is evident from the Table 2 that when the scenario is run with the controllers
implementing the contracts, collision (then with the infrastructure) will still
occur in case when BC = 0. However, no collisions occurs in the case BC = 1 as
the controllers implement contracts for collision avoidance along with the basic
collision mechanism, both working together to avoid collision (shown in the rows
with bold). Therefore, when we consider the results in Table 4 where both AVs
(Cf and Cr) are driving at the same speed. It is clearly evident that when the
contracts are implemented along with the basic collision mechanism (BC = 1),
collision can be completely avoided (as shown in the bold rows). But in all other
cases the overall safe time without contracts (ST) and safe time with contracts
(STC) is badly effected.

5.3 Discussion About Results

From Table 5 it is evident that out of the forty eight scenarios, only twelve scenar-
ios (represented in blue color) featuring both 1. contract-conformant control and
2. basic collision avoidance mechanism allows the collision free driving of AVs.
From these twelve scenarios it is evident that AV can avoid collision completely
only in case when both features 1. contract-conformant control and 2. basic col-
lision avoidance are implemented. Table 5 also considers the special scenarios
in which the speed and safe distance of scenarios are changed dynamically to
analyse the results. Although the overall results are similar in all scenarios, but
the overall safe time without contracts (ST) and safe time with contracts (STC)
is decreased in the case of special scenarios.
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Table 5. Complete results

Scenarios BC Contract Applied Collision Occurred

R11 �
R12 �
R13 � �
R14 � �
R15 �
R16 �
R17 � �
R18 � �
R19 �
R20 �
R21 � �
R22 � �
R31 � �
R32 � �
R33 � �
R34 � �
R35 � �
R36 � �
R37 � �
R38 � �
R39 � �
R40 � �
R41 � �
R42 � �

Special Scenarios

R43 �
R44 �
R45 � �
R46 � �
R47 �
R48 �
R49 � �
R50 � �
R51 �
R52 �
R53 � �
R54 � �
R55 � �
R56 � �
R57 � �
R58 � �
R59 � �
R60 � �
R61 � �
R62 � �
R63 � �
R64 � �
R65 � �
R66 � �
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6 Conclusion and Future Work

There is high speculation in the domain of AVs when the apprehensions related
to safety and reliability are considered. However, the preeminent objective in
this context is to enhance the safety of AVs by mitigating the risk of accidents
(specifically when self-driving AVs are fully deployed on the roads in near future).
The proposed technique in our work is based on capturing scenario-oriented
A/G contracts and provides a methodology for systematically deriving collision
avoidance maneuvers effective during driving. Our approach is based on 1. the
specifications of relevant scenarios (taken as test cases), 2. elucidation of specific
contracts for each scenario and implementation of a contract-conformant control
for collision avoidance, 3. statistical testing of the contract-conformant control
in work by simulating each scenario in CARLA Scenic. It is evident from the
results that controllers derived from A/G-based contracts improve the overall
safety of the AV by avoiding collision by providing safe driving maneuvers. For
the future work, we will consider more diverse scenarios based on 1. dense traffic,
2. pedestrians, 3. human-operated vehicles, and 4. cyclists. This work will allow
us to create more diverse scenario-oriented controllers implementing contracts
and thereby reinforce the safety and reliability of AVs in cases where there is a
high risk of an accident. Also, comparison to other approaches towards scenario-
based safety assurance is subject to the part of our future research.

