
Chapter 4
Metropolis Algorithm

General aspects of the Markov Chain Monte Carlo algorithms, which we learned in
the previous chapter, may have left you confused. To really understand the subject,
we need concrete examples and implementations. In this chapter, we introduce the
Metropolis algorithm [1, 2], which is the most famous version of MCMC, and use
it to demonstrate how actual simulations are done.

Though MCMC is used for complicated calculations, when we learn how to use
them there is absolutely no need for using complicated examples. In this chapter,
we start with the easiest example: univariate integration. This example tells you all
the essence of the Markov Chain Monte Carlo algorithms. Toward the end of the
chapter, we discuss the multivariate version as well. Hopefully, you will be surprised
in a good sense: the generalization to multivariate integral is very straightforward.

4.1 Metropolis Algorithm

Suppose that a probability distribution P(x) is written as

P(x) = e−S(x)

Z
. (4.1)

In physics, the function S(x) is called the action and the normalization factor Z is
called the partition function. If you are reading this book having the application to
statistics in mind, you can regard S as log-likelihood up to a sign. Below, we assume
that S(x) is a continuous function of a real variable x .1 In the case of the Gaussian

1 An example with discrete variables is the Ising model which will be explained in Sect. 6.2.
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distribution, the action is S(x) = x2

2 and the partition function is Z = √
2π . Usually,

in practical applications, only S(x) is known and Z is unknown.
In the Metropolis algorithm, starting with an initial value x (0), a sequence x (1),

x (2), . . ., x (k), x (k+1), . . . is generated as follows:
Metropolis algorithm� �

1. Choose a real number �x randomly, and propose x ′ = x (k) + �x as a can-
didate for x (k+1). To satisfy the detailed balance condition, we choose the
probability distribution of�x such that�x and−�x appear with the same
probability. (Here, we choose an appropriate c > 0 and use the uniform
random numbers between −c and +c.)

2. Metropolis test: the candidate x ′ is accepted and the value of x is
updated as x (k+1) = x ′ with a probability min(1, eS(x (k))−S(x ′)). (Here
min(1, eS(x (k))−S(x ′)) means the smaller one of 1 and eS(x (k))−S(x ′). ) Other-
wise x ′ is rejected and the value of x remains unchanged, as x (k+1) = x (k).

� �
Note that �x is chosen randomly at each k. For the Metropolis test, a uniform
random number r between 0 and 1 is generated, and the proposal x ′ is accepted if
r < eS(x (k))−S(x ′).

Among the four conditions listed in Chap. 3, we can immediately check three of
them:

• We choose�x randomly without referring to the history, so it is trivially aMarkov
chain.

• Because we are considering a connected domain of integration, any pair of x and
x ′ can be connected with a finite number of steps. Hence, this Markov chain is
irreducible.

• For any ns = 1, 2, . . . and x , there is a path connecting x and itself with ns steps.
(ns = 1 is realized when �x = 0. Except for the maxima of S(x), ns = 1 can be
realized also when the proposed candidate x ′ is rejected at the Metropolis test.)
Hence, the period is 1 for any x , and this Markov chain is aperiodic.

The detailed balance condition is also satisfied. This is a little bit nontrivial, so
let us follow the logic carefully:

• First of all, because we assume −c < �x < c, the transition probability is zero if
|x − x ′| ≥ c:

T (x → x ′) = T (x ′ → x) = 0 if |x − x ′| ≥ c. (4.2)

In this case, the detailed balance condition is trivially satisfied as

P(x) · T (x → x ′) = P(x ′) · T (x ′ → x) = 0. (4.3)

• If |x − x ′| < c,�x = x ′ − x and−�x = x − x ′ appear with the same probability
1
2c . (More precisely, this is the probability density. The probability that x ′ − x <
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�x < x ′ − x + ε is ε/2c.) By multiplying this and the probability of passing the
Metropolis test, we obtain

T (x → x ′) = 1

2c
× min(1, eS(x)−S(x ′)), (4.4)

T (x ′ → x) = 1

2c
× min(1, eS(x ′)−S(x)). (4.5)

Suppose S(x) ≥ S(x ′). Then eS(x)−S(x ′) ≥ 1, and hence, a proposal x → x ′ passes
theMetropolis test with 100%probability, and hence, T (x → x ′) = 1

2c . Therefore,

P(x) · T (x → x ′) = e−S(x)

Z
× 1

2c
. (4.6)

On the other hand, eS(x ′)−S(x) ≤ 1, and hence T (x ′ → x) = eS(x ′)−S(x)

2c . Therefore,

P(x ′) · T (x ′ → x) = e−S(x ′)

Z
· e

S(x ′)−S(x)

2c
= e−S(x)

Z
× 1

2c
. (4.7)

In this way, we could confirm that the detailed balance condition P(x) · T (x →
x ′) = P(x ′) · T (x ′ → x) is satisfied.
When S(x) < S(x ′), we can easily check the detailed balance condition by repeat-
ing the same argument exchanging the roles of x and x ′.

4.2 Calculation of Expectation Value

Let us see a concrete example of the calculation based on the Metropolis algorithm.
As before, we use S(x) = x2

2 . Here is a sample code in C:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>

int main(void){
int niter=100; //Collect 100 samples.
double step_size=0.5e0; //Set step size to be 0.5.

srand((unsigned)time(NULL));
//Set the seeds of random numbers by using the system clock.

/*********************************/



42 4 Metropolis Algorithm

/* Set the initial configuration */
/*********************************/
double x=0e0;
int naccept=0; //Counter for the number of acceptance.
/*************/
/* Main loop */
/*************/
for(int iter=1;iter<niter+1;iter++){
double backup_x=x;
double action_init=0.5e0*x*x;

double dx = (double)rand()/RAND_MAX;
dx=(dx-0.5e0)*step_size*2e0;
x=x+dx;

double action_fin=0.5e0*x*x;
/*******************/
/* Metropolis test */
/*******************/
double metropolis = (double)rand()/RAND_MAX;
if(exp(action_init-action_fin) > metropolis)
/* accept */
naccept=naccept+1;

else
/* reject */
x=backup_x;

/***************/
/* data output */
/***************/
printf("%.10f %f\n",x,(double)naccept/iter);}

}

Let us decipher this sample code line by line. Firstly, we set the seed of the random
number generator:

srand((unsigned)time(NULL));

Here, we are using the default random number generator in the system. It is not a
good habit to use the same sequence of random numbers every time, so we used the
system time as a seed. For more serious, large-scale simulations, we recommend you
use amore sophisticated random number generator such as theMersenne Twister [3].

Next, we set the initial condition. Here we chose x = 0:

double x=0e0;
int naccept=0;

naccept is a counter for the number of acceptances (i.e., howmany times proposals
of the update x → x ′ are accepted).

The following “main loop” is the main part. The variable iter corresponds
to k. (iter means iteration.) An integer niter is the number of iterations, or
equivalently, the number of configurations generated during the simulation. Before
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the Metropolis test, we do not know whether the proposed value will be accepted or
not, so we save the value of x = x (k) in backup_x,

double backup_x=x;

then we calculate the action action init = S(x (k)) as

double action_init=0.5e0*x*x;

Here “init” means initial, namely, this is the ‘initial’ action before the candidate x ′ is
proposed. Next, dx = �x is randomly generated and x ′ = x (k) + �x is calculated:

double dx = (double)rand()/RAND_MAX;
dx=(dx-0.5e0)*step_size*2e0;
x=x+dx;

Note that a random number between 0 and 1 is generated as rand()/RAND MAX,
then it is shifted and rescaled such that a uniform random number between−c and+c
is obtained. By using x ′ obtained in this way, action fin = S(x ′) is calculated
(“fin” means final). Finally, the Metropolis test is performed:

/*******************/
/* Metropolis test */
/*******************/
double metropolis = (double)rand()/RAND_MAX;
if(exp(action_init-action_fin) > metropolis)

/* accept */
naccept=naccept+1;

else
/* reject */
x=backup_x;

metropolis is a uniform random number between 0 and 1, which corresponds to
r . Depending on the outcome of the Metropolis test, the candidate x ′ is accepted or
rejected.