Acknowledgement. The research presented herein has been funded by the State of
Lower Saxony as part of the collaborative research action Zukunftslabor Mobilität.
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Abstract. The road network is becoming increasingly equipped with
a multitude of sensors, monitoring a wide range of operating and con-
textual parameters. The availability of real-time sensor data enables the
realisation of diverse data-driven applications, e.g., anomaly detection,
identification of insightful patterns, monitoring the evolution of relevant
trends in time and delivery of actionable decision support. However, such
streaming data might contain vast amounts of missing values depending
on the application. This makes it very challenging, if not impossible, to
fully exploit the potential of data analysis and machine learning for these
data sources, and in particular real-time analysis is not feasible. We pro-
pose in this paper an imputation methodology dedicated to multi-source
streaming data, with a focus on the mobility domain. The proposed app-
roach is based on spatio-temporal profiling of the streaming behaviour
derived from historical data via non-negative matrix factorisation. The
profiling method takes advantage of an adaptive segmentation strategy
splitting the data into rolling time windows (chunks) allowing to use the
limited non-missing data as optimally as possible. The identified profiles
allow to devise a dynamic and scalable imputation strategy, which is able
to reliably estimate incoming missing values in streaming data as soon
as they arrive.

Keywords: Data imputation · Matrix factorisation · Streaming data ·
Vehicle counts

1 Introduction

There is an increasing trend of connecting devices (e.g., smart watches, smart
household appliances and ANPR cameras) and industrial machinery (e.g., com-
pressors, fleet tracking and melting furnaces) to the internet [20]. Since these
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assets are connected over a network, their data can be inspected in real-time.
This real-time aspect opens a wide range of opportunities as it allows for early
and continuous monitoring of trends and anomalies. By deriving an accurate
view of the latest state of affairs at all time, real-time data-driven decision sup-
port applications can be developed.

Unfortunately, exploiting directly streaming data on the fly is not straight-
forward since it is often suffering from poor quality mostly due to incompleteness
(e.g., in the mobility domain [16,25]). In practice, data capturing implementa-
tions are often rapid/experimental, i.e., sensors are quickly deployed to gather
data. Moreover, these deployments can be continuously expanding in terms of
additional sensors which are installed in order to capture supplementary infor-
mation. Last, the devices may often be located in difficult to access or widely
scattered locations (e.g., inductive loops under the asphalt of a busy road),
making it difficult to do good maintenance (e.g., replace broken sensors). Due
to these reasons, it is almost inevitable to have some flaws in the data capturing
process because of technical failures. The latter may result in various types of
missing data values: randomly scattered missing values, a single sensor missing
over a longer period, and relatively short moments in time when no values are
available at all.

Particularly in the case of streaming data, it is often important to be able to
impute missing values as soon as a limited amount of values are available. How-
ever, due to the highly dynamic nature of the data and the frequent occurrences
of long sequences of subsequent missing values, such an imputation is very chal-
lenging. For this reason, imputation approaches need to be able to learn from
the past, capturing prototypical behaviour via adequate profiling mechanisms.
Although there are many imputation algorithms proposed in the literature, some
interesting opportunities have not yet been explored. Especially in the context
of continuously incoming multi-source streaming (mobility) data, there is a lot
of room for improvement.

Some imputation algorithms are developed with the specific goal to work on
a continuous stream of data, while other algorithms try to capture the spatial
and/or temporal patterns on a static data set. Although some of these imputa-
tion algorithms yield good results, a hybrid combination of both would be more
relevant in practice since data is often both continuously incoming and exhibits
multi-source correlations. In this paper, we propose a novel imputation method-
ology for multi-source data, capable of handling continuous streaming data and
validated on real-life vehicle counting data. This approach is partially inspired
by the spatio-temporal fingerprinting approach which was proposed in [6] and
was originally used for the purpose of performance profiling. In this paper, we
exploit cleverly its characterisation potential to dynamically detect latent spa-
tial and temporal structures in multi-source data for the purpose of missing data
imputation.

The remaining of this paper is organised as follows: Section 2 focuses on
existing related approaches in the literature, while Sect. 3 outlines in detail the
proposed novel imputation methodology. Section 4 covers the obtained validation
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results of a use case on mobility data. Finally, in Sect. 5, some concluding remarks
are given.