All programs based on Markov Chain Monte Carlo have essentially the same
structure. Depending on the details of the problems, more sophisticated algorithms
may be used, but essentially, any algorithm amounts to the improvement of x →
x ′ = x + �x . Therefore, if you could understand how this program works, you can
understand any complicated programs for MCMC except for technical details.

Let us see a result of an actual simulation. We take the initial configuration to be
x (0) = 0, and use the step size c = 0.5. (As we will see later, this choice of step size
c is not optimal.) In Fig. 4.1, the distribution of x (1), x (2), . . . , x (K ) is shown for K =
103, 105, 107. We can clearly see the convergence to the target distribution P(x) =
e− x2

2√
2π

as K becomes larger. In Fig. 4.2, the expectation values 〈x〉 = 1
K

∑K
k=1 x

(k)

and 〈x2〉 = 1
K

∑K
k=1

(
x (k)

)2
are plotted. As K becomes larger, they converge to the

correct values (i.e., the expectation values under the target distribution) 0 and 1.
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Fig. 4.1 The histogram of x (1), x (2), . . . , x (K ) for K = 103, 105 and 107. It converges to the target

distribution P(x) = e− x2
2√
2π

as K becomes large

Fig. 4.2 〈x〉 = 1
K

∑K
k=1 x

(k) and 〈x2〉 = 1
K

∑K
k=1

(
x (k)

)2
. They approach the correct values 0 and

1 as K increases

The step size c is taken such that the acceptance rate (the probability that the
proposal x → x ′ = x + �x is accepted) is not too large and not too small. If c is
too large, the acceptance rate is very small, and the value of x rarely changes. If c
is too small, the acceptance rate becomes almost 100%, but the change at each step
is too small and hence x stays more or less the same value for a long time. Either
way, compared to the optimal value of c, a lot more steps are needed in order to
approximate the correct statistical distribution. This point is explained in detail in
Sect. 4.3.

Typically, 30%–80% acceptance rate is the sweet spot. However, it depends on
the algorithm and/or the kind of integral under consideration.
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Fig. 4.3 The histogram of
K = 107 configurations
obtained by using the
Metropolis algorithm, with a
wrong choice �x ∈ [− 1

2 , 1
]
.

The dashed line is the target

distribution P(x) = e− x2
2√
2π

.
Because the detailed balance
condition is not satisfied, the
target distribution is not
correctly reproduced
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Example of Incorrect Implementation

People learn from their mistakes. To use theMetropolis algorithm correctly, let us see
an example of a wrong way of using the algorithm. Suppose we chose �x randomly
between − 1

2 and 1. Then the detailed balance condition is not satisfied; it can easily
be seen by noticing that a transition 0 → 1 can happen with a nonzero probability
while 1 → 0 cannot. The distribution of x calculated this way is shown in Fig. 4.3.
Obviously, the target distribution is not correctly reproduced.

4.3 Autocorrelation

In principle, just by following the rules we have seen so far, we can always generate
the target distribution. However, that it is correct in principle does not mean it is
practically useful. Because we cannot live forever, we need to reach the target distri-
bution as quickly as possible. Furthermore, we have to make sure that the samples we
got are “good” ones. For example, even if we got 10,000 samples, if the acceptance
rate is too low and we got only 10 different values, each of them appearing 1000
times, then the value of such “bad” samples is just the same as the value of 10 “good”
samples.

The correlation is an important keyword to understand this issue. In Markov
Chain Monte Carlo, because x (k+1) is obtained by slightly changing x (k), they are
correlated to each other. This correlation is called the autocorrelation. If the step
size is too small or the acceptance rate is too low, the autocorrelation can be very
large. If the autocorrelation is larger, it takes a longer time for the convergence to
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the target probability distribution, and the quality of the samples becomes poorer. In
this section, we will see how the autocorrelation can be estimated, and how it can be
reduced.

4.3.1 Correlation with the Initial Value and Thermalization
(Burn-in)

When we studied the Gaussian distribution P(x) = e− x2
2√
2π

, we took the initial config-

uration to be x (0) = 0. We chose this value because we knew the center of the target
distribution is x = 0.What could happen if we took the initial configuration far away
from the center of the target distribution, say x (0) = 100?

The result of the simulation with x (0) = 100 is shown in Fig. 4.4. We can see
that the value of x stays large for a while, because of a strong correlation with the
initial value x (0) = 100.After some time, the correlationwith the initial configuration
disappears, and the fluctuation about the center of the target distribution (x = 0) sets
in. That the simulation reached the center of the distribution in this way is sometimes
expressed as “the simulation (or the Markov chain) thermalized” or “the simulation
reached thermalization”. It is also said that “the Markov chain has burned in”.

As the word “thermalization” suggests, intuition from physics is useful to under-
stand this phenomenon. Imagine we put a small piece of ice into a cup of water. Until
the ice completelymelts, heatmoves fromwater to ice. This is not a thermalized state,
rather the effect from a particular choice of the initial condition (“put a small piece of
ice into the water”) is still there. However, after some time, the ice completely melts,
temperature becomes uniform everywhere in the cup, and macroscopically we will
not see a change anymore. This is the thermalized state. Each molecule is moving
fast even in the thermalized state, but macroscopically it is just a “typical state”. The
analogous situation in the Markov Chain Monte Carlo simulation is that the corre-

Fig. 4.4 The history of the
simulation of the Gaussian
distribution via the
Metropolis algorithm. The
step size is c = 0.5. Because
we chose the initial value to
be x = 100, which is very
far from the typical values,
the strong correlation with
the initial value remains for a
while, and it took a lot of
steps to reach the typical
values |x | ∼ 1
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Fig. 4.5 The zoom-in of
Fig. 4.4, from k = 1000 to
k = 2000. Strong
correlations survive at least
for 20 or 30 steps

lation with the initial configuration became sufficiently small and the configurations
are moving in the important regions dominating the integral. From this analogy, the
meaning of the word “thermalization” should be clear. (As we will explain shortly,
“thermalization” is used for another meaning as well; be cautious!)

When we calculate the expectation value, (unless the number of samples is
extremely large) a large error arises if we use the non-thermalized configurations,
because of the strong influence from the initial condition. Practically, we have to dis-
card the samples before the thermalization. In Fig. 4.4, the thermalization is achieved
by k ∼ 800, so if we discard k ≤ 1000 it should be more than enough. To make a
more quantitative estimate, we should plot the expectation value calculated by using
k ≥ Kcut as a function of Kcut. At sufficiently large Kcut, the dependence on Kcut

disappears, which means that the effect of the initial condition disappeared.
When we study more complicated probability distributions, often we do not even

know the rough shape of the target distribution. In such cases, we should plot several
quantities, e.g., the energy or pressure if we are solving a physics problem. If they
change monotonically, it is likely that the simulation has not thermalized yet. If
the simulation reached thermalization, they would oscillate around the expectation
values. In Fig. 4.5, at first x monotonically decreases, then it fluctuates about zero.

4.3.2 Autocorrelation

Some care is needed even after the thermalization. In Fig. 4.5, we zoomed in on the
interval 1000 ≤ k < 2000 of Fig. 4.4. We can see the correlation between config-
urations, at least for 20 or 30 steps. This length (number of steps) that is needed
for the autocorrelation to disappear is called the autocorrelation length. (A more
quantitative estimate is given in Sect. 4.3.3.) If we treat correlated configurations as
if they are independent, the statistical error is under-estimated. We cannot call two
configurations independent unless they are separated by at least the autocorrelation
length.
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In order to estimate the expectation values precisely, sufficiently many indepen-
dent configurations are needed. Otherwise, the expectation values fluctuate as the
number of samples grows. The expression “the simulation thermalized” is used also
to mean that sufficiently many independent configurations are collected, and the
expectation values cease to fluctuate too much.

4.3.3 Jackknife Method

The Jackknife method [4–6] is an easy and effective way of estimating the autocor-
relation. Here, for simplicity, we assume that the quantities we want to calculate can
be obtained at each configuration.2 Namely, we consider the quantities that can be
expressed as a function of x as f (x). For more generic cases, see Appendix D.

First we divide the samples into groups consisting of w configurations; the first
group is {x (1), x (2),. . .,x (w)}, the second group is {x (w+1),x (w+2),. . .,x (2w)}, and so on.
Let the number of groups obtained this way be n. The average of f (x) in the l-th
group is

f̃ (l,w) ≡ 1

w

lw∑

j=(l−1)w+1

f (x ( j)). (4.8)

By using f̃ (l,w), the Jackknife error is defined as

�w ≡
√
√
√
√ 1

n(n − 1)

n∑

l=1

(
f̃ (l,w) − f

)2
. (4.9)

Here f̄ is the average of f (x) obtained by using all configurations. Namely, the
Jackknife error is the standard error obtained by treating each of the n groups as an
independent sample and regarding f̃ (l,w) as the value obtained from those indepen-
dent samples.

If there are sufficiently many samples, �w grows gradually with w, and beyond
some point (say at w ≥ wc) �w becomes almost constant. The values of wc and �wc

obtained in this way give a reasonable estimate of the autocorrelation length and the
statistical error, respectively.

In Fig. 4.6, the expectation value of x2 and the Jackknife error �w are shown.
The error bar spreads quickly up to w = 20 or so, but after w = 40 there is almost
no change. Hence w = 50 should be a safe choice. In Fig. 4.7, the values of f̃ (l,w)

calculated with w = 50 are plotted. Almost no autocorrelation is visible, and hence,
we can safely regard each group as an independent sample. The result obtained this

2 Quantities not in this class include the variance of the probability distribution. Another example
is the mass of a composite particle in a physics simulation.
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Fig. 4.6 The expectation
value of x2 and the Jackknife
error
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each group f̃ (l,w), with the
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way was 〈x2〉 = 0.982 ± 0.012, which is in a reasonably good agreement with the
analytic value 〈x2〉 = 1.

Let us calculate a little bit by hand, to understand why the autocorrelation length
can be estimated by using the Jackknife method. We consider two different widths
w and 2w for the grouping. Then, by construction,

f̃ (l,2w) = f̃ (2l−1,w) + f̃ (2l,w)

2
. (4.10)

If n groups are obtained when the width is w, then n
2 groups are obtained when the

width is 2w. Hence the Jackknife error obtained by using the width 2w is
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�2w =
√
√
√
√ 1

n
2

(
n
2 − 1

)

n/2∑

l=1

(
f̃ (l,2w) − f

)2

=

√
√
√
√
√ 4

n(n − 2)

n/2∑

l=1

⎛

⎝

(
f̃ (2l−1,w) − f

)

2
+

(
f̃ (2l,w) − f

)

2

⎞

⎠

2

. (4.11)

If the w is sufficiently large such that f̃ (2l−1,w) − f and f̃ (2l,w) − f can be inter-
preted as independent samples fluctuating about zero, then the products of indepen-

dent quantities,
(
f̃ (2l−1,w) − f

)
·
(
f̃ (2l,w) − f

)
, should be averaged to zero when

summed over l. Therefore, approximately,

�2w ∼
√
√
√
√ 1

n2

n∑

l=1

(
f̃ (l,w) − f

)2 ∼ �w (4.12)

has to hold. (Note that we assumed that n is sufficiently large.) Therefore, when w

is larger than the autocorrelation length, �w is almost constant.

4.3.4 Adjustment of the Step Size

To perform the simulation efficiently, we have to tune the parameters appropriately
such that more independent samples are generated with less cost.3 In the current
case, the step size is the parameter to be tuned.

In the Metropolis algorithm, the candidate of the new configuration is accepted
with the probability min(1, e−�S), where �S is the increment of the action S. Let
us consider the case of the Gaussian integral S(x) = x2

2 again, and suppose that the
transition from x ∼ 0 to x + �x was proposed. Then, if �x � 1, the acceptance
probability is min(1, e−�S) = e−�S  1, namely, the candidate is rejected almost
with 100%probability. In other words, only�x � 1 has a reasonable chance of being
accepted. If the step size c is too large, �x � 1 is obtained only with probability 1

c .
Hence, the acceptance rate becomes very small. Furthermore, even when the value
of x is updated, it just means the change �x was of order 1, regardless of the value
of c. Therefore, the acceptance rate is sacrificed for nothing, and the autocorrelation
length increases proportionally to c. In such a parameter region, the product of the
step size c and the acceptance rate becomes constant. On the other hand, if c becomes
too small, the acceptance rate is almost 100%, but the amount of the change at each
step decreases proportionally to c. Such a process can be regarded as the random

3 Here, we assume that the “cost” is the amount of computation, or equivalently the time or the
electricity bills for the computation. When we use parallel computers, we can save time by paying
more electricity bills, so the notion of “cost” is not trivial.
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Table 4.1 The relation between the step size c and the acceptance rate, measured from 10,000
samples

Step size c Acceptance rate c × acceptance rate

0.5 0.9077 0.454

1.0 0.8098 0.810

2.0 0.6281 1.256

3.0 0.4864 1.459

4.0 0.3911 1.564

6.0 0.2643 1.586

8.0 0.1993 1.594

Fig. 4.8 〈x2〉 = 1
K

∑K
k=1

(
x (k)

)2
with several different choices of the step size c. The simulation

is not efficient when the step size is too big or too small

walk with the step size c. Typically, in the random walk, the change of the value of
x after n steps is c

√
n. For this reason, the autocorrelation length is proportional to

1
c2 . Therefore, the autocorrelation length will be minimized when c is not too large
and not too small.

In Table 4.1, the acceptance rates at several values of c are summarized. The
product of c and the acceptance rate is almost constant at c > 4, which suggests
that c is too large there. At c = 0.5 and c = 1.0 the acceptance rate is high, which
suggests c is too small. Hence, c = 2.0 ∼ 4.0 appears to be the optimal choice.

In Fig. 4.8, we showed how 〈x2〉 converges to 1, for several values of c. With
c = 2.0 or c = 4.0, faster convergence can be seen compared to smaller or larger c.

4.3.5 Box-Muller Method Revisited

The Box-Muller method introduced in Sect. 2.4.1 can be regarded as a special kind
of Markov Chain Monte Carlo. Let us call the Gaussian random numbers generated
by the Box-Muller method as x (0), x (1), x (2), . . .. We can confirm that they satisfy
the conditions for MCMC:
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• It is aMarkov chain, namely, the probability that x (k+1) is obtained does not depend
on x (0), x (1), . . . , x (k−1). This condition is satisfied trivially—in fact x (k+1) does
not even depend on x (k). Expressed as an equation, the transition probability is
T (x → x ′) = P(x ′).

• The irreducibility is also trivially satisfied. Any transition can happen just by one
step.

• It is easy to confirm the aperiodicity as well. Starting from x , there is a chance to
come back to x after any number of steps.

• The detailed balance condition can be confirmed as follows:

P(x) · T (x → x ′) = P(x ′) · T (x ′ → x) = P(x) · P(x ′). (4.13)

In the usualMarkovChainMonteCarlomethods such as theMetropolis algorithm,
x (k+1) is obtained by slightly changing x (k), which inevitably leads to autocorrelation.
In the Box-Muller method, x (k+1) is created without referring to x (k) and hence there
is no autocorrelation. This is the reason that it is called a “random number”. In
this sense, the Box-Muller method is much better than the Metropolis algorithm.
On the other hand, such efficient algorithms are known only for simple probability
distributions. The Metropolis algorithm is very powerful because it can be applied
to any probability distribution.

The Metropolis-Hastings algorithm (Sect. 5.3) and the Gibbs sampling algorithm
(Sect. 5.2) are based on a very simple idea: less autocorrelation leads to higher
efficiency. The Box-Muller method can also be regarded as a special case of these
algorithms.

4.4 Examples Other Than the Gaussian Distribution

So far we have studied only the Gaussian distribution P(x) = e−S(x)

Z = e− x2
2√
2π

. Some
readers may wonder if such a simple method can always work, so let us see a few
other examples.