2 Related Work

In this section, the state of the art in recent imputation strategies and approaches
is discussed. First, in Sect. 2.1, existing imputation techniques for time series are
briefly summarised. Next, in Sect. 2.2, the most relevant latest developments in
streaming data imputation approaches are discussed.

2.1 Time Series Data Imputation

Existing imputation approaches for time series data can be divided into three
different classes: interpolation, statistical learning and prediction [15]. The first
class, interpolation, is the most straightforward imputation method, as it approx-
imates the missing data by fitting a curve on top of the available data. The curve
aims to define the sequence of data points by a linear or polynomial function,
allowing to estimate unknown values [24]. Secondly, statistical learning-based
imputation approaches aim to encapsulate statistical features of the data into a
model. The latter could be achieved for example by applying the k-nearest neigh-
bours approach [4,15,17], where estimations are made based on the k most sim-
ilar situations, or a principal component analysis [18,22], where an expectation-
maximisation algorithm is used to estimate values of missing data points. Finally,
prediction-based imputation approaches aim to capture the temporal relation-
ship within time series. These imputation algorithms are developed to find long
term and short term relations, giving an idea about what value to expect next.
The autoregressive integrated moving average method [13,28] and Bayesian net-
works [9,26] are two methods that belong to the category of prediction-based
imputation approaches.

More recently, factorisation techniques are used to impute missing values in
matrix-like data sets. Completion of matrix-like data has shown to be relevant in
many applications, such as image inpainting [14] and recommender systems [21].
For example, singular value decomposition can be used for matrix completion [7].
Bao et al. [2] illustrate how this approach can be applied on a multi-variate time
series data set, where each row represents a time series for a different sensor and
each column captures exactly one value for each sensor at a particular moment
in time. Apart from the good imputation results, the non-parametric approach
allows for reliable data imputation without user intervention. Note that existing
factorisation imputation techniques are only designed to fill in gaps within a
matrix. In case of streaming data, new unseen columns (i.e., moments in time) are
continuously added to the data matrix. Consequently, the full factorisation must
be recalculated each time new columns with missing values are added to the back
of the matrix. For high-frequency multi-variate data streams, such an approach
would be highly inefficient and therefore unusable in real-time. Section 2.2 gives
an overview on the latest developments on streaming data imputation.
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2.2 Streaming Data Imputation

The increasing availability of real-time sensor data, opens a wide range of
new opportunities to instantaneously analyse the data and provide data-driven
decision-making. However, in the case of low-quality data, this means that data
imputation strategies also need to be adapted to run efficiently on new chunks
of incoming data. Coupled to this, data imputation algorithms should be able
to define a level of certainty in order to express how reliable the imputation
results are.

Depending on the use case, different streaming imputation strategies are
appropriate. In situations where computational power is limited (think of data
imputation on the edge) or a short latency is crucial, it is good practice to
construct a fixed imputation model on beforehand which allows for efficient
imputation on continuously incoming data. Following this approach, Fountas and
Kolomvatsos propose an ensemble correlation approach to identify the pairwise
similarity between a number of different sensors (i.e., multi-variate time series).
Missing values are imputed based on the values of the top-k correlated sensors,
weighted by their correlation [8]. In [6], a similar approach is proposed, imputing
missing values in an incremental way. First, missing data is imputed based on
the top-k moments in time with the most similar non-missing values. Next, the
remaining gaps are filled by use of the most similar larger periods of time (e.g.,
days).