First, we consider the superposition of two Gaussian distributions,

P(x) = e− (x−3)2

2 + e− (x+3)2

2

2
√
2π

. (4.14)

The action S(x) can be taken as

S(x) = − log
(
e− (x−3)2

2 + e− (x+3)2

2

)
. (4.15)

Hence we only have to rewrite two lines in the sample code, namely, we change

action_init=0.5e0*x*x;
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Fig. 4.9 The histograms of x (1), x (2), . . . , x (K ) with K = 103, 105, 107. The dashed lines are the

target distribution P(x) = e− (x−3)2
2 +e− (x+3)2

2

2
√
2π

. The step size is 0.5 (top) or 5.0 (bottom). When the

step size is 0.5, the deviation from the target distribution is visible even with 107 configurations.
When the step size is 5.0, the convergence to the target distribution is much faster

and

action_fin=0.5e0*x*x;

to

action_init=-log(exp(-0.5e0*(x-3e0)*(x-3e0))+exp(-0.5e0*
(x+3e0)*(x+3e0)));

and

action_fin=-log(exp(-0.5e0*(x-3e0)*(x-3e0))+exp(-0.5e0*
(x+3e0)*(x+3e0)));

Weperformed simulationswith step sizes 0.5 and 5.0, and have shown the histograms
of x in Fig. 4.9. The top and bottom rows are for step size 0.5 and 5.0, respectively.

The target distribution P(x) = e− (x−3)2
2 +e− (x+3)2

2

2
√
2π

is shown with the dashed lines. We
can see the convergence to the target distribution for both cases.When the step size is
5.0, convergence is achieved quickly.However,when the step size is 0.5, convergence
is slower; even with 107 samples, the heights of the two peaks do not completely
agree. What is the reason?

In the importance sampling, the configurations with smaller weights are avoided.
In the current setup with two peaks, a bottleneck near x = 0 consists of low-weight
configurations that are not sampled frequently. Therefore, if the step size is small, it
is difficult to go through this bottleneck and reach the other peak. If the transitions
between the two peaks happen frequently, the heights quickly become the same.
Otherwise,more time is spent at one of the peaks and the heights differ for a long time.
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Fig. 4.10 The probability distribution (4.16) reproduced by using the Metropolis algorithm with
the step size 0.5. The histograms of x (1), x (2), . . . , x (K ) with K = 103, 105, 107 are shown

As explained in Sect. 3.2, such a bottleneck can effectively break the irreducibility.
(Of course, the irreducibility is not completely broken, so if wewait very longwewill
get the right answer. However a “very long time” can often be more than the human
lifespan.) When the step size is 5.0, configurations can jump over the bottleneck
and go directly from one peak to the other, so a quick convergence can be achieved.

In Sect. 4.7.1, we consider a more extreme example, P(x) = e− x2
2 +e− (x−100)2

2

2
√
2π

. Please
think about the optimum step size for that case. (In Sect. 6.3.3, we will introduce the
replica-exchange method, which can be used for more complicated problems.)

As yet another example, let us consider a combination of the semi-circle distri-
bution at x < 0 and the Gaussian distribution at x ≥ 0:

P(x) =

⎧
⎪⎨

⎪⎩

e− x2
2√
2π

(x ≥ 0)
2
π

√
1 − x2 (−1 ≤ x < 0)
0 (x < −1)

(4.16)

The probability is zero at x < −1, hence x ′ < −1 is always rejected. (Equivalently,
we take S(x) = ∞ at x < −1.) The distribution obtained in this way is shown in
Fig. 4.10. As expected, x < 0 is a semi-circle, and x > 0 is Gaussian. In this case,
the choice of the step size is not as important as in the last example because there is
no bottleneck.

4.5 Application to Complicated Integrals

In Markov Chain Monte Carlo, the expectation values can be obtained, but the
partition function Z cannot be calculated directly. In many cases, the partition func-
tion is merely a normalization factor that is not particularly useful. However, some-
times we happen to be interested in the value of Z itself. In such a case, how can we
calculate it?

When there is only one variable, we can plot the probability distribution P(x) =
e−S(x)

Z obtained via MCMC and take the ratio with e−S(x). However, this method does
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not work when there are many variables. Below, we show a method that can easily
be generalized to multivariate distributions.

The action S(x) can be any complicated real-valued function, as long as the
partition function Z = ∫

dxe−S(x) is finite. If the action is a simple function, for
example S0(x) = x2

2 , the partition function can be calculated analytically, as Z0 =
∫
dxe−S0(x) = √

2π . By using such an S0, we can calculate the ratio of Z and Z0 via
MCMC:

Z

Z0
= 1

Z0

∫

dxe−S0 · eS0−S = 〈
eS0−S

〉
0 . (4.17)

Here 〈 · 〉0 is the expectation value calculated by using e−S0 as the weight. If we know
Z0, we can get the value of Z as well.

As an example, let us consider

S(x) =
{− 1

2 log(1 − x2) (−1 < x < 1)
∞ (x < −1, x > 1)

(4.18)

Then the partition function Z has to be the area of the semi-circle, π
2 . If we calculate

the expectation value of eS0(x)−S(x) which is expressed as

eS0(x)−S(x) =
{
e

1
2 x

2√
1 − x2 (−1 < x < 1)
0 (x < −1, x > 1)

(4.19)

we should obtain

Z

Z0
= π

2
· 1√

2π
= 0.6266.... (4.20)

In the left panel of Fig. 4.11, we can see the convergence to this value.
In principle, this method always works. In practice, however, it works only when

the probability distributions P(x) = e−S(x)

Z and P0(x) = e−S0(x)

Z0
have a sufficiently

large overlap. To illuminate this point, let us consider S(x) = (x−α)2

2 . In this case,
P(x) and P0(x) are peaked around x = α and x = 0, respectively. The weight factor
to be calculated via MCMC is

P(x)

P0(x)
= eS0(x)−S(x) = e

x2

2 − (x−α)2

2 . (4.21)

If α is very large, say α = 100, the values of eS0−S appearing in the simulation are
almost always extremely small, e.g., e−5000, because the value of x in the probability
distribution P0 is typically 1. However, once in e+5000 configurations or so, x can
become as large as 100, and then eS0−S takes a large value like e+5000. After taking
the average over infinitely many configurations, we obtain Z

Z0
= 1. However, we

will not see the configurations dominating this average, x ∼ 100, during a realistic
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Fig. 4.11 [Left] The expectation value of (4.19) calculated by using theMetropolis algorithmwith
step size 4. [Right] The expectation value of (4.21) calculated via the Metropolis algorithm with
step size 4. The parameter α is 1, 3, or 5. The horizontal axis is the number of configurations K
used for the calculation of the expectation value

simulation time. Obviously, we cannot get the right answer in any practical sense. In
the right panel of Fig. 4.11, we can see that the convergence is getting significantly
slow already at α = 3. At α = 5, we see a large deviation from the right answer

〈e x2

2 − (x−α)2

2 〉0 = 1 even with 1,000,000 configurations. This issue is called the overlap
problem because it happens due to the lack of overlap between P(x) and P0(x).4

In this example, the overlap problem can be resolved rather easily. Let us be less
ambitious and split the problem into M tasks. We choose a chain of actions S0, S1,
S2, ..., SM = S, in such a way that Sn and Sn+1 are sufficiently close. For example,
we can use Sn = 1

2

(
x − αn

M

)2
, with α

M ∼ 1. Then Zn+1

Zn
(where Zn ≡ ∫

dxe−Sn(x))
can be calculated without suffering from a serious overlap problem. By calculating
Z1
Z0
, Z2

Z1
, . . ., ZM

ZM−1
, we can determine Z = ZM . Similar methods can be used for

more complicated S(x) and Z as well. One of the authors applied this method to a
complicated integral in a physics problem [7].

4.6 Sign Problem

All the arguments above assumed e−S(x) ≥ 0 so that it can be regarded as a probability.
This assumption is not valid inmany important applications in physics, i.e., theweight
e−S(x) can be negative or complex at certain values of x . Then the Markov Chain
Monte Carlomethods are not directly applicable. This is the infamous sign problem.5

For reviews, see e.g., Refs. [8, 9]. The sign problem in physics is one of the biggest
motivations for the quantum computer [10, 11].

4 The negative sign problem, which will be discussed in Sect. 4.6, can be regarded as a version of
the overlap problem.
5 When e−S(x) is complex, it is also called the “phase problem”, but even in that case “sign problem”
is more commonly used.