If the data is more complex (e.g., new unseen or diverging data patterns
may arise over time) or there is initially only a limited amount of historical
data available, a continuous learning imputation approach is expected to be
more appropriate. To give an example, in [19] a single factorisation to iden-
tify temporal features for historical missing data imputation is exploited. Then,
an incremental learning scheme based on an autoregressive model is proposed,
allowing for response forecasting based on the temporal features. In the study
of Halder et al. [10], some problems with imbalanced data during data stream
imputation are considered. To overcome these problems, an adaptive imputa-
tion approach is proposed which includes an oversampling method per chunk
of streaming data and a fuzzy decomposition method to determine the interre-
lationship among instances. Despite the good results on imbalanced data sets,
this approach has some performance issues in the case of noisy data, which is
rather crucial in a real-wold context. Furthermore, none of these methods are
able to store and recognise historically occurred relations between sensors. For
instance, imagine a multivariate time series that counts the number of vehicles
on a number of streets close to a charging bridge over a canal. Whether this
bridge has opened (and influenced the traffic flow) during a gap of missing data,
is impossible to know (i.e., impute) based on only the time aspect of one sensor.
In such a case, the imputation method should be able to dynamically recognise
the situation based on the other sensors at that moment in time. The novel
imputation method we propose in this work is able to deal with such situations
and also tackles most of the other shortcomings of the related works discussed
above. More specific, our approach can efficiently impute multi-variate streaming
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data, while still considering both temporal and spatial relations using a dynamic
profiling methodology.

3 Materials and Methods

In this section the building blocks of our novel dynamic profiling and impu-
tation methodology are discussed. Section 3.1 outlines the concept of matrix
factorisation, while Sect. 3.2 is devoted to the description of the spatio-temporal
profiling. Next, Sect. 3.3 explains how to exploit the profiles to impute missing
values. Section 3.4 indicates how to deploy this approach on real-time streaming
data. Finally, Sect. 3.5 provides a description of the test data set and the used
computer code.

3.1 Matrix Factorisation

Matrix factorisation is a discipline of linear algebra allowing to decompose a
matrix into a product of matrices. One popular example of this approach is the
singular value decomposition (SVD). Consider a matrix X ∈ C

M×N . By
the use of SVD, X can be factorised into UΣV T , with U a unitary matrix
∈ C

M×M , Σ a rectangular diagonal matrix ∈ R
M×N
+ and V a unitary matrix

∈ C
N×N . SVD has many applications, such as solving homogeneous linear equa-

tions (e.g., [1]), total least squares minimisation (e.g., [27]) and low-rank matrix
approximations (e.g., [23]).

Another factorisation approach is non-negative matrix factorisation
(NMF). As the name reveals, this approach is designed to work with matri-
ces containing only positive values. Consider a matrix X ∈ R

M×N
+ . NMF is

able to approximate X by a product of two factors WS, where W ∈ R
M×R
+ ,

S ∈ R
R×N
+ and R < min(M,N). The smaller the value of parameter R, the

greater the dimensionality reduction performed, at the expense of the recon-
struction error for X. In contrast to SVD, NMF is an approximation for which
no exact solution exists. There are multiple heuristic algorithms developed to find
W and S [11]. In our approach, the fast hierarchical alternating least squares
(Fast HALS) algorithm is used [5]. Compared to SVD, the added value of NMF
is the constraint of having only positive values in matrices W and S. Depending
on the nature of the data from the original matrix, it often is a more natural
process to decompose it into positive factors [12]. To reconstruct the original
matrix X, no element-wise subtractions need to be performed.

3.2 Spatio-Temporal Profiling

Spatio-temporal profiling is an essential prerequisite for our imputation strategy.
It allows to extract latent spatial and temporal patterns from historical data,
which are subsequently used by the imputation algorithm. Consider a matrix
representing data from a multi-variate time series as visualised in Fig. 1(a). In
such a matrix, each row represents one of the M different parameters (e.g., sensor
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values for different locations). Each column represents a consecutive timestamp
(e.g., one value per minute). Considering we are working with streaming data,
the time dimension is infinite.