4.6 Sign Problem 57

There is no generic solution to the sign problem known to date. The sign problem
is a very difficult problem that is related to one of the biggest issues in computer
science and mathematics: the P �= N P conjecture. If there were a generic solution,
it would mean P = N P [12], and hence it is widely believed that a generic solution
cannot exist. However, several case-by-case solutions specific to concrete problems
are known. Also, sometimes we can beat the sign problem by brute force, simply
by investing a lot of computational resources. In this section, we introduce a typical
example of such a brute-force method: the reweighting method.

Suppose e−S(x) is complex.Wewrite it as a product of the absolute value |e−S(x)| =
e−S0(x) and the complex phase eiθ(x):

e−S(x) = e−S0(x) × eiθ(x). (4.22)

It is straightforward to perform MCMC by adopting e−S0 as the weight. (This is
called the phase-quenched simulation.) We use 〈 · 〉0 to denote the expectation value
with this weight. Then

∫

dxe−S(x) = 〈eiθ(x)〉0 ×
∫

dxe−S0(x), (4.23)

and hence, by calculating 〈eiθ(x)〉0 and
∫
dxe−S0(x) we can determine

∫
dxe−S(x).

Note that we can use the method explained in Sect. 4.5 to calculate
∫
dxe−S0(x).

Thismethod is simple in principle, but often eiθ fluctuates very violently and 〈eiθ 〉0
becomes very close to zero. This is often the case when there are many variables in
the integral. In case such large fluctuations appear, we need to determine 〈eiθ 〉0 very
precisely, which makes the simulation harder.

The calculation of the expectation value 〈 f (x)〉 is also simple, by using

〈 f (x)〉 = 〈 f (x)eiθ 〉0
〈eiθ 〉0 . (4.24)

In this case, again, both the numerator and denominator can become very small if
eiθ fluctuates a lot.

The sign problem becomes particularly severe when the presence of the phase
factor affects the configurations dominating the integral.6 In such cases, the sign
problem can be regarded as a version of the overlap problem.

6 In such cases, contributions from dominant configurations in the phase-quenched simulation are
canceled by particularly violent oscillations of eiθ and a new peak emerges from the tail of the
phase-quenched probability distribution.
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4.7 Common Mistakes

In this section, we show a few common mistakes among beginners. These mistakes
are sometimes made by experts, too.

4.7.1 Changing Step Size in the Middle of the Simulation

Imagine there is a bottleneck in the probability distribution, like in Fig. 4.9. As an

extreme example, we can consider S(x) = − log
(
e− x2

2 + e− (x−100)2

2

)
. Then e−S(x)

has two peaks around x = 0 and x = 100, in between e−S(x) is almost zero. In such
cases, it is not easy to sample the entire distribution because it is difficult to go
through the bottleneck. Also, it often happens that the simulation is trapped in a
special configuration surrounded by bottlenecks, gets stuck there for a long time,
and the acceptance rate becomes very low. Then, you might be tempted to change
the step size, say make it smaller so that the acceptance rate goes up. However, if
you do that, you get a wrong result. You must not change the step size in the middle
of the simulation.

Still, it is totally fine to combine multiple step sizes. As long as the conditions
explained in Chap. 3 are not broken, we can do whatever we like. For example,
you can take step size c = 1 for the even steps and c = 100 for the odd steps. With
this choice, at the odd steps, the transition between the peaks around x = 0 and
x = 100 can take place, and hence the entire distribution can be sampled (Fig. 4.12).
Alternatively, we can set the step size by throwing a dice. Namely, at each step,
you can choose the step size to be c = 1, 2, 3, 4, 5 or 6 with probability 1

6 for each
value, without breaking the conditions listed in Chap. 3. We can do whatever, so we
recommend you try various options.

When the configurations are far from thermalization, the simulation often gets
stuck at a special configuration. To avoid this, we can choose a good initial configu-
ration (if we know about basic features of the probability distribution), or we can take
the step size to be small at the beginning and then switch to a larger step size after
thermalization. There is no problem as long as we use the same step size when we
calculate the expectation values. Because the configurations before thermalization
are simply discarded, we can change the step size during the thermalization process.7

7 Another common technique is to skip the Metropolis test at the early stage of the thermalization
process. This technique is particularly powerful when it is combined with the HMC algorithm intro-
duced in Sect. 5.1. Because those configurations are not used for the calculation of the expectation
value, there is no need for the detailed balance condition there.
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Fig. 4.12 The probability distribution P(x) = e− x2
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reproduced by using theMetropolis
algorithm with the step size c = 1 for the even steps and c = 100 for the odd steps. The histogram
of 10,000,000 samples is shown. The target distribution P(x) is also drawn, but it is invisible to the
naked eyes because it agrees well with the histogram

4.7.2 Mixing the Configurations Obtained by Using Different
Step Sizes

This example is similar to the one in Sect. 4.7.1. If several sequences of the configu-
rations are obtained by using different step sizes, the convergence to the right answer
is guaranteed for each step size. However, if the simulations are terminated at finite
numbers of steps and the configurations obtained by using different step sizes are
mixed, the statistical error might become uncontrollable, and unreasonable results
may be obtained. Still, if the autocorrelation length is properly estimated for each
step size, it is possible to take the average by mixing the independent samples.

If several sequences of the configurations are obtained by using the same step
size, there is no problem in using all the configurations for the analyses, as long as
each run is sufficiently well thermalized.

4.7.3 “Random Numbers” Were Not Really Random

As we have mentioned, the “random numbers” used in numerical simulations are
actually pseudorandom. Therefore, we can make unexpected mistakes if we are
not careful enough. For example, what happens if we repeat the same sequence
of pseudorandom numbers every 1000 steps? The outcome is shown in Fig. 4.13.
Obviously, the answer is wrong.
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Fig. 4.13 Wrong example of the Gaussian integral with Metropolis algorithm, step size c = 1. The
same sequence of pseudorandom numbers was repeated every 1000 steps (i.e., “random numbers”

were not really random). In the correct simulation, 〈x2〉 = 1
K

∑K
k=1

(
x (k)

)2
has to converge to 1.

However, in this example, convergence to a wrong value is observed

Such mistakes happen very easily. Suppose we work on a very large-scale simu-
lation that takes several months. Then we have to split the task into small jobs which
can be finished at a short time scale, say one day or an hour. For example, 10 steps
are processed in each job, and we repeat 1000 jobs so that 10000 steps are obtained
in total. Then if we make an error in the setting of the seeds, the same sequence of
pseudorandom numbers would be repeated every 10 steps.

In order to avoid such mistakes, it is better to save both the configuration and the
information regarding the pseudorandom numbers at the end of each job. It is kind
of tedious at first, but once you write a code, you can copy-and-paste the same one.

4.8 Multivariate Metropolis Algorithm

So far, we have only dealt with the univariate distributions. Although all the essence
is there, it is instructive to learn about the cases with many variables that suffer from
the curse of dimensionality. In this section, we generalize the Metropolis algorithm
to multivariate distributions.
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This generalization is very simple. Let the variables be (x1, x2, . . . , xn). Because
there aremultiple variables, there are roughly two possible ways we can update them.
The first one is 〈Update simultaneously〉:

Multivariate Metropolis 〈Update simultaneously〉� �

1. For all i = 1, 2, . . . , n, choose�xi randomly from [−ci ,+ci ], and propose
x ′
i ≡ x (k)

i + �xi as a candidate of x
(k+1)
i . The step sizes c1, c2, . . . , cn can

be different from each other.
2. Metropolis test: the candidate {x ′} is accepted and the value of {x} is updated

as {x (k+1)} = {x ′}with a probability min(1, eS({x (k)})−S({x ′})). Otherwise {x ′}
is rejected and the value of {x} remains unchanged, as {x (k+1)} = {x (k)}.

� �
The other one is 〈Update one by one〉:

Multivariate Metropolis 〈Update one by one〉� �

1. Choose �x1 randomly from [−c1,+c1], and take x ′
1 ≡ x (k)

1 + �x1. Other
variables are left untouched, x ′

i ≡ x (k)
i (i = 2, 3, . . . , n).

2. Metropolis test: the candidate {x ′} is accepted and the value of {x} is updated
as {x (k+1)} = {x ′} with a probability min(1, eS({x (k)})−S({x ′})). Otherwise {x ′}
is rejected and the value of x remains unchanged, as {x (k+1)} = {x (k)}.
(Whether the proposal is accepted or not, x2, x3, . . . , xn are left untouched.)

3. Update x2 in the same manner. (x1, x3, . . . , xn are left untouched.)
4. In the same manner, update x3, . . . , xn one by one.

� �
For the Metropolis test, a uniform random number r between 0 and 1 is generated

and the candidate {x ′} is accepted if r < eS({x (k)})−S({x ′}).
We recommend that the reader check that, either way, the four conditions of

Markov Chain Monte Carlo explained in Chap. 3 are satisfied. (Strictly speaking,
the situation is a little bit subtle in 〈Update one by one〉; see the exercise at the end
of this chapter.)

When there are many variables, 〈Update simultaneously〉 usually forces us to
take the step size ci small, because otherwise the acceptance rate becomes low.
On the contrary, 〈Update one by one〉 allows us to take the step size relatively large.
Furthermore, in case the variable xi interacts with only a few other variables (e.g., the
nearest-neighbor interaction which can be written as S = f (x1, x2) + f (x2, x3) +
. . . f (xn−1, xn)) xi can be updated by calculating only the terms containing xi (in the
example above, f (xi−1, xi ) + f (xi , xi+1)), and hence, the computational cost can
be reduced.

Either way, a different value of step size ci can be used for each variable xi . Please
check that the detailed balance condition is still satisfied, as an instructive exercise. In
case the widths of the probability distribution heavily depend on the variables, (there
can be exceptions, but in many cases) the simulation becomes more efficient if ci is
proportional to the width. When we do not have a good guess regarding the width,
we can try several different step sizes and see how the acceptance rate changes.
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4.8.1 Multivariate Gaussian Distribution

Let us consider the multivariate Gaussian distribution8

S(x1, . . . , xn) = 1

2

n∑

i, j=1

Ai j xi x j (Ai j = A ji ). (4.25)

As an example, we take n = 2. We write x1 = x and x2 = y, and choose the coeffi-
cients to be A11 = 1, A22 = 1, A12 = 1

2 . Then, the action S(x, y) becomes9

S(x, y) = x2 + y2 + xy

2
. (4.26)

The term 1
2 xy in S(x, y) introduces the correlation between x and y. For example,

we can imagine that x and y parametrize a person’s mathematical skills and baseball
skills, respectively. Larger x means better mathematical skills, and larger y means
better baseball skills. Zero is average, and a large negative value means bad skill.

If S(x, y) = x2+y2

2 and P(x, y) ∝ e− x2+y2

2 , the values of x and y are not correlated
at all, which means whether one is good or bad at mathematics is not related to

baseball skills. If S(x, y) = x2+y2+xy
2 and P(x, y) ∝ e− x2+y2+xy

2 , it is unlikely that
one is good both at math and baseball or bad both at math and baseball, rather if
one is good at math or baseball he/she is likely to be bad at the other. It would be a
reasonable assumption because they have to split a finite amount of time to the study
of mathematics and practice of baseball, and also because God usually does not bless
a person twice.

We use the Metropolis algorithm to generate this probability distribution. If the
number of variables is as small as 2, there is no big difference between 〈Update
simultaneously〉 and 〈Update one by one〉. Here we use the former. Below we show
some sample code written in C:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>

int main(void){
int niter=10000;
double step_size_x=0.5e0;
double step_size_y=0.5e0;

8 See Appendix B.2 for basic properties.
9 If we consider a slightlymore generic version S(x, y) = x2+y2+2Axy

2 , the same kind of calculation
applies to −1 < A < 1. If A ≥ 1 or A ≤ −1, then P(x, y) ∝ e−S(x,y) does not make sense as a
probability distribution. Why? (Hint: See Sect. 6.1.2.)
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srand((unsigned)time(NULL));
/*********************************/
/* Set the initial configuration */
/*********************************/
double x=0e0;
double y=0e0;
int naccept=0;
/*************/
/* Main loop */
/*************/
for(int iter=1;iter<niter+1;iter++){
double backup_x=x;
double backup_y=y;
double action_init=0.5e0*(x*x+y*y+x*y);

double dx = (double)rand()/RAND_MAX;
double dy = (double)rand()/RAND_MAX;
dx=(dx-0.5e0)*step_size_x*2e0;
dy=(dy-0.5e0)*step_size_y*2e0;
x=x+dx;
y=y+dy;
double action_fin=0.5e0*(x*x+y*y+x*y);
/*******************/
/* Metropolis test */
/*******************/
double metropolis = (double)rand()/RAND_MAX;
if(exp(action_init-action_fin) > metropolis){
/* accept */
naccept=naccept+1;

}else{
/* reject */
x=backup_x;
y=backup_y;}

/***************/
/* data output */
/***************/
// output the results every ten steps.
if(iter%10==0){
printf("%.10f %.10f %f\n",x,y,(double)naccept/
iter);}

}
}

The code is almost identical to the one for S(x) = x2

2 shown in Sect. 4.2. The

only differences are that there is one more variable y and S(x) = x2

2 is replaced

with S(x, y) = x2+y2+xy
2 . The same applies even if there are thousands or millions

of variables, and even if the probability distribution is a very complicated function.
As we have seen, different step sizes can be used for x and y. However, in this

specific example, it is natural to use the same step size because x and y appear in
S(x, y) symmetrically. We used the Metropolis algorithm with the step size c = 0.5,
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Fig. 4.14 A scatter plot of
(x, y) that follows the
bivariate Gaussian
distribution

P(x, y) ∝ e− x2+y2+xy
2 . We

used the Metropolis
algorithm, with the step size
0.5 for both x and y. One
configuration is sampled
every 10 steps, and 10,000
configurations are collected
in total

and output the configuration (x, y) every ten steps.We collected 1,000 configurations
(10,000 steps) and plotted them in Fig. 4.14. (In this case, we know the probability
distribution has the largest weight at x = y = 0. Therefore we set the initial config-
uration to be x = y = 0, to save the time for thermalization.) The dashed diagonal
line is y = −x . The points (x, y) are distributed roughly along this line, and hence,
we can confirm the tendency that “if x is a large positive value (good at mathematics)
then y is a large negative value (bad at baseball)” and “if x is a large negative value
(bad at mathematics) then y is a large positive value (good at baseball)”. As a point
(x, y) goes further from the center of the distribution ((x, y) = (0, 0)), the density
becomes lower.

Now we have generated the probability distribution. As an application, let us
design a life plan. Suppose some boys and girls do not know what they are good at,
and they are wondering whether they should become a physicist or a baseball player.
They would want to know the expectation value of their income as one of the factors
for their career choice. For such an estimate, we need “salary functions” sphysics and
sbaseball that relate the math and baseball skills to the salaries as a physicist or baseball
player.

To become a physicist, it is better to be good at mathematics. However, even if
one is not good at mathematics, somehow it is possible to survive and write papers.
In this sense, some income is expected even if x is small. Another crucial fact is that,
even if one is extremely good at mathematics, a physicist’s salary cannot be huge. It
is reasonable to assume that baseball skills do not affect a salary as a physicist, so
we assume the salary function of physicists is a function of math skill x only and
takes the following form:
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Fig. 4.15 Math skills x vs
salary as physicist sphysics(x)
(solid line) and baseball
skills y vs salary as baseball
player sbaseball(y) (dashed
line)
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sphysics(x) = 2 + tanh x

3
. (4.27)

The graph is shown in Fig. 4.15. Overall, this function is very smooth.
We expect that the salary function of baseball players sbaseball is very different.

Unless one is exceptionally good at baseball, namely, unless y is sufficiently large,
one cannot become a professional baseball player. Hence, the salary is zero below
a certain threshold. However, if one actually becomes a professional player, their
salary can be astronomical. Therefore, salary increases quickly beyond the threshold
value of y. Probably, math skills do not affect the salary as a baseball player, so let
us assume that sbaseball is a function of y only, and takes the following form:

sbaseball(y) =
{
0 (y ≤ 2)
y2

2 (y > 2)
(4.28)

The graph is shown in Fig. 4.15, together with sphysics. A discontinuity at y = 2 is an
important feature.