Adaptive Dynamic Segmentation. To obtain resilient profiles, gaps of miss-
ing data are avoided during the profiling procedure. The first step in that pro-
cedure is to extract chunks of data with a fixed time window of N timestamps.
The width N of each time window should be large enough so that meaningful
temporal patterns can be identified, but small enough so that enough chunks of
data without missing values can be found. The fulfilment of these requirements
are dependent on the use case of interest. The data chunk extraction happens
by chronologically looping over all timestamps (t1, t2 · · · , tT ), with t1 the oldest
timestamp and tT the most recent timestamp. A chunk is only selected if it con-
tains no missing values. Each time a chunk is selected, a number of timestamps
is skipped before proceeding with the selection of the next chunk in order to
avoid excessive overlap between chunks. As a rule of thumb, we do a forward
jump of 1

3N timestamps in order to have a maximum overlap of 2
3N timestamps

between chunks. In Fig. 1(b), the selected chunks from Fig. 1(a) are visualised.
The overlap between the different chunks is essential for being able to capture
transitions between different patterns in time.

Fig. 1. Selection of data chucks for profiling.
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In the second step, all selected data chunks are stacked on top of each other:

X =

⎡
⎢⎢⎢⎣

X1

X2

...
XL

⎤
⎥⎥⎥⎦ ∈ R

(ML)×N
+ , (1)

where Xi represents the ith selected chunk and L the total number of selected
chunks.

Temporal Profiles Extraction. Temporal profiles are extracted from the
stacked matrix X by applying a decomposition method. In this paper, NMF is
used due to the non-negative properties that are suitable for the use case data
and to facilitate interpretation. In this way, matrices W and S are obtained as
shown in Eq. (2). Conceptually, each row of matrix S can be interpreted as a
temporal profile while matrix W represents the weights, which can be used to
reconstruct X thanks to the temporal building blocks from S.

X ≈ WS, (2) X ≈

⎡
⎢⎢⎢⎣

W1

W2

...
WL

⎤
⎥⎥⎥⎦ S. (3)

These matrices are as follows: W ∈ R
(ML)×R
+ and can be evenly split into

L sub-matrices Wi ∈ R
M×R
+ , with i = 1, 2, . . . , L (see Eq. (3)), S ∈ R

R×N
+ , and

R ∈ N+ being a hyperparameter representing the amount of temporal profiles,
as explained in Sect. 3.1. Moreover, each chunk Xi can be approximated by a
weighted sum of the temporal profiles as shown in Equation (4).

Xi ≈ WiS, with 1 ≤ i ≤ L. (4)

Alternatively, SVD or any other decomposition technique could be used
depending on the properties of the use case (e.g., if values can be negative). Note
that in the case of SVD three matrices are obtained (see Sect. 3.1). However, in
this situation, matrices U and Σ should be multiplied to replace the weight
matrix W , while V T can directly be used as the temporal profile matrix S.

Spatial Profiles Extraction. The decomposition of matrix X above via
NMF resulted in latent temporal profiles and corresponding weights. The weight
matrix W is of interest for further decomposition since it contains useful rela-
tional information between the different data sources. In situations where each
parameter represents a sensor at a different location, this can be interpreted as
the spatial relationship. To extract those relations, each individual weight matrix
Wi is first transposed. Then, a modified weight matrix W ′ is constructed that
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vertically stacks all individual transposed matrices:

W ′ =

⎡
⎢⎢⎢⎣

W T
1

W T
2
...

W T
L

⎤
⎥⎥⎥⎦ ∈ R

(RL)×M
+ . (5)

Next, we approximate this modified weight matrix W ′ (by using a suitable
factorisation approach) as the product of two matrices V and U , as shown
in Eq. (6). Assuming we again use NMF, both matrices will be non-negative.
Similarly as above, the rows of the resulting matrix U can be interpreted as a
set of prototypical spatial profiles, which can be used to reconstruct W ′ by the
weights of matrix V .

W ′ ≈ V U , (6) W ′ ≈

⎡
⎢⎢⎢⎣

V1

V2

...
VL

⎤
⎥⎥⎥⎦ U , (7)

with V ∈ R
(RL)×Q
+ , V can be evenly split into L sub-matrices Vi ∈ R

R×Q
+ ,

with i = 1, 2, . . . , L, U ∈ R
Q×M
+ , and Q ∈ N+ being a hyperparameter repre-

senting the amount of spatial profiles. Similarly, Eq. (7) can be split as follows:

W T
i ≈ ViU , with 1 ≤ i ≤ L. (8)

3.3 Estimation of Missing Values

Spatial and temporal profiles, as extracted in Sect. 3.2, contain very valuable
information which can be used to estimate missing values. To do that, we com-
bine Eq. (4) and (8) as follows:

Xi ≈ (ViU)T S. (9)

In this equation, any chunk Xi is expressed as the weighted combination of
the temporal and spatial profiles using the weight matrix Vi. Since the temporal
and spatial profiles contain the latent building blocks for any period in time, this
equation is assumed to also hold for any chunk with missing data (Xmissing).
In that case, some values of Xmissing, as well as Vmissing, are unknown. Conse-
quently, these unknown values can be heuristically found as a continuous opti-
misation problem. Technically, this can be achieved by minimising the squared
error between values from the resulting matrices from the left and right sides of
Eq. (9), as shown in Eq. (10):
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min
χ,Vmissing

:
(
Xmissing[1,1] − X̂[1,1]

)2

+ · · · + (Xmissing[1,N ] − X̂[1,N ])2

+
(
Xmissing[2,1] − X̂[2,1]

)2

+ · · · + (Xmissing[2,N ] − X̂[2,N ])2

...

+
(
Xmissing[M,1] − X̂[M,1]

)2

+ · · · + (Xmissing[M,N ] − X̂[M,N ])2

s.t. : X̂ = (VmissingU)T S

χ := {Xmissing[i,j] | [i, j] is missing in Xmissing }
x ≥ 0 for x ∈ χ

Vmissing[i,j] ≥ 0 for 1 ≤ i ≤ Q and 1 ≤ j ≤ R,
(10)

with indices between squared brackets representing the coordinates of one value
within a matrix, e.g., Xmissing[i,j] being the value in matrix Xmissing at row i
and column j.

3.4 Imputation Strategy

The design of our novel imputation approach allows for data imputation on both
historical and streaming data. The approach is focused on mobility data due to
its strong spatial and temporal dependencies. However, it can be used in other
domains that exhibit such strong dependencies. The imputation workflow’s steps
are as follows:

1. Composition of training data repository. Starting from historical data
covering a sufficiently long time period allowing to capture all possible tem-
poral and spatial patterns, a representative training data repository of only
complete data chunks is composed following the segmentation approach in
Sect. 3.2.

2. Extraction of spatio-temporal profiles. Following the two-step process
described in Sect. 3.2, prototypical spatio-temporal profiles are extracted from
matrix X, constructed by stacking vertically the data chunks from the train-
ing repository.

3. Imputation. To impute data, chunks with missing data are extracted in the
same way as in Fig. 1. However, a candidate data chunk X(ti) is now only
selected if it contains at least one missing value. Subsequently, the missing
values in each data chunk are estimated as outlined in Sect. 3.3. Since chunks
are allowed to overlap with 2

3N timestamps, each missing data point occurs in
exactly 3 chunks. The relative position of a particular missing value in a chunk
has an influence on the matched temporal profiles since each time window
captures a different part in time, giving thus slightly deviating estimations.
To obtain the most resilient imputation, the average of all three estimations
is used to finally impute the missing value.
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– For historical data, all missing values are imputed at once following the
process described above.

– For real-time streaming data, at any moment a chunk with missing data is
detected and selected, estimations are immediately computed for missing
values in that chunk. Because the average of the estimation for the 3
overlapping incomplete chunks is used as final imputation value, the real-
time imputation faces a latency of up to one time window (N timestamps).
In parallel, one should monitor for concept drift since streaming data
might be capturing a deviating or changing phenomenon. In that case,
the spatial and temporal profiles need to be updated. To ease this update,
chunks with no missing values should be identified as they are encountered
and stored in the training data repository in order to be used later on.