Let us calculate the expectation values 〈sphysics(x)〉 and 〈sbaseball(y)〉 by using the
configurations generated via the Metropolis algorithm.

Let us see 〈sphysics(x)〉 first. Analytically, we can show that 〈sphysics(x)〉 = 2/3 =
0.66 . . .. Can we reproduce this value via MCMC? We repeated the simulation 100
times with different sequences of the pseudorandom numbers, and calculated the
average and standard deviation of 100 streams. The result is shown in Fig. 4.16.
The horizontal axis is the number of samples K used to calculate the expectation
value. We picked up four typical streams and showed them by purple lines. As K
becomes large, the expectation value quickly converges to the exact analytic value.
The convergence is quick because sphysics(x) does not change violently with x (the
difference is at most factor three) and all configurations give similar contributions.
As a result, all configurations are effectively used and values close to the right answer
can be obtained without using too many configurations.
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Fig. 4.16 The expectation value of sphysics(x) is calculated by using the Gaussian distribution

P(x, y) ∝ e− x2+y2+xy
2 . The horizontal axis is the number of configurations K used for the calcula-

tion. 100 independent simulations are performed by using different sequences of random numbers.
The average and the standard deviation of the 100 streams are shown in green. The purple lines are
four typical streams. Quick convergence to the right answer is observed
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Fig. 4.17 The expectation value of sbaseball(y) is calculated by using the Gaussian distribution

P(x, y) ∝ e− x2+y2+xy
2 . As in Fig. 4.16, the horizontal axis is the number of configurations K used

for the calculation. 100 independent simulations are performed by using different sequences of the
random numbers. The average and the standard deviation of the 100 streams are shown in green.
The purple lines are four typical streams. Because sbaseball(y) is an extreme function that has a big
jump, the convergence to the right answer is rather slow and many configurations are needed for a
precise estimate

Next, let us calculate 〈sbaseball(y)〉. The answer is 〈sbaseball(y)〉 = 0.1305 . . .. Can
we reproduce this value, as we did for 〈sphysics(x)〉? The result is shown in Fig. 4.17,
by using the same scale as Fig. 4.16. This plot looks very different from that for
〈sphysics(x)〉; even with a fairly large-K , the expectation values from different streams
differ significantly and the convergence to the right value is very slow. This is because
rare configurations (y > 2) have large contributions while the majority of the config-
urations (y ≤ 2) do not contribute at all. In other words, the peak of the probability
distribution P(x, y) and the configurations important for the expectation value do
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not overlap. If we calculate the expectation value in such a situation, wrong answers
may be obtained unless we collect a very large number of configurations. Although,
in the current case, we can increase the number of configurations by brute force, if the
integrand is even more extreme (say, if only y > 10 contribute), or if the simulation
is costly and it is hard to collect many configurations, some improvement is needed.
Below, we will explain a method to solve this problem.

Solving the Overlap Problem

As some of you might have noticed, this is essentially the overlap problem explained
in Sect. 4.5, and hence, can be resolved in the same manner. For example, let us
define a new action by shifting the value of y by α, as

S(x, y;α) = x2 + (y − α)2 + x(y − α)

2
. (4.29)

The partition function associated with S(x, y;α) is defined as

Zα =
∫

dx
∫

dye−S(x,y;α). (4.30)

Then we can express 〈sbaseball(y)〉 in the following manner, by using {αi } (i =
1, . . . , M):

〈sbaseball(y)〉 = 1

Z0

∫

dx
∫

dysbaseball(y)e
−S(x,y;0)

= Zα1

Z0
· Zα2

Zα1

· Zα3

Zα2

· · · ZαM

ZαM−1

· 1

ZαM

∫

dx
∫

dysbaseball(y)e
−S(x,y;0).

(4.31)

Let us denote the expectation value of a function f (x, y) with the weight e−S(x,y;α)

as

〈 f (x, y)〉α = 1

Zα

∫

dx
∫

dy f (x, y)e−S(x,y;α). (4.32)

Then, the partition functions can be written as

Zαi+1 =
∫

dx
∫

dye−S(x,y;αi+1) =
∫

dx
∫

dye−S(x,y;αi+1)+S(x,y;αi )e−S(x,y;αi )

(4.33)
and hence the ratio is

Zαi+1

Zαi

= 〈
e−S(x,y;αi+1)+S(x,y;αi )

〉
αi

≡ 〈
e−�i+1,i

〉
αi

. (4.34)
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Fig. 4.18 The expectation
value of sbaseball(y) is
calculated by using the
reweighting method (4.35).
We took M = 2, α1 = 1.5
and α2 = 3. As expected, the
convergence to the right
answer is fast
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Here we used a shorthand notation �i+1,i ≡ S(x, y;αi+1) − S(x, y;αi ). Therefore,
〈sbaseball(y)〉 written in the form of (4.31) can be expressed as a product of the expec-
tation values with the probability weights e−S(x,y;αi ) (i = 0, . . . , M),

〈sbaseball(y)〉 = 〈
e−�1,0

〉
α0

〈
e−�2,1

〉
α1

· · · 〈e−�M,M−1
〉
αM−1

〈
e−�0,M sbaseball(y)

〉
αM

. (4.35)

Here we set α0 = 0. The key point of this deformation is that, by choosing
{α1, . . . , αM} appropriately, all expectationvalues 〈e−�i+1,i

〉
αi
and

〈
e−�0,M sbaseball(y)

〉
αM

appearing in (4.35) can be calculated without encountering the overlap problem. To
calculate

〈
e−�i+1,i

〉
αi
efficiently, we just have to take αi and αi+1 sufficiently close.

To calculate the last term
〈
e−�0,M sbaseball(y)

〉
αM
, we should take αM to be 2 or 3.

We applied this method with M = 2, α1 = 1.5, and α2 = 3. The result is shown
in Fig. 4.18. Although we divided the task into only three pieces (i = 0, 1, 2), the
convergence to the correct value became much quicker than the naive approach
(Fig. 4.17). This is evidence that the overlap problem was resolved. It may not be
a very sophisticated method, but that we use MCMC would mean we focus on the
practical utility rather than the beauty, so we should not mind!

Nowwe could design a life plan. The expectation value of the salary as a physicist
is about 0.667, while as a baseball player about 0.131 is expected. If the talent is
unknown, the probability distribution used here and the salary functions are reason-
able, and the salary is an important factor in life, then one should become a physicist
rather than a baseball player. Note however that, for people who seriously care about
salary, there are better jobs than a physicist.

Distributions with Many Variables

Even if there are a lot more variables, say n = 100, the same method can be used. It
is better to update the variables one by one because the acceptance rate can become
very small otherwise, unless the step size is very small.
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When xa is varied to xa + �xa , the change of S(x1, . . . , xn) = 1
2

∑n
i, j=1 Ai j xi x j

can be calculated just by looking at the terms containing xa :

1

2
Aaaxaxa +

∑

i �=a

Aiaxi xa (4.36)

Among n(n+1)
2 terms in S(x1, . . . , xn) (n terms for i = j and n(n−1)

2 terms for i < j ;
no need for considering i > j because Ai j = A ji ), there are only n terms that contain
xa , so the computational cost can be reduced drastically.

4.9 Exercises

1. In themain text,when x ′ = x (k) + �x is proposed as a candidate of x (k+1),�x was
taken from the uniform random number. Actually, other kinds of random numbers
can also be fine. Show that �x can be chosen from the Gaussian random number.
Show that, more generally, the detailed balance condition can be preserved as
long as �x and −�x appear with the same probability.

2. Show that�x canbe chosen from theuniformdistributionswith the step size c = 1
and c = 100 at the even and odd steps, respectively, as mentioned in Sect. 4.7.1.
Is the detailed balance condition preserved?

3. Show that the step size can be chosen randomly from c = 1, 2, 3, 4, 5 or 6, with
the probability 1

6 at each step. (see Sect. 4.7.1.)
4. What if the variable is discrete? For example, if x takes only integer values, how

should we choose �x?
5. How can we estimate the error bar of the histogram of the probability distribution

P(x) obtained via the Markov Chain Monte Carlo simulation?
6. If the integral of e−S(x) is not finite, what happens in MCMC?
7. When we showed the detailed balance condition, we implicitly used the fact that

the Jacobian is 1. (If a transformation x → x ′ maps [x, x + ε] to [x ′, x ′,+ε′], the
Jacobian is the ratio of the width, ε′

ε
.) In the examples considered in this book, we

can easily see that Jacobian is 1, unless otherwise stated. (For a little bit nontrivial
case, see the HMC algorithm explained in Sect. 5.1.) What could be a problem if
the Jacobian were not 1?