3.5 Data and Computer Code

To illustrate the novel imputation approach proposed in this work, experiments
have been carried out on a real-world data set from the mobility domain. More
specifically, vehicle counts from 16 automatic number-plate recognition (ANPR)
cameras were used. As shown in Fig. 2, the cameras are situated in 8 different
locations on a circumferential urban highway (i.e., the small ring of Brussels,
Belgium), while each camera monitors traffic in one direction. The data covers
a period of 20 months, from February 2020 until the end of 2021. Within this
period, the amount of vehicles that passed by per minute is provided for each
location. This data has been collected using the real-time open API of Brussels
Mobility1, the public administration responsible for the mobility infrastructure
in Brussels.

An interesting aspect of this specific data set is that the 16 ANPR cameras
are situated along one single road, half of them in each direction (see Fig. 2).
Therefore, many vehicles traverse several, if not all, of the 8 locations in one
direction, creating a flow of vehicles. Note however that, as only aggregated
information about vehicle counts is available, it is not possible to track the
trajectory followed by an individual vehicle. It is important to understand that
the quality of this real-world data set is not very high. Over 23% of all values
are missing, making further advanced analysis of this data not really feasible,
unless an appropriate data imputation method could increase the completeness.

The implementation of the proposed methods was done in Python. The
Python code can be provided on request.

4 Results and Benchmarking

To validate the proposed imputation method, vehicle counting data for 16 loca-
tions, as described in Sect. 3.5, is used. Section 4.1 explains the construction of
the training and validation data sets. Next, in Sect. 4.1, the imputation results
on the validation data sets are given. Finally, the imputation results are bench-
marked in Sect. 4.2.
1 https://data.mobility.brussels/traffic/api/counts/.

https://data.mobility.brussels/traffic/api/counts/
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Fig. 2. Map of the ANPR cameras in Brussels, Belgium.

4.1 Validation Strategy

The original real-world data set as described in Sect. 3.5 is first smoothed such
that a continuous flow of data points is obtained. The latter is achieved by
assigning per minute the mean value of the (known) values for the last 15 min.
In this way, time gaps of up to 14 min are filled while the data set’s original
granularity is preserved.

Validation Data Sets. To allow for a qualitative and objective validation
of our imputation approach, the ground truth of the missing values needs to be
known. Since the missing data rate of our original data set (>23%) is too high to
introduce additional missing values, several validation data sets are constructed
as follows. After smoothing, only the 34 days with no missing values are retained.
Next, 5 validation data sets with missing values are composed by randomly
removing data values from these 34 days. Each data set has a different level of
missing values: 5%, 10%, 15%, 20% and 25%.

Training Data Sets. To derive representative spatio-temporal profiles, we need
more than 34 full days. For this reason, a dedicated training data set is composed
for each of the 5 validation data sets, containing the smoothed data of all 20
available months. The 34 full days are contained with their different amounts of
added missing values across the different data sets.

To validate our imputation approach on historical data, the training data set
allows for the derivation of spatio-temporal models from the full time period,
while the validation data set is used to validate the imputation accuracy based
on the ground truth of the 34 full days. For the validation of our approach
on streaming data, we split both data sets in two parts. The first 9 months of
the training set are used to derive the spatio-temporal models. Next, the (16)
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days in the validation set that fall after those 9 months are used to validate the
imputation approach. In this way, we can test how well our historical spatio-
temporal patterns can be used to impute future data.

Profile Extraction. As explained in Sect. 3.2, first the spatial and temporal
profiles are extracted from the training set. The chunks Xi have a spatial dimen-
sion (M) of 16 and a temporal dimension of 3 h (N = 180). The latter was chosen
as a trade-off between a higher chance to segment a complete time window (no
missing values), while still capturing sequences that represent a meaningful ten-
dency. In addition, the lower the value of N , the larger the training set of chunks
becomes. Since we use NMF as decomposition approach, the rank hyperparam-
eter has to be chosen for both the extraction of the spatial and the temporal
profiles. As validation method for the rank of the temporal (R) and spatial (Q)
profile extraction we used the explained variance, i.e., the ratio between the
variance after reconstruction and the original variance. We considered a rank
resulting in an explained variance of over 99% as fulfilling, although we exper-
imented with some other levels of explained variance. To obtain an explained
variance of 99%, an R value of 64 and a Q value of 14 were chosen. To estimate
the imputation values, the limited-memory version with bound constrains of the
Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS-B) was used [3]. As ini-
tial solution for V T

missing, a linear interpolation per vehicle counting location was
used. As shown in Fig. 3, the amount of latent temporal and spatial profiles has a
big impact on the root mean squared error (RMSE) for all of the 5 training and
validation data sets. Note that the RMSE values are only based on the artificially
removed data values in 34 out of the 708 days since we only know the ground
truth of these values. Remarkably, the imputation approach gives better results
in the cases where more data is missing. The latter might be attributed to the
increased degrees of freedom, avoiding the optimisation algorithm to overfit on
the non-missing values. This statement will of course not hold for more extreme
ratios of missing values.

Fig. 3. RMSE values for various hyperparameters on different degrees of missing values.
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4.2 Imputation Results

Figure 4a compares the RMSE of the two imputation approaches, in combina-
tion with the two best parameter settings from Fig. 3 for the validation strategy
on historical data. As baseline imputation algorithm, we simply impute a miss-
ing value by copying the value from one week back at the same time. If that
value would also be missing, we trace back in past weeks until a value is found.
Traffic has a very clear weekly pattern and therefore this imputation method
produces quite accurate imputation results as it can be witnessed in Fig. 4a (see
“Preceding Weekday Imputation”). To compare the results with a state of the
art imputation algorithm, the incremental spatio-temporal imputation method
from [6] was chosen. Since the same data set was used in that paper, we reused
the same hyperparameters. Compared to the baseline algorithm, only a small
improvement was obtained for missing value rates of 5% and 10% as depicted in
Fig. 4a (see “Incremental Imputation Method”). Figure 4a also illustrates that
the two different versions of our dynamic profiling approach strongly outperform
both alternative imputation approaches. Moreover, the strength of the dynamic
profiling approach for higher missing rates is also very clearly demonstrated.

In Fig. 4b, the RMSE values for the validation strategy on streaming data
are shown. Although this is a more difficult task, as confirmed by the increased
RMSE values of the “Preceding Weekday Imputation” and “Incremental Impu-
tation Method”, the performance of the dynamic imputation methodology is
equally as good as during the benchmarking on historical data imputation. This
illustrates that our novel dynamic imputation method is able to robustly extract
the latent spatio-temporal structures even from a reduced historical data set.

Fig. 4. Comparative results for various imputation strategies on different degrees of
missing values.

5 Conclusion

In this work, we introduced a novel data imputation approach for multi-source
streaming data. The method relies on spatio-temporal patterns, which are
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extracted via a double factorisation approach, and are able to encapsulate latent
information structures in historical data. Real-world vehicle counting data has
been used for the validation phase. The obtained results show that the approach
performs extremely well for data sets with high rates of missing values (20–25%).
The latter are very often detected in mobility data.

As future research we plan a further validation of the imputation approach
by considering more advanced and realistic patterns for missing values, including
a single sensor missing over a longer period and relatively short moments in time
where no values are available at all. Our expectations are that the usage of spatio-
temporal profiles might be even superior to alternative imputation methods as
our approach can exploit patterns from both spatial and temporal dimensions
simultaneously. Finally, we will try to improve the dynamic imputation method-
ology by experimenting with more intelligent initialisation strategies, as these
can help the L-BFGS-B algorithm to converge faster and find better estimations.
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