8. Show that both 〈Update simultaneously〉 and 〈Update one by one〉 are legitimate
procedures.

9. Show that a different step size ci can be used for each variable xi .
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Solutions

1. We generate �x with the Gaussian weight e
− (�x)2

2σ2√
2πσ

. Then the transition probability
T (x → x ′) is

T (x → x ′) = e− (x−x ′)2
2σ2√

2πσ
× min

(
1, eS(x)−S(x ′)

)
. (4.37)

This is obtained by replacing 1
2c in (4.4) with e

− (x−x ′)2
2σ2√
2πσ

. The Eqs. (4.6) and (4.7)
change in a similar manner. When S(x) ≥ S(x ′), we have

P(x) · T (x → x ′) = e−S(x)

Z
× e− (x−x ′)2

2σ2√
2πσ

(4.38)

P(x ′) · T (x ′ → x) = e−S(x ′)

Z
× e− (x ′−x)2

2σ2√
2πσ

× eS(x ′)−S(x) = e−S(x)

Z
× e− (x−x ′)2

2σ2√
2πσ

.

(4.39)

In this way, we can show the detailed balance condition P(x) · T (x → x ′) =
P(x ′) · T (x ′ → x).
More generally, let f (�x) be the probability distribution of f (�x). Then, if
S(x) ≥ S(x ′),

P(x) · T (x → x ′) = e−S(x)

Z
× f (x ′ − x) (4.40)

P(x ′) · T (x ′ → x) = e−S(x ′)

Z
× f (x − x ′) × eS(x ′)−S(x) = e−S(x)

Z
× f (x − x ′).

(4.41)

Therefore, the detailed balance condition is satisfied as long as f (x ′ − x) =
f (x − x ′).

2. Because the step size alternates between c = 1 and c = 100, two different transi-
tion probabilities appear at even and odd steps. Therefore, to define the transition
probability, we need a label to distinguish even and odd steps. Hence, let us intro-
duce a variable y that takes two values, y = 0 (even) or y = 1 (odd), and specify
the state by a pair (x, y). Then,

T ((x, 0) → (x ′, 1)) = Tc=1(x → x ′), T ((x, 1) → (x ′, 0)) = Tc=100(x → x ′).
(4.42)



4.9 Exercises 71

It is easy to check that it is an irreducible Markov chain. However the value of y
alternates as 0, 1, 0, 1, . . ., and hence the period is 2. Furthermore, the detailed
balance does not hold; if we forget about y, then the following equalities hold:

P(x)Tc=1(x → x ′) = P(x ′)Tc=1(x
′ → x),

P(x)Tc=100(x → x ′) = P(x ′)Tc=100(x
′ → x). (4.43)

However, if we take y into account then the actual relations are

P(x)T ((x, 0) → (x ′, 1)) = P(x ′)((x ′, 0) → (x, 1)),

P(x)T ((x, 1) → (x ′, 0)) = P(x ′)((x ′, 1) → (x, 0)), (4.44)

which are slightly different from the detailed balance condition.
If we combine two steps y = 0 → 1 → 0 and regard it as one step, it is an
irreducible, aperiodic Markov chain. Still, the combined transition function

T (x → x ′′) =
∫

dx ′Tc=1(x → x ′)Tc=100(x
′ → x ′′) (4.45)

does not satisfy the detailed balance condition, i.e.,

P(x)T (x → x ′) �= P(x ′)T (x ′ → x). (4.46)

If we use a different transition probability

T̃ (x → x ′′) =
∫

dx ′Tc=100(x → x ′)Tc=1(x
′ → x ′′), (4.47)

then

P(x)T (x → x ′) = P(x ′)T̃ (x ′ → x) (4.48)

holds, but it is slightly different from the detailed balance condition.
That the detailed balance condition is not satisfied is not necessarily a bad news,
because the detailed balance condition is just a sufficient condition for MCMC to
work. What we really need is the equilibrium condition

P(x) =
∫

dx ′P(x ′)T (x ′ → x), (4.49)

namely, there is no problem as long as P(x) is stationary. This relation can be
confirmed as follows. From (4.43), we can show that P(x) is a stationary under
the transition Tc(x ′ → x):
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P(x) =
∫

dx ′P(x ′)Tc(x ′ → x). (4.50)

By using it twice, we can show that P(x) is a stationary under the transition
T (x ′ → x):

∫

dx ′P(x ′)T (x ′ → x) =
∫

dx ′P(x ′)
∫

dx ′′Tc=1(x
′ → x ′′)Tc=100(x

′′ → x)

=
∫

dx ′′
(∫

dx ′P(x ′)Tc=1(x
′ → x ′′)

)

Tc=100(x
′′ → x)

=
∫

dx ′′P(x ′′)Tc=100(x
′′ → x)

= P(x). (4.51)

Therefore, the distribution of (x, y = 0) converges to P(x). The same holds for
(x, y = 1) as well.
This is just a small technical issue that depends on the details of the setup. For
example, if the step size changes as c = 1, 1, 100, 1, 1, 100, . . ., then by com-
bining three steps c = 1, c = 100, c = 1 and regarding it as one step, all four
conditions including the detailed balance can be satisfied.

3. We can easily show that �x and −�x appear with the same probability; e.g., the
probability of �x = ±0.5 is 1

6

∑6
c=1

1
2c , that of �x = ±1.41 is 1

6

∑6
c=2

1
2c , and

so on. Hence we can use the result of Exercise 1 without modification. Unlike
Exercise 2, there is no subtlety in this case, and the detailed balance condition is
satisfied almost trivially.

4. We only have to make �x discrete.
5. We can use the Jackknife method. Tomake a histogram from K samples x (1), x (2),

. . ., x (K ), we divide x to bins with width dx , count the number of samples in each
bin, and normalize such that the integral becomes 1. If the number of samples in
the i-th bin is ni , the height of the histogram is ρi = ni

K ·dx .
Let us divide the samples into n groups consisting of w samples. Let ρ̃(l,w)

i be the
histogram calculated from the l-th group of samples. Then the Jackknife error at

each bin is �w,i =
√

1
n(n−1)

∑n
l=1

(
ρ̃

(l,w)
i − ρi

)2
.

6. Because the “probability” and “expectation value” cannot be defined, MCMC
is not applicable. Let us consider S(x) = −x2 as an example. Because S(x) is
smaller when |x | is larger, x diverges to +∞ or −∞.

7. To obtain a probability from a probability density, we have tomultiply thewidth of
an infinitesimal interval. Therefore, strictly speaking, we needed to multiply ε, ε′,
etc, in the expressions appeared in a proof of the detailed balance condition. We
did not include them because, if Jacobian is 1, they are the same overall factor and
could be ignored. When the Jacobian is not 1, we cannot ignore them. Depending
on the choice of �x , the detailed balance condition could be broken.
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8. For the 〈Update simultaneously〉, we can easily show that it is aMarkov chain that
satisfies the irreducibility (unless the domain of integration splits into multiple
islands), aperiodicity, and the detailed balance condition. The proof is almost
identical to the one for the case of one variable.
〈Update one by one〉 is similar to the setup in Exercise 2. There were two kinds
of transitions in Exercise 2, but now there are n of them. It is straightforward
to see it is an irreducible Markov chain. If we update x j when k is j modulo n
( j = 1, 2, . . . , n), then by regarding j = 1 → j = 2 → · · · → j = n → j = 1
as one step, such aMarkov chain is aperiodic. The detailed balance does not hold,
but the equilibrium condition is still satisfied, which is enough for our purpose.
If we change the method slightly such that one of n variables x1, . . . , xn is chosen
randomly with a probability 1

n and updated, then all conditions hold including the
aperiodicity and detailed balance.

9. There is no problem as long as �x and −�x appear with the same probability.
This condition is kept trivially even if we take different step sizes ci for different
variables.
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